1 // SPDX-License-Identifier: GPL-2.0-only
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
69 static void invalid_numa_statistics(void)
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
75 static DEFINE_MUTEX(vm_numa_stat_lock);
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
82 mutex_lock(&vm_numa_stat_lock);
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
89 if (oldval == sysctl_vm_numa_stat)
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
101 mutex_unlock(&vm_numa_stat_lock);
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 static void sum_vm_events(unsigned long *ret)
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
130 void all_vm_events(unsigned long *ret)
136 EXPORT_SYMBOL_GPL(all_vm_events);
139 * Fold the foreign cpu events into our own.
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
144 void vm_events_fold_cpu(int cpu)
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
158 * Manage combined zone based / global counters
160 * vm_stat contains the global counters
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
170 int calculate_pressure_threshold(struct zone *zone)
173 int watermark_distance;
176 * As vmstats are not up to date, there is drift between the estimated
177 * and real values. For high thresholds and a high number of CPUs, it
178 * is possible for the min watermark to be breached while the estimated
179 * value looks fine. The pressure threshold is a reduced value such
180 * that even the maximum amount of drift will not accidentally breach
183 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
184 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187 * Maximum threshold is 125
189 threshold = min(125, threshold);
194 int calculate_normal_threshold(struct zone *zone)
197 int mem; /* memory in 128 MB units */
200 * The threshold scales with the number of processors and the amount
201 * of memory per zone. More memory means that we can defer updates for
202 * longer, more processors could lead to more contention.
203 * fls() is used to have a cheap way of logarithmic scaling.
205 * Some sample thresholds:
207 * Threshold Processors (fls) Zonesize fls(mem)+1
208 * ------------------------------------------------------------------
225 * 125 1024 10 8-16 GB 8
226 * 125 1024 10 16-32 GB 9
229 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
231 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234 * Maximum threshold is 125
236 threshold = min(125, threshold);
242 * Refresh the thresholds for each zone.
244 void refresh_zone_stat_thresholds(void)
246 struct pglist_data *pgdat;
251 /* Zero current pgdat thresholds */
252 for_each_online_pgdat(pgdat) {
253 for_each_online_cpu(cpu) {
254 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
258 for_each_populated_zone(zone) {
259 struct pglist_data *pgdat = zone->zone_pgdat;
260 unsigned long max_drift, tolerate_drift;
262 threshold = calculate_normal_threshold(zone);
264 for_each_online_cpu(cpu) {
267 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
270 /* Base nodestat threshold on the largest populated zone. */
271 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
272 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
273 = max(threshold, pgdat_threshold);
277 * Only set percpu_drift_mark if there is a danger that
278 * NR_FREE_PAGES reports the low watermark is ok when in fact
279 * the min watermark could be breached by an allocation
281 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
282 max_drift = num_online_cpus() * threshold;
283 if (max_drift > tolerate_drift)
284 zone->percpu_drift_mark = high_wmark_pages(zone) +
289 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
290 int (*calculate_pressure)(struct zone *))
297 for (i = 0; i < pgdat->nr_zones; i++) {
298 zone = &pgdat->node_zones[i];
299 if (!zone->percpu_drift_mark)
302 threshold = (*calculate_pressure)(zone);
303 for_each_online_cpu(cpu)
304 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
310 * For use when we know that interrupts are disabled,
311 * or when we know that preemption is disabled and that
312 * particular counter cannot be updated from interrupt context.
314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
318 s8 __percpu *p = pcp->vm_stat_diff + item;
323 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
324 * atomicity is provided by IRQs being disabled -- either explicitly
325 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
326 * CPU migrations and preemption potentially corrupts a counter so
327 * disable preemption.
329 if (IS_ENABLED(CONFIG_PREEMPT_RT))
332 x = delta + __this_cpu_read(*p);
334 t = __this_cpu_read(pcp->stat_threshold);
336 if (unlikely(abs(x) > t)) {
337 zone_page_state_add(x, zone, item);
340 __this_cpu_write(*p, x);
342 if (IS_ENABLED(CONFIG_PREEMPT_RT))
345 EXPORT_SYMBOL(__mod_zone_page_state);
347 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
350 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
351 s8 __percpu *p = pcp->vm_node_stat_diff + item;
355 if (vmstat_item_in_bytes(item)) {
357 * Only cgroups use subpage accounting right now; at
358 * the global level, these items still change in
359 * multiples of whole pages. Store them as pages
360 * internally to keep the per-cpu counters compact.
362 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
363 delta >>= PAGE_SHIFT;
366 /* See __mod_node_page_state */
367 if (IS_ENABLED(CONFIG_PREEMPT_RT))
370 x = delta + __this_cpu_read(*p);
372 t = __this_cpu_read(pcp->stat_threshold);
374 if (unlikely(abs(x) > t)) {
375 node_page_state_add(x, pgdat, item);
378 __this_cpu_write(*p, x);
380 if (IS_ENABLED(CONFIG_PREEMPT_RT))
383 EXPORT_SYMBOL(__mod_node_page_state);
386 * Optimized increment and decrement functions.
388 * These are only for a single page and therefore can take a struct page *
389 * argument instead of struct zone *. This allows the inclusion of the code
390 * generated for page_zone(page) into the optimized functions.
392 * No overflow check is necessary and therefore the differential can be
393 * incremented or decremented in place which may allow the compilers to
394 * generate better code.
395 * The increment or decrement is known and therefore one boundary check can
398 * NOTE: These functions are very performance sensitive. Change only
401 * Some processors have inc/dec instructions that are atomic vs an interrupt.
402 * However, the code must first determine the differential location in a zone
403 * based on the processor number and then inc/dec the counter. There is no
404 * guarantee without disabling preemption that the processor will not change
405 * in between and therefore the atomicity vs. interrupt cannot be exploited
406 * in a useful way here.
408 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
410 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
411 s8 __percpu *p = pcp->vm_stat_diff + item;
414 /* See __mod_node_page_state */
415 if (IS_ENABLED(CONFIG_PREEMPT_RT))
418 v = __this_cpu_inc_return(*p);
419 t = __this_cpu_read(pcp->stat_threshold);
420 if (unlikely(v > t)) {
421 s8 overstep = t >> 1;
423 zone_page_state_add(v + overstep, zone, item);
424 __this_cpu_write(*p, -overstep);
427 if (IS_ENABLED(CONFIG_PREEMPT_RT))
431 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
433 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
434 s8 __percpu *p = pcp->vm_node_stat_diff + item;
437 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
439 /* See __mod_node_page_state */
440 if (IS_ENABLED(CONFIG_PREEMPT_RT))
443 v = __this_cpu_inc_return(*p);
444 t = __this_cpu_read(pcp->stat_threshold);
445 if (unlikely(v > t)) {
446 s8 overstep = t >> 1;
448 node_page_state_add(v + overstep, pgdat, item);
449 __this_cpu_write(*p, -overstep);
452 if (IS_ENABLED(CONFIG_PREEMPT_RT))
456 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
458 __inc_zone_state(page_zone(page), item);
460 EXPORT_SYMBOL(__inc_zone_page_state);
462 void __inc_node_page_state(struct page *page, enum node_stat_item item)
464 __inc_node_state(page_pgdat(page), item);
466 EXPORT_SYMBOL(__inc_node_page_state);
468 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
470 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
471 s8 __percpu *p = pcp->vm_stat_diff + item;
474 /* See __mod_node_page_state */
475 if (IS_ENABLED(CONFIG_PREEMPT_RT))
478 v = __this_cpu_dec_return(*p);
479 t = __this_cpu_read(pcp->stat_threshold);
480 if (unlikely(v < - t)) {
481 s8 overstep = t >> 1;
483 zone_page_state_add(v - overstep, zone, item);
484 __this_cpu_write(*p, overstep);
487 if (IS_ENABLED(CONFIG_PREEMPT_RT))
491 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
493 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
494 s8 __percpu *p = pcp->vm_node_stat_diff + item;
497 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
499 /* See __mod_node_page_state */
500 if (IS_ENABLED(CONFIG_PREEMPT_RT))
503 v = __this_cpu_dec_return(*p);
504 t = __this_cpu_read(pcp->stat_threshold);
505 if (unlikely(v < - t)) {
506 s8 overstep = t >> 1;
508 node_page_state_add(v - overstep, pgdat, item);
509 __this_cpu_write(*p, overstep);
512 if (IS_ENABLED(CONFIG_PREEMPT_RT))
516 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
518 __dec_zone_state(page_zone(page), item);
520 EXPORT_SYMBOL(__dec_zone_page_state);
522 void __dec_node_page_state(struct page *page, enum node_stat_item item)
524 __dec_node_state(page_pgdat(page), item);
526 EXPORT_SYMBOL(__dec_node_page_state);
528 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
530 * If we have cmpxchg_local support then we do not need to incur the overhead
531 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
533 * mod_state() modifies the zone counter state through atomic per cpu
536 * Overstep mode specifies how overstep should handled:
538 * 1 Overstepping half of threshold
539 * -1 Overstepping minus half of threshold
541 static inline void mod_zone_state(struct zone *zone,
542 enum zone_stat_item item, long delta, int overstep_mode)
544 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
545 s8 __percpu *p = pcp->vm_stat_diff + item;
549 z = 0; /* overflow to zone counters */
552 * The fetching of the stat_threshold is racy. We may apply
553 * a counter threshold to the wrong the cpu if we get
554 * rescheduled while executing here. However, the next
555 * counter update will apply the threshold again and
556 * therefore bring the counter under the threshold again.
558 * Most of the time the thresholds are the same anyways
559 * for all cpus in a zone.
561 t = this_cpu_read(pcp->stat_threshold);
563 o = this_cpu_read(*p);
567 int os = overstep_mode * (t >> 1) ;
569 /* Overflow must be added to zone counters */
573 } while (this_cpu_cmpxchg(*p, o, n) != o);
576 zone_page_state_add(z, zone, item);
579 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
582 mod_zone_state(zone, item, delta, 0);
584 EXPORT_SYMBOL(mod_zone_page_state);
586 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
588 mod_zone_state(page_zone(page), item, 1, 1);
590 EXPORT_SYMBOL(inc_zone_page_state);
592 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
594 mod_zone_state(page_zone(page), item, -1, -1);
596 EXPORT_SYMBOL(dec_zone_page_state);
598 static inline void mod_node_state(struct pglist_data *pgdat,
599 enum node_stat_item item, int delta, int overstep_mode)
601 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
602 s8 __percpu *p = pcp->vm_node_stat_diff + item;
605 if (vmstat_item_in_bytes(item)) {
607 * Only cgroups use subpage accounting right now; at
608 * the global level, these items still change in
609 * multiples of whole pages. Store them as pages
610 * internally to keep the per-cpu counters compact.
612 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
613 delta >>= PAGE_SHIFT;
617 z = 0; /* overflow to node counters */
620 * The fetching of the stat_threshold is racy. We may apply
621 * a counter threshold to the wrong the cpu if we get
622 * rescheduled while executing here. However, the next
623 * counter update will apply the threshold again and
624 * therefore bring the counter under the threshold again.
626 * Most of the time the thresholds are the same anyways
627 * for all cpus in a node.
629 t = this_cpu_read(pcp->stat_threshold);
631 o = this_cpu_read(*p);
635 int os = overstep_mode * (t >> 1) ;
637 /* Overflow must be added to node counters */
641 } while (this_cpu_cmpxchg(*p, o, n) != o);
644 node_page_state_add(z, pgdat, item);
647 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
650 mod_node_state(pgdat, item, delta, 0);
652 EXPORT_SYMBOL(mod_node_page_state);
654 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
656 mod_node_state(pgdat, item, 1, 1);
659 void inc_node_page_state(struct page *page, enum node_stat_item item)
661 mod_node_state(page_pgdat(page), item, 1, 1);
663 EXPORT_SYMBOL(inc_node_page_state);
665 void dec_node_page_state(struct page *page, enum node_stat_item item)
667 mod_node_state(page_pgdat(page), item, -1, -1);
669 EXPORT_SYMBOL(dec_node_page_state);
672 * Use interrupt disable to serialize counter updates
674 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
679 local_irq_save(flags);
680 __mod_zone_page_state(zone, item, delta);
681 local_irq_restore(flags);
683 EXPORT_SYMBOL(mod_zone_page_state);
685 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
690 zone = page_zone(page);
691 local_irq_save(flags);
692 __inc_zone_state(zone, item);
693 local_irq_restore(flags);
695 EXPORT_SYMBOL(inc_zone_page_state);
697 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
701 local_irq_save(flags);
702 __dec_zone_page_state(page, item);
703 local_irq_restore(flags);
705 EXPORT_SYMBOL(dec_zone_page_state);
707 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
711 local_irq_save(flags);
712 __inc_node_state(pgdat, item);
713 local_irq_restore(flags);
715 EXPORT_SYMBOL(inc_node_state);
717 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
722 local_irq_save(flags);
723 __mod_node_page_state(pgdat, item, delta);
724 local_irq_restore(flags);
726 EXPORT_SYMBOL(mod_node_page_state);
728 void inc_node_page_state(struct page *page, enum node_stat_item item)
731 struct pglist_data *pgdat;
733 pgdat = page_pgdat(page);
734 local_irq_save(flags);
735 __inc_node_state(pgdat, item);
736 local_irq_restore(flags);
738 EXPORT_SYMBOL(inc_node_page_state);
740 void dec_node_page_state(struct page *page, enum node_stat_item item)
744 local_irq_save(flags);
745 __dec_node_page_state(page, item);
746 local_irq_restore(flags);
748 EXPORT_SYMBOL(dec_node_page_state);
752 * Fold a differential into the global counters.
753 * Returns the number of counters updated.
755 static int fold_diff(int *zone_diff, int *node_diff)
760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
762 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
766 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
768 atomic_long_add(node_diff[i], &vm_node_stat[i]);
775 static void fold_vm_zone_numa_events(struct zone *zone)
777 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
779 enum numa_stat_item item;
781 for_each_online_cpu(cpu) {
782 struct per_cpu_zonestat *pzstats;
784 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
785 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
786 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
789 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
790 zone_numa_event_add(zone_numa_events[item], zone, item);
793 void fold_vm_numa_events(void)
797 for_each_populated_zone(zone)
798 fold_vm_zone_numa_events(zone);
803 * Update the zone counters for the current cpu.
805 * Note that refresh_cpu_vm_stats strives to only access
806 * node local memory. The per cpu pagesets on remote zones are placed
807 * in the memory local to the processor using that pageset. So the
808 * loop over all zones will access a series of cachelines local to
811 * The call to zone_page_state_add updates the cachelines with the
812 * statistics in the remote zone struct as well as the global cachelines
813 * with the global counters. These could cause remote node cache line
814 * bouncing and will have to be only done when necessary.
816 * The function returns the number of global counters updated.
818 static int refresh_cpu_vm_stats(bool do_pagesets)
820 struct pglist_data *pgdat;
823 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
824 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
827 for_each_populated_zone(zone) {
828 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
830 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
833 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
836 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
839 atomic_long_add(v, &zone->vm_stat[i]);
840 global_zone_diff[i] += v;
842 /* 3 seconds idle till flush */
843 __this_cpu_write(pcp->expire, 3);
852 * Deal with draining the remote pageset of this
855 * Check if there are pages remaining in this pageset
856 * if not then there is nothing to expire.
858 if (!__this_cpu_read(pcp->expire) ||
859 !__this_cpu_read(pcp->count))
863 * We never drain zones local to this processor.
865 if (zone_to_nid(zone) == numa_node_id()) {
866 __this_cpu_write(pcp->expire, 0);
870 if (__this_cpu_dec_return(pcp->expire))
873 if (__this_cpu_read(pcp->count)) {
874 drain_zone_pages(zone, this_cpu_ptr(pcp));
881 for_each_online_pgdat(pgdat) {
882 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
884 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
887 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
889 atomic_long_add(v, &pgdat->vm_stat[i]);
890 global_node_diff[i] += v;
895 changes += fold_diff(global_zone_diff, global_node_diff);
900 * Fold the data for an offline cpu into the global array.
901 * There cannot be any access by the offline cpu and therefore
902 * synchronization is simplified.
904 void cpu_vm_stats_fold(int cpu)
906 struct pglist_data *pgdat;
909 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
912 for_each_populated_zone(zone) {
913 struct per_cpu_zonestat *pzstats;
915 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 if (pzstats->vm_stat_diff[i]) {
921 v = pzstats->vm_stat_diff[i];
922 pzstats->vm_stat_diff[i] = 0;
923 atomic_long_add(v, &zone->vm_stat[i]);
924 global_zone_diff[i] += v;
928 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 if (pzstats->vm_numa_event[i]) {
932 v = pzstats->vm_numa_event[i];
933 pzstats->vm_numa_event[i] = 0;
934 zone_numa_event_add(v, zone, i);
940 for_each_online_pgdat(pgdat) {
941 struct per_cpu_nodestat *p;
943 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
945 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 if (p->vm_node_stat_diff[i]) {
949 v = p->vm_node_stat_diff[i];
950 p->vm_node_stat_diff[i] = 0;
951 atomic_long_add(v, &pgdat->vm_stat[i]);
952 global_node_diff[i] += v;
956 fold_diff(global_zone_diff, global_node_diff);
960 * this is only called if !populated_zone(zone), which implies no other users of
961 * pset->vm_stat_diff[] exist.
963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
968 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 if (pzstats->vm_stat_diff[i]) {
970 v = pzstats->vm_stat_diff[i];
971 pzstats->vm_stat_diff[i] = 0;
972 zone_page_state_add(v, zone, i);
977 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 if (pzstats->vm_numa_event[i]) {
979 v = pzstats->vm_numa_event[i];
980 pzstats->vm_numa_event[i] = 0;
981 zone_numa_event_add(v, zone, i);
990 * Determine the per node value of a stat item. This function
991 * is called frequently in a NUMA machine, so try to be as
992 * frugal as possible.
994 unsigned long sum_zone_node_page_state(int node,
995 enum zone_stat_item item)
997 struct zone *zones = NODE_DATA(node)->node_zones;
999 unsigned long count = 0;
1001 for (i = 0; i < MAX_NR_ZONES; i++)
1002 count += zone_page_state(zones + i, item);
1007 /* Determine the per node value of a numa stat item. */
1008 unsigned long sum_zone_numa_event_state(int node,
1009 enum numa_stat_item item)
1011 struct zone *zones = NODE_DATA(node)->node_zones;
1012 unsigned long count = 0;
1015 for (i = 0; i < MAX_NR_ZONES; i++)
1016 count += zone_numa_event_state(zones + i, item);
1022 * Determine the per node value of a stat item.
1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1027 long x = atomic_long_read(&pgdat->vm_stat[item]);
1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036 enum node_stat_item item)
1038 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1040 return node_page_state_pages(pgdat, item);
1044 #ifdef CONFIG_COMPACTION
1046 struct contig_page_info {
1047 unsigned long free_pages;
1048 unsigned long free_blocks_total;
1049 unsigned long free_blocks_suitable;
1053 * Calculate the number of free pages in a zone, how many contiguous
1054 * pages are free and how many are large enough to satisfy an allocation of
1055 * the target size. Note that this function makes no attempt to estimate
1056 * how many suitable free blocks there *might* be if MOVABLE pages were
1057 * migrated. Calculating that is possible, but expensive and can be
1058 * figured out from userspace
1060 static void fill_contig_page_info(struct zone *zone,
1061 unsigned int suitable_order,
1062 struct contig_page_info *info)
1066 info->free_pages = 0;
1067 info->free_blocks_total = 0;
1068 info->free_blocks_suitable = 0;
1070 for (order = 0; order < MAX_ORDER; order++) {
1071 unsigned long blocks;
1073 /* Count number of free blocks */
1074 blocks = zone->free_area[order].nr_free;
1075 info->free_blocks_total += blocks;
1077 /* Count free base pages */
1078 info->free_pages += blocks << order;
1080 /* Count the suitable free blocks */
1081 if (order >= suitable_order)
1082 info->free_blocks_suitable += blocks <<
1083 (order - suitable_order);
1088 * A fragmentation index only makes sense if an allocation of a requested
1089 * size would fail. If that is true, the fragmentation index indicates
1090 * whether external fragmentation or a lack of memory was the problem.
1091 * The value can be used to determine if page reclaim or compaction
1094 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1096 unsigned long requested = 1UL << order;
1098 if (WARN_ON_ONCE(order >= MAX_ORDER))
1101 if (!info->free_blocks_total)
1104 /* Fragmentation index only makes sense when a request would fail */
1105 if (info->free_blocks_suitable)
1109 * Index is between 0 and 1 so return within 3 decimal places
1111 * 0 => allocation would fail due to lack of memory
1112 * 1 => allocation would fail due to fragmentation
1114 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1118 * Calculates external fragmentation within a zone wrt the given order.
1119 * It is defined as the percentage of pages found in blocks of size
1120 * less than 1 << order. It returns values in range [0, 100].
1122 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1124 struct contig_page_info info;
1126 fill_contig_page_info(zone, order, &info);
1127 if (info.free_pages == 0)
1130 return div_u64((info.free_pages -
1131 (info.free_blocks_suitable << order)) * 100,
1135 /* Same as __fragmentation index but allocs contig_page_info on stack */
1136 int fragmentation_index(struct zone *zone, unsigned int order)
1138 struct contig_page_info info;
1140 fill_contig_page_info(zone, order, &info);
1141 return __fragmentation_index(order, &info);
1145 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1146 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1147 #ifdef CONFIG_ZONE_DMA
1148 #define TEXT_FOR_DMA(xx) xx "_dma",
1150 #define TEXT_FOR_DMA(xx)
1153 #ifdef CONFIG_ZONE_DMA32
1154 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1156 #define TEXT_FOR_DMA32(xx)
1159 #ifdef CONFIG_HIGHMEM
1160 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1162 #define TEXT_FOR_HIGHMEM(xx)
1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1168 const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 "nr_zone_unevictable",
1176 "nr_zone_write_pending",
1179 #if IS_ENABLED(CONFIG_ZSMALLOC)
1184 /* enum numa_stat_item counters */
1194 /* enum node_stat_item counters */
1200 "nr_slab_reclaimable",
1201 "nr_slab_unreclaimable",
1205 "workingset_refault_anon",
1206 "workingset_refault_file",
1207 "workingset_activate_anon",
1208 "workingset_activate_file",
1209 "workingset_restore_anon",
1210 "workingset_restore_file",
1211 "workingset_nodereclaim",
1217 "nr_writeback_temp",
1219 "nr_shmem_hugepages",
1220 "nr_shmem_pmdmapped",
1221 "nr_file_hugepages",
1222 "nr_file_pmdmapped",
1223 "nr_anon_transparent_hugepages",
1225 "nr_vmscan_immediate_reclaim",
1228 "nr_kernel_misc_reclaimable",
1229 "nr_foll_pin_acquired",
1230 "nr_foll_pin_released",
1232 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1233 "nr_shadow_call_stack",
1235 "nr_page_table_pages",
1240 /* enum writeback_stat_item counters */
1241 "nr_dirty_threshold",
1242 "nr_dirty_background_threshold",
1244 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1245 /* enum vm_event_item counters */
1251 TEXTS_FOR_ZONES("pgalloc")
1252 TEXTS_FOR_ZONES("allocstall")
1253 TEXTS_FOR_ZONES("pgskip")
1272 "pgscan_direct_throttle",
1279 "zone_reclaim_failed",
1283 "kswapd_inodesteal",
1284 "kswapd_low_wmark_hit_quickly",
1285 "kswapd_high_wmark_hit_quickly",
1294 #ifdef CONFIG_NUMA_BALANCING
1296 "numa_huge_pte_updates",
1298 "numa_hint_faults_local",
1299 "numa_pages_migrated",
1301 #ifdef CONFIG_MIGRATION
1302 "pgmigrate_success",
1304 "thp_migration_success",
1305 "thp_migration_fail",
1306 "thp_migration_split",
1308 #ifdef CONFIG_COMPACTION
1309 "compact_migrate_scanned",
1310 "compact_free_scanned",
1315 "compact_daemon_wake",
1316 "compact_daemon_migrate_scanned",
1317 "compact_daemon_free_scanned",
1320 #ifdef CONFIG_HUGETLB_PAGE
1321 "htlb_buddy_alloc_success",
1322 "htlb_buddy_alloc_fail",
1325 "cma_alloc_success",
1328 "unevictable_pgs_culled",
1329 "unevictable_pgs_scanned",
1330 "unevictable_pgs_rescued",
1331 "unevictable_pgs_mlocked",
1332 "unevictable_pgs_munlocked",
1333 "unevictable_pgs_cleared",
1334 "unevictable_pgs_stranded",
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1338 "thp_fault_fallback",
1339 "thp_fault_fallback_charge",
1340 "thp_collapse_alloc",
1341 "thp_collapse_alloc_failed",
1343 "thp_file_fallback",
1344 "thp_file_fallback_charge",
1347 "thp_split_page_failed",
1348 "thp_deferred_split_page",
1350 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1353 "thp_zero_page_alloc",
1354 "thp_zero_page_alloc_failed",
1356 "thp_swpout_fallback",
1358 #ifdef CONFIG_MEMORY_BALLOON
1361 #ifdef CONFIG_BALLOON_COMPACTION
1364 #endif /* CONFIG_MEMORY_BALLOON */
1365 #ifdef CONFIG_DEBUG_TLBFLUSH
1366 "nr_tlb_remote_flush",
1367 "nr_tlb_remote_flush_received",
1368 "nr_tlb_local_flush_all",
1369 "nr_tlb_local_flush_one",
1370 #endif /* CONFIG_DEBUG_TLBFLUSH */
1372 #ifdef CONFIG_DEBUG_VM_VMACACHE
1373 "vmacache_find_calls",
1374 "vmacache_find_hits",
1381 "direct_map_level2_splits",
1382 "direct_map_level3_splits",
1384 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1386 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1388 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1389 defined(CONFIG_PROC_FS)
1390 static void *frag_start(struct seq_file *m, loff_t *pos)
1395 for (pgdat = first_online_pgdat();
1397 pgdat = next_online_pgdat(pgdat))
1403 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1405 pg_data_t *pgdat = (pg_data_t *)arg;
1408 return next_online_pgdat(pgdat);
1411 static void frag_stop(struct seq_file *m, void *arg)
1416 * Walk zones in a node and print using a callback.
1417 * If @assert_populated is true, only use callback for zones that are populated.
1419 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1420 bool assert_populated, bool nolock,
1421 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1424 struct zone *node_zones = pgdat->node_zones;
1425 unsigned long flags;
1427 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1428 if (assert_populated && !populated_zone(zone))
1432 spin_lock_irqsave(&zone->lock, flags);
1433 print(m, pgdat, zone);
1435 spin_unlock_irqrestore(&zone->lock, flags);
1440 #ifdef CONFIG_PROC_FS
1441 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1446 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1447 for (order = 0; order < MAX_ORDER; ++order)
1448 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1453 * This walks the free areas for each zone.
1455 static int frag_show(struct seq_file *m, void *arg)
1457 pg_data_t *pgdat = (pg_data_t *)arg;
1458 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1462 static void pagetypeinfo_showfree_print(struct seq_file *m,
1463 pg_data_t *pgdat, struct zone *zone)
1467 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1468 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1471 migratetype_names[mtype]);
1472 for (order = 0; order < MAX_ORDER; ++order) {
1473 unsigned long freecount = 0;
1474 struct free_area *area;
1475 struct list_head *curr;
1476 bool overflow = false;
1478 area = &(zone->free_area[order]);
1480 list_for_each(curr, &area->free_list[mtype]) {
1482 * Cap the free_list iteration because it might
1483 * be really large and we are under a spinlock
1484 * so a long time spent here could trigger a
1485 * hard lockup detector. Anyway this is a
1486 * debugging tool so knowing there is a handful
1487 * of pages of this order should be more than
1490 if (++freecount >= 100000) {
1495 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1496 spin_unlock_irq(&zone->lock);
1498 spin_lock_irq(&zone->lock);
1504 /* Print out the free pages at each order for each migatetype */
1505 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1508 pg_data_t *pgdat = (pg_data_t *)arg;
1511 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1512 for (order = 0; order < MAX_ORDER; ++order)
1513 seq_printf(m, "%6d ", order);
1516 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1519 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1520 pg_data_t *pgdat, struct zone *zone)
1524 unsigned long start_pfn = zone->zone_start_pfn;
1525 unsigned long end_pfn = zone_end_pfn(zone);
1526 unsigned long count[MIGRATE_TYPES] = { 0, };
1528 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1531 page = pfn_to_online_page(pfn);
1535 if (page_zone(page) != zone)
1538 mtype = get_pageblock_migratetype(page);
1540 if (mtype < MIGRATE_TYPES)
1545 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1546 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1547 seq_printf(m, "%12lu ", count[mtype]);
1551 /* Print out the number of pageblocks for each migratetype */
1552 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1555 pg_data_t *pgdat = (pg_data_t *)arg;
1557 seq_printf(m, "\n%-23s", "Number of blocks type ");
1558 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1559 seq_printf(m, "%12s ", migratetype_names[mtype]);
1561 walk_zones_in_node(m, pgdat, true, false,
1562 pagetypeinfo_showblockcount_print);
1566 * Print out the number of pageblocks for each migratetype that contain pages
1567 * of other types. This gives an indication of how well fallbacks are being
1568 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1569 * to determine what is going on
1571 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1573 #ifdef CONFIG_PAGE_OWNER
1576 if (!static_branch_unlikely(&page_owner_inited))
1579 drain_all_pages(NULL);
1581 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1582 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1583 seq_printf(m, "%12s ", migratetype_names[mtype]);
1586 walk_zones_in_node(m, pgdat, true, true,
1587 pagetypeinfo_showmixedcount_print);
1588 #endif /* CONFIG_PAGE_OWNER */
1592 * This prints out statistics in relation to grouping pages by mobility.
1593 * It is expensive to collect so do not constantly read the file.
1595 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1597 pg_data_t *pgdat = (pg_data_t *)arg;
1599 /* check memoryless node */
1600 if (!node_state(pgdat->node_id, N_MEMORY))
1603 seq_printf(m, "Page block order: %d\n", pageblock_order);
1604 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1606 pagetypeinfo_showfree(m, pgdat);
1607 pagetypeinfo_showblockcount(m, pgdat);
1608 pagetypeinfo_showmixedcount(m, pgdat);
1613 static const struct seq_operations fragmentation_op = {
1614 .start = frag_start,
1620 static const struct seq_operations pagetypeinfo_op = {
1621 .start = frag_start,
1624 .show = pagetypeinfo_show,
1627 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1631 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1632 struct zone *compare = &pgdat->node_zones[zid];
1634 if (populated_zone(compare))
1635 return zone == compare;
1641 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1645 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1646 if (is_zone_first_populated(pgdat, zone)) {
1647 seq_printf(m, "\n per-node stats");
1648 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1649 unsigned long pages = node_page_state_pages(pgdat, i);
1651 if (vmstat_item_print_in_thp(i))
1652 pages /= HPAGE_PMD_NR;
1653 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1666 zone_page_state(zone, NR_FREE_PAGES),
1667 min_wmark_pages(zone),
1668 low_wmark_pages(zone),
1669 high_wmark_pages(zone),
1670 zone->spanned_pages,
1671 zone->present_pages,
1672 zone_managed_pages(zone),
1673 zone_cma_pages(zone));
1676 "\n protection: (%ld",
1677 zone->lowmem_reserve[0]);
1678 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1679 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1682 /* If unpopulated, no other information is useful */
1683 if (!populated_zone(zone)) {
1688 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1689 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1690 zone_page_state(zone, i));
1693 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1694 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1695 zone_numa_event_state(zone, i));
1698 seq_printf(m, "\n pagesets");
1699 for_each_online_cpu(i) {
1700 struct per_cpu_pages *pcp;
1701 struct per_cpu_zonestat __maybe_unused *pzstats;
1703 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1714 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1715 seq_printf(m, "\n vm stats threshold: %d",
1716 pzstats->stat_threshold);
1720 "\n node_unreclaimable: %u"
1721 "\n start_pfn: %lu",
1722 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1723 zone->zone_start_pfn);
1728 * Output information about zones in @pgdat. All zones are printed regardless
1729 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1730 * set of all zones and userspace would not be aware of such zones if they are
1731 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1733 static int zoneinfo_show(struct seq_file *m, void *arg)
1735 pg_data_t *pgdat = (pg_data_t *)arg;
1736 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1740 static const struct seq_operations zoneinfo_op = {
1741 .start = frag_start, /* iterate over all zones. The same as in
1745 .show = zoneinfo_show,
1748 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1749 NR_VM_NUMA_EVENT_ITEMS + \
1750 NR_VM_NODE_STAT_ITEMS + \
1751 NR_VM_WRITEBACK_STAT_ITEMS + \
1752 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1753 NR_VM_EVENT_ITEMS : 0))
1755 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1760 if (*pos >= NR_VMSTAT_ITEMS)
1763 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1764 fold_vm_numa_events();
1765 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1768 return ERR_PTR(-ENOMEM);
1769 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1770 v[i] = global_zone_page_state(i);
1771 v += NR_VM_ZONE_STAT_ITEMS;
1774 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1775 v[i] = global_numa_event_state(i);
1776 v += NR_VM_NUMA_EVENT_ITEMS;
1779 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1780 v[i] = global_node_page_state_pages(i);
1781 if (vmstat_item_print_in_thp(i))
1782 v[i] /= HPAGE_PMD_NR;
1784 v += NR_VM_NODE_STAT_ITEMS;
1786 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1787 v + NR_DIRTY_THRESHOLD);
1788 v += NR_VM_WRITEBACK_STAT_ITEMS;
1790 #ifdef CONFIG_VM_EVENT_COUNTERS
1792 v[PGPGIN] /= 2; /* sectors -> kbytes */
1795 return (unsigned long *)m->private + *pos;
1798 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1801 if (*pos >= NR_VMSTAT_ITEMS)
1803 return (unsigned long *)m->private + *pos;
1806 static int vmstat_show(struct seq_file *m, void *arg)
1808 unsigned long *l = arg;
1809 unsigned long off = l - (unsigned long *)m->private;
1811 seq_puts(m, vmstat_text[off]);
1812 seq_put_decimal_ull(m, " ", *l);
1815 if (off == NR_VMSTAT_ITEMS - 1) {
1817 * We've come to the end - add any deprecated counters to avoid
1818 * breaking userspace which might depend on them being present.
1820 seq_puts(m, "nr_unstable 0\n");
1825 static void vmstat_stop(struct seq_file *m, void *arg)
1831 static const struct seq_operations vmstat_op = {
1832 .start = vmstat_start,
1833 .next = vmstat_next,
1834 .stop = vmstat_stop,
1835 .show = vmstat_show,
1837 #endif /* CONFIG_PROC_FS */
1840 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1841 int sysctl_stat_interval __read_mostly = HZ;
1843 #ifdef CONFIG_PROC_FS
1844 static void refresh_vm_stats(struct work_struct *work)
1846 refresh_cpu_vm_stats(true);
1849 int vmstat_refresh(struct ctl_table *table, int write,
1850 void *buffer, size_t *lenp, loff_t *ppos)
1857 * The regular update, every sysctl_stat_interval, may come later
1858 * than expected: leaving a significant amount in per_cpu buckets.
1859 * This is particularly misleading when checking a quantity of HUGE
1860 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1861 * which can equally be echo'ed to or cat'ted from (by root),
1862 * can be used to update the stats just before reading them.
1864 * Oh, and since global_zone_page_state() etc. are so careful to hide
1865 * transiently negative values, report an error here if any of
1866 * the stats is negative, so we know to go looking for imbalance.
1868 err = schedule_on_each_cpu(refresh_vm_stats);
1871 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1873 * Skip checking stats known to go negative occasionally.
1876 case NR_ZONE_WRITE_PENDING:
1877 case NR_FREE_CMA_PAGES:
1880 val = atomic_long_read(&vm_zone_stat[i]);
1882 pr_warn("%s: %s %ld\n",
1883 __func__, zone_stat_name(i), val);
1886 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1888 * Skip checking stats known to go negative occasionally.
1894 val = atomic_long_read(&vm_node_stat[i]);
1896 pr_warn("%s: %s %ld\n",
1897 __func__, node_stat_name(i), val);
1906 #endif /* CONFIG_PROC_FS */
1908 static void vmstat_update(struct work_struct *w)
1910 if (refresh_cpu_vm_stats(true)) {
1912 * Counters were updated so we expect more updates
1913 * to occur in the future. Keep on running the
1914 * update worker thread.
1916 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1917 this_cpu_ptr(&vmstat_work),
1918 round_jiffies_relative(sysctl_stat_interval));
1923 * Check if the diffs for a certain cpu indicate that
1924 * an update is needed.
1926 static bool need_update(int cpu)
1928 pg_data_t *last_pgdat = NULL;
1931 for_each_populated_zone(zone) {
1932 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1933 struct per_cpu_nodestat *n;
1936 * The fast way of checking if there are any vmstat diffs.
1938 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1941 if (last_pgdat == zone->zone_pgdat)
1943 last_pgdat = zone->zone_pgdat;
1944 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1945 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1952 * Switch off vmstat processing and then fold all the remaining differentials
1953 * until the diffs stay at zero. The function is used by NOHZ and can only be
1954 * invoked when tick processing is not active.
1956 void quiet_vmstat(void)
1958 if (system_state != SYSTEM_RUNNING)
1961 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1964 if (!need_update(smp_processor_id()))
1968 * Just refresh counters and do not care about the pending delayed
1969 * vmstat_update. It doesn't fire that often to matter and canceling
1970 * it would be too expensive from this path.
1971 * vmstat_shepherd will take care about that for us.
1973 refresh_cpu_vm_stats(false);
1977 * Shepherd worker thread that checks the
1978 * differentials of processors that have their worker
1979 * threads for vm statistics updates disabled because of
1982 static void vmstat_shepherd(struct work_struct *w);
1984 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1986 static void vmstat_shepherd(struct work_struct *w)
1991 /* Check processors whose vmstat worker threads have been disabled */
1992 for_each_online_cpu(cpu) {
1993 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1995 if (!delayed_work_pending(dw) && need_update(cpu))
1996 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2002 schedule_delayed_work(&shepherd,
2003 round_jiffies_relative(sysctl_stat_interval));
2006 static void __init start_shepherd_timer(void)
2010 for_each_possible_cpu(cpu)
2011 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2014 schedule_delayed_work(&shepherd,
2015 round_jiffies_relative(sysctl_stat_interval));
2018 static void __init init_cpu_node_state(void)
2022 for_each_online_node(node) {
2023 if (cpumask_weight(cpumask_of_node(node)) > 0)
2024 node_set_state(node, N_CPU);
2028 static int vmstat_cpu_online(unsigned int cpu)
2030 refresh_zone_stat_thresholds();
2031 node_set_state(cpu_to_node(cpu), N_CPU);
2035 static int vmstat_cpu_down_prep(unsigned int cpu)
2037 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2041 static int vmstat_cpu_dead(unsigned int cpu)
2043 const struct cpumask *node_cpus;
2046 node = cpu_to_node(cpu);
2048 refresh_zone_stat_thresholds();
2049 node_cpus = cpumask_of_node(node);
2050 if (cpumask_weight(node_cpus) > 0)
2053 node_clear_state(node, N_CPU);
2059 struct workqueue_struct *mm_percpu_wq;
2061 void __init init_mm_internals(void)
2063 int ret __maybe_unused;
2065 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2068 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2069 NULL, vmstat_cpu_dead);
2071 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2073 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2075 vmstat_cpu_down_prep);
2077 pr_err("vmstat: failed to register 'online' hotplug state\n");
2080 init_cpu_node_state();
2083 start_shepherd_timer();
2085 #ifdef CONFIG_PROC_FS
2086 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2087 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2088 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2089 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2093 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2096 * Return an index indicating how much of the available free memory is
2097 * unusable for an allocation of the requested size.
2099 static int unusable_free_index(unsigned int order,
2100 struct contig_page_info *info)
2102 /* No free memory is interpreted as all free memory is unusable */
2103 if (info->free_pages == 0)
2107 * Index should be a value between 0 and 1. Return a value to 3
2110 * 0 => no fragmentation
2111 * 1 => high fragmentation
2113 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2117 static void unusable_show_print(struct seq_file *m,
2118 pg_data_t *pgdat, struct zone *zone)
2122 struct contig_page_info info;
2124 seq_printf(m, "Node %d, zone %8s ",
2127 for (order = 0; order < MAX_ORDER; ++order) {
2128 fill_contig_page_info(zone, order, &info);
2129 index = unusable_free_index(order, &info);
2130 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2137 * Display unusable free space index
2139 * The unusable free space index measures how much of the available free
2140 * memory cannot be used to satisfy an allocation of a given size and is a
2141 * value between 0 and 1. The higher the value, the more of free memory is
2142 * unusable and by implication, the worse the external fragmentation is. This
2143 * can be expressed as a percentage by multiplying by 100.
2145 static int unusable_show(struct seq_file *m, void *arg)
2147 pg_data_t *pgdat = (pg_data_t *)arg;
2149 /* check memoryless node */
2150 if (!node_state(pgdat->node_id, N_MEMORY))
2153 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2158 static const struct seq_operations unusable_sops = {
2159 .start = frag_start,
2162 .show = unusable_show,
2165 DEFINE_SEQ_ATTRIBUTE(unusable);
2167 static void extfrag_show_print(struct seq_file *m,
2168 pg_data_t *pgdat, struct zone *zone)
2173 /* Alloc on stack as interrupts are disabled for zone walk */
2174 struct contig_page_info info;
2176 seq_printf(m, "Node %d, zone %8s ",
2179 for (order = 0; order < MAX_ORDER; ++order) {
2180 fill_contig_page_info(zone, order, &info);
2181 index = __fragmentation_index(order, &info);
2182 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2189 * Display fragmentation index for orders that allocations would fail for
2191 static int extfrag_show(struct seq_file *m, void *arg)
2193 pg_data_t *pgdat = (pg_data_t *)arg;
2195 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2200 static const struct seq_operations extfrag_sops = {
2201 .start = frag_start,
2204 .show = extfrag_show,
2207 DEFINE_SEQ_ATTRIBUTE(extfrag);
2209 static int __init extfrag_debug_init(void)
2211 struct dentry *extfrag_debug_root;
2213 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2215 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2218 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2224 module_init(extfrag_debug_init);