oom, oom_reaper: allow to reap mm shared by the kthreads
[platform/kernel/linux-exynos.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91 EXPORT_SYMBOL(vm_zone_stat);
92 EXPORT_SYMBOL(vm_node_stat);
93
94 #ifdef CONFIG_SMP
95
96 int calculate_pressure_threshold(struct zone *zone)
97 {
98         int threshold;
99         int watermark_distance;
100
101         /*
102          * As vmstats are not up to date, there is drift between the estimated
103          * and real values. For high thresholds and a high number of CPUs, it
104          * is possible for the min watermark to be breached while the estimated
105          * value looks fine. The pressure threshold is a reduced value such
106          * that even the maximum amount of drift will not accidentally breach
107          * the min watermark
108          */
109         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112         /*
113          * Maximum threshold is 125
114          */
115         threshold = min(125, threshold);
116
117         return threshold;
118 }
119
120 int calculate_normal_threshold(struct zone *zone)
121 {
122         int threshold;
123         int mem;        /* memory in 128 MB units */
124
125         /*
126          * The threshold scales with the number of processors and the amount
127          * of memory per zone. More memory means that we can defer updates for
128          * longer, more processors could lead to more contention.
129          * fls() is used to have a cheap way of logarithmic scaling.
130          *
131          * Some sample thresholds:
132          *
133          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
134          * ------------------------------------------------------------------
135          * 8            1               1       0.9-1 GB        4
136          * 16           2               2       0.9-1 GB        4
137          * 20           2               2       1-2 GB          5
138          * 24           2               2       2-4 GB          6
139          * 28           2               2       4-8 GB          7
140          * 32           2               2       8-16 GB         8
141          * 4            2               2       <128M           1
142          * 30           4               3       2-4 GB          5
143          * 48           4               3       8-16 GB         8
144          * 32           8               4       1-2 GB          4
145          * 32           8               4       0.9-1GB         4
146          * 10           16              5       <128M           1
147          * 40           16              5       900M            4
148          * 70           64              7       2-4 GB          5
149          * 84           64              7       4-8 GB          6
150          * 108          512             9       4-8 GB          6
151          * 125          1024            10      8-16 GB         8
152          * 125          1024            10      16-32 GB        9
153          */
154
155         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
156
157         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159         /*
160          * Maximum threshold is 125
161          */
162         threshold = min(125, threshold);
163
164         return threshold;
165 }
166
167 /*
168  * Refresh the thresholds for each zone.
169  */
170 void refresh_zone_stat_thresholds(void)
171 {
172         struct pglist_data *pgdat;
173         struct zone *zone;
174         int cpu;
175         int threshold;
176
177         /* Zero current pgdat thresholds */
178         for_each_online_pgdat(pgdat) {
179                 for_each_online_cpu(cpu) {
180                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181                 }
182         }
183
184         for_each_populated_zone(zone) {
185                 struct pglist_data *pgdat = zone->zone_pgdat;
186                 unsigned long max_drift, tolerate_drift;
187
188                 threshold = calculate_normal_threshold(zone);
189
190                 for_each_online_cpu(cpu) {
191                         int pgdat_threshold;
192
193                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194                                                         = threshold;
195
196                         /* Base nodestat threshold on the largest populated zone. */
197                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199                                 = max(threshold, pgdat_threshold);
200                 }
201
202                 /*
203                  * Only set percpu_drift_mark if there is a danger that
204                  * NR_FREE_PAGES reports the low watermark is ok when in fact
205                  * the min watermark could be breached by an allocation
206                  */
207                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208                 max_drift = num_online_cpus() * threshold;
209                 if (max_drift > tolerate_drift)
210                         zone->percpu_drift_mark = high_wmark_pages(zone) +
211                                         max_drift;
212         }
213 }
214
215 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216                                 int (*calculate_pressure)(struct zone *))
217 {
218         struct zone *zone;
219         int cpu;
220         int threshold;
221         int i;
222
223         for (i = 0; i < pgdat->nr_zones; i++) {
224                 zone = &pgdat->node_zones[i];
225                 if (!zone->percpu_drift_mark)
226                         continue;
227
228                 threshold = (*calculate_pressure)(zone);
229                 for_each_online_cpu(cpu)
230                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231                                                         = threshold;
232         }
233 }
234
235 /*
236  * For use when we know that interrupts are disabled,
237  * or when we know that preemption is disabled and that
238  * particular counter cannot be updated from interrupt context.
239  */
240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
241                            long delta)
242 {
243         struct per_cpu_pageset __percpu *pcp = zone->pageset;
244         s8 __percpu *p = pcp->vm_stat_diff + item;
245         long x;
246         long t;
247
248         x = delta + __this_cpu_read(*p);
249
250         t = __this_cpu_read(pcp->stat_threshold);
251
252         if (unlikely(x > t || x < -t)) {
253                 zone_page_state_add(x, zone, item);
254                 x = 0;
255         }
256         __this_cpu_write(*p, x);
257 }
258 EXPORT_SYMBOL(__mod_zone_page_state);
259
260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261                                 long delta)
262 {
263         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264         s8 __percpu *p = pcp->vm_node_stat_diff + item;
265         long x;
266         long t;
267
268         x = delta + __this_cpu_read(*p);
269
270         t = __this_cpu_read(pcp->stat_threshold);
271
272         if (unlikely(x > t || x < -t)) {
273                 node_page_state_add(x, pgdat, item);
274                 x = 0;
275         }
276         __this_cpu_write(*p, x);
277 }
278 EXPORT_SYMBOL(__mod_node_page_state);
279
280 /*
281  * Optimized increment and decrement functions.
282  *
283  * These are only for a single page and therefore can take a struct page *
284  * argument instead of struct zone *. This allows the inclusion of the code
285  * generated for page_zone(page) into the optimized functions.
286  *
287  * No overflow check is necessary and therefore the differential can be
288  * incremented or decremented in place which may allow the compilers to
289  * generate better code.
290  * The increment or decrement is known and therefore one boundary check can
291  * be omitted.
292  *
293  * NOTE: These functions are very performance sensitive. Change only
294  * with care.
295  *
296  * Some processors have inc/dec instructions that are atomic vs an interrupt.
297  * However, the code must first determine the differential location in a zone
298  * based on the processor number and then inc/dec the counter. There is no
299  * guarantee without disabling preemption that the processor will not change
300  * in between and therefore the atomicity vs. interrupt cannot be exploited
301  * in a useful way here.
302  */
303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
304 {
305         struct per_cpu_pageset __percpu *pcp = zone->pageset;
306         s8 __percpu *p = pcp->vm_stat_diff + item;
307         s8 v, t;
308
309         v = __this_cpu_inc_return(*p);
310         t = __this_cpu_read(pcp->stat_threshold);
311         if (unlikely(v > t)) {
312                 s8 overstep = t >> 1;
313
314                 zone_page_state_add(v + overstep, zone, item);
315                 __this_cpu_write(*p, -overstep);
316         }
317 }
318
319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320 {
321         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322         s8 __percpu *p = pcp->vm_node_stat_diff + item;
323         s8 v, t;
324
325         v = __this_cpu_inc_return(*p);
326         t = __this_cpu_read(pcp->stat_threshold);
327         if (unlikely(v > t)) {
328                 s8 overstep = t >> 1;
329
330                 node_page_state_add(v + overstep, pgdat, item);
331                 __this_cpu_write(*p, -overstep);
332         }
333 }
334
335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336 {
337         __inc_zone_state(page_zone(page), item);
338 }
339 EXPORT_SYMBOL(__inc_zone_page_state);
340
341 void __inc_node_page_state(struct page *page, enum node_stat_item item)
342 {
343         __inc_node_state(page_pgdat(page), item);
344 }
345 EXPORT_SYMBOL(__inc_node_page_state);
346
347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
348 {
349         struct per_cpu_pageset __percpu *pcp = zone->pageset;
350         s8 __percpu *p = pcp->vm_stat_diff + item;
351         s8 v, t;
352
353         v = __this_cpu_dec_return(*p);
354         t = __this_cpu_read(pcp->stat_threshold);
355         if (unlikely(v < - t)) {
356                 s8 overstep = t >> 1;
357
358                 zone_page_state_add(v - overstep, zone, item);
359                 __this_cpu_write(*p, overstep);
360         }
361 }
362
363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364 {
365         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366         s8 __percpu *p = pcp->vm_node_stat_diff + item;
367         s8 v, t;
368
369         v = __this_cpu_dec_return(*p);
370         t = __this_cpu_read(pcp->stat_threshold);
371         if (unlikely(v < - t)) {
372                 s8 overstep = t >> 1;
373
374                 node_page_state_add(v - overstep, pgdat, item);
375                 __this_cpu_write(*p, overstep);
376         }
377 }
378
379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380 {
381         __dec_zone_state(page_zone(page), item);
382 }
383 EXPORT_SYMBOL(__dec_zone_page_state);
384
385 void __dec_node_page_state(struct page *page, enum node_stat_item item)
386 {
387         __dec_node_state(page_pgdat(page), item);
388 }
389 EXPORT_SYMBOL(__dec_node_page_state);
390
391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
392 /*
393  * If we have cmpxchg_local support then we do not need to incur the overhead
394  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395  *
396  * mod_state() modifies the zone counter state through atomic per cpu
397  * operations.
398  *
399  * Overstep mode specifies how overstep should handled:
400  *     0       No overstepping
401  *     1       Overstepping half of threshold
402  *     -1      Overstepping minus half of threshold
403 */
404 static inline void mod_zone_state(struct zone *zone,
405        enum zone_stat_item item, long delta, int overstep_mode)
406 {
407         struct per_cpu_pageset __percpu *pcp = zone->pageset;
408         s8 __percpu *p = pcp->vm_stat_diff + item;
409         long o, n, t, z;
410
411         do {
412                 z = 0;  /* overflow to zone counters */
413
414                 /*
415                  * The fetching of the stat_threshold is racy. We may apply
416                  * a counter threshold to the wrong the cpu if we get
417                  * rescheduled while executing here. However, the next
418                  * counter update will apply the threshold again and
419                  * therefore bring the counter under the threshold again.
420                  *
421                  * Most of the time the thresholds are the same anyways
422                  * for all cpus in a zone.
423                  */
424                 t = this_cpu_read(pcp->stat_threshold);
425
426                 o = this_cpu_read(*p);
427                 n = delta + o;
428
429                 if (n > t || n < -t) {
430                         int os = overstep_mode * (t >> 1) ;
431
432                         /* Overflow must be added to zone counters */
433                         z = n + os;
434                         n = -os;
435                 }
436         } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438         if (z)
439                 zone_page_state_add(z, zone, item);
440 }
441
442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
443                          long delta)
444 {
445         mod_zone_state(zone, item, delta, 0);
446 }
447 EXPORT_SYMBOL(mod_zone_page_state);
448
449 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450 {
451         mod_zone_state(page_zone(page), item, 1, 1);
452 }
453 EXPORT_SYMBOL(inc_zone_page_state);
454
455 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457         mod_zone_state(page_zone(page), item, -1, -1);
458 }
459 EXPORT_SYMBOL(dec_zone_page_state);
460
461 static inline void mod_node_state(struct pglist_data *pgdat,
462        enum node_stat_item item, int delta, int overstep_mode)
463 {
464         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465         s8 __percpu *p = pcp->vm_node_stat_diff + item;
466         long o, n, t, z;
467
468         do {
469                 z = 0;  /* overflow to node counters */
470
471                 /*
472                  * The fetching of the stat_threshold is racy. We may apply
473                  * a counter threshold to the wrong the cpu if we get
474                  * rescheduled while executing here. However, the next
475                  * counter update will apply the threshold again and
476                  * therefore bring the counter under the threshold again.
477                  *
478                  * Most of the time the thresholds are the same anyways
479                  * for all cpus in a node.
480                  */
481                 t = this_cpu_read(pcp->stat_threshold);
482
483                 o = this_cpu_read(*p);
484                 n = delta + o;
485
486                 if (n > t || n < -t) {
487                         int os = overstep_mode * (t >> 1) ;
488
489                         /* Overflow must be added to node counters */
490                         z = n + os;
491                         n = -os;
492                 }
493         } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495         if (z)
496                 node_page_state_add(z, pgdat, item);
497 }
498
499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500                                         long delta)
501 {
502         mod_node_state(pgdat, item, delta, 0);
503 }
504 EXPORT_SYMBOL(mod_node_page_state);
505
506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507 {
508         mod_node_state(pgdat, item, 1, 1);
509 }
510
511 void inc_node_page_state(struct page *page, enum node_stat_item item)
512 {
513         mod_node_state(page_pgdat(page), item, 1, 1);
514 }
515 EXPORT_SYMBOL(inc_node_page_state);
516
517 void dec_node_page_state(struct page *page, enum node_stat_item item)
518 {
519         mod_node_state(page_pgdat(page), item, -1, -1);
520 }
521 EXPORT_SYMBOL(dec_node_page_state);
522 #else
523 /*
524  * Use interrupt disable to serialize counter updates
525  */
526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
527                          long delta)
528 {
529         unsigned long flags;
530
531         local_irq_save(flags);
532         __mod_zone_page_state(zone, item, delta);
533         local_irq_restore(flags);
534 }
535 EXPORT_SYMBOL(mod_zone_page_state);
536
537 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538 {
539         unsigned long flags;
540         struct zone *zone;
541
542         zone = page_zone(page);
543         local_irq_save(flags);
544         __inc_zone_state(zone, item);
545         local_irq_restore(flags);
546 }
547 EXPORT_SYMBOL(inc_zone_page_state);
548
549 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550 {
551         unsigned long flags;
552
553         local_irq_save(flags);
554         __dec_zone_page_state(page, item);
555         local_irq_restore(flags);
556 }
557 EXPORT_SYMBOL(dec_zone_page_state);
558
559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560 {
561         unsigned long flags;
562
563         local_irq_save(flags);
564         __inc_node_state(pgdat, item);
565         local_irq_restore(flags);
566 }
567 EXPORT_SYMBOL(inc_node_state);
568
569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570                                         long delta)
571 {
572         unsigned long flags;
573
574         local_irq_save(flags);
575         __mod_node_page_state(pgdat, item, delta);
576         local_irq_restore(flags);
577 }
578 EXPORT_SYMBOL(mod_node_page_state);
579
580 void inc_node_page_state(struct page *page, enum node_stat_item item)
581 {
582         unsigned long flags;
583         struct pglist_data *pgdat;
584
585         pgdat = page_pgdat(page);
586         local_irq_save(flags);
587         __inc_node_state(pgdat, item);
588         local_irq_restore(flags);
589 }
590 EXPORT_SYMBOL(inc_node_page_state);
591
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
593 {
594         unsigned long flags;
595
596         local_irq_save(flags);
597         __dec_node_page_state(page, item);
598         local_irq_restore(flags);
599 }
600 EXPORT_SYMBOL(dec_node_page_state);
601 #endif
602
603 /*
604  * Fold a differential into the global counters.
605  * Returns the number of counters updated.
606  */
607 static int fold_diff(int *zone_diff, int *node_diff)
608 {
609         int i;
610         int changes = 0;
611
612         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
613                 if (zone_diff[i]) {
614                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615                         changes++;
616         }
617
618         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619                 if (node_diff[i]) {
620                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
621                         changes++;
622         }
623         return changes;
624 }
625
626 /*
627  * Update the zone counters for the current cpu.
628  *
629  * Note that refresh_cpu_vm_stats strives to only access
630  * node local memory. The per cpu pagesets on remote zones are placed
631  * in the memory local to the processor using that pageset. So the
632  * loop over all zones will access a series of cachelines local to
633  * the processor.
634  *
635  * The call to zone_page_state_add updates the cachelines with the
636  * statistics in the remote zone struct as well as the global cachelines
637  * with the global counters. These could cause remote node cache line
638  * bouncing and will have to be only done when necessary.
639  *
640  * The function returns the number of global counters updated.
641  */
642 static int refresh_cpu_vm_stats(bool do_pagesets)
643 {
644         struct pglist_data *pgdat;
645         struct zone *zone;
646         int i;
647         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
649         int changes = 0;
650
651         for_each_populated_zone(zone) {
652                 struct per_cpu_pageset __percpu *p = zone->pageset;
653
654                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655                         int v;
656
657                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658                         if (v) {
659
660                                 atomic_long_add(v, &zone->vm_stat[i]);
661                                 global_zone_diff[i] += v;
662 #ifdef CONFIG_NUMA
663                                 /* 3 seconds idle till flush */
664                                 __this_cpu_write(p->expire, 3);
665 #endif
666                         }
667                 }
668 #ifdef CONFIG_NUMA
669                 if (do_pagesets) {
670                         cond_resched();
671                         /*
672                          * Deal with draining the remote pageset of this
673                          * processor
674                          *
675                          * Check if there are pages remaining in this pageset
676                          * if not then there is nothing to expire.
677                          */
678                         if (!__this_cpu_read(p->expire) ||
679                                !__this_cpu_read(p->pcp.count))
680                                 continue;
681
682                         /*
683                          * We never drain zones local to this processor.
684                          */
685                         if (zone_to_nid(zone) == numa_node_id()) {
686                                 __this_cpu_write(p->expire, 0);
687                                 continue;
688                         }
689
690                         if (__this_cpu_dec_return(p->expire))
691                                 continue;
692
693                         if (__this_cpu_read(p->pcp.count)) {
694                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695                                 changes++;
696                         }
697                 }
698 #endif
699         }
700
701         for_each_online_pgdat(pgdat) {
702                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705                         int v;
706
707                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708                         if (v) {
709                                 atomic_long_add(v, &pgdat->vm_stat[i]);
710                                 global_node_diff[i] += v;
711                         }
712                 }
713         }
714
715         changes += fold_diff(global_zone_diff, global_node_diff);
716         return changes;
717 }
718
719 /*
720  * Fold the data for an offline cpu into the global array.
721  * There cannot be any access by the offline cpu and therefore
722  * synchronization is simplified.
723  */
724 void cpu_vm_stats_fold(int cpu)
725 {
726         struct pglist_data *pgdat;
727         struct zone *zone;
728         int i;
729         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
731
732         for_each_populated_zone(zone) {
733                 struct per_cpu_pageset *p;
734
735                 p = per_cpu_ptr(zone->pageset, cpu);
736
737                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738                         if (p->vm_stat_diff[i]) {
739                                 int v;
740
741                                 v = p->vm_stat_diff[i];
742                                 p->vm_stat_diff[i] = 0;
743                                 atomic_long_add(v, &zone->vm_stat[i]);
744                                 global_zone_diff[i] += v;
745                         }
746         }
747
748         for_each_online_pgdat(pgdat) {
749                 struct per_cpu_nodestat *p;
750
751                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754                         if (p->vm_node_stat_diff[i]) {
755                                 int v;
756
757                                 v = p->vm_node_stat_diff[i];
758                                 p->vm_node_stat_diff[i] = 0;
759                                 atomic_long_add(v, &pgdat->vm_stat[i]);
760                                 global_node_diff[i] += v;
761                         }
762         }
763
764         fold_diff(global_zone_diff, global_node_diff);
765 }
766
767 /*
768  * this is only called if !populated_zone(zone), which implies no other users of
769  * pset->vm_stat_diff[] exsist.
770  */
771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772 {
773         int i;
774
775         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776                 if (pset->vm_stat_diff[i]) {
777                         int v = pset->vm_stat_diff[i];
778                         pset->vm_stat_diff[i] = 0;
779                         atomic_long_add(v, &zone->vm_stat[i]);
780                         atomic_long_add(v, &vm_zone_stat[i]);
781                 }
782 }
783 #endif
784
785 #ifdef CONFIG_NUMA
786 /*
787  * Determine the per node value of a stat item. This function
788  * is called frequently in a NUMA machine, so try to be as
789  * frugal as possible.
790  */
791 unsigned long sum_zone_node_page_state(int node,
792                                  enum zone_stat_item item)
793 {
794         struct zone *zones = NODE_DATA(node)->node_zones;
795         int i;
796         unsigned long count = 0;
797
798         for (i = 0; i < MAX_NR_ZONES; i++)
799                 count += zone_page_state(zones + i, item);
800
801         return count;
802 }
803
804 /*
805  * Determine the per node value of a stat item.
806  */
807 unsigned long node_page_state(struct pglist_data *pgdat,
808                                 enum node_stat_item item)
809 {
810         long x = atomic_long_read(&pgdat->vm_stat[item]);
811 #ifdef CONFIG_SMP
812         if (x < 0)
813                 x = 0;
814 #endif
815         return x;
816 }
817 #endif
818
819 #ifdef CONFIG_COMPACTION
820
821 struct contig_page_info {
822         unsigned long free_pages;
823         unsigned long free_blocks_total;
824         unsigned long free_blocks_suitable;
825 };
826
827 /*
828  * Calculate the number of free pages in a zone, how many contiguous
829  * pages are free and how many are large enough to satisfy an allocation of
830  * the target size. Note that this function makes no attempt to estimate
831  * how many suitable free blocks there *might* be if MOVABLE pages were
832  * migrated. Calculating that is possible, but expensive and can be
833  * figured out from userspace
834  */
835 static void fill_contig_page_info(struct zone *zone,
836                                 unsigned int suitable_order,
837                                 struct contig_page_info *info)
838 {
839         unsigned int order;
840
841         info->free_pages = 0;
842         info->free_blocks_total = 0;
843         info->free_blocks_suitable = 0;
844
845         for (order = 0; order < MAX_ORDER; order++) {
846                 unsigned long blocks;
847
848                 /* Count number of free blocks */
849                 blocks = zone->free_area[order].nr_free;
850                 info->free_blocks_total += blocks;
851
852                 /* Count free base pages */
853                 info->free_pages += blocks << order;
854
855                 /* Count the suitable free blocks */
856                 if (order >= suitable_order)
857                         info->free_blocks_suitable += blocks <<
858                                                 (order - suitable_order);
859         }
860 }
861
862 /*
863  * A fragmentation index only makes sense if an allocation of a requested
864  * size would fail. If that is true, the fragmentation index indicates
865  * whether external fragmentation or a lack of memory was the problem.
866  * The value can be used to determine if page reclaim or compaction
867  * should be used
868  */
869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
870 {
871         unsigned long requested = 1UL << order;
872
873         if (!info->free_blocks_total)
874                 return 0;
875
876         /* Fragmentation index only makes sense when a request would fail */
877         if (info->free_blocks_suitable)
878                 return -1000;
879
880         /*
881          * Index is between 0 and 1 so return within 3 decimal places
882          *
883          * 0 => allocation would fail due to lack of memory
884          * 1 => allocation would fail due to fragmentation
885          */
886         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
887 }
888
889 /* Same as __fragmentation index but allocs contig_page_info on stack */
890 int fragmentation_index(struct zone *zone, unsigned int order)
891 {
892         struct contig_page_info info;
893
894         fill_contig_page_info(zone, order, &info);
895         return __fragmentation_index(order, &info);
896 }
897 #endif
898
899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
900 #ifdef CONFIG_ZONE_DMA
901 #define TEXT_FOR_DMA(xx) xx "_dma",
902 #else
903 #define TEXT_FOR_DMA(xx)
904 #endif
905
906 #ifdef CONFIG_ZONE_DMA32
907 #define TEXT_FOR_DMA32(xx) xx "_dma32",
908 #else
909 #define TEXT_FOR_DMA32(xx)
910 #endif
911
912 #ifdef CONFIG_HIGHMEM
913 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
914 #else
915 #define TEXT_FOR_HIGHMEM(xx)
916 #endif
917
918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
920
921 const char * const vmstat_text[] = {
922         /* enum zone_stat_item countes */
923         "nr_free_pages",
924         "nr_zone_inactive_anon",
925         "nr_zone_active_anon",
926         "nr_zone_inactive_file",
927         "nr_zone_active_file",
928         "nr_zone_unevictable",
929         "nr_zone_write_pending",
930         "nr_mlock",
931         "nr_slab_reclaimable",
932         "nr_slab_unreclaimable",
933         "nr_page_table_pages",
934         "nr_kernel_stack",
935         "nr_bounce",
936 #if IS_ENABLED(CONFIG_ZSMALLOC)
937         "nr_zspages",
938 #endif
939 #ifdef CONFIG_NUMA
940         "numa_hit",
941         "numa_miss",
942         "numa_foreign",
943         "numa_interleave",
944         "numa_local",
945         "numa_other",
946 #endif
947         "nr_free_cma",
948
949         /* Node-based counters */
950         "nr_inactive_anon",
951         "nr_active_anon",
952         "nr_inactive_file",
953         "nr_active_file",
954         "nr_unevictable",
955         "nr_isolated_anon",
956         "nr_isolated_file",
957         "nr_pages_scanned",
958         "workingset_refault",
959         "workingset_activate",
960         "workingset_nodereclaim",
961         "nr_anon_pages",
962         "nr_mapped",
963         "nr_file_pages",
964         "nr_dirty",
965         "nr_writeback",
966         "nr_writeback_temp",
967         "nr_shmem",
968         "nr_shmem_hugepages",
969         "nr_shmem_pmdmapped",
970         "nr_anon_transparent_hugepages",
971         "nr_unstable",
972         "nr_vmscan_write",
973         "nr_vmscan_immediate_reclaim",
974         "nr_dirtied",
975         "nr_written",
976
977         /* enum writeback_stat_item counters */
978         "nr_dirty_threshold",
979         "nr_dirty_background_threshold",
980
981 #ifdef CONFIG_VM_EVENT_COUNTERS
982         /* enum vm_event_item counters */
983         "pgpgin",
984         "pgpgout",
985         "pswpin",
986         "pswpout",
987
988         TEXTS_FOR_ZONES("pgalloc")
989         TEXTS_FOR_ZONES("allocstall")
990         TEXTS_FOR_ZONES("pgskip")
991
992         "pgfree",
993         "pgactivate",
994         "pgdeactivate",
995
996         "pgfault",
997         "pgmajfault",
998         "pglazyfreed",
999
1000         "pgrefill",
1001         "pgsteal_kswapd",
1002         "pgsteal_direct",
1003         "pgscan_kswapd",
1004         "pgscan_direct",
1005         "pgscan_direct_throttle",
1006
1007 #ifdef CONFIG_NUMA
1008         "zone_reclaim_failed",
1009 #endif
1010         "pginodesteal",
1011         "slabs_scanned",
1012         "kswapd_inodesteal",
1013         "kswapd_low_wmark_hit_quickly",
1014         "kswapd_high_wmark_hit_quickly",
1015         "pageoutrun",
1016
1017         "pgrotated",
1018
1019         "drop_pagecache",
1020         "drop_slab",
1021
1022 #ifdef CONFIG_NUMA_BALANCING
1023         "numa_pte_updates",
1024         "numa_huge_pte_updates",
1025         "numa_hint_faults",
1026         "numa_hint_faults_local",
1027         "numa_pages_migrated",
1028 #endif
1029 #ifdef CONFIG_MIGRATION
1030         "pgmigrate_success",
1031         "pgmigrate_fail",
1032 #endif
1033 #ifdef CONFIG_COMPACTION
1034         "compact_migrate_scanned",
1035         "compact_free_scanned",
1036         "compact_isolated",
1037         "compact_stall",
1038         "compact_fail",
1039         "compact_success",
1040         "compact_daemon_wake",
1041 #endif
1042
1043 #ifdef CONFIG_HUGETLB_PAGE
1044         "htlb_buddy_alloc_success",
1045         "htlb_buddy_alloc_fail",
1046 #endif
1047         "unevictable_pgs_culled",
1048         "unevictable_pgs_scanned",
1049         "unevictable_pgs_rescued",
1050         "unevictable_pgs_mlocked",
1051         "unevictable_pgs_munlocked",
1052         "unevictable_pgs_cleared",
1053         "unevictable_pgs_stranded",
1054
1055 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1056         "thp_fault_alloc",
1057         "thp_fault_fallback",
1058         "thp_collapse_alloc",
1059         "thp_collapse_alloc_failed",
1060         "thp_file_alloc",
1061         "thp_file_mapped",
1062         "thp_split_page",
1063         "thp_split_page_failed",
1064         "thp_deferred_split_page",
1065         "thp_split_pmd",
1066         "thp_zero_page_alloc",
1067         "thp_zero_page_alloc_failed",
1068 #endif
1069 #ifdef CONFIG_MEMORY_BALLOON
1070         "balloon_inflate",
1071         "balloon_deflate",
1072 #ifdef CONFIG_BALLOON_COMPACTION
1073         "balloon_migrate",
1074 #endif
1075 #endif /* CONFIG_MEMORY_BALLOON */
1076 #ifdef CONFIG_DEBUG_TLBFLUSH
1077 #ifdef CONFIG_SMP
1078         "nr_tlb_remote_flush",
1079         "nr_tlb_remote_flush_received",
1080 #endif /* CONFIG_SMP */
1081         "nr_tlb_local_flush_all",
1082         "nr_tlb_local_flush_one",
1083 #endif /* CONFIG_DEBUG_TLBFLUSH */
1084
1085 #ifdef CONFIG_DEBUG_VM_VMACACHE
1086         "vmacache_find_calls",
1087         "vmacache_find_hits",
1088         "vmacache_full_flushes",
1089 #endif
1090 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1091 };
1092 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1093
1094
1095 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1096      defined(CONFIG_PROC_FS)
1097 static void *frag_start(struct seq_file *m, loff_t *pos)
1098 {
1099         pg_data_t *pgdat;
1100         loff_t node = *pos;
1101
1102         for (pgdat = first_online_pgdat();
1103              pgdat && node;
1104              pgdat = next_online_pgdat(pgdat))
1105                 --node;
1106
1107         return pgdat;
1108 }
1109
1110 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1111 {
1112         pg_data_t *pgdat = (pg_data_t *)arg;
1113
1114         (*pos)++;
1115         return next_online_pgdat(pgdat);
1116 }
1117
1118 static void frag_stop(struct seq_file *m, void *arg)
1119 {
1120 }
1121
1122 /* Walk all the zones in a node and print using a callback */
1123 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1124                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1125 {
1126         struct zone *zone;
1127         struct zone *node_zones = pgdat->node_zones;
1128         unsigned long flags;
1129
1130         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1131                 if (!populated_zone(zone))
1132                         continue;
1133
1134                 spin_lock_irqsave(&zone->lock, flags);
1135                 print(m, pgdat, zone);
1136                 spin_unlock_irqrestore(&zone->lock, flags);
1137         }
1138 }
1139 #endif
1140
1141 #ifdef CONFIG_PROC_FS
1142 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1143                                                 struct zone *zone)
1144 {
1145         int order;
1146
1147         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1148         for (order = 0; order < MAX_ORDER; ++order)
1149                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1150         seq_putc(m, '\n');
1151 }
1152
1153 /*
1154  * This walks the free areas for each zone.
1155  */
1156 static int frag_show(struct seq_file *m, void *arg)
1157 {
1158         pg_data_t *pgdat = (pg_data_t *)arg;
1159         walk_zones_in_node(m, pgdat, frag_show_print);
1160         return 0;
1161 }
1162
1163 static void pagetypeinfo_showfree_print(struct seq_file *m,
1164                                         pg_data_t *pgdat, struct zone *zone)
1165 {
1166         int order, mtype;
1167
1168         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1169                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1170                                         pgdat->node_id,
1171                                         zone->name,
1172                                         migratetype_names[mtype]);
1173                 for (order = 0; order < MAX_ORDER; ++order) {
1174                         unsigned long freecount = 0;
1175                         struct free_area *area;
1176                         struct list_head *curr;
1177
1178                         area = &(zone->free_area[order]);
1179
1180                         list_for_each(curr, &area->free_list[mtype])
1181                                 freecount++;
1182                         seq_printf(m, "%6lu ", freecount);
1183                 }
1184                 seq_putc(m, '\n');
1185         }
1186 }
1187
1188 /* Print out the free pages at each order for each migatetype */
1189 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1190 {
1191         int order;
1192         pg_data_t *pgdat = (pg_data_t *)arg;
1193
1194         /* Print header */
1195         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1196         for (order = 0; order < MAX_ORDER; ++order)
1197                 seq_printf(m, "%6d ", order);
1198         seq_putc(m, '\n');
1199
1200         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1201
1202         return 0;
1203 }
1204
1205 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1206                                         pg_data_t *pgdat, struct zone *zone)
1207 {
1208         int mtype;
1209         unsigned long pfn;
1210         unsigned long start_pfn = zone->zone_start_pfn;
1211         unsigned long end_pfn = zone_end_pfn(zone);
1212         unsigned long count[MIGRATE_TYPES] = { 0, };
1213
1214         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1215                 struct page *page;
1216
1217                 if (!pfn_valid(pfn))
1218                         continue;
1219
1220                 page = pfn_to_page(pfn);
1221
1222                 /* Watch for unexpected holes punched in the memmap */
1223                 if (!memmap_valid_within(pfn, page, zone))
1224                         continue;
1225
1226                 if (page_zone(page) != zone)
1227                         continue;
1228
1229                 mtype = get_pageblock_migratetype(page);
1230
1231                 if (mtype < MIGRATE_TYPES)
1232                         count[mtype]++;
1233         }
1234
1235         /* Print counts */
1236         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1237         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1238                 seq_printf(m, "%12lu ", count[mtype]);
1239         seq_putc(m, '\n');
1240 }
1241
1242 /* Print out the free pages at each order for each migratetype */
1243 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1244 {
1245         int mtype;
1246         pg_data_t *pgdat = (pg_data_t *)arg;
1247
1248         seq_printf(m, "\n%-23s", "Number of blocks type ");
1249         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1250                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1251         seq_putc(m, '\n');
1252         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1253
1254         return 0;
1255 }
1256
1257 /*
1258  * Print out the number of pageblocks for each migratetype that contain pages
1259  * of other types. This gives an indication of how well fallbacks are being
1260  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1261  * to determine what is going on
1262  */
1263 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1264 {
1265 #ifdef CONFIG_PAGE_OWNER
1266         int mtype;
1267
1268         if (!static_branch_unlikely(&page_owner_inited))
1269                 return;
1270
1271         drain_all_pages(NULL);
1272
1273         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1274         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1275                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1276         seq_putc(m, '\n');
1277
1278         walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1279 #endif /* CONFIG_PAGE_OWNER */
1280 }
1281
1282 /*
1283  * This prints out statistics in relation to grouping pages by mobility.
1284  * It is expensive to collect so do not constantly read the file.
1285  */
1286 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1287 {
1288         pg_data_t *pgdat = (pg_data_t *)arg;
1289
1290         /* check memoryless node */
1291         if (!node_state(pgdat->node_id, N_MEMORY))
1292                 return 0;
1293
1294         seq_printf(m, "Page block order: %d\n", pageblock_order);
1295         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1296         seq_putc(m, '\n');
1297         pagetypeinfo_showfree(m, pgdat);
1298         pagetypeinfo_showblockcount(m, pgdat);
1299         pagetypeinfo_showmixedcount(m, pgdat);
1300
1301         return 0;
1302 }
1303
1304 static const struct seq_operations fragmentation_op = {
1305         .start  = frag_start,
1306         .next   = frag_next,
1307         .stop   = frag_stop,
1308         .show   = frag_show,
1309 };
1310
1311 static int fragmentation_open(struct inode *inode, struct file *file)
1312 {
1313         return seq_open(file, &fragmentation_op);
1314 }
1315
1316 static const struct file_operations fragmentation_file_operations = {
1317         .open           = fragmentation_open,
1318         .read           = seq_read,
1319         .llseek         = seq_lseek,
1320         .release        = seq_release,
1321 };
1322
1323 static const struct seq_operations pagetypeinfo_op = {
1324         .start  = frag_start,
1325         .next   = frag_next,
1326         .stop   = frag_stop,
1327         .show   = pagetypeinfo_show,
1328 };
1329
1330 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1331 {
1332         return seq_open(file, &pagetypeinfo_op);
1333 }
1334
1335 static const struct file_operations pagetypeinfo_file_ops = {
1336         .open           = pagetypeinfo_open,
1337         .read           = seq_read,
1338         .llseek         = seq_lseek,
1339         .release        = seq_release,
1340 };
1341
1342 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1343 {
1344         int zid;
1345
1346         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1347                 struct zone *compare = &pgdat->node_zones[zid];
1348
1349                 if (populated_zone(compare))
1350                         return zone == compare;
1351         }
1352
1353         /* The zone must be somewhere! */
1354         WARN_ON_ONCE(1);
1355         return false;
1356 }
1357
1358 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1359                                                         struct zone *zone)
1360 {
1361         int i;
1362         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1363         if (is_zone_first_populated(pgdat, zone)) {
1364                 seq_printf(m, "\n  per-node stats");
1365                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1366                         seq_printf(m, "\n      %-12s %lu",
1367                                 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1368                                 node_page_state(pgdat, i));
1369                 }
1370         }
1371         seq_printf(m,
1372                    "\n  pages free     %lu"
1373                    "\n        min      %lu"
1374                    "\n        low      %lu"
1375                    "\n        high     %lu"
1376                    "\n   node_scanned  %lu"
1377                    "\n        spanned  %lu"
1378                    "\n        present  %lu"
1379                    "\n        managed  %lu",
1380                    zone_page_state(zone, NR_FREE_PAGES),
1381                    min_wmark_pages(zone),
1382                    low_wmark_pages(zone),
1383                    high_wmark_pages(zone),
1384                    node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED),
1385                    zone->spanned_pages,
1386                    zone->present_pages,
1387                    zone->managed_pages);
1388
1389         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1390                 seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1391                                 zone_page_state(zone, i));
1392
1393         seq_printf(m,
1394                    "\n        protection: (%ld",
1395                    zone->lowmem_reserve[0]);
1396         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1397                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1398         seq_printf(m,
1399                    ")"
1400                    "\n  pagesets");
1401         for_each_online_cpu(i) {
1402                 struct per_cpu_pageset *pageset;
1403
1404                 pageset = per_cpu_ptr(zone->pageset, i);
1405                 seq_printf(m,
1406                            "\n    cpu: %i"
1407                            "\n              count: %i"
1408                            "\n              high:  %i"
1409                            "\n              batch: %i",
1410                            i,
1411                            pageset->pcp.count,
1412                            pageset->pcp.high,
1413                            pageset->pcp.batch);
1414 #ifdef CONFIG_SMP
1415                 seq_printf(m, "\n  vm stats threshold: %d",
1416                                 pageset->stat_threshold);
1417 #endif
1418         }
1419         seq_printf(m,
1420                    "\n  node_unreclaimable:  %u"
1421                    "\n  start_pfn:           %lu"
1422                    "\n  node_inactive_ratio: %u",
1423                    !pgdat_reclaimable(zone->zone_pgdat),
1424                    zone->zone_start_pfn,
1425                    zone->zone_pgdat->inactive_ratio);
1426         seq_putc(m, '\n');
1427 }
1428
1429 /*
1430  * Output information about zones in @pgdat.
1431  */
1432 static int zoneinfo_show(struct seq_file *m, void *arg)
1433 {
1434         pg_data_t *pgdat = (pg_data_t *)arg;
1435         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1436         return 0;
1437 }
1438
1439 static const struct seq_operations zoneinfo_op = {
1440         .start  = frag_start, /* iterate over all zones. The same as in
1441                                * fragmentation. */
1442         .next   = frag_next,
1443         .stop   = frag_stop,
1444         .show   = zoneinfo_show,
1445 };
1446
1447 static int zoneinfo_open(struct inode *inode, struct file *file)
1448 {
1449         return seq_open(file, &zoneinfo_op);
1450 }
1451
1452 static const struct file_operations proc_zoneinfo_file_operations = {
1453         .open           = zoneinfo_open,
1454         .read           = seq_read,
1455         .llseek         = seq_lseek,
1456         .release        = seq_release,
1457 };
1458
1459 enum writeback_stat_item {
1460         NR_DIRTY_THRESHOLD,
1461         NR_DIRTY_BG_THRESHOLD,
1462         NR_VM_WRITEBACK_STAT_ITEMS,
1463 };
1464
1465 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1466 {
1467         unsigned long *v;
1468         int i, stat_items_size;
1469
1470         if (*pos >= ARRAY_SIZE(vmstat_text))
1471                 return NULL;
1472         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1473                           NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1474                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1475
1476 #ifdef CONFIG_VM_EVENT_COUNTERS
1477         stat_items_size += sizeof(struct vm_event_state);
1478 #endif
1479
1480         v = kmalloc(stat_items_size, GFP_KERNEL);
1481         m->private = v;
1482         if (!v)
1483                 return ERR_PTR(-ENOMEM);
1484         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1485                 v[i] = global_page_state(i);
1486         v += NR_VM_ZONE_STAT_ITEMS;
1487
1488         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1489                 v[i] = global_node_page_state(i);
1490         v += NR_VM_NODE_STAT_ITEMS;
1491
1492         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1493                             v + NR_DIRTY_THRESHOLD);
1494         v += NR_VM_WRITEBACK_STAT_ITEMS;
1495
1496 #ifdef CONFIG_VM_EVENT_COUNTERS
1497         all_vm_events(v);
1498         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1499         v[PGPGOUT] /= 2;
1500 #endif
1501         return (unsigned long *)m->private + *pos;
1502 }
1503
1504 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1505 {
1506         (*pos)++;
1507         if (*pos >= ARRAY_SIZE(vmstat_text))
1508                 return NULL;
1509         return (unsigned long *)m->private + *pos;
1510 }
1511
1512 static int vmstat_show(struct seq_file *m, void *arg)
1513 {
1514         unsigned long *l = arg;
1515         unsigned long off = l - (unsigned long *)m->private;
1516         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1517         return 0;
1518 }
1519
1520 static void vmstat_stop(struct seq_file *m, void *arg)
1521 {
1522         kfree(m->private);
1523         m->private = NULL;
1524 }
1525
1526 static const struct seq_operations vmstat_op = {
1527         .start  = vmstat_start,
1528         .next   = vmstat_next,
1529         .stop   = vmstat_stop,
1530         .show   = vmstat_show,
1531 };
1532
1533 static int vmstat_open(struct inode *inode, struct file *file)
1534 {
1535         return seq_open(file, &vmstat_op);
1536 }
1537
1538 static const struct file_operations proc_vmstat_file_operations = {
1539         .open           = vmstat_open,
1540         .read           = seq_read,
1541         .llseek         = seq_lseek,
1542         .release        = seq_release,
1543 };
1544 #endif /* CONFIG_PROC_FS */
1545
1546 #ifdef CONFIG_SMP
1547 static struct workqueue_struct *vmstat_wq;
1548 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1549 int sysctl_stat_interval __read_mostly = HZ;
1550
1551 #ifdef CONFIG_PROC_FS
1552 static void refresh_vm_stats(struct work_struct *work)
1553 {
1554         refresh_cpu_vm_stats(true);
1555 }
1556
1557 int vmstat_refresh(struct ctl_table *table, int write,
1558                    void __user *buffer, size_t *lenp, loff_t *ppos)
1559 {
1560         long val;
1561         int err;
1562         int i;
1563
1564         /*
1565          * The regular update, every sysctl_stat_interval, may come later
1566          * than expected: leaving a significant amount in per_cpu buckets.
1567          * This is particularly misleading when checking a quantity of HUGE
1568          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1569          * which can equally be echo'ed to or cat'ted from (by root),
1570          * can be used to update the stats just before reading them.
1571          *
1572          * Oh, and since global_page_state() etc. are so careful to hide
1573          * transiently negative values, report an error here if any of
1574          * the stats is negative, so we know to go looking for imbalance.
1575          */
1576         err = schedule_on_each_cpu(refresh_vm_stats);
1577         if (err)
1578                 return err;
1579         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1580                 val = atomic_long_read(&vm_zone_stat[i]);
1581                 if (val < 0) {
1582                         switch (i) {
1583                         case NR_PAGES_SCANNED:
1584                                 /*
1585                                  * This is often seen to go negative in
1586                                  * recent kernels, but not to go permanently
1587                                  * negative.  Whilst it would be nicer not to
1588                                  * have exceptions, rooting them out would be
1589                                  * another task, of rather low priority.
1590                                  */
1591                                 break;
1592                         default:
1593                                 pr_warn("%s: %s %ld\n",
1594                                         __func__, vmstat_text[i], val);
1595                                 err = -EINVAL;
1596                                 break;
1597                         }
1598                 }
1599         }
1600         if (err)
1601                 return err;
1602         if (write)
1603                 *ppos += *lenp;
1604         else
1605                 *lenp = 0;
1606         return 0;
1607 }
1608 #endif /* CONFIG_PROC_FS */
1609
1610 static void vmstat_update(struct work_struct *w)
1611 {
1612         if (refresh_cpu_vm_stats(true)) {
1613                 /*
1614                  * Counters were updated so we expect more updates
1615                  * to occur in the future. Keep on running the
1616                  * update worker thread.
1617                  */
1618                 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1619                                 this_cpu_ptr(&vmstat_work),
1620                                 round_jiffies_relative(sysctl_stat_interval));
1621         }
1622 }
1623
1624 /*
1625  * Switch off vmstat processing and then fold all the remaining differentials
1626  * until the diffs stay at zero. The function is used by NOHZ and can only be
1627  * invoked when tick processing is not active.
1628  */
1629 /*
1630  * Check if the diffs for a certain cpu indicate that
1631  * an update is needed.
1632  */
1633 static bool need_update(int cpu)
1634 {
1635         struct zone *zone;
1636
1637         for_each_populated_zone(zone) {
1638                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1639
1640                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1641                 /*
1642                  * The fast way of checking if there are any vmstat diffs.
1643                  * This works because the diffs are byte sized items.
1644                  */
1645                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1646                         return true;
1647
1648         }
1649         return false;
1650 }
1651
1652 /*
1653  * Switch off vmstat processing and then fold all the remaining differentials
1654  * until the diffs stay at zero. The function is used by NOHZ and can only be
1655  * invoked when tick processing is not active.
1656  */
1657 void quiet_vmstat(void)
1658 {
1659         if (system_state != SYSTEM_RUNNING)
1660                 return;
1661
1662         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1663                 return;
1664
1665         if (!need_update(smp_processor_id()))
1666                 return;
1667
1668         /*
1669          * Just refresh counters and do not care about the pending delayed
1670          * vmstat_update. It doesn't fire that often to matter and canceling
1671          * it would be too expensive from this path.
1672          * vmstat_shepherd will take care about that for us.
1673          */
1674         refresh_cpu_vm_stats(false);
1675 }
1676
1677 /*
1678  * Shepherd worker thread that checks the
1679  * differentials of processors that have their worker
1680  * threads for vm statistics updates disabled because of
1681  * inactivity.
1682  */
1683 static void vmstat_shepherd(struct work_struct *w);
1684
1685 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1686
1687 static void vmstat_shepherd(struct work_struct *w)
1688 {
1689         int cpu;
1690
1691         get_online_cpus();
1692         /* Check processors whose vmstat worker threads have been disabled */
1693         for_each_online_cpu(cpu) {
1694                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1695
1696                 if (!delayed_work_pending(dw) && need_update(cpu))
1697                         queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1698         }
1699         put_online_cpus();
1700
1701         schedule_delayed_work(&shepherd,
1702                 round_jiffies_relative(sysctl_stat_interval));
1703 }
1704
1705 static void __init start_shepherd_timer(void)
1706 {
1707         int cpu;
1708
1709         for_each_possible_cpu(cpu)
1710                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1711                         vmstat_update);
1712
1713         vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1714         schedule_delayed_work(&shepherd,
1715                 round_jiffies_relative(sysctl_stat_interval));
1716 }
1717
1718 static void vmstat_cpu_dead(int node)
1719 {
1720         int cpu;
1721
1722         get_online_cpus();
1723         for_each_online_cpu(cpu)
1724                 if (cpu_to_node(cpu) == node)
1725                         goto end;
1726
1727         node_clear_state(node, N_CPU);
1728 end:
1729         put_online_cpus();
1730 }
1731
1732 /*
1733  * Use the cpu notifier to insure that the thresholds are recalculated
1734  * when necessary.
1735  */
1736 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1737                 unsigned long action,
1738                 void *hcpu)
1739 {
1740         long cpu = (long)hcpu;
1741
1742         switch (action) {
1743         case CPU_ONLINE:
1744         case CPU_ONLINE_FROZEN:
1745                 refresh_zone_stat_thresholds();
1746                 node_set_state(cpu_to_node(cpu), N_CPU);
1747                 break;
1748         case CPU_DOWN_PREPARE:
1749         case CPU_DOWN_PREPARE_FROZEN:
1750                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1751                 break;
1752         case CPU_DOWN_FAILED:
1753         case CPU_DOWN_FAILED_FROZEN:
1754                 break;
1755         case CPU_DEAD:
1756         case CPU_DEAD_FROZEN:
1757                 refresh_zone_stat_thresholds();
1758                 vmstat_cpu_dead(cpu_to_node(cpu));
1759                 break;
1760         default:
1761                 break;
1762         }
1763         return NOTIFY_OK;
1764 }
1765
1766 static struct notifier_block vmstat_notifier =
1767         { &vmstat_cpuup_callback, NULL, 0 };
1768 #endif
1769
1770 static int __init setup_vmstat(void)
1771 {
1772 #ifdef CONFIG_SMP
1773         cpu_notifier_register_begin();
1774         __register_cpu_notifier(&vmstat_notifier);
1775
1776         start_shepherd_timer();
1777         cpu_notifier_register_done();
1778 #endif
1779 #ifdef CONFIG_PROC_FS
1780         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1781         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1782         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1783         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1784 #endif
1785         return 0;
1786 }
1787 module_init(setup_vmstat)
1788
1789 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1790
1791 /*
1792  * Return an index indicating how much of the available free memory is
1793  * unusable for an allocation of the requested size.
1794  */
1795 static int unusable_free_index(unsigned int order,
1796                                 struct contig_page_info *info)
1797 {
1798         /* No free memory is interpreted as all free memory is unusable */
1799         if (info->free_pages == 0)
1800                 return 1000;
1801
1802         /*
1803          * Index should be a value between 0 and 1. Return a value to 3
1804          * decimal places.
1805          *
1806          * 0 => no fragmentation
1807          * 1 => high fragmentation
1808          */
1809         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1810
1811 }
1812
1813 static void unusable_show_print(struct seq_file *m,
1814                                         pg_data_t *pgdat, struct zone *zone)
1815 {
1816         unsigned int order;
1817         int index;
1818         struct contig_page_info info;
1819
1820         seq_printf(m, "Node %d, zone %8s ",
1821                                 pgdat->node_id,
1822                                 zone->name);
1823         for (order = 0; order < MAX_ORDER; ++order) {
1824                 fill_contig_page_info(zone, order, &info);
1825                 index = unusable_free_index(order, &info);
1826                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1827         }
1828
1829         seq_putc(m, '\n');
1830 }
1831
1832 /*
1833  * Display unusable free space index
1834  *
1835  * The unusable free space index measures how much of the available free
1836  * memory cannot be used to satisfy an allocation of a given size and is a
1837  * value between 0 and 1. The higher the value, the more of free memory is
1838  * unusable and by implication, the worse the external fragmentation is. This
1839  * can be expressed as a percentage by multiplying by 100.
1840  */
1841 static int unusable_show(struct seq_file *m, void *arg)
1842 {
1843         pg_data_t *pgdat = (pg_data_t *)arg;
1844
1845         /* check memoryless node */
1846         if (!node_state(pgdat->node_id, N_MEMORY))
1847                 return 0;
1848
1849         walk_zones_in_node(m, pgdat, unusable_show_print);
1850
1851         return 0;
1852 }
1853
1854 static const struct seq_operations unusable_op = {
1855         .start  = frag_start,
1856         .next   = frag_next,
1857         .stop   = frag_stop,
1858         .show   = unusable_show,
1859 };
1860
1861 static int unusable_open(struct inode *inode, struct file *file)
1862 {
1863         return seq_open(file, &unusable_op);
1864 }
1865
1866 static const struct file_operations unusable_file_ops = {
1867         .open           = unusable_open,
1868         .read           = seq_read,
1869         .llseek         = seq_lseek,
1870         .release        = seq_release,
1871 };
1872
1873 static void extfrag_show_print(struct seq_file *m,
1874                                         pg_data_t *pgdat, struct zone *zone)
1875 {
1876         unsigned int order;
1877         int index;
1878
1879         /* Alloc on stack as interrupts are disabled for zone walk */
1880         struct contig_page_info info;
1881
1882         seq_printf(m, "Node %d, zone %8s ",
1883                                 pgdat->node_id,
1884                                 zone->name);
1885         for (order = 0; order < MAX_ORDER; ++order) {
1886                 fill_contig_page_info(zone, order, &info);
1887                 index = __fragmentation_index(order, &info);
1888                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1889         }
1890
1891         seq_putc(m, '\n');
1892 }
1893
1894 /*
1895  * Display fragmentation index for orders that allocations would fail for
1896  */
1897 static int extfrag_show(struct seq_file *m, void *arg)
1898 {
1899         pg_data_t *pgdat = (pg_data_t *)arg;
1900
1901         walk_zones_in_node(m, pgdat, extfrag_show_print);
1902
1903         return 0;
1904 }
1905
1906 static const struct seq_operations extfrag_op = {
1907         .start  = frag_start,
1908         .next   = frag_next,
1909         .stop   = frag_stop,
1910         .show   = extfrag_show,
1911 };
1912
1913 static int extfrag_open(struct inode *inode, struct file *file)
1914 {
1915         return seq_open(file, &extfrag_op);
1916 }
1917
1918 static const struct file_operations extfrag_file_ops = {
1919         .open           = extfrag_open,
1920         .read           = seq_read,
1921         .llseek         = seq_lseek,
1922         .release        = seq_release,
1923 };
1924
1925 static int __init extfrag_debug_init(void)
1926 {
1927         struct dentry *extfrag_debug_root;
1928
1929         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1930         if (!extfrag_debug_root)
1931                 return -ENOMEM;
1932
1933         if (!debugfs_create_file("unusable_index", 0444,
1934                         extfrag_debug_root, NULL, &unusable_file_ops))
1935                 goto fail;
1936
1937         if (!debugfs_create_file("extfrag_index", 0444,
1938                         extfrag_debug_root, NULL, &extfrag_file_ops))
1939                 goto fail;
1940
1941         return 0;
1942 fail:
1943         debugfs_remove_recursive(extfrag_debug_root);
1944         return -ENOMEM;
1945 }
1946
1947 module_init(extfrag_debug_init);
1948 #endif