net: dsa: sja1105: Remove duplicate rgmii_pad_mii_tx from regs
[platform/kernel/linux-rpi.git] / mm / z3fold.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/dcache.h>
30 #include <linux/list.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/page-flags.h>
34 #include <linux/migrate.h>
35 #include <linux/node.h>
36 #include <linux/compaction.h>
37 #include <linux/percpu.h>
38 #include <linux/mount.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45
46 /*
47  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
48  * adjusting internal fragmentation.  It also determines the number of
49  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
50  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
51  * in the beginning of an allocated page are occupied by z3fold header, so
52  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
53  * which shows the max number of free chunks in z3fold page, also there will
54  * be 63, or 62, respectively, freelists per pool.
55  */
56 #define NCHUNKS_ORDER   6
57
58 #define CHUNK_SHIFT     (PAGE_SHIFT - NCHUNKS_ORDER)
59 #define CHUNK_SIZE      (1 << CHUNK_SHIFT)
60 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
61 #define ZHDR_CHUNKS     (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
62 #define TOTAL_CHUNKS    (PAGE_SIZE >> CHUNK_SHIFT)
63 #define NCHUNKS         ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
64
65 #define BUDDY_MASK      (0x3)
66 #define BUDDY_SHIFT     2
67 #define SLOTS_ALIGN     (0x40)
68
69 /*****************
70  * Structures
71 *****************/
72 struct z3fold_pool;
73 struct z3fold_ops {
74         int (*evict)(struct z3fold_pool *pool, unsigned long handle);
75 };
76
77 enum buddy {
78         HEADLESS = 0,
79         FIRST,
80         MIDDLE,
81         LAST,
82         BUDDIES_MAX = LAST
83 };
84
85 struct z3fold_buddy_slots {
86         /*
87          * we are using BUDDY_MASK in handle_to_buddy etc. so there should
88          * be enough slots to hold all possible variants
89          */
90         unsigned long slot[BUDDY_MASK + 1];
91         unsigned long pool; /* back link + flags */
92 };
93 #define HANDLE_FLAG_MASK        (0x03)
94
95 /*
96  * struct z3fold_header - z3fold page metadata occupying first chunks of each
97  *                      z3fold page, except for HEADLESS pages
98  * @buddy:              links the z3fold page into the relevant list in the
99  *                      pool
100  * @page_lock:          per-page lock
101  * @refcount:           reference count for the z3fold page
102  * @work:               work_struct for page layout optimization
103  * @slots:              pointer to the structure holding buddy slots
104  * @cpu:                CPU which this page "belongs" to
105  * @first_chunks:       the size of the first buddy in chunks, 0 if free
106  * @middle_chunks:      the size of the middle buddy in chunks, 0 if free
107  * @last_chunks:        the size of the last buddy in chunks, 0 if free
108  * @first_num:          the starting number (for the first handle)
109  * @mapped_count:       the number of objects currently mapped
110  */
111 struct z3fold_header {
112         struct list_head buddy;
113         spinlock_t page_lock;
114         struct kref refcount;
115         struct work_struct work;
116         struct z3fold_buddy_slots *slots;
117         short cpu;
118         unsigned short first_chunks;
119         unsigned short middle_chunks;
120         unsigned short last_chunks;
121         unsigned short start_middle;
122         unsigned short first_num:2;
123         unsigned short mapped_count:2;
124 };
125
126 /**
127  * struct z3fold_pool - stores metadata for each z3fold pool
128  * @name:       pool name
129  * @lock:       protects pool unbuddied/lru lists
130  * @stale_lock: protects pool stale page list
131  * @unbuddied:  per-cpu array of lists tracking z3fold pages that contain 2-
132  *              buddies; the list each z3fold page is added to depends on
133  *              the size of its free region.
134  * @lru:        list tracking the z3fold pages in LRU order by most recently
135  *              added buddy.
136  * @stale:      list of pages marked for freeing
137  * @pages_nr:   number of z3fold pages in the pool.
138  * @c_handle:   cache for z3fold_buddy_slots allocation
139  * @ops:        pointer to a structure of user defined operations specified at
140  *              pool creation time.
141  * @compact_wq: workqueue for page layout background optimization
142  * @release_wq: workqueue for safe page release
143  * @work:       work_struct for safe page release
144  * @inode:      inode for z3fold pseudo filesystem
145  *
146  * This structure is allocated at pool creation time and maintains metadata
147  * pertaining to a particular z3fold pool.
148  */
149 struct z3fold_pool {
150         const char *name;
151         spinlock_t lock;
152         spinlock_t stale_lock;
153         struct list_head *unbuddied;
154         struct list_head lru;
155         struct list_head stale;
156         atomic64_t pages_nr;
157         struct kmem_cache *c_handle;
158         const struct z3fold_ops *ops;
159         struct zpool *zpool;
160         const struct zpool_ops *zpool_ops;
161         struct workqueue_struct *compact_wq;
162         struct workqueue_struct *release_wq;
163         struct work_struct work;
164         struct inode *inode;
165 };
166
167 /*
168  * Internal z3fold page flags
169  */
170 enum z3fold_page_flags {
171         PAGE_HEADLESS = 0,
172         MIDDLE_CHUNK_MAPPED,
173         NEEDS_COMPACTING,
174         PAGE_STALE,
175         PAGE_CLAIMED, /* by either reclaim or free */
176 };
177
178 /*****************
179  * Helpers
180 *****************/
181
182 /* Converts an allocation size in bytes to size in z3fold chunks */
183 static int size_to_chunks(size_t size)
184 {
185         return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
186 }
187
188 #define for_each_unbuddied_list(_iter, _begin) \
189         for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
190
191 static void compact_page_work(struct work_struct *w);
192
193 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
194                                                         gfp_t gfp)
195 {
196         struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle,
197                                                             gfp);
198
199         if (slots) {
200                 memset(slots->slot, 0, sizeof(slots->slot));
201                 slots->pool = (unsigned long)pool;
202         }
203
204         return slots;
205 }
206
207 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
208 {
209         return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
210 }
211
212 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
213 {
214         return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
215 }
216
217 static inline void free_handle(unsigned long handle)
218 {
219         struct z3fold_buddy_slots *slots;
220         int i;
221         bool is_free;
222
223         if (handle & (1 << PAGE_HEADLESS))
224                 return;
225
226         WARN_ON(*(unsigned long *)handle == 0);
227         *(unsigned long *)handle = 0;
228         slots = handle_to_slots(handle);
229         is_free = true;
230         for (i = 0; i <= BUDDY_MASK; i++) {
231                 if (slots->slot[i]) {
232                         is_free = false;
233                         break;
234                 }
235         }
236
237         if (is_free) {
238                 struct z3fold_pool *pool = slots_to_pool(slots);
239
240                 kmem_cache_free(pool->c_handle, slots);
241         }
242 }
243
244 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type,
245                                 int flags, const char *dev_name, void *data)
246 {
247         static const struct dentry_operations ops = {
248                 .d_dname = simple_dname,
249         };
250
251         return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33);
252 }
253
254 static struct file_system_type z3fold_fs = {
255         .name           = "z3fold",
256         .mount          = z3fold_do_mount,
257         .kill_sb        = kill_anon_super,
258 };
259
260 static struct vfsmount *z3fold_mnt;
261 static int z3fold_mount(void)
262 {
263         int ret = 0;
264
265         z3fold_mnt = kern_mount(&z3fold_fs);
266         if (IS_ERR(z3fold_mnt))
267                 ret = PTR_ERR(z3fold_mnt);
268
269         return ret;
270 }
271
272 static void z3fold_unmount(void)
273 {
274         kern_unmount(z3fold_mnt);
275 }
276
277 static const struct address_space_operations z3fold_aops;
278 static int z3fold_register_migration(struct z3fold_pool *pool)
279 {
280         pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281         if (IS_ERR(pool->inode)) {
282                 pool->inode = NULL;
283                 return 1;
284         }
285
286         pool->inode->i_mapping->private_data = pool;
287         pool->inode->i_mapping->a_ops = &z3fold_aops;
288         return 0;
289 }
290
291 static void z3fold_unregister_migration(struct z3fold_pool *pool)
292 {
293         if (pool->inode)
294                 iput(pool->inode);
295  }
296
297 /* Initializes the z3fold header of a newly allocated z3fold page */
298 static struct z3fold_header *init_z3fold_page(struct page *page,
299                                         struct z3fold_pool *pool, gfp_t gfp)
300 {
301         struct z3fold_header *zhdr = page_address(page);
302         struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
303
304         if (!slots)
305                 return NULL;
306
307         INIT_LIST_HEAD(&page->lru);
308         clear_bit(PAGE_HEADLESS, &page->private);
309         clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
310         clear_bit(NEEDS_COMPACTING, &page->private);
311         clear_bit(PAGE_STALE, &page->private);
312         clear_bit(PAGE_CLAIMED, &page->private);
313
314         spin_lock_init(&zhdr->page_lock);
315         kref_init(&zhdr->refcount);
316         zhdr->first_chunks = 0;
317         zhdr->middle_chunks = 0;
318         zhdr->last_chunks = 0;
319         zhdr->first_num = 0;
320         zhdr->start_middle = 0;
321         zhdr->cpu = -1;
322         zhdr->slots = slots;
323         INIT_LIST_HEAD(&zhdr->buddy);
324         INIT_WORK(&zhdr->work, compact_page_work);
325         return zhdr;
326 }
327
328 /* Resets the struct page fields and frees the page */
329 static void free_z3fold_page(struct page *page, bool headless)
330 {
331         if (!headless) {
332                 lock_page(page);
333                 __ClearPageMovable(page);
334                 unlock_page(page);
335         }
336         ClearPagePrivate(page);
337         __free_page(page);
338 }
339
340 /* Lock a z3fold page */
341 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
342 {
343         spin_lock(&zhdr->page_lock);
344 }
345
346 /* Try to lock a z3fold page */
347 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
348 {
349         return spin_trylock(&zhdr->page_lock);
350 }
351
352 /* Unlock a z3fold page */
353 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
354 {
355         spin_unlock(&zhdr->page_lock);
356 }
357
358 /* Helper function to build the index */
359 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
360 {
361         return (bud + zhdr->first_num) & BUDDY_MASK;
362 }
363
364 /*
365  * Encodes the handle of a particular buddy within a z3fold page
366  * Pool lock should be held as this function accesses first_num
367  */
368 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
369 {
370         struct z3fold_buddy_slots *slots;
371         unsigned long h = (unsigned long)zhdr;
372         int idx = 0;
373
374         /*
375          * For a headless page, its handle is its pointer with the extra
376          * PAGE_HEADLESS bit set
377          */
378         if (bud == HEADLESS)
379                 return h | (1 << PAGE_HEADLESS);
380
381         /* otherwise, return pointer to encoded handle */
382         idx = __idx(zhdr, bud);
383         h += idx;
384         if (bud == LAST)
385                 h |= (zhdr->last_chunks << BUDDY_SHIFT);
386
387         slots = zhdr->slots;
388         slots->slot[idx] = h;
389         return (unsigned long)&slots->slot[idx];
390 }
391
392 /* Returns the z3fold page where a given handle is stored */
393 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
394 {
395         unsigned long addr = h;
396
397         if (!(addr & (1 << PAGE_HEADLESS)))
398                 addr = *(unsigned long *)h;
399
400         return (struct z3fold_header *)(addr & PAGE_MASK);
401 }
402
403 /* only for LAST bud, returns zero otherwise */
404 static unsigned short handle_to_chunks(unsigned long handle)
405 {
406         unsigned long addr = *(unsigned long *)handle;
407
408         return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
409 }
410
411 /*
412  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
413  *  but that doesn't matter. because the masking will result in the
414  *  correct buddy number.
415  */
416 static enum buddy handle_to_buddy(unsigned long handle)
417 {
418         struct z3fold_header *zhdr;
419         unsigned long addr;
420
421         WARN_ON(handle & (1 << PAGE_HEADLESS));
422         addr = *(unsigned long *)handle;
423         zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
424         return (addr - zhdr->first_num) & BUDDY_MASK;
425 }
426
427 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
428 {
429         return slots_to_pool(zhdr->slots);
430 }
431
432 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
433 {
434         struct page *page = virt_to_page(zhdr);
435         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
436
437         WARN_ON(!list_empty(&zhdr->buddy));
438         set_bit(PAGE_STALE, &page->private);
439         clear_bit(NEEDS_COMPACTING, &page->private);
440         spin_lock(&pool->lock);
441         if (!list_empty(&page->lru))
442                 list_del_init(&page->lru);
443         spin_unlock(&pool->lock);
444         if (locked)
445                 z3fold_page_unlock(zhdr);
446         spin_lock(&pool->stale_lock);
447         list_add(&zhdr->buddy, &pool->stale);
448         queue_work(pool->release_wq, &pool->work);
449         spin_unlock(&pool->stale_lock);
450 }
451
452 static void __attribute__((__unused__))
453                         release_z3fold_page(struct kref *ref)
454 {
455         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
456                                                 refcount);
457         __release_z3fold_page(zhdr, false);
458 }
459
460 static void release_z3fold_page_locked(struct kref *ref)
461 {
462         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
463                                                 refcount);
464         WARN_ON(z3fold_page_trylock(zhdr));
465         __release_z3fold_page(zhdr, true);
466 }
467
468 static void release_z3fold_page_locked_list(struct kref *ref)
469 {
470         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
471                                                refcount);
472         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
473         spin_lock(&pool->lock);
474         list_del_init(&zhdr->buddy);
475         spin_unlock(&pool->lock);
476
477         WARN_ON(z3fold_page_trylock(zhdr));
478         __release_z3fold_page(zhdr, true);
479 }
480
481 static void free_pages_work(struct work_struct *w)
482 {
483         struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
484
485         spin_lock(&pool->stale_lock);
486         while (!list_empty(&pool->stale)) {
487                 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
488                                                 struct z3fold_header, buddy);
489                 struct page *page = virt_to_page(zhdr);
490
491                 list_del(&zhdr->buddy);
492                 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
493                         continue;
494                 spin_unlock(&pool->stale_lock);
495                 cancel_work_sync(&zhdr->work);
496                 free_z3fold_page(page, false);
497                 cond_resched();
498                 spin_lock(&pool->stale_lock);
499         }
500         spin_unlock(&pool->stale_lock);
501 }
502
503 /*
504  * Returns the number of free chunks in a z3fold page.
505  * NB: can't be used with HEADLESS pages.
506  */
507 static int num_free_chunks(struct z3fold_header *zhdr)
508 {
509         int nfree;
510         /*
511          * If there is a middle object, pick up the bigger free space
512          * either before or after it. Otherwise just subtract the number
513          * of chunks occupied by the first and the last objects.
514          */
515         if (zhdr->middle_chunks != 0) {
516                 int nfree_before = zhdr->first_chunks ?
517                         0 : zhdr->start_middle - ZHDR_CHUNKS;
518                 int nfree_after = zhdr->last_chunks ?
519                         0 : TOTAL_CHUNKS -
520                                 (zhdr->start_middle + zhdr->middle_chunks);
521                 nfree = max(nfree_before, nfree_after);
522         } else
523                 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
524         return nfree;
525 }
526
527 /* Add to the appropriate unbuddied list */
528 static inline void add_to_unbuddied(struct z3fold_pool *pool,
529                                 struct z3fold_header *zhdr)
530 {
531         if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
532                         zhdr->middle_chunks == 0) {
533                 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
534
535                 int freechunks = num_free_chunks(zhdr);
536                 spin_lock(&pool->lock);
537                 list_add(&zhdr->buddy, &unbuddied[freechunks]);
538                 spin_unlock(&pool->lock);
539                 zhdr->cpu = smp_processor_id();
540                 put_cpu_ptr(pool->unbuddied);
541         }
542 }
543
544 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
545                                 unsigned short dst_chunk)
546 {
547         void *beg = zhdr;
548         return memmove(beg + (dst_chunk << CHUNK_SHIFT),
549                        beg + (zhdr->start_middle << CHUNK_SHIFT),
550                        zhdr->middle_chunks << CHUNK_SHIFT);
551 }
552
553 #define BIG_CHUNK_GAP   3
554 /* Has to be called with lock held */
555 static int z3fold_compact_page(struct z3fold_header *zhdr)
556 {
557         struct page *page = virt_to_page(zhdr);
558
559         if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
560                 return 0; /* can't move middle chunk, it's used */
561
562         if (unlikely(PageIsolated(page)))
563                 return 0;
564
565         if (zhdr->middle_chunks == 0)
566                 return 0; /* nothing to compact */
567
568         if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
569                 /* move to the beginning */
570                 mchunk_memmove(zhdr, ZHDR_CHUNKS);
571                 zhdr->first_chunks = zhdr->middle_chunks;
572                 zhdr->middle_chunks = 0;
573                 zhdr->start_middle = 0;
574                 zhdr->first_num++;
575                 return 1;
576         }
577
578         /*
579          * moving data is expensive, so let's only do that if
580          * there's substantial gain (at least BIG_CHUNK_GAP chunks)
581          */
582         if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
583             zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
584                         BIG_CHUNK_GAP) {
585                 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
586                 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
587                 return 1;
588         } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
589                    TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
590                                         + zhdr->middle_chunks) >=
591                         BIG_CHUNK_GAP) {
592                 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
593                         zhdr->middle_chunks;
594                 mchunk_memmove(zhdr, new_start);
595                 zhdr->start_middle = new_start;
596                 return 1;
597         }
598
599         return 0;
600 }
601
602 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
603 {
604         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
605         struct page *page;
606
607         page = virt_to_page(zhdr);
608         if (locked)
609                 WARN_ON(z3fold_page_trylock(zhdr));
610         else
611                 z3fold_page_lock(zhdr);
612         if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
613                 z3fold_page_unlock(zhdr);
614                 return;
615         }
616         spin_lock(&pool->lock);
617         list_del_init(&zhdr->buddy);
618         spin_unlock(&pool->lock);
619
620         if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
621                 atomic64_dec(&pool->pages_nr);
622                 return;
623         }
624
625         if (unlikely(PageIsolated(page) ||
626                      test_bit(PAGE_STALE, &page->private))) {
627                 z3fold_page_unlock(zhdr);
628                 return;
629         }
630
631         z3fold_compact_page(zhdr);
632         add_to_unbuddied(pool, zhdr);
633         z3fold_page_unlock(zhdr);
634 }
635
636 static void compact_page_work(struct work_struct *w)
637 {
638         struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
639                                                 work);
640
641         do_compact_page(zhdr, false);
642 }
643
644 /* returns _locked_ z3fold page header or NULL */
645 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
646                                                 size_t size, bool can_sleep)
647 {
648         struct z3fold_header *zhdr = NULL;
649         struct page *page;
650         struct list_head *unbuddied;
651         int chunks = size_to_chunks(size), i;
652
653 lookup:
654         /* First, try to find an unbuddied z3fold page. */
655         unbuddied = get_cpu_ptr(pool->unbuddied);
656         for_each_unbuddied_list(i, chunks) {
657                 struct list_head *l = &unbuddied[i];
658
659                 zhdr = list_first_entry_or_null(READ_ONCE(l),
660                                         struct z3fold_header, buddy);
661
662                 if (!zhdr)
663                         continue;
664
665                 /* Re-check under lock. */
666                 spin_lock(&pool->lock);
667                 l = &unbuddied[i];
668                 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
669                                                 struct z3fold_header, buddy)) ||
670                     !z3fold_page_trylock(zhdr)) {
671                         spin_unlock(&pool->lock);
672                         zhdr = NULL;
673                         put_cpu_ptr(pool->unbuddied);
674                         if (can_sleep)
675                                 cond_resched();
676                         goto lookup;
677                 }
678                 list_del_init(&zhdr->buddy);
679                 zhdr->cpu = -1;
680                 spin_unlock(&pool->lock);
681
682                 page = virt_to_page(zhdr);
683                 if (test_bit(NEEDS_COMPACTING, &page->private)) {
684                         z3fold_page_unlock(zhdr);
685                         zhdr = NULL;
686                         put_cpu_ptr(pool->unbuddied);
687                         if (can_sleep)
688                                 cond_resched();
689                         goto lookup;
690                 }
691
692                 /*
693                  * this page could not be removed from its unbuddied
694                  * list while pool lock was held, and then we've taken
695                  * page lock so kref_put could not be called before
696                  * we got here, so it's safe to just call kref_get()
697                  */
698                 kref_get(&zhdr->refcount);
699                 break;
700         }
701         put_cpu_ptr(pool->unbuddied);
702
703         if (!zhdr) {
704                 int cpu;
705
706                 /* look for _exact_ match on other cpus' lists */
707                 for_each_online_cpu(cpu) {
708                         struct list_head *l;
709
710                         unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
711                         spin_lock(&pool->lock);
712                         l = &unbuddied[chunks];
713
714                         zhdr = list_first_entry_or_null(READ_ONCE(l),
715                                                 struct z3fold_header, buddy);
716
717                         if (!zhdr || !z3fold_page_trylock(zhdr)) {
718                                 spin_unlock(&pool->lock);
719                                 zhdr = NULL;
720                                 continue;
721                         }
722                         list_del_init(&zhdr->buddy);
723                         zhdr->cpu = -1;
724                         spin_unlock(&pool->lock);
725
726                         page = virt_to_page(zhdr);
727                         if (test_bit(NEEDS_COMPACTING, &page->private)) {
728                                 z3fold_page_unlock(zhdr);
729                                 zhdr = NULL;
730                                 if (can_sleep)
731                                         cond_resched();
732                                 continue;
733                         }
734                         kref_get(&zhdr->refcount);
735                         break;
736                 }
737         }
738
739         return zhdr;
740 }
741
742 /*
743  * API Functions
744  */
745
746 /**
747  * z3fold_create_pool() - create a new z3fold pool
748  * @name:       pool name
749  * @gfp:        gfp flags when allocating the z3fold pool structure
750  * @ops:        user-defined operations for the z3fold pool
751  *
752  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
753  * failed.
754  */
755 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
756                 const struct z3fold_ops *ops)
757 {
758         struct z3fold_pool *pool = NULL;
759         int i, cpu;
760
761         pool = kzalloc(sizeof(struct z3fold_pool), gfp);
762         if (!pool)
763                 goto out;
764         pool->c_handle = kmem_cache_create("z3fold_handle",
765                                 sizeof(struct z3fold_buddy_slots),
766                                 SLOTS_ALIGN, 0, NULL);
767         if (!pool->c_handle)
768                 goto out_c;
769         spin_lock_init(&pool->lock);
770         spin_lock_init(&pool->stale_lock);
771         pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
772         if (!pool->unbuddied)
773                 goto out_pool;
774         for_each_possible_cpu(cpu) {
775                 struct list_head *unbuddied =
776                                 per_cpu_ptr(pool->unbuddied, cpu);
777                 for_each_unbuddied_list(i, 0)
778                         INIT_LIST_HEAD(&unbuddied[i]);
779         }
780         INIT_LIST_HEAD(&pool->lru);
781         INIT_LIST_HEAD(&pool->stale);
782         atomic64_set(&pool->pages_nr, 0);
783         pool->name = name;
784         pool->compact_wq = create_singlethread_workqueue(pool->name);
785         if (!pool->compact_wq)
786                 goto out_unbuddied;
787         pool->release_wq = create_singlethread_workqueue(pool->name);
788         if (!pool->release_wq)
789                 goto out_wq;
790         if (z3fold_register_migration(pool))
791                 goto out_rwq;
792         INIT_WORK(&pool->work, free_pages_work);
793         pool->ops = ops;
794         return pool;
795
796 out_rwq:
797         destroy_workqueue(pool->release_wq);
798 out_wq:
799         destroy_workqueue(pool->compact_wq);
800 out_unbuddied:
801         free_percpu(pool->unbuddied);
802 out_pool:
803         kmem_cache_destroy(pool->c_handle);
804 out_c:
805         kfree(pool);
806 out:
807         return NULL;
808 }
809
810 /**
811  * z3fold_destroy_pool() - destroys an existing z3fold pool
812  * @pool:       the z3fold pool to be destroyed
813  *
814  * The pool should be emptied before this function is called.
815  */
816 static void z3fold_destroy_pool(struct z3fold_pool *pool)
817 {
818         kmem_cache_destroy(pool->c_handle);
819         z3fold_unregister_migration(pool);
820         destroy_workqueue(pool->release_wq);
821         destroy_workqueue(pool->compact_wq);
822         kfree(pool);
823 }
824
825 /**
826  * z3fold_alloc() - allocates a region of a given size
827  * @pool:       z3fold pool from which to allocate
828  * @size:       size in bytes of the desired allocation
829  * @gfp:        gfp flags used if the pool needs to grow
830  * @handle:     handle of the new allocation
831  *
832  * This function will attempt to find a free region in the pool large enough to
833  * satisfy the allocation request.  A search of the unbuddied lists is
834  * performed first. If no suitable free region is found, then a new page is
835  * allocated and added to the pool to satisfy the request.
836  *
837  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
838  * as z3fold pool pages.
839  *
840  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
841  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
842  * a new page.
843  */
844 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
845                         unsigned long *handle)
846 {
847         int chunks = size_to_chunks(size);
848         struct z3fold_header *zhdr = NULL;
849         struct page *page = NULL;
850         enum buddy bud;
851         bool can_sleep = gfpflags_allow_blocking(gfp);
852
853         if (!size || (gfp & __GFP_HIGHMEM))
854                 return -EINVAL;
855
856         if (size > PAGE_SIZE)
857                 return -ENOSPC;
858
859         if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
860                 bud = HEADLESS;
861         else {
862 retry:
863                 zhdr = __z3fold_alloc(pool, size, can_sleep);
864                 if (zhdr) {
865                         if (zhdr->first_chunks == 0) {
866                                 if (zhdr->middle_chunks != 0 &&
867                                     chunks >= zhdr->start_middle)
868                                         bud = LAST;
869                                 else
870                                         bud = FIRST;
871                         } else if (zhdr->last_chunks == 0)
872                                 bud = LAST;
873                         else if (zhdr->middle_chunks == 0)
874                                 bud = MIDDLE;
875                         else {
876                                 if (kref_put(&zhdr->refcount,
877                                              release_z3fold_page_locked))
878                                         atomic64_dec(&pool->pages_nr);
879                                 else
880                                         z3fold_page_unlock(zhdr);
881                                 pr_err("No free chunks in unbuddied\n");
882                                 WARN_ON(1);
883                                 goto retry;
884                         }
885                         page = virt_to_page(zhdr);
886                         goto found;
887                 }
888                 bud = FIRST;
889         }
890
891         page = NULL;
892         if (can_sleep) {
893                 spin_lock(&pool->stale_lock);
894                 zhdr = list_first_entry_or_null(&pool->stale,
895                                                 struct z3fold_header, buddy);
896                 /*
897                  * Before allocating a page, let's see if we can take one from
898                  * the stale pages list. cancel_work_sync() can sleep so we
899                  * limit this case to the contexts where we can sleep
900                  */
901                 if (zhdr) {
902                         list_del(&zhdr->buddy);
903                         spin_unlock(&pool->stale_lock);
904                         cancel_work_sync(&zhdr->work);
905                         page = virt_to_page(zhdr);
906                 } else {
907                         spin_unlock(&pool->stale_lock);
908                 }
909         }
910         if (!page)
911                 page = alloc_page(gfp);
912
913         if (!page)
914                 return -ENOMEM;
915
916         zhdr = init_z3fold_page(page, pool, gfp);
917         if (!zhdr) {
918                 __free_page(page);
919                 return -ENOMEM;
920         }
921         atomic64_inc(&pool->pages_nr);
922
923         if (bud == HEADLESS) {
924                 set_bit(PAGE_HEADLESS, &page->private);
925                 goto headless;
926         }
927         __SetPageMovable(page, pool->inode->i_mapping);
928         z3fold_page_lock(zhdr);
929
930 found:
931         if (bud == FIRST)
932                 zhdr->first_chunks = chunks;
933         else if (bud == LAST)
934                 zhdr->last_chunks = chunks;
935         else {
936                 zhdr->middle_chunks = chunks;
937                 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
938         }
939         add_to_unbuddied(pool, zhdr);
940
941 headless:
942         spin_lock(&pool->lock);
943         /* Add/move z3fold page to beginning of LRU */
944         if (!list_empty(&page->lru))
945                 list_del(&page->lru);
946
947         list_add(&page->lru, &pool->lru);
948
949         *handle = encode_handle(zhdr, bud);
950         spin_unlock(&pool->lock);
951         if (bud != HEADLESS)
952                 z3fold_page_unlock(zhdr);
953
954         return 0;
955 }
956
957 /**
958  * z3fold_free() - frees the allocation associated with the given handle
959  * @pool:       pool in which the allocation resided
960  * @handle:     handle associated with the allocation returned by z3fold_alloc()
961  *
962  * In the case that the z3fold page in which the allocation resides is under
963  * reclaim, as indicated by the PG_reclaim flag being set, this function
964  * only sets the first|last_chunks to 0.  The page is actually freed
965  * once both buddies are evicted (see z3fold_reclaim_page() below).
966  */
967 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
968 {
969         struct z3fold_header *zhdr;
970         struct page *page;
971         enum buddy bud;
972
973         zhdr = handle_to_z3fold_header(handle);
974         page = virt_to_page(zhdr);
975
976         if (test_bit(PAGE_HEADLESS, &page->private)) {
977                 /* if a headless page is under reclaim, just leave.
978                  * NB: we use test_and_set_bit for a reason: if the bit
979                  * has not been set before, we release this page
980                  * immediately so we don't care about its value any more.
981                  */
982                 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
983                         spin_lock(&pool->lock);
984                         list_del(&page->lru);
985                         spin_unlock(&pool->lock);
986                         free_z3fold_page(page, true);
987                         atomic64_dec(&pool->pages_nr);
988                 }
989                 return;
990         }
991
992         /* Non-headless case */
993         z3fold_page_lock(zhdr);
994         bud = handle_to_buddy(handle);
995
996         switch (bud) {
997         case FIRST:
998                 zhdr->first_chunks = 0;
999                 break;
1000         case MIDDLE:
1001                 zhdr->middle_chunks = 0;
1002                 break;
1003         case LAST:
1004                 zhdr->last_chunks = 0;
1005                 break;
1006         default:
1007                 pr_err("%s: unknown bud %d\n", __func__, bud);
1008                 WARN_ON(1);
1009                 z3fold_page_unlock(zhdr);
1010                 return;
1011         }
1012
1013         free_handle(handle);
1014         if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1015                 atomic64_dec(&pool->pages_nr);
1016                 return;
1017         }
1018         if (test_bit(PAGE_CLAIMED, &page->private)) {
1019                 z3fold_page_unlock(zhdr);
1020                 return;
1021         }
1022         if (unlikely(PageIsolated(page)) ||
1023             test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1024                 z3fold_page_unlock(zhdr);
1025                 return;
1026         }
1027         if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1028                 spin_lock(&pool->lock);
1029                 list_del_init(&zhdr->buddy);
1030                 spin_unlock(&pool->lock);
1031                 zhdr->cpu = -1;
1032                 kref_get(&zhdr->refcount);
1033                 do_compact_page(zhdr, true);
1034                 return;
1035         }
1036         kref_get(&zhdr->refcount);
1037         queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1038         z3fold_page_unlock(zhdr);
1039 }
1040
1041 /**
1042  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1043  * @pool:       pool from which a page will attempt to be evicted
1044  * @retries:    number of pages on the LRU list for which eviction will
1045  *              be attempted before failing
1046  *
1047  * z3fold reclaim is different from normal system reclaim in that it is done
1048  * from the bottom, up. This is because only the bottom layer, z3fold, has
1049  * information on how the allocations are organized within each z3fold page.
1050  * This has the potential to create interesting locking situations between
1051  * z3fold and the user, however.
1052  *
1053  * To avoid these, this is how z3fold_reclaim_page() should be called:
1054  *
1055  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1056  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1057  * call the user-defined eviction handler with the pool and handle as
1058  * arguments.
1059  *
1060  * If the handle can not be evicted, the eviction handler should return
1061  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1062  * appropriate list and try the next z3fold page on the LRU up to
1063  * a user defined number of retries.
1064  *
1065  * If the handle is successfully evicted, the eviction handler should
1066  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1067  * contains logic to delay freeing the page if the page is under reclaim,
1068  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1069  *
1070  * If all buddies in the z3fold page are successfully evicted, then the
1071  * z3fold page can be freed.
1072  *
1073  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1074  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1075  * the retry limit was hit.
1076  */
1077 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1078 {
1079         int i, ret = 0;
1080         struct z3fold_header *zhdr = NULL;
1081         struct page *page = NULL;
1082         struct list_head *pos;
1083         unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1084
1085         spin_lock(&pool->lock);
1086         if (!pool->ops || !pool->ops->evict || retries == 0) {
1087                 spin_unlock(&pool->lock);
1088                 return -EINVAL;
1089         }
1090         for (i = 0; i < retries; i++) {
1091                 if (list_empty(&pool->lru)) {
1092                         spin_unlock(&pool->lock);
1093                         return -EINVAL;
1094                 }
1095                 list_for_each_prev(pos, &pool->lru) {
1096                         page = list_entry(pos, struct page, lru);
1097
1098                         /* this bit could have been set by free, in which case
1099                          * we pass over to the next page in the pool.
1100                          */
1101                         if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1102                                 continue;
1103
1104                         if (unlikely(PageIsolated(page)))
1105                                 continue;
1106                         if (test_bit(PAGE_HEADLESS, &page->private))
1107                                 break;
1108
1109                         zhdr = page_address(page);
1110                         if (!z3fold_page_trylock(zhdr)) {
1111                                 zhdr = NULL;
1112                                 continue; /* can't evict at this point */
1113                         }
1114                         kref_get(&zhdr->refcount);
1115                         list_del_init(&zhdr->buddy);
1116                         zhdr->cpu = -1;
1117                         break;
1118                 }
1119
1120                 if (!zhdr)
1121                         break;
1122
1123                 list_del_init(&page->lru);
1124                 spin_unlock(&pool->lock);
1125
1126                 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1127                         /*
1128                          * We need encode the handles before unlocking, since
1129                          * we can race with free that will set
1130                          * (first|last)_chunks to 0
1131                          */
1132                         first_handle = 0;
1133                         last_handle = 0;
1134                         middle_handle = 0;
1135                         if (zhdr->first_chunks)
1136                                 first_handle = encode_handle(zhdr, FIRST);
1137                         if (zhdr->middle_chunks)
1138                                 middle_handle = encode_handle(zhdr, MIDDLE);
1139                         if (zhdr->last_chunks)
1140                                 last_handle = encode_handle(zhdr, LAST);
1141                         /*
1142                          * it's safe to unlock here because we hold a
1143                          * reference to this page
1144                          */
1145                         z3fold_page_unlock(zhdr);
1146                 } else {
1147                         first_handle = encode_handle(zhdr, HEADLESS);
1148                         last_handle = middle_handle = 0;
1149                 }
1150
1151                 /* Issue the eviction callback(s) */
1152                 if (middle_handle) {
1153                         ret = pool->ops->evict(pool, middle_handle);
1154                         if (ret)
1155                                 goto next;
1156                 }
1157                 if (first_handle) {
1158                         ret = pool->ops->evict(pool, first_handle);
1159                         if (ret)
1160                                 goto next;
1161                 }
1162                 if (last_handle) {
1163                         ret = pool->ops->evict(pool, last_handle);
1164                         if (ret)
1165                                 goto next;
1166                 }
1167 next:
1168                 if (test_bit(PAGE_HEADLESS, &page->private)) {
1169                         if (ret == 0) {
1170                                 free_z3fold_page(page, true);
1171                                 atomic64_dec(&pool->pages_nr);
1172                                 return 0;
1173                         }
1174                         spin_lock(&pool->lock);
1175                         list_add(&page->lru, &pool->lru);
1176                         spin_unlock(&pool->lock);
1177                 } else {
1178                         z3fold_page_lock(zhdr);
1179                         clear_bit(PAGE_CLAIMED, &page->private);
1180                         if (kref_put(&zhdr->refcount,
1181                                         release_z3fold_page_locked)) {
1182                                 atomic64_dec(&pool->pages_nr);
1183                                 return 0;
1184                         }
1185                         /*
1186                          * if we are here, the page is still not completely
1187                          * free. Take the global pool lock then to be able
1188                          * to add it back to the lru list
1189                          */
1190                         spin_lock(&pool->lock);
1191                         list_add(&page->lru, &pool->lru);
1192                         spin_unlock(&pool->lock);
1193                         z3fold_page_unlock(zhdr);
1194                 }
1195
1196                 /* We started off locked to we need to lock the pool back */
1197                 spin_lock(&pool->lock);
1198         }
1199         spin_unlock(&pool->lock);
1200         return -EAGAIN;
1201 }
1202
1203 /**
1204  * z3fold_map() - maps the allocation associated with the given handle
1205  * @pool:       pool in which the allocation resides
1206  * @handle:     handle associated with the allocation to be mapped
1207  *
1208  * Extracts the buddy number from handle and constructs the pointer to the
1209  * correct starting chunk within the page.
1210  *
1211  * Returns: a pointer to the mapped allocation
1212  */
1213 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1214 {
1215         struct z3fold_header *zhdr;
1216         struct page *page;
1217         void *addr;
1218         enum buddy buddy;
1219
1220         zhdr = handle_to_z3fold_header(handle);
1221         addr = zhdr;
1222         page = virt_to_page(zhdr);
1223
1224         if (test_bit(PAGE_HEADLESS, &page->private))
1225                 goto out;
1226
1227         z3fold_page_lock(zhdr);
1228         buddy = handle_to_buddy(handle);
1229         switch (buddy) {
1230         case FIRST:
1231                 addr += ZHDR_SIZE_ALIGNED;
1232                 break;
1233         case MIDDLE:
1234                 addr += zhdr->start_middle << CHUNK_SHIFT;
1235                 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1236                 break;
1237         case LAST:
1238                 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1239                 break;
1240         default:
1241                 pr_err("unknown buddy id %d\n", buddy);
1242                 WARN_ON(1);
1243                 addr = NULL;
1244                 break;
1245         }
1246
1247         if (addr)
1248                 zhdr->mapped_count++;
1249         z3fold_page_unlock(zhdr);
1250 out:
1251         return addr;
1252 }
1253
1254 /**
1255  * z3fold_unmap() - unmaps the allocation associated with the given handle
1256  * @pool:       pool in which the allocation resides
1257  * @handle:     handle associated with the allocation to be unmapped
1258  */
1259 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1260 {
1261         struct z3fold_header *zhdr;
1262         struct page *page;
1263         enum buddy buddy;
1264
1265         zhdr = handle_to_z3fold_header(handle);
1266         page = virt_to_page(zhdr);
1267
1268         if (test_bit(PAGE_HEADLESS, &page->private))
1269                 return;
1270
1271         z3fold_page_lock(zhdr);
1272         buddy = handle_to_buddy(handle);
1273         if (buddy == MIDDLE)
1274                 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1275         zhdr->mapped_count--;
1276         z3fold_page_unlock(zhdr);
1277 }
1278
1279 /**
1280  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1281  * @pool:       pool whose size is being queried
1282  *
1283  * Returns: size in pages of the given pool.
1284  */
1285 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1286 {
1287         return atomic64_read(&pool->pages_nr);
1288 }
1289
1290 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1291 {
1292         struct z3fold_header *zhdr;
1293         struct z3fold_pool *pool;
1294
1295         VM_BUG_ON_PAGE(!PageMovable(page), page);
1296         VM_BUG_ON_PAGE(PageIsolated(page), page);
1297
1298         if (test_bit(PAGE_HEADLESS, &page->private))
1299                 return false;
1300
1301         zhdr = page_address(page);
1302         z3fold_page_lock(zhdr);
1303         if (test_bit(NEEDS_COMPACTING, &page->private) ||
1304             test_bit(PAGE_STALE, &page->private))
1305                 goto out;
1306
1307         pool = zhdr_to_pool(zhdr);
1308
1309         if (zhdr->mapped_count == 0) {
1310                 kref_get(&zhdr->refcount);
1311                 if (!list_empty(&zhdr->buddy))
1312                         list_del_init(&zhdr->buddy);
1313                 spin_lock(&pool->lock);
1314                 if (!list_empty(&page->lru))
1315                         list_del(&page->lru);
1316                 spin_unlock(&pool->lock);
1317                 z3fold_page_unlock(zhdr);
1318                 return true;
1319         }
1320 out:
1321         z3fold_page_unlock(zhdr);
1322         return false;
1323 }
1324
1325 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1326                                struct page *page, enum migrate_mode mode)
1327 {
1328         struct z3fold_header *zhdr, *new_zhdr;
1329         struct z3fold_pool *pool;
1330         struct address_space *new_mapping;
1331
1332         VM_BUG_ON_PAGE(!PageMovable(page), page);
1333         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1334
1335         zhdr = page_address(page);
1336         pool = zhdr_to_pool(zhdr);
1337
1338         if (!trylock_page(page))
1339                 return -EAGAIN;
1340
1341         if (!z3fold_page_trylock(zhdr)) {
1342                 unlock_page(page);
1343                 return -EAGAIN;
1344         }
1345         if (zhdr->mapped_count != 0) {
1346                 z3fold_page_unlock(zhdr);
1347                 unlock_page(page);
1348                 return -EBUSY;
1349         }
1350         new_zhdr = page_address(newpage);
1351         memcpy(new_zhdr, zhdr, PAGE_SIZE);
1352         newpage->private = page->private;
1353         page->private = 0;
1354         z3fold_page_unlock(zhdr);
1355         spin_lock_init(&new_zhdr->page_lock);
1356         new_mapping = page_mapping(page);
1357         __ClearPageMovable(page);
1358         ClearPagePrivate(page);
1359
1360         get_page(newpage);
1361         z3fold_page_lock(new_zhdr);
1362         if (new_zhdr->first_chunks)
1363                 encode_handle(new_zhdr, FIRST);
1364         if (new_zhdr->last_chunks)
1365                 encode_handle(new_zhdr, LAST);
1366         if (new_zhdr->middle_chunks)
1367                 encode_handle(new_zhdr, MIDDLE);
1368         set_bit(NEEDS_COMPACTING, &newpage->private);
1369         new_zhdr->cpu = smp_processor_id();
1370         spin_lock(&pool->lock);
1371         list_add(&newpage->lru, &pool->lru);
1372         spin_unlock(&pool->lock);
1373         __SetPageMovable(newpage, new_mapping);
1374         z3fold_page_unlock(new_zhdr);
1375
1376         queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1377
1378         page_mapcount_reset(page);
1379         unlock_page(page);
1380         put_page(page);
1381         return 0;
1382 }
1383
1384 static void z3fold_page_putback(struct page *page)
1385 {
1386         struct z3fold_header *zhdr;
1387         struct z3fold_pool *pool;
1388
1389         zhdr = page_address(page);
1390         pool = zhdr_to_pool(zhdr);
1391
1392         z3fold_page_lock(zhdr);
1393         if (!list_empty(&zhdr->buddy))
1394                 list_del_init(&zhdr->buddy);
1395         INIT_LIST_HEAD(&page->lru);
1396         if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1397                 atomic64_dec(&pool->pages_nr);
1398                 return;
1399         }
1400         spin_lock(&pool->lock);
1401         list_add(&page->lru, &pool->lru);
1402         spin_unlock(&pool->lock);
1403         z3fold_page_unlock(zhdr);
1404 }
1405
1406 static const struct address_space_operations z3fold_aops = {
1407         .isolate_page = z3fold_page_isolate,
1408         .migratepage = z3fold_page_migrate,
1409         .putback_page = z3fold_page_putback,
1410 };
1411
1412 /*****************
1413  * zpool
1414  ****************/
1415
1416 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1417 {
1418         if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1419                 return pool->zpool_ops->evict(pool->zpool, handle);
1420         else
1421                 return -ENOENT;
1422 }
1423
1424 static const struct z3fold_ops z3fold_zpool_ops = {
1425         .evict =        z3fold_zpool_evict
1426 };
1427
1428 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1429                                const struct zpool_ops *zpool_ops,
1430                                struct zpool *zpool)
1431 {
1432         struct z3fold_pool *pool;
1433
1434         pool = z3fold_create_pool(name, gfp,
1435                                 zpool_ops ? &z3fold_zpool_ops : NULL);
1436         if (pool) {
1437                 pool->zpool = zpool;
1438                 pool->zpool_ops = zpool_ops;
1439         }
1440         return pool;
1441 }
1442
1443 static void z3fold_zpool_destroy(void *pool)
1444 {
1445         z3fold_destroy_pool(pool);
1446 }
1447
1448 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1449                         unsigned long *handle)
1450 {
1451         return z3fold_alloc(pool, size, gfp, handle);
1452 }
1453 static void z3fold_zpool_free(void *pool, unsigned long handle)
1454 {
1455         z3fold_free(pool, handle);
1456 }
1457
1458 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1459                         unsigned int *reclaimed)
1460 {
1461         unsigned int total = 0;
1462         int ret = -EINVAL;
1463
1464         while (total < pages) {
1465                 ret = z3fold_reclaim_page(pool, 8);
1466                 if (ret < 0)
1467                         break;
1468                 total++;
1469         }
1470
1471         if (reclaimed)
1472                 *reclaimed = total;
1473
1474         return ret;
1475 }
1476
1477 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1478                         enum zpool_mapmode mm)
1479 {
1480         return z3fold_map(pool, handle);
1481 }
1482 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1483 {
1484         z3fold_unmap(pool, handle);
1485 }
1486
1487 static u64 z3fold_zpool_total_size(void *pool)
1488 {
1489         return z3fold_get_pool_size(pool) * PAGE_SIZE;
1490 }
1491
1492 static struct zpool_driver z3fold_zpool_driver = {
1493         .type =         "z3fold",
1494         .owner =        THIS_MODULE,
1495         .create =       z3fold_zpool_create,
1496         .destroy =      z3fold_zpool_destroy,
1497         .malloc =       z3fold_zpool_malloc,
1498         .free =         z3fold_zpool_free,
1499         .shrink =       z3fold_zpool_shrink,
1500         .map =          z3fold_zpool_map,
1501         .unmap =        z3fold_zpool_unmap,
1502         .total_size =   z3fold_zpool_total_size,
1503 };
1504
1505 MODULE_ALIAS("zpool-z3fold");
1506
1507 static int __init init_z3fold(void)
1508 {
1509         int ret;
1510
1511         /* Make sure the z3fold header is not larger than the page size */
1512         BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1513         ret = z3fold_mount();
1514         if (ret)
1515                 return ret;
1516
1517         zpool_register_driver(&z3fold_zpool_driver);
1518
1519         return 0;
1520 }
1521
1522 static void __exit exit_z3fold(void)
1523 {
1524         z3fold_unmount();
1525         zpool_unregister_driver(&z3fold_zpool_driver);
1526 }
1527
1528 module_init(init_z3fold);
1529 module_exit(exit_z3fold);
1530
1531 MODULE_LICENSE("GPL");
1532 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1533 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");