4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
27 static void sum_vm_events(unsigned long *ret)
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret)
53 EXPORT_SYMBOL_GPL(all_vm_events);
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu)
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82 EXPORT_SYMBOL(vm_stat);
86 int calculate_pressure_threshold(struct zone *zone)
89 int watermark_distance;
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
103 * Maximum threshold is 125
105 threshold = min(125, threshold);
110 int calculate_normal_threshold(struct zone *zone)
113 int mem; /* memory in 128 MB units */
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
121 * Some sample thresholds:
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
145 mem = zone->present_pages >> (27 - PAGE_SHIFT);
147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
150 * Maximum threshold is 125
152 threshold = min(125, threshold);
158 * Refresh the thresholds for each zone.
160 void refresh_zone_stat_thresholds(void)
166 for_each_populated_zone(zone) {
167 unsigned long max_drift, tolerate_drift;
169 threshold = calculate_normal_threshold(zone);
171 for_each_online_cpu(cpu)
172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 max_drift = num_online_cpus() * threshold;
182 if (max_drift > tolerate_drift)
183 zone->percpu_drift_mark = high_wmark_pages(zone) +
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 int (*calculate_pressure)(struct zone *))
196 for (i = 0; i < pgdat->nr_zones; i++) {
197 zone = &pgdat->node_zones[i];
198 if (!zone->percpu_drift_mark)
201 threshold = (*calculate_pressure)(zone);
202 for_each_possible_cpu(cpu)
203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
209 * For use when we know that interrupts are disabled.
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
214 struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 s8 __percpu *p = pcp->vm_stat_diff + item;
219 x = delta + __this_cpu_read(*p);
221 t = __this_cpu_read(pcp->stat_threshold);
223 if (unlikely(x > t || x < -t)) {
224 zone_page_state_add(x, zone, item);
227 __this_cpu_write(*p, x);
229 EXPORT_SYMBOL(__mod_zone_page_state);
232 * Optimized increment and decrement functions.
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
244 * NOTE: These functions are very performance sensitive. Change only
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
256 struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 s8 __percpu *p = pcp->vm_stat_diff + item;
260 v = __this_cpu_inc_return(*p);
261 t = __this_cpu_read(pcp->stat_threshold);
262 if (unlikely(v > t)) {
263 s8 overstep = t >> 1;
265 zone_page_state_add(v + overstep, zone, item);
266 __this_cpu_write(*p, -overstep);
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
272 __inc_zone_state(page_zone(page), item);
274 EXPORT_SYMBOL(__inc_zone_page_state);
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
278 struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 s8 __percpu *p = pcp->vm_stat_diff + item;
282 v = __this_cpu_dec_return(*p);
283 t = __this_cpu_read(pcp->stat_threshold);
284 if (unlikely(v < - t)) {
285 s8 overstep = t >> 1;
287 zone_page_state_add(v - overstep, zone, item);
288 __this_cpu_write(*p, overstep);
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
294 __dec_zone_state(page_zone(page), item);
296 EXPORT_SYMBOL(__dec_zone_page_state);
298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 * mod_state() modifies the zone counter state through atomic per cpu
306 * Overstep mode specifies how overstep should handled:
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
311 static inline void mod_state(struct zone *zone,
312 enum zone_stat_item item, int delta, int overstep_mode)
314 struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 s8 __percpu *p = pcp->vm_stat_diff + item;
319 z = 0; /* overflow to zone counters */
322 * The fetching of the stat_threshold is racy. We may apply
323 * a counter threshold to the wrong the cpu if we get
324 * rescheduled while executing here. However, the next
325 * counter update will apply the threshold again and
326 * therefore bring the counter under the threshold again.
328 * Most of the time the thresholds are the same anyways
329 * for all cpus in a zone.
331 t = this_cpu_read(pcp->stat_threshold);
333 o = this_cpu_read(*p);
336 if (n > t || n < -t) {
337 int os = overstep_mode * (t >> 1) ;
339 /* Overflow must be added to zone counters */
343 } while (this_cpu_cmpxchg(*p, o, n) != o);
346 zone_page_state_add(z, zone, item);
349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
352 mod_state(zone, item, delta, 0);
354 EXPORT_SYMBOL(mod_zone_page_state);
356 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
358 mod_state(zone, item, 1, 1);
361 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
363 mod_state(page_zone(page), item, 1, 1);
365 EXPORT_SYMBOL(inc_zone_page_state);
367 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
369 mod_state(page_zone(page), item, -1, -1);
371 EXPORT_SYMBOL(dec_zone_page_state);
374 * Use interrupt disable to serialize counter updates
376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
381 local_irq_save(flags);
382 __mod_zone_page_state(zone, item, delta);
383 local_irq_restore(flags);
385 EXPORT_SYMBOL(mod_zone_page_state);
387 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 local_irq_save(flags);
392 __inc_zone_state(zone, item);
393 local_irq_restore(flags);
396 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
401 zone = page_zone(page);
402 local_irq_save(flags);
403 __inc_zone_state(zone, item);
404 local_irq_restore(flags);
406 EXPORT_SYMBOL(inc_zone_page_state);
408 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
412 local_irq_save(flags);
413 __dec_zone_page_state(page, item);
414 local_irq_restore(flags);
416 EXPORT_SYMBOL(dec_zone_page_state);
420 * Update the zone counters for one cpu.
422 * The cpu specified must be either the current cpu or a processor that
423 * is not online. If it is the current cpu then the execution thread must
424 * be pinned to the current cpu.
426 * Note that refresh_cpu_vm_stats strives to only access
427 * node local memory. The per cpu pagesets on remote zones are placed
428 * in the memory local to the processor using that pageset. So the
429 * loop over all zones will access a series of cachelines local to
432 * The call to zone_page_state_add updates the cachelines with the
433 * statistics in the remote zone struct as well as the global cachelines
434 * with the global counters. These could cause remote node cache line
435 * bouncing and will have to be only done when necessary.
437 void refresh_cpu_vm_stats(int cpu)
441 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
443 for_each_populated_zone(zone) {
444 struct per_cpu_pageset *p;
446 p = per_cpu_ptr(zone->pageset, cpu);
448 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449 if (p->vm_stat_diff[i]) {
453 local_irq_save(flags);
454 v = p->vm_stat_diff[i];
455 p->vm_stat_diff[i] = 0;
456 local_irq_restore(flags);
457 atomic_long_add(v, &zone->vm_stat[i]);
460 /* 3 seconds idle till flush */
467 * Deal with draining the remote pageset of this
470 * Check if there are pages remaining in this pageset
471 * if not then there is nothing to expire.
473 if (!p->expire || !p->pcp.count)
477 * We never drain zones local to this processor.
479 if (zone_to_nid(zone) == numa_node_id()) {
489 drain_zone_pages(zone, &p->pcp);
493 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
495 atomic_long_add(global_diff[i], &vm_stat[i]);
498 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
502 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
503 if (pset->vm_stat_diff[i]) {
504 int v = pset->vm_stat_diff[i];
505 pset->vm_stat_diff[i] = 0;
506 atomic_long_add(v, &zone->vm_stat[i]);
507 atomic_long_add(v, &vm_stat[i]);
514 * zonelist = the list of zones passed to the allocator
515 * z = the zone from which the allocation occurred.
517 * Must be called with interrupts disabled.
519 * When __GFP_OTHER_NODE is set assume the node of the preferred
520 * zone is the local node. This is useful for daemons who allocate
521 * memory on behalf of other processes.
523 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
525 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
526 __inc_zone_state(z, NUMA_HIT);
528 __inc_zone_state(z, NUMA_MISS);
529 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
531 if (z->node == ((flags & __GFP_OTHER_NODE) ?
532 preferred_zone->node : numa_node_id()))
533 __inc_zone_state(z, NUMA_LOCAL);
535 __inc_zone_state(z, NUMA_OTHER);
539 #ifdef CONFIG_COMPACTION
541 struct contig_page_info {
542 unsigned long free_pages;
543 unsigned long free_blocks_total;
544 unsigned long free_blocks_suitable;
548 * Calculate the number of free pages in a zone, how many contiguous
549 * pages are free and how many are large enough to satisfy an allocation of
550 * the target size. Note that this function makes no attempt to estimate
551 * how many suitable free blocks there *might* be if MOVABLE pages were
552 * migrated. Calculating that is possible, but expensive and can be
553 * figured out from userspace
555 static void fill_contig_page_info(struct zone *zone,
556 unsigned int suitable_order,
557 struct contig_page_info *info)
561 info->free_pages = 0;
562 info->free_blocks_total = 0;
563 info->free_blocks_suitable = 0;
565 for (order = 0; order < MAX_ORDER; order++) {
566 unsigned long blocks;
568 /* Count number of free blocks */
569 blocks = zone->free_area[order].nr_free;
570 info->free_blocks_total += blocks;
572 /* Count free base pages */
573 info->free_pages += blocks << order;
575 /* Count the suitable free blocks */
576 if (order >= suitable_order)
577 info->free_blocks_suitable += blocks <<
578 (order - suitable_order);
583 * A fragmentation index only makes sense if an allocation of a requested
584 * size would fail. If that is true, the fragmentation index indicates
585 * whether external fragmentation or a lack of memory was the problem.
586 * The value can be used to determine if page reclaim or compaction
589 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
591 unsigned long requested = 1UL << order;
593 if (!info->free_blocks_total)
596 /* Fragmentation index only makes sense when a request would fail */
597 if (info->free_blocks_suitable)
601 * Index is between 0 and 1 so return within 3 decimal places
603 * 0 => allocation would fail due to lack of memory
604 * 1 => allocation would fail due to fragmentation
606 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
609 /* Same as __fragmentation index but allocs contig_page_info on stack */
610 int fragmentation_index(struct zone *zone, unsigned int order)
612 struct contig_page_info info;
614 fill_contig_page_info(zone, order, &info);
615 return __fragmentation_index(order, &info);
619 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
620 #include <linux/proc_fs.h>
621 #include <linux/seq_file.h>
623 static char * const migratetype_names[MIGRATE_TYPES] = {
634 static void *frag_start(struct seq_file *m, loff_t *pos)
638 for (pgdat = first_online_pgdat();
640 pgdat = next_online_pgdat(pgdat))
646 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
648 pg_data_t *pgdat = (pg_data_t *)arg;
651 return next_online_pgdat(pgdat);
654 static void frag_stop(struct seq_file *m, void *arg)
658 /* Walk all the zones in a node and print using a callback */
659 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
660 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
663 struct zone *node_zones = pgdat->node_zones;
666 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
667 if (!populated_zone(zone))
670 spin_lock_irqsave(&zone->lock, flags);
671 print(m, pgdat, zone);
672 spin_unlock_irqrestore(&zone->lock, flags);
677 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
678 #ifdef CONFIG_ZONE_DMA
679 #define TEXT_FOR_DMA(xx) xx "_dma",
681 #define TEXT_FOR_DMA(xx)
684 #ifdef CONFIG_ZONE_DMA32
685 #define TEXT_FOR_DMA32(xx) xx "_dma32",
687 #define TEXT_FOR_DMA32(xx)
690 #ifdef CONFIG_HIGHMEM
691 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
693 #define TEXT_FOR_HIGHMEM(xx)
696 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
697 TEXT_FOR_HIGHMEM(xx) xx "_movable",
699 const char * const vmstat_text[] = {
700 /* Zoned VM counters */
713 "nr_slab_reclaimable",
714 "nr_slab_unreclaimable",
715 "nr_page_table_pages",
720 "nr_vmscan_immediate_reclaim",
736 "nr_anon_transparent_hugepages",
738 "nr_dirty_threshold",
739 "nr_dirty_background_threshold",
741 #ifdef CONFIG_VM_EVENT_COUNTERS
747 TEXTS_FOR_ZONES("pgalloc")
756 TEXTS_FOR_ZONES("pgrefill")
757 TEXTS_FOR_ZONES("pgsteal_kswapd")
758 TEXTS_FOR_ZONES("pgsteal_direct")
759 TEXTS_FOR_ZONES("pgscan_kswapd")
760 TEXTS_FOR_ZONES("pgscan_direct")
761 "pgscan_direct_throttle",
764 "zone_reclaim_failed",
769 "kswapd_low_wmark_hit_quickly",
770 "kswapd_high_wmark_hit_quickly",
771 "kswapd_skip_congestion_wait",
777 #ifdef CONFIG_NUMA_BALANCING
780 "numa_hint_faults_local",
781 "numa_pages_migrated",
783 #ifdef CONFIG_MIGRATION
787 #ifdef CONFIG_COMPACTION
788 "compact_migrate_scanned",
789 "compact_free_scanned",
796 #ifdef CONFIG_HUGETLB_PAGE
797 "htlb_buddy_alloc_success",
798 "htlb_buddy_alloc_fail",
800 "unevictable_pgs_culled",
801 "unevictable_pgs_scanned",
802 "unevictable_pgs_rescued",
803 "unevictable_pgs_mlocked",
804 "unevictable_pgs_munlocked",
805 "unevictable_pgs_cleared",
806 "unevictable_pgs_stranded",
808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
810 "thp_fault_fallback",
811 "thp_collapse_alloc",
812 "thp_collapse_alloc_failed",
814 "thp_zero_page_alloc",
815 "thp_zero_page_alloc_failed",
818 #endif /* CONFIG_VM_EVENTS_COUNTERS */
820 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
823 #ifdef CONFIG_PROC_FS
824 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
829 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
830 for (order = 0; order < MAX_ORDER; ++order)
831 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
836 * This walks the free areas for each zone.
838 static int frag_show(struct seq_file *m, void *arg)
840 pg_data_t *pgdat = (pg_data_t *)arg;
841 walk_zones_in_node(m, pgdat, frag_show_print);
845 static void pagetypeinfo_showfree_print(struct seq_file *m,
846 pg_data_t *pgdat, struct zone *zone)
850 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
851 seq_printf(m, "Node %4d, zone %8s, type %12s ",
854 migratetype_names[mtype]);
855 for (order = 0; order < MAX_ORDER; ++order) {
856 unsigned long freecount = 0;
857 struct free_area *area;
858 struct list_head *curr;
860 area = &(zone->free_area[order]);
862 list_for_each(curr, &area->free_list[mtype])
864 seq_printf(m, "%6lu ", freecount);
870 /* Print out the free pages at each order for each migatetype */
871 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
874 pg_data_t *pgdat = (pg_data_t *)arg;
877 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
878 for (order = 0; order < MAX_ORDER; ++order)
879 seq_printf(m, "%6d ", order);
882 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
887 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
888 pg_data_t *pgdat, struct zone *zone)
892 unsigned long start_pfn = zone->zone_start_pfn;
893 unsigned long end_pfn = start_pfn + zone->spanned_pages;
894 unsigned long count[MIGRATE_TYPES] = { 0, };
896 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
902 page = pfn_to_page(pfn);
904 /* Watch for unexpected holes punched in the memmap */
905 if (!memmap_valid_within(pfn, page, zone))
908 mtype = get_pageblock_migratetype(page);
910 if (mtype < MIGRATE_TYPES)
915 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
916 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
917 seq_printf(m, "%12lu ", count[mtype]);
921 /* Print out the free pages at each order for each migratetype */
922 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
925 pg_data_t *pgdat = (pg_data_t *)arg;
927 seq_printf(m, "\n%-23s", "Number of blocks type ");
928 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
929 seq_printf(m, "%12s ", migratetype_names[mtype]);
931 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
937 * This prints out statistics in relation to grouping pages by mobility.
938 * It is expensive to collect so do not constantly read the file.
940 static int pagetypeinfo_show(struct seq_file *m, void *arg)
942 pg_data_t *pgdat = (pg_data_t *)arg;
944 /* check memoryless node */
945 if (!node_state(pgdat->node_id, N_MEMORY))
948 seq_printf(m, "Page block order: %d\n", pageblock_order);
949 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
951 pagetypeinfo_showfree(m, pgdat);
952 pagetypeinfo_showblockcount(m, pgdat);
957 static const struct seq_operations fragmentation_op = {
964 static int fragmentation_open(struct inode *inode, struct file *file)
966 return seq_open(file, &fragmentation_op);
969 static const struct file_operations fragmentation_file_operations = {
970 .open = fragmentation_open,
973 .release = seq_release,
976 static const struct seq_operations pagetypeinfo_op = {
980 .show = pagetypeinfo_show,
983 static int pagetypeinfo_open(struct inode *inode, struct file *file)
985 return seq_open(file, &pagetypeinfo_op);
988 static const struct file_operations pagetypeinfo_file_ops = {
989 .open = pagetypeinfo_open,
992 .release = seq_release,
995 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
999 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1009 zone_page_state(zone, NR_FREE_PAGES),
1010 min_wmark_pages(zone),
1011 low_wmark_pages(zone),
1012 high_wmark_pages(zone),
1013 zone->pages_scanned,
1014 zone->spanned_pages,
1015 zone->present_pages,
1016 zone->managed_pages);
1018 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1019 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1020 zone_page_state(zone, i));
1023 "\n protection: (%lu",
1024 zone->lowmem_reserve[0]);
1025 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1026 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1030 for_each_online_cpu(i) {
1031 struct per_cpu_pageset *pageset;
1033 pageset = per_cpu_ptr(zone->pageset, i);
1042 pageset->pcp.batch);
1044 seq_printf(m, "\n vm stats threshold: %d",
1045 pageset->stat_threshold);
1049 "\n all_unreclaimable: %u"
1051 "\n inactive_ratio: %u",
1052 zone->all_unreclaimable,
1053 zone->zone_start_pfn,
1054 zone->inactive_ratio);
1059 * Output information about zones in @pgdat.
1061 static int zoneinfo_show(struct seq_file *m, void *arg)
1063 pg_data_t *pgdat = (pg_data_t *)arg;
1064 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1068 static const struct seq_operations zoneinfo_op = {
1069 .start = frag_start, /* iterate over all zones. The same as in
1073 .show = zoneinfo_show,
1076 static int zoneinfo_open(struct inode *inode, struct file *file)
1078 return seq_open(file, &zoneinfo_op);
1081 static const struct file_operations proc_zoneinfo_file_operations = {
1082 .open = zoneinfo_open,
1084 .llseek = seq_lseek,
1085 .release = seq_release,
1088 enum writeback_stat_item {
1090 NR_DIRTY_BG_THRESHOLD,
1091 NR_VM_WRITEBACK_STAT_ITEMS,
1094 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1097 int i, stat_items_size;
1099 if (*pos >= ARRAY_SIZE(vmstat_text))
1101 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1102 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1104 #ifdef CONFIG_VM_EVENT_COUNTERS
1105 stat_items_size += sizeof(struct vm_event_state);
1108 v = kmalloc(stat_items_size, GFP_KERNEL);
1111 return ERR_PTR(-ENOMEM);
1112 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1113 v[i] = global_page_state(i);
1114 v += NR_VM_ZONE_STAT_ITEMS;
1116 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1117 v + NR_DIRTY_THRESHOLD);
1118 v += NR_VM_WRITEBACK_STAT_ITEMS;
1120 #ifdef CONFIG_VM_EVENT_COUNTERS
1122 v[PGPGIN] /= 2; /* sectors -> kbytes */
1125 return (unsigned long *)m->private + *pos;
1128 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1131 if (*pos >= ARRAY_SIZE(vmstat_text))
1133 return (unsigned long *)m->private + *pos;
1136 static int vmstat_show(struct seq_file *m, void *arg)
1138 unsigned long *l = arg;
1139 unsigned long off = l - (unsigned long *)m->private;
1141 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1145 static void vmstat_stop(struct seq_file *m, void *arg)
1151 static const struct seq_operations vmstat_op = {
1152 .start = vmstat_start,
1153 .next = vmstat_next,
1154 .stop = vmstat_stop,
1155 .show = vmstat_show,
1158 static int vmstat_open(struct inode *inode, struct file *file)
1160 return seq_open(file, &vmstat_op);
1163 static const struct file_operations proc_vmstat_file_operations = {
1164 .open = vmstat_open,
1166 .llseek = seq_lseek,
1167 .release = seq_release,
1169 #endif /* CONFIG_PROC_FS */
1172 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1173 int sysctl_stat_interval __read_mostly = HZ;
1175 static void vmstat_update(struct work_struct *w)
1177 refresh_cpu_vm_stats(smp_processor_id());
1178 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1179 round_jiffies_relative(sysctl_stat_interval));
1182 static void __cpuinit start_cpu_timer(int cpu)
1184 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1186 INIT_DEFERRABLE_WORK(work, vmstat_update);
1187 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1191 * Use the cpu notifier to insure that the thresholds are recalculated
1194 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1195 unsigned long action,
1198 long cpu = (long)hcpu;
1202 case CPU_ONLINE_FROZEN:
1203 refresh_zone_stat_thresholds();
1204 start_cpu_timer(cpu);
1205 node_set_state(cpu_to_node(cpu), N_CPU);
1207 case CPU_DOWN_PREPARE:
1208 case CPU_DOWN_PREPARE_FROZEN:
1209 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1210 per_cpu(vmstat_work, cpu).work.func = NULL;
1212 case CPU_DOWN_FAILED:
1213 case CPU_DOWN_FAILED_FROZEN:
1214 start_cpu_timer(cpu);
1217 case CPU_DEAD_FROZEN:
1218 refresh_zone_stat_thresholds();
1226 static struct notifier_block __cpuinitdata vmstat_notifier =
1227 { &vmstat_cpuup_callback, NULL, 0 };
1230 static int __init setup_vmstat(void)
1235 register_cpu_notifier(&vmstat_notifier);
1237 for_each_online_cpu(cpu)
1238 start_cpu_timer(cpu);
1240 #ifdef CONFIG_PROC_FS
1241 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1242 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1243 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1244 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1248 module_init(setup_vmstat)
1250 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1251 #include <linux/debugfs.h>
1255 * Return an index indicating how much of the available free memory is
1256 * unusable for an allocation of the requested size.
1258 static int unusable_free_index(unsigned int order,
1259 struct contig_page_info *info)
1261 /* No free memory is interpreted as all free memory is unusable */
1262 if (info->free_pages == 0)
1266 * Index should be a value between 0 and 1. Return a value to 3
1269 * 0 => no fragmentation
1270 * 1 => high fragmentation
1272 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1276 static void unusable_show_print(struct seq_file *m,
1277 pg_data_t *pgdat, struct zone *zone)
1281 struct contig_page_info info;
1283 seq_printf(m, "Node %d, zone %8s ",
1286 for (order = 0; order < MAX_ORDER; ++order) {
1287 fill_contig_page_info(zone, order, &info);
1288 index = unusable_free_index(order, &info);
1289 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1296 * Display unusable free space index
1298 * The unusable free space index measures how much of the available free
1299 * memory cannot be used to satisfy an allocation of a given size and is a
1300 * value between 0 and 1. The higher the value, the more of free memory is
1301 * unusable and by implication, the worse the external fragmentation is. This
1302 * can be expressed as a percentage by multiplying by 100.
1304 static int unusable_show(struct seq_file *m, void *arg)
1306 pg_data_t *pgdat = (pg_data_t *)arg;
1308 /* check memoryless node */
1309 if (!node_state(pgdat->node_id, N_MEMORY))
1312 walk_zones_in_node(m, pgdat, unusable_show_print);
1317 static const struct seq_operations unusable_op = {
1318 .start = frag_start,
1321 .show = unusable_show,
1324 static int unusable_open(struct inode *inode, struct file *file)
1326 return seq_open(file, &unusable_op);
1329 static const struct file_operations unusable_file_ops = {
1330 .open = unusable_open,
1332 .llseek = seq_lseek,
1333 .release = seq_release,
1336 static void extfrag_show_print(struct seq_file *m,
1337 pg_data_t *pgdat, struct zone *zone)
1342 /* Alloc on stack as interrupts are disabled for zone walk */
1343 struct contig_page_info info;
1345 seq_printf(m, "Node %d, zone %8s ",
1348 for (order = 0; order < MAX_ORDER; ++order) {
1349 fill_contig_page_info(zone, order, &info);
1350 index = __fragmentation_index(order, &info);
1351 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1358 * Display fragmentation index for orders that allocations would fail for
1360 static int extfrag_show(struct seq_file *m, void *arg)
1362 pg_data_t *pgdat = (pg_data_t *)arg;
1364 walk_zones_in_node(m, pgdat, extfrag_show_print);
1369 static const struct seq_operations extfrag_op = {
1370 .start = frag_start,
1373 .show = extfrag_show,
1376 static int extfrag_open(struct inode *inode, struct file *file)
1378 return seq_open(file, &extfrag_op);
1381 static const struct file_operations extfrag_file_ops = {
1382 .open = extfrag_open,
1384 .llseek = seq_lseek,
1385 .release = seq_release,
1388 static int __init extfrag_debug_init(void)
1390 struct dentry *extfrag_debug_root;
1392 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1393 if (!extfrag_debug_root)
1396 if (!debugfs_create_file("unusable_index", 0444,
1397 extfrag_debug_root, NULL, &unusable_file_ops))
1400 if (!debugfs_create_file("extfrag_index", 0444,
1401 extfrag_debug_root, NULL, &extfrag_file_ops))
1406 debugfs_remove_recursive(extfrag_debug_root);
1410 module_init(extfrag_debug_init);