vmstat: create separate function to fold per cpu diffs into local counters
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29         int cpu;
30         int i;
31
32         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34         for_each_online_cpu(cpu) {
35                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38                         ret[i] += this->event[i];
39         }
40 }
41
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49         get_online_cpus();
50         sum_vm_events(ret);
51         put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 /*
56  * Fold the foreign cpu events into our own.
57  *
58  * This is adding to the events on one processor
59  * but keeps the global counts constant.
60  */
61 void vm_events_fold_cpu(int cpu)
62 {
63         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
64         int i;
65
66         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
67                 count_vm_events(i, fold_state->event[i]);
68                 fold_state->event[i] = 0;
69         }
70 }
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75  * Manage combined zone based / global counters
76  *
77  * vm_stat contains the global counters
78  */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 int calculate_pressure_threshold(struct zone *zone)
85 {
86         int threshold;
87         int watermark_distance;
88
89         /*
90          * As vmstats are not up to date, there is drift between the estimated
91          * and real values. For high thresholds and a high number of CPUs, it
92          * is possible for the min watermark to be breached while the estimated
93          * value looks fine. The pressure threshold is a reduced value such
94          * that even the maximum amount of drift will not accidentally breach
95          * the min watermark
96          */
97         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99
100         /*
101          * Maximum threshold is 125
102          */
103         threshold = min(125, threshold);
104
105         return threshold;
106 }
107
108 int calculate_normal_threshold(struct zone *zone)
109 {
110         int threshold;
111         int mem;        /* memory in 128 MB units */
112
113         /*
114          * The threshold scales with the number of processors and the amount
115          * of memory per zone. More memory means that we can defer updates for
116          * longer, more processors could lead to more contention.
117          * fls() is used to have a cheap way of logarithmic scaling.
118          *
119          * Some sample thresholds:
120          *
121          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
122          * ------------------------------------------------------------------
123          * 8            1               1       0.9-1 GB        4
124          * 16           2               2       0.9-1 GB        4
125          * 20           2               2       1-2 GB          5
126          * 24           2               2       2-4 GB          6
127          * 28           2               2       4-8 GB          7
128          * 32           2               2       8-16 GB         8
129          * 4            2               2       <128M           1
130          * 30           4               3       2-4 GB          5
131          * 48           4               3       8-16 GB         8
132          * 32           8               4       1-2 GB          4
133          * 32           8               4       0.9-1GB         4
134          * 10           16              5       <128M           1
135          * 40           16              5       900M            4
136          * 70           64              7       2-4 GB          5
137          * 84           64              7       4-8 GB          6
138          * 108          512             9       4-8 GB          6
139          * 125          1024            10      8-16 GB         8
140          * 125          1024            10      16-32 GB        9
141          */
142
143         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
144
145         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146
147         /*
148          * Maximum threshold is 125
149          */
150         threshold = min(125, threshold);
151
152         return threshold;
153 }
154
155 /*
156  * Refresh the thresholds for each zone.
157  */
158 void refresh_zone_stat_thresholds(void)
159 {
160         struct zone *zone;
161         int cpu;
162         int threshold;
163
164         for_each_populated_zone(zone) {
165                 unsigned long max_drift, tolerate_drift;
166
167                 threshold = calculate_normal_threshold(zone);
168
169                 for_each_online_cpu(cpu)
170                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171                                                         = threshold;
172
173                 /*
174                  * Only set percpu_drift_mark if there is a danger that
175                  * NR_FREE_PAGES reports the low watermark is ok when in fact
176                  * the min watermark could be breached by an allocation
177                  */
178                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179                 max_drift = num_online_cpus() * threshold;
180                 if (max_drift > tolerate_drift)
181                         zone->percpu_drift_mark = high_wmark_pages(zone) +
182                                         max_drift;
183         }
184 }
185
186 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
187                                 int (*calculate_pressure)(struct zone *))
188 {
189         struct zone *zone;
190         int cpu;
191         int threshold;
192         int i;
193
194         for (i = 0; i < pgdat->nr_zones; i++) {
195                 zone = &pgdat->node_zones[i];
196                 if (!zone->percpu_drift_mark)
197                         continue;
198
199                 threshold = (*calculate_pressure)(zone);
200                 for_each_possible_cpu(cpu)
201                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202                                                         = threshold;
203         }
204 }
205
206 /*
207  * For use when we know that interrupts are disabled.
208  */
209 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
210                                 int delta)
211 {
212         struct per_cpu_pageset __percpu *pcp = zone->pageset;
213         s8 __percpu *p = pcp->vm_stat_diff + item;
214         long x;
215         long t;
216
217         x = delta + __this_cpu_read(*p);
218
219         t = __this_cpu_read(pcp->stat_threshold);
220
221         if (unlikely(x > t || x < -t)) {
222                 zone_page_state_add(x, zone, item);
223                 x = 0;
224         }
225         __this_cpu_write(*p, x);
226 }
227 EXPORT_SYMBOL(__mod_zone_page_state);
228
229 /*
230  * Optimized increment and decrement functions.
231  *
232  * These are only for a single page and therefore can take a struct page *
233  * argument instead of struct zone *. This allows the inclusion of the code
234  * generated for page_zone(page) into the optimized functions.
235  *
236  * No overflow check is necessary and therefore the differential can be
237  * incremented or decremented in place which may allow the compilers to
238  * generate better code.
239  * The increment or decrement is known and therefore one boundary check can
240  * be omitted.
241  *
242  * NOTE: These functions are very performance sensitive. Change only
243  * with care.
244  *
245  * Some processors have inc/dec instructions that are atomic vs an interrupt.
246  * However, the code must first determine the differential location in a zone
247  * based on the processor number and then inc/dec the counter. There is no
248  * guarantee without disabling preemption that the processor will not change
249  * in between and therefore the atomicity vs. interrupt cannot be exploited
250  * in a useful way here.
251  */
252 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
253 {
254         struct per_cpu_pageset __percpu *pcp = zone->pageset;
255         s8 __percpu *p = pcp->vm_stat_diff + item;
256         s8 v, t;
257
258         v = __this_cpu_inc_return(*p);
259         t = __this_cpu_read(pcp->stat_threshold);
260         if (unlikely(v > t)) {
261                 s8 overstep = t >> 1;
262
263                 zone_page_state_add(v + overstep, zone, item);
264                 __this_cpu_write(*p, -overstep);
265         }
266 }
267
268 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
269 {
270         __inc_zone_state(page_zone(page), item);
271 }
272 EXPORT_SYMBOL(__inc_zone_page_state);
273
274 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
275 {
276         struct per_cpu_pageset __percpu *pcp = zone->pageset;
277         s8 __percpu *p = pcp->vm_stat_diff + item;
278         s8 v, t;
279
280         v = __this_cpu_dec_return(*p);
281         t = __this_cpu_read(pcp->stat_threshold);
282         if (unlikely(v < - t)) {
283                 s8 overstep = t >> 1;
284
285                 zone_page_state_add(v - overstep, zone, item);
286                 __this_cpu_write(*p, overstep);
287         }
288 }
289
290 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
291 {
292         __dec_zone_state(page_zone(page), item);
293 }
294 EXPORT_SYMBOL(__dec_zone_page_state);
295
296 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
297 /*
298  * If we have cmpxchg_local support then we do not need to incur the overhead
299  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
300  *
301  * mod_state() modifies the zone counter state through atomic per cpu
302  * operations.
303  *
304  * Overstep mode specifies how overstep should handled:
305  *     0       No overstepping
306  *     1       Overstepping half of threshold
307  *     -1      Overstepping minus half of threshold
308 */
309 static inline void mod_state(struct zone *zone,
310        enum zone_stat_item item, int delta, int overstep_mode)
311 {
312         struct per_cpu_pageset __percpu *pcp = zone->pageset;
313         s8 __percpu *p = pcp->vm_stat_diff + item;
314         long o, n, t, z;
315
316         do {
317                 z = 0;  /* overflow to zone counters */
318
319                 /*
320                  * The fetching of the stat_threshold is racy. We may apply
321                  * a counter threshold to the wrong the cpu if we get
322                  * rescheduled while executing here. However, the next
323                  * counter update will apply the threshold again and
324                  * therefore bring the counter under the threshold again.
325                  *
326                  * Most of the time the thresholds are the same anyways
327                  * for all cpus in a zone.
328                  */
329                 t = this_cpu_read(pcp->stat_threshold);
330
331                 o = this_cpu_read(*p);
332                 n = delta + o;
333
334                 if (n > t || n < -t) {
335                         int os = overstep_mode * (t >> 1) ;
336
337                         /* Overflow must be added to zone counters */
338                         z = n + os;
339                         n = -os;
340                 }
341         } while (this_cpu_cmpxchg(*p, o, n) != o);
342
343         if (z)
344                 zone_page_state_add(z, zone, item);
345 }
346
347 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
348                                         int delta)
349 {
350         mod_state(zone, item, delta, 0);
351 }
352 EXPORT_SYMBOL(mod_zone_page_state);
353
354 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355 {
356         mod_state(zone, item, 1, 1);
357 }
358
359 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360 {
361         mod_state(page_zone(page), item, 1, 1);
362 }
363 EXPORT_SYMBOL(inc_zone_page_state);
364
365 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366 {
367         mod_state(page_zone(page), item, -1, -1);
368 }
369 EXPORT_SYMBOL(dec_zone_page_state);
370 #else
371 /*
372  * Use interrupt disable to serialize counter updates
373  */
374 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
375                                         int delta)
376 {
377         unsigned long flags;
378
379         local_irq_save(flags);
380         __mod_zone_page_state(zone, item, delta);
381         local_irq_restore(flags);
382 }
383 EXPORT_SYMBOL(mod_zone_page_state);
384
385 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 {
387         unsigned long flags;
388
389         local_irq_save(flags);
390         __inc_zone_state(zone, item);
391         local_irq_restore(flags);
392 }
393
394 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395 {
396         unsigned long flags;
397         struct zone *zone;
398
399         zone = page_zone(page);
400         local_irq_save(flags);
401         __inc_zone_state(zone, item);
402         local_irq_restore(flags);
403 }
404 EXPORT_SYMBOL(inc_zone_page_state);
405
406 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408         unsigned long flags;
409
410         local_irq_save(flags);
411         __dec_zone_page_state(page, item);
412         local_irq_restore(flags);
413 }
414 EXPORT_SYMBOL(dec_zone_page_state);
415 #endif
416
417 /*
418  * Update the zone counters for the current cpu.
419  *
420  * Note that refresh_cpu_vm_stats strives to only access
421  * node local memory. The per cpu pagesets on remote zones are placed
422  * in the memory local to the processor using that pageset. So the
423  * loop over all zones will access a series of cachelines local to
424  * the processor.
425  *
426  * The call to zone_page_state_add updates the cachelines with the
427  * statistics in the remote zone struct as well as the global cachelines
428  * with the global counters. These could cause remote node cache line
429  * bouncing and will have to be only done when necessary.
430  */
431 static void refresh_cpu_vm_stats(int cpu)
432 {
433         struct zone *zone;
434         int i;
435         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
436
437         for_each_populated_zone(zone) {
438                 struct per_cpu_pageset *p;
439
440                 p = per_cpu_ptr(zone->pageset, cpu);
441
442                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
443                         if (p->vm_stat_diff[i]) {
444                                 unsigned long flags;
445                                 int v;
446
447                                 local_irq_save(flags);
448                                 v = p->vm_stat_diff[i];
449                                 p->vm_stat_diff[i] = 0;
450                                 local_irq_restore(flags);
451                                 atomic_long_add(v, &zone->vm_stat[i]);
452                                 global_diff[i] += v;
453 #ifdef CONFIG_NUMA
454                                 /* 3 seconds idle till flush */
455                                 p->expire = 3;
456 #endif
457                         }
458                 cond_resched();
459 #ifdef CONFIG_NUMA
460                 /*
461                  * Deal with draining the remote pageset of this
462                  * processor
463                  *
464                  * Check if there are pages remaining in this pageset
465                  * if not then there is nothing to expire.
466                  */
467                 if (!p->expire || !p->pcp.count)
468                         continue;
469
470                 /*
471                  * We never drain zones local to this processor.
472                  */
473                 if (zone_to_nid(zone) == numa_node_id()) {
474                         p->expire = 0;
475                         continue;
476                 }
477
478                 p->expire--;
479                 if (p->expire)
480                         continue;
481
482                 if (p->pcp.count)
483                         drain_zone_pages(zone, &p->pcp);
484 #endif
485         }
486
487         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
488                 if (global_diff[i])
489                         atomic_long_add(global_diff[i], &vm_stat[i]);
490 }
491
492 /*
493  * Fold the data for an offline cpu into the global array.
494  * There cannot be any access by the offline cpu and therefore
495  * synchronization is simplified.
496  */
497 void cpu_vm_stats_fold(int cpu)
498 {
499         struct zone *zone;
500         int i;
501         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
502
503         for_each_populated_zone(zone) {
504                 struct per_cpu_pageset *p;
505
506                 p = per_cpu_ptr(zone->pageset, cpu);
507
508                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
509                         if (p->vm_stat_diff[i]) {
510                                 int v;
511
512                                 v = p->vm_stat_diff[i];
513                                 p->vm_stat_diff[i] = 0;
514                                 atomic_long_add(v, &zone->vm_stat[i]);
515                                 global_diff[i] += v;
516                         }
517         }
518
519         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
520                 if (global_diff[i])
521                         atomic_long_add(global_diff[i], &vm_stat[i]);
522 }
523
524 /*
525  * this is only called if !populated_zone(zone), which implies no other users of
526  * pset->vm_stat_diff[] exsist.
527  */
528 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
529 {
530         int i;
531
532         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
533                 if (pset->vm_stat_diff[i]) {
534                         int v = pset->vm_stat_diff[i];
535                         pset->vm_stat_diff[i] = 0;
536                         atomic_long_add(v, &zone->vm_stat[i]);
537                         atomic_long_add(v, &vm_stat[i]);
538                 }
539 }
540 #endif
541
542 #ifdef CONFIG_NUMA
543 /*
544  * zonelist = the list of zones passed to the allocator
545  * z        = the zone from which the allocation occurred.
546  *
547  * Must be called with interrupts disabled.
548  *
549  * When __GFP_OTHER_NODE is set assume the node of the preferred
550  * zone is the local node. This is useful for daemons who allocate
551  * memory on behalf of other processes.
552  */
553 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
554 {
555         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
556                 __inc_zone_state(z, NUMA_HIT);
557         } else {
558                 __inc_zone_state(z, NUMA_MISS);
559                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
560         }
561         if (z->node == ((flags & __GFP_OTHER_NODE) ?
562                         preferred_zone->node : numa_node_id()))
563                 __inc_zone_state(z, NUMA_LOCAL);
564         else
565                 __inc_zone_state(z, NUMA_OTHER);
566 }
567 #endif
568
569 #ifdef CONFIG_COMPACTION
570
571 struct contig_page_info {
572         unsigned long free_pages;
573         unsigned long free_blocks_total;
574         unsigned long free_blocks_suitable;
575 };
576
577 /*
578  * Calculate the number of free pages in a zone, how many contiguous
579  * pages are free and how many are large enough to satisfy an allocation of
580  * the target size. Note that this function makes no attempt to estimate
581  * how many suitable free blocks there *might* be if MOVABLE pages were
582  * migrated. Calculating that is possible, but expensive and can be
583  * figured out from userspace
584  */
585 static void fill_contig_page_info(struct zone *zone,
586                                 unsigned int suitable_order,
587                                 struct contig_page_info *info)
588 {
589         unsigned int order;
590
591         info->free_pages = 0;
592         info->free_blocks_total = 0;
593         info->free_blocks_suitable = 0;
594
595         for (order = 0; order < MAX_ORDER; order++) {
596                 unsigned long blocks;
597
598                 /* Count number of free blocks */
599                 blocks = zone->free_area[order].nr_free;
600                 info->free_blocks_total += blocks;
601
602                 /* Count free base pages */
603                 info->free_pages += blocks << order;
604
605                 /* Count the suitable free blocks */
606                 if (order >= suitable_order)
607                         info->free_blocks_suitable += blocks <<
608                                                 (order - suitable_order);
609         }
610 }
611
612 /*
613  * A fragmentation index only makes sense if an allocation of a requested
614  * size would fail. If that is true, the fragmentation index indicates
615  * whether external fragmentation or a lack of memory was the problem.
616  * The value can be used to determine if page reclaim or compaction
617  * should be used
618  */
619 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
620 {
621         unsigned long requested = 1UL << order;
622
623         if (!info->free_blocks_total)
624                 return 0;
625
626         /* Fragmentation index only makes sense when a request would fail */
627         if (info->free_blocks_suitable)
628                 return -1000;
629
630         /*
631          * Index is between 0 and 1 so return within 3 decimal places
632          *
633          * 0 => allocation would fail due to lack of memory
634          * 1 => allocation would fail due to fragmentation
635          */
636         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
637 }
638
639 /* Same as __fragmentation index but allocs contig_page_info on stack */
640 int fragmentation_index(struct zone *zone, unsigned int order)
641 {
642         struct contig_page_info info;
643
644         fill_contig_page_info(zone, order, &info);
645         return __fragmentation_index(order, &info);
646 }
647 #endif
648
649 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
650 #include <linux/proc_fs.h>
651 #include <linux/seq_file.h>
652
653 static char * const migratetype_names[MIGRATE_TYPES] = {
654         "Unmovable",
655         "Reclaimable",
656         "Movable",
657         "Reserve",
658 #ifdef CONFIG_CMA
659         "CMA",
660 #endif
661 #ifdef CONFIG_MEMORY_ISOLATION
662         "Isolate",
663 #endif
664 };
665
666 static void *frag_start(struct seq_file *m, loff_t *pos)
667 {
668         pg_data_t *pgdat;
669         loff_t node = *pos;
670         for (pgdat = first_online_pgdat();
671              pgdat && node;
672              pgdat = next_online_pgdat(pgdat))
673                 --node;
674
675         return pgdat;
676 }
677
678 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
679 {
680         pg_data_t *pgdat = (pg_data_t *)arg;
681
682         (*pos)++;
683         return next_online_pgdat(pgdat);
684 }
685
686 static void frag_stop(struct seq_file *m, void *arg)
687 {
688 }
689
690 /* Walk all the zones in a node and print using a callback */
691 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
692                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
693 {
694         struct zone *zone;
695         struct zone *node_zones = pgdat->node_zones;
696         unsigned long flags;
697
698         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
699                 if (!populated_zone(zone))
700                         continue;
701
702                 spin_lock_irqsave(&zone->lock, flags);
703                 print(m, pgdat, zone);
704                 spin_unlock_irqrestore(&zone->lock, flags);
705         }
706 }
707 #endif
708
709 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
710 #ifdef CONFIG_ZONE_DMA
711 #define TEXT_FOR_DMA(xx) xx "_dma",
712 #else
713 #define TEXT_FOR_DMA(xx)
714 #endif
715
716 #ifdef CONFIG_ZONE_DMA32
717 #define TEXT_FOR_DMA32(xx) xx "_dma32",
718 #else
719 #define TEXT_FOR_DMA32(xx)
720 #endif
721
722 #ifdef CONFIG_HIGHMEM
723 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
724 #else
725 #define TEXT_FOR_HIGHMEM(xx)
726 #endif
727
728 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
729                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
730
731 const char * const vmstat_text[] = {
732         /* Zoned VM counters */
733         "nr_free_pages",
734         "nr_alloc_batch",
735         "nr_inactive_anon",
736         "nr_active_anon",
737         "nr_inactive_file",
738         "nr_active_file",
739         "nr_unevictable",
740         "nr_mlock",
741         "nr_anon_pages",
742         "nr_mapped",
743         "nr_file_pages",
744         "nr_dirty",
745         "nr_writeback",
746         "nr_slab_reclaimable",
747         "nr_slab_unreclaimable",
748         "nr_page_table_pages",
749         "nr_kernel_stack",
750         "nr_unstable",
751         "nr_bounce",
752         "nr_vmscan_write",
753         "nr_vmscan_immediate_reclaim",
754         "nr_writeback_temp",
755         "nr_isolated_anon",
756         "nr_isolated_file",
757         "nr_shmem",
758         "nr_dirtied",
759         "nr_written",
760
761 #ifdef CONFIG_NUMA
762         "numa_hit",
763         "numa_miss",
764         "numa_foreign",
765         "numa_interleave",
766         "numa_local",
767         "numa_other",
768 #endif
769         "nr_anon_transparent_hugepages",
770         "nr_free_cma",
771         "nr_dirty_threshold",
772         "nr_dirty_background_threshold",
773
774 #ifdef CONFIG_VM_EVENT_COUNTERS
775         "pgpgin",
776         "pgpgout",
777         "pswpin",
778         "pswpout",
779
780         TEXTS_FOR_ZONES("pgalloc")
781
782         "pgfree",
783         "pgactivate",
784         "pgdeactivate",
785
786         "pgfault",
787         "pgmajfault",
788
789         TEXTS_FOR_ZONES("pgrefill")
790         TEXTS_FOR_ZONES("pgsteal_kswapd")
791         TEXTS_FOR_ZONES("pgsteal_direct")
792         TEXTS_FOR_ZONES("pgscan_kswapd")
793         TEXTS_FOR_ZONES("pgscan_direct")
794         "pgscan_direct_throttle",
795
796 #ifdef CONFIG_NUMA
797         "zone_reclaim_failed",
798 #endif
799         "pginodesteal",
800         "slabs_scanned",
801         "kswapd_inodesteal",
802         "kswapd_low_wmark_hit_quickly",
803         "kswapd_high_wmark_hit_quickly",
804         "pageoutrun",
805         "allocstall",
806
807         "pgrotated",
808
809 #ifdef CONFIG_NUMA_BALANCING
810         "numa_pte_updates",
811         "numa_hint_faults",
812         "numa_hint_faults_local",
813         "numa_pages_migrated",
814 #endif
815 #ifdef CONFIG_MIGRATION
816         "pgmigrate_success",
817         "pgmigrate_fail",
818 #endif
819 #ifdef CONFIG_COMPACTION
820         "compact_migrate_scanned",
821         "compact_free_scanned",
822         "compact_isolated",
823         "compact_stall",
824         "compact_fail",
825         "compact_success",
826 #endif
827
828 #ifdef CONFIG_HUGETLB_PAGE
829         "htlb_buddy_alloc_success",
830         "htlb_buddy_alloc_fail",
831 #endif
832         "unevictable_pgs_culled",
833         "unevictable_pgs_scanned",
834         "unevictable_pgs_rescued",
835         "unevictable_pgs_mlocked",
836         "unevictable_pgs_munlocked",
837         "unevictable_pgs_cleared",
838         "unevictable_pgs_stranded",
839
840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
841         "thp_fault_alloc",
842         "thp_fault_fallback",
843         "thp_collapse_alloc",
844         "thp_collapse_alloc_failed",
845         "thp_split",
846         "thp_zero_page_alloc",
847         "thp_zero_page_alloc_failed",
848 #endif
849 #ifdef CONFIG_SMP
850         "nr_tlb_remote_flush",
851         "nr_tlb_remote_flush_received",
852 #endif
853         "nr_tlb_local_flush_all",
854         "nr_tlb_local_flush_one",
855
856 #endif /* CONFIG_VM_EVENTS_COUNTERS */
857 };
858 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
859
860
861 #ifdef CONFIG_PROC_FS
862 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
863                                                 struct zone *zone)
864 {
865         int order;
866
867         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
868         for (order = 0; order < MAX_ORDER; ++order)
869                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
870         seq_putc(m, '\n');
871 }
872
873 /*
874  * This walks the free areas for each zone.
875  */
876 static int frag_show(struct seq_file *m, void *arg)
877 {
878         pg_data_t *pgdat = (pg_data_t *)arg;
879         walk_zones_in_node(m, pgdat, frag_show_print);
880         return 0;
881 }
882
883 static void pagetypeinfo_showfree_print(struct seq_file *m,
884                                         pg_data_t *pgdat, struct zone *zone)
885 {
886         int order, mtype;
887
888         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
889                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
890                                         pgdat->node_id,
891                                         zone->name,
892                                         migratetype_names[mtype]);
893                 for (order = 0; order < MAX_ORDER; ++order) {
894                         unsigned long freecount = 0;
895                         struct free_area *area;
896                         struct list_head *curr;
897
898                         area = &(zone->free_area[order]);
899
900                         list_for_each(curr, &area->free_list[mtype])
901                                 freecount++;
902                         seq_printf(m, "%6lu ", freecount);
903                 }
904                 seq_putc(m, '\n');
905         }
906 }
907
908 /* Print out the free pages at each order for each migatetype */
909 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
910 {
911         int order;
912         pg_data_t *pgdat = (pg_data_t *)arg;
913
914         /* Print header */
915         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
916         for (order = 0; order < MAX_ORDER; ++order)
917                 seq_printf(m, "%6d ", order);
918         seq_putc(m, '\n');
919
920         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
921
922         return 0;
923 }
924
925 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
926                                         pg_data_t *pgdat, struct zone *zone)
927 {
928         int mtype;
929         unsigned long pfn;
930         unsigned long start_pfn = zone->zone_start_pfn;
931         unsigned long end_pfn = zone_end_pfn(zone);
932         unsigned long count[MIGRATE_TYPES] = { 0, };
933
934         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
935                 struct page *page;
936
937                 if (!pfn_valid(pfn))
938                         continue;
939
940                 page = pfn_to_page(pfn);
941
942                 /* Watch for unexpected holes punched in the memmap */
943                 if (!memmap_valid_within(pfn, page, zone))
944                         continue;
945
946                 mtype = get_pageblock_migratetype(page);
947
948                 if (mtype < MIGRATE_TYPES)
949                         count[mtype]++;
950         }
951
952         /* Print counts */
953         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
954         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
955                 seq_printf(m, "%12lu ", count[mtype]);
956         seq_putc(m, '\n');
957 }
958
959 /* Print out the free pages at each order for each migratetype */
960 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
961 {
962         int mtype;
963         pg_data_t *pgdat = (pg_data_t *)arg;
964
965         seq_printf(m, "\n%-23s", "Number of blocks type ");
966         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
967                 seq_printf(m, "%12s ", migratetype_names[mtype]);
968         seq_putc(m, '\n');
969         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
970
971         return 0;
972 }
973
974 /*
975  * This prints out statistics in relation to grouping pages by mobility.
976  * It is expensive to collect so do not constantly read the file.
977  */
978 static int pagetypeinfo_show(struct seq_file *m, void *arg)
979 {
980         pg_data_t *pgdat = (pg_data_t *)arg;
981
982         /* check memoryless node */
983         if (!node_state(pgdat->node_id, N_MEMORY))
984                 return 0;
985
986         seq_printf(m, "Page block order: %d\n", pageblock_order);
987         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
988         seq_putc(m, '\n');
989         pagetypeinfo_showfree(m, pgdat);
990         pagetypeinfo_showblockcount(m, pgdat);
991
992         return 0;
993 }
994
995 static const struct seq_operations fragmentation_op = {
996         .start  = frag_start,
997         .next   = frag_next,
998         .stop   = frag_stop,
999         .show   = frag_show,
1000 };
1001
1002 static int fragmentation_open(struct inode *inode, struct file *file)
1003 {
1004         return seq_open(file, &fragmentation_op);
1005 }
1006
1007 static const struct file_operations fragmentation_file_operations = {
1008         .open           = fragmentation_open,
1009         .read           = seq_read,
1010         .llseek         = seq_lseek,
1011         .release        = seq_release,
1012 };
1013
1014 static const struct seq_operations pagetypeinfo_op = {
1015         .start  = frag_start,
1016         .next   = frag_next,
1017         .stop   = frag_stop,
1018         .show   = pagetypeinfo_show,
1019 };
1020
1021 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1022 {
1023         return seq_open(file, &pagetypeinfo_op);
1024 }
1025
1026 static const struct file_operations pagetypeinfo_file_ops = {
1027         .open           = pagetypeinfo_open,
1028         .read           = seq_read,
1029         .llseek         = seq_lseek,
1030         .release        = seq_release,
1031 };
1032
1033 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1034                                                         struct zone *zone)
1035 {
1036         int i;
1037         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1038         seq_printf(m,
1039                    "\n  pages free     %lu"
1040                    "\n        min      %lu"
1041                    "\n        low      %lu"
1042                    "\n        high     %lu"
1043                    "\n        scanned  %lu"
1044                    "\n        spanned  %lu"
1045                    "\n        present  %lu"
1046                    "\n        managed  %lu",
1047                    zone_page_state(zone, NR_FREE_PAGES),
1048                    min_wmark_pages(zone),
1049                    low_wmark_pages(zone),
1050                    high_wmark_pages(zone),
1051                    zone->pages_scanned,
1052                    zone->spanned_pages,
1053                    zone->present_pages,
1054                    zone->managed_pages);
1055
1056         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1057                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1058                                 zone_page_state(zone, i));
1059
1060         seq_printf(m,
1061                    "\n        protection: (%lu",
1062                    zone->lowmem_reserve[0]);
1063         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1064                 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1065         seq_printf(m,
1066                    ")"
1067                    "\n  pagesets");
1068         for_each_online_cpu(i) {
1069                 struct per_cpu_pageset *pageset;
1070
1071                 pageset = per_cpu_ptr(zone->pageset, i);
1072                 seq_printf(m,
1073                            "\n    cpu: %i"
1074                            "\n              count: %i"
1075                            "\n              high:  %i"
1076                            "\n              batch: %i",
1077                            i,
1078                            pageset->pcp.count,
1079                            pageset->pcp.high,
1080                            pageset->pcp.batch);
1081 #ifdef CONFIG_SMP
1082                 seq_printf(m, "\n  vm stats threshold: %d",
1083                                 pageset->stat_threshold);
1084 #endif
1085         }
1086         seq_printf(m,
1087                    "\n  all_unreclaimable: %u"
1088                    "\n  start_pfn:         %lu"
1089                    "\n  inactive_ratio:    %u",
1090                    zone->all_unreclaimable,
1091                    zone->zone_start_pfn,
1092                    zone->inactive_ratio);
1093         seq_putc(m, '\n');
1094 }
1095
1096 /*
1097  * Output information about zones in @pgdat.
1098  */
1099 static int zoneinfo_show(struct seq_file *m, void *arg)
1100 {
1101         pg_data_t *pgdat = (pg_data_t *)arg;
1102         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1103         return 0;
1104 }
1105
1106 static const struct seq_operations zoneinfo_op = {
1107         .start  = frag_start, /* iterate over all zones. The same as in
1108                                * fragmentation. */
1109         .next   = frag_next,
1110         .stop   = frag_stop,
1111         .show   = zoneinfo_show,
1112 };
1113
1114 static int zoneinfo_open(struct inode *inode, struct file *file)
1115 {
1116         return seq_open(file, &zoneinfo_op);
1117 }
1118
1119 static const struct file_operations proc_zoneinfo_file_operations = {
1120         .open           = zoneinfo_open,
1121         .read           = seq_read,
1122         .llseek         = seq_lseek,
1123         .release        = seq_release,
1124 };
1125
1126 enum writeback_stat_item {
1127         NR_DIRTY_THRESHOLD,
1128         NR_DIRTY_BG_THRESHOLD,
1129         NR_VM_WRITEBACK_STAT_ITEMS,
1130 };
1131
1132 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1133 {
1134         unsigned long *v;
1135         int i, stat_items_size;
1136
1137         if (*pos >= ARRAY_SIZE(vmstat_text))
1138                 return NULL;
1139         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1140                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1141
1142 #ifdef CONFIG_VM_EVENT_COUNTERS
1143         stat_items_size += sizeof(struct vm_event_state);
1144 #endif
1145
1146         v = kmalloc(stat_items_size, GFP_KERNEL);
1147         m->private = v;
1148         if (!v)
1149                 return ERR_PTR(-ENOMEM);
1150         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1151                 v[i] = global_page_state(i);
1152         v += NR_VM_ZONE_STAT_ITEMS;
1153
1154         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1155                             v + NR_DIRTY_THRESHOLD);
1156         v += NR_VM_WRITEBACK_STAT_ITEMS;
1157
1158 #ifdef CONFIG_VM_EVENT_COUNTERS
1159         all_vm_events(v);
1160         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1161         v[PGPGOUT] /= 2;
1162 #endif
1163         return (unsigned long *)m->private + *pos;
1164 }
1165
1166 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1167 {
1168         (*pos)++;
1169         if (*pos >= ARRAY_SIZE(vmstat_text))
1170                 return NULL;
1171         return (unsigned long *)m->private + *pos;
1172 }
1173
1174 static int vmstat_show(struct seq_file *m, void *arg)
1175 {
1176         unsigned long *l = arg;
1177         unsigned long off = l - (unsigned long *)m->private;
1178
1179         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1180         return 0;
1181 }
1182
1183 static void vmstat_stop(struct seq_file *m, void *arg)
1184 {
1185         kfree(m->private);
1186         m->private = NULL;
1187 }
1188
1189 static const struct seq_operations vmstat_op = {
1190         .start  = vmstat_start,
1191         .next   = vmstat_next,
1192         .stop   = vmstat_stop,
1193         .show   = vmstat_show,
1194 };
1195
1196 static int vmstat_open(struct inode *inode, struct file *file)
1197 {
1198         return seq_open(file, &vmstat_op);
1199 }
1200
1201 static const struct file_operations proc_vmstat_file_operations = {
1202         .open           = vmstat_open,
1203         .read           = seq_read,
1204         .llseek         = seq_lseek,
1205         .release        = seq_release,
1206 };
1207 #endif /* CONFIG_PROC_FS */
1208
1209 #ifdef CONFIG_SMP
1210 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1211 int sysctl_stat_interval __read_mostly = HZ;
1212
1213 static void vmstat_update(struct work_struct *w)
1214 {
1215         refresh_cpu_vm_stats(smp_processor_id());
1216         schedule_delayed_work(&__get_cpu_var(vmstat_work),
1217                 round_jiffies_relative(sysctl_stat_interval));
1218 }
1219
1220 static void start_cpu_timer(int cpu)
1221 {
1222         struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1223
1224         INIT_DEFERRABLE_WORK(work, vmstat_update);
1225         schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1226 }
1227
1228 /*
1229  * Use the cpu notifier to insure that the thresholds are recalculated
1230  * when necessary.
1231  */
1232 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1233                 unsigned long action,
1234                 void *hcpu)
1235 {
1236         long cpu = (long)hcpu;
1237
1238         switch (action) {
1239         case CPU_ONLINE:
1240         case CPU_ONLINE_FROZEN:
1241                 refresh_zone_stat_thresholds();
1242                 start_cpu_timer(cpu);
1243                 node_set_state(cpu_to_node(cpu), N_CPU);
1244                 break;
1245         case CPU_DOWN_PREPARE:
1246         case CPU_DOWN_PREPARE_FROZEN:
1247                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1248                 per_cpu(vmstat_work, cpu).work.func = NULL;
1249                 break;
1250         case CPU_DOWN_FAILED:
1251         case CPU_DOWN_FAILED_FROZEN:
1252                 start_cpu_timer(cpu);
1253                 break;
1254         case CPU_DEAD:
1255         case CPU_DEAD_FROZEN:
1256                 refresh_zone_stat_thresholds();
1257                 break;
1258         default:
1259                 break;
1260         }
1261         return NOTIFY_OK;
1262 }
1263
1264 static struct notifier_block vmstat_notifier =
1265         { &vmstat_cpuup_callback, NULL, 0 };
1266 #endif
1267
1268 static int __init setup_vmstat(void)
1269 {
1270 #ifdef CONFIG_SMP
1271         int cpu;
1272
1273         register_cpu_notifier(&vmstat_notifier);
1274
1275         for_each_online_cpu(cpu)
1276                 start_cpu_timer(cpu);
1277 #endif
1278 #ifdef CONFIG_PROC_FS
1279         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1280         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1281         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1282         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1283 #endif
1284         return 0;
1285 }
1286 module_init(setup_vmstat)
1287
1288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1289 #include <linux/debugfs.h>
1290
1291
1292 /*
1293  * Return an index indicating how much of the available free memory is
1294  * unusable for an allocation of the requested size.
1295  */
1296 static int unusable_free_index(unsigned int order,
1297                                 struct contig_page_info *info)
1298 {
1299         /* No free memory is interpreted as all free memory is unusable */
1300         if (info->free_pages == 0)
1301                 return 1000;
1302
1303         /*
1304          * Index should be a value between 0 and 1. Return a value to 3
1305          * decimal places.
1306          *
1307          * 0 => no fragmentation
1308          * 1 => high fragmentation
1309          */
1310         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1311
1312 }
1313
1314 static void unusable_show_print(struct seq_file *m,
1315                                         pg_data_t *pgdat, struct zone *zone)
1316 {
1317         unsigned int order;
1318         int index;
1319         struct contig_page_info info;
1320
1321         seq_printf(m, "Node %d, zone %8s ",
1322                                 pgdat->node_id,
1323                                 zone->name);
1324         for (order = 0; order < MAX_ORDER; ++order) {
1325                 fill_contig_page_info(zone, order, &info);
1326                 index = unusable_free_index(order, &info);
1327                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1328         }
1329
1330         seq_putc(m, '\n');
1331 }
1332
1333 /*
1334  * Display unusable free space index
1335  *
1336  * The unusable free space index measures how much of the available free
1337  * memory cannot be used to satisfy an allocation of a given size and is a
1338  * value between 0 and 1. The higher the value, the more of free memory is
1339  * unusable and by implication, the worse the external fragmentation is. This
1340  * can be expressed as a percentage by multiplying by 100.
1341  */
1342 static int unusable_show(struct seq_file *m, void *arg)
1343 {
1344         pg_data_t *pgdat = (pg_data_t *)arg;
1345
1346         /* check memoryless node */
1347         if (!node_state(pgdat->node_id, N_MEMORY))
1348                 return 0;
1349
1350         walk_zones_in_node(m, pgdat, unusable_show_print);
1351
1352         return 0;
1353 }
1354
1355 static const struct seq_operations unusable_op = {
1356         .start  = frag_start,
1357         .next   = frag_next,
1358         .stop   = frag_stop,
1359         .show   = unusable_show,
1360 };
1361
1362 static int unusable_open(struct inode *inode, struct file *file)
1363 {
1364         return seq_open(file, &unusable_op);
1365 }
1366
1367 static const struct file_operations unusable_file_ops = {
1368         .open           = unusable_open,
1369         .read           = seq_read,
1370         .llseek         = seq_lseek,
1371         .release        = seq_release,
1372 };
1373
1374 static void extfrag_show_print(struct seq_file *m,
1375                                         pg_data_t *pgdat, struct zone *zone)
1376 {
1377         unsigned int order;
1378         int index;
1379
1380         /* Alloc on stack as interrupts are disabled for zone walk */
1381         struct contig_page_info info;
1382
1383         seq_printf(m, "Node %d, zone %8s ",
1384                                 pgdat->node_id,
1385                                 zone->name);
1386         for (order = 0; order < MAX_ORDER; ++order) {
1387                 fill_contig_page_info(zone, order, &info);
1388                 index = __fragmentation_index(order, &info);
1389                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1390         }
1391
1392         seq_putc(m, '\n');
1393 }
1394
1395 /*
1396  * Display fragmentation index for orders that allocations would fail for
1397  */
1398 static int extfrag_show(struct seq_file *m, void *arg)
1399 {
1400         pg_data_t *pgdat = (pg_data_t *)arg;
1401
1402         walk_zones_in_node(m, pgdat, extfrag_show_print);
1403
1404         return 0;
1405 }
1406
1407 static const struct seq_operations extfrag_op = {
1408         .start  = frag_start,
1409         .next   = frag_next,
1410         .stop   = frag_stop,
1411         .show   = extfrag_show,
1412 };
1413
1414 static int extfrag_open(struct inode *inode, struct file *file)
1415 {
1416         return seq_open(file, &extfrag_op);
1417 }
1418
1419 static const struct file_operations extfrag_file_ops = {
1420         .open           = extfrag_open,
1421         .read           = seq_read,
1422         .llseek         = seq_lseek,
1423         .release        = seq_release,
1424 };
1425
1426 static int __init extfrag_debug_init(void)
1427 {
1428         struct dentry *extfrag_debug_root;
1429
1430         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1431         if (!extfrag_debug_root)
1432                 return -ENOMEM;
1433
1434         if (!debugfs_create_file("unusable_index", 0444,
1435                         extfrag_debug_root, NULL, &unusable_file_ops))
1436                 goto fail;
1437
1438         if (!debugfs_create_file("extfrag_index", 0444,
1439                         extfrag_debug_root, NULL, &extfrag_file_ops))
1440                 goto fail;
1441
1442         return 0;
1443 fail:
1444         debugfs_remove_recursive(extfrag_debug_root);
1445         return -ENOMEM;
1446 }
1447
1448 module_init(extfrag_debug_init);
1449 #endif