Merge tag 'ceph-for-5.2-rc1' of git://github.com/ceph/ceph-client
[platform/kernel/linux-rpi.git] / mm / z3fold.c
1 /*
2  * z3fold.c
3  *
4  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
5  * Copyright (C) 2016, Sony Mobile Communications Inc.
6  *
7  * This implementation is based on zbud written by Seth Jennings.
8  *
9  * z3fold is an special purpose allocator for storing compressed pages. It
10  * can store up to three compressed pages per page which improves the
11  * compression ratio of zbud while retaining its main concepts (e. g. always
12  * storing an integral number of objects per page) and simplicity.
13  * It still has simple and deterministic reclaim properties that make it
14  * preferable to a higher density approach (with no requirement on integral
15  * number of object per page) when reclaim is used.
16  *
17  * As in zbud, pages are divided into "chunks".  The size of the chunks is
18  * fixed at compile time and is determined by NCHUNKS_ORDER below.
19  *
20  * z3fold doesn't export any API and is meant to be used via zpool API.
21  */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/atomic.h>
26 #include <linux/sched.h>
27 #include <linux/cpumask.h>
28 #include <linux/dcache.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/fs.h>
39 #include <linux/preempt.h>
40 #include <linux/workqueue.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/zpool.h>
44
45 /*
46  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
47  * adjusting internal fragmentation.  It also determines the number of
48  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
49  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
50  * in the beginning of an allocated page are occupied by z3fold header, so
51  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
52  * which shows the max number of free chunks in z3fold page, also there will
53  * be 63, or 62, respectively, freelists per pool.
54  */
55 #define NCHUNKS_ORDER   6
56
57 #define CHUNK_SHIFT     (PAGE_SHIFT - NCHUNKS_ORDER)
58 #define CHUNK_SIZE      (1 << CHUNK_SHIFT)
59 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
60 #define ZHDR_CHUNKS     (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
61 #define TOTAL_CHUNKS    (PAGE_SIZE >> CHUNK_SHIFT)
62 #define NCHUNKS         ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
63
64 #define BUDDY_MASK      (0x3)
65 #define BUDDY_SHIFT     2
66 #define SLOTS_ALIGN     (0x40)
67
68 /*****************
69  * Structures
70 *****************/
71 struct z3fold_pool;
72 struct z3fold_ops {
73         int (*evict)(struct z3fold_pool *pool, unsigned long handle);
74 };
75
76 enum buddy {
77         HEADLESS = 0,
78         FIRST,
79         MIDDLE,
80         LAST,
81         BUDDIES_MAX = LAST
82 };
83
84 struct z3fold_buddy_slots {
85         /*
86          * we are using BUDDY_MASK in handle_to_buddy etc. so there should
87          * be enough slots to hold all possible variants
88          */
89         unsigned long slot[BUDDY_MASK + 1];
90         unsigned long pool; /* back link + flags */
91 };
92 #define HANDLE_FLAG_MASK        (0x03)
93
94 /*
95  * struct z3fold_header - z3fold page metadata occupying first chunks of each
96  *                      z3fold page, except for HEADLESS pages
97  * @buddy:              links the z3fold page into the relevant list in the
98  *                      pool
99  * @page_lock:          per-page lock
100  * @refcount:           reference count for the z3fold page
101  * @work:               work_struct for page layout optimization
102  * @slots:              pointer to the structure holding buddy slots
103  * @cpu:                CPU which this page "belongs" to
104  * @first_chunks:       the size of the first buddy in chunks, 0 if free
105  * @middle_chunks:      the size of the middle buddy in chunks, 0 if free
106  * @last_chunks:        the size of the last buddy in chunks, 0 if free
107  * @first_num:          the starting number (for the first handle)
108  * @mapped_count:       the number of objects currently mapped
109  */
110 struct z3fold_header {
111         struct list_head buddy;
112         spinlock_t page_lock;
113         struct kref refcount;
114         struct work_struct work;
115         struct z3fold_buddy_slots *slots;
116         short cpu;
117         unsigned short first_chunks;
118         unsigned short middle_chunks;
119         unsigned short last_chunks;
120         unsigned short start_middle;
121         unsigned short first_num:2;
122         unsigned short mapped_count:2;
123 };
124
125 /**
126  * struct z3fold_pool - stores metadata for each z3fold pool
127  * @name:       pool name
128  * @lock:       protects pool unbuddied/lru lists
129  * @stale_lock: protects pool stale page list
130  * @unbuddied:  per-cpu array of lists tracking z3fold pages that contain 2-
131  *              buddies; the list each z3fold page is added to depends on
132  *              the size of its free region.
133  * @lru:        list tracking the z3fold pages in LRU order by most recently
134  *              added buddy.
135  * @stale:      list of pages marked for freeing
136  * @pages_nr:   number of z3fold pages in the pool.
137  * @c_handle:   cache for z3fold_buddy_slots allocation
138  * @ops:        pointer to a structure of user defined operations specified at
139  *              pool creation time.
140  * @compact_wq: workqueue for page layout background optimization
141  * @release_wq: workqueue for safe page release
142  * @work:       work_struct for safe page release
143  * @inode:      inode for z3fold pseudo filesystem
144  *
145  * This structure is allocated at pool creation time and maintains metadata
146  * pertaining to a particular z3fold pool.
147  */
148 struct z3fold_pool {
149         const char *name;
150         spinlock_t lock;
151         spinlock_t stale_lock;
152         struct list_head *unbuddied;
153         struct list_head lru;
154         struct list_head stale;
155         atomic64_t pages_nr;
156         struct kmem_cache *c_handle;
157         const struct z3fold_ops *ops;
158         struct zpool *zpool;
159         const struct zpool_ops *zpool_ops;
160         struct workqueue_struct *compact_wq;
161         struct workqueue_struct *release_wq;
162         struct work_struct work;
163         struct inode *inode;
164 };
165
166 /*
167  * Internal z3fold page flags
168  */
169 enum z3fold_page_flags {
170         PAGE_HEADLESS = 0,
171         MIDDLE_CHUNK_MAPPED,
172         NEEDS_COMPACTING,
173         PAGE_STALE,
174         PAGE_CLAIMED, /* by either reclaim or free */
175 };
176
177 /*****************
178  * Helpers
179 *****************/
180
181 /* Converts an allocation size in bytes to size in z3fold chunks */
182 static int size_to_chunks(size_t size)
183 {
184         return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
185 }
186
187 #define for_each_unbuddied_list(_iter, _begin) \
188         for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
189
190 static void compact_page_work(struct work_struct *w);
191
192 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool)
193 {
194         struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle,
195                                                         GFP_KERNEL);
196
197         if (slots) {
198                 memset(slots->slot, 0, sizeof(slots->slot));
199                 slots->pool = (unsigned long)pool;
200         }
201
202         return slots;
203 }
204
205 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
206 {
207         return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
208 }
209
210 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
211 {
212         return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
213 }
214
215 static inline void free_handle(unsigned long handle)
216 {
217         struct z3fold_buddy_slots *slots;
218         int i;
219         bool is_free;
220
221         if (handle & (1 << PAGE_HEADLESS))
222                 return;
223
224         WARN_ON(*(unsigned long *)handle == 0);
225         *(unsigned long *)handle = 0;
226         slots = handle_to_slots(handle);
227         is_free = true;
228         for (i = 0; i <= BUDDY_MASK; i++) {
229                 if (slots->slot[i]) {
230                         is_free = false;
231                         break;
232                 }
233         }
234
235         if (is_free) {
236                 struct z3fold_pool *pool = slots_to_pool(slots);
237
238                 kmem_cache_free(pool->c_handle, slots);
239         }
240 }
241
242 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type,
243                                 int flags, const char *dev_name, void *data)
244 {
245         static const struct dentry_operations ops = {
246                 .d_dname = simple_dname,
247         };
248
249         return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33);
250 }
251
252 static struct file_system_type z3fold_fs = {
253         .name           = "z3fold",
254         .mount          = z3fold_do_mount,
255         .kill_sb        = kill_anon_super,
256 };
257
258 static struct vfsmount *z3fold_mnt;
259 static int z3fold_mount(void)
260 {
261         int ret = 0;
262
263         z3fold_mnt = kern_mount(&z3fold_fs);
264         if (IS_ERR(z3fold_mnt))
265                 ret = PTR_ERR(z3fold_mnt);
266
267         return ret;
268 }
269
270 static void z3fold_unmount(void)
271 {
272         kern_unmount(z3fold_mnt);
273 }
274
275 static const struct address_space_operations z3fold_aops;
276 static int z3fold_register_migration(struct z3fold_pool *pool)
277 {
278         pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
279         if (IS_ERR(pool->inode)) {
280                 pool->inode = NULL;
281                 return 1;
282         }
283
284         pool->inode->i_mapping->private_data = pool;
285         pool->inode->i_mapping->a_ops = &z3fold_aops;
286         return 0;
287 }
288
289 static void z3fold_unregister_migration(struct z3fold_pool *pool)
290 {
291         if (pool->inode)
292                 iput(pool->inode);
293  }
294
295 /* Initializes the z3fold header of a newly allocated z3fold page */
296 static struct z3fold_header *init_z3fold_page(struct page *page,
297                                         struct z3fold_pool *pool)
298 {
299         struct z3fold_header *zhdr = page_address(page);
300         struct z3fold_buddy_slots *slots = alloc_slots(pool);
301
302         if (!slots)
303                 return NULL;
304
305         INIT_LIST_HEAD(&page->lru);
306         clear_bit(PAGE_HEADLESS, &page->private);
307         clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
308         clear_bit(NEEDS_COMPACTING, &page->private);
309         clear_bit(PAGE_STALE, &page->private);
310         clear_bit(PAGE_CLAIMED, &page->private);
311
312         spin_lock_init(&zhdr->page_lock);
313         kref_init(&zhdr->refcount);
314         zhdr->first_chunks = 0;
315         zhdr->middle_chunks = 0;
316         zhdr->last_chunks = 0;
317         zhdr->first_num = 0;
318         zhdr->start_middle = 0;
319         zhdr->cpu = -1;
320         zhdr->slots = slots;
321         INIT_LIST_HEAD(&zhdr->buddy);
322         INIT_WORK(&zhdr->work, compact_page_work);
323         return zhdr;
324 }
325
326 /* Resets the struct page fields and frees the page */
327 static void free_z3fold_page(struct page *page, bool headless)
328 {
329         if (!headless) {
330                 lock_page(page);
331                 __ClearPageMovable(page);
332                 unlock_page(page);
333         }
334         ClearPagePrivate(page);
335         __free_page(page);
336 }
337
338 /* Lock a z3fold page */
339 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
340 {
341         spin_lock(&zhdr->page_lock);
342 }
343
344 /* Try to lock a z3fold page */
345 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
346 {
347         return spin_trylock(&zhdr->page_lock);
348 }
349
350 /* Unlock a z3fold page */
351 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
352 {
353         spin_unlock(&zhdr->page_lock);
354 }
355
356 /* Helper function to build the index */
357 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
358 {
359         return (bud + zhdr->first_num) & BUDDY_MASK;
360 }
361
362 /*
363  * Encodes the handle of a particular buddy within a z3fold page
364  * Pool lock should be held as this function accesses first_num
365  */
366 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
367 {
368         struct z3fold_buddy_slots *slots;
369         unsigned long h = (unsigned long)zhdr;
370         int idx = 0;
371
372         /*
373          * For a headless page, its handle is its pointer with the extra
374          * PAGE_HEADLESS bit set
375          */
376         if (bud == HEADLESS)
377                 return h | (1 << PAGE_HEADLESS);
378
379         /* otherwise, return pointer to encoded handle */
380         idx = __idx(zhdr, bud);
381         h += idx;
382         if (bud == LAST)
383                 h |= (zhdr->last_chunks << BUDDY_SHIFT);
384
385         slots = zhdr->slots;
386         slots->slot[idx] = h;
387         return (unsigned long)&slots->slot[idx];
388 }
389
390 /* Returns the z3fold page where a given handle is stored */
391 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
392 {
393         unsigned long addr = h;
394
395         if (!(addr & (1 << PAGE_HEADLESS)))
396                 addr = *(unsigned long *)h;
397
398         return (struct z3fold_header *)(addr & PAGE_MASK);
399 }
400
401 /* only for LAST bud, returns zero otherwise */
402 static unsigned short handle_to_chunks(unsigned long handle)
403 {
404         unsigned long addr = *(unsigned long *)handle;
405
406         return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
407 }
408
409 /*
410  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
411  *  but that doesn't matter. because the masking will result in the
412  *  correct buddy number.
413  */
414 static enum buddy handle_to_buddy(unsigned long handle)
415 {
416         struct z3fold_header *zhdr;
417         unsigned long addr;
418
419         WARN_ON(handle & (1 << PAGE_HEADLESS));
420         addr = *(unsigned long *)handle;
421         zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
422         return (addr - zhdr->first_num) & BUDDY_MASK;
423 }
424
425 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
426 {
427         return slots_to_pool(zhdr->slots);
428 }
429
430 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
431 {
432         struct page *page = virt_to_page(zhdr);
433         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
434
435         WARN_ON(!list_empty(&zhdr->buddy));
436         set_bit(PAGE_STALE, &page->private);
437         clear_bit(NEEDS_COMPACTING, &page->private);
438         spin_lock(&pool->lock);
439         if (!list_empty(&page->lru))
440                 list_del_init(&page->lru);
441         spin_unlock(&pool->lock);
442         if (locked)
443                 z3fold_page_unlock(zhdr);
444         spin_lock(&pool->stale_lock);
445         list_add(&zhdr->buddy, &pool->stale);
446         queue_work(pool->release_wq, &pool->work);
447         spin_unlock(&pool->stale_lock);
448 }
449
450 static void __attribute__((__unused__))
451                         release_z3fold_page(struct kref *ref)
452 {
453         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
454                                                 refcount);
455         __release_z3fold_page(zhdr, false);
456 }
457
458 static void release_z3fold_page_locked(struct kref *ref)
459 {
460         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
461                                                 refcount);
462         WARN_ON(z3fold_page_trylock(zhdr));
463         __release_z3fold_page(zhdr, true);
464 }
465
466 static void release_z3fold_page_locked_list(struct kref *ref)
467 {
468         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
469                                                refcount);
470         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
471         spin_lock(&pool->lock);
472         list_del_init(&zhdr->buddy);
473         spin_unlock(&pool->lock);
474
475         WARN_ON(z3fold_page_trylock(zhdr));
476         __release_z3fold_page(zhdr, true);
477 }
478
479 static void free_pages_work(struct work_struct *w)
480 {
481         struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
482
483         spin_lock(&pool->stale_lock);
484         while (!list_empty(&pool->stale)) {
485                 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
486                                                 struct z3fold_header, buddy);
487                 struct page *page = virt_to_page(zhdr);
488
489                 list_del(&zhdr->buddy);
490                 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
491                         continue;
492                 spin_unlock(&pool->stale_lock);
493                 cancel_work_sync(&zhdr->work);
494                 free_z3fold_page(page, false);
495                 cond_resched();
496                 spin_lock(&pool->stale_lock);
497         }
498         spin_unlock(&pool->stale_lock);
499 }
500
501 /*
502  * Returns the number of free chunks in a z3fold page.
503  * NB: can't be used with HEADLESS pages.
504  */
505 static int num_free_chunks(struct z3fold_header *zhdr)
506 {
507         int nfree;
508         /*
509          * If there is a middle object, pick up the bigger free space
510          * either before or after it. Otherwise just subtract the number
511          * of chunks occupied by the first and the last objects.
512          */
513         if (zhdr->middle_chunks != 0) {
514                 int nfree_before = zhdr->first_chunks ?
515                         0 : zhdr->start_middle - ZHDR_CHUNKS;
516                 int nfree_after = zhdr->last_chunks ?
517                         0 : TOTAL_CHUNKS -
518                                 (zhdr->start_middle + zhdr->middle_chunks);
519                 nfree = max(nfree_before, nfree_after);
520         } else
521                 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
522         return nfree;
523 }
524
525 /* Add to the appropriate unbuddied list */
526 static inline void add_to_unbuddied(struct z3fold_pool *pool,
527                                 struct z3fold_header *zhdr)
528 {
529         if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
530                         zhdr->middle_chunks == 0) {
531                 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
532
533                 int freechunks = num_free_chunks(zhdr);
534                 spin_lock(&pool->lock);
535                 list_add(&zhdr->buddy, &unbuddied[freechunks]);
536                 spin_unlock(&pool->lock);
537                 zhdr->cpu = smp_processor_id();
538                 put_cpu_ptr(pool->unbuddied);
539         }
540 }
541
542 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
543                                 unsigned short dst_chunk)
544 {
545         void *beg = zhdr;
546         return memmove(beg + (dst_chunk << CHUNK_SHIFT),
547                        beg + (zhdr->start_middle << CHUNK_SHIFT),
548                        zhdr->middle_chunks << CHUNK_SHIFT);
549 }
550
551 #define BIG_CHUNK_GAP   3
552 /* Has to be called with lock held */
553 static int z3fold_compact_page(struct z3fold_header *zhdr)
554 {
555         struct page *page = virt_to_page(zhdr);
556
557         if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
558                 return 0; /* can't move middle chunk, it's used */
559
560         if (unlikely(PageIsolated(page)))
561                 return 0;
562
563         if (zhdr->middle_chunks == 0)
564                 return 0; /* nothing to compact */
565
566         if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
567                 /* move to the beginning */
568                 mchunk_memmove(zhdr, ZHDR_CHUNKS);
569                 zhdr->first_chunks = zhdr->middle_chunks;
570                 zhdr->middle_chunks = 0;
571                 zhdr->start_middle = 0;
572                 zhdr->first_num++;
573                 return 1;
574         }
575
576         /*
577          * moving data is expensive, so let's only do that if
578          * there's substantial gain (at least BIG_CHUNK_GAP chunks)
579          */
580         if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
581             zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
582                         BIG_CHUNK_GAP) {
583                 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
584                 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
585                 return 1;
586         } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
587                    TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
588                                         + zhdr->middle_chunks) >=
589                         BIG_CHUNK_GAP) {
590                 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
591                         zhdr->middle_chunks;
592                 mchunk_memmove(zhdr, new_start);
593                 zhdr->start_middle = new_start;
594                 return 1;
595         }
596
597         return 0;
598 }
599
600 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
601 {
602         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
603         struct page *page;
604
605         page = virt_to_page(zhdr);
606         if (locked)
607                 WARN_ON(z3fold_page_trylock(zhdr));
608         else
609                 z3fold_page_lock(zhdr);
610         if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
611                 z3fold_page_unlock(zhdr);
612                 return;
613         }
614         spin_lock(&pool->lock);
615         list_del_init(&zhdr->buddy);
616         spin_unlock(&pool->lock);
617
618         if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
619                 atomic64_dec(&pool->pages_nr);
620                 return;
621         }
622
623         if (unlikely(PageIsolated(page) ||
624                      test_bit(PAGE_STALE, &page->private))) {
625                 z3fold_page_unlock(zhdr);
626                 return;
627         }
628
629         z3fold_compact_page(zhdr);
630         add_to_unbuddied(pool, zhdr);
631         z3fold_page_unlock(zhdr);
632 }
633
634 static void compact_page_work(struct work_struct *w)
635 {
636         struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
637                                                 work);
638
639         do_compact_page(zhdr, false);
640 }
641
642 /* returns _locked_ z3fold page header or NULL */
643 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
644                                                 size_t size, bool can_sleep)
645 {
646         struct z3fold_header *zhdr = NULL;
647         struct page *page;
648         struct list_head *unbuddied;
649         int chunks = size_to_chunks(size), i;
650
651 lookup:
652         /* First, try to find an unbuddied z3fold page. */
653         unbuddied = get_cpu_ptr(pool->unbuddied);
654         for_each_unbuddied_list(i, chunks) {
655                 struct list_head *l = &unbuddied[i];
656
657                 zhdr = list_first_entry_or_null(READ_ONCE(l),
658                                         struct z3fold_header, buddy);
659
660                 if (!zhdr)
661                         continue;
662
663                 /* Re-check under lock. */
664                 spin_lock(&pool->lock);
665                 l = &unbuddied[i];
666                 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
667                                                 struct z3fold_header, buddy)) ||
668                     !z3fold_page_trylock(zhdr)) {
669                         spin_unlock(&pool->lock);
670                         zhdr = NULL;
671                         put_cpu_ptr(pool->unbuddied);
672                         if (can_sleep)
673                                 cond_resched();
674                         goto lookup;
675                 }
676                 list_del_init(&zhdr->buddy);
677                 zhdr->cpu = -1;
678                 spin_unlock(&pool->lock);
679
680                 page = virt_to_page(zhdr);
681                 if (test_bit(NEEDS_COMPACTING, &page->private)) {
682                         z3fold_page_unlock(zhdr);
683                         zhdr = NULL;
684                         put_cpu_ptr(pool->unbuddied);
685                         if (can_sleep)
686                                 cond_resched();
687                         goto lookup;
688                 }
689
690                 /*
691                  * this page could not be removed from its unbuddied
692                  * list while pool lock was held, and then we've taken
693                  * page lock so kref_put could not be called before
694                  * we got here, so it's safe to just call kref_get()
695                  */
696                 kref_get(&zhdr->refcount);
697                 break;
698         }
699         put_cpu_ptr(pool->unbuddied);
700
701         if (!zhdr) {
702                 int cpu;
703
704                 /* look for _exact_ match on other cpus' lists */
705                 for_each_online_cpu(cpu) {
706                         struct list_head *l;
707
708                         unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
709                         spin_lock(&pool->lock);
710                         l = &unbuddied[chunks];
711
712                         zhdr = list_first_entry_or_null(READ_ONCE(l),
713                                                 struct z3fold_header, buddy);
714
715                         if (!zhdr || !z3fold_page_trylock(zhdr)) {
716                                 spin_unlock(&pool->lock);
717                                 zhdr = NULL;
718                                 continue;
719                         }
720                         list_del_init(&zhdr->buddy);
721                         zhdr->cpu = -1;
722                         spin_unlock(&pool->lock);
723
724                         page = virt_to_page(zhdr);
725                         if (test_bit(NEEDS_COMPACTING, &page->private)) {
726                                 z3fold_page_unlock(zhdr);
727                                 zhdr = NULL;
728                                 if (can_sleep)
729                                         cond_resched();
730                                 continue;
731                         }
732                         kref_get(&zhdr->refcount);
733                         break;
734                 }
735         }
736
737         return zhdr;
738 }
739
740 /*
741  * API Functions
742  */
743
744 /**
745  * z3fold_create_pool() - create a new z3fold pool
746  * @name:       pool name
747  * @gfp:        gfp flags when allocating the z3fold pool structure
748  * @ops:        user-defined operations for the z3fold pool
749  *
750  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
751  * failed.
752  */
753 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
754                 const struct z3fold_ops *ops)
755 {
756         struct z3fold_pool *pool = NULL;
757         int i, cpu;
758
759         pool = kzalloc(sizeof(struct z3fold_pool), gfp);
760         if (!pool)
761                 goto out;
762         pool->c_handle = kmem_cache_create("z3fold_handle",
763                                 sizeof(struct z3fold_buddy_slots),
764                                 SLOTS_ALIGN, 0, NULL);
765         if (!pool->c_handle)
766                 goto out_c;
767         spin_lock_init(&pool->lock);
768         spin_lock_init(&pool->stale_lock);
769         pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
770         if (!pool->unbuddied)
771                 goto out_pool;
772         for_each_possible_cpu(cpu) {
773                 struct list_head *unbuddied =
774                                 per_cpu_ptr(pool->unbuddied, cpu);
775                 for_each_unbuddied_list(i, 0)
776                         INIT_LIST_HEAD(&unbuddied[i]);
777         }
778         INIT_LIST_HEAD(&pool->lru);
779         INIT_LIST_HEAD(&pool->stale);
780         atomic64_set(&pool->pages_nr, 0);
781         pool->name = name;
782         pool->compact_wq = create_singlethread_workqueue(pool->name);
783         if (!pool->compact_wq)
784                 goto out_unbuddied;
785         pool->release_wq = create_singlethread_workqueue(pool->name);
786         if (!pool->release_wq)
787                 goto out_wq;
788         if (z3fold_register_migration(pool))
789                 goto out_rwq;
790         INIT_WORK(&pool->work, free_pages_work);
791         pool->ops = ops;
792         return pool;
793
794 out_rwq:
795         destroy_workqueue(pool->release_wq);
796 out_wq:
797         destroy_workqueue(pool->compact_wq);
798 out_unbuddied:
799         free_percpu(pool->unbuddied);
800 out_pool:
801         kmem_cache_destroy(pool->c_handle);
802 out_c:
803         kfree(pool);
804 out:
805         return NULL;
806 }
807
808 /**
809  * z3fold_destroy_pool() - destroys an existing z3fold pool
810  * @pool:       the z3fold pool to be destroyed
811  *
812  * The pool should be emptied before this function is called.
813  */
814 static void z3fold_destroy_pool(struct z3fold_pool *pool)
815 {
816         kmem_cache_destroy(pool->c_handle);
817         z3fold_unregister_migration(pool);
818         destroy_workqueue(pool->release_wq);
819         destroy_workqueue(pool->compact_wq);
820         kfree(pool);
821 }
822
823 /**
824  * z3fold_alloc() - allocates a region of a given size
825  * @pool:       z3fold pool from which to allocate
826  * @size:       size in bytes of the desired allocation
827  * @gfp:        gfp flags used if the pool needs to grow
828  * @handle:     handle of the new allocation
829  *
830  * This function will attempt to find a free region in the pool large enough to
831  * satisfy the allocation request.  A search of the unbuddied lists is
832  * performed first. If no suitable free region is found, then a new page is
833  * allocated and added to the pool to satisfy the request.
834  *
835  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
836  * as z3fold pool pages.
837  *
838  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
839  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
840  * a new page.
841  */
842 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
843                         unsigned long *handle)
844 {
845         int chunks = size_to_chunks(size);
846         struct z3fold_header *zhdr = NULL;
847         struct page *page = NULL;
848         enum buddy bud;
849         bool can_sleep = gfpflags_allow_blocking(gfp);
850
851         if (!size || (gfp & __GFP_HIGHMEM))
852                 return -EINVAL;
853
854         if (size > PAGE_SIZE)
855                 return -ENOSPC;
856
857         if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
858                 bud = HEADLESS;
859         else {
860 retry:
861                 zhdr = __z3fold_alloc(pool, size, can_sleep);
862                 if (zhdr) {
863                         if (zhdr->first_chunks == 0) {
864                                 if (zhdr->middle_chunks != 0 &&
865                                     chunks >= zhdr->start_middle)
866                                         bud = LAST;
867                                 else
868                                         bud = FIRST;
869                         } else if (zhdr->last_chunks == 0)
870                                 bud = LAST;
871                         else if (zhdr->middle_chunks == 0)
872                                 bud = MIDDLE;
873                         else {
874                                 if (kref_put(&zhdr->refcount,
875                                              release_z3fold_page_locked))
876                                         atomic64_dec(&pool->pages_nr);
877                                 else
878                                         z3fold_page_unlock(zhdr);
879                                 pr_err("No free chunks in unbuddied\n");
880                                 WARN_ON(1);
881                                 goto retry;
882                         }
883                         page = virt_to_page(zhdr);
884                         goto found;
885                 }
886                 bud = FIRST;
887         }
888
889         page = NULL;
890         if (can_sleep) {
891                 spin_lock(&pool->stale_lock);
892                 zhdr = list_first_entry_or_null(&pool->stale,
893                                                 struct z3fold_header, buddy);
894                 /*
895                  * Before allocating a page, let's see if we can take one from
896                  * the stale pages list. cancel_work_sync() can sleep so we
897                  * limit this case to the contexts where we can sleep
898                  */
899                 if (zhdr) {
900                         list_del(&zhdr->buddy);
901                         spin_unlock(&pool->stale_lock);
902                         cancel_work_sync(&zhdr->work);
903                         page = virt_to_page(zhdr);
904                 } else {
905                         spin_unlock(&pool->stale_lock);
906                 }
907         }
908         if (!page)
909                 page = alloc_page(gfp);
910
911         if (!page)
912                 return -ENOMEM;
913
914         zhdr = init_z3fold_page(page, pool);
915         if (!zhdr) {
916                 __free_page(page);
917                 return -ENOMEM;
918         }
919         atomic64_inc(&pool->pages_nr);
920
921         if (bud == HEADLESS) {
922                 set_bit(PAGE_HEADLESS, &page->private);
923                 goto headless;
924         }
925         __SetPageMovable(page, pool->inode->i_mapping);
926         z3fold_page_lock(zhdr);
927
928 found:
929         if (bud == FIRST)
930                 zhdr->first_chunks = chunks;
931         else if (bud == LAST)
932                 zhdr->last_chunks = chunks;
933         else {
934                 zhdr->middle_chunks = chunks;
935                 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
936         }
937         add_to_unbuddied(pool, zhdr);
938
939 headless:
940         spin_lock(&pool->lock);
941         /* Add/move z3fold page to beginning of LRU */
942         if (!list_empty(&page->lru))
943                 list_del(&page->lru);
944
945         list_add(&page->lru, &pool->lru);
946
947         *handle = encode_handle(zhdr, bud);
948         spin_unlock(&pool->lock);
949         if (bud != HEADLESS)
950                 z3fold_page_unlock(zhdr);
951
952         return 0;
953 }
954
955 /**
956  * z3fold_free() - frees the allocation associated with the given handle
957  * @pool:       pool in which the allocation resided
958  * @handle:     handle associated with the allocation returned by z3fold_alloc()
959  *
960  * In the case that the z3fold page in which the allocation resides is under
961  * reclaim, as indicated by the PG_reclaim flag being set, this function
962  * only sets the first|last_chunks to 0.  The page is actually freed
963  * once both buddies are evicted (see z3fold_reclaim_page() below).
964  */
965 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
966 {
967         struct z3fold_header *zhdr;
968         struct page *page;
969         enum buddy bud;
970
971         zhdr = handle_to_z3fold_header(handle);
972         page = virt_to_page(zhdr);
973
974         if (test_bit(PAGE_HEADLESS, &page->private)) {
975                 /* if a headless page is under reclaim, just leave.
976                  * NB: we use test_and_set_bit for a reason: if the bit
977                  * has not been set before, we release this page
978                  * immediately so we don't care about its value any more.
979                  */
980                 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
981                         spin_lock(&pool->lock);
982                         list_del(&page->lru);
983                         spin_unlock(&pool->lock);
984                         free_z3fold_page(page, true);
985                         atomic64_dec(&pool->pages_nr);
986                 }
987                 return;
988         }
989
990         /* Non-headless case */
991         z3fold_page_lock(zhdr);
992         bud = handle_to_buddy(handle);
993
994         switch (bud) {
995         case FIRST:
996                 zhdr->first_chunks = 0;
997                 break;
998         case MIDDLE:
999                 zhdr->middle_chunks = 0;
1000                 break;
1001         case LAST:
1002                 zhdr->last_chunks = 0;
1003                 break;
1004         default:
1005                 pr_err("%s: unknown bud %d\n", __func__, bud);
1006                 WARN_ON(1);
1007                 z3fold_page_unlock(zhdr);
1008                 return;
1009         }
1010
1011         free_handle(handle);
1012         if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1013                 atomic64_dec(&pool->pages_nr);
1014                 return;
1015         }
1016         if (test_bit(PAGE_CLAIMED, &page->private)) {
1017                 z3fold_page_unlock(zhdr);
1018                 return;
1019         }
1020         if (unlikely(PageIsolated(page)) ||
1021             test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1022                 z3fold_page_unlock(zhdr);
1023                 return;
1024         }
1025         if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1026                 spin_lock(&pool->lock);
1027                 list_del_init(&zhdr->buddy);
1028                 spin_unlock(&pool->lock);
1029                 zhdr->cpu = -1;
1030                 kref_get(&zhdr->refcount);
1031                 do_compact_page(zhdr, true);
1032                 return;
1033         }
1034         kref_get(&zhdr->refcount);
1035         queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1036         z3fold_page_unlock(zhdr);
1037 }
1038
1039 /**
1040  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1041  * @pool:       pool from which a page will attempt to be evicted
1042  * @retries:    number of pages on the LRU list for which eviction will
1043  *              be attempted before failing
1044  *
1045  * z3fold reclaim is different from normal system reclaim in that it is done
1046  * from the bottom, up. This is because only the bottom layer, z3fold, has
1047  * information on how the allocations are organized within each z3fold page.
1048  * This has the potential to create interesting locking situations between
1049  * z3fold and the user, however.
1050  *
1051  * To avoid these, this is how z3fold_reclaim_page() should be called:
1052  *
1053  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1054  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1055  * call the user-defined eviction handler with the pool and handle as
1056  * arguments.
1057  *
1058  * If the handle can not be evicted, the eviction handler should return
1059  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1060  * appropriate list and try the next z3fold page on the LRU up to
1061  * a user defined number of retries.
1062  *
1063  * If the handle is successfully evicted, the eviction handler should
1064  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1065  * contains logic to delay freeing the page if the page is under reclaim,
1066  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1067  *
1068  * If all buddies in the z3fold page are successfully evicted, then the
1069  * z3fold page can be freed.
1070  *
1071  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1072  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1073  * the retry limit was hit.
1074  */
1075 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1076 {
1077         int i, ret = 0;
1078         struct z3fold_header *zhdr = NULL;
1079         struct page *page = NULL;
1080         struct list_head *pos;
1081         unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1082
1083         spin_lock(&pool->lock);
1084         if (!pool->ops || !pool->ops->evict || retries == 0) {
1085                 spin_unlock(&pool->lock);
1086                 return -EINVAL;
1087         }
1088         for (i = 0; i < retries; i++) {
1089                 if (list_empty(&pool->lru)) {
1090                         spin_unlock(&pool->lock);
1091                         return -EINVAL;
1092                 }
1093                 list_for_each_prev(pos, &pool->lru) {
1094                         page = list_entry(pos, struct page, lru);
1095
1096                         /* this bit could have been set by free, in which case
1097                          * we pass over to the next page in the pool.
1098                          */
1099                         if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1100                                 continue;
1101
1102                         if (unlikely(PageIsolated(page)))
1103                                 continue;
1104                         if (test_bit(PAGE_HEADLESS, &page->private))
1105                                 break;
1106
1107                         zhdr = page_address(page);
1108                         if (!z3fold_page_trylock(zhdr)) {
1109                                 zhdr = NULL;
1110                                 continue; /* can't evict at this point */
1111                         }
1112                         kref_get(&zhdr->refcount);
1113                         list_del_init(&zhdr->buddy);
1114                         zhdr->cpu = -1;
1115                         break;
1116                 }
1117
1118                 if (!zhdr)
1119                         break;
1120
1121                 list_del_init(&page->lru);
1122                 spin_unlock(&pool->lock);
1123
1124                 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1125                         /*
1126                          * We need encode the handles before unlocking, since
1127                          * we can race with free that will set
1128                          * (first|last)_chunks to 0
1129                          */
1130                         first_handle = 0;
1131                         last_handle = 0;
1132                         middle_handle = 0;
1133                         if (zhdr->first_chunks)
1134                                 first_handle = encode_handle(zhdr, FIRST);
1135                         if (zhdr->middle_chunks)
1136                                 middle_handle = encode_handle(zhdr, MIDDLE);
1137                         if (zhdr->last_chunks)
1138                                 last_handle = encode_handle(zhdr, LAST);
1139                         /*
1140                          * it's safe to unlock here because we hold a
1141                          * reference to this page
1142                          */
1143                         z3fold_page_unlock(zhdr);
1144                 } else {
1145                         first_handle = encode_handle(zhdr, HEADLESS);
1146                         last_handle = middle_handle = 0;
1147                 }
1148
1149                 /* Issue the eviction callback(s) */
1150                 if (middle_handle) {
1151                         ret = pool->ops->evict(pool, middle_handle);
1152                         if (ret)
1153                                 goto next;
1154                 }
1155                 if (first_handle) {
1156                         ret = pool->ops->evict(pool, first_handle);
1157                         if (ret)
1158                                 goto next;
1159                 }
1160                 if (last_handle) {
1161                         ret = pool->ops->evict(pool, last_handle);
1162                         if (ret)
1163                                 goto next;
1164                 }
1165 next:
1166                 if (test_bit(PAGE_HEADLESS, &page->private)) {
1167                         if (ret == 0) {
1168                                 free_z3fold_page(page, true);
1169                                 atomic64_dec(&pool->pages_nr);
1170                                 return 0;
1171                         }
1172                         spin_lock(&pool->lock);
1173                         list_add(&page->lru, &pool->lru);
1174                         spin_unlock(&pool->lock);
1175                 } else {
1176                         z3fold_page_lock(zhdr);
1177                         clear_bit(PAGE_CLAIMED, &page->private);
1178                         if (kref_put(&zhdr->refcount,
1179                                         release_z3fold_page_locked)) {
1180                                 atomic64_dec(&pool->pages_nr);
1181                                 return 0;
1182                         }
1183                         /*
1184                          * if we are here, the page is still not completely
1185                          * free. Take the global pool lock then to be able
1186                          * to add it back to the lru list
1187                          */
1188                         spin_lock(&pool->lock);
1189                         list_add(&page->lru, &pool->lru);
1190                         spin_unlock(&pool->lock);
1191                         z3fold_page_unlock(zhdr);
1192                 }
1193
1194                 /* We started off locked to we need to lock the pool back */
1195                 spin_lock(&pool->lock);
1196         }
1197         spin_unlock(&pool->lock);
1198         return -EAGAIN;
1199 }
1200
1201 /**
1202  * z3fold_map() - maps the allocation associated with the given handle
1203  * @pool:       pool in which the allocation resides
1204  * @handle:     handle associated with the allocation to be mapped
1205  *
1206  * Extracts the buddy number from handle and constructs the pointer to the
1207  * correct starting chunk within the page.
1208  *
1209  * Returns: a pointer to the mapped allocation
1210  */
1211 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1212 {
1213         struct z3fold_header *zhdr;
1214         struct page *page;
1215         void *addr;
1216         enum buddy buddy;
1217
1218         zhdr = handle_to_z3fold_header(handle);
1219         addr = zhdr;
1220         page = virt_to_page(zhdr);
1221
1222         if (test_bit(PAGE_HEADLESS, &page->private))
1223                 goto out;
1224
1225         z3fold_page_lock(zhdr);
1226         buddy = handle_to_buddy(handle);
1227         switch (buddy) {
1228         case FIRST:
1229                 addr += ZHDR_SIZE_ALIGNED;
1230                 break;
1231         case MIDDLE:
1232                 addr += zhdr->start_middle << CHUNK_SHIFT;
1233                 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1234                 break;
1235         case LAST:
1236                 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1237                 break;
1238         default:
1239                 pr_err("unknown buddy id %d\n", buddy);
1240                 WARN_ON(1);
1241                 addr = NULL;
1242                 break;
1243         }
1244
1245         if (addr)
1246                 zhdr->mapped_count++;
1247         z3fold_page_unlock(zhdr);
1248 out:
1249         return addr;
1250 }
1251
1252 /**
1253  * z3fold_unmap() - unmaps the allocation associated with the given handle
1254  * @pool:       pool in which the allocation resides
1255  * @handle:     handle associated with the allocation to be unmapped
1256  */
1257 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1258 {
1259         struct z3fold_header *zhdr;
1260         struct page *page;
1261         enum buddy buddy;
1262
1263         zhdr = handle_to_z3fold_header(handle);
1264         page = virt_to_page(zhdr);
1265
1266         if (test_bit(PAGE_HEADLESS, &page->private))
1267                 return;
1268
1269         z3fold_page_lock(zhdr);
1270         buddy = handle_to_buddy(handle);
1271         if (buddy == MIDDLE)
1272                 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1273         zhdr->mapped_count--;
1274         z3fold_page_unlock(zhdr);
1275 }
1276
1277 /**
1278  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1279  * @pool:       pool whose size is being queried
1280  *
1281  * Returns: size in pages of the given pool.
1282  */
1283 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1284 {
1285         return atomic64_read(&pool->pages_nr);
1286 }
1287
1288 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1289 {
1290         struct z3fold_header *zhdr;
1291         struct z3fold_pool *pool;
1292
1293         VM_BUG_ON_PAGE(!PageMovable(page), page);
1294         VM_BUG_ON_PAGE(PageIsolated(page), page);
1295
1296         if (test_bit(PAGE_HEADLESS, &page->private))
1297                 return false;
1298
1299         zhdr = page_address(page);
1300         z3fold_page_lock(zhdr);
1301         if (test_bit(NEEDS_COMPACTING, &page->private) ||
1302             test_bit(PAGE_STALE, &page->private))
1303                 goto out;
1304
1305         pool = zhdr_to_pool(zhdr);
1306
1307         if (zhdr->mapped_count == 0) {
1308                 kref_get(&zhdr->refcount);
1309                 if (!list_empty(&zhdr->buddy))
1310                         list_del_init(&zhdr->buddy);
1311                 spin_lock(&pool->lock);
1312                 if (!list_empty(&page->lru))
1313                         list_del(&page->lru);
1314                 spin_unlock(&pool->lock);
1315                 z3fold_page_unlock(zhdr);
1316                 return true;
1317         }
1318 out:
1319         z3fold_page_unlock(zhdr);
1320         return false;
1321 }
1322
1323 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1324                                struct page *page, enum migrate_mode mode)
1325 {
1326         struct z3fold_header *zhdr, *new_zhdr;
1327         struct z3fold_pool *pool;
1328         struct address_space *new_mapping;
1329
1330         VM_BUG_ON_PAGE(!PageMovable(page), page);
1331         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1332
1333         zhdr = page_address(page);
1334         pool = zhdr_to_pool(zhdr);
1335
1336         if (!trylock_page(page))
1337                 return -EAGAIN;
1338
1339         if (!z3fold_page_trylock(zhdr)) {
1340                 unlock_page(page);
1341                 return -EAGAIN;
1342         }
1343         if (zhdr->mapped_count != 0) {
1344                 z3fold_page_unlock(zhdr);
1345                 unlock_page(page);
1346                 return -EBUSY;
1347         }
1348         new_zhdr = page_address(newpage);
1349         memcpy(new_zhdr, zhdr, PAGE_SIZE);
1350         newpage->private = page->private;
1351         page->private = 0;
1352         z3fold_page_unlock(zhdr);
1353         spin_lock_init(&new_zhdr->page_lock);
1354         new_mapping = page_mapping(page);
1355         __ClearPageMovable(page);
1356         ClearPagePrivate(page);
1357
1358         get_page(newpage);
1359         z3fold_page_lock(new_zhdr);
1360         if (new_zhdr->first_chunks)
1361                 encode_handle(new_zhdr, FIRST);
1362         if (new_zhdr->last_chunks)
1363                 encode_handle(new_zhdr, LAST);
1364         if (new_zhdr->middle_chunks)
1365                 encode_handle(new_zhdr, MIDDLE);
1366         set_bit(NEEDS_COMPACTING, &newpage->private);
1367         new_zhdr->cpu = smp_processor_id();
1368         spin_lock(&pool->lock);
1369         list_add(&newpage->lru, &pool->lru);
1370         spin_unlock(&pool->lock);
1371         __SetPageMovable(newpage, new_mapping);
1372         z3fold_page_unlock(new_zhdr);
1373
1374         queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1375
1376         page_mapcount_reset(page);
1377         unlock_page(page);
1378         put_page(page);
1379         return 0;
1380 }
1381
1382 static void z3fold_page_putback(struct page *page)
1383 {
1384         struct z3fold_header *zhdr;
1385         struct z3fold_pool *pool;
1386
1387         zhdr = page_address(page);
1388         pool = zhdr_to_pool(zhdr);
1389
1390         z3fold_page_lock(zhdr);
1391         if (!list_empty(&zhdr->buddy))
1392                 list_del_init(&zhdr->buddy);
1393         INIT_LIST_HEAD(&page->lru);
1394         if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1395                 atomic64_dec(&pool->pages_nr);
1396                 return;
1397         }
1398         spin_lock(&pool->lock);
1399         list_add(&page->lru, &pool->lru);
1400         spin_unlock(&pool->lock);
1401         z3fold_page_unlock(zhdr);
1402 }
1403
1404 static const struct address_space_operations z3fold_aops = {
1405         .isolate_page = z3fold_page_isolate,
1406         .migratepage = z3fold_page_migrate,
1407         .putback_page = z3fold_page_putback,
1408 };
1409
1410 /*****************
1411  * zpool
1412  ****************/
1413
1414 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1415 {
1416         if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1417                 return pool->zpool_ops->evict(pool->zpool, handle);
1418         else
1419                 return -ENOENT;
1420 }
1421
1422 static const struct z3fold_ops z3fold_zpool_ops = {
1423         .evict =        z3fold_zpool_evict
1424 };
1425
1426 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1427                                const struct zpool_ops *zpool_ops,
1428                                struct zpool *zpool)
1429 {
1430         struct z3fold_pool *pool;
1431
1432         pool = z3fold_create_pool(name, gfp,
1433                                 zpool_ops ? &z3fold_zpool_ops : NULL);
1434         if (pool) {
1435                 pool->zpool = zpool;
1436                 pool->zpool_ops = zpool_ops;
1437         }
1438         return pool;
1439 }
1440
1441 static void z3fold_zpool_destroy(void *pool)
1442 {
1443         z3fold_destroy_pool(pool);
1444 }
1445
1446 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1447                         unsigned long *handle)
1448 {
1449         return z3fold_alloc(pool, size, gfp, handle);
1450 }
1451 static void z3fold_zpool_free(void *pool, unsigned long handle)
1452 {
1453         z3fold_free(pool, handle);
1454 }
1455
1456 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1457                         unsigned int *reclaimed)
1458 {
1459         unsigned int total = 0;
1460         int ret = -EINVAL;
1461
1462         while (total < pages) {
1463                 ret = z3fold_reclaim_page(pool, 8);
1464                 if (ret < 0)
1465                         break;
1466                 total++;
1467         }
1468
1469         if (reclaimed)
1470                 *reclaimed = total;
1471
1472         return ret;
1473 }
1474
1475 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1476                         enum zpool_mapmode mm)
1477 {
1478         return z3fold_map(pool, handle);
1479 }
1480 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1481 {
1482         z3fold_unmap(pool, handle);
1483 }
1484
1485 static u64 z3fold_zpool_total_size(void *pool)
1486 {
1487         return z3fold_get_pool_size(pool) * PAGE_SIZE;
1488 }
1489
1490 static struct zpool_driver z3fold_zpool_driver = {
1491         .type =         "z3fold",
1492         .owner =        THIS_MODULE,
1493         .create =       z3fold_zpool_create,
1494         .destroy =      z3fold_zpool_destroy,
1495         .malloc =       z3fold_zpool_malloc,
1496         .free =         z3fold_zpool_free,
1497         .shrink =       z3fold_zpool_shrink,
1498         .map =          z3fold_zpool_map,
1499         .unmap =        z3fold_zpool_unmap,
1500         .total_size =   z3fold_zpool_total_size,
1501 };
1502
1503 MODULE_ALIAS("zpool-z3fold");
1504
1505 static int __init init_z3fold(void)
1506 {
1507         int ret;
1508
1509         /* Make sure the z3fold header is not larger than the page size */
1510         BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1511         ret = z3fold_mount();
1512         if (ret)
1513                 return ret;
1514
1515         zpool_register_driver(&z3fold_zpool_driver);
1516
1517         return 0;
1518 }
1519
1520 static void __exit exit_z3fold(void)
1521 {
1522         z3fold_unmount();
1523         zpool_unregister_driver(&z3fold_zpool_driver);
1524 }
1525
1526 module_init(init_z3fold);
1527 module_exit(exit_z3fold);
1528
1529 MODULE_LICENSE("GPL");
1530 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1531 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");