Merge tag 'regulator-fix-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / mm / zpool.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * zpool memory storage api
4  *
5  * Copyright (C) 2014 Dan Streetman
6  *
7  * This is a common frontend for memory storage pool implementations.
8  * Typically, this is used to store compressed memory.
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/list.h>
14 #include <linux/types.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/module.h>
19 #include <linux/zpool.h>
20
21 struct zpool {
22         struct zpool_driver *driver;
23         void *pool;
24 };
25
26 static LIST_HEAD(drivers_head);
27 static DEFINE_SPINLOCK(drivers_lock);
28
29 /**
30  * zpool_register_driver() - register a zpool implementation.
31  * @driver:     driver to register
32  */
33 void zpool_register_driver(struct zpool_driver *driver)
34 {
35         spin_lock(&drivers_lock);
36         atomic_set(&driver->refcount, 0);
37         list_add(&driver->list, &drivers_head);
38         spin_unlock(&drivers_lock);
39 }
40 EXPORT_SYMBOL(zpool_register_driver);
41
42 /**
43  * zpool_unregister_driver() - unregister a zpool implementation.
44  * @driver:     driver to unregister.
45  *
46  * Module usage counting is used to prevent using a driver
47  * while/after unloading, so if this is called from module
48  * exit function, this should never fail; if called from
49  * other than the module exit function, and this returns
50  * failure, the driver is in use and must remain available.
51  */
52 int zpool_unregister_driver(struct zpool_driver *driver)
53 {
54         int ret = 0, refcount;
55
56         spin_lock(&drivers_lock);
57         refcount = atomic_read(&driver->refcount);
58         WARN_ON(refcount < 0);
59         if (refcount > 0)
60                 ret = -EBUSY;
61         else
62                 list_del(&driver->list);
63         spin_unlock(&drivers_lock);
64
65         return ret;
66 }
67 EXPORT_SYMBOL(zpool_unregister_driver);
68
69 /* this assumes @type is null-terminated. */
70 static struct zpool_driver *zpool_get_driver(const char *type)
71 {
72         struct zpool_driver *driver;
73
74         spin_lock(&drivers_lock);
75         list_for_each_entry(driver, &drivers_head, list) {
76                 if (!strcmp(driver->type, type)) {
77                         bool got = try_module_get(driver->owner);
78
79                         if (got)
80                                 atomic_inc(&driver->refcount);
81                         spin_unlock(&drivers_lock);
82                         return got ? driver : NULL;
83                 }
84         }
85
86         spin_unlock(&drivers_lock);
87         return NULL;
88 }
89
90 static void zpool_put_driver(struct zpool_driver *driver)
91 {
92         atomic_dec(&driver->refcount);
93         module_put(driver->owner);
94 }
95
96 /**
97  * zpool_has_pool() - Check if the pool driver is available
98  * @type:       The type of the zpool to check (e.g. zbud, zsmalloc)
99  *
100  * This checks if the @type pool driver is available.  This will try to load
101  * the requested module, if needed, but there is no guarantee the module will
102  * still be loaded and available immediately after calling.  If this returns
103  * true, the caller should assume the pool is available, but must be prepared
104  * to handle the @zpool_create_pool() returning failure.  However if this
105  * returns false, the caller should assume the requested pool type is not
106  * available; either the requested pool type module does not exist, or could
107  * not be loaded, and calling @zpool_create_pool() with the pool type will
108  * fail.
109  *
110  * The @type string must be null-terminated.
111  *
112  * Returns: true if @type pool is available, false if not
113  */
114 bool zpool_has_pool(char *type)
115 {
116         struct zpool_driver *driver = zpool_get_driver(type);
117
118         if (!driver) {
119                 request_module("zpool-%s", type);
120                 driver = zpool_get_driver(type);
121         }
122
123         if (!driver)
124                 return false;
125
126         zpool_put_driver(driver);
127         return true;
128 }
129 EXPORT_SYMBOL(zpool_has_pool);
130
131 /**
132  * zpool_create_pool() - Create a new zpool
133  * @type:       The type of the zpool to create (e.g. zbud, zsmalloc)
134  * @name:       The name of the zpool (e.g. zram0, zswap)
135  * @gfp:        The GFP flags to use when allocating the pool.
136  * @ops:        The optional ops callback.
137  *
138  * This creates a new zpool of the specified type.  The gfp flags will be
139  * used when allocating memory, if the implementation supports it.  If the
140  * ops param is NULL, then the created zpool will not be evictable.
141  *
142  * Implementations must guarantee this to be thread-safe.
143  *
144  * The @type and @name strings must be null-terminated.
145  *
146  * Returns: New zpool on success, NULL on failure.
147  */
148 struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp,
149                 const struct zpool_ops *ops)
150 {
151         struct zpool_driver *driver;
152         struct zpool *zpool;
153
154         pr_debug("creating pool type %s\n", type);
155
156         driver = zpool_get_driver(type);
157
158         if (!driver) {
159                 request_module("zpool-%s", type);
160                 driver = zpool_get_driver(type);
161         }
162
163         if (!driver) {
164                 pr_err("no driver for type %s\n", type);
165                 return NULL;
166         }
167
168         zpool = kmalloc(sizeof(*zpool), gfp);
169         if (!zpool) {
170                 pr_err("couldn't create zpool - out of memory\n");
171                 zpool_put_driver(driver);
172                 return NULL;
173         }
174
175         zpool->driver = driver;
176         zpool->pool = driver->create(name, gfp, ops, zpool);
177
178         if (!zpool->pool) {
179                 pr_err("couldn't create %s pool\n", type);
180                 zpool_put_driver(driver);
181                 kfree(zpool);
182                 return NULL;
183         }
184
185         pr_debug("created pool type %s\n", type);
186
187         return zpool;
188 }
189
190 /**
191  * zpool_destroy_pool() - Destroy a zpool
192  * @zpool:      The zpool to destroy.
193  *
194  * Implementations must guarantee this to be thread-safe,
195  * however only when destroying different pools.  The same
196  * pool should only be destroyed once, and should not be used
197  * after it is destroyed.
198  *
199  * This destroys an existing zpool.  The zpool should not be in use.
200  */
201 void zpool_destroy_pool(struct zpool *zpool)
202 {
203         pr_debug("destroying pool type %s\n", zpool->driver->type);
204
205         zpool->driver->destroy(zpool->pool);
206         zpool_put_driver(zpool->driver);
207         kfree(zpool);
208 }
209
210 /**
211  * zpool_get_type() - Get the type of the zpool
212  * @zpool:      The zpool to check
213  *
214  * This returns the type of the pool.
215  *
216  * Implementations must guarantee this to be thread-safe.
217  *
218  * Returns: The type of zpool.
219  */
220 const char *zpool_get_type(struct zpool *zpool)
221 {
222         return zpool->driver->type;
223 }
224
225 /**
226  * zpool_malloc_support_movable() - Check if the zpool supports
227  *      allocating movable memory
228  * @zpool:      The zpool to check
229  *
230  * This returns if the zpool supports allocating movable memory.
231  *
232  * Implementations must guarantee this to be thread-safe.
233  *
234  * Returns: true if the zpool supports allocating movable memory, false if not
235  */
236 bool zpool_malloc_support_movable(struct zpool *zpool)
237 {
238         return zpool->driver->malloc_support_movable;
239 }
240
241 /**
242  * zpool_malloc() - Allocate memory
243  * @zpool:      The zpool to allocate from.
244  * @size:       The amount of memory to allocate.
245  * @gfp:        The GFP flags to use when allocating memory.
246  * @handle:     Pointer to the handle to set
247  *
248  * This allocates the requested amount of memory from the pool.
249  * The gfp flags will be used when allocating memory, if the
250  * implementation supports it.  The provided @handle will be
251  * set to the allocated object handle.
252  *
253  * Implementations must guarantee this to be thread-safe.
254  *
255  * Returns: 0 on success, negative value on error.
256  */
257 int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
258                         unsigned long *handle)
259 {
260         return zpool->driver->malloc(zpool->pool, size, gfp, handle);
261 }
262
263 /**
264  * zpool_free() - Free previously allocated memory
265  * @zpool:      The zpool that allocated the memory.
266  * @handle:     The handle to the memory to free.
267  *
268  * This frees previously allocated memory.  This does not guarantee
269  * that the pool will actually free memory, only that the memory
270  * in the pool will become available for use by the pool.
271  *
272  * Implementations must guarantee this to be thread-safe,
273  * however only when freeing different handles.  The same
274  * handle should only be freed once, and should not be used
275  * after freeing.
276  */
277 void zpool_free(struct zpool *zpool, unsigned long handle)
278 {
279         zpool->driver->free(zpool->pool, handle);
280 }
281
282 /**
283  * zpool_shrink() - Shrink the pool size
284  * @zpool:      The zpool to shrink.
285  * @pages:      The number of pages to shrink the pool.
286  * @reclaimed:  The number of pages successfully evicted.
287  *
288  * This attempts to shrink the actual memory size of the pool
289  * by evicting currently used handle(s).  If the pool was
290  * created with no zpool_ops, or the evict call fails for any
291  * of the handles, this will fail.  If non-NULL, the @reclaimed
292  * parameter will be set to the number of pages reclaimed,
293  * which may be more than the number of pages requested.
294  *
295  * Implementations must guarantee this to be thread-safe.
296  *
297  * Returns: 0 on success, negative value on error/failure.
298  */
299 int zpool_shrink(struct zpool *zpool, unsigned int pages,
300                         unsigned int *reclaimed)
301 {
302         return zpool->driver->shrink ?
303                zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL;
304 }
305
306 /**
307  * zpool_map_handle() - Map a previously allocated handle into memory
308  * @zpool:      The zpool that the handle was allocated from
309  * @handle:     The handle to map
310  * @mapmode:    How the memory should be mapped
311  *
312  * This maps a previously allocated handle into memory.  The @mapmode
313  * param indicates to the implementation how the memory will be
314  * used, i.e. read-only, write-only, read-write.  If the
315  * implementation does not support it, the memory will be treated
316  * as read-write.
317  *
318  * This may hold locks, disable interrupts, and/or preemption,
319  * and the zpool_unmap_handle() must be called to undo those
320  * actions.  The code that uses the mapped handle should complete
321  * its operations on the mapped handle memory quickly and unmap
322  * as soon as possible.  As the implementation may use per-cpu
323  * data, multiple handles should not be mapped concurrently on
324  * any cpu.
325  *
326  * Returns: A pointer to the handle's mapped memory area.
327  */
328 void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
329                         enum zpool_mapmode mapmode)
330 {
331         return zpool->driver->map(zpool->pool, handle, mapmode);
332 }
333
334 /**
335  * zpool_unmap_handle() - Unmap a previously mapped handle
336  * @zpool:      The zpool that the handle was allocated from
337  * @handle:     The handle to unmap
338  *
339  * This unmaps a previously mapped handle.  Any locks or other
340  * actions that the implementation took in zpool_map_handle()
341  * will be undone here.  The memory area returned from
342  * zpool_map_handle() should no longer be used after this.
343  */
344 void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
345 {
346         zpool->driver->unmap(zpool->pool, handle);
347 }
348
349 /**
350  * zpool_get_total_size() - The total size of the pool
351  * @zpool:      The zpool to check
352  *
353  * This returns the total size in bytes of the pool.
354  *
355  * Returns: Total size of the zpool in bytes.
356  */
357 u64 zpool_get_total_size(struct zpool *zpool)
358 {
359         return zpool->driver->total_size(zpool->pool);
360 }
361
362 /**
363  * zpool_evictable() - Test if zpool is potentially evictable
364  * @zpool:      The zpool to test
365  *
366  * Zpool is only potentially evictable when it's created with struct
367  * zpool_ops.evict and its driver implements struct zpool_driver.shrink.
368  *
369  * However, it doesn't necessarily mean driver will use zpool_ops.evict
370  * in its implementation of zpool_driver.shrink. It could do internal
371  * defragmentation instead.
372  *
373  * Returns: true if potentially evictable; false otherwise.
374  */
375 bool zpool_evictable(struct zpool *zpool)
376 {
377         return zpool->driver->shrink;
378 }
379
380 /**
381  * zpool_can_sleep_mapped - Test if zpool can sleep when do mapped.
382  * @zpool:      The zpool to test
383  *
384  * Some allocators enter non-preemptible context in ->map() callback (e.g.
385  * disable pagefaults) and exit that context in ->unmap(), which limits what
386  * we can do with the mapped object. For instance, we cannot wait for
387  * asynchronous crypto API to decompress such an object or take mutexes
388  * since those will call into the scheduler. This function tells us whether
389  * we use such an allocator.
390  *
391  * Returns: true if zpool can sleep; false otherwise.
392  */
393 bool zpool_can_sleep_mapped(struct zpool *zpool)
394 {
395         return zpool->driver->sleep_mapped;
396 }
397
398 MODULE_LICENSE("GPL");
399 MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
400 MODULE_DESCRIPTION("Common API for compressed memory storage");