1 // SPDX-License-Identifier: GPL-2.0-only
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone *zone)
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
70 static void invalid_numa_statistics(void)
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
76 static DEFINE_MUTEX(vm_numa_stat_lock);
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
83 mutex_lock(&vm_numa_stat_lock);
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
90 if (oldval == sysctl_vm_numa_stat)
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
102 mutex_unlock(&vm_numa_stat_lock);
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
111 static void sum_vm_events(unsigned long *ret)
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
131 void all_vm_events(unsigned long *ret)
137 EXPORT_SYMBOL_GPL(all_vm_events);
140 * Fold the foreign cpu events into our own.
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
145 void vm_events_fold_cpu(int cpu)
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
159 * Manage combined zone based / global counters
161 * vm_stat contains the global counters
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
172 int calculate_pressure_threshold(struct zone *zone)
175 int watermark_distance;
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
189 * Maximum threshold is 125
191 threshold = min(125, threshold);
196 int calculate_normal_threshold(struct zone *zone)
199 int mem; /* memory in 128 MB units */
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
207 * Some sample thresholds:
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
236 * Maximum threshold is 125
238 threshold = min(125, threshold);
244 * Refresh the thresholds for each zone.
246 void refresh_zone_stat_thresholds(void)
248 struct pglist_data *pgdat;
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
264 threshold = calculate_normal_threshold(zone);
266 for_each_online_cpu(cpu) {
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
324 x = delta + __this_cpu_read(*p);
326 t = __this_cpu_read(pcp->stat_threshold);
328 if (unlikely(abs(x) > t)) {
329 zone_page_state_add(x, zone, item);
332 __this_cpu_write(*p, x);
334 EXPORT_SYMBOL(__mod_zone_page_state);
336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
344 if (vmstat_item_in_bytes(item)) {
346 * Only cgroups use subpage accounting right now; at
347 * the global level, these items still change in
348 * multiples of whole pages. Store them as pages
349 * internally to keep the per-cpu counters compact.
351 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
352 delta >>= PAGE_SHIFT;
355 x = delta + __this_cpu_read(*p);
357 t = __this_cpu_read(pcp->stat_threshold);
359 if (unlikely(abs(x) > t)) {
360 node_page_state_add(x, pgdat, item);
363 __this_cpu_write(*p, x);
365 EXPORT_SYMBOL(__mod_node_page_state);
368 * Optimized increment and decrement functions.
370 * These are only for a single page and therefore can take a struct page *
371 * argument instead of struct zone *. This allows the inclusion of the code
372 * generated for page_zone(page) into the optimized functions.
374 * No overflow check is necessary and therefore the differential can be
375 * incremented or decremented in place which may allow the compilers to
376 * generate better code.
377 * The increment or decrement is known and therefore one boundary check can
380 * NOTE: These functions are very performance sensitive. Change only
383 * Some processors have inc/dec instructions that are atomic vs an interrupt.
384 * However, the code must first determine the differential location in a zone
385 * based on the processor number and then inc/dec the counter. There is no
386 * guarantee without disabling preemption that the processor will not change
387 * in between and therefore the atomicity vs. interrupt cannot be exploited
388 * in a useful way here.
390 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
392 struct per_cpu_pageset __percpu *pcp = zone->pageset;
393 s8 __percpu *p = pcp->vm_stat_diff + item;
396 v = __this_cpu_inc_return(*p);
397 t = __this_cpu_read(pcp->stat_threshold);
398 if (unlikely(v > t)) {
399 s8 overstep = t >> 1;
401 zone_page_state_add(v + overstep, zone, item);
402 __this_cpu_write(*p, -overstep);
406 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
408 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
409 s8 __percpu *p = pcp->vm_node_stat_diff + item;
412 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
414 v = __this_cpu_inc_return(*p);
415 t = __this_cpu_read(pcp->stat_threshold);
416 if (unlikely(v > t)) {
417 s8 overstep = t >> 1;
419 node_page_state_add(v + overstep, pgdat, item);
420 __this_cpu_write(*p, -overstep);
424 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
426 __inc_zone_state(page_zone(page), item);
428 EXPORT_SYMBOL(__inc_zone_page_state);
430 void __inc_node_page_state(struct page *page, enum node_stat_item item)
432 __inc_node_state(page_pgdat(page), item);
434 EXPORT_SYMBOL(__inc_node_page_state);
436 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
438 struct per_cpu_pageset __percpu *pcp = zone->pageset;
439 s8 __percpu *p = pcp->vm_stat_diff + item;
442 v = __this_cpu_dec_return(*p);
443 t = __this_cpu_read(pcp->stat_threshold);
444 if (unlikely(v < - t)) {
445 s8 overstep = t >> 1;
447 zone_page_state_add(v - overstep, zone, item);
448 __this_cpu_write(*p, overstep);
452 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
455 s8 __percpu *p = pcp->vm_node_stat_diff + item;
458 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460 v = __this_cpu_dec_return(*p);
461 t = __this_cpu_read(pcp->stat_threshold);
462 if (unlikely(v < - t)) {
463 s8 overstep = t >> 1;
465 node_page_state_add(v - overstep, pgdat, item);
466 __this_cpu_write(*p, overstep);
470 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
472 __dec_zone_state(page_zone(page), item);
474 EXPORT_SYMBOL(__dec_zone_page_state);
476 void __dec_node_page_state(struct page *page, enum node_stat_item item)
478 __dec_node_state(page_pgdat(page), item);
480 EXPORT_SYMBOL(__dec_node_page_state);
482 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
484 * If we have cmpxchg_local support then we do not need to incur the overhead
485 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
487 * mod_state() modifies the zone counter state through atomic per cpu
490 * Overstep mode specifies how overstep should handled:
492 * 1 Overstepping half of threshold
493 * -1 Overstepping minus half of threshold
495 static inline void mod_zone_state(struct zone *zone,
496 enum zone_stat_item item, long delta, int overstep_mode)
498 struct per_cpu_pageset __percpu *pcp = zone->pageset;
499 s8 __percpu *p = pcp->vm_stat_diff + item;
503 z = 0; /* overflow to zone counters */
506 * The fetching of the stat_threshold is racy. We may apply
507 * a counter threshold to the wrong the cpu if we get
508 * rescheduled while executing here. However, the next
509 * counter update will apply the threshold again and
510 * therefore bring the counter under the threshold again.
512 * Most of the time the thresholds are the same anyways
513 * for all cpus in a zone.
515 t = this_cpu_read(pcp->stat_threshold);
517 o = this_cpu_read(*p);
521 int os = overstep_mode * (t >> 1) ;
523 /* Overflow must be added to zone counters */
527 } while (this_cpu_cmpxchg(*p, o, n) != o);
530 zone_page_state_add(z, zone, item);
533 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
536 mod_zone_state(zone, item, delta, 0);
538 EXPORT_SYMBOL(mod_zone_page_state);
540 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
542 mod_zone_state(page_zone(page), item, 1, 1);
544 EXPORT_SYMBOL(inc_zone_page_state);
546 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
548 mod_zone_state(page_zone(page), item, -1, -1);
550 EXPORT_SYMBOL(dec_zone_page_state);
552 static inline void mod_node_state(struct pglist_data *pgdat,
553 enum node_stat_item item, int delta, int overstep_mode)
555 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
556 s8 __percpu *p = pcp->vm_node_stat_diff + item;
559 if (vmstat_item_in_bytes(item)) {
561 * Only cgroups use subpage accounting right now; at
562 * the global level, these items still change in
563 * multiples of whole pages. Store them as pages
564 * internally to keep the per-cpu counters compact.
566 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
567 delta >>= PAGE_SHIFT;
571 z = 0; /* overflow to node counters */
574 * The fetching of the stat_threshold is racy. We may apply
575 * a counter threshold to the wrong the cpu if we get
576 * rescheduled while executing here. However, the next
577 * counter update will apply the threshold again and
578 * therefore bring the counter under the threshold again.
580 * Most of the time the thresholds are the same anyways
581 * for all cpus in a node.
583 t = this_cpu_read(pcp->stat_threshold);
585 o = this_cpu_read(*p);
589 int os = overstep_mode * (t >> 1) ;
591 /* Overflow must be added to node counters */
595 } while (this_cpu_cmpxchg(*p, o, n) != o);
598 node_page_state_add(z, pgdat, item);
601 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
604 mod_node_state(pgdat, item, delta, 0);
606 EXPORT_SYMBOL(mod_node_page_state);
608 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
610 mod_node_state(pgdat, item, 1, 1);
613 void inc_node_page_state(struct page *page, enum node_stat_item item)
615 mod_node_state(page_pgdat(page), item, 1, 1);
617 EXPORT_SYMBOL(inc_node_page_state);
619 void dec_node_page_state(struct page *page, enum node_stat_item item)
621 mod_node_state(page_pgdat(page), item, -1, -1);
623 EXPORT_SYMBOL(dec_node_page_state);
626 * Use interrupt disable to serialize counter updates
628 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
633 local_irq_save(flags);
634 __mod_zone_page_state(zone, item, delta);
635 local_irq_restore(flags);
637 EXPORT_SYMBOL(mod_zone_page_state);
639 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
644 zone = page_zone(page);
645 local_irq_save(flags);
646 __inc_zone_state(zone, item);
647 local_irq_restore(flags);
649 EXPORT_SYMBOL(inc_zone_page_state);
651 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
655 local_irq_save(flags);
656 __dec_zone_page_state(page, item);
657 local_irq_restore(flags);
659 EXPORT_SYMBOL(dec_zone_page_state);
661 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
665 local_irq_save(flags);
666 __inc_node_state(pgdat, item);
667 local_irq_restore(flags);
669 EXPORT_SYMBOL(inc_node_state);
671 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
676 local_irq_save(flags);
677 __mod_node_page_state(pgdat, item, delta);
678 local_irq_restore(flags);
680 EXPORT_SYMBOL(mod_node_page_state);
682 void inc_node_page_state(struct page *page, enum node_stat_item item)
685 struct pglist_data *pgdat;
687 pgdat = page_pgdat(page);
688 local_irq_save(flags);
689 __inc_node_state(pgdat, item);
690 local_irq_restore(flags);
692 EXPORT_SYMBOL(inc_node_page_state);
694 void dec_node_page_state(struct page *page, enum node_stat_item item)
698 local_irq_save(flags);
699 __dec_node_page_state(page, item);
700 local_irq_restore(flags);
702 EXPORT_SYMBOL(dec_node_page_state);
706 * Fold a differential into the global counters.
707 * Returns the number of counters updated.
710 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
715 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
717 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
721 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
723 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
727 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
729 atomic_long_add(node_diff[i], &vm_node_stat[i]);
735 static int fold_diff(int *zone_diff, int *node_diff)
740 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
742 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
746 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
748 atomic_long_add(node_diff[i], &vm_node_stat[i]);
753 #endif /* CONFIG_NUMA */
756 * Update the zone counters for the current cpu.
758 * Note that refresh_cpu_vm_stats strives to only access
759 * node local memory. The per cpu pagesets on remote zones are placed
760 * in the memory local to the processor using that pageset. So the
761 * loop over all zones will access a series of cachelines local to
764 * The call to zone_page_state_add updates the cachelines with the
765 * statistics in the remote zone struct as well as the global cachelines
766 * with the global counters. These could cause remote node cache line
767 * bouncing and will have to be only done when necessary.
769 * The function returns the number of global counters updated.
771 static int refresh_cpu_vm_stats(bool do_pagesets)
773 struct pglist_data *pgdat;
776 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
778 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
780 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
783 for_each_populated_zone(zone) {
784 struct per_cpu_pageset __percpu *p = zone->pageset;
786 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
789 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
792 atomic_long_add(v, &zone->vm_stat[i]);
793 global_zone_diff[i] += v;
795 /* 3 seconds idle till flush */
796 __this_cpu_write(p->expire, 3);
801 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
804 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
807 atomic_long_add(v, &zone->vm_numa_stat[i]);
808 global_numa_diff[i] += v;
809 __this_cpu_write(p->expire, 3);
816 * Deal with draining the remote pageset of this
819 * Check if there are pages remaining in this pageset
820 * if not then there is nothing to expire.
822 if (!__this_cpu_read(p->expire) ||
823 !__this_cpu_read(p->pcp.count))
827 * We never drain zones local to this processor.
829 if (zone_to_nid(zone) == numa_node_id()) {
830 __this_cpu_write(p->expire, 0);
834 if (__this_cpu_dec_return(p->expire))
837 if (__this_cpu_read(p->pcp.count)) {
838 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
845 for_each_online_pgdat(pgdat) {
846 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
848 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
851 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
853 atomic_long_add(v, &pgdat->vm_stat[i]);
854 global_node_diff[i] += v;
860 changes += fold_diff(global_zone_diff, global_numa_diff,
863 changes += fold_diff(global_zone_diff, global_node_diff);
869 * Fold the data for an offline cpu into the global array.
870 * There cannot be any access by the offline cpu and therefore
871 * synchronization is simplified.
873 void cpu_vm_stats_fold(int cpu)
875 struct pglist_data *pgdat;
878 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
880 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
882 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
884 for_each_populated_zone(zone) {
885 struct per_cpu_pageset *p;
887 p = per_cpu_ptr(zone->pageset, cpu);
889 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
890 if (p->vm_stat_diff[i]) {
893 v = p->vm_stat_diff[i];
894 p->vm_stat_diff[i] = 0;
895 atomic_long_add(v, &zone->vm_stat[i]);
896 global_zone_diff[i] += v;
900 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
901 if (p->vm_numa_stat_diff[i]) {
904 v = p->vm_numa_stat_diff[i];
905 p->vm_numa_stat_diff[i] = 0;
906 atomic_long_add(v, &zone->vm_numa_stat[i]);
907 global_numa_diff[i] += v;
912 for_each_online_pgdat(pgdat) {
913 struct per_cpu_nodestat *p;
915 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
917 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
918 if (p->vm_node_stat_diff[i]) {
921 v = p->vm_node_stat_diff[i];
922 p->vm_node_stat_diff[i] = 0;
923 atomic_long_add(v, &pgdat->vm_stat[i]);
924 global_node_diff[i] += v;
929 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
931 fold_diff(global_zone_diff, global_node_diff);
936 * this is only called if !populated_zone(zone), which implies no other users of
937 * pset->vm_stat_diff[] exist.
939 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
943 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
944 if (pset->vm_stat_diff[i]) {
945 int v = pset->vm_stat_diff[i];
946 pset->vm_stat_diff[i] = 0;
947 atomic_long_add(v, &zone->vm_stat[i]);
948 atomic_long_add(v, &vm_zone_stat[i]);
952 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
953 if (pset->vm_numa_stat_diff[i]) {
954 int v = pset->vm_numa_stat_diff[i];
956 pset->vm_numa_stat_diff[i] = 0;
957 atomic_long_add(v, &zone->vm_numa_stat[i]);
958 atomic_long_add(v, &vm_numa_stat[i]);
965 void __inc_numa_state(struct zone *zone,
966 enum numa_stat_item item)
968 struct per_cpu_pageset __percpu *pcp = zone->pageset;
969 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
972 v = __this_cpu_inc_return(*p);
974 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
975 zone_numa_state_add(v, zone, item);
976 __this_cpu_write(*p, 0);
981 * Determine the per node value of a stat item. This function
982 * is called frequently in a NUMA machine, so try to be as
983 * frugal as possible.
985 unsigned long sum_zone_node_page_state(int node,
986 enum zone_stat_item item)
988 struct zone *zones = NODE_DATA(node)->node_zones;
990 unsigned long count = 0;
992 for (i = 0; i < MAX_NR_ZONES; i++)
993 count += zone_page_state(zones + i, item);
999 * Determine the per node value of a numa stat item. To avoid deviation,
1000 * the per cpu stat number in vm_numa_stat_diff[] is also included.
1002 unsigned long sum_zone_numa_state(int node,
1003 enum numa_stat_item item)
1005 struct zone *zones = NODE_DATA(node)->node_zones;
1007 unsigned long count = 0;
1009 for (i = 0; i < MAX_NR_ZONES; i++)
1010 count += zone_numa_state_snapshot(zones + i, item);
1016 * Determine the per node value of a stat item.
1018 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1019 enum node_stat_item item)
1021 long x = atomic_long_read(&pgdat->vm_stat[item]);
1029 unsigned long node_page_state(struct pglist_data *pgdat,
1030 enum node_stat_item item)
1032 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1034 return node_page_state_pages(pgdat, item);
1038 #ifdef CONFIG_COMPACTION
1040 struct contig_page_info {
1041 unsigned long free_pages;
1042 unsigned long free_blocks_total;
1043 unsigned long free_blocks_suitable;
1047 * Calculate the number of free pages in a zone, how many contiguous
1048 * pages are free and how many are large enough to satisfy an allocation of
1049 * the target size. Note that this function makes no attempt to estimate
1050 * how many suitable free blocks there *might* be if MOVABLE pages were
1051 * migrated. Calculating that is possible, but expensive and can be
1052 * figured out from userspace
1054 static void fill_contig_page_info(struct zone *zone,
1055 unsigned int suitable_order,
1056 struct contig_page_info *info)
1060 info->free_pages = 0;
1061 info->free_blocks_total = 0;
1062 info->free_blocks_suitable = 0;
1064 for (order = 0; order < MAX_ORDER; order++) {
1065 unsigned long blocks;
1067 /* Count number of free blocks */
1068 blocks = zone->free_area[order].nr_free;
1069 info->free_blocks_total += blocks;
1071 /* Count free base pages */
1072 info->free_pages += blocks << order;
1074 /* Count the suitable free blocks */
1075 if (order >= suitable_order)
1076 info->free_blocks_suitable += blocks <<
1077 (order - suitable_order);
1082 * A fragmentation index only makes sense if an allocation of a requested
1083 * size would fail. If that is true, the fragmentation index indicates
1084 * whether external fragmentation or a lack of memory was the problem.
1085 * The value can be used to determine if page reclaim or compaction
1088 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1090 unsigned long requested = 1UL << order;
1092 if (WARN_ON_ONCE(order >= MAX_ORDER))
1095 if (!info->free_blocks_total)
1098 /* Fragmentation index only makes sense when a request would fail */
1099 if (info->free_blocks_suitable)
1103 * Index is between 0 and 1 so return within 3 decimal places
1105 * 0 => allocation would fail due to lack of memory
1106 * 1 => allocation would fail due to fragmentation
1108 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1112 * Calculates external fragmentation within a zone wrt the given order.
1113 * It is defined as the percentage of pages found in blocks of size
1114 * less than 1 << order. It returns values in range [0, 100].
1116 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1118 struct contig_page_info info;
1120 fill_contig_page_info(zone, order, &info);
1121 if (info.free_pages == 0)
1124 return div_u64((info.free_pages -
1125 (info.free_blocks_suitable << order)) * 100,
1129 /* Same as __fragmentation index but allocs contig_page_info on stack */
1130 int fragmentation_index(struct zone *zone, unsigned int order)
1132 struct contig_page_info info;
1134 fill_contig_page_info(zone, order, &info);
1135 return __fragmentation_index(order, &info);
1139 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141 #ifdef CONFIG_ZONE_DMA
1142 #define TEXT_FOR_DMA(xx) xx "_dma",
1144 #define TEXT_FOR_DMA(xx)
1147 #ifdef CONFIG_ZONE_DMA32
1148 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1150 #define TEXT_FOR_DMA32(xx)
1153 #ifdef CONFIG_HIGHMEM
1154 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1156 #define TEXT_FOR_HIGHMEM(xx)
1159 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1160 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1162 const char * const vmstat_text[] = {
1163 /* enum zone_stat_item counters */
1165 "nr_zone_inactive_anon",
1166 "nr_zone_active_anon",
1167 "nr_zone_inactive_file",
1168 "nr_zone_active_file",
1169 "nr_zone_unevictable",
1170 "nr_zone_write_pending",
1173 #if IS_ENABLED(CONFIG_ZSMALLOC)
1178 /* enum numa_stat_item counters */
1188 /* enum node_stat_item counters */
1194 "nr_slab_reclaimable",
1195 "nr_slab_unreclaimable",
1199 "workingset_refault_anon",
1200 "workingset_refault_file",
1201 "workingset_activate_anon",
1202 "workingset_activate_file",
1203 "workingset_restore_anon",
1204 "workingset_restore_file",
1205 "workingset_nodereclaim",
1211 "nr_writeback_temp",
1213 "nr_shmem_hugepages",
1214 "nr_shmem_pmdmapped",
1215 "nr_file_hugepages",
1216 "nr_file_pmdmapped",
1217 "nr_anon_transparent_hugepages",
1219 "nr_vmscan_immediate_reclaim",
1222 "nr_kernel_misc_reclaimable",
1223 "nr_foll_pin_acquired",
1224 "nr_foll_pin_released",
1226 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1227 "nr_shadow_call_stack",
1229 "nr_page_table_pages",
1234 /* enum writeback_stat_item counters */
1235 "nr_dirty_threshold",
1236 "nr_dirty_background_threshold",
1238 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1239 /* enum vm_event_item counters */
1245 TEXTS_FOR_ZONES("pgalloc")
1246 TEXTS_FOR_ZONES("allocstall")
1247 TEXTS_FOR_ZONES("pgskip")
1264 "pgscan_direct_throttle",
1271 "zone_reclaim_failed",
1275 "kswapd_inodesteal",
1276 "kswapd_low_wmark_hit_quickly",
1277 "kswapd_high_wmark_hit_quickly",
1286 #ifdef CONFIG_NUMA_BALANCING
1288 "numa_huge_pte_updates",
1290 "numa_hint_faults_local",
1291 "numa_pages_migrated",
1293 #ifdef CONFIG_MIGRATION
1294 "pgmigrate_success",
1296 "thp_migration_success",
1297 "thp_migration_fail",
1298 "thp_migration_split",
1300 #ifdef CONFIG_COMPACTION
1301 "compact_migrate_scanned",
1302 "compact_free_scanned",
1307 "compact_daemon_wake",
1308 "compact_daemon_migrate_scanned",
1309 "compact_daemon_free_scanned",
1312 #ifdef CONFIG_HUGETLB_PAGE
1313 "htlb_buddy_alloc_success",
1314 "htlb_buddy_alloc_fail",
1317 "cma_alloc_success",
1320 "unevictable_pgs_culled",
1321 "unevictable_pgs_scanned",
1322 "unevictable_pgs_rescued",
1323 "unevictable_pgs_mlocked",
1324 "unevictable_pgs_munlocked",
1325 "unevictable_pgs_cleared",
1326 "unevictable_pgs_stranded",
1328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1330 "thp_fault_fallback",
1331 "thp_fault_fallback_charge",
1332 "thp_collapse_alloc",
1333 "thp_collapse_alloc_failed",
1335 "thp_file_fallback",
1336 "thp_file_fallback_charge",
1339 "thp_split_page_failed",
1340 "thp_deferred_split_page",
1342 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1345 "thp_zero_page_alloc",
1346 "thp_zero_page_alloc_failed",
1348 "thp_swpout_fallback",
1350 #ifdef CONFIG_MEMORY_BALLOON
1353 #ifdef CONFIG_BALLOON_COMPACTION
1356 #endif /* CONFIG_MEMORY_BALLOON */
1357 #ifdef CONFIG_DEBUG_TLBFLUSH
1358 "nr_tlb_remote_flush",
1359 "nr_tlb_remote_flush_received",
1360 "nr_tlb_local_flush_all",
1361 "nr_tlb_local_flush_one",
1362 #endif /* CONFIG_DEBUG_TLBFLUSH */
1364 #ifdef CONFIG_DEBUG_VM_VMACACHE
1365 "vmacache_find_calls",
1366 "vmacache_find_hits",
1373 "direct_map_level2_splits",
1374 "direct_map_level3_splits",
1376 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1378 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1380 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1381 defined(CONFIG_PROC_FS)
1382 static void *frag_start(struct seq_file *m, loff_t *pos)
1387 for (pgdat = first_online_pgdat();
1389 pgdat = next_online_pgdat(pgdat))
1395 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1397 pg_data_t *pgdat = (pg_data_t *)arg;
1400 return next_online_pgdat(pgdat);
1403 static void frag_stop(struct seq_file *m, void *arg)
1408 * Walk zones in a node and print using a callback.
1409 * If @assert_populated is true, only use callback for zones that are populated.
1411 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1412 bool assert_populated, bool nolock,
1413 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1416 struct zone *node_zones = pgdat->node_zones;
1417 unsigned long flags;
1419 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1420 if (assert_populated && !populated_zone(zone))
1424 spin_lock_irqsave(&zone->lock, flags);
1425 print(m, pgdat, zone);
1427 spin_unlock_irqrestore(&zone->lock, flags);
1432 #ifdef CONFIG_PROC_FS
1433 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1438 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1439 for (order = 0; order < MAX_ORDER; ++order)
1440 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1445 * This walks the free areas for each zone.
1447 static int frag_show(struct seq_file *m, void *arg)
1449 pg_data_t *pgdat = (pg_data_t *)arg;
1450 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1454 static void pagetypeinfo_showfree_print(struct seq_file *m,
1455 pg_data_t *pgdat, struct zone *zone)
1459 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1460 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1463 migratetype_names[mtype]);
1464 for (order = 0; order < MAX_ORDER; ++order) {
1465 unsigned long freecount = 0;
1466 struct free_area *area;
1467 struct list_head *curr;
1468 bool overflow = false;
1470 area = &(zone->free_area[order]);
1472 list_for_each(curr, &area->free_list[mtype]) {
1474 * Cap the free_list iteration because it might
1475 * be really large and we are under a spinlock
1476 * so a long time spent here could trigger a
1477 * hard lockup detector. Anyway this is a
1478 * debugging tool so knowing there is a handful
1479 * of pages of this order should be more than
1482 if (++freecount >= 100000) {
1487 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1488 spin_unlock_irq(&zone->lock);
1490 spin_lock_irq(&zone->lock);
1496 /* Print out the free pages at each order for each migatetype */
1497 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1500 pg_data_t *pgdat = (pg_data_t *)arg;
1503 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1504 for (order = 0; order < MAX_ORDER; ++order)
1505 seq_printf(m, "%6d ", order);
1508 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1513 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1514 pg_data_t *pgdat, struct zone *zone)
1518 unsigned long start_pfn = zone->zone_start_pfn;
1519 unsigned long end_pfn = zone_end_pfn(zone);
1520 unsigned long count[MIGRATE_TYPES] = { 0, };
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1525 page = pfn_to_online_page(pfn);
1529 if (page_zone(page) != zone)
1532 mtype = get_pageblock_migratetype(page);
1534 if (mtype < MIGRATE_TYPES)
1539 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1540 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1541 seq_printf(m, "%12lu ", count[mtype]);
1545 /* Print out the number of pageblocks for each migratetype */
1546 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1549 pg_data_t *pgdat = (pg_data_t *)arg;
1551 seq_printf(m, "\n%-23s", "Number of blocks type ");
1552 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1553 seq_printf(m, "%12s ", migratetype_names[mtype]);
1555 walk_zones_in_node(m, pgdat, true, false,
1556 pagetypeinfo_showblockcount_print);
1562 * Print out the number of pageblocks for each migratetype that contain pages
1563 * of other types. This gives an indication of how well fallbacks are being
1564 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1565 * to determine what is going on
1567 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1569 #ifdef CONFIG_PAGE_OWNER
1572 if (!static_branch_unlikely(&page_owner_inited))
1575 drain_all_pages(NULL);
1577 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1578 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 seq_printf(m, "%12s ", migratetype_names[mtype]);
1582 walk_zones_in_node(m, pgdat, true, true,
1583 pagetypeinfo_showmixedcount_print);
1584 #endif /* CONFIG_PAGE_OWNER */
1588 * This prints out statistics in relation to grouping pages by mobility.
1589 * It is expensive to collect so do not constantly read the file.
1591 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1593 pg_data_t *pgdat = (pg_data_t *)arg;
1595 /* check memoryless node */
1596 if (!node_state(pgdat->node_id, N_MEMORY))
1599 seq_printf(m, "Page block order: %d\n", pageblock_order);
1600 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1602 pagetypeinfo_showfree(m, pgdat);
1603 pagetypeinfo_showblockcount(m, pgdat);
1604 pagetypeinfo_showmixedcount(m, pgdat);
1609 static const struct seq_operations fragmentation_op = {
1610 .start = frag_start,
1616 static const struct seq_operations pagetypeinfo_op = {
1617 .start = frag_start,
1620 .show = pagetypeinfo_show,
1623 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1627 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1628 struct zone *compare = &pgdat->node_zones[zid];
1630 if (populated_zone(compare))
1631 return zone == compare;
1637 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1641 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1642 if (is_zone_first_populated(pgdat, zone)) {
1643 seq_printf(m, "\n per-node stats");
1644 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1645 unsigned long pages = node_page_state_pages(pgdat, i);
1647 if (vmstat_item_print_in_thp(i))
1648 pages /= HPAGE_PMD_NR;
1649 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1662 zone_page_state(zone, NR_FREE_PAGES),
1663 min_wmark_pages(zone),
1664 low_wmark_pages(zone),
1665 high_wmark_pages(zone),
1666 zone->spanned_pages,
1667 zone->present_pages,
1668 zone_managed_pages(zone),
1669 zone_cma_pages(zone));
1672 "\n protection: (%ld",
1673 zone->lowmem_reserve[0]);
1674 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1675 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1678 /* If unpopulated, no other information is useful */
1679 if (!populated_zone(zone)) {
1684 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1685 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1686 zone_page_state(zone, i));
1689 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1690 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1691 zone_numa_state_snapshot(zone, i));
1694 seq_printf(m, "\n pagesets");
1695 for_each_online_cpu(i) {
1696 struct per_cpu_pageset *pageset;
1698 pageset = per_cpu_ptr(zone->pageset, i);
1707 pageset->pcp.batch);
1709 seq_printf(m, "\n vm stats threshold: %d",
1710 pageset->stat_threshold);
1714 "\n node_unreclaimable: %u"
1715 "\n start_pfn: %lu",
1716 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1717 zone->zone_start_pfn);
1722 * Output information about zones in @pgdat. All zones are printed regardless
1723 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1724 * set of all zones and userspace would not be aware of such zones if they are
1725 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1727 static int zoneinfo_show(struct seq_file *m, void *arg)
1729 pg_data_t *pgdat = (pg_data_t *)arg;
1730 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1734 static const struct seq_operations zoneinfo_op = {
1735 .start = frag_start, /* iterate over all zones. The same as in
1739 .show = zoneinfo_show,
1742 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1743 NR_VM_NUMA_STAT_ITEMS + \
1744 NR_VM_NODE_STAT_ITEMS + \
1745 NR_VM_WRITEBACK_STAT_ITEMS + \
1746 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1747 NR_VM_EVENT_ITEMS : 0))
1749 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1754 if (*pos >= NR_VMSTAT_ITEMS)
1757 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1758 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1761 return ERR_PTR(-ENOMEM);
1762 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1763 v[i] = global_zone_page_state(i);
1764 v += NR_VM_ZONE_STAT_ITEMS;
1767 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1768 v[i] = global_numa_state(i);
1769 v += NR_VM_NUMA_STAT_ITEMS;
1772 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1773 v[i] = global_node_page_state_pages(i);
1774 if (vmstat_item_print_in_thp(i))
1775 v[i] /= HPAGE_PMD_NR;
1777 v += NR_VM_NODE_STAT_ITEMS;
1779 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1780 v + NR_DIRTY_THRESHOLD);
1781 v += NR_VM_WRITEBACK_STAT_ITEMS;
1783 #ifdef CONFIG_VM_EVENT_COUNTERS
1785 v[PGPGIN] /= 2; /* sectors -> kbytes */
1788 return (unsigned long *)m->private + *pos;
1791 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1794 if (*pos >= NR_VMSTAT_ITEMS)
1796 return (unsigned long *)m->private + *pos;
1799 static int vmstat_show(struct seq_file *m, void *arg)
1801 unsigned long *l = arg;
1802 unsigned long off = l - (unsigned long *)m->private;
1804 seq_puts(m, vmstat_text[off]);
1805 seq_put_decimal_ull(m, " ", *l);
1808 if (off == NR_VMSTAT_ITEMS - 1) {
1810 * We've come to the end - add any deprecated counters to avoid
1811 * breaking userspace which might depend on them being present.
1813 seq_puts(m, "nr_unstable 0\n");
1818 static void vmstat_stop(struct seq_file *m, void *arg)
1824 static const struct seq_operations vmstat_op = {
1825 .start = vmstat_start,
1826 .next = vmstat_next,
1827 .stop = vmstat_stop,
1828 .show = vmstat_show,
1830 #endif /* CONFIG_PROC_FS */
1833 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1834 int sysctl_stat_interval __read_mostly = HZ;
1836 #ifdef CONFIG_PROC_FS
1837 static void refresh_vm_stats(struct work_struct *work)
1839 refresh_cpu_vm_stats(true);
1842 int vmstat_refresh(struct ctl_table *table, int write,
1843 void *buffer, size_t *lenp, loff_t *ppos)
1850 * The regular update, every sysctl_stat_interval, may come later
1851 * than expected: leaving a significant amount in per_cpu buckets.
1852 * This is particularly misleading when checking a quantity of HUGE
1853 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1854 * which can equally be echo'ed to or cat'ted from (by root),
1855 * can be used to update the stats just before reading them.
1857 * Oh, and since global_zone_page_state() etc. are so careful to hide
1858 * transiently negative values, report an error here if any of
1859 * the stats is negative, so we know to go looking for imbalance.
1861 err = schedule_on_each_cpu(refresh_vm_stats);
1864 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1866 * Skip checking stats known to go negative occasionally.
1869 case NR_ZONE_WRITE_PENDING:
1870 case NR_FREE_CMA_PAGES:
1873 val = atomic_long_read(&vm_zone_stat[i]);
1875 pr_warn("%s: %s %ld\n",
1876 __func__, zone_stat_name(i), val);
1879 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1881 * Skip checking stats known to go negative occasionally.
1887 val = atomic_long_read(&vm_node_stat[i]);
1889 pr_warn("%s: %s %ld\n",
1890 __func__, node_stat_name(i), val);
1899 #endif /* CONFIG_PROC_FS */
1901 static void vmstat_update(struct work_struct *w)
1903 if (refresh_cpu_vm_stats(true)) {
1905 * Counters were updated so we expect more updates
1906 * to occur in the future. Keep on running the
1907 * update worker thread.
1909 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1910 this_cpu_ptr(&vmstat_work),
1911 round_jiffies_relative(sysctl_stat_interval));
1916 * Switch off vmstat processing and then fold all the remaining differentials
1917 * until the diffs stay at zero. The function is used by NOHZ and can only be
1918 * invoked when tick processing is not active.
1921 * Check if the diffs for a certain cpu indicate that
1922 * an update is needed.
1924 static bool need_update(int cpu)
1926 pg_data_t *last_pgdat = NULL;
1929 for_each_populated_zone(zone) {
1930 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1931 struct per_cpu_nodestat *n;
1933 * The fast way of checking if there are any vmstat diffs.
1935 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1936 sizeof(p->vm_stat_diff[0])))
1939 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1940 sizeof(p->vm_numa_stat_diff[0])))
1943 if (last_pgdat == zone->zone_pgdat)
1945 last_pgdat = zone->zone_pgdat;
1946 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1947 if (memchr_inv(n->vm_node_stat_diff, 0, NR_VM_NODE_STAT_ITEMS *
1948 sizeof(n->vm_node_stat_diff[0])))
1955 * Switch off vmstat processing and then fold all the remaining differentials
1956 * until the diffs stay at zero. The function is used by NOHZ and can only be
1957 * invoked when tick processing is not active.
1959 void quiet_vmstat(void)
1961 if (system_state != SYSTEM_RUNNING)
1964 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1967 if (!need_update(smp_processor_id()))
1971 * Just refresh counters and do not care about the pending delayed
1972 * vmstat_update. It doesn't fire that often to matter and canceling
1973 * it would be too expensive from this path.
1974 * vmstat_shepherd will take care about that for us.
1976 refresh_cpu_vm_stats(false);
1980 * Shepherd worker thread that checks the
1981 * differentials of processors that have their worker
1982 * threads for vm statistics updates disabled because of
1985 static void vmstat_shepherd(struct work_struct *w);
1987 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1989 static void vmstat_shepherd(struct work_struct *w)
1994 /* Check processors whose vmstat worker threads have been disabled */
1995 for_each_online_cpu(cpu) {
1996 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1998 if (!delayed_work_pending(dw) && need_update(cpu))
1999 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2005 schedule_delayed_work(&shepherd,
2006 round_jiffies_relative(sysctl_stat_interval));
2009 static void __init start_shepherd_timer(void)
2013 for_each_possible_cpu(cpu)
2014 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2017 schedule_delayed_work(&shepherd,
2018 round_jiffies_relative(sysctl_stat_interval));
2021 static void __init init_cpu_node_state(void)
2025 for_each_online_node(node) {
2026 if (cpumask_weight(cpumask_of_node(node)) > 0)
2027 node_set_state(node, N_CPU);
2031 static int vmstat_cpu_online(unsigned int cpu)
2033 refresh_zone_stat_thresholds();
2034 node_set_state(cpu_to_node(cpu), N_CPU);
2038 static int vmstat_cpu_down_prep(unsigned int cpu)
2040 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2044 static int vmstat_cpu_dead(unsigned int cpu)
2046 const struct cpumask *node_cpus;
2049 node = cpu_to_node(cpu);
2051 refresh_zone_stat_thresholds();
2052 node_cpus = cpumask_of_node(node);
2053 if (cpumask_weight(node_cpus) > 0)
2056 node_clear_state(node, N_CPU);
2062 struct workqueue_struct *mm_percpu_wq;
2064 void __init init_mm_internals(void)
2066 int ret __maybe_unused;
2068 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2071 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2072 NULL, vmstat_cpu_dead);
2074 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2076 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2078 vmstat_cpu_down_prep);
2080 pr_err("vmstat: failed to register 'online' hotplug state\n");
2083 init_cpu_node_state();
2086 start_shepherd_timer();
2088 #ifdef CONFIG_PROC_FS
2089 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2090 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2091 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2092 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2096 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2099 * Return an index indicating how much of the available free memory is
2100 * unusable for an allocation of the requested size.
2102 static int unusable_free_index(unsigned int order,
2103 struct contig_page_info *info)
2105 /* No free memory is interpreted as all free memory is unusable */
2106 if (info->free_pages == 0)
2110 * Index should be a value between 0 and 1. Return a value to 3
2113 * 0 => no fragmentation
2114 * 1 => high fragmentation
2116 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2120 static void unusable_show_print(struct seq_file *m,
2121 pg_data_t *pgdat, struct zone *zone)
2125 struct contig_page_info info;
2127 seq_printf(m, "Node %d, zone %8s ",
2130 for (order = 0; order < MAX_ORDER; ++order) {
2131 fill_contig_page_info(zone, order, &info);
2132 index = unusable_free_index(order, &info);
2133 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2140 * Display unusable free space index
2142 * The unusable free space index measures how much of the available free
2143 * memory cannot be used to satisfy an allocation of a given size and is a
2144 * value between 0 and 1. The higher the value, the more of free memory is
2145 * unusable and by implication, the worse the external fragmentation is. This
2146 * can be expressed as a percentage by multiplying by 100.
2148 static int unusable_show(struct seq_file *m, void *arg)
2150 pg_data_t *pgdat = (pg_data_t *)arg;
2152 /* check memoryless node */
2153 if (!node_state(pgdat->node_id, N_MEMORY))
2156 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2161 static const struct seq_operations unusable_sops = {
2162 .start = frag_start,
2165 .show = unusable_show,
2168 DEFINE_SEQ_ATTRIBUTE(unusable);
2170 static void extfrag_show_print(struct seq_file *m,
2171 pg_data_t *pgdat, struct zone *zone)
2176 /* Alloc on stack as interrupts are disabled for zone walk */
2177 struct contig_page_info info;
2179 seq_printf(m, "Node %d, zone %8s ",
2182 for (order = 0; order < MAX_ORDER; ++order) {
2183 fill_contig_page_info(zone, order, &info);
2184 index = __fragmentation_index(order, &info);
2185 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2192 * Display fragmentation index for orders that allocations would fail for
2194 static int extfrag_show(struct seq_file *m, void *arg)
2196 pg_data_t *pgdat = (pg_data_t *)arg;
2198 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2203 static const struct seq_operations extfrag_sops = {
2204 .start = frag_start,
2207 .show = extfrag_show,
2210 DEFINE_SEQ_ATTRIBUTE(extfrag);
2212 static int __init extfrag_debug_init(void)
2214 struct dentry *extfrag_debug_root;
2216 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2218 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2221 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2227 module_init(extfrag_debug_init);