Merge "kfence: Use pt_regs to generate stack trace on faults" into tizen
[platform/kernel/linux-rpi.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60 #include <linux/local_lock.h>
61
62 #define ZSPAGE_MAGIC    0x58
63
64 /*
65  * This must be power of 2 and greater than of equal to sizeof(link_free).
66  * These two conditions ensure that any 'struct link_free' itself doesn't
67  * span more than 1 page which avoids complex case of mapping 2 pages simply
68  * to restore link_free pointer values.
69  */
70 #define ZS_ALIGN                8
71
72 /*
73  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
74  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
75  */
76 #define ZS_MAX_ZSPAGE_ORDER 2
77 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
78
79 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
80
81 #ifdef CONFIG_PREEMPT_RT
82
83 struct zsmalloc_handle {
84         unsigned long addr;
85         spinlock_t lock;
86 };
87
88 #define ZS_HANDLE_ALLOC_SIZE (sizeof(struct zsmalloc_handle))
89
90 #else
91
92 #define ZS_HANDLE_ALLOC_SIZE (sizeof(unsigned long))
93 #endif
94
95 /*
96  * Object location (<PFN>, <obj_idx>) is encoded as
97  * a single (unsigned long) handle value.
98  *
99  * Note that object index <obj_idx> starts from 0.
100  *
101  * This is made more complicated by various memory models and PAE.
102  */
103
104 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
105 #ifdef MAX_PHYSMEM_BITS
106 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
107 #else
108 /*
109  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
110  * be PAGE_SHIFT
111  */
112 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
113 #endif
114 #endif
115
116 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
117
118 /*
119  * Memory for allocating for handle keeps object position by
120  * encoding <page, obj_idx> and the encoded value has a room
121  * in least bit(ie, look at obj_to_location).
122  * We use the bit to synchronize between object access by
123  * user and migration.
124  */
125 #define HANDLE_PIN_BIT  0
126
127 /*
128  * Head in allocated object should have OBJ_ALLOCATED_TAG
129  * to identify the object was allocated or not.
130  * It's okay to add the status bit in the least bit because
131  * header keeps handle which is 4byte-aligned address so we
132  * have room for two bit at least.
133  */
134 #define OBJ_ALLOCATED_TAG 1
135 #define OBJ_TAG_BITS 1
136 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
137 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
138
139 #define FULLNESS_BITS   2
140 #define CLASS_BITS      8
141 #define ISOLATED_BITS   3
142 #define MAGIC_VAL_BITS  8
143
144 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
145 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
146 #define ZS_MIN_ALLOC_SIZE \
147         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
148 /* each chunk includes extra space to keep handle */
149 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
150
151 /*
152  * On systems with 4K page size, this gives 255 size classes! There is a
153  * trader-off here:
154  *  - Large number of size classes is potentially wasteful as free page are
155  *    spread across these classes
156  *  - Small number of size classes causes large internal fragmentation
157  *  - Probably its better to use specific size classes (empirically
158  *    determined). NOTE: all those class sizes must be set as multiple of
159  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
160  *
161  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
162  *  (reason above)
163  */
164 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
165 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
166                                       ZS_SIZE_CLASS_DELTA) + 1)
167
168 enum fullness_group {
169         ZS_EMPTY,
170         ZS_ALMOST_EMPTY,
171         ZS_ALMOST_FULL,
172         ZS_FULL,
173         NR_ZS_FULLNESS,
174 };
175
176 enum zs_stat_type {
177         CLASS_EMPTY,
178         CLASS_ALMOST_EMPTY,
179         CLASS_ALMOST_FULL,
180         CLASS_FULL,
181         OBJ_ALLOCATED,
182         OBJ_USED,
183         NR_ZS_STAT_TYPE,
184 };
185
186 struct zs_size_stat {
187         unsigned long objs[NR_ZS_STAT_TYPE];
188 };
189
190 #ifdef CONFIG_ZSMALLOC_STAT
191 static struct dentry *zs_stat_root;
192 #endif
193
194 #ifdef CONFIG_COMPACTION
195 static struct vfsmount *zsmalloc_mnt;
196 #endif
197
198 /*
199  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
200  *      n <= N / f, where
201  * n = number of allocated objects
202  * N = total number of objects zspage can store
203  * f = fullness_threshold_frac
204  *
205  * Similarly, we assign zspage to:
206  *      ZS_ALMOST_FULL  when n > N / f
207  *      ZS_EMPTY        when n == 0
208  *      ZS_FULL         when n == N
209  *
210  * (see: fix_fullness_group())
211  */
212 static const int fullness_threshold_frac = 4;
213 static size_t huge_class_size;
214
215 struct size_class {
216         spinlock_t lock;
217         struct list_head fullness_list[NR_ZS_FULLNESS];
218         /*
219          * Size of objects stored in this class. Must be multiple
220          * of ZS_ALIGN.
221          */
222         int size;
223         int objs_per_zspage;
224         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
225         int pages_per_zspage;
226
227         unsigned int index;
228         struct zs_size_stat stats;
229 };
230
231 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
232 static void SetPageHugeObject(struct page *page)
233 {
234         SetPageOwnerPriv1(page);
235 }
236
237 static void ClearPageHugeObject(struct page *page)
238 {
239         ClearPageOwnerPriv1(page);
240 }
241
242 static int PageHugeObject(struct page *page)
243 {
244         return PageOwnerPriv1(page);
245 }
246
247 /*
248  * Placed within free objects to form a singly linked list.
249  * For every zspage, zspage->freeobj gives head of this list.
250  *
251  * This must be power of 2 and less than or equal to ZS_ALIGN
252  */
253 struct link_free {
254         union {
255                 /*
256                  * Free object index;
257                  * It's valid for non-allocated object
258                  */
259                 unsigned long next;
260                 /*
261                  * Handle of allocated object.
262                  */
263                 unsigned long handle;
264         };
265 };
266
267 struct zs_pool {
268         const char *name;
269
270         struct size_class *size_class[ZS_SIZE_CLASSES];
271         struct kmem_cache *handle_cachep;
272         struct kmem_cache *zspage_cachep;
273
274         atomic_long_t pages_allocated;
275
276         struct zs_pool_stats stats;
277
278         /* Compact classes */
279         struct shrinker shrinker;
280
281 #ifdef CONFIG_ZSMALLOC_STAT
282         struct dentry *stat_dentry;
283 #endif
284 #ifdef CONFIG_COMPACTION
285         struct inode *inode;
286         struct work_struct free_work;
287         /* A wait queue for when migration races with async_free_zspage() */
288         struct wait_queue_head migration_wait;
289         atomic_long_t isolated_pages;
290         bool destroying;
291 #endif
292 };
293
294 struct zspage {
295         struct {
296                 unsigned int fullness:FULLNESS_BITS;
297                 unsigned int class:CLASS_BITS + 1;
298                 unsigned int isolated:ISOLATED_BITS;
299                 unsigned int magic:MAGIC_VAL_BITS;
300         };
301         unsigned int inuse;
302         unsigned int freeobj;
303         struct page *first_page;
304         struct list_head list; /* fullness list */
305 #ifdef CONFIG_COMPACTION
306         rwlock_t lock;
307 #endif
308 };
309
310 struct mapping_area {
311         local_lock_t lock;
312         char *vm_buf; /* copy buffer for objects that span pages */
313         char *vm_addr; /* address of kmap_atomic()'ed pages */
314         enum zs_mapmode vm_mm; /* mapping mode */
315 };
316
317 #ifdef CONFIG_COMPACTION
318 static int zs_register_migration(struct zs_pool *pool);
319 static void zs_unregister_migration(struct zs_pool *pool);
320 static void migrate_lock_init(struct zspage *zspage);
321 static void migrate_read_lock(struct zspage *zspage);
322 static void migrate_read_unlock(struct zspage *zspage);
323 static void kick_deferred_free(struct zs_pool *pool);
324 static void init_deferred_free(struct zs_pool *pool);
325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
326 #else
327 static int zsmalloc_mount(void) { return 0; }
328 static void zsmalloc_unmount(void) {}
329 static int zs_register_migration(struct zs_pool *pool) { return 0; }
330 static void zs_unregister_migration(struct zs_pool *pool) {}
331 static void migrate_lock_init(struct zspage *zspage) {}
332 static void migrate_read_lock(struct zspage *zspage) {}
333 static void migrate_read_unlock(struct zspage *zspage) {}
334 static void kick_deferred_free(struct zs_pool *pool) {}
335 static void init_deferred_free(struct zs_pool *pool) {}
336 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
337 #endif
338
339 static int create_cache(struct zs_pool *pool)
340 {
341         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_ALLOC_SIZE,
342                                         0, 0, NULL);
343         if (!pool->handle_cachep)
344                 return 1;
345
346         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
347                                         0, 0, NULL);
348         if (!pool->zspage_cachep) {
349                 kmem_cache_destroy(pool->handle_cachep);
350                 pool->handle_cachep = NULL;
351                 return 1;
352         }
353
354         return 0;
355 }
356
357 static void destroy_cache(struct zs_pool *pool)
358 {
359         kmem_cache_destroy(pool->handle_cachep);
360         kmem_cache_destroy(pool->zspage_cachep);
361 }
362
363 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
364 {
365         void *p;
366
367         p = kmem_cache_alloc(pool->handle_cachep,
368                              gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 #ifdef CONFIG_PREEMPT_RT
370         if (p) {
371                 struct zsmalloc_handle *zh = p;
372
373                 spin_lock_init(&zh->lock);
374         }
375 #endif
376         return (unsigned long)p;
377 }
378
379 #ifdef CONFIG_PREEMPT_RT
380 static struct zsmalloc_handle *zs_get_pure_handle(unsigned long handle)
381 {
382         return (void *)(handle &~((1 << OBJ_TAG_BITS) - 1));
383 }
384 #endif
385
386 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
387 {
388         kmem_cache_free(pool->handle_cachep, (void *)handle);
389 }
390
391 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
392 {
393         return kmem_cache_alloc(pool->zspage_cachep,
394                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
395 }
396
397 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
398 {
399         kmem_cache_free(pool->zspage_cachep, zspage);
400 }
401
402 static void record_obj(unsigned long handle, unsigned long obj)
403 {
404 #ifdef CONFIG_PREEMPT_RT
405         struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
406
407         WRITE_ONCE(zh->addr, obj);
408 #else
409         /*
410          * lsb of @obj represents handle lock while other bits
411          * represent object value the handle is pointing so
412          * updating shouldn't do store tearing.
413          */
414         WRITE_ONCE(*(unsigned long *)handle, obj);
415 #endif
416 }
417
418 /* zpool driver */
419
420 #ifdef CONFIG_ZPOOL
421
422 static void *zs_zpool_create(const char *name, gfp_t gfp,
423                              const struct zpool_ops *zpool_ops,
424                              struct zpool *zpool)
425 {
426         /*
427          * Ignore global gfp flags: zs_malloc() may be invoked from
428          * different contexts and its caller must provide a valid
429          * gfp mask.
430          */
431         return zs_create_pool(name);
432 }
433
434 static void zs_zpool_destroy(void *pool)
435 {
436         zs_destroy_pool(pool);
437 }
438
439 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
440                         unsigned long *handle)
441 {
442         *handle = zs_malloc(pool, size, gfp);
443         return *handle ? 0 : -1;
444 }
445 static void zs_zpool_free(void *pool, unsigned long handle)
446 {
447         zs_free(pool, handle);
448 }
449
450 static void *zs_zpool_map(void *pool, unsigned long handle,
451                         enum zpool_mapmode mm)
452 {
453         enum zs_mapmode zs_mm;
454
455         switch (mm) {
456         case ZPOOL_MM_RO:
457                 zs_mm = ZS_MM_RO;
458                 break;
459         case ZPOOL_MM_WO:
460                 zs_mm = ZS_MM_WO;
461                 break;
462         case ZPOOL_MM_RW:
463         default:
464                 zs_mm = ZS_MM_RW;
465                 break;
466         }
467
468         return zs_map_object(pool, handle, zs_mm);
469 }
470 static void zs_zpool_unmap(void *pool, unsigned long handle)
471 {
472         zs_unmap_object(pool, handle);
473 }
474
475 static u64 zs_zpool_total_size(void *pool)
476 {
477         return zs_get_total_pages(pool) << PAGE_SHIFT;
478 }
479
480 static struct zpool_driver zs_zpool_driver = {
481         .type =                   "zsmalloc",
482         .owner =                  THIS_MODULE,
483         .create =                 zs_zpool_create,
484         .destroy =                zs_zpool_destroy,
485         .malloc_support_movable = true,
486         .malloc =                 zs_zpool_malloc,
487         .free =                   zs_zpool_free,
488         .map =                    zs_zpool_map,
489         .unmap =                  zs_zpool_unmap,
490         .total_size =             zs_zpool_total_size,
491 };
492
493 MODULE_ALIAS("zpool-zsmalloc");
494 #endif /* CONFIG_ZPOOL */
495
496 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
497 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
498         /* XXX remove this and use a spin_lock_t in pin_tag() */
499         .lock   = INIT_LOCAL_LOCK(lock),
500 };
501
502 static bool is_zspage_isolated(struct zspage *zspage)
503 {
504         return zspage->isolated;
505 }
506
507 static __maybe_unused int is_first_page(struct page *page)
508 {
509         return PagePrivate(page);
510 }
511
512 /* Protected by class->lock */
513 static inline int get_zspage_inuse(struct zspage *zspage)
514 {
515         return zspage->inuse;
516 }
517
518
519 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
520 {
521         zspage->inuse += val;
522 }
523
524 static inline struct page *get_first_page(struct zspage *zspage)
525 {
526         struct page *first_page = zspage->first_page;
527
528         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
529         return first_page;
530 }
531
532 static inline int get_first_obj_offset(struct page *page)
533 {
534         return page->units;
535 }
536
537 static inline void set_first_obj_offset(struct page *page, int offset)
538 {
539         page->units = offset;
540 }
541
542 static inline unsigned int get_freeobj(struct zspage *zspage)
543 {
544         return zspage->freeobj;
545 }
546
547 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
548 {
549         zspage->freeobj = obj;
550 }
551
552 static void get_zspage_mapping(struct zspage *zspage,
553                                 unsigned int *class_idx,
554                                 enum fullness_group *fullness)
555 {
556         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
557
558         *fullness = zspage->fullness;
559         *class_idx = zspage->class;
560 }
561
562 static void set_zspage_mapping(struct zspage *zspage,
563                                 unsigned int class_idx,
564                                 enum fullness_group fullness)
565 {
566         zspage->class = class_idx;
567         zspage->fullness = fullness;
568 }
569
570 /*
571  * zsmalloc divides the pool into various size classes where each
572  * class maintains a list of zspages where each zspage is divided
573  * into equal sized chunks. Each allocation falls into one of these
574  * classes depending on its size. This function returns index of the
575  * size class which has chunk size big enough to hold the give size.
576  */
577 static int get_size_class_index(int size)
578 {
579         int idx = 0;
580
581         if (likely(size > ZS_MIN_ALLOC_SIZE))
582                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
583                                 ZS_SIZE_CLASS_DELTA);
584
585         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
586 }
587
588 /* type can be of enum type zs_stat_type or fullness_group */
589 static inline void zs_stat_inc(struct size_class *class,
590                                 int type, unsigned long cnt)
591 {
592         class->stats.objs[type] += cnt;
593 }
594
595 /* type can be of enum type zs_stat_type or fullness_group */
596 static inline void zs_stat_dec(struct size_class *class,
597                                 int type, unsigned long cnt)
598 {
599         class->stats.objs[type] -= cnt;
600 }
601
602 /* type can be of enum type zs_stat_type or fullness_group */
603 static inline unsigned long zs_stat_get(struct size_class *class,
604                                 int type)
605 {
606         return class->stats.objs[type];
607 }
608
609 #ifdef CONFIG_ZSMALLOC_STAT
610
611 static void __init zs_stat_init(void)
612 {
613         if (!debugfs_initialized()) {
614                 pr_warn("debugfs not available, stat dir not created\n");
615                 return;
616         }
617
618         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
619 }
620
621 static void __exit zs_stat_exit(void)
622 {
623         debugfs_remove_recursive(zs_stat_root);
624 }
625
626 static unsigned long zs_can_compact(struct size_class *class);
627
628 static int zs_stats_size_show(struct seq_file *s, void *v)
629 {
630         int i;
631         struct zs_pool *pool = s->private;
632         struct size_class *class;
633         int objs_per_zspage;
634         unsigned long class_almost_full, class_almost_empty;
635         unsigned long obj_allocated, obj_used, pages_used, freeable;
636         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
637         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
638         unsigned long total_freeable = 0;
639
640         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
641                         "class", "size", "almost_full", "almost_empty",
642                         "obj_allocated", "obj_used", "pages_used",
643                         "pages_per_zspage", "freeable");
644
645         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
646                 class = pool->size_class[i];
647
648                 if (class->index != i)
649                         continue;
650
651                 spin_lock(&class->lock);
652                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
653                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
654                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
655                 obj_used = zs_stat_get(class, OBJ_USED);
656                 freeable = zs_can_compact(class);
657                 spin_unlock(&class->lock);
658
659                 objs_per_zspage = class->objs_per_zspage;
660                 pages_used = obj_allocated / objs_per_zspage *
661                                 class->pages_per_zspage;
662
663                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
664                                 " %10lu %10lu %16d %8lu\n",
665                         i, class->size, class_almost_full, class_almost_empty,
666                         obj_allocated, obj_used, pages_used,
667                         class->pages_per_zspage, freeable);
668
669                 total_class_almost_full += class_almost_full;
670                 total_class_almost_empty += class_almost_empty;
671                 total_objs += obj_allocated;
672                 total_used_objs += obj_used;
673                 total_pages += pages_used;
674                 total_freeable += freeable;
675         }
676
677         seq_puts(s, "\n");
678         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
679                         "Total", "", total_class_almost_full,
680                         total_class_almost_empty, total_objs,
681                         total_used_objs, total_pages, "", total_freeable);
682
683         return 0;
684 }
685 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
686
687 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
688 {
689         if (!zs_stat_root) {
690                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
691                 return;
692         }
693
694         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
695
696         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
697                             &zs_stats_size_fops);
698 }
699
700 static void zs_pool_stat_destroy(struct zs_pool *pool)
701 {
702         debugfs_remove_recursive(pool->stat_dentry);
703 }
704
705 #else /* CONFIG_ZSMALLOC_STAT */
706 static void __init zs_stat_init(void)
707 {
708 }
709
710 static void __exit zs_stat_exit(void)
711 {
712 }
713
714 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
715 {
716 }
717
718 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
719 {
720 }
721 #endif
722
723
724 /*
725  * For each size class, zspages are divided into different groups
726  * depending on how "full" they are. This was done so that we could
727  * easily find empty or nearly empty zspages when we try to shrink
728  * the pool (not yet implemented). This function returns fullness
729  * status of the given page.
730  */
731 static enum fullness_group get_fullness_group(struct size_class *class,
732                                                 struct zspage *zspage)
733 {
734         int inuse, objs_per_zspage;
735         enum fullness_group fg;
736
737         inuse = get_zspage_inuse(zspage);
738         objs_per_zspage = class->objs_per_zspage;
739
740         if (inuse == 0)
741                 fg = ZS_EMPTY;
742         else if (inuse == objs_per_zspage)
743                 fg = ZS_FULL;
744         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
745                 fg = ZS_ALMOST_EMPTY;
746         else
747                 fg = ZS_ALMOST_FULL;
748
749         return fg;
750 }
751
752 /*
753  * Each size class maintains various freelists and zspages are assigned
754  * to one of these freelists based on the number of live objects they
755  * have. This functions inserts the given zspage into the freelist
756  * identified by <class, fullness_group>.
757  */
758 static void insert_zspage(struct size_class *class,
759                                 struct zspage *zspage,
760                                 enum fullness_group fullness)
761 {
762         struct zspage *head;
763
764         zs_stat_inc(class, fullness, 1);
765         head = list_first_entry_or_null(&class->fullness_list[fullness],
766                                         struct zspage, list);
767         /*
768          * We want to see more ZS_FULL pages and less almost empty/full.
769          * Put pages with higher ->inuse first.
770          */
771         if (head) {
772                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
773                         list_add(&zspage->list, &head->list);
774                         return;
775                 }
776         }
777         list_add(&zspage->list, &class->fullness_list[fullness]);
778 }
779
780 /*
781  * This function removes the given zspage from the freelist identified
782  * by <class, fullness_group>.
783  */
784 static void remove_zspage(struct size_class *class,
785                                 struct zspage *zspage,
786                                 enum fullness_group fullness)
787 {
788         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
789         VM_BUG_ON(is_zspage_isolated(zspage));
790
791         list_del_init(&zspage->list);
792         zs_stat_dec(class, fullness, 1);
793 }
794
795 /*
796  * Each size class maintains zspages in different fullness groups depending
797  * on the number of live objects they contain. When allocating or freeing
798  * objects, the fullness status of the page can change, say, from ALMOST_FULL
799  * to ALMOST_EMPTY when freeing an object. This function checks if such
800  * a status change has occurred for the given page and accordingly moves the
801  * page from the freelist of the old fullness group to that of the new
802  * fullness group.
803  */
804 static enum fullness_group fix_fullness_group(struct size_class *class,
805                                                 struct zspage *zspage)
806 {
807         int class_idx;
808         enum fullness_group currfg, newfg;
809
810         get_zspage_mapping(zspage, &class_idx, &currfg);
811         newfg = get_fullness_group(class, zspage);
812         if (newfg == currfg)
813                 goto out;
814
815         if (!is_zspage_isolated(zspage)) {
816                 remove_zspage(class, zspage, currfg);
817                 insert_zspage(class, zspage, newfg);
818         }
819
820         set_zspage_mapping(zspage, class_idx, newfg);
821
822 out:
823         return newfg;
824 }
825
826 /*
827  * We have to decide on how many pages to link together
828  * to form a zspage for each size class. This is important
829  * to reduce wastage due to unusable space left at end of
830  * each zspage which is given as:
831  *     wastage = Zp % class_size
832  *     usage = Zp - wastage
833  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
834  *
835  * For example, for size class of 3/8 * PAGE_SIZE, we should
836  * link together 3 PAGE_SIZE sized pages to form a zspage
837  * since then we can perfectly fit in 8 such objects.
838  */
839 static int get_pages_per_zspage(int class_size)
840 {
841         int i, max_usedpc = 0;
842         /* zspage order which gives maximum used size per KB */
843         int max_usedpc_order = 1;
844
845         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
846                 int zspage_size;
847                 int waste, usedpc;
848
849                 zspage_size = i * PAGE_SIZE;
850                 waste = zspage_size % class_size;
851                 usedpc = (zspage_size - waste) * 100 / zspage_size;
852
853                 if (usedpc > max_usedpc) {
854                         max_usedpc = usedpc;
855                         max_usedpc_order = i;
856                 }
857         }
858
859         return max_usedpc_order;
860 }
861
862 static struct zspage *get_zspage(struct page *page)
863 {
864         struct zspage *zspage = (struct zspage *)page->private;
865
866         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
867         return zspage;
868 }
869
870 static struct page *get_next_page(struct page *page)
871 {
872         if (unlikely(PageHugeObject(page)))
873                 return NULL;
874
875         return page->freelist;
876 }
877
878 /**
879  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
880  * @obj: the encoded object value
881  * @page: page object resides in zspage
882  * @obj_idx: object index
883  */
884 static void obj_to_location(unsigned long obj, struct page **page,
885                                 unsigned int *obj_idx)
886 {
887         obj >>= OBJ_TAG_BITS;
888         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
889         *obj_idx = (obj & OBJ_INDEX_MASK);
890 }
891
892 /**
893  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
894  * @page: page object resides in zspage
895  * @obj_idx: object index
896  */
897 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
898 {
899         unsigned long obj;
900
901         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
902         obj |= obj_idx & OBJ_INDEX_MASK;
903         obj <<= OBJ_TAG_BITS;
904
905         return obj;
906 }
907
908 static unsigned long handle_to_obj(unsigned long handle)
909 {
910 #ifdef CONFIG_PREEMPT_RT
911         struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
912
913         return zh->addr;
914 #else
915         return *(unsigned long *)handle;
916 #endif
917 }
918
919 static unsigned long obj_to_head(struct page *page, void *obj)
920 {
921         if (unlikely(PageHugeObject(page))) {
922                 VM_BUG_ON_PAGE(!is_first_page(page), page);
923                 return page->index;
924         } else
925                 return *(unsigned long *)obj;
926 }
927
928 static inline int testpin_tag(unsigned long handle)
929 {
930 #ifdef CONFIG_PREEMPT_RT
931         struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
932
933         return spin_is_locked(&zh->lock);
934 #else
935         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
936 #endif
937 }
938
939 static inline int trypin_tag(unsigned long handle)
940 {
941 #ifdef CONFIG_PREEMPT_RT
942         struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
943
944         return spin_trylock(&zh->lock);
945 #else
946         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
947 #endif
948 }
949
950 static void pin_tag(unsigned long handle) __acquires(bitlock)
951 {
952 #ifdef CONFIG_PREEMPT_RT
953         struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
954
955         return spin_lock(&zh->lock);
956 #else
957         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
958 #endif
959 }
960
961 static void unpin_tag(unsigned long handle) __releases(bitlock)
962 {
963 #ifdef CONFIG_PREEMPT_RT
964         struct zsmalloc_handle *zh = zs_get_pure_handle(handle);
965
966         return spin_unlock(&zh->lock);
967 #else
968         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
969 #endif
970 }
971
972 static void reset_page(struct page *page)
973 {
974         __ClearPageMovable(page);
975         ClearPagePrivate(page);
976         set_page_private(page, 0);
977         page_mapcount_reset(page);
978         ClearPageHugeObject(page);
979         page->freelist = NULL;
980 }
981
982 static int trylock_zspage(struct zspage *zspage)
983 {
984         struct page *cursor, *fail;
985
986         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
987                                         get_next_page(cursor)) {
988                 if (!trylock_page(cursor)) {
989                         fail = cursor;
990                         goto unlock;
991                 }
992         }
993
994         return 1;
995 unlock:
996         for (cursor = get_first_page(zspage); cursor != fail; cursor =
997                                         get_next_page(cursor))
998                 unlock_page(cursor);
999
1000         return 0;
1001 }
1002
1003 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1004                                 struct zspage *zspage)
1005 {
1006         struct page *page, *next;
1007         enum fullness_group fg;
1008         unsigned int class_idx;
1009
1010         get_zspage_mapping(zspage, &class_idx, &fg);
1011
1012         assert_spin_locked(&class->lock);
1013
1014         VM_BUG_ON(get_zspage_inuse(zspage));
1015         VM_BUG_ON(fg != ZS_EMPTY);
1016
1017         next = page = get_first_page(zspage);
1018         do {
1019                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1020                 next = get_next_page(page);
1021                 reset_page(page);
1022                 unlock_page(page);
1023                 dec_zone_page_state(page, NR_ZSPAGES);
1024                 put_page(page);
1025                 page = next;
1026         } while (page != NULL);
1027
1028         cache_free_zspage(pool, zspage);
1029
1030         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1031         atomic_long_sub(class->pages_per_zspage,
1032                                         &pool->pages_allocated);
1033 }
1034
1035 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1036                                 struct zspage *zspage)
1037 {
1038         VM_BUG_ON(get_zspage_inuse(zspage));
1039         VM_BUG_ON(list_empty(&zspage->list));
1040
1041         if (!trylock_zspage(zspage)) {
1042                 kick_deferred_free(pool);
1043                 return;
1044         }
1045
1046         remove_zspage(class, zspage, ZS_EMPTY);
1047         __free_zspage(pool, class, zspage);
1048 }
1049
1050 /* Initialize a newly allocated zspage */
1051 static void init_zspage(struct size_class *class, struct zspage *zspage)
1052 {
1053         unsigned int freeobj = 1;
1054         unsigned long off = 0;
1055         struct page *page = get_first_page(zspage);
1056
1057         while (page) {
1058                 struct page *next_page;
1059                 struct link_free *link;
1060                 void *vaddr;
1061
1062                 set_first_obj_offset(page, off);
1063
1064                 vaddr = kmap_atomic(page);
1065                 link = (struct link_free *)vaddr + off / sizeof(*link);
1066
1067                 while ((off += class->size) < PAGE_SIZE) {
1068                         link->next = freeobj++ << OBJ_TAG_BITS;
1069                         link += class->size / sizeof(*link);
1070                 }
1071
1072                 /*
1073                  * We now come to the last (full or partial) object on this
1074                  * page, which must point to the first object on the next
1075                  * page (if present)
1076                  */
1077                 next_page = get_next_page(page);
1078                 if (next_page) {
1079                         link->next = freeobj++ << OBJ_TAG_BITS;
1080                 } else {
1081                         /*
1082                          * Reset OBJ_TAG_BITS bit to last link to tell
1083                          * whether it's allocated object or not.
1084                          */
1085                         link->next = -1UL << OBJ_TAG_BITS;
1086                 }
1087                 kunmap_atomic(vaddr);
1088                 page = next_page;
1089                 off %= PAGE_SIZE;
1090         }
1091
1092         set_freeobj(zspage, 0);
1093 }
1094
1095 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1096                                 struct page *pages[])
1097 {
1098         int i;
1099         struct page *page;
1100         struct page *prev_page = NULL;
1101         int nr_pages = class->pages_per_zspage;
1102
1103         /*
1104          * Allocate individual pages and link them together as:
1105          * 1. all pages are linked together using page->freelist
1106          * 2. each sub-page point to zspage using page->private
1107          *
1108          * we set PG_private to identify the first page (i.e. no other sub-page
1109          * has this flag set).
1110          */
1111         for (i = 0; i < nr_pages; i++) {
1112                 page = pages[i];
1113                 set_page_private(page, (unsigned long)zspage);
1114                 page->freelist = NULL;
1115                 if (i == 0) {
1116                         zspage->first_page = page;
1117                         SetPagePrivate(page);
1118                         if (unlikely(class->objs_per_zspage == 1 &&
1119                                         class->pages_per_zspage == 1))
1120                                 SetPageHugeObject(page);
1121                 } else {
1122                         prev_page->freelist = page;
1123                 }
1124                 prev_page = page;
1125         }
1126 }
1127
1128 /*
1129  * Allocate a zspage for the given size class
1130  */
1131 static struct zspage *alloc_zspage(struct zs_pool *pool,
1132                                         struct size_class *class,
1133                                         gfp_t gfp)
1134 {
1135         int i;
1136         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1137         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1138
1139         if (!zspage)
1140                 return NULL;
1141
1142         memset(zspage, 0, sizeof(struct zspage));
1143         zspage->magic = ZSPAGE_MAGIC;
1144         migrate_lock_init(zspage);
1145
1146         for (i = 0; i < class->pages_per_zspage; i++) {
1147                 struct page *page;
1148
1149                 page = alloc_page(gfp);
1150                 if (!page) {
1151                         while (--i >= 0) {
1152                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1153                                 __free_page(pages[i]);
1154                         }
1155                         cache_free_zspage(pool, zspage);
1156                         return NULL;
1157                 }
1158
1159                 inc_zone_page_state(page, NR_ZSPAGES);
1160                 pages[i] = page;
1161         }
1162
1163         create_page_chain(class, zspage, pages);
1164         init_zspage(class, zspage);
1165
1166         return zspage;
1167 }
1168
1169 static struct zspage *find_get_zspage(struct size_class *class)
1170 {
1171         int i;
1172         struct zspage *zspage;
1173
1174         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1175                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1176                                 struct zspage, list);
1177                 if (zspage)
1178                         break;
1179         }
1180
1181         return zspage;
1182 }
1183
1184 static inline int __zs_cpu_up(struct mapping_area *area)
1185 {
1186         /*
1187          * Make sure we don't leak memory if a cpu UP notification
1188          * and zs_init() race and both call zs_cpu_up() on the same cpu
1189          */
1190         if (area->vm_buf)
1191                 return 0;
1192         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1193         if (!area->vm_buf)
1194                 return -ENOMEM;
1195         return 0;
1196 }
1197
1198 static inline void __zs_cpu_down(struct mapping_area *area)
1199 {
1200         kfree(area->vm_buf);
1201         area->vm_buf = NULL;
1202 }
1203
1204 static void *__zs_map_object(struct mapping_area *area,
1205                         struct page *pages[2], int off, int size)
1206 {
1207         int sizes[2];
1208         void *addr;
1209         char *buf = area->vm_buf;
1210
1211         /* disable page faults to match kmap_atomic() return conditions */
1212         pagefault_disable();
1213
1214         /* no read fastpath */
1215         if (area->vm_mm == ZS_MM_WO)
1216                 goto out;
1217
1218         sizes[0] = PAGE_SIZE - off;
1219         sizes[1] = size - sizes[0];
1220
1221         /* copy object to per-cpu buffer */
1222         addr = kmap_atomic(pages[0]);
1223         memcpy(buf, addr + off, sizes[0]);
1224         kunmap_atomic(addr);
1225         addr = kmap_atomic(pages[1]);
1226         memcpy(buf + sizes[0], addr, sizes[1]);
1227         kunmap_atomic(addr);
1228 out:
1229         return area->vm_buf;
1230 }
1231
1232 static void __zs_unmap_object(struct mapping_area *area,
1233                         struct page *pages[2], int off, int size)
1234 {
1235         int sizes[2];
1236         void *addr;
1237         char *buf;
1238
1239         /* no write fastpath */
1240         if (area->vm_mm == ZS_MM_RO)
1241                 goto out;
1242
1243         buf = area->vm_buf;
1244         buf = buf + ZS_HANDLE_SIZE;
1245         size -= ZS_HANDLE_SIZE;
1246         off += ZS_HANDLE_SIZE;
1247
1248         sizes[0] = PAGE_SIZE - off;
1249         sizes[1] = size - sizes[0];
1250
1251         /* copy per-cpu buffer to object */
1252         addr = kmap_atomic(pages[0]);
1253         memcpy(addr + off, buf, sizes[0]);
1254         kunmap_atomic(addr);
1255         addr = kmap_atomic(pages[1]);
1256         memcpy(addr, buf + sizes[0], sizes[1]);
1257         kunmap_atomic(addr);
1258
1259 out:
1260         /* enable page faults to match kunmap_atomic() return conditions */
1261         pagefault_enable();
1262 }
1263
1264 static int zs_cpu_prepare(unsigned int cpu)
1265 {
1266         struct mapping_area *area;
1267
1268         area = &per_cpu(zs_map_area, cpu);
1269         return __zs_cpu_up(area);
1270 }
1271
1272 static int zs_cpu_dead(unsigned int cpu)
1273 {
1274         struct mapping_area *area;
1275
1276         area = &per_cpu(zs_map_area, cpu);
1277         __zs_cpu_down(area);
1278         return 0;
1279 }
1280
1281 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1282                                         int objs_per_zspage)
1283 {
1284         if (prev->pages_per_zspage == pages_per_zspage &&
1285                 prev->objs_per_zspage == objs_per_zspage)
1286                 return true;
1287
1288         return false;
1289 }
1290
1291 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1292 {
1293         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1294 }
1295
1296 unsigned long zs_get_total_pages(struct zs_pool *pool)
1297 {
1298         return atomic_long_read(&pool->pages_allocated);
1299 }
1300 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1301
1302 /**
1303  * zs_map_object - get address of allocated object from handle.
1304  * @pool: pool from which the object was allocated
1305  * @handle: handle returned from zs_malloc
1306  * @mm: maping mode to use
1307  *
1308  * Before using an object allocated from zs_malloc, it must be mapped using
1309  * this function. When done with the object, it must be unmapped using
1310  * zs_unmap_object.
1311  *
1312  * Only one object can be mapped per cpu at a time. There is no protection
1313  * against nested mappings.
1314  *
1315  * This function returns with preemption and page faults disabled.
1316  */
1317 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1318                         enum zs_mapmode mm)
1319 {
1320         struct zspage *zspage;
1321         struct page *page;
1322         unsigned long obj, off;
1323         unsigned int obj_idx;
1324
1325         unsigned int class_idx;
1326         enum fullness_group fg;
1327         struct size_class *class;
1328         struct mapping_area *area;
1329         struct page *pages[2];
1330         void *ret;
1331
1332         /*
1333          * Because we use per-cpu mapping areas shared among the
1334          * pools/users, we can't allow mapping in interrupt context
1335          * because it can corrupt another users mappings.
1336          */
1337         BUG_ON(in_interrupt());
1338
1339         /* From now on, migration cannot move the object */
1340         pin_tag(handle);
1341
1342         obj = handle_to_obj(handle);
1343         obj_to_location(obj, &page, &obj_idx);
1344         zspage = get_zspage(page);
1345
1346         /* migration cannot move any subpage in this zspage */
1347         migrate_read_lock(zspage);
1348
1349         get_zspage_mapping(zspage, &class_idx, &fg);
1350         class = pool->size_class[class_idx];
1351         off = (class->size * obj_idx) & ~PAGE_MASK;
1352
1353         local_lock(&zs_map_area.lock);
1354         area = this_cpu_ptr(&zs_map_area);
1355         area->vm_mm = mm;
1356         if (off + class->size <= PAGE_SIZE) {
1357                 /* this object is contained entirely within a page */
1358                 area->vm_addr = kmap_atomic(page);
1359                 ret = area->vm_addr + off;
1360                 goto out;
1361         }
1362
1363         /* this object spans two pages */
1364         pages[0] = page;
1365         pages[1] = get_next_page(page);
1366         BUG_ON(!pages[1]);
1367
1368         ret = __zs_map_object(area, pages, off, class->size);
1369 out:
1370         if (likely(!PageHugeObject(page)))
1371                 ret += ZS_HANDLE_SIZE;
1372
1373         return ret;
1374 }
1375 EXPORT_SYMBOL_GPL(zs_map_object);
1376
1377 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1378 {
1379         struct zspage *zspage;
1380         struct page *page;
1381         unsigned long obj, off;
1382         unsigned int obj_idx;
1383
1384         unsigned int class_idx;
1385         enum fullness_group fg;
1386         struct size_class *class;
1387         struct mapping_area *area;
1388
1389         obj = handle_to_obj(handle);
1390         obj_to_location(obj, &page, &obj_idx);
1391         zspage = get_zspage(page);
1392         get_zspage_mapping(zspage, &class_idx, &fg);
1393         class = pool->size_class[class_idx];
1394         off = (class->size * obj_idx) & ~PAGE_MASK;
1395
1396         area = this_cpu_ptr(&zs_map_area);
1397         if (off + class->size <= PAGE_SIZE)
1398                 kunmap_atomic(area->vm_addr);
1399         else {
1400                 struct page *pages[2];
1401
1402                 pages[0] = page;
1403                 pages[1] = get_next_page(page);
1404                 BUG_ON(!pages[1]);
1405
1406                 __zs_unmap_object(area, pages, off, class->size);
1407         }
1408         local_unlock(&zs_map_area.lock);
1409
1410         migrate_read_unlock(zspage);
1411         unpin_tag(handle);
1412 }
1413 EXPORT_SYMBOL_GPL(zs_unmap_object);
1414
1415 /**
1416  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1417  *                        zsmalloc &size_class.
1418  * @pool: zsmalloc pool to use
1419  *
1420  * The function returns the size of the first huge class - any object of equal
1421  * or bigger size will be stored in zspage consisting of a single physical
1422  * page.
1423  *
1424  * Context: Any context.
1425  *
1426  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1427  */
1428 size_t zs_huge_class_size(struct zs_pool *pool)
1429 {
1430         return huge_class_size;
1431 }
1432 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1433
1434 static unsigned long obj_malloc(struct size_class *class,
1435                                 struct zspage *zspage, unsigned long handle)
1436 {
1437         int i, nr_page, offset;
1438         unsigned long obj;
1439         struct link_free *link;
1440
1441         struct page *m_page;
1442         unsigned long m_offset;
1443         void *vaddr;
1444
1445         handle |= OBJ_ALLOCATED_TAG;
1446         obj = get_freeobj(zspage);
1447
1448         offset = obj * class->size;
1449         nr_page = offset >> PAGE_SHIFT;
1450         m_offset = offset & ~PAGE_MASK;
1451         m_page = get_first_page(zspage);
1452
1453         for (i = 0; i < nr_page; i++)
1454                 m_page = get_next_page(m_page);
1455
1456         vaddr = kmap_atomic(m_page);
1457         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1458         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1459         if (likely(!PageHugeObject(m_page)))
1460                 /* record handle in the header of allocated chunk */
1461                 link->handle = handle;
1462         else
1463                 /* record handle to page->index */
1464                 zspage->first_page->index = handle;
1465
1466         kunmap_atomic(vaddr);
1467         mod_zspage_inuse(zspage, 1);
1468         zs_stat_inc(class, OBJ_USED, 1);
1469
1470         obj = location_to_obj(m_page, obj);
1471
1472         return obj;
1473 }
1474
1475
1476 /**
1477  * zs_malloc - Allocate block of given size from pool.
1478  * @pool: pool to allocate from
1479  * @size: size of block to allocate
1480  * @gfp: gfp flags when allocating object
1481  *
1482  * On success, handle to the allocated object is returned,
1483  * otherwise 0.
1484  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1485  */
1486 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1487 {
1488         unsigned long handle, obj;
1489         struct size_class *class;
1490         enum fullness_group newfg;
1491         struct zspage *zspage;
1492
1493         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1494                 return 0;
1495
1496         handle = cache_alloc_handle(pool, gfp);
1497         if (!handle)
1498                 return 0;
1499
1500         /* extra space in chunk to keep the handle */
1501         size += ZS_HANDLE_SIZE;
1502         class = pool->size_class[get_size_class_index(size)];
1503
1504         spin_lock(&class->lock);
1505         zspage = find_get_zspage(class);
1506         if (likely(zspage)) {
1507                 obj = obj_malloc(class, zspage, handle);
1508                 /* Now move the zspage to another fullness group, if required */
1509                 fix_fullness_group(class, zspage);
1510                 record_obj(handle, obj);
1511                 spin_unlock(&class->lock);
1512
1513                 return handle;
1514         }
1515
1516         spin_unlock(&class->lock);
1517
1518         zspage = alloc_zspage(pool, class, gfp);
1519         if (!zspage) {
1520                 cache_free_handle(pool, handle);
1521                 return 0;
1522         }
1523
1524         spin_lock(&class->lock);
1525         obj = obj_malloc(class, zspage, handle);
1526         newfg = get_fullness_group(class, zspage);
1527         insert_zspage(class, zspage, newfg);
1528         set_zspage_mapping(zspage, class->index, newfg);
1529         record_obj(handle, obj);
1530         atomic_long_add(class->pages_per_zspage,
1531                                 &pool->pages_allocated);
1532         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1533
1534         /* We completely set up zspage so mark them as movable */
1535         SetZsPageMovable(pool, zspage);
1536         spin_unlock(&class->lock);
1537
1538         return handle;
1539 }
1540 EXPORT_SYMBOL_GPL(zs_malloc);
1541
1542 static void obj_free(struct size_class *class, unsigned long obj)
1543 {
1544         struct link_free *link;
1545         struct zspage *zspage;
1546         struct page *f_page;
1547         unsigned long f_offset;
1548         unsigned int f_objidx;
1549         void *vaddr;
1550
1551         obj &= ~OBJ_ALLOCATED_TAG;
1552         obj_to_location(obj, &f_page, &f_objidx);
1553         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1554         zspage = get_zspage(f_page);
1555
1556         vaddr = kmap_atomic(f_page);
1557
1558         /* Insert this object in containing zspage's freelist */
1559         link = (struct link_free *)(vaddr + f_offset);
1560         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1561         kunmap_atomic(vaddr);
1562         set_freeobj(zspage, f_objidx);
1563         mod_zspage_inuse(zspage, -1);
1564         zs_stat_dec(class, OBJ_USED, 1);
1565 }
1566
1567 void zs_free(struct zs_pool *pool, unsigned long handle)
1568 {
1569         struct zspage *zspage;
1570         struct page *f_page;
1571         unsigned long obj;
1572         unsigned int f_objidx;
1573         int class_idx;
1574         struct size_class *class;
1575         enum fullness_group fullness;
1576         bool isolated;
1577
1578         if (unlikely(!handle))
1579                 return;
1580
1581         pin_tag(handle);
1582         obj = handle_to_obj(handle);
1583         obj_to_location(obj, &f_page, &f_objidx);
1584         zspage = get_zspage(f_page);
1585
1586         migrate_read_lock(zspage);
1587
1588         get_zspage_mapping(zspage, &class_idx, &fullness);
1589         class = pool->size_class[class_idx];
1590
1591         spin_lock(&class->lock);
1592         obj_free(class, obj);
1593         fullness = fix_fullness_group(class, zspage);
1594         if (fullness != ZS_EMPTY) {
1595                 migrate_read_unlock(zspage);
1596                 goto out;
1597         }
1598
1599         isolated = is_zspage_isolated(zspage);
1600         migrate_read_unlock(zspage);
1601         /* If zspage is isolated, zs_page_putback will free the zspage */
1602         if (likely(!isolated))
1603                 free_zspage(pool, class, zspage);
1604 out:
1605
1606         spin_unlock(&class->lock);
1607         unpin_tag(handle);
1608         cache_free_handle(pool, handle);
1609 }
1610 EXPORT_SYMBOL_GPL(zs_free);
1611
1612 static void zs_object_copy(struct size_class *class, unsigned long dst,
1613                                 unsigned long src)
1614 {
1615         struct page *s_page, *d_page;
1616         unsigned int s_objidx, d_objidx;
1617         unsigned long s_off, d_off;
1618         void *s_addr, *d_addr;
1619         int s_size, d_size, size;
1620         int written = 0;
1621
1622         s_size = d_size = class->size;
1623
1624         obj_to_location(src, &s_page, &s_objidx);
1625         obj_to_location(dst, &d_page, &d_objidx);
1626
1627         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1628         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1629
1630         if (s_off + class->size > PAGE_SIZE)
1631                 s_size = PAGE_SIZE - s_off;
1632
1633         if (d_off + class->size > PAGE_SIZE)
1634                 d_size = PAGE_SIZE - d_off;
1635
1636         s_addr = kmap_atomic(s_page);
1637         d_addr = kmap_atomic(d_page);
1638
1639         while (1) {
1640                 size = min(s_size, d_size);
1641                 memcpy(d_addr + d_off, s_addr + s_off, size);
1642                 written += size;
1643
1644                 if (written == class->size)
1645                         break;
1646
1647                 s_off += size;
1648                 s_size -= size;
1649                 d_off += size;
1650                 d_size -= size;
1651
1652                 if (s_off >= PAGE_SIZE) {
1653                         kunmap_atomic(d_addr);
1654                         kunmap_atomic(s_addr);
1655                         s_page = get_next_page(s_page);
1656                         s_addr = kmap_atomic(s_page);
1657                         d_addr = kmap_atomic(d_page);
1658                         s_size = class->size - written;
1659                         s_off = 0;
1660                 }
1661
1662                 if (d_off >= PAGE_SIZE) {
1663                         kunmap_atomic(d_addr);
1664                         d_page = get_next_page(d_page);
1665                         d_addr = kmap_atomic(d_page);
1666                         d_size = class->size - written;
1667                         d_off = 0;
1668                 }
1669         }
1670
1671         kunmap_atomic(d_addr);
1672         kunmap_atomic(s_addr);
1673 }
1674
1675 /*
1676  * Find alloced object in zspage from index object and
1677  * return handle.
1678  */
1679 static unsigned long find_alloced_obj(struct size_class *class,
1680                                         struct page *page, int *obj_idx)
1681 {
1682         unsigned long head;
1683         int offset = 0;
1684         int index = *obj_idx;
1685         unsigned long handle = 0;
1686         void *addr = kmap_atomic(page);
1687
1688         offset = get_first_obj_offset(page);
1689         offset += class->size * index;
1690
1691         while (offset < PAGE_SIZE) {
1692                 head = obj_to_head(page, addr + offset);
1693                 if (head & OBJ_ALLOCATED_TAG) {
1694                         handle = head & ~OBJ_ALLOCATED_TAG;
1695                         if (trypin_tag(handle))
1696                                 break;
1697                         handle = 0;
1698                 }
1699
1700                 offset += class->size;
1701                 index++;
1702         }
1703
1704         kunmap_atomic(addr);
1705
1706         *obj_idx = index;
1707
1708         return handle;
1709 }
1710
1711 struct zs_compact_control {
1712         /* Source spage for migration which could be a subpage of zspage */
1713         struct page *s_page;
1714         /* Destination page for migration which should be a first page
1715          * of zspage. */
1716         struct page *d_page;
1717          /* Starting object index within @s_page which used for live object
1718           * in the subpage. */
1719         int obj_idx;
1720 };
1721
1722 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1723                                 struct zs_compact_control *cc)
1724 {
1725         unsigned long used_obj, free_obj;
1726         unsigned long handle;
1727         struct page *s_page = cc->s_page;
1728         struct page *d_page = cc->d_page;
1729         int obj_idx = cc->obj_idx;
1730         int ret = 0;
1731
1732         while (1) {
1733                 handle = find_alloced_obj(class, s_page, &obj_idx);
1734                 if (!handle) {
1735                         s_page = get_next_page(s_page);
1736                         if (!s_page)
1737                                 break;
1738                         obj_idx = 0;
1739                         continue;
1740                 }
1741
1742                 /* Stop if there is no more space */
1743                 if (zspage_full(class, get_zspage(d_page))) {
1744                         unpin_tag(handle);
1745                         ret = -ENOMEM;
1746                         break;
1747                 }
1748
1749                 used_obj = handle_to_obj(handle);
1750                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1751                 zs_object_copy(class, free_obj, used_obj);
1752                 obj_idx++;
1753                 /*
1754                  * record_obj updates handle's value to free_obj and it will
1755                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1756                  * breaks synchronization using pin_tag(e,g, zs_free) so
1757                  * let's keep the lock bit.
1758                  */
1759                 free_obj |= BIT(HANDLE_PIN_BIT);
1760                 record_obj(handle, free_obj);
1761                 unpin_tag(handle);
1762                 obj_free(class, used_obj);
1763         }
1764
1765         /* Remember last position in this iteration */
1766         cc->s_page = s_page;
1767         cc->obj_idx = obj_idx;
1768
1769         return ret;
1770 }
1771
1772 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1773 {
1774         int i;
1775         struct zspage *zspage;
1776         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1777
1778         if (!source) {
1779                 fg[0] = ZS_ALMOST_FULL;
1780                 fg[1] = ZS_ALMOST_EMPTY;
1781         }
1782
1783         for (i = 0; i < 2; i++) {
1784                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1785                                                         struct zspage, list);
1786                 if (zspage) {
1787                         VM_BUG_ON(is_zspage_isolated(zspage));
1788                         remove_zspage(class, zspage, fg[i]);
1789                         return zspage;
1790                 }
1791         }
1792
1793         return zspage;
1794 }
1795
1796 /*
1797  * putback_zspage - add @zspage into right class's fullness list
1798  * @class: destination class
1799  * @zspage: target page
1800  *
1801  * Return @zspage's fullness_group
1802  */
1803 static enum fullness_group putback_zspage(struct size_class *class,
1804                         struct zspage *zspage)
1805 {
1806         enum fullness_group fullness;
1807
1808         VM_BUG_ON(is_zspage_isolated(zspage));
1809
1810         fullness = get_fullness_group(class, zspage);
1811         insert_zspage(class, zspage, fullness);
1812         set_zspage_mapping(zspage, class->index, fullness);
1813
1814         return fullness;
1815 }
1816
1817 #ifdef CONFIG_COMPACTION
1818 /*
1819  * To prevent zspage destroy during migration, zspage freeing should
1820  * hold locks of all pages in the zspage.
1821  */
1822 static void lock_zspage(struct zspage *zspage)
1823 {
1824         struct page *page = get_first_page(zspage);
1825
1826         do {
1827                 lock_page(page);
1828         } while ((page = get_next_page(page)) != NULL);
1829 }
1830
1831 static int zs_init_fs_context(struct fs_context *fc)
1832 {
1833         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1834 }
1835
1836 static struct file_system_type zsmalloc_fs = {
1837         .name           = "zsmalloc",
1838         .init_fs_context = zs_init_fs_context,
1839         .kill_sb        = kill_anon_super,
1840 };
1841
1842 static int zsmalloc_mount(void)
1843 {
1844         int ret = 0;
1845
1846         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1847         if (IS_ERR(zsmalloc_mnt))
1848                 ret = PTR_ERR(zsmalloc_mnt);
1849
1850         return ret;
1851 }
1852
1853 static void zsmalloc_unmount(void)
1854 {
1855         kern_unmount(zsmalloc_mnt);
1856 }
1857
1858 static void migrate_lock_init(struct zspage *zspage)
1859 {
1860         rwlock_init(&zspage->lock);
1861 }
1862
1863 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1864 {
1865         read_lock(&zspage->lock);
1866 }
1867
1868 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1869 {
1870         read_unlock(&zspage->lock);
1871 }
1872
1873 static void migrate_write_lock(struct zspage *zspage)
1874 {
1875         write_lock(&zspage->lock);
1876 }
1877
1878 static void migrate_write_unlock(struct zspage *zspage)
1879 {
1880         write_unlock(&zspage->lock);
1881 }
1882
1883 /* Number of isolated subpage for *page migration* in this zspage */
1884 static void inc_zspage_isolation(struct zspage *zspage)
1885 {
1886         zspage->isolated++;
1887 }
1888
1889 static void dec_zspage_isolation(struct zspage *zspage)
1890 {
1891         zspage->isolated--;
1892 }
1893
1894 static void putback_zspage_deferred(struct zs_pool *pool,
1895                                     struct size_class *class,
1896                                     struct zspage *zspage)
1897 {
1898         enum fullness_group fg;
1899
1900         fg = putback_zspage(class, zspage);
1901         if (fg == ZS_EMPTY)
1902                 schedule_work(&pool->free_work);
1903
1904 }
1905
1906 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1907 {
1908         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1909         atomic_long_dec(&pool->isolated_pages);
1910         /*
1911          * Checking pool->destroying must happen after atomic_long_dec()
1912          * for pool->isolated_pages above. Paired with the smp_mb() in
1913          * zs_unregister_migration().
1914          */
1915         smp_mb__after_atomic();
1916         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1917                 wake_up_all(&pool->migration_wait);
1918 }
1919
1920 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1921                                 struct page *newpage, struct page *oldpage)
1922 {
1923         struct page *page;
1924         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1925         int idx = 0;
1926
1927         page = get_first_page(zspage);
1928         do {
1929                 if (page == oldpage)
1930                         pages[idx] = newpage;
1931                 else
1932                         pages[idx] = page;
1933                 idx++;
1934         } while ((page = get_next_page(page)) != NULL);
1935
1936         create_page_chain(class, zspage, pages);
1937         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1938         if (unlikely(PageHugeObject(oldpage)))
1939                 newpage->index = oldpage->index;
1940         __SetPageMovable(newpage, page_mapping(oldpage));
1941 }
1942
1943 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1944 {
1945         struct zs_pool *pool;
1946         struct size_class *class;
1947         int class_idx;
1948         enum fullness_group fullness;
1949         struct zspage *zspage;
1950         struct address_space *mapping;
1951
1952         /*
1953          * Page is locked so zspage couldn't be destroyed. For detail, look at
1954          * lock_zspage in free_zspage.
1955          */
1956         VM_BUG_ON_PAGE(!PageMovable(page), page);
1957         VM_BUG_ON_PAGE(PageIsolated(page), page);
1958
1959         zspage = get_zspage(page);
1960
1961         /*
1962          * Without class lock, fullness could be stale while class_idx is okay
1963          * because class_idx is constant unless page is freed so we should get
1964          * fullness again under class lock.
1965          */
1966         get_zspage_mapping(zspage, &class_idx, &fullness);
1967         mapping = page_mapping(page);
1968         pool = mapping->private_data;
1969         class = pool->size_class[class_idx];
1970
1971         spin_lock(&class->lock);
1972         if (get_zspage_inuse(zspage) == 0) {
1973                 spin_unlock(&class->lock);
1974                 return false;
1975         }
1976
1977         /* zspage is isolated for object migration */
1978         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1979                 spin_unlock(&class->lock);
1980                 return false;
1981         }
1982
1983         /*
1984          * If this is first time isolation for the zspage, isolate zspage from
1985          * size_class to prevent further object allocation from the zspage.
1986          */
1987         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1988                 get_zspage_mapping(zspage, &class_idx, &fullness);
1989                 atomic_long_inc(&pool->isolated_pages);
1990                 remove_zspage(class, zspage, fullness);
1991         }
1992
1993         inc_zspage_isolation(zspage);
1994         spin_unlock(&class->lock);
1995
1996         return true;
1997 }
1998
1999 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2000                 struct page *page, enum migrate_mode mode)
2001 {
2002         struct zs_pool *pool;
2003         struct size_class *class;
2004         int class_idx;
2005         enum fullness_group fullness;
2006         struct zspage *zspage;
2007         struct page *dummy;
2008         void *s_addr, *d_addr, *addr;
2009         int offset, pos;
2010         unsigned long handle, head;
2011         unsigned long old_obj, new_obj;
2012         unsigned int obj_idx;
2013         int ret = -EAGAIN;
2014
2015         /*
2016          * We cannot support the _NO_COPY case here, because copy needs to
2017          * happen under the zs lock, which does not work with
2018          * MIGRATE_SYNC_NO_COPY workflow.
2019          */
2020         if (mode == MIGRATE_SYNC_NO_COPY)
2021                 return -EINVAL;
2022
2023         VM_BUG_ON_PAGE(!PageMovable(page), page);
2024         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2025
2026         zspage = get_zspage(page);
2027
2028         /* Concurrent compactor cannot migrate any subpage in zspage */
2029         migrate_write_lock(zspage);
2030         get_zspage_mapping(zspage, &class_idx, &fullness);
2031         pool = mapping->private_data;
2032         class = pool->size_class[class_idx];
2033         offset = get_first_obj_offset(page);
2034
2035         spin_lock(&class->lock);
2036         if (!get_zspage_inuse(zspage)) {
2037                 /*
2038                  * Set "offset" to end of the page so that every loops
2039                  * skips unnecessary object scanning.
2040                  */
2041                 offset = PAGE_SIZE;
2042         }
2043
2044         pos = offset;
2045         s_addr = kmap_atomic(page);
2046         while (pos < PAGE_SIZE) {
2047                 head = obj_to_head(page, s_addr + pos);
2048                 if (head & OBJ_ALLOCATED_TAG) {
2049                         handle = head & ~OBJ_ALLOCATED_TAG;
2050                         if (!trypin_tag(handle))
2051                                 goto unpin_objects;
2052                 }
2053                 pos += class->size;
2054         }
2055
2056         /*
2057          * Here, any user cannot access all objects in the zspage so let's move.
2058          */
2059         d_addr = kmap_atomic(newpage);
2060         memcpy(d_addr, s_addr, PAGE_SIZE);
2061         kunmap_atomic(d_addr);
2062
2063         for (addr = s_addr + offset; addr < s_addr + pos;
2064                                         addr += class->size) {
2065                 head = obj_to_head(page, addr);
2066                 if (head & OBJ_ALLOCATED_TAG) {
2067                         handle = head & ~OBJ_ALLOCATED_TAG;
2068                         if (!testpin_tag(handle))
2069                                 BUG();
2070
2071                         old_obj = handle_to_obj(handle);
2072                         obj_to_location(old_obj, &dummy, &obj_idx);
2073                         new_obj = (unsigned long)location_to_obj(newpage,
2074                                                                 obj_idx);
2075                         new_obj |= BIT(HANDLE_PIN_BIT);
2076                         record_obj(handle, new_obj);
2077                 }
2078         }
2079
2080         replace_sub_page(class, zspage, newpage, page);
2081         get_page(newpage);
2082
2083         dec_zspage_isolation(zspage);
2084
2085         /*
2086          * Page migration is done so let's putback isolated zspage to
2087          * the list if @page is final isolated subpage in the zspage.
2088          */
2089         if (!is_zspage_isolated(zspage)) {
2090                 /*
2091                  * We cannot race with zs_destroy_pool() here because we wait
2092                  * for isolation to hit zero before we start destroying.
2093                  * Also, we ensure that everyone can see pool->destroying before
2094                  * we start waiting.
2095                  */
2096                 putback_zspage_deferred(pool, class, zspage);
2097                 zs_pool_dec_isolated(pool);
2098         }
2099
2100         if (page_zone(newpage) != page_zone(page)) {
2101                 dec_zone_page_state(page, NR_ZSPAGES);
2102                 inc_zone_page_state(newpage, NR_ZSPAGES);
2103         }
2104
2105         reset_page(page);
2106         put_page(page);
2107         page = newpage;
2108
2109         ret = MIGRATEPAGE_SUCCESS;
2110 unpin_objects:
2111         for (addr = s_addr + offset; addr < s_addr + pos;
2112                                                 addr += class->size) {
2113                 head = obj_to_head(page, addr);
2114                 if (head & OBJ_ALLOCATED_TAG) {
2115                         handle = head & ~OBJ_ALLOCATED_TAG;
2116                         if (!testpin_tag(handle))
2117                                 BUG();
2118                         unpin_tag(handle);
2119                 }
2120         }
2121         kunmap_atomic(s_addr);
2122         spin_unlock(&class->lock);
2123         migrate_write_unlock(zspage);
2124
2125         return ret;
2126 }
2127
2128 static void zs_page_putback(struct page *page)
2129 {
2130         struct zs_pool *pool;
2131         struct size_class *class;
2132         int class_idx;
2133         enum fullness_group fg;
2134         struct address_space *mapping;
2135         struct zspage *zspage;
2136
2137         VM_BUG_ON_PAGE(!PageMovable(page), page);
2138         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2139
2140         zspage = get_zspage(page);
2141         get_zspage_mapping(zspage, &class_idx, &fg);
2142         mapping = page_mapping(page);
2143         pool = mapping->private_data;
2144         class = pool->size_class[class_idx];
2145
2146         spin_lock(&class->lock);
2147         dec_zspage_isolation(zspage);
2148         if (!is_zspage_isolated(zspage)) {
2149                 /*
2150                  * Due to page_lock, we cannot free zspage immediately
2151                  * so let's defer.
2152                  */
2153                 putback_zspage_deferred(pool, class, zspage);
2154                 zs_pool_dec_isolated(pool);
2155         }
2156         spin_unlock(&class->lock);
2157 }
2158
2159 static const struct address_space_operations zsmalloc_aops = {
2160         .isolate_page = zs_page_isolate,
2161         .migratepage = zs_page_migrate,
2162         .putback_page = zs_page_putback,
2163 };
2164
2165 static int zs_register_migration(struct zs_pool *pool)
2166 {
2167         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2168         if (IS_ERR(pool->inode)) {
2169                 pool->inode = NULL;
2170                 return 1;
2171         }
2172
2173         pool->inode->i_mapping->private_data = pool;
2174         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2175         return 0;
2176 }
2177
2178 static bool pool_isolated_are_drained(struct zs_pool *pool)
2179 {
2180         return atomic_long_read(&pool->isolated_pages) == 0;
2181 }
2182
2183 /* Function for resolving migration */
2184 static void wait_for_isolated_drain(struct zs_pool *pool)
2185 {
2186
2187         /*
2188          * We're in the process of destroying the pool, so there are no
2189          * active allocations. zs_page_isolate() fails for completely free
2190          * zspages, so we need only wait for the zs_pool's isolated
2191          * count to hit zero.
2192          */
2193         wait_event(pool->migration_wait,
2194                    pool_isolated_are_drained(pool));
2195 }
2196
2197 static void zs_unregister_migration(struct zs_pool *pool)
2198 {
2199         pool->destroying = true;
2200         /*
2201          * We need a memory barrier here to ensure global visibility of
2202          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2203          * case we don't care, or it will be > 0 and pool->destroying will
2204          * ensure that we wake up once isolation hits 0.
2205          */
2206         smp_mb();
2207         wait_for_isolated_drain(pool); /* This can block */
2208         flush_work(&pool->free_work);
2209         iput(pool->inode);
2210 }
2211
2212 /*
2213  * Caller should hold page_lock of all pages in the zspage
2214  * In here, we cannot use zspage meta data.
2215  */
2216 static void async_free_zspage(struct work_struct *work)
2217 {
2218         int i;
2219         struct size_class *class;
2220         unsigned int class_idx;
2221         enum fullness_group fullness;
2222         struct zspage *zspage, *tmp;
2223         LIST_HEAD(free_pages);
2224         struct zs_pool *pool = container_of(work, struct zs_pool,
2225                                         free_work);
2226
2227         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2228                 class = pool->size_class[i];
2229                 if (class->index != i)
2230                         continue;
2231
2232                 spin_lock(&class->lock);
2233                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2234                 spin_unlock(&class->lock);
2235         }
2236
2237
2238         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2239                 list_del(&zspage->list);
2240                 lock_zspage(zspage);
2241
2242                 get_zspage_mapping(zspage, &class_idx, &fullness);
2243                 VM_BUG_ON(fullness != ZS_EMPTY);
2244                 class = pool->size_class[class_idx];
2245                 spin_lock(&class->lock);
2246                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2247                 spin_unlock(&class->lock);
2248         }
2249 };
2250
2251 static void kick_deferred_free(struct zs_pool *pool)
2252 {
2253         schedule_work(&pool->free_work);
2254 }
2255
2256 static void init_deferred_free(struct zs_pool *pool)
2257 {
2258         INIT_WORK(&pool->free_work, async_free_zspage);
2259 }
2260
2261 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2262 {
2263         struct page *page = get_first_page(zspage);
2264
2265         do {
2266                 WARN_ON(!trylock_page(page));
2267                 __SetPageMovable(page, pool->inode->i_mapping);
2268                 unlock_page(page);
2269         } while ((page = get_next_page(page)) != NULL);
2270 }
2271 #endif
2272
2273 /*
2274  *
2275  * Based on the number of unused allocated objects calculate
2276  * and return the number of pages that we can free.
2277  */
2278 static unsigned long zs_can_compact(struct size_class *class)
2279 {
2280         unsigned long obj_wasted;
2281         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2282         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2283
2284         if (obj_allocated <= obj_used)
2285                 return 0;
2286
2287         obj_wasted = obj_allocated - obj_used;
2288         obj_wasted /= class->objs_per_zspage;
2289
2290         return obj_wasted * class->pages_per_zspage;
2291 }
2292
2293 static unsigned long __zs_compact(struct zs_pool *pool,
2294                                   struct size_class *class)
2295 {
2296         struct zs_compact_control cc;
2297         struct zspage *src_zspage;
2298         struct zspage *dst_zspage = NULL;
2299         unsigned long pages_freed = 0;
2300
2301         spin_lock(&class->lock);
2302         while ((src_zspage = isolate_zspage(class, true))) {
2303
2304                 if (!zs_can_compact(class))
2305                         break;
2306
2307                 cc.obj_idx = 0;
2308                 cc.s_page = get_first_page(src_zspage);
2309
2310                 while ((dst_zspage = isolate_zspage(class, false))) {
2311                         cc.d_page = get_first_page(dst_zspage);
2312                         /*
2313                          * If there is no more space in dst_page, resched
2314                          * and see if anyone had allocated another zspage.
2315                          */
2316                         if (!migrate_zspage(pool, class, &cc))
2317                                 break;
2318
2319                         putback_zspage(class, dst_zspage);
2320                 }
2321
2322                 /* Stop if we couldn't find slot */
2323                 if (dst_zspage == NULL)
2324                         break;
2325
2326                 putback_zspage(class, dst_zspage);
2327                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2328                         free_zspage(pool, class, src_zspage);
2329                         pages_freed += class->pages_per_zspage;
2330                 }
2331                 spin_unlock(&class->lock);
2332                 cond_resched();
2333                 spin_lock(&class->lock);
2334         }
2335
2336         if (src_zspage)
2337                 putback_zspage(class, src_zspage);
2338
2339         spin_unlock(&class->lock);
2340
2341         return pages_freed;
2342 }
2343
2344 unsigned long zs_compact(struct zs_pool *pool)
2345 {
2346         int i;
2347         struct size_class *class;
2348         unsigned long pages_freed = 0;
2349
2350         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2351                 class = pool->size_class[i];
2352                 if (!class)
2353                         continue;
2354                 if (class->index != i)
2355                         continue;
2356                 pages_freed += __zs_compact(pool, class);
2357         }
2358         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2359
2360         return pages_freed;
2361 }
2362 EXPORT_SYMBOL_GPL(zs_compact);
2363
2364 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2365 {
2366         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2367 }
2368 EXPORT_SYMBOL_GPL(zs_pool_stats);
2369
2370 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2371                 struct shrink_control *sc)
2372 {
2373         unsigned long pages_freed;
2374         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2375                         shrinker);
2376
2377         /*
2378          * Compact classes and calculate compaction delta.
2379          * Can run concurrently with a manually triggered
2380          * (by user) compaction.
2381          */
2382         pages_freed = zs_compact(pool);
2383
2384         return pages_freed ? pages_freed : SHRINK_STOP;
2385 }
2386
2387 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2388                 struct shrink_control *sc)
2389 {
2390         int i;
2391         struct size_class *class;
2392         unsigned long pages_to_free = 0;
2393         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2394                         shrinker);
2395
2396         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2397                 class = pool->size_class[i];
2398                 if (!class)
2399                         continue;
2400                 if (class->index != i)
2401                         continue;
2402
2403                 pages_to_free += zs_can_compact(class);
2404         }
2405
2406         return pages_to_free;
2407 }
2408
2409 static void zs_unregister_shrinker(struct zs_pool *pool)
2410 {
2411         unregister_shrinker(&pool->shrinker);
2412 }
2413
2414 static int zs_register_shrinker(struct zs_pool *pool)
2415 {
2416         pool->shrinker.scan_objects = zs_shrinker_scan;
2417         pool->shrinker.count_objects = zs_shrinker_count;
2418         pool->shrinker.batch = 0;
2419         pool->shrinker.seeks = DEFAULT_SEEKS;
2420
2421         return register_shrinker(&pool->shrinker);
2422 }
2423
2424 /**
2425  * zs_create_pool - Creates an allocation pool to work from.
2426  * @name: pool name to be created
2427  *
2428  * This function must be called before anything when using
2429  * the zsmalloc allocator.
2430  *
2431  * On success, a pointer to the newly created pool is returned,
2432  * otherwise NULL.
2433  */
2434 struct zs_pool *zs_create_pool(const char *name)
2435 {
2436         int i;
2437         struct zs_pool *pool;
2438         struct size_class *prev_class = NULL;
2439
2440         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2441         if (!pool)
2442                 return NULL;
2443
2444         init_deferred_free(pool);
2445
2446         pool->name = kstrdup(name, GFP_KERNEL);
2447         if (!pool->name)
2448                 goto err;
2449
2450 #ifdef CONFIG_COMPACTION
2451         init_waitqueue_head(&pool->migration_wait);
2452 #endif
2453
2454         if (create_cache(pool))
2455                 goto err;
2456
2457         /*
2458          * Iterate reversely, because, size of size_class that we want to use
2459          * for merging should be larger or equal to current size.
2460          */
2461         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2462                 int size;
2463                 int pages_per_zspage;
2464                 int objs_per_zspage;
2465                 struct size_class *class;
2466                 int fullness = 0;
2467
2468                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2469                 if (size > ZS_MAX_ALLOC_SIZE)
2470                         size = ZS_MAX_ALLOC_SIZE;
2471                 pages_per_zspage = get_pages_per_zspage(size);
2472                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2473
2474                 /*
2475                  * We iterate from biggest down to smallest classes,
2476                  * so huge_class_size holds the size of the first huge
2477                  * class. Any object bigger than or equal to that will
2478                  * endup in the huge class.
2479                  */
2480                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2481                                 !huge_class_size) {
2482                         huge_class_size = size;
2483                         /*
2484                          * The object uses ZS_HANDLE_SIZE bytes to store the
2485                          * handle. We need to subtract it, because zs_malloc()
2486                          * unconditionally adds handle size before it performs
2487                          * size class search - so object may be smaller than
2488                          * huge class size, yet it still can end up in the huge
2489                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2490                          * right before class lookup.
2491                          */
2492                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2493                 }
2494
2495                 /*
2496                  * size_class is used for normal zsmalloc operation such
2497                  * as alloc/free for that size. Although it is natural that we
2498                  * have one size_class for each size, there is a chance that we
2499                  * can get more memory utilization if we use one size_class for
2500                  * many different sizes whose size_class have same
2501                  * characteristics. So, we makes size_class point to
2502                  * previous size_class if possible.
2503                  */
2504                 if (prev_class) {
2505                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2506                                 pool->size_class[i] = prev_class;
2507                                 continue;
2508                         }
2509                 }
2510
2511                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2512                 if (!class)
2513                         goto err;
2514
2515                 class->size = size;
2516                 class->index = i;
2517                 class->pages_per_zspage = pages_per_zspage;
2518                 class->objs_per_zspage = objs_per_zspage;
2519                 spin_lock_init(&class->lock);
2520                 pool->size_class[i] = class;
2521                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2522                                                         fullness++)
2523                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2524
2525                 prev_class = class;
2526         }
2527
2528         /* debug only, don't abort if it fails */
2529         zs_pool_stat_create(pool, name);
2530
2531         if (zs_register_migration(pool))
2532                 goto err;
2533
2534         /*
2535          * Not critical since shrinker is only used to trigger internal
2536          * defragmentation of the pool which is pretty optional thing.  If
2537          * registration fails we still can use the pool normally and user can
2538          * trigger compaction manually. Thus, ignore return code.
2539          */
2540         zs_register_shrinker(pool);
2541
2542         return pool;
2543
2544 err:
2545         zs_destroy_pool(pool);
2546         return NULL;
2547 }
2548 EXPORT_SYMBOL_GPL(zs_create_pool);
2549
2550 void zs_destroy_pool(struct zs_pool *pool)
2551 {
2552         int i;
2553
2554         zs_unregister_shrinker(pool);
2555         zs_unregister_migration(pool);
2556         zs_pool_stat_destroy(pool);
2557
2558         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2559                 int fg;
2560                 struct size_class *class = pool->size_class[i];
2561
2562                 if (!class)
2563                         continue;
2564
2565                 if (class->index != i)
2566                         continue;
2567
2568                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2569                         if (!list_empty(&class->fullness_list[fg])) {
2570                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2571                                         class->size, fg);
2572                         }
2573                 }
2574                 kfree(class);
2575         }
2576
2577         destroy_cache(pool);
2578         kfree(pool->name);
2579         kfree(pool);
2580 }
2581 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2582
2583 static int __init zs_init(void)
2584 {
2585         int ret;
2586
2587         ret = zsmalloc_mount();
2588         if (ret)
2589                 goto out;
2590
2591         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2592                                 zs_cpu_prepare, zs_cpu_dead);
2593         if (ret)
2594                 goto hp_setup_fail;
2595
2596 #ifdef CONFIG_ZPOOL
2597         zpool_register_driver(&zs_zpool_driver);
2598 #endif
2599
2600         zs_stat_init();
2601
2602         return 0;
2603
2604 hp_setup_fail:
2605         zsmalloc_unmount();
2606 out:
2607         return ret;
2608 }
2609
2610 static void __exit zs_exit(void)
2611 {
2612 #ifdef CONFIG_ZPOOL
2613         zpool_unregister_driver(&zs_zpool_driver);
2614 #endif
2615         zsmalloc_unmount();
2616         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2617
2618         zs_stat_exit();
2619 }
2620
2621 module_init(zs_init);
2622 module_exit(zs_exit);
2623
2624 MODULE_LICENSE("Dual BSD/GPL");
2625 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");