1 // SPDX-License-Identifier: GPL-2.0-only
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
69 static void invalid_numa_statistics(void)
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
75 static DEFINE_MUTEX(vm_numa_stat_lock);
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
82 mutex_lock(&vm_numa_stat_lock);
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
89 if (oldval == sysctl_vm_numa_stat)
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
101 mutex_unlock(&vm_numa_stat_lock);
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 static void sum_vm_events(unsigned long *ret)
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
130 void all_vm_events(unsigned long *ret)
136 EXPORT_SYMBOL_GPL(all_vm_events);
139 * Fold the foreign cpu events into our own.
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
144 void vm_events_fold_cpu(int cpu)
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
158 * Manage combined zone based / global counters
160 * vm_stat contains the global counters
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
169 static void fold_vm_zone_numa_events(struct zone *zone)
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 enum numa_stat_item item;
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
187 void fold_vm_numa_events(void)
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
198 int calculate_pressure_threshold(struct zone *zone)
201 int watermark_distance;
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
215 * Maximum threshold is 125
217 threshold = min(125, threshold);
222 int calculate_normal_threshold(struct zone *zone)
225 int mem; /* memory in 128 MB units */
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
233 * Some sample thresholds:
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
262 * Maximum threshold is 125
264 threshold = min(125, threshold);
270 * Refresh the thresholds for each zone.
272 void refresh_zone_stat_thresholds(void)
274 struct pglist_data *pgdat;
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
290 threshold = calculate_normal_threshold(zone);
292 for_each_online_cpu(cpu) {
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
357 preempt_disable_nested();
359 x = delta + __this_cpu_read(*p);
361 t = __this_cpu_read(pcp->stat_threshold);
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
367 __this_cpu_write(*p, x);
369 preempt_enable_nested();
371 EXPORT_SYMBOL(__mod_zone_page_state);
373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
381 if (vmstat_item_in_bytes(item)) {
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
395 x = delta + __this_cpu_read(*p);
397 t = __this_cpu_read(pcp->stat_threshold);
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
403 __this_cpu_write(*p, x);
405 preempt_enable_nested();
407 EXPORT_SYMBOL(__mod_node_page_state);
410 * Optimized increment and decrement functions.
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
422 * NOTE: These functions are very performance sensitive. Change only
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
446 zone_page_state_add(v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
450 preempt_enable_nested();
453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
469 node_page_state_add(v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
473 preempt_enable_nested();
476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
478 __inc_zone_state(page_zone(page), item);
480 EXPORT_SYMBOL(__inc_zone_page_state);
482 void __inc_node_page_state(struct page *page, enum node_stat_item item)
484 __inc_node_state(page_pgdat(page), item);
486 EXPORT_SYMBOL(__inc_node_page_state);
488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
502 zone_page_state_add(v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
506 preempt_enable_nested();
509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
525 node_page_state_add(v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
529 preempt_enable_nested();
532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
534 __dec_zone_state(page_zone(page), item);
536 EXPORT_SYMBOL(__dec_zone_page_state);
538 void __dec_node_page_state(struct page *page, enum node_stat_item item)
540 __dec_node_state(page_pgdat(page), item);
542 EXPORT_SYMBOL(__dec_node_page_state);
544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
549 * mod_state() modifies the zone counter state through atomic per cpu
552 * Overstep mode specifies how overstep should handled:
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
557 static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
565 z = 0; /* overflow to zone counters */
568 * The fetching of the stat_threshold is racy. We may apply
569 * a counter threshold to the wrong the cpu if we get
570 * rescheduled while executing here. However, the next
571 * counter update will apply the threshold again and
572 * therefore bring the counter under the threshold again.
574 * Most of the time the thresholds are the same anyways
575 * for all cpus in a zone.
577 t = this_cpu_read(pcp->stat_threshold);
579 o = this_cpu_read(*p);
583 int os = overstep_mode * (t >> 1) ;
585 /* Overflow must be added to zone counters */
589 } while (this_cpu_cmpxchg(*p, o, n) != o);
592 zone_page_state_add(z, zone, item);
595 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
598 mod_zone_state(zone, item, delta, 0);
600 EXPORT_SYMBOL(mod_zone_page_state);
602 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604 mod_zone_state(page_zone(page), item, 1, 1);
606 EXPORT_SYMBOL(inc_zone_page_state);
608 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610 mod_zone_state(page_zone(page), item, -1, -1);
612 EXPORT_SYMBOL(dec_zone_page_state);
614 static inline void mod_node_state(struct pglist_data *pgdat,
615 enum node_stat_item item, int delta, int overstep_mode)
617 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618 s8 __percpu *p = pcp->vm_node_stat_diff + item;
621 if (vmstat_item_in_bytes(item)) {
623 * Only cgroups use subpage accounting right now; at
624 * the global level, these items still change in
625 * multiples of whole pages. Store them as pages
626 * internally to keep the per-cpu counters compact.
628 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629 delta >>= PAGE_SHIFT;
633 z = 0; /* overflow to node counters */
636 * The fetching of the stat_threshold is racy. We may apply
637 * a counter threshold to the wrong the cpu if we get
638 * rescheduled while executing here. However, the next
639 * counter update will apply the threshold again and
640 * therefore bring the counter under the threshold again.
642 * Most of the time the thresholds are the same anyways
643 * for all cpus in a node.
645 t = this_cpu_read(pcp->stat_threshold);
647 o = this_cpu_read(*p);
651 int os = overstep_mode * (t >> 1) ;
653 /* Overflow must be added to node counters */
657 } while (this_cpu_cmpxchg(*p, o, n) != o);
660 node_page_state_add(z, pgdat, item);
663 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
666 mod_node_state(pgdat, item, delta, 0);
668 EXPORT_SYMBOL(mod_node_page_state);
670 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
672 mod_node_state(pgdat, item, 1, 1);
675 void inc_node_page_state(struct page *page, enum node_stat_item item)
677 mod_node_state(page_pgdat(page), item, 1, 1);
679 EXPORT_SYMBOL(inc_node_page_state);
681 void dec_node_page_state(struct page *page, enum node_stat_item item)
683 mod_node_state(page_pgdat(page), item, -1, -1);
685 EXPORT_SYMBOL(dec_node_page_state);
688 * Use interrupt disable to serialize counter updates
690 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
695 local_irq_save(flags);
696 __mod_zone_page_state(zone, item, delta);
697 local_irq_restore(flags);
699 EXPORT_SYMBOL(mod_zone_page_state);
701 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
706 zone = page_zone(page);
707 local_irq_save(flags);
708 __inc_zone_state(zone, item);
709 local_irq_restore(flags);
711 EXPORT_SYMBOL(inc_zone_page_state);
713 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
717 local_irq_save(flags);
718 __dec_zone_page_state(page, item);
719 local_irq_restore(flags);
721 EXPORT_SYMBOL(dec_zone_page_state);
723 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
727 local_irq_save(flags);
728 __inc_node_state(pgdat, item);
729 local_irq_restore(flags);
731 EXPORT_SYMBOL(inc_node_state);
733 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
738 local_irq_save(flags);
739 __mod_node_page_state(pgdat, item, delta);
740 local_irq_restore(flags);
742 EXPORT_SYMBOL(mod_node_page_state);
744 void inc_node_page_state(struct page *page, enum node_stat_item item)
747 struct pglist_data *pgdat;
749 pgdat = page_pgdat(page);
750 local_irq_save(flags);
751 __inc_node_state(pgdat, item);
752 local_irq_restore(flags);
754 EXPORT_SYMBOL(inc_node_page_state);
756 void dec_node_page_state(struct page *page, enum node_stat_item item)
760 local_irq_save(flags);
761 __dec_node_page_state(page, item);
762 local_irq_restore(flags);
764 EXPORT_SYMBOL(dec_node_page_state);
768 * Fold a differential into the global counters.
769 * Returns the number of counters updated.
771 static int fold_diff(int *zone_diff, int *node_diff)
776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
778 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
782 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
784 atomic_long_add(node_diff[i], &vm_node_stat[i]);
791 * Update the zone counters for the current cpu.
793 * Note that refresh_cpu_vm_stats strives to only access
794 * node local memory. The per cpu pagesets on remote zones are placed
795 * in the memory local to the processor using that pageset. So the
796 * loop over all zones will access a series of cachelines local to
799 * The call to zone_page_state_add updates the cachelines with the
800 * statistics in the remote zone struct as well as the global cachelines
801 * with the global counters. These could cause remote node cache line
802 * bouncing and will have to be only done when necessary.
804 * The function returns the number of global counters updated.
806 static int refresh_cpu_vm_stats(bool do_pagesets)
808 struct pglist_data *pgdat;
811 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
815 for_each_populated_zone(zone) {
816 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
818 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
827 atomic_long_add(v, &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
840 * Deal with draining the remote pageset of this
843 * Check if there are pages remaining in this pageset
844 * if not then there is nothing to expire.
846 if (!__this_cpu_read(pcp->expire) ||
847 !__this_cpu_read(pcp->count))
851 * We never drain zones local to this processor.
853 if (zone_to_nid(zone) == numa_node_id()) {
854 __this_cpu_write(pcp->expire, 0);
858 if (__this_cpu_dec_return(pcp->expire))
861 if (__this_cpu_read(pcp->count)) {
862 drain_zone_pages(zone, this_cpu_ptr(pcp));
869 for_each_online_pgdat(pgdat) {
870 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
872 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
875 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
877 atomic_long_add(v, &pgdat->vm_stat[i]);
878 global_node_diff[i] += v;
883 changes += fold_diff(global_zone_diff, global_node_diff);
888 * Fold the data for an offline cpu into the global array.
889 * There cannot be any access by the offline cpu and therefore
890 * synchronization is simplified.
892 void cpu_vm_stats_fold(int cpu)
894 struct pglist_data *pgdat;
897 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
900 for_each_populated_zone(zone) {
901 struct per_cpu_zonestat *pzstats;
903 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906 if (pzstats->vm_stat_diff[i]) {
909 v = pzstats->vm_stat_diff[i];
910 pzstats->vm_stat_diff[i] = 0;
911 atomic_long_add(v, &zone->vm_stat[i]);
912 global_zone_diff[i] += v;
916 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917 if (pzstats->vm_numa_event[i]) {
920 v = pzstats->vm_numa_event[i];
921 pzstats->vm_numa_event[i] = 0;
922 zone_numa_event_add(v, zone, i);
928 for_each_online_pgdat(pgdat) {
929 struct per_cpu_nodestat *p;
931 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
933 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934 if (p->vm_node_stat_diff[i]) {
937 v = p->vm_node_stat_diff[i];
938 p->vm_node_stat_diff[i] = 0;
939 atomic_long_add(v, &pgdat->vm_stat[i]);
940 global_node_diff[i] += v;
944 fold_diff(global_zone_diff, global_node_diff);
948 * this is only called if !populated_zone(zone), which implies no other users of
949 * pset->vm_stat_diff[] exist.
951 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
956 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957 if (pzstats->vm_stat_diff[i]) {
958 v = pzstats->vm_stat_diff[i];
959 pzstats->vm_stat_diff[i] = 0;
960 zone_page_state_add(v, zone, i);
965 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966 if (pzstats->vm_numa_event[i]) {
967 v = pzstats->vm_numa_event[i];
968 pzstats->vm_numa_event[i] = 0;
969 zone_numa_event_add(v, zone, i);
978 * Determine the per node value of a stat item. This function
979 * is called frequently in a NUMA machine, so try to be as
980 * frugal as possible.
982 unsigned long sum_zone_node_page_state(int node,
983 enum zone_stat_item item)
985 struct zone *zones = NODE_DATA(node)->node_zones;
987 unsigned long count = 0;
989 for (i = 0; i < MAX_NR_ZONES; i++)
990 count += zone_page_state(zones + i, item);
995 /* Determine the per node value of a numa stat item. */
996 unsigned long sum_zone_numa_event_state(int node,
997 enum numa_stat_item item)
999 struct zone *zones = NODE_DATA(node)->node_zones;
1000 unsigned long count = 0;
1003 for (i = 0; i < MAX_NR_ZONES; i++)
1004 count += zone_numa_event_state(zones + i, item);
1010 * Determine the per node value of a stat item.
1012 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013 enum node_stat_item item)
1015 long x = atomic_long_read(&pgdat->vm_stat[item]);
1023 unsigned long node_page_state(struct pglist_data *pgdat,
1024 enum node_stat_item item)
1026 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1028 return node_page_state_pages(pgdat, item);
1032 #ifdef CONFIG_COMPACTION
1034 struct contig_page_info {
1035 unsigned long free_pages;
1036 unsigned long free_blocks_total;
1037 unsigned long free_blocks_suitable;
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1048 static void fill_contig_page_info(struct zone *zone,
1049 unsigned int suitable_order,
1050 struct contig_page_info *info)
1054 info->free_pages = 0;
1055 info->free_blocks_total = 0;
1056 info->free_blocks_suitable = 0;
1058 for (order = 0; order <= MAX_ORDER; order++) {
1059 unsigned long blocks;
1062 * Count number of free blocks.
1064 * Access to nr_free is lockless as nr_free is used only for
1065 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1067 blocks = data_race(zone->free_area[order].nr_free);
1068 info->free_blocks_total += blocks;
1070 /* Count free base pages */
1071 info->free_pages += blocks << order;
1073 /* Count the suitable free blocks */
1074 if (order >= suitable_order)
1075 info->free_blocks_suitable += blocks <<
1076 (order - suitable_order);
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1087 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1089 unsigned long requested = 1UL << order;
1091 if (WARN_ON_ONCE(order > MAX_ORDER))
1094 if (!info->free_blocks_total)
1097 /* Fragmentation index only makes sense when a request would fail */
1098 if (info->free_blocks_suitable)
1102 * Index is between 0 and 1 so return within 3 decimal places
1104 * 0 => allocation would fail due to lack of memory
1105 * 1 => allocation would fail due to fragmentation
1107 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1115 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1117 struct contig_page_info info;
1119 fill_contig_page_info(zone, order, &info);
1120 if (info.free_pages == 0)
1123 return div_u64((info.free_pages -
1124 (info.free_blocks_suitable << order)) * 100,
1128 /* Same as __fragmentation index but allocs contig_page_info on stack */
1129 int fragmentation_index(struct zone *zone, unsigned int order)
1131 struct contig_page_info info;
1133 fill_contig_page_info(zone, order, &info);
1134 return __fragmentation_index(order, &info);
1138 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140 #ifdef CONFIG_ZONE_DMA
1141 #define TEXT_FOR_DMA(xx) xx "_dma",
1143 #define TEXT_FOR_DMA(xx)
1146 #ifdef CONFIG_ZONE_DMA32
1147 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1149 #define TEXT_FOR_DMA32(xx)
1152 #ifdef CONFIG_HIGHMEM
1153 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155 #define TEXT_FOR_HIGHMEM(xx)
1158 #ifdef CONFIG_ZONE_DEVICE
1159 #define TEXT_FOR_DEVICE(xx) xx "_device",
1161 #define TEXT_FOR_DEVICE(xx)
1164 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1168 const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 "nr_zone_unevictable",
1176 "nr_zone_write_pending",
1179 #if IS_ENABLED(CONFIG_ZSMALLOC)
1184 /* enum numa_stat_item counters */
1194 /* enum node_stat_item counters */
1200 "nr_slab_reclaimable",
1201 "nr_slab_unreclaimable",
1205 "workingset_refault_anon",
1206 "workingset_refault_file",
1207 "workingset_activate_anon",
1208 "workingset_activate_file",
1209 "workingset_restore_anon",
1210 "workingset_restore_file",
1211 "workingset_nodereclaim",
1217 "nr_writeback_temp",
1219 "nr_shmem_hugepages",
1220 "nr_shmem_pmdmapped",
1221 "nr_file_hugepages",
1222 "nr_file_pmdmapped",
1223 "nr_anon_transparent_hugepages",
1225 "nr_vmscan_immediate_reclaim",
1228 "nr_throttled_written",
1229 "nr_kernel_misc_reclaimable",
1230 "nr_foll_pin_acquired",
1231 "nr_foll_pin_released",
1233 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234 "nr_shadow_call_stack",
1236 "nr_page_table_pages",
1237 "nr_sec_page_table_pages",
1241 #ifdef CONFIG_NUMA_BALANCING
1242 "pgpromote_success",
1243 "pgpromote_candidate",
1246 /* enum writeback_stat_item counters */
1247 "nr_dirty_threshold",
1248 "nr_dirty_background_threshold",
1250 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251 /* enum vm_event_item counters */
1257 TEXTS_FOR_ZONES("pgalloc")
1258 TEXTS_FOR_ZONES("allocstall")
1259 TEXTS_FOR_ZONES("pgskip")
1274 "pgsteal_khugepaged",
1277 "pgdemote_khugepaged",
1280 "pgscan_khugepaged",
1281 "pgscan_direct_throttle",
1288 "zone_reclaim_failed",
1292 "kswapd_inodesteal",
1293 "kswapd_low_wmark_hit_quickly",
1294 "kswapd_high_wmark_hit_quickly",
1303 #ifdef CONFIG_NUMA_BALANCING
1305 "numa_huge_pte_updates",
1307 "numa_hint_faults_local",
1308 "numa_pages_migrated",
1310 #ifdef CONFIG_MIGRATION
1311 "pgmigrate_success",
1313 "thp_migration_success",
1314 "thp_migration_fail",
1315 "thp_migration_split",
1317 #ifdef CONFIG_COMPACTION
1318 "compact_migrate_scanned",
1319 "compact_free_scanned",
1324 "compact_daemon_wake",
1325 "compact_daemon_migrate_scanned",
1326 "compact_daemon_free_scanned",
1329 #ifdef CONFIG_HUGETLB_PAGE
1330 "htlb_buddy_alloc_success",
1331 "htlb_buddy_alloc_fail",
1334 "cma_alloc_success",
1337 "unevictable_pgs_culled",
1338 "unevictable_pgs_scanned",
1339 "unevictable_pgs_rescued",
1340 "unevictable_pgs_mlocked",
1341 "unevictable_pgs_munlocked",
1342 "unevictable_pgs_cleared",
1343 "unevictable_pgs_stranded",
1345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1347 "thp_fault_fallback",
1348 "thp_fault_fallback_charge",
1349 "thp_collapse_alloc",
1350 "thp_collapse_alloc_failed",
1352 "thp_file_fallback",
1353 "thp_file_fallback_charge",
1356 "thp_split_page_failed",
1357 "thp_deferred_split_page",
1359 "thp_scan_exceed_none_pte",
1360 "thp_scan_exceed_swap_pte",
1361 "thp_scan_exceed_share_pte",
1362 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1365 "thp_zero_page_alloc",
1366 "thp_zero_page_alloc_failed",
1368 "thp_swpout_fallback",
1370 #ifdef CONFIG_MEMORY_BALLOON
1373 #ifdef CONFIG_BALLOON_COMPACTION
1376 #endif /* CONFIG_MEMORY_BALLOON */
1377 #ifdef CONFIG_DEBUG_TLBFLUSH
1378 "nr_tlb_remote_flush",
1379 "nr_tlb_remote_flush_received",
1380 "nr_tlb_local_flush_all",
1381 "nr_tlb_local_flush_one",
1382 #endif /* CONFIG_DEBUG_TLBFLUSH */
1399 "direct_map_level2_splits",
1400 "direct_map_level3_splits",
1402 #ifdef CONFIG_PER_VMA_LOCK_STATS
1408 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1410 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1412 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1413 defined(CONFIG_PROC_FS)
1414 static void *frag_start(struct seq_file *m, loff_t *pos)
1419 for (pgdat = first_online_pgdat();
1421 pgdat = next_online_pgdat(pgdat))
1427 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1429 pg_data_t *pgdat = (pg_data_t *)arg;
1432 return next_online_pgdat(pgdat);
1435 static void frag_stop(struct seq_file *m, void *arg)
1440 * Walk zones in a node and print using a callback.
1441 * If @assert_populated is true, only use callback for zones that are populated.
1443 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1444 bool assert_populated, bool nolock,
1445 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1448 struct zone *node_zones = pgdat->node_zones;
1449 unsigned long flags;
1451 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1452 if (assert_populated && !populated_zone(zone))
1456 spin_lock_irqsave(&zone->lock, flags);
1457 print(m, pgdat, zone);
1459 spin_unlock_irqrestore(&zone->lock, flags);
1464 #ifdef CONFIG_PROC_FS
1465 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1470 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1471 for (order = 0; order <= MAX_ORDER; ++order)
1473 * Access to nr_free is lockless as nr_free is used only for
1474 * printing purposes. Use data_race to avoid KCSAN warning.
1476 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1481 * This walks the free areas for each zone.
1483 static int frag_show(struct seq_file *m, void *arg)
1485 pg_data_t *pgdat = (pg_data_t *)arg;
1486 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1490 static void pagetypeinfo_showfree_print(struct seq_file *m,
1491 pg_data_t *pgdat, struct zone *zone)
1495 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1496 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1499 migratetype_names[mtype]);
1500 for (order = 0; order <= MAX_ORDER; ++order) {
1501 unsigned long freecount = 0;
1502 struct free_area *area;
1503 struct list_head *curr;
1504 bool overflow = false;
1506 area = &(zone->free_area[order]);
1508 list_for_each(curr, &area->free_list[mtype]) {
1510 * Cap the free_list iteration because it might
1511 * be really large and we are under a spinlock
1512 * so a long time spent here could trigger a
1513 * hard lockup detector. Anyway this is a
1514 * debugging tool so knowing there is a handful
1515 * of pages of this order should be more than
1518 if (++freecount >= 100000) {
1523 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1524 spin_unlock_irq(&zone->lock);
1526 spin_lock_irq(&zone->lock);
1532 /* Print out the free pages at each order for each migatetype */
1533 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1536 pg_data_t *pgdat = (pg_data_t *)arg;
1539 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1540 for (order = 0; order <= MAX_ORDER; ++order)
1541 seq_printf(m, "%6d ", order);
1544 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1547 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1548 pg_data_t *pgdat, struct zone *zone)
1552 unsigned long start_pfn = zone->zone_start_pfn;
1553 unsigned long end_pfn = zone_end_pfn(zone);
1554 unsigned long count[MIGRATE_TYPES] = { 0, };
1556 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1559 page = pfn_to_online_page(pfn);
1563 if (page_zone(page) != zone)
1566 mtype = get_pageblock_migratetype(page);
1568 if (mtype < MIGRATE_TYPES)
1573 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1574 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1575 seq_printf(m, "%12lu ", count[mtype]);
1579 /* Print out the number of pageblocks for each migratetype */
1580 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1583 pg_data_t *pgdat = (pg_data_t *)arg;
1585 seq_printf(m, "\n%-23s", "Number of blocks type ");
1586 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1587 seq_printf(m, "%12s ", migratetype_names[mtype]);
1589 walk_zones_in_node(m, pgdat, true, false,
1590 pagetypeinfo_showblockcount_print);
1594 * Print out the number of pageblocks for each migratetype that contain pages
1595 * of other types. This gives an indication of how well fallbacks are being
1596 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1597 * to determine what is going on
1599 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1601 #ifdef CONFIG_PAGE_OWNER
1604 if (!static_branch_unlikely(&page_owner_inited))
1607 drain_all_pages(NULL);
1609 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1610 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1611 seq_printf(m, "%12s ", migratetype_names[mtype]);
1614 walk_zones_in_node(m, pgdat, true, true,
1615 pagetypeinfo_showmixedcount_print);
1616 #endif /* CONFIG_PAGE_OWNER */
1620 * This prints out statistics in relation to grouping pages by mobility.
1621 * It is expensive to collect so do not constantly read the file.
1623 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1625 pg_data_t *pgdat = (pg_data_t *)arg;
1627 /* check memoryless node */
1628 if (!node_state(pgdat->node_id, N_MEMORY))
1631 seq_printf(m, "Page block order: %d\n", pageblock_order);
1632 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1634 pagetypeinfo_showfree(m, pgdat);
1635 pagetypeinfo_showblockcount(m, pgdat);
1636 pagetypeinfo_showmixedcount(m, pgdat);
1641 static const struct seq_operations fragmentation_op = {
1642 .start = frag_start,
1648 static const struct seq_operations pagetypeinfo_op = {
1649 .start = frag_start,
1652 .show = pagetypeinfo_show,
1655 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1659 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1660 struct zone *compare = &pgdat->node_zones[zid];
1662 if (populated_zone(compare))
1663 return zone == compare;
1669 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1673 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1674 if (is_zone_first_populated(pgdat, zone)) {
1675 seq_printf(m, "\n per-node stats");
1676 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1677 unsigned long pages = node_page_state_pages(pgdat, i);
1679 if (vmstat_item_print_in_thp(i))
1680 pages /= HPAGE_PMD_NR;
1681 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1695 zone_page_state(zone, NR_FREE_PAGES),
1696 zone->watermark_boost,
1697 min_wmark_pages(zone),
1698 low_wmark_pages(zone),
1699 high_wmark_pages(zone),
1700 zone->spanned_pages,
1701 zone->present_pages,
1702 zone_managed_pages(zone),
1703 zone_cma_pages(zone));
1706 "\n protection: (%ld",
1707 zone->lowmem_reserve[0]);
1708 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1709 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1712 /* If unpopulated, no other information is useful */
1713 if (!populated_zone(zone)) {
1718 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1719 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1720 zone_page_state(zone, i));
1723 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1724 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1725 zone_numa_event_state(zone, i));
1728 seq_printf(m, "\n pagesets");
1729 for_each_online_cpu(i) {
1730 struct per_cpu_pages *pcp;
1731 struct per_cpu_zonestat __maybe_unused *pzstats;
1733 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1744 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1745 seq_printf(m, "\n vm stats threshold: %d",
1746 pzstats->stat_threshold);
1750 "\n node_unreclaimable: %u"
1751 "\n start_pfn: %lu",
1752 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1753 zone->zone_start_pfn);
1758 * Output information about zones in @pgdat. All zones are printed regardless
1759 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1760 * set of all zones and userspace would not be aware of such zones if they are
1761 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1763 static int zoneinfo_show(struct seq_file *m, void *arg)
1765 pg_data_t *pgdat = (pg_data_t *)arg;
1766 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1770 static const struct seq_operations zoneinfo_op = {
1771 .start = frag_start, /* iterate over all zones. The same as in
1775 .show = zoneinfo_show,
1778 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1779 NR_VM_NUMA_EVENT_ITEMS + \
1780 NR_VM_NODE_STAT_ITEMS + \
1781 NR_VM_WRITEBACK_STAT_ITEMS + \
1782 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1783 NR_VM_EVENT_ITEMS : 0))
1785 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1790 if (*pos >= NR_VMSTAT_ITEMS)
1793 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1794 fold_vm_numa_events();
1795 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1798 return ERR_PTR(-ENOMEM);
1799 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1800 v[i] = global_zone_page_state(i);
1801 v += NR_VM_ZONE_STAT_ITEMS;
1804 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1805 v[i] = global_numa_event_state(i);
1806 v += NR_VM_NUMA_EVENT_ITEMS;
1809 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1810 v[i] = global_node_page_state_pages(i);
1811 if (vmstat_item_print_in_thp(i))
1812 v[i] /= HPAGE_PMD_NR;
1814 v += NR_VM_NODE_STAT_ITEMS;
1816 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1817 v + NR_DIRTY_THRESHOLD);
1818 v += NR_VM_WRITEBACK_STAT_ITEMS;
1820 #ifdef CONFIG_VM_EVENT_COUNTERS
1822 v[PGPGIN] /= 2; /* sectors -> kbytes */
1825 return (unsigned long *)m->private + *pos;
1828 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1831 if (*pos >= NR_VMSTAT_ITEMS)
1833 return (unsigned long *)m->private + *pos;
1836 static int vmstat_show(struct seq_file *m, void *arg)
1838 unsigned long *l = arg;
1839 unsigned long off = l - (unsigned long *)m->private;
1841 seq_puts(m, vmstat_text[off]);
1842 seq_put_decimal_ull(m, " ", *l);
1845 if (off == NR_VMSTAT_ITEMS - 1) {
1847 * We've come to the end - add any deprecated counters to avoid
1848 * breaking userspace which might depend on them being present.
1850 seq_puts(m, "nr_unstable 0\n");
1855 static void vmstat_stop(struct seq_file *m, void *arg)
1861 static const struct seq_operations vmstat_op = {
1862 .start = vmstat_start,
1863 .next = vmstat_next,
1864 .stop = vmstat_stop,
1865 .show = vmstat_show,
1867 #endif /* CONFIG_PROC_FS */
1870 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1871 int sysctl_stat_interval __read_mostly = HZ;
1873 #ifdef CONFIG_PROC_FS
1874 static void refresh_vm_stats(struct work_struct *work)
1876 refresh_cpu_vm_stats(true);
1879 int vmstat_refresh(struct ctl_table *table, int write,
1880 void *buffer, size_t *lenp, loff_t *ppos)
1887 * The regular update, every sysctl_stat_interval, may come later
1888 * than expected: leaving a significant amount in per_cpu buckets.
1889 * This is particularly misleading when checking a quantity of HUGE
1890 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1891 * which can equally be echo'ed to or cat'ted from (by root),
1892 * can be used to update the stats just before reading them.
1894 * Oh, and since global_zone_page_state() etc. are so careful to hide
1895 * transiently negative values, report an error here if any of
1896 * the stats is negative, so we know to go looking for imbalance.
1898 err = schedule_on_each_cpu(refresh_vm_stats);
1901 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1903 * Skip checking stats known to go negative occasionally.
1906 case NR_ZONE_WRITE_PENDING:
1907 case NR_FREE_CMA_PAGES:
1910 val = atomic_long_read(&vm_zone_stat[i]);
1912 pr_warn("%s: %s %ld\n",
1913 __func__, zone_stat_name(i), val);
1916 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1918 * Skip checking stats known to go negative occasionally.
1924 val = atomic_long_read(&vm_node_stat[i]);
1926 pr_warn("%s: %s %ld\n",
1927 __func__, node_stat_name(i), val);
1936 #endif /* CONFIG_PROC_FS */
1938 static void vmstat_update(struct work_struct *w)
1940 if (refresh_cpu_vm_stats(true)) {
1942 * Counters were updated so we expect more updates
1943 * to occur in the future. Keep on running the
1944 * update worker thread.
1946 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1947 this_cpu_ptr(&vmstat_work),
1948 round_jiffies_relative(sysctl_stat_interval));
1953 * Check if the diffs for a certain cpu indicate that
1954 * an update is needed.
1956 static bool need_update(int cpu)
1958 pg_data_t *last_pgdat = NULL;
1961 for_each_populated_zone(zone) {
1962 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1963 struct per_cpu_nodestat *n;
1966 * The fast way of checking if there are any vmstat diffs.
1968 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1971 if (last_pgdat == zone->zone_pgdat)
1973 last_pgdat = zone->zone_pgdat;
1974 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1975 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1982 * Switch off vmstat processing and then fold all the remaining differentials
1983 * until the diffs stay at zero. The function is used by NOHZ and can only be
1984 * invoked when tick processing is not active.
1986 void quiet_vmstat(void)
1988 if (system_state != SYSTEM_RUNNING)
1991 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1994 if (!need_update(smp_processor_id()))
1998 * Just refresh counters and do not care about the pending delayed
1999 * vmstat_update. It doesn't fire that often to matter and canceling
2000 * it would be too expensive from this path.
2001 * vmstat_shepherd will take care about that for us.
2003 refresh_cpu_vm_stats(false);
2007 * Shepherd worker thread that checks the
2008 * differentials of processors that have their worker
2009 * threads for vm statistics updates disabled because of
2012 static void vmstat_shepherd(struct work_struct *w);
2014 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2016 static void vmstat_shepherd(struct work_struct *w)
2021 /* Check processors whose vmstat worker threads have been disabled */
2022 for_each_online_cpu(cpu) {
2023 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2025 if (!delayed_work_pending(dw) && need_update(cpu))
2026 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2032 schedule_delayed_work(&shepherd,
2033 round_jiffies_relative(sysctl_stat_interval));
2036 static void __init start_shepherd_timer(void)
2040 for_each_possible_cpu(cpu)
2041 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2044 schedule_delayed_work(&shepherd,
2045 round_jiffies_relative(sysctl_stat_interval));
2048 static void __init init_cpu_node_state(void)
2052 for_each_online_node(node) {
2053 if (!cpumask_empty(cpumask_of_node(node)))
2054 node_set_state(node, N_CPU);
2058 static int vmstat_cpu_online(unsigned int cpu)
2060 refresh_zone_stat_thresholds();
2062 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2063 node_set_state(cpu_to_node(cpu), N_CPU);
2069 static int vmstat_cpu_down_prep(unsigned int cpu)
2071 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2075 static int vmstat_cpu_dead(unsigned int cpu)
2077 const struct cpumask *node_cpus;
2080 node = cpu_to_node(cpu);
2082 refresh_zone_stat_thresholds();
2083 node_cpus = cpumask_of_node(node);
2084 if (!cpumask_empty(node_cpus))
2087 node_clear_state(node, N_CPU);
2094 struct workqueue_struct *mm_percpu_wq;
2096 void __init init_mm_internals(void)
2098 int ret __maybe_unused;
2100 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2103 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2104 NULL, vmstat_cpu_dead);
2106 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2108 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2110 vmstat_cpu_down_prep);
2112 pr_err("vmstat: failed to register 'online' hotplug state\n");
2115 init_cpu_node_state();
2118 start_shepherd_timer();
2120 #ifdef CONFIG_PROC_FS
2121 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2122 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2123 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2124 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2128 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2131 * Return an index indicating how much of the available free memory is
2132 * unusable for an allocation of the requested size.
2134 static int unusable_free_index(unsigned int order,
2135 struct contig_page_info *info)
2137 /* No free memory is interpreted as all free memory is unusable */
2138 if (info->free_pages == 0)
2142 * Index should be a value between 0 and 1. Return a value to 3
2145 * 0 => no fragmentation
2146 * 1 => high fragmentation
2148 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2152 static void unusable_show_print(struct seq_file *m,
2153 pg_data_t *pgdat, struct zone *zone)
2157 struct contig_page_info info;
2159 seq_printf(m, "Node %d, zone %8s ",
2162 for (order = 0; order <= MAX_ORDER; ++order) {
2163 fill_contig_page_info(zone, order, &info);
2164 index = unusable_free_index(order, &info);
2165 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2172 * Display unusable free space index
2174 * The unusable free space index measures how much of the available free
2175 * memory cannot be used to satisfy an allocation of a given size and is a
2176 * value between 0 and 1. The higher the value, the more of free memory is
2177 * unusable and by implication, the worse the external fragmentation is. This
2178 * can be expressed as a percentage by multiplying by 100.
2180 static int unusable_show(struct seq_file *m, void *arg)
2182 pg_data_t *pgdat = (pg_data_t *)arg;
2184 /* check memoryless node */
2185 if (!node_state(pgdat->node_id, N_MEMORY))
2188 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2193 static const struct seq_operations unusable_sops = {
2194 .start = frag_start,
2197 .show = unusable_show,
2200 DEFINE_SEQ_ATTRIBUTE(unusable);
2202 static void extfrag_show_print(struct seq_file *m,
2203 pg_data_t *pgdat, struct zone *zone)
2208 /* Alloc on stack as interrupts are disabled for zone walk */
2209 struct contig_page_info info;
2211 seq_printf(m, "Node %d, zone %8s ",
2214 for (order = 0; order <= MAX_ORDER; ++order) {
2215 fill_contig_page_info(zone, order, &info);
2216 index = __fragmentation_index(order, &info);
2217 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2224 * Display fragmentation index for orders that allocations would fail for
2226 static int extfrag_show(struct seq_file *m, void *arg)
2228 pg_data_t *pgdat = (pg_data_t *)arg;
2230 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2235 static const struct seq_operations extfrag_sops = {
2236 .start = frag_start,
2239 .show = extfrag_show,
2242 DEFINE_SEQ_ATTRIBUTE(extfrag);
2244 static int __init extfrag_debug_init(void)
2246 struct dentry *extfrag_debug_root;
2248 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2250 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2253 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2259 module_init(extfrag_debug_init);