2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
60 #include <linux/local_lock.h>
62 #define ZSPAGE_MAGIC 0x58
65 * This must be power of 2 and greater than of equal to sizeof(link_free).
66 * These two conditions ensure that any 'struct link_free' itself doesn't
67 * span more than 1 page which avoids complex case of mapping 2 pages simply
68 * to restore link_free pointer values.
73 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
74 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
76 #define ZS_MAX_ZSPAGE_ORDER 2
77 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
79 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
81 #ifdef CONFIG_PREEMPT_RT
83 struct zsmalloc_handle {
88 #define ZS_HANDLE_ALLOC_SIZE (sizeof(struct zsmalloc_handle))
92 #define ZS_HANDLE_ALLOC_SIZE (sizeof(unsigned long))
96 * Object location (<PFN>, <obj_idx>) is encoded as
97 * a single (unsigned long) handle value.
99 * Note that object index <obj_idx> starts from 0.
101 * This is made more complicated by various memory models and PAE.
104 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
105 #ifdef MAX_PHYSMEM_BITS
106 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
109 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
112 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
116 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
119 * Memory for allocating for handle keeps object position by
120 * encoding <page, obj_idx> and the encoded value has a room
121 * in least bit(ie, look at obj_to_location).
122 * We use the bit to synchronize between object access by
123 * user and migration.
125 #define HANDLE_PIN_BIT 0
128 * Head in allocated object should have OBJ_ALLOCATED_TAG
129 * to identify the object was allocated or not.
130 * It's okay to add the status bit in the least bit because
131 * header keeps handle which is 4byte-aligned address so we
132 * have room for two bit at least.
134 #define OBJ_ALLOCATED_TAG 1
135 #define OBJ_TAG_BITS 1
136 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
137 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
139 #define FULLNESS_BITS 2
141 #define ISOLATED_BITS 3
142 #define MAGIC_VAL_BITS 8
144 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
145 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
146 #define ZS_MIN_ALLOC_SIZE \
147 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
148 /* each chunk includes extra space to keep handle */
149 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
152 * On systems with 4K page size, this gives 255 size classes! There is a
154 * - Large number of size classes is potentially wasteful as free page are
155 * spread across these classes
156 * - Small number of size classes causes large internal fragmentation
157 * - Probably its better to use specific size classes (empirically
158 * determined). NOTE: all those class sizes must be set as multiple of
159 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
161 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
164 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
165 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
166 ZS_SIZE_CLASS_DELTA) + 1)
168 enum fullness_group {
186 struct zs_size_stat {
187 unsigned long objs[NR_ZS_STAT_TYPE];
190 #ifdef CONFIG_ZSMALLOC_STAT
191 static struct dentry *zs_stat_root;
194 #ifdef CONFIG_COMPACTION
195 static struct vfsmount *zsmalloc_mnt;
199 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
201 * n = number of allocated objects
202 * N = total number of objects zspage can store
203 * f = fullness_threshold_frac
205 * Similarly, we assign zspage to:
206 * ZS_ALMOST_FULL when n > N / f
207 * ZS_EMPTY when n == 0
208 * ZS_FULL when n == N
210 * (see: fix_fullness_group())
212 static const int fullness_threshold_frac = 4;
213 static size_t huge_class_size;
217 struct list_head fullness_list[NR_ZS_FULLNESS];
219 * Size of objects stored in this class. Must be multiple
224 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
225 int pages_per_zspage;
228 struct zs_size_stat stats;
231 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
232 static void SetPageHugeObject(struct page *page)
234 SetPageOwnerPriv1(page);
237 static void ClearPageHugeObject(struct page *page)
239 ClearPageOwnerPriv1(page);
242 static int PageHugeObject(struct page *page)
244 return PageOwnerPriv1(page);
248 * Placed within free objects to form a singly linked list.
249 * For every zspage, zspage->freeobj gives head of this list.
251 * This must be power of 2 and less than or equal to ZS_ALIGN
257 * It's valid for non-allocated object
261 * Handle of allocated object.
263 unsigned long handle;
270 struct size_class *size_class[ZS_SIZE_CLASSES];
271 struct kmem_cache *handle_cachep;
272 struct kmem_cache *zspage_cachep;
274 atomic_long_t pages_allocated;
276 struct zs_pool_stats stats;
278 /* Compact classes */
279 struct shrinker shrinker;
281 #ifdef CONFIG_ZSMALLOC_STAT
282 struct dentry *stat_dentry;
284 #ifdef CONFIG_COMPACTION
286 struct work_struct free_work;
287 /* A wait queue for when migration races with async_free_zspage() */
288 struct wait_queue_head migration_wait;
289 atomic_long_t isolated_pages;
296 unsigned int fullness:FULLNESS_BITS;
297 unsigned int class:CLASS_BITS + 1;
298 unsigned int isolated:ISOLATED_BITS;
299 unsigned int magic:MAGIC_VAL_BITS;
302 unsigned int freeobj;
303 struct page *first_page;
304 struct list_head list; /* fullness list */
305 #ifdef CONFIG_COMPACTION
310 struct mapping_area {
312 char *vm_buf; /* copy buffer for objects that span pages */
313 char *vm_addr; /* address of kmap_atomic()'ed pages */
314 enum zs_mapmode vm_mm; /* mapping mode */
317 #ifdef CONFIG_COMPACTION
318 static int zs_register_migration(struct zs_pool *pool);
319 static void zs_unregister_migration(struct zs_pool *pool);
320 static void migrate_lock_init(struct zspage *zspage);
321 static void migrate_read_lock(struct zspage *zspage);
322 static void migrate_read_unlock(struct zspage *zspage);
323 static void kick_deferred_free(struct zs_pool *pool);
324 static void init_deferred_free(struct zs_pool *pool);
325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
327 static int zsmalloc_mount(void) { return 0; }
328 static void zsmalloc_unmount(void) {}
329 static int zs_register_migration(struct zs_pool *pool) { return 0; }
330 static void zs_unregister_migration(struct zs_pool *pool) {}
331 static void migrate_lock_init(struct zspage *zspage) {}
332 static void migrate_read_lock(struct zspage *zspage) {}
333 static void migrate_read_unlock(struct zspage *zspage) {}
334 static void kick_deferred_free(struct zs_pool *pool) {}
335 static void init_deferred_free(struct zs_pool *pool) {}
336 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
339 static int create_cache(struct zs_pool *pool)
341 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_ALLOC_SIZE,
343 if (!pool->handle_cachep)
346 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
348 if (!pool->zspage_cachep) {
349 kmem_cache_destroy(pool->handle_cachep);
350 pool->handle_cachep = NULL;
357 static void destroy_cache(struct zs_pool *pool)
359 kmem_cache_destroy(pool->handle_cachep);
360 kmem_cache_destroy(pool->zspage_cachep);
363 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
367 p = kmem_cache_alloc(pool->handle_cachep,
368 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 #ifdef CONFIG_PREEMPT_RT
371 struct zsmalloc_handle *zh = p;
373 spin_lock_init(&zh->lock);
376 return (unsigned long)p;
379 #ifdef CONFIG_PREEMPT_RT
380 static struct zsmalloc_handle *zs_get_pure_handle(unsigned long handle)
382 return (void *)(handle &~((1 << OBJ_TAG_BITS) - 1));
386 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
388 kmem_cache_free(pool->handle_cachep, (void *)handle);
391 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
393 return kmem_cache_alloc(pool->zspage_cachep,
394 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
397 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
399 kmem_cache_free(pool->zspage_cachep, zspage);
402 static void record_obj(unsigned long handle, unsigned long obj)
404 #ifdef CONFIG_PREEMPT_RT
405 struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
407 WRITE_ONCE(zh->addr, obj);
410 * lsb of @obj represents handle lock while other bits
411 * represent object value the handle is pointing so
412 * updating shouldn't do store tearing.
414 WRITE_ONCE(*(unsigned long *)handle, obj);
422 static void *zs_zpool_create(const char *name, gfp_t gfp,
423 const struct zpool_ops *zpool_ops,
427 * Ignore global gfp flags: zs_malloc() may be invoked from
428 * different contexts and its caller must provide a valid
431 return zs_create_pool(name);
434 static void zs_zpool_destroy(void *pool)
436 zs_destroy_pool(pool);
439 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
440 unsigned long *handle)
442 *handle = zs_malloc(pool, size, gfp);
443 return *handle ? 0 : -1;
445 static void zs_zpool_free(void *pool, unsigned long handle)
447 zs_free(pool, handle);
450 static void *zs_zpool_map(void *pool, unsigned long handle,
451 enum zpool_mapmode mm)
453 enum zs_mapmode zs_mm;
468 return zs_map_object(pool, handle, zs_mm);
470 static void zs_zpool_unmap(void *pool, unsigned long handle)
472 zs_unmap_object(pool, handle);
475 static u64 zs_zpool_total_size(void *pool)
477 return zs_get_total_pages(pool) << PAGE_SHIFT;
480 static struct zpool_driver zs_zpool_driver = {
482 .owner = THIS_MODULE,
483 .create = zs_zpool_create,
484 .destroy = zs_zpool_destroy,
485 .malloc_support_movable = true,
486 .malloc = zs_zpool_malloc,
487 .free = zs_zpool_free,
489 .unmap = zs_zpool_unmap,
490 .total_size = zs_zpool_total_size,
493 MODULE_ALIAS("zpool-zsmalloc");
494 #endif /* CONFIG_ZPOOL */
496 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
497 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
498 /* XXX remove this and use a spin_lock_t in pin_tag() */
499 .lock = INIT_LOCAL_LOCK(lock),
502 static bool is_zspage_isolated(struct zspage *zspage)
504 return zspage->isolated;
507 static __maybe_unused int is_first_page(struct page *page)
509 return PagePrivate(page);
512 /* Protected by class->lock */
513 static inline int get_zspage_inuse(struct zspage *zspage)
515 return zspage->inuse;
519 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
521 zspage->inuse += val;
524 static inline struct page *get_first_page(struct zspage *zspage)
526 struct page *first_page = zspage->first_page;
528 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
532 static inline int get_first_obj_offset(struct page *page)
537 static inline void set_first_obj_offset(struct page *page, int offset)
539 page->units = offset;
542 static inline unsigned int get_freeobj(struct zspage *zspage)
544 return zspage->freeobj;
547 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
549 zspage->freeobj = obj;
552 static void get_zspage_mapping(struct zspage *zspage,
553 unsigned int *class_idx,
554 enum fullness_group *fullness)
556 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
558 *fullness = zspage->fullness;
559 *class_idx = zspage->class;
562 static void set_zspage_mapping(struct zspage *zspage,
563 unsigned int class_idx,
564 enum fullness_group fullness)
566 zspage->class = class_idx;
567 zspage->fullness = fullness;
571 * zsmalloc divides the pool into various size classes where each
572 * class maintains a list of zspages where each zspage is divided
573 * into equal sized chunks. Each allocation falls into one of these
574 * classes depending on its size. This function returns index of the
575 * size class which has chunk size big enough to hold the give size.
577 static int get_size_class_index(int size)
581 if (likely(size > ZS_MIN_ALLOC_SIZE))
582 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
583 ZS_SIZE_CLASS_DELTA);
585 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
588 /* type can be of enum type zs_stat_type or fullness_group */
589 static inline void zs_stat_inc(struct size_class *class,
590 int type, unsigned long cnt)
592 class->stats.objs[type] += cnt;
595 /* type can be of enum type zs_stat_type or fullness_group */
596 static inline void zs_stat_dec(struct size_class *class,
597 int type, unsigned long cnt)
599 class->stats.objs[type] -= cnt;
602 /* type can be of enum type zs_stat_type or fullness_group */
603 static inline unsigned long zs_stat_get(struct size_class *class,
606 return class->stats.objs[type];
609 #ifdef CONFIG_ZSMALLOC_STAT
611 static void __init zs_stat_init(void)
613 if (!debugfs_initialized()) {
614 pr_warn("debugfs not available, stat dir not created\n");
618 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
621 static void __exit zs_stat_exit(void)
623 debugfs_remove_recursive(zs_stat_root);
626 static unsigned long zs_can_compact(struct size_class *class);
628 static int zs_stats_size_show(struct seq_file *s, void *v)
631 struct zs_pool *pool = s->private;
632 struct size_class *class;
634 unsigned long class_almost_full, class_almost_empty;
635 unsigned long obj_allocated, obj_used, pages_used, freeable;
636 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
637 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
638 unsigned long total_freeable = 0;
640 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
641 "class", "size", "almost_full", "almost_empty",
642 "obj_allocated", "obj_used", "pages_used",
643 "pages_per_zspage", "freeable");
645 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
646 class = pool->size_class[i];
648 if (class->index != i)
651 spin_lock(&class->lock);
652 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
653 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
654 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
655 obj_used = zs_stat_get(class, OBJ_USED);
656 freeable = zs_can_compact(class);
657 spin_unlock(&class->lock);
659 objs_per_zspage = class->objs_per_zspage;
660 pages_used = obj_allocated / objs_per_zspage *
661 class->pages_per_zspage;
663 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
664 " %10lu %10lu %16d %8lu\n",
665 i, class->size, class_almost_full, class_almost_empty,
666 obj_allocated, obj_used, pages_used,
667 class->pages_per_zspage, freeable);
669 total_class_almost_full += class_almost_full;
670 total_class_almost_empty += class_almost_empty;
671 total_objs += obj_allocated;
672 total_used_objs += obj_used;
673 total_pages += pages_used;
674 total_freeable += freeable;
678 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
679 "Total", "", total_class_almost_full,
680 total_class_almost_empty, total_objs,
681 total_used_objs, total_pages, "", total_freeable);
685 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
687 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
690 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
694 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
696 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
697 &zs_stats_size_fops);
700 static void zs_pool_stat_destroy(struct zs_pool *pool)
702 debugfs_remove_recursive(pool->stat_dentry);
705 #else /* CONFIG_ZSMALLOC_STAT */
706 static void __init zs_stat_init(void)
710 static void __exit zs_stat_exit(void)
714 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
718 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
725 * For each size class, zspages are divided into different groups
726 * depending on how "full" they are. This was done so that we could
727 * easily find empty or nearly empty zspages when we try to shrink
728 * the pool (not yet implemented). This function returns fullness
729 * status of the given page.
731 static enum fullness_group get_fullness_group(struct size_class *class,
732 struct zspage *zspage)
734 int inuse, objs_per_zspage;
735 enum fullness_group fg;
737 inuse = get_zspage_inuse(zspage);
738 objs_per_zspage = class->objs_per_zspage;
742 else if (inuse == objs_per_zspage)
744 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
745 fg = ZS_ALMOST_EMPTY;
753 * Each size class maintains various freelists and zspages are assigned
754 * to one of these freelists based on the number of live objects they
755 * have. This functions inserts the given zspage into the freelist
756 * identified by <class, fullness_group>.
758 static void insert_zspage(struct size_class *class,
759 struct zspage *zspage,
760 enum fullness_group fullness)
764 zs_stat_inc(class, fullness, 1);
765 head = list_first_entry_or_null(&class->fullness_list[fullness],
766 struct zspage, list);
768 * We want to see more ZS_FULL pages and less almost empty/full.
769 * Put pages with higher ->inuse first.
772 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
773 list_add(&zspage->list, &head->list);
777 list_add(&zspage->list, &class->fullness_list[fullness]);
781 * This function removes the given zspage from the freelist identified
782 * by <class, fullness_group>.
784 static void remove_zspage(struct size_class *class,
785 struct zspage *zspage,
786 enum fullness_group fullness)
788 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
789 VM_BUG_ON(is_zspage_isolated(zspage));
791 list_del_init(&zspage->list);
792 zs_stat_dec(class, fullness, 1);
796 * Each size class maintains zspages in different fullness groups depending
797 * on the number of live objects they contain. When allocating or freeing
798 * objects, the fullness status of the page can change, say, from ALMOST_FULL
799 * to ALMOST_EMPTY when freeing an object. This function checks if such
800 * a status change has occurred for the given page and accordingly moves the
801 * page from the freelist of the old fullness group to that of the new
804 static enum fullness_group fix_fullness_group(struct size_class *class,
805 struct zspage *zspage)
808 enum fullness_group currfg, newfg;
810 get_zspage_mapping(zspage, &class_idx, &currfg);
811 newfg = get_fullness_group(class, zspage);
815 if (!is_zspage_isolated(zspage)) {
816 remove_zspage(class, zspage, currfg);
817 insert_zspage(class, zspage, newfg);
820 set_zspage_mapping(zspage, class_idx, newfg);
827 * We have to decide on how many pages to link together
828 * to form a zspage for each size class. This is important
829 * to reduce wastage due to unusable space left at end of
830 * each zspage which is given as:
831 * wastage = Zp % class_size
832 * usage = Zp - wastage
833 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
835 * For example, for size class of 3/8 * PAGE_SIZE, we should
836 * link together 3 PAGE_SIZE sized pages to form a zspage
837 * since then we can perfectly fit in 8 such objects.
839 static int get_pages_per_zspage(int class_size)
841 int i, max_usedpc = 0;
842 /* zspage order which gives maximum used size per KB */
843 int max_usedpc_order = 1;
845 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
849 zspage_size = i * PAGE_SIZE;
850 waste = zspage_size % class_size;
851 usedpc = (zspage_size - waste) * 100 / zspage_size;
853 if (usedpc > max_usedpc) {
855 max_usedpc_order = i;
859 return max_usedpc_order;
862 static struct zspage *get_zspage(struct page *page)
864 struct zspage *zspage = (struct zspage *)page->private;
866 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
870 static struct page *get_next_page(struct page *page)
872 if (unlikely(PageHugeObject(page)))
875 return page->freelist;
879 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
880 * @obj: the encoded object value
881 * @page: page object resides in zspage
882 * @obj_idx: object index
884 static void obj_to_location(unsigned long obj, struct page **page,
885 unsigned int *obj_idx)
887 obj >>= OBJ_TAG_BITS;
888 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
889 *obj_idx = (obj & OBJ_INDEX_MASK);
893 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
894 * @page: page object resides in zspage
895 * @obj_idx: object index
897 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
901 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
902 obj |= obj_idx & OBJ_INDEX_MASK;
903 obj <<= OBJ_TAG_BITS;
908 static unsigned long handle_to_obj(unsigned long handle)
910 #ifdef CONFIG_PREEMPT_RT
911 struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
915 return *(unsigned long *)handle;
919 static unsigned long obj_to_head(struct page *page, void *obj)
921 if (unlikely(PageHugeObject(page))) {
922 VM_BUG_ON_PAGE(!is_first_page(page), page);
925 return *(unsigned long *)obj;
928 static inline int testpin_tag(unsigned long handle)
930 #ifdef CONFIG_PREEMPT_RT
931 struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
933 return spin_is_locked(&zh->lock);
935 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
939 static inline int trypin_tag(unsigned long handle)
941 #ifdef CONFIG_PREEMPT_RT
942 struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
944 return spin_trylock(&zh->lock);
946 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
950 static void pin_tag(unsigned long handle) __acquires(bitlock)
952 #ifdef CONFIG_PREEMPT_RT
953 struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
955 return spin_lock(&zh->lock);
957 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
961 static void unpin_tag(unsigned long handle) __releases(bitlock)
963 #ifdef CONFIG_PREEMPT_RT
964 struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
966 return spin_unlock(&zh->lock);
968 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
972 static void reset_page(struct page *page)
974 __ClearPageMovable(page);
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_mapcount_reset(page);
978 ClearPageHugeObject(page);
979 page->freelist = NULL;
982 static int trylock_zspage(struct zspage *zspage)
984 struct page *cursor, *fail;
986 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
987 get_next_page(cursor)) {
988 if (!trylock_page(cursor)) {
996 for (cursor = get_first_page(zspage); cursor != fail; cursor =
997 get_next_page(cursor))
1003 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1004 struct zspage *zspage)
1006 struct page *page, *next;
1007 enum fullness_group fg;
1008 unsigned int class_idx;
1010 get_zspage_mapping(zspage, &class_idx, &fg);
1012 assert_spin_locked(&class->lock);
1014 VM_BUG_ON(get_zspage_inuse(zspage));
1015 VM_BUG_ON(fg != ZS_EMPTY);
1017 next = page = get_first_page(zspage);
1019 VM_BUG_ON_PAGE(!PageLocked(page), page);
1020 next = get_next_page(page);
1023 dec_zone_page_state(page, NR_ZSPAGES);
1026 } while (page != NULL);
1028 cache_free_zspage(pool, zspage);
1030 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1031 atomic_long_sub(class->pages_per_zspage,
1032 &pool->pages_allocated);
1035 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1036 struct zspage *zspage)
1038 VM_BUG_ON(get_zspage_inuse(zspage));
1039 VM_BUG_ON(list_empty(&zspage->list));
1041 if (!trylock_zspage(zspage)) {
1042 kick_deferred_free(pool);
1046 remove_zspage(class, zspage, ZS_EMPTY);
1047 __free_zspage(pool, class, zspage);
1050 /* Initialize a newly allocated zspage */
1051 static void init_zspage(struct size_class *class, struct zspage *zspage)
1053 unsigned int freeobj = 1;
1054 unsigned long off = 0;
1055 struct page *page = get_first_page(zspage);
1058 struct page *next_page;
1059 struct link_free *link;
1062 set_first_obj_offset(page, off);
1064 vaddr = kmap_atomic(page);
1065 link = (struct link_free *)vaddr + off / sizeof(*link);
1067 while ((off += class->size) < PAGE_SIZE) {
1068 link->next = freeobj++ << OBJ_TAG_BITS;
1069 link += class->size / sizeof(*link);
1073 * We now come to the last (full or partial) object on this
1074 * page, which must point to the first object on the next
1077 next_page = get_next_page(page);
1079 link->next = freeobj++ << OBJ_TAG_BITS;
1082 * Reset OBJ_TAG_BITS bit to last link to tell
1083 * whether it's allocated object or not.
1085 link->next = -1UL << OBJ_TAG_BITS;
1087 kunmap_atomic(vaddr);
1092 set_freeobj(zspage, 0);
1095 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1096 struct page *pages[])
1100 struct page *prev_page = NULL;
1101 int nr_pages = class->pages_per_zspage;
1104 * Allocate individual pages and link them together as:
1105 * 1. all pages are linked together using page->freelist
1106 * 2. each sub-page point to zspage using page->private
1108 * we set PG_private to identify the first page (i.e. no other sub-page
1109 * has this flag set).
1111 for (i = 0; i < nr_pages; i++) {
1113 set_page_private(page, (unsigned long)zspage);
1114 page->freelist = NULL;
1116 zspage->first_page = page;
1117 SetPagePrivate(page);
1118 if (unlikely(class->objs_per_zspage == 1 &&
1119 class->pages_per_zspage == 1))
1120 SetPageHugeObject(page);
1122 prev_page->freelist = page;
1129 * Allocate a zspage for the given size class
1131 static struct zspage *alloc_zspage(struct zs_pool *pool,
1132 struct size_class *class,
1136 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1137 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1142 memset(zspage, 0, sizeof(struct zspage));
1143 zspage->magic = ZSPAGE_MAGIC;
1144 migrate_lock_init(zspage);
1146 for (i = 0; i < class->pages_per_zspage; i++) {
1149 page = alloc_page(gfp);
1152 dec_zone_page_state(pages[i], NR_ZSPAGES);
1153 __free_page(pages[i]);
1155 cache_free_zspage(pool, zspage);
1159 inc_zone_page_state(page, NR_ZSPAGES);
1163 create_page_chain(class, zspage, pages);
1164 init_zspage(class, zspage);
1169 static struct zspage *find_get_zspage(struct size_class *class)
1172 struct zspage *zspage;
1174 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1175 zspage = list_first_entry_or_null(&class->fullness_list[i],
1176 struct zspage, list);
1184 static inline int __zs_cpu_up(struct mapping_area *area)
1187 * Make sure we don't leak memory if a cpu UP notification
1188 * and zs_init() race and both call zs_cpu_up() on the same cpu
1192 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1198 static inline void __zs_cpu_down(struct mapping_area *area)
1200 kfree(area->vm_buf);
1201 area->vm_buf = NULL;
1204 static void *__zs_map_object(struct mapping_area *area,
1205 struct page *pages[2], int off, int size)
1209 char *buf = area->vm_buf;
1211 /* disable page faults to match kmap_atomic() return conditions */
1212 pagefault_disable();
1214 /* no read fastpath */
1215 if (area->vm_mm == ZS_MM_WO)
1218 sizes[0] = PAGE_SIZE - off;
1219 sizes[1] = size - sizes[0];
1221 /* copy object to per-cpu buffer */
1222 addr = kmap_atomic(pages[0]);
1223 memcpy(buf, addr + off, sizes[0]);
1224 kunmap_atomic(addr);
1225 addr = kmap_atomic(pages[1]);
1226 memcpy(buf + sizes[0], addr, sizes[1]);
1227 kunmap_atomic(addr);
1229 return area->vm_buf;
1232 static void __zs_unmap_object(struct mapping_area *area,
1233 struct page *pages[2], int off, int size)
1239 /* no write fastpath */
1240 if (area->vm_mm == ZS_MM_RO)
1244 buf = buf + ZS_HANDLE_SIZE;
1245 size -= ZS_HANDLE_SIZE;
1246 off += ZS_HANDLE_SIZE;
1248 sizes[0] = PAGE_SIZE - off;
1249 sizes[1] = size - sizes[0];
1251 /* copy per-cpu buffer to object */
1252 addr = kmap_atomic(pages[0]);
1253 memcpy(addr + off, buf, sizes[0]);
1254 kunmap_atomic(addr);
1255 addr = kmap_atomic(pages[1]);
1256 memcpy(addr, buf + sizes[0], sizes[1]);
1257 kunmap_atomic(addr);
1260 /* enable page faults to match kunmap_atomic() return conditions */
1264 static int zs_cpu_prepare(unsigned int cpu)
1266 struct mapping_area *area;
1268 area = &per_cpu(zs_map_area, cpu);
1269 return __zs_cpu_up(area);
1272 static int zs_cpu_dead(unsigned int cpu)
1274 struct mapping_area *area;
1276 area = &per_cpu(zs_map_area, cpu);
1277 __zs_cpu_down(area);
1281 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1282 int objs_per_zspage)
1284 if (prev->pages_per_zspage == pages_per_zspage &&
1285 prev->objs_per_zspage == objs_per_zspage)
1291 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1293 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1296 unsigned long zs_get_total_pages(struct zs_pool *pool)
1298 return atomic_long_read(&pool->pages_allocated);
1300 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1303 * zs_map_object - get address of allocated object from handle.
1304 * @pool: pool from which the object was allocated
1305 * @handle: handle returned from zs_malloc
1306 * @mm: maping mode to use
1308 * Before using an object allocated from zs_malloc, it must be mapped using
1309 * this function. When done with the object, it must be unmapped using
1312 * Only one object can be mapped per cpu at a time. There is no protection
1313 * against nested mappings.
1315 * This function returns with preemption and page faults disabled.
1317 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1320 struct zspage *zspage;
1322 unsigned long obj, off;
1323 unsigned int obj_idx;
1325 unsigned int class_idx;
1326 enum fullness_group fg;
1327 struct size_class *class;
1328 struct mapping_area *area;
1329 struct page *pages[2];
1333 * Because we use per-cpu mapping areas shared among the
1334 * pools/users, we can't allow mapping in interrupt context
1335 * because it can corrupt another users mappings.
1337 BUG_ON(in_interrupt());
1339 /* From now on, migration cannot move the object */
1342 obj = handle_to_obj(handle);
1343 obj_to_location(obj, &page, &obj_idx);
1344 zspage = get_zspage(page);
1346 /* migration cannot move any subpage in this zspage */
1347 migrate_read_lock(zspage);
1349 get_zspage_mapping(zspage, &class_idx, &fg);
1350 class = pool->size_class[class_idx];
1351 off = (class->size * obj_idx) & ~PAGE_MASK;
1353 local_lock(&zs_map_area.lock);
1354 area = this_cpu_ptr(&zs_map_area);
1356 if (off + class->size <= PAGE_SIZE) {
1357 /* this object is contained entirely within a page */
1358 area->vm_addr = kmap_atomic(page);
1359 ret = area->vm_addr + off;
1363 /* this object spans two pages */
1365 pages[1] = get_next_page(page);
1368 ret = __zs_map_object(area, pages, off, class->size);
1370 if (likely(!PageHugeObject(page)))
1371 ret += ZS_HANDLE_SIZE;
1375 EXPORT_SYMBOL_GPL(zs_map_object);
1377 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1379 struct zspage *zspage;
1381 unsigned long obj, off;
1382 unsigned int obj_idx;
1384 unsigned int class_idx;
1385 enum fullness_group fg;
1386 struct size_class *class;
1387 struct mapping_area *area;
1389 obj = handle_to_obj(handle);
1390 obj_to_location(obj, &page, &obj_idx);
1391 zspage = get_zspage(page);
1392 get_zspage_mapping(zspage, &class_idx, &fg);
1393 class = pool->size_class[class_idx];
1394 off = (class->size * obj_idx) & ~PAGE_MASK;
1396 area = this_cpu_ptr(&zs_map_area);
1397 if (off + class->size <= PAGE_SIZE)
1398 kunmap_atomic(area->vm_addr);
1400 struct page *pages[2];
1403 pages[1] = get_next_page(page);
1406 __zs_unmap_object(area, pages, off, class->size);
1408 local_unlock(&zs_map_area.lock);
1410 migrate_read_unlock(zspage);
1413 EXPORT_SYMBOL_GPL(zs_unmap_object);
1416 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1417 * zsmalloc &size_class.
1418 * @pool: zsmalloc pool to use
1420 * The function returns the size of the first huge class - any object of equal
1421 * or bigger size will be stored in zspage consisting of a single physical
1424 * Context: Any context.
1426 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1428 size_t zs_huge_class_size(struct zs_pool *pool)
1430 return huge_class_size;
1432 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1434 static unsigned long obj_malloc(struct size_class *class,
1435 struct zspage *zspage, unsigned long handle)
1437 int i, nr_page, offset;
1439 struct link_free *link;
1441 struct page *m_page;
1442 unsigned long m_offset;
1445 handle |= OBJ_ALLOCATED_TAG;
1446 obj = get_freeobj(zspage);
1448 offset = obj * class->size;
1449 nr_page = offset >> PAGE_SHIFT;
1450 m_offset = offset & ~PAGE_MASK;
1451 m_page = get_first_page(zspage);
1453 for (i = 0; i < nr_page; i++)
1454 m_page = get_next_page(m_page);
1456 vaddr = kmap_atomic(m_page);
1457 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1458 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1459 if (likely(!PageHugeObject(m_page)))
1460 /* record handle in the header of allocated chunk */
1461 link->handle = handle;
1463 /* record handle to page->index */
1464 zspage->first_page->index = handle;
1466 kunmap_atomic(vaddr);
1467 mod_zspage_inuse(zspage, 1);
1468 zs_stat_inc(class, OBJ_USED, 1);
1470 obj = location_to_obj(m_page, obj);
1477 * zs_malloc - Allocate block of given size from pool.
1478 * @pool: pool to allocate from
1479 * @size: size of block to allocate
1480 * @gfp: gfp flags when allocating object
1482 * On success, handle to the allocated object is returned,
1484 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1486 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1488 unsigned long handle, obj;
1489 struct size_class *class;
1490 enum fullness_group newfg;
1491 struct zspage *zspage;
1493 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1496 handle = cache_alloc_handle(pool, gfp);
1500 /* extra space in chunk to keep the handle */
1501 size += ZS_HANDLE_SIZE;
1502 class = pool->size_class[get_size_class_index(size)];
1504 spin_lock(&class->lock);
1505 zspage = find_get_zspage(class);
1506 if (likely(zspage)) {
1507 obj = obj_malloc(class, zspage, handle);
1508 /* Now move the zspage to another fullness group, if required */
1509 fix_fullness_group(class, zspage);
1510 record_obj(handle, obj);
1511 spin_unlock(&class->lock);
1516 spin_unlock(&class->lock);
1518 zspage = alloc_zspage(pool, class, gfp);
1520 cache_free_handle(pool, handle);
1524 spin_lock(&class->lock);
1525 obj = obj_malloc(class, zspage, handle);
1526 newfg = get_fullness_group(class, zspage);
1527 insert_zspage(class, zspage, newfg);
1528 set_zspage_mapping(zspage, class->index, newfg);
1529 record_obj(handle, obj);
1530 atomic_long_add(class->pages_per_zspage,
1531 &pool->pages_allocated);
1532 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1534 /* We completely set up zspage so mark them as movable */
1535 SetZsPageMovable(pool, zspage);
1536 spin_unlock(&class->lock);
1540 EXPORT_SYMBOL_GPL(zs_malloc);
1542 static void obj_free(struct size_class *class, unsigned long obj)
1544 struct link_free *link;
1545 struct zspage *zspage;
1546 struct page *f_page;
1547 unsigned long f_offset;
1548 unsigned int f_objidx;
1551 obj &= ~OBJ_ALLOCATED_TAG;
1552 obj_to_location(obj, &f_page, &f_objidx);
1553 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1554 zspage = get_zspage(f_page);
1556 vaddr = kmap_atomic(f_page);
1558 /* Insert this object in containing zspage's freelist */
1559 link = (struct link_free *)(vaddr + f_offset);
1560 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1561 kunmap_atomic(vaddr);
1562 set_freeobj(zspage, f_objidx);
1563 mod_zspage_inuse(zspage, -1);
1564 zs_stat_dec(class, OBJ_USED, 1);
1567 void zs_free(struct zs_pool *pool, unsigned long handle)
1569 struct zspage *zspage;
1570 struct page *f_page;
1572 unsigned int f_objidx;
1574 struct size_class *class;
1575 enum fullness_group fullness;
1578 if (unlikely(!handle))
1582 obj = handle_to_obj(handle);
1583 obj_to_location(obj, &f_page, &f_objidx);
1584 zspage = get_zspage(f_page);
1586 migrate_read_lock(zspage);
1588 get_zspage_mapping(zspage, &class_idx, &fullness);
1589 class = pool->size_class[class_idx];
1591 spin_lock(&class->lock);
1592 obj_free(class, obj);
1593 fullness = fix_fullness_group(class, zspage);
1594 if (fullness != ZS_EMPTY) {
1595 migrate_read_unlock(zspage);
1599 isolated = is_zspage_isolated(zspage);
1600 migrate_read_unlock(zspage);
1601 /* If zspage is isolated, zs_page_putback will free the zspage */
1602 if (likely(!isolated))
1603 free_zspage(pool, class, zspage);
1606 spin_unlock(&class->lock);
1608 cache_free_handle(pool, handle);
1610 EXPORT_SYMBOL_GPL(zs_free);
1612 static void zs_object_copy(struct size_class *class, unsigned long dst,
1615 struct page *s_page, *d_page;
1616 unsigned int s_objidx, d_objidx;
1617 unsigned long s_off, d_off;
1618 void *s_addr, *d_addr;
1619 int s_size, d_size, size;
1622 s_size = d_size = class->size;
1624 obj_to_location(src, &s_page, &s_objidx);
1625 obj_to_location(dst, &d_page, &d_objidx);
1627 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1628 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1630 if (s_off + class->size > PAGE_SIZE)
1631 s_size = PAGE_SIZE - s_off;
1633 if (d_off + class->size > PAGE_SIZE)
1634 d_size = PAGE_SIZE - d_off;
1636 s_addr = kmap_atomic(s_page);
1637 d_addr = kmap_atomic(d_page);
1640 size = min(s_size, d_size);
1641 memcpy(d_addr + d_off, s_addr + s_off, size);
1644 if (written == class->size)
1652 if (s_off >= PAGE_SIZE) {
1653 kunmap_atomic(d_addr);
1654 kunmap_atomic(s_addr);
1655 s_page = get_next_page(s_page);
1656 s_addr = kmap_atomic(s_page);
1657 d_addr = kmap_atomic(d_page);
1658 s_size = class->size - written;
1662 if (d_off >= PAGE_SIZE) {
1663 kunmap_atomic(d_addr);
1664 d_page = get_next_page(d_page);
1665 d_addr = kmap_atomic(d_page);
1666 d_size = class->size - written;
1671 kunmap_atomic(d_addr);
1672 kunmap_atomic(s_addr);
1676 * Find alloced object in zspage from index object and
1679 static unsigned long find_alloced_obj(struct size_class *class,
1680 struct page *page, int *obj_idx)
1684 int index = *obj_idx;
1685 unsigned long handle = 0;
1686 void *addr = kmap_atomic(page);
1688 offset = get_first_obj_offset(page);
1689 offset += class->size * index;
1691 while (offset < PAGE_SIZE) {
1692 head = obj_to_head(page, addr + offset);
1693 if (head & OBJ_ALLOCATED_TAG) {
1694 handle = head & ~OBJ_ALLOCATED_TAG;
1695 if (trypin_tag(handle))
1700 offset += class->size;
1704 kunmap_atomic(addr);
1711 struct zs_compact_control {
1712 /* Source spage for migration which could be a subpage of zspage */
1713 struct page *s_page;
1714 /* Destination page for migration which should be a first page
1716 struct page *d_page;
1717 /* Starting object index within @s_page which used for live object
1718 * in the subpage. */
1722 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1723 struct zs_compact_control *cc)
1725 unsigned long used_obj, free_obj;
1726 unsigned long handle;
1727 struct page *s_page = cc->s_page;
1728 struct page *d_page = cc->d_page;
1729 int obj_idx = cc->obj_idx;
1733 handle = find_alloced_obj(class, s_page, &obj_idx);
1735 s_page = get_next_page(s_page);
1742 /* Stop if there is no more space */
1743 if (zspage_full(class, get_zspage(d_page))) {
1749 used_obj = handle_to_obj(handle);
1750 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1751 zs_object_copy(class, free_obj, used_obj);
1754 * record_obj updates handle's value to free_obj and it will
1755 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1756 * breaks synchronization using pin_tag(e,g, zs_free) so
1757 * let's keep the lock bit.
1759 free_obj |= BIT(HANDLE_PIN_BIT);
1760 record_obj(handle, free_obj);
1762 obj_free(class, used_obj);
1765 /* Remember last position in this iteration */
1766 cc->s_page = s_page;
1767 cc->obj_idx = obj_idx;
1772 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1775 struct zspage *zspage;
1776 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1779 fg[0] = ZS_ALMOST_FULL;
1780 fg[1] = ZS_ALMOST_EMPTY;
1783 for (i = 0; i < 2; i++) {
1784 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1785 struct zspage, list);
1787 VM_BUG_ON(is_zspage_isolated(zspage));
1788 remove_zspage(class, zspage, fg[i]);
1797 * putback_zspage - add @zspage into right class's fullness list
1798 * @class: destination class
1799 * @zspage: target page
1801 * Return @zspage's fullness_group
1803 static enum fullness_group putback_zspage(struct size_class *class,
1804 struct zspage *zspage)
1806 enum fullness_group fullness;
1808 VM_BUG_ON(is_zspage_isolated(zspage));
1810 fullness = get_fullness_group(class, zspage);
1811 insert_zspage(class, zspage, fullness);
1812 set_zspage_mapping(zspage, class->index, fullness);
1817 #ifdef CONFIG_COMPACTION
1819 * To prevent zspage destroy during migration, zspage freeing should
1820 * hold locks of all pages in the zspage.
1822 static void lock_zspage(struct zspage *zspage)
1824 struct page *page = get_first_page(zspage);
1828 } while ((page = get_next_page(page)) != NULL);
1831 static int zs_init_fs_context(struct fs_context *fc)
1833 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1836 static struct file_system_type zsmalloc_fs = {
1838 .init_fs_context = zs_init_fs_context,
1839 .kill_sb = kill_anon_super,
1842 static int zsmalloc_mount(void)
1846 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1847 if (IS_ERR(zsmalloc_mnt))
1848 ret = PTR_ERR(zsmalloc_mnt);
1853 static void zsmalloc_unmount(void)
1855 kern_unmount(zsmalloc_mnt);
1858 static void migrate_lock_init(struct zspage *zspage)
1860 rwlock_init(&zspage->lock);
1863 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1865 read_lock(&zspage->lock);
1868 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1870 read_unlock(&zspage->lock);
1873 static void migrate_write_lock(struct zspage *zspage)
1875 write_lock(&zspage->lock);
1878 static void migrate_write_unlock(struct zspage *zspage)
1880 write_unlock(&zspage->lock);
1883 /* Number of isolated subpage for *page migration* in this zspage */
1884 static void inc_zspage_isolation(struct zspage *zspage)
1889 static void dec_zspage_isolation(struct zspage *zspage)
1894 static void putback_zspage_deferred(struct zs_pool *pool,
1895 struct size_class *class,
1896 struct zspage *zspage)
1898 enum fullness_group fg;
1900 fg = putback_zspage(class, zspage);
1902 schedule_work(&pool->free_work);
1906 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1908 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1909 atomic_long_dec(&pool->isolated_pages);
1911 * Checking pool->destroying must happen after atomic_long_dec()
1912 * for pool->isolated_pages above. Paired with the smp_mb() in
1913 * zs_unregister_migration().
1915 smp_mb__after_atomic();
1916 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1917 wake_up_all(&pool->migration_wait);
1920 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1921 struct page *newpage, struct page *oldpage)
1924 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1927 page = get_first_page(zspage);
1929 if (page == oldpage)
1930 pages[idx] = newpage;
1934 } while ((page = get_next_page(page)) != NULL);
1936 create_page_chain(class, zspage, pages);
1937 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1938 if (unlikely(PageHugeObject(oldpage)))
1939 newpage->index = oldpage->index;
1940 __SetPageMovable(newpage, page_mapping(oldpage));
1943 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1945 struct zs_pool *pool;
1946 struct size_class *class;
1948 enum fullness_group fullness;
1949 struct zspage *zspage;
1950 struct address_space *mapping;
1953 * Page is locked so zspage couldn't be destroyed. For detail, look at
1954 * lock_zspage in free_zspage.
1956 VM_BUG_ON_PAGE(!PageMovable(page), page);
1957 VM_BUG_ON_PAGE(PageIsolated(page), page);
1959 zspage = get_zspage(page);
1962 * Without class lock, fullness could be stale while class_idx is okay
1963 * because class_idx is constant unless page is freed so we should get
1964 * fullness again under class lock.
1966 get_zspage_mapping(zspage, &class_idx, &fullness);
1967 mapping = page_mapping(page);
1968 pool = mapping->private_data;
1969 class = pool->size_class[class_idx];
1971 spin_lock(&class->lock);
1972 if (get_zspage_inuse(zspage) == 0) {
1973 spin_unlock(&class->lock);
1977 /* zspage is isolated for object migration */
1978 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1979 spin_unlock(&class->lock);
1984 * If this is first time isolation for the zspage, isolate zspage from
1985 * size_class to prevent further object allocation from the zspage.
1987 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1988 get_zspage_mapping(zspage, &class_idx, &fullness);
1989 atomic_long_inc(&pool->isolated_pages);
1990 remove_zspage(class, zspage, fullness);
1993 inc_zspage_isolation(zspage);
1994 spin_unlock(&class->lock);
1999 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2000 struct page *page, enum migrate_mode mode)
2002 struct zs_pool *pool;
2003 struct size_class *class;
2005 enum fullness_group fullness;
2006 struct zspage *zspage;
2008 void *s_addr, *d_addr, *addr;
2010 unsigned long handle, head;
2011 unsigned long old_obj, new_obj;
2012 unsigned int obj_idx;
2016 * We cannot support the _NO_COPY case here, because copy needs to
2017 * happen under the zs lock, which does not work with
2018 * MIGRATE_SYNC_NO_COPY workflow.
2020 if (mode == MIGRATE_SYNC_NO_COPY)
2023 VM_BUG_ON_PAGE(!PageMovable(page), page);
2024 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2026 zspage = get_zspage(page);
2028 /* Concurrent compactor cannot migrate any subpage in zspage */
2029 migrate_write_lock(zspage);
2030 get_zspage_mapping(zspage, &class_idx, &fullness);
2031 pool = mapping->private_data;
2032 class = pool->size_class[class_idx];
2033 offset = get_first_obj_offset(page);
2035 spin_lock(&class->lock);
2036 if (!get_zspage_inuse(zspage)) {
2038 * Set "offset" to end of the page so that every loops
2039 * skips unnecessary object scanning.
2045 s_addr = kmap_atomic(page);
2046 while (pos < PAGE_SIZE) {
2047 head = obj_to_head(page, s_addr + pos);
2048 if (head & OBJ_ALLOCATED_TAG) {
2049 handle = head & ~OBJ_ALLOCATED_TAG;
2050 if (!trypin_tag(handle))
2057 * Here, any user cannot access all objects in the zspage so let's move.
2059 d_addr = kmap_atomic(newpage);
2060 memcpy(d_addr, s_addr, PAGE_SIZE);
2061 kunmap_atomic(d_addr);
2063 for (addr = s_addr + offset; addr < s_addr + pos;
2064 addr += class->size) {
2065 head = obj_to_head(page, addr);
2066 if (head & OBJ_ALLOCATED_TAG) {
2067 handle = head & ~OBJ_ALLOCATED_TAG;
2068 if (!testpin_tag(handle))
2071 old_obj = handle_to_obj(handle);
2072 obj_to_location(old_obj, &dummy, &obj_idx);
2073 new_obj = (unsigned long)location_to_obj(newpage,
2075 new_obj |= BIT(HANDLE_PIN_BIT);
2076 record_obj(handle, new_obj);
2080 replace_sub_page(class, zspage, newpage, page);
2083 dec_zspage_isolation(zspage);
2086 * Page migration is done so let's putback isolated zspage to
2087 * the list if @page is final isolated subpage in the zspage.
2089 if (!is_zspage_isolated(zspage)) {
2091 * We cannot race with zs_destroy_pool() here because we wait
2092 * for isolation to hit zero before we start destroying.
2093 * Also, we ensure that everyone can see pool->destroying before
2096 putback_zspage_deferred(pool, class, zspage);
2097 zs_pool_dec_isolated(pool);
2100 if (page_zone(newpage) != page_zone(page)) {
2101 dec_zone_page_state(page, NR_ZSPAGES);
2102 inc_zone_page_state(newpage, NR_ZSPAGES);
2109 ret = MIGRATEPAGE_SUCCESS;
2111 for (addr = s_addr + offset; addr < s_addr + pos;
2112 addr += class->size) {
2113 head = obj_to_head(page, addr);
2114 if (head & OBJ_ALLOCATED_TAG) {
2115 handle = head & ~OBJ_ALLOCATED_TAG;
2116 if (!testpin_tag(handle))
2121 kunmap_atomic(s_addr);
2122 spin_unlock(&class->lock);
2123 migrate_write_unlock(zspage);
2128 static void zs_page_putback(struct page *page)
2130 struct zs_pool *pool;
2131 struct size_class *class;
2133 enum fullness_group fg;
2134 struct address_space *mapping;
2135 struct zspage *zspage;
2137 VM_BUG_ON_PAGE(!PageMovable(page), page);
2138 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2140 zspage = get_zspage(page);
2141 get_zspage_mapping(zspage, &class_idx, &fg);
2142 mapping = page_mapping(page);
2143 pool = mapping->private_data;
2144 class = pool->size_class[class_idx];
2146 spin_lock(&class->lock);
2147 dec_zspage_isolation(zspage);
2148 if (!is_zspage_isolated(zspage)) {
2150 * Due to page_lock, we cannot free zspage immediately
2153 putback_zspage_deferred(pool, class, zspage);
2154 zs_pool_dec_isolated(pool);
2156 spin_unlock(&class->lock);
2159 static const struct address_space_operations zsmalloc_aops = {
2160 .isolate_page = zs_page_isolate,
2161 .migratepage = zs_page_migrate,
2162 .putback_page = zs_page_putback,
2165 static int zs_register_migration(struct zs_pool *pool)
2167 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2168 if (IS_ERR(pool->inode)) {
2173 pool->inode->i_mapping->private_data = pool;
2174 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2178 static bool pool_isolated_are_drained(struct zs_pool *pool)
2180 return atomic_long_read(&pool->isolated_pages) == 0;
2183 /* Function for resolving migration */
2184 static void wait_for_isolated_drain(struct zs_pool *pool)
2188 * We're in the process of destroying the pool, so there are no
2189 * active allocations. zs_page_isolate() fails for completely free
2190 * zspages, so we need only wait for the zs_pool's isolated
2191 * count to hit zero.
2193 wait_event(pool->migration_wait,
2194 pool_isolated_are_drained(pool));
2197 static void zs_unregister_migration(struct zs_pool *pool)
2199 pool->destroying = true;
2201 * We need a memory barrier here to ensure global visibility of
2202 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2203 * case we don't care, or it will be > 0 and pool->destroying will
2204 * ensure that we wake up once isolation hits 0.
2207 wait_for_isolated_drain(pool); /* This can block */
2208 flush_work(&pool->free_work);
2213 * Caller should hold page_lock of all pages in the zspage
2214 * In here, we cannot use zspage meta data.
2216 static void async_free_zspage(struct work_struct *work)
2219 struct size_class *class;
2220 unsigned int class_idx;
2221 enum fullness_group fullness;
2222 struct zspage *zspage, *tmp;
2223 LIST_HEAD(free_pages);
2224 struct zs_pool *pool = container_of(work, struct zs_pool,
2227 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2228 class = pool->size_class[i];
2229 if (class->index != i)
2232 spin_lock(&class->lock);
2233 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2234 spin_unlock(&class->lock);
2238 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2239 list_del(&zspage->list);
2240 lock_zspage(zspage);
2242 get_zspage_mapping(zspage, &class_idx, &fullness);
2243 VM_BUG_ON(fullness != ZS_EMPTY);
2244 class = pool->size_class[class_idx];
2245 spin_lock(&class->lock);
2246 __free_zspage(pool, pool->size_class[class_idx], zspage);
2247 spin_unlock(&class->lock);
2251 static void kick_deferred_free(struct zs_pool *pool)
2253 schedule_work(&pool->free_work);
2256 static void init_deferred_free(struct zs_pool *pool)
2258 INIT_WORK(&pool->free_work, async_free_zspage);
2261 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2263 struct page *page = get_first_page(zspage);
2266 WARN_ON(!trylock_page(page));
2267 __SetPageMovable(page, pool->inode->i_mapping);
2269 } while ((page = get_next_page(page)) != NULL);
2275 * Based on the number of unused allocated objects calculate
2276 * and return the number of pages that we can free.
2278 static unsigned long zs_can_compact(struct size_class *class)
2280 unsigned long obj_wasted;
2281 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2282 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2284 if (obj_allocated <= obj_used)
2287 obj_wasted = obj_allocated - obj_used;
2288 obj_wasted /= class->objs_per_zspage;
2290 return obj_wasted * class->pages_per_zspage;
2293 static unsigned long __zs_compact(struct zs_pool *pool,
2294 struct size_class *class)
2296 struct zs_compact_control cc;
2297 struct zspage *src_zspage;
2298 struct zspage *dst_zspage = NULL;
2299 unsigned long pages_freed = 0;
2301 spin_lock(&class->lock);
2302 while ((src_zspage = isolate_zspage(class, true))) {
2304 if (!zs_can_compact(class))
2308 cc.s_page = get_first_page(src_zspage);
2310 while ((dst_zspage = isolate_zspage(class, false))) {
2311 cc.d_page = get_first_page(dst_zspage);
2313 * If there is no more space in dst_page, resched
2314 * and see if anyone had allocated another zspage.
2316 if (!migrate_zspage(pool, class, &cc))
2319 putback_zspage(class, dst_zspage);
2322 /* Stop if we couldn't find slot */
2323 if (dst_zspage == NULL)
2326 putback_zspage(class, dst_zspage);
2327 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2328 free_zspage(pool, class, src_zspage);
2329 pages_freed += class->pages_per_zspage;
2331 spin_unlock(&class->lock);
2333 spin_lock(&class->lock);
2337 putback_zspage(class, src_zspage);
2339 spin_unlock(&class->lock);
2344 unsigned long zs_compact(struct zs_pool *pool)
2347 struct size_class *class;
2348 unsigned long pages_freed = 0;
2350 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2351 class = pool->size_class[i];
2354 if (class->index != i)
2356 pages_freed += __zs_compact(pool, class);
2358 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2362 EXPORT_SYMBOL_GPL(zs_compact);
2364 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2366 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2368 EXPORT_SYMBOL_GPL(zs_pool_stats);
2370 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2371 struct shrink_control *sc)
2373 unsigned long pages_freed;
2374 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2378 * Compact classes and calculate compaction delta.
2379 * Can run concurrently with a manually triggered
2380 * (by user) compaction.
2382 pages_freed = zs_compact(pool);
2384 return pages_freed ? pages_freed : SHRINK_STOP;
2387 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2388 struct shrink_control *sc)
2391 struct size_class *class;
2392 unsigned long pages_to_free = 0;
2393 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2396 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2397 class = pool->size_class[i];
2400 if (class->index != i)
2403 pages_to_free += zs_can_compact(class);
2406 return pages_to_free;
2409 static void zs_unregister_shrinker(struct zs_pool *pool)
2411 unregister_shrinker(&pool->shrinker);
2414 static int zs_register_shrinker(struct zs_pool *pool)
2416 pool->shrinker.scan_objects = zs_shrinker_scan;
2417 pool->shrinker.count_objects = zs_shrinker_count;
2418 pool->shrinker.batch = 0;
2419 pool->shrinker.seeks = DEFAULT_SEEKS;
2421 return register_shrinker(&pool->shrinker);
2425 * zs_create_pool - Creates an allocation pool to work from.
2426 * @name: pool name to be created
2428 * This function must be called before anything when using
2429 * the zsmalloc allocator.
2431 * On success, a pointer to the newly created pool is returned,
2434 struct zs_pool *zs_create_pool(const char *name)
2437 struct zs_pool *pool;
2438 struct size_class *prev_class = NULL;
2440 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2444 init_deferred_free(pool);
2446 pool->name = kstrdup(name, GFP_KERNEL);
2450 #ifdef CONFIG_COMPACTION
2451 init_waitqueue_head(&pool->migration_wait);
2454 if (create_cache(pool))
2458 * Iterate reversely, because, size of size_class that we want to use
2459 * for merging should be larger or equal to current size.
2461 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2463 int pages_per_zspage;
2464 int objs_per_zspage;
2465 struct size_class *class;
2468 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2469 if (size > ZS_MAX_ALLOC_SIZE)
2470 size = ZS_MAX_ALLOC_SIZE;
2471 pages_per_zspage = get_pages_per_zspage(size);
2472 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2475 * We iterate from biggest down to smallest classes,
2476 * so huge_class_size holds the size of the first huge
2477 * class. Any object bigger than or equal to that will
2478 * endup in the huge class.
2480 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2482 huge_class_size = size;
2484 * The object uses ZS_HANDLE_SIZE bytes to store the
2485 * handle. We need to subtract it, because zs_malloc()
2486 * unconditionally adds handle size before it performs
2487 * size class search - so object may be smaller than
2488 * huge class size, yet it still can end up in the huge
2489 * class because it grows by ZS_HANDLE_SIZE extra bytes
2490 * right before class lookup.
2492 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2496 * size_class is used for normal zsmalloc operation such
2497 * as alloc/free for that size. Although it is natural that we
2498 * have one size_class for each size, there is a chance that we
2499 * can get more memory utilization if we use one size_class for
2500 * many different sizes whose size_class have same
2501 * characteristics. So, we makes size_class point to
2502 * previous size_class if possible.
2505 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2506 pool->size_class[i] = prev_class;
2511 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2517 class->pages_per_zspage = pages_per_zspage;
2518 class->objs_per_zspage = objs_per_zspage;
2519 spin_lock_init(&class->lock);
2520 pool->size_class[i] = class;
2521 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2523 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2528 /* debug only, don't abort if it fails */
2529 zs_pool_stat_create(pool, name);
2531 if (zs_register_migration(pool))
2535 * Not critical since shrinker is only used to trigger internal
2536 * defragmentation of the pool which is pretty optional thing. If
2537 * registration fails we still can use the pool normally and user can
2538 * trigger compaction manually. Thus, ignore return code.
2540 zs_register_shrinker(pool);
2545 zs_destroy_pool(pool);
2548 EXPORT_SYMBOL_GPL(zs_create_pool);
2550 void zs_destroy_pool(struct zs_pool *pool)
2554 zs_unregister_shrinker(pool);
2555 zs_unregister_migration(pool);
2556 zs_pool_stat_destroy(pool);
2558 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2560 struct size_class *class = pool->size_class[i];
2565 if (class->index != i)
2568 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2569 if (!list_empty(&class->fullness_list[fg])) {
2570 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2577 destroy_cache(pool);
2581 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2583 static int __init zs_init(void)
2587 ret = zsmalloc_mount();
2591 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2592 zs_cpu_prepare, zs_cpu_dead);
2597 zpool_register_driver(&zs_zpool_driver);
2610 static void __exit zs_exit(void)
2613 zpool_unregister_driver(&zs_zpool_driver);
2616 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2621 module_init(zs_init);
2622 module_exit(zs_exit);
2624 MODULE_LICENSE("Dual BSD/GPL");
2625 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");