x86/pti: Filter at vma->vm_page_prot population
[platform/kernel/linux-rpi.git] / mm / zpool.c
1 /*
2  * zpool memory storage api
3  *
4  * Copyright (C) 2014 Dan Streetman
5  *
6  * This is a common frontend for memory storage pool implementations.
7  * Typically, this is used to store compressed memory.
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/list.h>
13 #include <linux/types.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/module.h>
18 #include <linux/zpool.h>
19
20 struct zpool {
21         struct zpool_driver *driver;
22         void *pool;
23         const struct zpool_ops *ops;
24         bool evictable;
25
26         struct list_head list;
27 };
28
29 static LIST_HEAD(drivers_head);
30 static DEFINE_SPINLOCK(drivers_lock);
31
32 static LIST_HEAD(pools_head);
33 static DEFINE_SPINLOCK(pools_lock);
34
35 /**
36  * zpool_register_driver() - register a zpool implementation.
37  * @driver:     driver to register
38  */
39 void zpool_register_driver(struct zpool_driver *driver)
40 {
41         spin_lock(&drivers_lock);
42         atomic_set(&driver->refcount, 0);
43         list_add(&driver->list, &drivers_head);
44         spin_unlock(&drivers_lock);
45 }
46 EXPORT_SYMBOL(zpool_register_driver);
47
48 /**
49  * zpool_unregister_driver() - unregister a zpool implementation.
50  * @driver:     driver to unregister.
51  *
52  * Module usage counting is used to prevent using a driver
53  * while/after unloading, so if this is called from module
54  * exit function, this should never fail; if called from
55  * other than the module exit function, and this returns
56  * failure, the driver is in use and must remain available.
57  */
58 int zpool_unregister_driver(struct zpool_driver *driver)
59 {
60         int ret = 0, refcount;
61
62         spin_lock(&drivers_lock);
63         refcount = atomic_read(&driver->refcount);
64         WARN_ON(refcount < 0);
65         if (refcount > 0)
66                 ret = -EBUSY;
67         else
68                 list_del(&driver->list);
69         spin_unlock(&drivers_lock);
70
71         return ret;
72 }
73 EXPORT_SYMBOL(zpool_unregister_driver);
74
75 /* this assumes @type is null-terminated. */
76 static struct zpool_driver *zpool_get_driver(const char *type)
77 {
78         struct zpool_driver *driver;
79
80         spin_lock(&drivers_lock);
81         list_for_each_entry(driver, &drivers_head, list) {
82                 if (!strcmp(driver->type, type)) {
83                         bool got = try_module_get(driver->owner);
84
85                         if (got)
86                                 atomic_inc(&driver->refcount);
87                         spin_unlock(&drivers_lock);
88                         return got ? driver : NULL;
89                 }
90         }
91
92         spin_unlock(&drivers_lock);
93         return NULL;
94 }
95
96 static void zpool_put_driver(struct zpool_driver *driver)
97 {
98         atomic_dec(&driver->refcount);
99         module_put(driver->owner);
100 }
101
102 /**
103  * zpool_has_pool() - Check if the pool driver is available
104  * @type:       The type of the zpool to check (e.g. zbud, zsmalloc)
105  *
106  * This checks if the @type pool driver is available.  This will try to load
107  * the requested module, if needed, but there is no guarantee the module will
108  * still be loaded and available immediately after calling.  If this returns
109  * true, the caller should assume the pool is available, but must be prepared
110  * to handle the @zpool_create_pool() returning failure.  However if this
111  * returns false, the caller should assume the requested pool type is not
112  * available; either the requested pool type module does not exist, or could
113  * not be loaded, and calling @zpool_create_pool() with the pool type will
114  * fail.
115  *
116  * The @type string must be null-terminated.
117  *
118  * Returns: true if @type pool is available, false if not
119  */
120 bool zpool_has_pool(char *type)
121 {
122         struct zpool_driver *driver = zpool_get_driver(type);
123
124         if (!driver) {
125                 request_module("zpool-%s", type);
126                 driver = zpool_get_driver(type);
127         }
128
129         if (!driver)
130                 return false;
131
132         zpool_put_driver(driver);
133         return true;
134 }
135 EXPORT_SYMBOL(zpool_has_pool);
136
137 /**
138  * zpool_create_pool() - Create a new zpool
139  * @type:       The type of the zpool to create (e.g. zbud, zsmalloc)
140  * @name:       The name of the zpool (e.g. zram0, zswap)
141  * @gfp:        The GFP flags to use when allocating the pool.
142  * @ops:        The optional ops callback.
143  *
144  * This creates a new zpool of the specified type.  The gfp flags will be
145  * used when allocating memory, if the implementation supports it.  If the
146  * ops param is NULL, then the created zpool will not be evictable.
147  *
148  * Implementations must guarantee this to be thread-safe.
149  *
150  * The @type and @name strings must be null-terminated.
151  *
152  * Returns: New zpool on success, NULL on failure.
153  */
154 struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp,
155                 const struct zpool_ops *ops)
156 {
157         struct zpool_driver *driver;
158         struct zpool *zpool;
159
160         pr_debug("creating pool type %s\n", type);
161
162         driver = zpool_get_driver(type);
163
164         if (!driver) {
165                 request_module("zpool-%s", type);
166                 driver = zpool_get_driver(type);
167         }
168
169         if (!driver) {
170                 pr_err("no driver for type %s\n", type);
171                 return NULL;
172         }
173
174         zpool = kmalloc(sizeof(*zpool), gfp);
175         if (!zpool) {
176                 pr_err("couldn't create zpool - out of memory\n");
177                 zpool_put_driver(driver);
178                 return NULL;
179         }
180
181         zpool->driver = driver;
182         zpool->pool = driver->create(name, gfp, ops, zpool);
183         zpool->ops = ops;
184         zpool->evictable = driver->shrink && ops && ops->evict;
185
186         if (!zpool->pool) {
187                 pr_err("couldn't create %s pool\n", type);
188                 zpool_put_driver(driver);
189                 kfree(zpool);
190                 return NULL;
191         }
192
193         pr_debug("created pool type %s\n", type);
194
195         spin_lock(&pools_lock);
196         list_add(&zpool->list, &pools_head);
197         spin_unlock(&pools_lock);
198
199         return zpool;
200 }
201
202 /**
203  * zpool_destroy_pool() - Destroy a zpool
204  * @zpool:      The zpool to destroy.
205  *
206  * Implementations must guarantee this to be thread-safe,
207  * however only when destroying different pools.  The same
208  * pool should only be destroyed once, and should not be used
209  * after it is destroyed.
210  *
211  * This destroys an existing zpool.  The zpool should not be in use.
212  */
213 void zpool_destroy_pool(struct zpool *zpool)
214 {
215         pr_debug("destroying pool type %s\n", zpool->driver->type);
216
217         spin_lock(&pools_lock);
218         list_del(&zpool->list);
219         spin_unlock(&pools_lock);
220         zpool->driver->destroy(zpool->pool);
221         zpool_put_driver(zpool->driver);
222         kfree(zpool);
223 }
224
225 /**
226  * zpool_get_type() - Get the type of the zpool
227  * @zpool:      The zpool to check
228  *
229  * This returns the type of the pool.
230  *
231  * Implementations must guarantee this to be thread-safe.
232  *
233  * Returns: The type of zpool.
234  */
235 const char *zpool_get_type(struct zpool *zpool)
236 {
237         return zpool->driver->type;
238 }
239
240 /**
241  * zpool_malloc() - Allocate memory
242  * @zpool:      The zpool to allocate from.
243  * @size:       The amount of memory to allocate.
244  * @gfp:        The GFP flags to use when allocating memory.
245  * @handle:     Pointer to the handle to set
246  *
247  * This allocates the requested amount of memory from the pool.
248  * The gfp flags will be used when allocating memory, if the
249  * implementation supports it.  The provided @handle will be
250  * set to the allocated object handle.
251  *
252  * Implementations must guarantee this to be thread-safe.
253  *
254  * Returns: 0 on success, negative value on error.
255  */
256 int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
257                         unsigned long *handle)
258 {
259         return zpool->driver->malloc(zpool->pool, size, gfp, handle);
260 }
261
262 /**
263  * zpool_free() - Free previously allocated memory
264  * @zpool:      The zpool that allocated the memory.
265  * @handle:     The handle to the memory to free.
266  *
267  * This frees previously allocated memory.  This does not guarantee
268  * that the pool will actually free memory, only that the memory
269  * in the pool will become available for use by the pool.
270  *
271  * Implementations must guarantee this to be thread-safe,
272  * however only when freeing different handles.  The same
273  * handle should only be freed once, and should not be used
274  * after freeing.
275  */
276 void zpool_free(struct zpool *zpool, unsigned long handle)
277 {
278         zpool->driver->free(zpool->pool, handle);
279 }
280
281 /**
282  * zpool_shrink() - Shrink the pool size
283  * @zpool:      The zpool to shrink.
284  * @pages:      The number of pages to shrink the pool.
285  * @reclaimed:  The number of pages successfully evicted.
286  *
287  * This attempts to shrink the actual memory size of the pool
288  * by evicting currently used handle(s).  If the pool was
289  * created with no zpool_ops, or the evict call fails for any
290  * of the handles, this will fail.  If non-NULL, the @reclaimed
291  * parameter will be set to the number of pages reclaimed,
292  * which may be more than the number of pages requested.
293  *
294  * Implementations must guarantee this to be thread-safe.
295  *
296  * Returns: 0 on success, negative value on error/failure.
297  */
298 int zpool_shrink(struct zpool *zpool, unsigned int pages,
299                         unsigned int *reclaimed)
300 {
301         return zpool->driver->shrink ?
302                zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL;
303 }
304
305 /**
306  * zpool_map_handle() - Map a previously allocated handle into memory
307  * @zpool:      The zpool that the handle was allocated from
308  * @handle:     The handle to map
309  * @mapmode:    How the memory should be mapped
310  *
311  * This maps a previously allocated handle into memory.  The @mapmode
312  * param indicates to the implementation how the memory will be
313  * used, i.e. read-only, write-only, read-write.  If the
314  * implementation does not support it, the memory will be treated
315  * as read-write.
316  *
317  * This may hold locks, disable interrupts, and/or preemption,
318  * and the zpool_unmap_handle() must be called to undo those
319  * actions.  The code that uses the mapped handle should complete
320  * its operatons on the mapped handle memory quickly and unmap
321  * as soon as possible.  As the implementation may use per-cpu
322  * data, multiple handles should not be mapped concurrently on
323  * any cpu.
324  *
325  * Returns: A pointer to the handle's mapped memory area.
326  */
327 void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
328                         enum zpool_mapmode mapmode)
329 {
330         return zpool->driver->map(zpool->pool, handle, mapmode);
331 }
332
333 /**
334  * zpool_unmap_handle() - Unmap a previously mapped handle
335  * @zpool:      The zpool that the handle was allocated from
336  * @handle:     The handle to unmap
337  *
338  * This unmaps a previously mapped handle.  Any locks or other
339  * actions that the implementation took in zpool_map_handle()
340  * will be undone here.  The memory area returned from
341  * zpool_map_handle() should no longer be used after this.
342  */
343 void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
344 {
345         zpool->driver->unmap(zpool->pool, handle);
346 }
347
348 /**
349  * zpool_get_total_size() - The total size of the pool
350  * @zpool:      The zpool to check
351  *
352  * This returns the total size in bytes of the pool.
353  *
354  * Returns: Total size of the zpool in bytes.
355  */
356 u64 zpool_get_total_size(struct zpool *zpool)
357 {
358         return zpool->driver->total_size(zpool->pool);
359 }
360
361 /**
362  * zpool_evictable() - Test if zpool is potentially evictable
363  * @zpool:      The zpool to test
364  *
365  * Zpool is only potentially evictable when it's created with struct
366  * zpool_ops.evict and its driver implements struct zpool_driver.shrink.
367  *
368  * However, it doesn't necessarily mean driver will use zpool_ops.evict
369  * in its implementation of zpool_driver.shrink. It could do internal
370  * defragmentation instead.
371  *
372  * Returns: true if potentially evictable; false otherwise.
373  */
374 bool zpool_evictable(struct zpool *zpool)
375 {
376         return zpool->evictable;
377 }
378
379 MODULE_LICENSE("GPL");
380 MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
381 MODULE_DESCRIPTION("Common API for compressed memory storage");