1 // SPDX-License-Identifier: GPL-2.0-only
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 #include <linux/sched/isolation.h>
36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38 /* zero numa counters within a zone */
39 static void zero_zone_numa_counters(struct zone *zone)
43 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 atomic_long_set(&zone->vm_numa_event[item], 0);
45 for_each_online_cpu(cpu) {
46 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
66 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 atomic_long_set(&vm_numa_event[item], 0);
70 static void invalid_numa_statistics(void)
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
76 static DEFINE_MUTEX(vm_numa_stat_lock);
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
83 mutex_lock(&vm_numa_stat_lock);
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
90 if (oldval == sysctl_vm_numa_stat)
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
102 mutex_unlock(&vm_numa_stat_lock);
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
111 static void sum_vm_events(unsigned long *ret)
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
131 void all_vm_events(unsigned long *ret)
137 EXPORT_SYMBOL_GPL(all_vm_events);
140 * Fold the foreign cpu events into our own.
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
145 void vm_events_fold_cpu(int cpu)
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
159 * Manage combined zone based / global counters
161 * vm_stat contains the global counters
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_node_stat);
170 static void fold_vm_zone_numa_events(struct zone *zone)
172 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
174 enum numa_stat_item item;
176 for_each_online_cpu(cpu) {
177 struct per_cpu_zonestat *pzstats;
179 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
184 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 zone_numa_event_add(zone_numa_events[item], zone, item);
188 void fold_vm_numa_events(void)
192 for_each_populated_zone(zone)
193 fold_vm_zone_numa_events(zone);
199 int calculate_pressure_threshold(struct zone *zone)
202 int watermark_distance;
205 * As vmstats are not up to date, there is drift between the estimated
206 * and real values. For high thresholds and a high number of CPUs, it
207 * is possible for the min watermark to be breached while the estimated
208 * value looks fine. The pressure threshold is a reduced value such
209 * that even the maximum amount of drift will not accidentally breach
212 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
216 * Maximum threshold is 125
218 threshold = min(125, threshold);
223 int calculate_normal_threshold(struct zone *zone)
226 int mem; /* memory in 128 MB units */
229 * The threshold scales with the number of processors and the amount
230 * of memory per zone. More memory means that we can defer updates for
231 * longer, more processors could lead to more contention.
232 * fls() is used to have a cheap way of logarithmic scaling.
234 * Some sample thresholds:
236 * Threshold Processors (fls) Zonesize fls(mem)+1
237 * ------------------------------------------------------------------
254 * 125 1024 10 8-16 GB 8
255 * 125 1024 10 16-32 GB 9
258 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
260 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
263 * Maximum threshold is 125
265 threshold = min(125, threshold);
271 * Refresh the thresholds for each zone.
273 void refresh_zone_stat_thresholds(void)
275 struct pglist_data *pgdat;
280 /* Zero current pgdat thresholds */
281 for_each_online_pgdat(pgdat) {
282 for_each_online_cpu(cpu) {
283 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
287 for_each_populated_zone(zone) {
288 struct pglist_data *pgdat = zone->zone_pgdat;
289 unsigned long max_drift, tolerate_drift;
291 threshold = calculate_normal_threshold(zone);
293 for_each_online_cpu(cpu) {
296 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
299 /* Base nodestat threshold on the largest populated zone. */
300 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 = max(threshold, pgdat_threshold);
306 * Only set percpu_drift_mark if there is a danger that
307 * NR_FREE_PAGES reports the low watermark is ok when in fact
308 * the min watermark could be breached by an allocation
310 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 max_drift = num_online_cpus() * threshold;
312 if (max_drift > tolerate_drift)
313 zone->percpu_drift_mark = high_wmark_pages(zone) +
318 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 int (*calculate_pressure)(struct zone *))
326 for (i = 0; i < pgdat->nr_zones; i++) {
327 zone = &pgdat->node_zones[i];
328 if (!zone->percpu_drift_mark)
331 threshold = (*calculate_pressure)(zone);
332 for_each_online_cpu(cpu)
333 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
339 * For use when we know that interrupts are disabled,
340 * or when we know that preemption is disabled and that
341 * particular counter cannot be updated from interrupt context.
343 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
346 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 s8 __percpu *p = pcp->vm_stat_diff + item;
352 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 * atomicity is provided by IRQs being disabled -- either explicitly
354 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 * CPU migrations and preemption potentially corrupts a counter so
356 * disable preemption.
358 preempt_disable_nested();
360 x = delta + __this_cpu_read(*p);
362 t = __this_cpu_read(pcp->stat_threshold);
364 if (unlikely(abs(x) > t)) {
365 zone_page_state_add(x, zone, item);
368 __this_cpu_write(*p, x);
370 preempt_enable_nested();
372 EXPORT_SYMBOL(__mod_zone_page_state);
374 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
377 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
378 s8 __percpu *p = pcp->vm_node_stat_diff + item;
382 if (vmstat_item_in_bytes(item)) {
384 * Only cgroups use subpage accounting right now; at
385 * the global level, these items still change in
386 * multiples of whole pages. Store them as pages
387 * internally to keep the per-cpu counters compact.
389 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
390 delta >>= PAGE_SHIFT;
393 /* See __mod_node_page_state */
394 preempt_disable_nested();
396 x = delta + __this_cpu_read(*p);
398 t = __this_cpu_read(pcp->stat_threshold);
400 if (unlikely(abs(x) > t)) {
401 node_page_state_add(x, pgdat, item);
404 __this_cpu_write(*p, x);
406 preempt_enable_nested();
408 EXPORT_SYMBOL(__mod_node_page_state);
411 * Optimized increment and decrement functions.
413 * These are only for a single page and therefore can take a struct page *
414 * argument instead of struct zone *. This allows the inclusion of the code
415 * generated for page_zone(page) into the optimized functions.
417 * No overflow check is necessary and therefore the differential can be
418 * incremented or decremented in place which may allow the compilers to
419 * generate better code.
420 * The increment or decrement is known and therefore one boundary check can
423 * NOTE: These functions are very performance sensitive. Change only
426 * Some processors have inc/dec instructions that are atomic vs an interrupt.
427 * However, the code must first determine the differential location in a zone
428 * based on the processor number and then inc/dec the counter. There is no
429 * guarantee without disabling preemption that the processor will not change
430 * in between and therefore the atomicity vs. interrupt cannot be exploited
431 * in a useful way here.
433 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
435 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
436 s8 __percpu *p = pcp->vm_stat_diff + item;
439 /* See __mod_node_page_state */
440 preempt_disable_nested();
442 v = __this_cpu_inc_return(*p);
443 t = __this_cpu_read(pcp->stat_threshold);
444 if (unlikely(v > t)) {
445 s8 overstep = t >> 1;
447 zone_page_state_add(v + overstep, zone, item);
448 __this_cpu_write(*p, -overstep);
451 preempt_enable_nested();
454 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
456 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
457 s8 __percpu *p = pcp->vm_node_stat_diff + item;
460 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
462 /* See __mod_node_page_state */
463 preempt_disable_nested();
465 v = __this_cpu_inc_return(*p);
466 t = __this_cpu_read(pcp->stat_threshold);
467 if (unlikely(v > t)) {
468 s8 overstep = t >> 1;
470 node_page_state_add(v + overstep, pgdat, item);
471 __this_cpu_write(*p, -overstep);
474 preempt_enable_nested();
477 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
479 __inc_zone_state(page_zone(page), item);
481 EXPORT_SYMBOL(__inc_zone_page_state);
483 void __inc_node_page_state(struct page *page, enum node_stat_item item)
485 __inc_node_state(page_pgdat(page), item);
487 EXPORT_SYMBOL(__inc_node_page_state);
489 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
491 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
492 s8 __percpu *p = pcp->vm_stat_diff + item;
495 /* See __mod_node_page_state */
496 preempt_disable_nested();
498 v = __this_cpu_dec_return(*p);
499 t = __this_cpu_read(pcp->stat_threshold);
500 if (unlikely(v < - t)) {
501 s8 overstep = t >> 1;
503 zone_page_state_add(v - overstep, zone, item);
504 __this_cpu_write(*p, overstep);
507 preempt_enable_nested();
510 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
512 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
513 s8 __percpu *p = pcp->vm_node_stat_diff + item;
516 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
518 /* See __mod_node_page_state */
519 preempt_disable_nested();
521 v = __this_cpu_dec_return(*p);
522 t = __this_cpu_read(pcp->stat_threshold);
523 if (unlikely(v < - t)) {
524 s8 overstep = t >> 1;
526 node_page_state_add(v - overstep, pgdat, item);
527 __this_cpu_write(*p, overstep);
530 preempt_enable_nested();
533 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
535 __dec_zone_state(page_zone(page), item);
537 EXPORT_SYMBOL(__dec_zone_page_state);
539 void __dec_node_page_state(struct page *page, enum node_stat_item item)
541 __dec_node_state(page_pgdat(page), item);
543 EXPORT_SYMBOL(__dec_node_page_state);
545 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
547 * If we have cmpxchg_local support then we do not need to incur the overhead
548 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
550 * mod_state() modifies the zone counter state through atomic per cpu
553 * Overstep mode specifies how overstep should handled:
555 * 1 Overstepping half of threshold
556 * -1 Overstepping minus half of threshold
558 static inline void mod_zone_state(struct zone *zone,
559 enum zone_stat_item item, long delta, int overstep_mode)
561 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
562 s8 __percpu *p = pcp->vm_stat_diff + item;
566 z = 0; /* overflow to zone counters */
569 * The fetching of the stat_threshold is racy. We may apply
570 * a counter threshold to the wrong the cpu if we get
571 * rescheduled while executing here. However, the next
572 * counter update will apply the threshold again and
573 * therefore bring the counter under the threshold again.
575 * Most of the time the thresholds are the same anyways
576 * for all cpus in a zone.
578 t = this_cpu_read(pcp->stat_threshold);
580 o = this_cpu_read(*p);
584 int os = overstep_mode * (t >> 1) ;
586 /* Overflow must be added to zone counters */
590 } while (this_cpu_cmpxchg(*p, o, n) != o);
593 zone_page_state_add(z, zone, item);
596 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
599 mod_zone_state(zone, item, delta, 0);
601 EXPORT_SYMBOL(mod_zone_page_state);
603 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
605 mod_zone_state(page_zone(page), item, 1, 1);
607 EXPORT_SYMBOL(inc_zone_page_state);
609 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
611 mod_zone_state(page_zone(page), item, -1, -1);
613 EXPORT_SYMBOL(dec_zone_page_state);
615 static inline void mod_node_state(struct pglist_data *pgdat,
616 enum node_stat_item item, int delta, int overstep_mode)
618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 s8 __percpu *p = pcp->vm_node_stat_diff + item;
622 if (vmstat_item_in_bytes(item)) {
624 * Only cgroups use subpage accounting right now; at
625 * the global level, these items still change in
626 * multiples of whole pages. Store them as pages
627 * internally to keep the per-cpu counters compact.
629 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
630 delta >>= PAGE_SHIFT;
634 z = 0; /* overflow to node counters */
637 * The fetching of the stat_threshold is racy. We may apply
638 * a counter threshold to the wrong the cpu if we get
639 * rescheduled while executing here. However, the next
640 * counter update will apply the threshold again and
641 * therefore bring the counter under the threshold again.
643 * Most of the time the thresholds are the same anyways
644 * for all cpus in a node.
646 t = this_cpu_read(pcp->stat_threshold);
648 o = this_cpu_read(*p);
652 int os = overstep_mode * (t >> 1) ;
654 /* Overflow must be added to node counters */
658 } while (this_cpu_cmpxchg(*p, o, n) != o);
661 node_page_state_add(z, pgdat, item);
664 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
667 mod_node_state(pgdat, item, delta, 0);
669 EXPORT_SYMBOL(mod_node_page_state);
671 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
673 mod_node_state(pgdat, item, 1, 1);
676 void inc_node_page_state(struct page *page, enum node_stat_item item)
678 mod_node_state(page_pgdat(page), item, 1, 1);
680 EXPORT_SYMBOL(inc_node_page_state);
682 void dec_node_page_state(struct page *page, enum node_stat_item item)
684 mod_node_state(page_pgdat(page), item, -1, -1);
686 EXPORT_SYMBOL(dec_node_page_state);
689 * Use interrupt disable to serialize counter updates
691 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
696 local_irq_save(flags);
697 __mod_zone_page_state(zone, item, delta);
698 local_irq_restore(flags);
700 EXPORT_SYMBOL(mod_zone_page_state);
702 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
707 zone = page_zone(page);
708 local_irq_save(flags);
709 __inc_zone_state(zone, item);
710 local_irq_restore(flags);
712 EXPORT_SYMBOL(inc_zone_page_state);
714 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
718 local_irq_save(flags);
719 __dec_zone_page_state(page, item);
720 local_irq_restore(flags);
722 EXPORT_SYMBOL(dec_zone_page_state);
724 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
728 local_irq_save(flags);
729 __inc_node_state(pgdat, item);
730 local_irq_restore(flags);
732 EXPORT_SYMBOL(inc_node_state);
734 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
739 local_irq_save(flags);
740 __mod_node_page_state(pgdat, item, delta);
741 local_irq_restore(flags);
743 EXPORT_SYMBOL(mod_node_page_state);
745 void inc_node_page_state(struct page *page, enum node_stat_item item)
748 struct pglist_data *pgdat;
750 pgdat = page_pgdat(page);
751 local_irq_save(flags);
752 __inc_node_state(pgdat, item);
753 local_irq_restore(flags);
755 EXPORT_SYMBOL(inc_node_page_state);
757 void dec_node_page_state(struct page *page, enum node_stat_item item)
761 local_irq_save(flags);
762 __dec_node_page_state(page, item);
763 local_irq_restore(flags);
765 EXPORT_SYMBOL(dec_node_page_state);
769 * Fold a differential into the global counters.
770 * Returns the number of counters updated.
772 static int fold_diff(int *zone_diff, int *node_diff)
777 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
779 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
783 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
785 atomic_long_add(node_diff[i], &vm_node_stat[i]);
792 * Update the zone counters for the current cpu.
794 * Note that refresh_cpu_vm_stats strives to only access
795 * node local memory. The per cpu pagesets on remote zones are placed
796 * in the memory local to the processor using that pageset. So the
797 * loop over all zones will access a series of cachelines local to
800 * The call to zone_page_state_add updates the cachelines with the
801 * statistics in the remote zone struct as well as the global cachelines
802 * with the global counters. These could cause remote node cache line
803 * bouncing and will have to be only done when necessary.
805 * The function returns the number of global counters updated.
807 static int refresh_cpu_vm_stats(bool do_pagesets)
809 struct pglist_data *pgdat;
812 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
813 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
816 for_each_populated_zone(zone) {
817 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
822 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
825 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
828 atomic_long_add(v, &zone->vm_stat[i]);
829 global_zone_diff[i] += v;
831 /* 3 seconds idle till flush */
832 __this_cpu_write(pcp->expire, 3);
841 * Deal with draining the remote pageset of this
844 * Check if there are pages remaining in this pageset
845 * if not then there is nothing to expire.
847 if (!__this_cpu_read(pcp->expire) ||
848 !__this_cpu_read(pcp->count))
852 * We never drain zones local to this processor.
854 if (zone_to_nid(zone) == numa_node_id()) {
855 __this_cpu_write(pcp->expire, 0);
859 if (__this_cpu_dec_return(pcp->expire))
862 if (__this_cpu_read(pcp->count)) {
863 drain_zone_pages(zone, this_cpu_ptr(pcp));
870 for_each_online_pgdat(pgdat) {
871 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
873 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
876 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
878 atomic_long_add(v, &pgdat->vm_stat[i]);
879 global_node_diff[i] += v;
884 changes += fold_diff(global_zone_diff, global_node_diff);
889 * Fold the data for an offline cpu into the global array.
890 * There cannot be any access by the offline cpu and therefore
891 * synchronization is simplified.
893 void cpu_vm_stats_fold(int cpu)
895 struct pglist_data *pgdat;
898 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
899 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
901 for_each_populated_zone(zone) {
902 struct per_cpu_zonestat *pzstats;
904 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
906 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
907 if (pzstats->vm_stat_diff[i]) {
910 v = pzstats->vm_stat_diff[i];
911 pzstats->vm_stat_diff[i] = 0;
912 atomic_long_add(v, &zone->vm_stat[i]);
913 global_zone_diff[i] += v;
917 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
918 if (pzstats->vm_numa_event[i]) {
921 v = pzstats->vm_numa_event[i];
922 pzstats->vm_numa_event[i] = 0;
923 zone_numa_event_add(v, zone, i);
929 for_each_online_pgdat(pgdat) {
930 struct per_cpu_nodestat *p;
932 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
934 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
935 if (p->vm_node_stat_diff[i]) {
938 v = p->vm_node_stat_diff[i];
939 p->vm_node_stat_diff[i] = 0;
940 atomic_long_add(v, &pgdat->vm_stat[i]);
941 global_node_diff[i] += v;
945 fold_diff(global_zone_diff, global_node_diff);
949 * this is only called if !populated_zone(zone), which implies no other users of
950 * pset->vm_stat_diff[] exist.
952 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
957 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
958 if (pzstats->vm_stat_diff[i]) {
959 v = pzstats->vm_stat_diff[i];
960 pzstats->vm_stat_diff[i] = 0;
961 zone_page_state_add(v, zone, i);
966 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
967 if (pzstats->vm_numa_event[i]) {
968 v = pzstats->vm_numa_event[i];
969 pzstats->vm_numa_event[i] = 0;
970 zone_numa_event_add(v, zone, i);
979 * Determine the per node value of a stat item. This function
980 * is called frequently in a NUMA machine, so try to be as
981 * frugal as possible.
983 unsigned long sum_zone_node_page_state(int node,
984 enum zone_stat_item item)
986 struct zone *zones = NODE_DATA(node)->node_zones;
988 unsigned long count = 0;
990 for (i = 0; i < MAX_NR_ZONES; i++)
991 count += zone_page_state(zones + i, item);
996 /* Determine the per node value of a numa stat item. */
997 unsigned long sum_zone_numa_event_state(int node,
998 enum numa_stat_item item)
1000 struct zone *zones = NODE_DATA(node)->node_zones;
1001 unsigned long count = 0;
1004 for (i = 0; i < MAX_NR_ZONES; i++)
1005 count += zone_numa_event_state(zones + i, item);
1011 * Determine the per node value of a stat item.
1013 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1014 enum node_stat_item item)
1016 long x = atomic_long_read(&pgdat->vm_stat[item]);
1024 unsigned long node_page_state(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1027 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1029 return node_page_state_pages(pgdat, item);
1033 #ifdef CONFIG_COMPACTION
1035 struct contig_page_info {
1036 unsigned long free_pages;
1037 unsigned long free_blocks_total;
1038 unsigned long free_blocks_suitable;
1042 * Calculate the number of free pages in a zone, how many contiguous
1043 * pages are free and how many are large enough to satisfy an allocation of
1044 * the target size. Note that this function makes no attempt to estimate
1045 * how many suitable free blocks there *might* be if MOVABLE pages were
1046 * migrated. Calculating that is possible, but expensive and can be
1047 * figured out from userspace
1049 static void fill_contig_page_info(struct zone *zone,
1050 unsigned int suitable_order,
1051 struct contig_page_info *info)
1055 info->free_pages = 0;
1056 info->free_blocks_total = 0;
1057 info->free_blocks_suitable = 0;
1059 for (order = 0; order <= MAX_ORDER; order++) {
1060 unsigned long blocks;
1063 * Count number of free blocks.
1065 * Access to nr_free is lockless as nr_free is used only for
1066 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1068 blocks = data_race(zone->free_area[order].nr_free);
1069 info->free_blocks_total += blocks;
1071 /* Count free base pages */
1072 info->free_pages += blocks << order;
1074 /* Count the suitable free blocks */
1075 if (order >= suitable_order)
1076 info->free_blocks_suitable += blocks <<
1077 (order - suitable_order);
1082 * A fragmentation index only makes sense if an allocation of a requested
1083 * size would fail. If that is true, the fragmentation index indicates
1084 * whether external fragmentation or a lack of memory was the problem.
1085 * The value can be used to determine if page reclaim or compaction
1088 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1090 unsigned long requested = 1UL << order;
1092 if (WARN_ON_ONCE(order > MAX_ORDER))
1095 if (!info->free_blocks_total)
1098 /* Fragmentation index only makes sense when a request would fail */
1099 if (info->free_blocks_suitable)
1103 * Index is between 0 and 1 so return within 3 decimal places
1105 * 0 => allocation would fail due to lack of memory
1106 * 1 => allocation would fail due to fragmentation
1108 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1112 * Calculates external fragmentation within a zone wrt the given order.
1113 * It is defined as the percentage of pages found in blocks of size
1114 * less than 1 << order. It returns values in range [0, 100].
1116 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1118 struct contig_page_info info;
1120 fill_contig_page_info(zone, order, &info);
1121 if (info.free_pages == 0)
1124 return div_u64((info.free_pages -
1125 (info.free_blocks_suitable << order)) * 100,
1129 /* Same as __fragmentation index but allocs contig_page_info on stack */
1130 int fragmentation_index(struct zone *zone, unsigned int order)
1132 struct contig_page_info info;
1134 fill_contig_page_info(zone, order, &info);
1135 return __fragmentation_index(order, &info);
1139 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141 #ifdef CONFIG_ZONE_DMA
1142 #define TEXT_FOR_DMA(xx) xx "_dma",
1144 #define TEXT_FOR_DMA(xx)
1147 #ifdef CONFIG_ZONE_DMA32
1148 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1150 #define TEXT_FOR_DMA32(xx)
1153 #ifdef CONFIG_HIGHMEM
1154 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1156 #define TEXT_FOR_HIGHMEM(xx)
1159 #ifdef CONFIG_ZONE_DEVICE
1160 #define TEXT_FOR_DEVICE(xx) xx "_device",
1162 #define TEXT_FOR_DEVICE(xx)
1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1169 const char * const vmstat_text[] = {
1170 /* enum zone_stat_item counters */
1172 "nr_zone_inactive_anon",
1173 "nr_zone_active_anon",
1174 "nr_zone_inactive_file",
1175 "nr_zone_active_file",
1176 "nr_zone_unevictable",
1177 "nr_zone_write_pending",
1180 #if IS_ENABLED(CONFIG_ZSMALLOC)
1184 #ifdef CONFIG_UNACCEPTED_MEMORY
1188 /* enum numa_stat_item counters */
1198 /* enum node_stat_item counters */
1204 "nr_slab_reclaimable",
1205 "nr_slab_unreclaimable",
1209 "workingset_refault_anon",
1210 "workingset_refault_file",
1211 "workingset_activate_anon",
1212 "workingset_activate_file",
1213 "workingset_restore_anon",
1214 "workingset_restore_file",
1215 "workingset_nodereclaim",
1221 "nr_writeback_temp",
1223 "nr_shmem_hugepages",
1224 "nr_shmem_pmdmapped",
1225 "nr_file_hugepages",
1226 "nr_file_pmdmapped",
1227 "nr_anon_transparent_hugepages",
1229 "nr_vmscan_immediate_reclaim",
1232 "nr_throttled_written",
1233 "nr_kernel_misc_reclaimable",
1234 "nr_foll_pin_acquired",
1235 "nr_foll_pin_released",
1237 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1238 "nr_shadow_call_stack",
1240 "nr_page_table_pages",
1241 "nr_sec_page_table_pages",
1245 #ifdef CONFIG_NUMA_BALANCING
1246 "pgpromote_success",
1247 "pgpromote_candidate",
1250 /* enum writeback_stat_item counters */
1251 "nr_dirty_threshold",
1252 "nr_dirty_background_threshold",
1254 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1255 /* enum vm_event_item counters */
1261 TEXTS_FOR_ZONES("pgalloc")
1262 TEXTS_FOR_ZONES("allocstall")
1263 TEXTS_FOR_ZONES("pgskip")
1278 "pgsteal_khugepaged",
1281 "pgdemote_khugepaged",
1284 "pgscan_khugepaged",
1285 "pgscan_direct_throttle",
1292 "zone_reclaim_failed",
1296 "kswapd_inodesteal",
1297 "kswapd_low_wmark_hit_quickly",
1298 "kswapd_high_wmark_hit_quickly",
1307 #ifdef CONFIG_NUMA_BALANCING
1309 "numa_huge_pte_updates",
1311 "numa_hint_faults_local",
1312 "numa_pages_migrated",
1314 #ifdef CONFIG_MIGRATION
1315 "pgmigrate_success",
1317 "thp_migration_success",
1318 "thp_migration_fail",
1319 "thp_migration_split",
1321 #ifdef CONFIG_COMPACTION
1322 "compact_migrate_scanned",
1323 "compact_free_scanned",
1328 "compact_daemon_wake",
1329 "compact_daemon_migrate_scanned",
1330 "compact_daemon_free_scanned",
1333 #ifdef CONFIG_HUGETLB_PAGE
1334 "htlb_buddy_alloc_success",
1335 "htlb_buddy_alloc_fail",
1338 "cma_alloc_success",
1341 "unevictable_pgs_culled",
1342 "unevictable_pgs_scanned",
1343 "unevictable_pgs_rescued",
1344 "unevictable_pgs_mlocked",
1345 "unevictable_pgs_munlocked",
1346 "unevictable_pgs_cleared",
1347 "unevictable_pgs_stranded",
1349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1351 "thp_fault_fallback",
1352 "thp_fault_fallback_charge",
1353 "thp_collapse_alloc",
1354 "thp_collapse_alloc_failed",
1356 "thp_file_fallback",
1357 "thp_file_fallback_charge",
1360 "thp_split_page_failed",
1361 "thp_deferred_split_page",
1363 "thp_scan_exceed_none_pte",
1364 "thp_scan_exceed_swap_pte",
1365 "thp_scan_exceed_share_pte",
1366 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1369 "thp_zero_page_alloc",
1370 "thp_zero_page_alloc_failed",
1372 "thp_swpout_fallback",
1374 #ifdef CONFIG_MEMORY_BALLOON
1377 #ifdef CONFIG_BALLOON_COMPACTION
1380 #endif /* CONFIG_MEMORY_BALLOON */
1381 #ifdef CONFIG_DEBUG_TLBFLUSH
1382 "nr_tlb_remote_flush",
1383 "nr_tlb_remote_flush_received",
1384 "nr_tlb_local_flush_all",
1385 "nr_tlb_local_flush_one",
1386 #endif /* CONFIG_DEBUG_TLBFLUSH */
1403 "direct_map_level2_splits",
1404 "direct_map_level3_splits",
1406 #ifdef CONFIG_PER_VMA_LOCK_STATS
1412 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1414 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1416 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1417 defined(CONFIG_PROC_FS)
1418 static void *frag_start(struct seq_file *m, loff_t *pos)
1423 for (pgdat = first_online_pgdat();
1425 pgdat = next_online_pgdat(pgdat))
1431 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1433 pg_data_t *pgdat = (pg_data_t *)arg;
1436 return next_online_pgdat(pgdat);
1439 static void frag_stop(struct seq_file *m, void *arg)
1444 * Walk zones in a node and print using a callback.
1445 * If @assert_populated is true, only use callback for zones that are populated.
1447 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1448 bool assert_populated, bool nolock,
1449 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1452 struct zone *node_zones = pgdat->node_zones;
1453 unsigned long flags;
1455 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1456 if (assert_populated && !populated_zone(zone))
1460 spin_lock_irqsave(&zone->lock, flags);
1461 print(m, pgdat, zone);
1463 spin_unlock_irqrestore(&zone->lock, flags);
1468 #ifdef CONFIG_PROC_FS
1469 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1474 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1475 for (order = 0; order <= MAX_ORDER; ++order)
1477 * Access to nr_free is lockless as nr_free is used only for
1478 * printing purposes. Use data_race to avoid KCSAN warning.
1480 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1485 * This walks the free areas for each zone.
1487 static int frag_show(struct seq_file *m, void *arg)
1489 pg_data_t *pgdat = (pg_data_t *)arg;
1490 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1494 static void pagetypeinfo_showfree_print(struct seq_file *m,
1495 pg_data_t *pgdat, struct zone *zone)
1499 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1500 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1503 migratetype_names[mtype]);
1504 for (order = 0; order <= MAX_ORDER; ++order) {
1505 unsigned long freecount = 0;
1506 struct free_area *area;
1507 struct list_head *curr;
1508 bool overflow = false;
1510 area = &(zone->free_area[order]);
1512 list_for_each(curr, &area->free_list[mtype]) {
1514 * Cap the free_list iteration because it might
1515 * be really large and we are under a spinlock
1516 * so a long time spent here could trigger a
1517 * hard lockup detector. Anyway this is a
1518 * debugging tool so knowing there is a handful
1519 * of pages of this order should be more than
1522 if (++freecount >= 100000) {
1527 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1528 spin_unlock_irq(&zone->lock);
1530 spin_lock_irq(&zone->lock);
1536 /* Print out the free pages at each order for each migatetype */
1537 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1540 pg_data_t *pgdat = (pg_data_t *)arg;
1543 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1544 for (order = 0; order <= MAX_ORDER; ++order)
1545 seq_printf(m, "%6d ", order);
1548 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1551 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1552 pg_data_t *pgdat, struct zone *zone)
1556 unsigned long start_pfn = zone->zone_start_pfn;
1557 unsigned long end_pfn = zone_end_pfn(zone);
1558 unsigned long count[MIGRATE_TYPES] = { 0, };
1560 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1563 page = pfn_to_online_page(pfn);
1567 if (page_zone(page) != zone)
1570 mtype = get_pageblock_migratetype(page);
1572 if (mtype < MIGRATE_TYPES)
1577 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1578 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 seq_printf(m, "%12lu ", count[mtype]);
1583 /* Print out the number of pageblocks for each migratetype */
1584 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1587 pg_data_t *pgdat = (pg_data_t *)arg;
1589 seq_printf(m, "\n%-23s", "Number of blocks type ");
1590 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1591 seq_printf(m, "%12s ", migratetype_names[mtype]);
1593 walk_zones_in_node(m, pgdat, true, false,
1594 pagetypeinfo_showblockcount_print);
1598 * Print out the number of pageblocks for each migratetype that contain pages
1599 * of other types. This gives an indication of how well fallbacks are being
1600 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1601 * to determine what is going on
1603 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1605 #ifdef CONFIG_PAGE_OWNER
1608 if (!static_branch_unlikely(&page_owner_inited))
1611 drain_all_pages(NULL);
1613 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1614 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1615 seq_printf(m, "%12s ", migratetype_names[mtype]);
1618 walk_zones_in_node(m, pgdat, true, true,
1619 pagetypeinfo_showmixedcount_print);
1620 #endif /* CONFIG_PAGE_OWNER */
1624 * This prints out statistics in relation to grouping pages by mobility.
1625 * It is expensive to collect so do not constantly read the file.
1627 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1629 pg_data_t *pgdat = (pg_data_t *)arg;
1631 /* check memoryless node */
1632 if (!node_state(pgdat->node_id, N_MEMORY))
1635 seq_printf(m, "Page block order: %d\n", pageblock_order);
1636 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1638 pagetypeinfo_showfree(m, pgdat);
1639 pagetypeinfo_showblockcount(m, pgdat);
1640 pagetypeinfo_showmixedcount(m, pgdat);
1645 static const struct seq_operations fragmentation_op = {
1646 .start = frag_start,
1652 static const struct seq_operations pagetypeinfo_op = {
1653 .start = frag_start,
1656 .show = pagetypeinfo_show,
1659 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1663 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1664 struct zone *compare = &pgdat->node_zones[zid];
1666 if (populated_zone(compare))
1667 return zone == compare;
1673 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1677 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1678 if (is_zone_first_populated(pgdat, zone)) {
1679 seq_printf(m, "\n per-node stats");
1680 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1681 unsigned long pages = node_page_state_pages(pgdat, i);
1683 if (vmstat_item_print_in_thp(i))
1684 pages /= HPAGE_PMD_NR;
1685 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1699 zone_page_state(zone, NR_FREE_PAGES),
1700 zone->watermark_boost,
1701 min_wmark_pages(zone),
1702 low_wmark_pages(zone),
1703 high_wmark_pages(zone),
1704 zone->spanned_pages,
1705 zone->present_pages,
1706 zone_managed_pages(zone),
1707 zone_cma_pages(zone));
1710 "\n protection: (%ld",
1711 zone->lowmem_reserve[0]);
1712 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1713 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1716 /* If unpopulated, no other information is useful */
1717 if (!populated_zone(zone)) {
1722 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1723 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1724 zone_page_state(zone, i));
1727 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1728 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1729 zone_numa_event_state(zone, i));
1732 seq_printf(m, "\n pagesets");
1733 for_each_online_cpu(i) {
1734 struct per_cpu_pages *pcp;
1735 struct per_cpu_zonestat __maybe_unused *pzstats;
1737 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1748 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1749 seq_printf(m, "\n vm stats threshold: %d",
1750 pzstats->stat_threshold);
1754 "\n node_unreclaimable: %u"
1755 "\n start_pfn: %lu",
1756 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1757 zone->zone_start_pfn);
1762 * Output information about zones in @pgdat. All zones are printed regardless
1763 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1764 * set of all zones and userspace would not be aware of such zones if they are
1765 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1767 static int zoneinfo_show(struct seq_file *m, void *arg)
1769 pg_data_t *pgdat = (pg_data_t *)arg;
1770 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1774 static const struct seq_operations zoneinfo_op = {
1775 .start = frag_start, /* iterate over all zones. The same as in
1779 .show = zoneinfo_show,
1782 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1783 NR_VM_NUMA_EVENT_ITEMS + \
1784 NR_VM_NODE_STAT_ITEMS + \
1785 NR_VM_WRITEBACK_STAT_ITEMS + \
1786 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1787 NR_VM_EVENT_ITEMS : 0))
1789 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1794 if (*pos >= NR_VMSTAT_ITEMS)
1797 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1798 fold_vm_numa_events();
1799 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1802 return ERR_PTR(-ENOMEM);
1803 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1804 v[i] = global_zone_page_state(i);
1805 v += NR_VM_ZONE_STAT_ITEMS;
1808 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1809 v[i] = global_numa_event_state(i);
1810 v += NR_VM_NUMA_EVENT_ITEMS;
1813 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1814 v[i] = global_node_page_state_pages(i);
1815 if (vmstat_item_print_in_thp(i))
1816 v[i] /= HPAGE_PMD_NR;
1818 v += NR_VM_NODE_STAT_ITEMS;
1820 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1821 v + NR_DIRTY_THRESHOLD);
1822 v += NR_VM_WRITEBACK_STAT_ITEMS;
1824 #ifdef CONFIG_VM_EVENT_COUNTERS
1826 v[PGPGIN] /= 2; /* sectors -> kbytes */
1829 return (unsigned long *)m->private + *pos;
1832 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1835 if (*pos >= NR_VMSTAT_ITEMS)
1837 return (unsigned long *)m->private + *pos;
1840 static int vmstat_show(struct seq_file *m, void *arg)
1842 unsigned long *l = arg;
1843 unsigned long off = l - (unsigned long *)m->private;
1845 seq_puts(m, vmstat_text[off]);
1846 seq_put_decimal_ull(m, " ", *l);
1849 if (off == NR_VMSTAT_ITEMS - 1) {
1851 * We've come to the end - add any deprecated counters to avoid
1852 * breaking userspace which might depend on them being present.
1854 seq_puts(m, "nr_unstable 0\n");
1859 static void vmstat_stop(struct seq_file *m, void *arg)
1865 static const struct seq_operations vmstat_op = {
1866 .start = vmstat_start,
1867 .next = vmstat_next,
1868 .stop = vmstat_stop,
1869 .show = vmstat_show,
1871 #endif /* CONFIG_PROC_FS */
1874 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1875 int sysctl_stat_interval __read_mostly = HZ;
1877 #ifdef CONFIG_PROC_FS
1878 static void refresh_vm_stats(struct work_struct *work)
1880 refresh_cpu_vm_stats(true);
1883 int vmstat_refresh(struct ctl_table *table, int write,
1884 void *buffer, size_t *lenp, loff_t *ppos)
1891 * The regular update, every sysctl_stat_interval, may come later
1892 * than expected: leaving a significant amount in per_cpu buckets.
1893 * This is particularly misleading when checking a quantity of HUGE
1894 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1895 * which can equally be echo'ed to or cat'ted from (by root),
1896 * can be used to update the stats just before reading them.
1898 * Oh, and since global_zone_page_state() etc. are so careful to hide
1899 * transiently negative values, report an error here if any of
1900 * the stats is negative, so we know to go looking for imbalance.
1902 err = schedule_on_each_cpu(refresh_vm_stats);
1905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1907 * Skip checking stats known to go negative occasionally.
1910 case NR_ZONE_WRITE_PENDING:
1911 case NR_FREE_CMA_PAGES:
1914 val = atomic_long_read(&vm_zone_stat[i]);
1916 pr_warn("%s: %s %ld\n",
1917 __func__, zone_stat_name(i), val);
1920 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1922 * Skip checking stats known to go negative occasionally.
1928 val = atomic_long_read(&vm_node_stat[i]);
1930 pr_warn("%s: %s %ld\n",
1931 __func__, node_stat_name(i), val);
1940 #endif /* CONFIG_PROC_FS */
1942 static void vmstat_update(struct work_struct *w)
1944 if (refresh_cpu_vm_stats(true)) {
1946 * Counters were updated so we expect more updates
1947 * to occur in the future. Keep on running the
1948 * update worker thread.
1950 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1951 this_cpu_ptr(&vmstat_work),
1952 round_jiffies_relative(sysctl_stat_interval));
1957 * Check if the diffs for a certain cpu indicate that
1958 * an update is needed.
1960 static bool need_update(int cpu)
1962 pg_data_t *last_pgdat = NULL;
1965 for_each_populated_zone(zone) {
1966 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1967 struct per_cpu_nodestat *n;
1970 * The fast way of checking if there are any vmstat diffs.
1972 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1975 if (last_pgdat == zone->zone_pgdat)
1977 last_pgdat = zone->zone_pgdat;
1978 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1979 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1986 * Switch off vmstat processing and then fold all the remaining differentials
1987 * until the diffs stay at zero. The function is used by NOHZ and can only be
1988 * invoked when tick processing is not active.
1990 void quiet_vmstat(void)
1992 if (system_state != SYSTEM_RUNNING)
1995 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1998 if (!need_update(smp_processor_id()))
2002 * Just refresh counters and do not care about the pending delayed
2003 * vmstat_update. It doesn't fire that often to matter and canceling
2004 * it would be too expensive from this path.
2005 * vmstat_shepherd will take care about that for us.
2007 refresh_cpu_vm_stats(false);
2011 * Shepherd worker thread that checks the
2012 * differentials of processors that have their worker
2013 * threads for vm statistics updates disabled because of
2016 static void vmstat_shepherd(struct work_struct *w);
2018 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2020 static void vmstat_shepherd(struct work_struct *w)
2025 /* Check processors whose vmstat worker threads have been disabled */
2026 for_each_online_cpu(cpu) {
2027 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2030 * In kernel users of vmstat counters either require the precise value and
2031 * they are using zone_page_state_snapshot interface or they can live with
2032 * an imprecision as the regular flushing can happen at arbitrary time and
2033 * cumulative error can grow (see calculate_normal_threshold).
2035 * From that POV the regular flushing can be postponed for CPUs that have
2036 * been isolated from the kernel interference without critical
2037 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2038 * for all isolated CPUs to avoid interference with the isolated workload.
2040 if (cpu_is_isolated(cpu))
2043 if (!delayed_work_pending(dw) && need_update(cpu))
2044 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2050 schedule_delayed_work(&shepherd,
2051 round_jiffies_relative(sysctl_stat_interval));
2054 static void __init start_shepherd_timer(void)
2058 for_each_possible_cpu(cpu)
2059 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2062 schedule_delayed_work(&shepherd,
2063 round_jiffies_relative(sysctl_stat_interval));
2066 static void __init init_cpu_node_state(void)
2070 for_each_online_node(node) {
2071 if (!cpumask_empty(cpumask_of_node(node)))
2072 node_set_state(node, N_CPU);
2076 static int vmstat_cpu_online(unsigned int cpu)
2078 refresh_zone_stat_thresholds();
2080 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2081 node_set_state(cpu_to_node(cpu), N_CPU);
2087 static int vmstat_cpu_down_prep(unsigned int cpu)
2089 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2093 static int vmstat_cpu_dead(unsigned int cpu)
2095 const struct cpumask *node_cpus;
2098 node = cpu_to_node(cpu);
2100 refresh_zone_stat_thresholds();
2101 node_cpus = cpumask_of_node(node);
2102 if (!cpumask_empty(node_cpus))
2105 node_clear_state(node, N_CPU);
2112 struct workqueue_struct *mm_percpu_wq;
2114 void __init init_mm_internals(void)
2116 int ret __maybe_unused;
2118 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2121 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2122 NULL, vmstat_cpu_dead);
2124 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2126 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2128 vmstat_cpu_down_prep);
2130 pr_err("vmstat: failed to register 'online' hotplug state\n");
2133 init_cpu_node_state();
2136 start_shepherd_timer();
2138 #ifdef CONFIG_PROC_FS
2139 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2140 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2141 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2142 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2146 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2149 * Return an index indicating how much of the available free memory is
2150 * unusable for an allocation of the requested size.
2152 static int unusable_free_index(unsigned int order,
2153 struct contig_page_info *info)
2155 /* No free memory is interpreted as all free memory is unusable */
2156 if (info->free_pages == 0)
2160 * Index should be a value between 0 and 1. Return a value to 3
2163 * 0 => no fragmentation
2164 * 1 => high fragmentation
2166 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2170 static void unusable_show_print(struct seq_file *m,
2171 pg_data_t *pgdat, struct zone *zone)
2175 struct contig_page_info info;
2177 seq_printf(m, "Node %d, zone %8s ",
2180 for (order = 0; order <= MAX_ORDER; ++order) {
2181 fill_contig_page_info(zone, order, &info);
2182 index = unusable_free_index(order, &info);
2183 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2190 * Display unusable free space index
2192 * The unusable free space index measures how much of the available free
2193 * memory cannot be used to satisfy an allocation of a given size and is a
2194 * value between 0 and 1. The higher the value, the more of free memory is
2195 * unusable and by implication, the worse the external fragmentation is. This
2196 * can be expressed as a percentage by multiplying by 100.
2198 static int unusable_show(struct seq_file *m, void *arg)
2200 pg_data_t *pgdat = (pg_data_t *)arg;
2202 /* check memoryless node */
2203 if (!node_state(pgdat->node_id, N_MEMORY))
2206 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2211 static const struct seq_operations unusable_sops = {
2212 .start = frag_start,
2215 .show = unusable_show,
2218 DEFINE_SEQ_ATTRIBUTE(unusable);
2220 static void extfrag_show_print(struct seq_file *m,
2221 pg_data_t *pgdat, struct zone *zone)
2226 /* Alloc on stack as interrupts are disabled for zone walk */
2227 struct contig_page_info info;
2229 seq_printf(m, "Node %d, zone %8s ",
2232 for (order = 0; order <= MAX_ORDER; ++order) {
2233 fill_contig_page_info(zone, order, &info);
2234 index = __fragmentation_index(order, &info);
2235 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2242 * Display fragmentation index for orders that allocations would fail for
2244 static int extfrag_show(struct seq_file *m, void *arg)
2246 pg_data_t *pgdat = (pg_data_t *)arg;
2248 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2253 static const struct seq_operations extfrag_sops = {
2254 .start = frag_start,
2257 .show = extfrag_show,
2260 DEFINE_SEQ_ATTRIBUTE(extfrag);
2262 static int __init extfrag_debug_init(void)
2264 struct dentry *extfrag_debug_root;
2266 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2268 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2271 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2277 module_init(extfrag_debug_init);