mm, hugetlb: change variable name reservations to resv
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29         int cpu;
30         int i;
31
32         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34         for_each_online_cpu(cpu) {
35                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38                         ret[i] += this->event[i];
39         }
40 }
41
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49         get_online_cpus();
50         sum_vm_events(ret);
51         put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 /*
56  * Fold the foreign cpu events into our own.
57  *
58  * This is adding to the events on one processor
59  * but keeps the global counts constant.
60  */
61 void vm_events_fold_cpu(int cpu)
62 {
63         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
64         int i;
65
66         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
67                 count_vm_events(i, fold_state->event[i]);
68                 fold_state->event[i] = 0;
69         }
70 }
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75  * Manage combined zone based / global counters
76  *
77  * vm_stat contains the global counters
78  */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 int calculate_pressure_threshold(struct zone *zone)
85 {
86         int threshold;
87         int watermark_distance;
88
89         /*
90          * As vmstats are not up to date, there is drift between the estimated
91          * and real values. For high thresholds and a high number of CPUs, it
92          * is possible for the min watermark to be breached while the estimated
93          * value looks fine. The pressure threshold is a reduced value such
94          * that even the maximum amount of drift will not accidentally breach
95          * the min watermark
96          */
97         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99
100         /*
101          * Maximum threshold is 125
102          */
103         threshold = min(125, threshold);
104
105         return threshold;
106 }
107
108 int calculate_normal_threshold(struct zone *zone)
109 {
110         int threshold;
111         int mem;        /* memory in 128 MB units */
112
113         /*
114          * The threshold scales with the number of processors and the amount
115          * of memory per zone. More memory means that we can defer updates for
116          * longer, more processors could lead to more contention.
117          * fls() is used to have a cheap way of logarithmic scaling.
118          *
119          * Some sample thresholds:
120          *
121          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
122          * ------------------------------------------------------------------
123          * 8            1               1       0.9-1 GB        4
124          * 16           2               2       0.9-1 GB        4
125          * 20           2               2       1-2 GB          5
126          * 24           2               2       2-4 GB          6
127          * 28           2               2       4-8 GB          7
128          * 32           2               2       8-16 GB         8
129          * 4            2               2       <128M           1
130          * 30           4               3       2-4 GB          5
131          * 48           4               3       8-16 GB         8
132          * 32           8               4       1-2 GB          4
133          * 32           8               4       0.9-1GB         4
134          * 10           16              5       <128M           1
135          * 40           16              5       900M            4
136          * 70           64              7       2-4 GB          5
137          * 84           64              7       4-8 GB          6
138          * 108          512             9       4-8 GB          6
139          * 125          1024            10      8-16 GB         8
140          * 125          1024            10      16-32 GB        9
141          */
142
143         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
144
145         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146
147         /*
148          * Maximum threshold is 125
149          */
150         threshold = min(125, threshold);
151
152         return threshold;
153 }
154
155 /*
156  * Refresh the thresholds for each zone.
157  */
158 void refresh_zone_stat_thresholds(void)
159 {
160         struct zone *zone;
161         int cpu;
162         int threshold;
163
164         for_each_populated_zone(zone) {
165                 unsigned long max_drift, tolerate_drift;
166
167                 threshold = calculate_normal_threshold(zone);
168
169                 for_each_online_cpu(cpu)
170                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171                                                         = threshold;
172
173                 /*
174                  * Only set percpu_drift_mark if there is a danger that
175                  * NR_FREE_PAGES reports the low watermark is ok when in fact
176                  * the min watermark could be breached by an allocation
177                  */
178                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179                 max_drift = num_online_cpus() * threshold;
180                 if (max_drift > tolerate_drift)
181                         zone->percpu_drift_mark = high_wmark_pages(zone) +
182                                         max_drift;
183         }
184 }
185
186 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
187                                 int (*calculate_pressure)(struct zone *))
188 {
189         struct zone *zone;
190         int cpu;
191         int threshold;
192         int i;
193
194         for (i = 0; i < pgdat->nr_zones; i++) {
195                 zone = &pgdat->node_zones[i];
196                 if (!zone->percpu_drift_mark)
197                         continue;
198
199                 threshold = (*calculate_pressure)(zone);
200                 for_each_possible_cpu(cpu)
201                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202                                                         = threshold;
203         }
204 }
205
206 /*
207  * For use when we know that interrupts are disabled.
208  */
209 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
210                                 int delta)
211 {
212         struct per_cpu_pageset __percpu *pcp = zone->pageset;
213         s8 __percpu *p = pcp->vm_stat_diff + item;
214         long x;
215         long t;
216
217         x = delta + __this_cpu_read(*p);
218
219         t = __this_cpu_read(pcp->stat_threshold);
220
221         if (unlikely(x > t || x < -t)) {
222                 zone_page_state_add(x, zone, item);
223                 x = 0;
224         }
225         __this_cpu_write(*p, x);
226 }
227 EXPORT_SYMBOL(__mod_zone_page_state);
228
229 /*
230  * Optimized increment and decrement functions.
231  *
232  * These are only for a single page and therefore can take a struct page *
233  * argument instead of struct zone *. This allows the inclusion of the code
234  * generated for page_zone(page) into the optimized functions.
235  *
236  * No overflow check is necessary and therefore the differential can be
237  * incremented or decremented in place which may allow the compilers to
238  * generate better code.
239  * The increment or decrement is known and therefore one boundary check can
240  * be omitted.
241  *
242  * NOTE: These functions are very performance sensitive. Change only
243  * with care.
244  *
245  * Some processors have inc/dec instructions that are atomic vs an interrupt.
246  * However, the code must first determine the differential location in a zone
247  * based on the processor number and then inc/dec the counter. There is no
248  * guarantee without disabling preemption that the processor will not change
249  * in between and therefore the atomicity vs. interrupt cannot be exploited
250  * in a useful way here.
251  */
252 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
253 {
254         struct per_cpu_pageset __percpu *pcp = zone->pageset;
255         s8 __percpu *p = pcp->vm_stat_diff + item;
256         s8 v, t;
257
258         v = __this_cpu_inc_return(*p);
259         t = __this_cpu_read(pcp->stat_threshold);
260         if (unlikely(v > t)) {
261                 s8 overstep = t >> 1;
262
263                 zone_page_state_add(v + overstep, zone, item);
264                 __this_cpu_write(*p, -overstep);
265         }
266 }
267
268 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
269 {
270         __inc_zone_state(page_zone(page), item);
271 }
272 EXPORT_SYMBOL(__inc_zone_page_state);
273
274 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
275 {
276         struct per_cpu_pageset __percpu *pcp = zone->pageset;
277         s8 __percpu *p = pcp->vm_stat_diff + item;
278         s8 v, t;
279
280         v = __this_cpu_dec_return(*p);
281         t = __this_cpu_read(pcp->stat_threshold);
282         if (unlikely(v < - t)) {
283                 s8 overstep = t >> 1;
284
285                 zone_page_state_add(v - overstep, zone, item);
286                 __this_cpu_write(*p, overstep);
287         }
288 }
289
290 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
291 {
292         __dec_zone_state(page_zone(page), item);
293 }
294 EXPORT_SYMBOL(__dec_zone_page_state);
295
296 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
297 /*
298  * If we have cmpxchg_local support then we do not need to incur the overhead
299  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
300  *
301  * mod_state() modifies the zone counter state through atomic per cpu
302  * operations.
303  *
304  * Overstep mode specifies how overstep should handled:
305  *     0       No overstepping
306  *     1       Overstepping half of threshold
307  *     -1      Overstepping minus half of threshold
308 */
309 static inline void mod_state(struct zone *zone,
310        enum zone_stat_item item, int delta, int overstep_mode)
311 {
312         struct per_cpu_pageset __percpu *pcp = zone->pageset;
313         s8 __percpu *p = pcp->vm_stat_diff + item;
314         long o, n, t, z;
315
316         do {
317                 z = 0;  /* overflow to zone counters */
318
319                 /*
320                  * The fetching of the stat_threshold is racy. We may apply
321                  * a counter threshold to the wrong the cpu if we get
322                  * rescheduled while executing here. However, the next
323                  * counter update will apply the threshold again and
324                  * therefore bring the counter under the threshold again.
325                  *
326                  * Most of the time the thresholds are the same anyways
327                  * for all cpus in a zone.
328                  */
329                 t = this_cpu_read(pcp->stat_threshold);
330
331                 o = this_cpu_read(*p);
332                 n = delta + o;
333
334                 if (n > t || n < -t) {
335                         int os = overstep_mode * (t >> 1) ;
336
337                         /* Overflow must be added to zone counters */
338                         z = n + os;
339                         n = -os;
340                 }
341         } while (this_cpu_cmpxchg(*p, o, n) != o);
342
343         if (z)
344                 zone_page_state_add(z, zone, item);
345 }
346
347 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
348                                         int delta)
349 {
350         mod_state(zone, item, delta, 0);
351 }
352 EXPORT_SYMBOL(mod_zone_page_state);
353
354 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355 {
356         mod_state(zone, item, 1, 1);
357 }
358
359 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360 {
361         mod_state(page_zone(page), item, 1, 1);
362 }
363 EXPORT_SYMBOL(inc_zone_page_state);
364
365 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366 {
367         mod_state(page_zone(page), item, -1, -1);
368 }
369 EXPORT_SYMBOL(dec_zone_page_state);
370 #else
371 /*
372  * Use interrupt disable to serialize counter updates
373  */
374 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
375                                         int delta)
376 {
377         unsigned long flags;
378
379         local_irq_save(flags);
380         __mod_zone_page_state(zone, item, delta);
381         local_irq_restore(flags);
382 }
383 EXPORT_SYMBOL(mod_zone_page_state);
384
385 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 {
387         unsigned long flags;
388
389         local_irq_save(flags);
390         __inc_zone_state(zone, item);
391         local_irq_restore(flags);
392 }
393
394 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395 {
396         unsigned long flags;
397         struct zone *zone;
398
399         zone = page_zone(page);
400         local_irq_save(flags);
401         __inc_zone_state(zone, item);
402         local_irq_restore(flags);
403 }
404 EXPORT_SYMBOL(inc_zone_page_state);
405
406 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408         unsigned long flags;
409
410         local_irq_save(flags);
411         __dec_zone_page_state(page, item);
412         local_irq_restore(flags);
413 }
414 EXPORT_SYMBOL(dec_zone_page_state);
415 #endif
416
417 static inline void fold_diff(int *diff)
418 {
419         int i;
420
421         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
422                 if (diff[i])
423                         atomic_long_add(diff[i], &vm_stat[i]);
424 }
425
426 /*
427  * Update the zone counters for the current cpu.
428  *
429  * Note that refresh_cpu_vm_stats strives to only access
430  * node local memory. The per cpu pagesets on remote zones are placed
431  * in the memory local to the processor using that pageset. So the
432  * loop over all zones will access a series of cachelines local to
433  * the processor.
434  *
435  * The call to zone_page_state_add updates the cachelines with the
436  * statistics in the remote zone struct as well as the global cachelines
437  * with the global counters. These could cause remote node cache line
438  * bouncing and will have to be only done when necessary.
439  */
440 static void refresh_cpu_vm_stats(void)
441 {
442         struct zone *zone;
443         int i;
444         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
445
446         for_each_populated_zone(zone) {
447                 struct per_cpu_pageset __percpu *p = zone->pageset;
448
449                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
450                         int v;
451
452                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
453                         if (v) {
454
455                                 atomic_long_add(v, &zone->vm_stat[i]);
456                                 global_diff[i] += v;
457 #ifdef CONFIG_NUMA
458                                 /* 3 seconds idle till flush */
459                                 __this_cpu_write(p->expire, 3);
460 #endif
461                         }
462                 }
463                 cond_resched();
464 #ifdef CONFIG_NUMA
465                 /*
466                  * Deal with draining the remote pageset of this
467                  * processor
468                  *
469                  * Check if there are pages remaining in this pageset
470                  * if not then there is nothing to expire.
471                  */
472                 if (!__this_cpu_read(p->expire) ||
473                                !__this_cpu_read(p->pcp.count))
474                         continue;
475
476                 /*
477                  * We never drain zones local to this processor.
478                  */
479                 if (zone_to_nid(zone) == numa_node_id()) {
480                         __this_cpu_write(p->expire, 0);
481                         continue;
482                 }
483
484
485                 if (__this_cpu_dec_return(p->expire))
486                         continue;
487
488                 if (__this_cpu_read(p->pcp.count))
489                         drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
490 #endif
491         }
492         fold_diff(global_diff);
493 }
494
495 /*
496  * Fold the data for an offline cpu into the global array.
497  * There cannot be any access by the offline cpu and therefore
498  * synchronization is simplified.
499  */
500 void cpu_vm_stats_fold(int cpu)
501 {
502         struct zone *zone;
503         int i;
504         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
505
506         for_each_populated_zone(zone) {
507                 struct per_cpu_pageset *p;
508
509                 p = per_cpu_ptr(zone->pageset, cpu);
510
511                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
512                         if (p->vm_stat_diff[i]) {
513                                 int v;
514
515                                 v = p->vm_stat_diff[i];
516                                 p->vm_stat_diff[i] = 0;
517                                 atomic_long_add(v, &zone->vm_stat[i]);
518                                 global_diff[i] += v;
519                         }
520         }
521
522         fold_diff(global_diff);
523 }
524
525 /*
526  * this is only called if !populated_zone(zone), which implies no other users of
527  * pset->vm_stat_diff[] exsist.
528  */
529 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
530 {
531         int i;
532
533         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
534                 if (pset->vm_stat_diff[i]) {
535                         int v = pset->vm_stat_diff[i];
536                         pset->vm_stat_diff[i] = 0;
537                         atomic_long_add(v, &zone->vm_stat[i]);
538                         atomic_long_add(v, &vm_stat[i]);
539                 }
540 }
541 #endif
542
543 #ifdef CONFIG_NUMA
544 /*
545  * zonelist = the list of zones passed to the allocator
546  * z        = the zone from which the allocation occurred.
547  *
548  * Must be called with interrupts disabled.
549  *
550  * When __GFP_OTHER_NODE is set assume the node of the preferred
551  * zone is the local node. This is useful for daemons who allocate
552  * memory on behalf of other processes.
553  */
554 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
555 {
556         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
557                 __inc_zone_state(z, NUMA_HIT);
558         } else {
559                 __inc_zone_state(z, NUMA_MISS);
560                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
561         }
562         if (z->node == ((flags & __GFP_OTHER_NODE) ?
563                         preferred_zone->node : numa_node_id()))
564                 __inc_zone_state(z, NUMA_LOCAL);
565         else
566                 __inc_zone_state(z, NUMA_OTHER);
567 }
568 #endif
569
570 #ifdef CONFIG_COMPACTION
571
572 struct contig_page_info {
573         unsigned long free_pages;
574         unsigned long free_blocks_total;
575         unsigned long free_blocks_suitable;
576 };
577
578 /*
579  * Calculate the number of free pages in a zone, how many contiguous
580  * pages are free and how many are large enough to satisfy an allocation of
581  * the target size. Note that this function makes no attempt to estimate
582  * how many suitable free blocks there *might* be if MOVABLE pages were
583  * migrated. Calculating that is possible, but expensive and can be
584  * figured out from userspace
585  */
586 static void fill_contig_page_info(struct zone *zone,
587                                 unsigned int suitable_order,
588                                 struct contig_page_info *info)
589 {
590         unsigned int order;
591
592         info->free_pages = 0;
593         info->free_blocks_total = 0;
594         info->free_blocks_suitable = 0;
595
596         for (order = 0; order < MAX_ORDER; order++) {
597                 unsigned long blocks;
598
599                 /* Count number of free blocks */
600                 blocks = zone->free_area[order].nr_free;
601                 info->free_blocks_total += blocks;
602
603                 /* Count free base pages */
604                 info->free_pages += blocks << order;
605
606                 /* Count the suitable free blocks */
607                 if (order >= suitable_order)
608                         info->free_blocks_suitable += blocks <<
609                                                 (order - suitable_order);
610         }
611 }
612
613 /*
614  * A fragmentation index only makes sense if an allocation of a requested
615  * size would fail. If that is true, the fragmentation index indicates
616  * whether external fragmentation or a lack of memory was the problem.
617  * The value can be used to determine if page reclaim or compaction
618  * should be used
619  */
620 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
621 {
622         unsigned long requested = 1UL << order;
623
624         if (!info->free_blocks_total)
625                 return 0;
626
627         /* Fragmentation index only makes sense when a request would fail */
628         if (info->free_blocks_suitable)
629                 return -1000;
630
631         /*
632          * Index is between 0 and 1 so return within 3 decimal places
633          *
634          * 0 => allocation would fail due to lack of memory
635          * 1 => allocation would fail due to fragmentation
636          */
637         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
638 }
639
640 /* Same as __fragmentation index but allocs contig_page_info on stack */
641 int fragmentation_index(struct zone *zone, unsigned int order)
642 {
643         struct contig_page_info info;
644
645         fill_contig_page_info(zone, order, &info);
646         return __fragmentation_index(order, &info);
647 }
648 #endif
649
650 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
651 #include <linux/proc_fs.h>
652 #include <linux/seq_file.h>
653
654 static char * const migratetype_names[MIGRATE_TYPES] = {
655         "Unmovable",
656         "Reclaimable",
657         "Movable",
658         "Reserve",
659 #ifdef CONFIG_CMA
660         "CMA",
661 #endif
662 #ifdef CONFIG_MEMORY_ISOLATION
663         "Isolate",
664 #endif
665 };
666
667 static void *frag_start(struct seq_file *m, loff_t *pos)
668 {
669         pg_data_t *pgdat;
670         loff_t node = *pos;
671         for (pgdat = first_online_pgdat();
672              pgdat && node;
673              pgdat = next_online_pgdat(pgdat))
674                 --node;
675
676         return pgdat;
677 }
678
679 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
680 {
681         pg_data_t *pgdat = (pg_data_t *)arg;
682
683         (*pos)++;
684         return next_online_pgdat(pgdat);
685 }
686
687 static void frag_stop(struct seq_file *m, void *arg)
688 {
689 }
690
691 /* Walk all the zones in a node and print using a callback */
692 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
693                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
694 {
695         struct zone *zone;
696         struct zone *node_zones = pgdat->node_zones;
697         unsigned long flags;
698
699         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
700                 if (!populated_zone(zone))
701                         continue;
702
703                 spin_lock_irqsave(&zone->lock, flags);
704                 print(m, pgdat, zone);
705                 spin_unlock_irqrestore(&zone->lock, flags);
706         }
707 }
708 #endif
709
710 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
711 #ifdef CONFIG_ZONE_DMA
712 #define TEXT_FOR_DMA(xx) xx "_dma",
713 #else
714 #define TEXT_FOR_DMA(xx)
715 #endif
716
717 #ifdef CONFIG_ZONE_DMA32
718 #define TEXT_FOR_DMA32(xx) xx "_dma32",
719 #else
720 #define TEXT_FOR_DMA32(xx)
721 #endif
722
723 #ifdef CONFIG_HIGHMEM
724 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
725 #else
726 #define TEXT_FOR_HIGHMEM(xx)
727 #endif
728
729 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
730                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
731
732 const char * const vmstat_text[] = {
733         /* Zoned VM counters */
734         "nr_free_pages",
735         "nr_alloc_batch",
736         "nr_inactive_anon",
737         "nr_active_anon",
738         "nr_inactive_file",
739         "nr_active_file",
740         "nr_unevictable",
741         "nr_mlock",
742         "nr_anon_pages",
743         "nr_mapped",
744         "nr_file_pages",
745         "nr_dirty",
746         "nr_writeback",
747         "nr_slab_reclaimable",
748         "nr_slab_unreclaimable",
749         "nr_page_table_pages",
750         "nr_kernel_stack",
751         "nr_unstable",
752         "nr_bounce",
753         "nr_vmscan_write",
754         "nr_vmscan_immediate_reclaim",
755         "nr_writeback_temp",
756         "nr_isolated_anon",
757         "nr_isolated_file",
758         "nr_shmem",
759         "nr_dirtied",
760         "nr_written",
761
762 #ifdef CONFIG_NUMA
763         "numa_hit",
764         "numa_miss",
765         "numa_foreign",
766         "numa_interleave",
767         "numa_local",
768         "numa_other",
769 #endif
770         "nr_anon_transparent_hugepages",
771         "nr_free_cma",
772         "nr_dirty_threshold",
773         "nr_dirty_background_threshold",
774
775 #ifdef CONFIG_VM_EVENT_COUNTERS
776         "pgpgin",
777         "pgpgout",
778         "pswpin",
779         "pswpout",
780
781         TEXTS_FOR_ZONES("pgalloc")
782
783         "pgfree",
784         "pgactivate",
785         "pgdeactivate",
786
787         "pgfault",
788         "pgmajfault",
789
790         TEXTS_FOR_ZONES("pgrefill")
791         TEXTS_FOR_ZONES("pgsteal_kswapd")
792         TEXTS_FOR_ZONES("pgsteal_direct")
793         TEXTS_FOR_ZONES("pgscan_kswapd")
794         TEXTS_FOR_ZONES("pgscan_direct")
795         "pgscan_direct_throttle",
796
797 #ifdef CONFIG_NUMA
798         "zone_reclaim_failed",
799 #endif
800         "pginodesteal",
801         "slabs_scanned",
802         "kswapd_inodesteal",
803         "kswapd_low_wmark_hit_quickly",
804         "kswapd_high_wmark_hit_quickly",
805         "pageoutrun",
806         "allocstall",
807
808         "pgrotated",
809
810 #ifdef CONFIG_NUMA_BALANCING
811         "numa_pte_updates",
812         "numa_hint_faults",
813         "numa_hint_faults_local",
814         "numa_pages_migrated",
815 #endif
816 #ifdef CONFIG_MIGRATION
817         "pgmigrate_success",
818         "pgmigrate_fail",
819 #endif
820 #ifdef CONFIG_COMPACTION
821         "compact_migrate_scanned",
822         "compact_free_scanned",
823         "compact_isolated",
824         "compact_stall",
825         "compact_fail",
826         "compact_success",
827 #endif
828
829 #ifdef CONFIG_HUGETLB_PAGE
830         "htlb_buddy_alloc_success",
831         "htlb_buddy_alloc_fail",
832 #endif
833         "unevictable_pgs_culled",
834         "unevictable_pgs_scanned",
835         "unevictable_pgs_rescued",
836         "unevictable_pgs_mlocked",
837         "unevictable_pgs_munlocked",
838         "unevictable_pgs_cleared",
839         "unevictable_pgs_stranded",
840
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842         "thp_fault_alloc",
843         "thp_fault_fallback",
844         "thp_collapse_alloc",
845         "thp_collapse_alloc_failed",
846         "thp_split",
847         "thp_zero_page_alloc",
848         "thp_zero_page_alloc_failed",
849 #endif
850 #ifdef CONFIG_SMP
851         "nr_tlb_remote_flush",
852         "nr_tlb_remote_flush_received",
853 #endif
854         "nr_tlb_local_flush_all",
855         "nr_tlb_local_flush_one",
856
857 #endif /* CONFIG_VM_EVENTS_COUNTERS */
858 };
859 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
860
861
862 #ifdef CONFIG_PROC_FS
863 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
864                                                 struct zone *zone)
865 {
866         int order;
867
868         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
869         for (order = 0; order < MAX_ORDER; ++order)
870                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
871         seq_putc(m, '\n');
872 }
873
874 /*
875  * This walks the free areas for each zone.
876  */
877 static int frag_show(struct seq_file *m, void *arg)
878 {
879         pg_data_t *pgdat = (pg_data_t *)arg;
880         walk_zones_in_node(m, pgdat, frag_show_print);
881         return 0;
882 }
883
884 static void pagetypeinfo_showfree_print(struct seq_file *m,
885                                         pg_data_t *pgdat, struct zone *zone)
886 {
887         int order, mtype;
888
889         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
890                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
891                                         pgdat->node_id,
892                                         zone->name,
893                                         migratetype_names[mtype]);
894                 for (order = 0; order < MAX_ORDER; ++order) {
895                         unsigned long freecount = 0;
896                         struct free_area *area;
897                         struct list_head *curr;
898
899                         area = &(zone->free_area[order]);
900
901                         list_for_each(curr, &area->free_list[mtype])
902                                 freecount++;
903                         seq_printf(m, "%6lu ", freecount);
904                 }
905                 seq_putc(m, '\n');
906         }
907 }
908
909 /* Print out the free pages at each order for each migatetype */
910 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
911 {
912         int order;
913         pg_data_t *pgdat = (pg_data_t *)arg;
914
915         /* Print header */
916         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
917         for (order = 0; order < MAX_ORDER; ++order)
918                 seq_printf(m, "%6d ", order);
919         seq_putc(m, '\n');
920
921         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
922
923         return 0;
924 }
925
926 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
927                                         pg_data_t *pgdat, struct zone *zone)
928 {
929         int mtype;
930         unsigned long pfn;
931         unsigned long start_pfn = zone->zone_start_pfn;
932         unsigned long end_pfn = zone_end_pfn(zone);
933         unsigned long count[MIGRATE_TYPES] = { 0, };
934
935         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
936                 struct page *page;
937
938                 if (!pfn_valid(pfn))
939                         continue;
940
941                 page = pfn_to_page(pfn);
942
943                 /* Watch for unexpected holes punched in the memmap */
944                 if (!memmap_valid_within(pfn, page, zone))
945                         continue;
946
947                 mtype = get_pageblock_migratetype(page);
948
949                 if (mtype < MIGRATE_TYPES)
950                         count[mtype]++;
951         }
952
953         /* Print counts */
954         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
955         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
956                 seq_printf(m, "%12lu ", count[mtype]);
957         seq_putc(m, '\n');
958 }
959
960 /* Print out the free pages at each order for each migratetype */
961 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
962 {
963         int mtype;
964         pg_data_t *pgdat = (pg_data_t *)arg;
965
966         seq_printf(m, "\n%-23s", "Number of blocks type ");
967         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
968                 seq_printf(m, "%12s ", migratetype_names[mtype]);
969         seq_putc(m, '\n');
970         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
971
972         return 0;
973 }
974
975 /*
976  * This prints out statistics in relation to grouping pages by mobility.
977  * It is expensive to collect so do not constantly read the file.
978  */
979 static int pagetypeinfo_show(struct seq_file *m, void *arg)
980 {
981         pg_data_t *pgdat = (pg_data_t *)arg;
982
983         /* check memoryless node */
984         if (!node_state(pgdat->node_id, N_MEMORY))
985                 return 0;
986
987         seq_printf(m, "Page block order: %d\n", pageblock_order);
988         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
989         seq_putc(m, '\n');
990         pagetypeinfo_showfree(m, pgdat);
991         pagetypeinfo_showblockcount(m, pgdat);
992
993         return 0;
994 }
995
996 static const struct seq_operations fragmentation_op = {
997         .start  = frag_start,
998         .next   = frag_next,
999         .stop   = frag_stop,
1000         .show   = frag_show,
1001 };
1002
1003 static int fragmentation_open(struct inode *inode, struct file *file)
1004 {
1005         return seq_open(file, &fragmentation_op);
1006 }
1007
1008 static const struct file_operations fragmentation_file_operations = {
1009         .open           = fragmentation_open,
1010         .read           = seq_read,
1011         .llseek         = seq_lseek,
1012         .release        = seq_release,
1013 };
1014
1015 static const struct seq_operations pagetypeinfo_op = {
1016         .start  = frag_start,
1017         .next   = frag_next,
1018         .stop   = frag_stop,
1019         .show   = pagetypeinfo_show,
1020 };
1021
1022 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1023 {
1024         return seq_open(file, &pagetypeinfo_op);
1025 }
1026
1027 static const struct file_operations pagetypeinfo_file_ops = {
1028         .open           = pagetypeinfo_open,
1029         .read           = seq_read,
1030         .llseek         = seq_lseek,
1031         .release        = seq_release,
1032 };
1033
1034 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1035                                                         struct zone *zone)
1036 {
1037         int i;
1038         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1039         seq_printf(m,
1040                    "\n  pages free     %lu"
1041                    "\n        min      %lu"
1042                    "\n        low      %lu"
1043                    "\n        high     %lu"
1044                    "\n        scanned  %lu"
1045                    "\n        spanned  %lu"
1046                    "\n        present  %lu"
1047                    "\n        managed  %lu",
1048                    zone_page_state(zone, NR_FREE_PAGES),
1049                    min_wmark_pages(zone),
1050                    low_wmark_pages(zone),
1051                    high_wmark_pages(zone),
1052                    zone->pages_scanned,
1053                    zone->spanned_pages,
1054                    zone->present_pages,
1055                    zone->managed_pages);
1056
1057         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1058                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1059                                 zone_page_state(zone, i));
1060
1061         seq_printf(m,
1062                    "\n        protection: (%lu",
1063                    zone->lowmem_reserve[0]);
1064         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1065                 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1066         seq_printf(m,
1067                    ")"
1068                    "\n  pagesets");
1069         for_each_online_cpu(i) {
1070                 struct per_cpu_pageset *pageset;
1071
1072                 pageset = per_cpu_ptr(zone->pageset, i);
1073                 seq_printf(m,
1074                            "\n    cpu: %i"
1075                            "\n              count: %i"
1076                            "\n              high:  %i"
1077                            "\n              batch: %i",
1078                            i,
1079                            pageset->pcp.count,
1080                            pageset->pcp.high,
1081                            pageset->pcp.batch);
1082 #ifdef CONFIG_SMP
1083                 seq_printf(m, "\n  vm stats threshold: %d",
1084                                 pageset->stat_threshold);
1085 #endif
1086         }
1087         seq_printf(m,
1088                    "\n  all_unreclaimable: %u"
1089                    "\n  start_pfn:         %lu"
1090                    "\n  inactive_ratio:    %u",
1091                    zone->all_unreclaimable,
1092                    zone->zone_start_pfn,
1093                    zone->inactive_ratio);
1094         seq_putc(m, '\n');
1095 }
1096
1097 /*
1098  * Output information about zones in @pgdat.
1099  */
1100 static int zoneinfo_show(struct seq_file *m, void *arg)
1101 {
1102         pg_data_t *pgdat = (pg_data_t *)arg;
1103         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1104         return 0;
1105 }
1106
1107 static const struct seq_operations zoneinfo_op = {
1108         .start  = frag_start, /* iterate over all zones. The same as in
1109                                * fragmentation. */
1110         .next   = frag_next,
1111         .stop   = frag_stop,
1112         .show   = zoneinfo_show,
1113 };
1114
1115 static int zoneinfo_open(struct inode *inode, struct file *file)
1116 {
1117         return seq_open(file, &zoneinfo_op);
1118 }
1119
1120 static const struct file_operations proc_zoneinfo_file_operations = {
1121         .open           = zoneinfo_open,
1122         .read           = seq_read,
1123         .llseek         = seq_lseek,
1124         .release        = seq_release,
1125 };
1126
1127 enum writeback_stat_item {
1128         NR_DIRTY_THRESHOLD,
1129         NR_DIRTY_BG_THRESHOLD,
1130         NR_VM_WRITEBACK_STAT_ITEMS,
1131 };
1132
1133 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1134 {
1135         unsigned long *v;
1136         int i, stat_items_size;
1137
1138         if (*pos >= ARRAY_SIZE(vmstat_text))
1139                 return NULL;
1140         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1141                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1142
1143 #ifdef CONFIG_VM_EVENT_COUNTERS
1144         stat_items_size += sizeof(struct vm_event_state);
1145 #endif
1146
1147         v = kmalloc(stat_items_size, GFP_KERNEL);
1148         m->private = v;
1149         if (!v)
1150                 return ERR_PTR(-ENOMEM);
1151         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1152                 v[i] = global_page_state(i);
1153         v += NR_VM_ZONE_STAT_ITEMS;
1154
1155         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1156                             v + NR_DIRTY_THRESHOLD);
1157         v += NR_VM_WRITEBACK_STAT_ITEMS;
1158
1159 #ifdef CONFIG_VM_EVENT_COUNTERS
1160         all_vm_events(v);
1161         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1162         v[PGPGOUT] /= 2;
1163 #endif
1164         return (unsigned long *)m->private + *pos;
1165 }
1166
1167 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1168 {
1169         (*pos)++;
1170         if (*pos >= ARRAY_SIZE(vmstat_text))
1171                 return NULL;
1172         return (unsigned long *)m->private + *pos;
1173 }
1174
1175 static int vmstat_show(struct seq_file *m, void *arg)
1176 {
1177         unsigned long *l = arg;
1178         unsigned long off = l - (unsigned long *)m->private;
1179
1180         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1181         return 0;
1182 }
1183
1184 static void vmstat_stop(struct seq_file *m, void *arg)
1185 {
1186         kfree(m->private);
1187         m->private = NULL;
1188 }
1189
1190 static const struct seq_operations vmstat_op = {
1191         .start  = vmstat_start,
1192         .next   = vmstat_next,
1193         .stop   = vmstat_stop,
1194         .show   = vmstat_show,
1195 };
1196
1197 static int vmstat_open(struct inode *inode, struct file *file)
1198 {
1199         return seq_open(file, &vmstat_op);
1200 }
1201
1202 static const struct file_operations proc_vmstat_file_operations = {
1203         .open           = vmstat_open,
1204         .read           = seq_read,
1205         .llseek         = seq_lseek,
1206         .release        = seq_release,
1207 };
1208 #endif /* CONFIG_PROC_FS */
1209
1210 #ifdef CONFIG_SMP
1211 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1212 int sysctl_stat_interval __read_mostly = HZ;
1213
1214 static void vmstat_update(struct work_struct *w)
1215 {
1216         refresh_cpu_vm_stats();
1217         schedule_delayed_work(&__get_cpu_var(vmstat_work),
1218                 round_jiffies_relative(sysctl_stat_interval));
1219 }
1220
1221 static void start_cpu_timer(int cpu)
1222 {
1223         struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1224
1225         INIT_DEFERRABLE_WORK(work, vmstat_update);
1226         schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1227 }
1228
1229 /*
1230  * Use the cpu notifier to insure that the thresholds are recalculated
1231  * when necessary.
1232  */
1233 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1234                 unsigned long action,
1235                 void *hcpu)
1236 {
1237         long cpu = (long)hcpu;
1238
1239         switch (action) {
1240         case CPU_ONLINE:
1241         case CPU_ONLINE_FROZEN:
1242                 refresh_zone_stat_thresholds();
1243                 start_cpu_timer(cpu);
1244                 node_set_state(cpu_to_node(cpu), N_CPU);
1245                 break;
1246         case CPU_DOWN_PREPARE:
1247         case CPU_DOWN_PREPARE_FROZEN:
1248                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1249                 per_cpu(vmstat_work, cpu).work.func = NULL;
1250                 break;
1251         case CPU_DOWN_FAILED:
1252         case CPU_DOWN_FAILED_FROZEN:
1253                 start_cpu_timer(cpu);
1254                 break;
1255         case CPU_DEAD:
1256         case CPU_DEAD_FROZEN:
1257                 refresh_zone_stat_thresholds();
1258                 break;
1259         default:
1260                 break;
1261         }
1262         return NOTIFY_OK;
1263 }
1264
1265 static struct notifier_block vmstat_notifier =
1266         { &vmstat_cpuup_callback, NULL, 0 };
1267 #endif
1268
1269 static int __init setup_vmstat(void)
1270 {
1271 #ifdef CONFIG_SMP
1272         int cpu;
1273
1274         register_cpu_notifier(&vmstat_notifier);
1275
1276         for_each_online_cpu(cpu)
1277                 start_cpu_timer(cpu);
1278 #endif
1279 #ifdef CONFIG_PROC_FS
1280         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1281         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1282         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1283         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1284 #endif
1285         return 0;
1286 }
1287 module_init(setup_vmstat)
1288
1289 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1290 #include <linux/debugfs.h>
1291
1292
1293 /*
1294  * Return an index indicating how much of the available free memory is
1295  * unusable for an allocation of the requested size.
1296  */
1297 static int unusable_free_index(unsigned int order,
1298                                 struct contig_page_info *info)
1299 {
1300         /* No free memory is interpreted as all free memory is unusable */
1301         if (info->free_pages == 0)
1302                 return 1000;
1303
1304         /*
1305          * Index should be a value between 0 and 1. Return a value to 3
1306          * decimal places.
1307          *
1308          * 0 => no fragmentation
1309          * 1 => high fragmentation
1310          */
1311         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1312
1313 }
1314
1315 static void unusable_show_print(struct seq_file *m,
1316                                         pg_data_t *pgdat, struct zone *zone)
1317 {
1318         unsigned int order;
1319         int index;
1320         struct contig_page_info info;
1321
1322         seq_printf(m, "Node %d, zone %8s ",
1323                                 pgdat->node_id,
1324                                 zone->name);
1325         for (order = 0; order < MAX_ORDER; ++order) {
1326                 fill_contig_page_info(zone, order, &info);
1327                 index = unusable_free_index(order, &info);
1328                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1329         }
1330
1331         seq_putc(m, '\n');
1332 }
1333
1334 /*
1335  * Display unusable free space index
1336  *
1337  * The unusable free space index measures how much of the available free
1338  * memory cannot be used to satisfy an allocation of a given size and is a
1339  * value between 0 and 1. The higher the value, the more of free memory is
1340  * unusable and by implication, the worse the external fragmentation is. This
1341  * can be expressed as a percentage by multiplying by 100.
1342  */
1343 static int unusable_show(struct seq_file *m, void *arg)
1344 {
1345         pg_data_t *pgdat = (pg_data_t *)arg;
1346
1347         /* check memoryless node */
1348         if (!node_state(pgdat->node_id, N_MEMORY))
1349                 return 0;
1350
1351         walk_zones_in_node(m, pgdat, unusable_show_print);
1352
1353         return 0;
1354 }
1355
1356 static const struct seq_operations unusable_op = {
1357         .start  = frag_start,
1358         .next   = frag_next,
1359         .stop   = frag_stop,
1360         .show   = unusable_show,
1361 };
1362
1363 static int unusable_open(struct inode *inode, struct file *file)
1364 {
1365         return seq_open(file, &unusable_op);
1366 }
1367
1368 static const struct file_operations unusable_file_ops = {
1369         .open           = unusable_open,
1370         .read           = seq_read,
1371         .llseek         = seq_lseek,
1372         .release        = seq_release,
1373 };
1374
1375 static void extfrag_show_print(struct seq_file *m,
1376                                         pg_data_t *pgdat, struct zone *zone)
1377 {
1378         unsigned int order;
1379         int index;
1380
1381         /* Alloc on stack as interrupts are disabled for zone walk */
1382         struct contig_page_info info;
1383
1384         seq_printf(m, "Node %d, zone %8s ",
1385                                 pgdat->node_id,
1386                                 zone->name);
1387         for (order = 0; order < MAX_ORDER; ++order) {
1388                 fill_contig_page_info(zone, order, &info);
1389                 index = __fragmentation_index(order, &info);
1390                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1391         }
1392
1393         seq_putc(m, '\n');
1394 }
1395
1396 /*
1397  * Display fragmentation index for orders that allocations would fail for
1398  */
1399 static int extfrag_show(struct seq_file *m, void *arg)
1400 {
1401         pg_data_t *pgdat = (pg_data_t *)arg;
1402
1403         walk_zones_in_node(m, pgdat, extfrag_show_print);
1404
1405         return 0;
1406 }
1407
1408 static const struct seq_operations extfrag_op = {
1409         .start  = frag_start,
1410         .next   = frag_next,
1411         .stop   = frag_stop,
1412         .show   = extfrag_show,
1413 };
1414
1415 static int extfrag_open(struct inode *inode, struct file *file)
1416 {
1417         return seq_open(file, &extfrag_op);
1418 }
1419
1420 static const struct file_operations extfrag_file_ops = {
1421         .open           = extfrag_open,
1422         .read           = seq_read,
1423         .llseek         = seq_lseek,
1424         .release        = seq_release,
1425 };
1426
1427 static int __init extfrag_debug_init(void)
1428 {
1429         struct dentry *extfrag_debug_root;
1430
1431         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1432         if (!extfrag_debug_root)
1433                 return -ENOMEM;
1434
1435         if (!debugfs_create_file("unusable_index", 0444,
1436                         extfrag_debug_root, NULL, &unusable_file_ops))
1437                 goto fail;
1438
1439         if (!debugfs_create_file("extfrag_index", 0444,
1440                         extfrag_debug_root, NULL, &extfrag_file_ops))
1441                 goto fail;
1442
1443         return 0;
1444 fail:
1445         debugfs_remove_recursive(extfrag_debug_root);
1446         return -ENOMEM;
1447 }
1448
1449 module_init(extfrag_debug_init);
1450 #endif