Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[platform/kernel/linux-exynos.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91 EXPORT_SYMBOL(vm_zone_stat);
92 EXPORT_SYMBOL(vm_node_stat);
93
94 #ifdef CONFIG_SMP
95
96 int calculate_pressure_threshold(struct zone *zone)
97 {
98         int threshold;
99         int watermark_distance;
100
101         /*
102          * As vmstats are not up to date, there is drift between the estimated
103          * and real values. For high thresholds and a high number of CPUs, it
104          * is possible for the min watermark to be breached while the estimated
105          * value looks fine. The pressure threshold is a reduced value such
106          * that even the maximum amount of drift will not accidentally breach
107          * the min watermark
108          */
109         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112         /*
113          * Maximum threshold is 125
114          */
115         threshold = min(125, threshold);
116
117         return threshold;
118 }
119
120 int calculate_normal_threshold(struct zone *zone)
121 {
122         int threshold;
123         int mem;        /* memory in 128 MB units */
124
125         /*
126          * The threshold scales with the number of processors and the amount
127          * of memory per zone. More memory means that we can defer updates for
128          * longer, more processors could lead to more contention.
129          * fls() is used to have a cheap way of logarithmic scaling.
130          *
131          * Some sample thresholds:
132          *
133          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
134          * ------------------------------------------------------------------
135          * 8            1               1       0.9-1 GB        4
136          * 16           2               2       0.9-1 GB        4
137          * 20           2               2       1-2 GB          5
138          * 24           2               2       2-4 GB          6
139          * 28           2               2       4-8 GB          7
140          * 32           2               2       8-16 GB         8
141          * 4            2               2       <128M           1
142          * 30           4               3       2-4 GB          5
143          * 48           4               3       8-16 GB         8
144          * 32           8               4       1-2 GB          4
145          * 32           8               4       0.9-1GB         4
146          * 10           16              5       <128M           1
147          * 40           16              5       900M            4
148          * 70           64              7       2-4 GB          5
149          * 84           64              7       4-8 GB          6
150          * 108          512             9       4-8 GB          6
151          * 125          1024            10      8-16 GB         8
152          * 125          1024            10      16-32 GB        9
153          */
154
155         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
156
157         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159         /*
160          * Maximum threshold is 125
161          */
162         threshold = min(125, threshold);
163
164         return threshold;
165 }
166
167 /*
168  * Refresh the thresholds for each zone.
169  */
170 void refresh_zone_stat_thresholds(void)
171 {
172         struct pglist_data *pgdat;
173         struct zone *zone;
174         int cpu;
175         int threshold;
176
177         /* Zero current pgdat thresholds */
178         for_each_online_pgdat(pgdat) {
179                 for_each_online_cpu(cpu) {
180                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181                 }
182         }
183
184         for_each_populated_zone(zone) {
185                 struct pglist_data *pgdat = zone->zone_pgdat;
186                 unsigned long max_drift, tolerate_drift;
187
188                 threshold = calculate_normal_threshold(zone);
189
190                 for_each_online_cpu(cpu) {
191                         int pgdat_threshold;
192
193                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194                                                         = threshold;
195
196                         /* Base nodestat threshold on the largest populated zone. */
197                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199                                 = max(threshold, pgdat_threshold);
200                 }
201
202                 /*
203                  * Only set percpu_drift_mark if there is a danger that
204                  * NR_FREE_PAGES reports the low watermark is ok when in fact
205                  * the min watermark could be breached by an allocation
206                  */
207                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208                 max_drift = num_online_cpus() * threshold;
209                 if (max_drift > tolerate_drift)
210                         zone->percpu_drift_mark = high_wmark_pages(zone) +
211                                         max_drift;
212         }
213 }
214
215 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216                                 int (*calculate_pressure)(struct zone *))
217 {
218         struct zone *zone;
219         int cpu;
220         int threshold;
221         int i;
222
223         for (i = 0; i < pgdat->nr_zones; i++) {
224                 zone = &pgdat->node_zones[i];
225                 if (!zone->percpu_drift_mark)
226                         continue;
227
228                 threshold = (*calculate_pressure)(zone);
229                 for_each_online_cpu(cpu)
230                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231                                                         = threshold;
232         }
233 }
234
235 /*
236  * For use when we know that interrupts are disabled,
237  * or when we know that preemption is disabled and that
238  * particular counter cannot be updated from interrupt context.
239  */
240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
241                            long delta)
242 {
243         struct per_cpu_pageset __percpu *pcp = zone->pageset;
244         s8 __percpu *p = pcp->vm_stat_diff + item;
245         long x;
246         long t;
247
248         x = delta + __this_cpu_read(*p);
249
250         t = __this_cpu_read(pcp->stat_threshold);
251
252         if (unlikely(x > t || x < -t)) {
253                 zone_page_state_add(x, zone, item);
254                 x = 0;
255         }
256         __this_cpu_write(*p, x);
257 }
258 EXPORT_SYMBOL(__mod_zone_page_state);
259
260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261                                 long delta)
262 {
263         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264         s8 __percpu *p = pcp->vm_node_stat_diff + item;
265         long x;
266         long t;
267
268         x = delta + __this_cpu_read(*p);
269
270         t = __this_cpu_read(pcp->stat_threshold);
271
272         if (unlikely(x > t || x < -t)) {
273                 node_page_state_add(x, pgdat, item);
274                 x = 0;
275         }
276         __this_cpu_write(*p, x);
277 }
278 EXPORT_SYMBOL(__mod_node_page_state);
279
280 /*
281  * Optimized increment and decrement functions.
282  *
283  * These are only for a single page and therefore can take a struct page *
284  * argument instead of struct zone *. This allows the inclusion of the code
285  * generated for page_zone(page) into the optimized functions.
286  *
287  * No overflow check is necessary and therefore the differential can be
288  * incremented or decremented in place which may allow the compilers to
289  * generate better code.
290  * The increment or decrement is known and therefore one boundary check can
291  * be omitted.
292  *
293  * NOTE: These functions are very performance sensitive. Change only
294  * with care.
295  *
296  * Some processors have inc/dec instructions that are atomic vs an interrupt.
297  * However, the code must first determine the differential location in a zone
298  * based on the processor number and then inc/dec the counter. There is no
299  * guarantee without disabling preemption that the processor will not change
300  * in between and therefore the atomicity vs. interrupt cannot be exploited
301  * in a useful way here.
302  */
303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
304 {
305         struct per_cpu_pageset __percpu *pcp = zone->pageset;
306         s8 __percpu *p = pcp->vm_stat_diff + item;
307         s8 v, t;
308
309         v = __this_cpu_inc_return(*p);
310         t = __this_cpu_read(pcp->stat_threshold);
311         if (unlikely(v > t)) {
312                 s8 overstep = t >> 1;
313
314                 zone_page_state_add(v + overstep, zone, item);
315                 __this_cpu_write(*p, -overstep);
316         }
317 }
318
319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320 {
321         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322         s8 __percpu *p = pcp->vm_node_stat_diff + item;
323         s8 v, t;
324
325         v = __this_cpu_inc_return(*p);
326         t = __this_cpu_read(pcp->stat_threshold);
327         if (unlikely(v > t)) {
328                 s8 overstep = t >> 1;
329
330                 node_page_state_add(v + overstep, pgdat, item);
331                 __this_cpu_write(*p, -overstep);
332         }
333 }
334
335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336 {
337         __inc_zone_state(page_zone(page), item);
338 }
339 EXPORT_SYMBOL(__inc_zone_page_state);
340
341 void __inc_node_page_state(struct page *page, enum node_stat_item item)
342 {
343         __inc_node_state(page_pgdat(page), item);
344 }
345 EXPORT_SYMBOL(__inc_node_page_state);
346
347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
348 {
349         struct per_cpu_pageset __percpu *pcp = zone->pageset;
350         s8 __percpu *p = pcp->vm_stat_diff + item;
351         s8 v, t;
352
353         v = __this_cpu_dec_return(*p);
354         t = __this_cpu_read(pcp->stat_threshold);
355         if (unlikely(v < - t)) {
356                 s8 overstep = t >> 1;
357
358                 zone_page_state_add(v - overstep, zone, item);
359                 __this_cpu_write(*p, overstep);
360         }
361 }
362
363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364 {
365         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366         s8 __percpu *p = pcp->vm_node_stat_diff + item;
367         s8 v, t;
368
369         v = __this_cpu_dec_return(*p);
370         t = __this_cpu_read(pcp->stat_threshold);
371         if (unlikely(v < - t)) {
372                 s8 overstep = t >> 1;
373
374                 node_page_state_add(v - overstep, pgdat, item);
375                 __this_cpu_write(*p, overstep);
376         }
377 }
378
379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380 {
381         __dec_zone_state(page_zone(page), item);
382 }
383 EXPORT_SYMBOL(__dec_zone_page_state);
384
385 void __dec_node_page_state(struct page *page, enum node_stat_item item)
386 {
387         __dec_node_state(page_pgdat(page), item);
388 }
389 EXPORT_SYMBOL(__dec_node_page_state);
390
391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
392 /*
393  * If we have cmpxchg_local support then we do not need to incur the overhead
394  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395  *
396  * mod_state() modifies the zone counter state through atomic per cpu
397  * operations.
398  *
399  * Overstep mode specifies how overstep should handled:
400  *     0       No overstepping
401  *     1       Overstepping half of threshold
402  *     -1      Overstepping minus half of threshold
403 */
404 static inline void mod_zone_state(struct zone *zone,
405        enum zone_stat_item item, long delta, int overstep_mode)
406 {
407         struct per_cpu_pageset __percpu *pcp = zone->pageset;
408         s8 __percpu *p = pcp->vm_stat_diff + item;
409         long o, n, t, z;
410
411         do {
412                 z = 0;  /* overflow to zone counters */
413
414                 /*
415                  * The fetching of the stat_threshold is racy. We may apply
416                  * a counter threshold to the wrong the cpu if we get
417                  * rescheduled while executing here. However, the next
418                  * counter update will apply the threshold again and
419                  * therefore bring the counter under the threshold again.
420                  *
421                  * Most of the time the thresholds are the same anyways
422                  * for all cpus in a zone.
423                  */
424                 t = this_cpu_read(pcp->stat_threshold);
425
426                 o = this_cpu_read(*p);
427                 n = delta + o;
428
429                 if (n > t || n < -t) {
430                         int os = overstep_mode * (t >> 1) ;
431
432                         /* Overflow must be added to zone counters */
433                         z = n + os;
434                         n = -os;
435                 }
436         } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438         if (z)
439                 zone_page_state_add(z, zone, item);
440 }
441
442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
443                          long delta)
444 {
445         mod_zone_state(zone, item, delta, 0);
446 }
447 EXPORT_SYMBOL(mod_zone_page_state);
448
449 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450 {
451         mod_zone_state(page_zone(page), item, 1, 1);
452 }
453 EXPORT_SYMBOL(inc_zone_page_state);
454
455 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457         mod_zone_state(page_zone(page), item, -1, -1);
458 }
459 EXPORT_SYMBOL(dec_zone_page_state);
460
461 static inline void mod_node_state(struct pglist_data *pgdat,
462        enum node_stat_item item, int delta, int overstep_mode)
463 {
464         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465         s8 __percpu *p = pcp->vm_node_stat_diff + item;
466         long o, n, t, z;
467
468         do {
469                 z = 0;  /* overflow to node counters */
470
471                 /*
472                  * The fetching of the stat_threshold is racy. We may apply
473                  * a counter threshold to the wrong the cpu if we get
474                  * rescheduled while executing here. However, the next
475                  * counter update will apply the threshold again and
476                  * therefore bring the counter under the threshold again.
477                  *
478                  * Most of the time the thresholds are the same anyways
479                  * for all cpus in a node.
480                  */
481                 t = this_cpu_read(pcp->stat_threshold);
482
483                 o = this_cpu_read(*p);
484                 n = delta + o;
485
486                 if (n > t || n < -t) {
487                         int os = overstep_mode * (t >> 1) ;
488
489                         /* Overflow must be added to node counters */
490                         z = n + os;
491                         n = -os;
492                 }
493         } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495         if (z)
496                 node_page_state_add(z, pgdat, item);
497 }
498
499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500                                         long delta)
501 {
502         mod_node_state(pgdat, item, delta, 0);
503 }
504 EXPORT_SYMBOL(mod_node_page_state);
505
506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507 {
508         mod_node_state(pgdat, item, 1, 1);
509 }
510
511 void inc_node_page_state(struct page *page, enum node_stat_item item)
512 {
513         mod_node_state(page_pgdat(page), item, 1, 1);
514 }
515 EXPORT_SYMBOL(inc_node_page_state);
516
517 void dec_node_page_state(struct page *page, enum node_stat_item item)
518 {
519         mod_node_state(page_pgdat(page), item, -1, -1);
520 }
521 EXPORT_SYMBOL(dec_node_page_state);
522 #else
523 /*
524  * Use interrupt disable to serialize counter updates
525  */
526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
527                          long delta)
528 {
529         unsigned long flags;
530
531         local_irq_save(flags);
532         __mod_zone_page_state(zone, item, delta);
533         local_irq_restore(flags);
534 }
535 EXPORT_SYMBOL(mod_zone_page_state);
536
537 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538 {
539         unsigned long flags;
540         struct zone *zone;
541
542         zone = page_zone(page);
543         local_irq_save(flags);
544         __inc_zone_state(zone, item);
545         local_irq_restore(flags);
546 }
547 EXPORT_SYMBOL(inc_zone_page_state);
548
549 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550 {
551         unsigned long flags;
552
553         local_irq_save(flags);
554         __dec_zone_page_state(page, item);
555         local_irq_restore(flags);
556 }
557 EXPORT_SYMBOL(dec_zone_page_state);
558
559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560 {
561         unsigned long flags;
562
563         local_irq_save(flags);
564         __inc_node_state(pgdat, item);
565         local_irq_restore(flags);
566 }
567 EXPORT_SYMBOL(inc_node_state);
568
569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570                                         long delta)
571 {
572         unsigned long flags;
573
574         local_irq_save(flags);
575         __mod_node_page_state(pgdat, item, delta);
576         local_irq_restore(flags);
577 }
578 EXPORT_SYMBOL(mod_node_page_state);
579
580 void inc_node_page_state(struct page *page, enum node_stat_item item)
581 {
582         unsigned long flags;
583         struct pglist_data *pgdat;
584
585         pgdat = page_pgdat(page);
586         local_irq_save(flags);
587         __inc_node_state(pgdat, item);
588         local_irq_restore(flags);
589 }
590 EXPORT_SYMBOL(inc_node_page_state);
591
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
593 {
594         unsigned long flags;
595
596         local_irq_save(flags);
597         __dec_node_page_state(page, item);
598         local_irq_restore(flags);
599 }
600 EXPORT_SYMBOL(dec_node_page_state);
601 #endif
602
603 /*
604  * Fold a differential into the global counters.
605  * Returns the number of counters updated.
606  */
607 static int fold_diff(int *zone_diff, int *node_diff)
608 {
609         int i;
610         int changes = 0;
611
612         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
613                 if (zone_diff[i]) {
614                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615                         changes++;
616         }
617
618         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619                 if (node_diff[i]) {
620                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
621                         changes++;
622         }
623         return changes;
624 }
625
626 /*
627  * Update the zone counters for the current cpu.
628  *
629  * Note that refresh_cpu_vm_stats strives to only access
630  * node local memory. The per cpu pagesets on remote zones are placed
631  * in the memory local to the processor using that pageset. So the
632  * loop over all zones will access a series of cachelines local to
633  * the processor.
634  *
635  * The call to zone_page_state_add updates the cachelines with the
636  * statistics in the remote zone struct as well as the global cachelines
637  * with the global counters. These could cause remote node cache line
638  * bouncing and will have to be only done when necessary.
639  *
640  * The function returns the number of global counters updated.
641  */
642 static int refresh_cpu_vm_stats(bool do_pagesets)
643 {
644         struct pglist_data *pgdat;
645         struct zone *zone;
646         int i;
647         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
649         int changes = 0;
650
651         for_each_populated_zone(zone) {
652                 struct per_cpu_pageset __percpu *p = zone->pageset;
653
654                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655                         int v;
656
657                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658                         if (v) {
659
660                                 atomic_long_add(v, &zone->vm_stat[i]);
661                                 global_zone_diff[i] += v;
662 #ifdef CONFIG_NUMA
663                                 /* 3 seconds idle till flush */
664                                 __this_cpu_write(p->expire, 3);
665 #endif
666                         }
667                 }
668 #ifdef CONFIG_NUMA
669                 if (do_pagesets) {
670                         cond_resched();
671                         /*
672                          * Deal with draining the remote pageset of this
673                          * processor
674                          *
675                          * Check if there are pages remaining in this pageset
676                          * if not then there is nothing to expire.
677                          */
678                         if (!__this_cpu_read(p->expire) ||
679                                !__this_cpu_read(p->pcp.count))
680                                 continue;
681
682                         /*
683                          * We never drain zones local to this processor.
684                          */
685                         if (zone_to_nid(zone) == numa_node_id()) {
686                                 __this_cpu_write(p->expire, 0);
687                                 continue;
688                         }
689
690                         if (__this_cpu_dec_return(p->expire))
691                                 continue;
692
693                         if (__this_cpu_read(p->pcp.count)) {
694                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695                                 changes++;
696                         }
697                 }
698 #endif
699         }
700
701         for_each_online_pgdat(pgdat) {
702                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705                         int v;
706
707                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708                         if (v) {
709                                 atomic_long_add(v, &pgdat->vm_stat[i]);
710                                 global_node_diff[i] += v;
711                         }
712                 }
713         }
714
715         changes += fold_diff(global_zone_diff, global_node_diff);
716         return changes;
717 }
718
719 /*
720  * Fold the data for an offline cpu into the global array.
721  * There cannot be any access by the offline cpu and therefore
722  * synchronization is simplified.
723  */
724 void cpu_vm_stats_fold(int cpu)
725 {
726         struct pglist_data *pgdat;
727         struct zone *zone;
728         int i;
729         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
731
732         for_each_populated_zone(zone) {
733                 struct per_cpu_pageset *p;
734
735                 p = per_cpu_ptr(zone->pageset, cpu);
736
737                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738                         if (p->vm_stat_diff[i]) {
739                                 int v;
740
741                                 v = p->vm_stat_diff[i];
742                                 p->vm_stat_diff[i] = 0;
743                                 atomic_long_add(v, &zone->vm_stat[i]);
744                                 global_zone_diff[i] += v;
745                         }
746         }
747
748         for_each_online_pgdat(pgdat) {
749                 struct per_cpu_nodestat *p;
750
751                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754                         if (p->vm_node_stat_diff[i]) {
755                                 int v;
756
757                                 v = p->vm_node_stat_diff[i];
758                                 p->vm_node_stat_diff[i] = 0;
759                                 atomic_long_add(v, &pgdat->vm_stat[i]);
760                                 global_node_diff[i] += v;
761                         }
762         }
763
764         fold_diff(global_zone_diff, global_node_diff);
765 }
766
767 /*
768  * this is only called if !populated_zone(zone), which implies no other users of
769  * pset->vm_stat_diff[] exsist.
770  */
771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772 {
773         int i;
774
775         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776                 if (pset->vm_stat_diff[i]) {
777                         int v = pset->vm_stat_diff[i];
778                         pset->vm_stat_diff[i] = 0;
779                         atomic_long_add(v, &zone->vm_stat[i]);
780                         atomic_long_add(v, &vm_zone_stat[i]);
781                 }
782 }
783 #endif
784
785 #ifdef CONFIG_NUMA
786 /*
787  * Determine the per node value of a stat item. This function
788  * is called frequently in a NUMA machine, so try to be as
789  * frugal as possible.
790  */
791 unsigned long sum_zone_node_page_state(int node,
792                                  enum zone_stat_item item)
793 {
794         struct zone *zones = NODE_DATA(node)->node_zones;
795         int i;
796         unsigned long count = 0;
797
798         for (i = 0; i < MAX_NR_ZONES; i++)
799                 count += zone_page_state(zones + i, item);
800
801         return count;
802 }
803
804 /*
805  * Determine the per node value of a stat item.
806  */
807 unsigned long node_page_state(struct pglist_data *pgdat,
808                                 enum node_stat_item item)
809 {
810         long x = atomic_long_read(&pgdat->vm_stat[item]);
811 #ifdef CONFIG_SMP
812         if (x < 0)
813                 x = 0;
814 #endif
815         return x;
816 }
817 #endif
818
819 #ifdef CONFIG_COMPACTION
820
821 struct contig_page_info {
822         unsigned long free_pages;
823         unsigned long free_blocks_total;
824         unsigned long free_blocks_suitable;
825 };
826
827 /*
828  * Calculate the number of free pages in a zone, how many contiguous
829  * pages are free and how many are large enough to satisfy an allocation of
830  * the target size. Note that this function makes no attempt to estimate
831  * how many suitable free blocks there *might* be if MOVABLE pages were
832  * migrated. Calculating that is possible, but expensive and can be
833  * figured out from userspace
834  */
835 static void fill_contig_page_info(struct zone *zone,
836                                 unsigned int suitable_order,
837                                 struct contig_page_info *info)
838 {
839         unsigned int order;
840
841         info->free_pages = 0;
842         info->free_blocks_total = 0;
843         info->free_blocks_suitable = 0;
844
845         for (order = 0; order < MAX_ORDER; order++) {
846                 unsigned long blocks;
847
848                 /* Count number of free blocks */
849                 blocks = zone->free_area[order].nr_free;
850                 info->free_blocks_total += blocks;
851
852                 /* Count free base pages */
853                 info->free_pages += blocks << order;
854
855                 /* Count the suitable free blocks */
856                 if (order >= suitable_order)
857                         info->free_blocks_suitable += blocks <<
858                                                 (order - suitable_order);
859         }
860 }
861
862 /*
863  * A fragmentation index only makes sense if an allocation of a requested
864  * size would fail. If that is true, the fragmentation index indicates
865  * whether external fragmentation or a lack of memory was the problem.
866  * The value can be used to determine if page reclaim or compaction
867  * should be used
868  */
869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
870 {
871         unsigned long requested = 1UL << order;
872
873         if (!info->free_blocks_total)
874                 return 0;
875
876         /* Fragmentation index only makes sense when a request would fail */
877         if (info->free_blocks_suitable)
878                 return -1000;
879
880         /*
881          * Index is between 0 and 1 so return within 3 decimal places
882          *
883          * 0 => allocation would fail due to lack of memory
884          * 1 => allocation would fail due to fragmentation
885          */
886         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
887 }
888
889 /* Same as __fragmentation index but allocs contig_page_info on stack */
890 int fragmentation_index(struct zone *zone, unsigned int order)
891 {
892         struct contig_page_info info;
893
894         fill_contig_page_info(zone, order, &info);
895         return __fragmentation_index(order, &info);
896 }
897 #endif
898
899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
900 #ifdef CONFIG_ZONE_DMA
901 #define TEXT_FOR_DMA(xx) xx "_dma",
902 #else
903 #define TEXT_FOR_DMA(xx)
904 #endif
905
906 #ifdef CONFIG_ZONE_DMA32
907 #define TEXT_FOR_DMA32(xx) xx "_dma32",
908 #else
909 #define TEXT_FOR_DMA32(xx)
910 #endif
911
912 #ifdef CONFIG_HIGHMEM
913 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
914 #else
915 #define TEXT_FOR_HIGHMEM(xx)
916 #endif
917
918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
920
921 const char * const vmstat_text[] = {
922         /* enum zone_stat_item countes */
923         "nr_free_pages",
924         "nr_zone_inactive_anon",
925         "nr_zone_active_anon",
926         "nr_zone_inactive_file",
927         "nr_zone_active_file",
928         "nr_zone_unevictable",
929         "nr_zone_write_pending",
930         "nr_mlock",
931         "nr_slab_reclaimable",
932         "nr_slab_unreclaimable",
933         "nr_page_table_pages",
934         "nr_kernel_stack",
935         "nr_bounce",
936 #if IS_ENABLED(CONFIG_ZSMALLOC)
937         "nr_zspages",
938 #endif
939 #ifdef CONFIG_NUMA
940         "numa_hit",
941         "numa_miss",
942         "numa_foreign",
943         "numa_interleave",
944         "numa_local",
945         "numa_other",
946 #endif
947         "nr_free_cma",
948
949         /* Node-based counters */
950         "nr_inactive_anon",
951         "nr_active_anon",
952         "nr_inactive_file",
953         "nr_active_file",
954         "nr_unevictable",
955         "nr_isolated_anon",
956         "nr_isolated_file",
957         "nr_pages_scanned",
958         "workingset_refault",
959         "workingset_activate",
960         "workingset_nodereclaim",
961         "nr_anon_pages",
962         "nr_mapped",
963         "nr_file_pages",
964         "nr_dirty",
965         "nr_writeback",
966         "nr_writeback_temp",
967         "nr_shmem",
968         "nr_shmem_hugepages",
969         "nr_shmem_pmdmapped",
970         "nr_anon_transparent_hugepages",
971         "nr_unstable",
972         "nr_vmscan_write",
973         "nr_vmscan_immediate_reclaim",
974         "nr_dirtied",
975         "nr_written",
976
977         /* enum writeback_stat_item counters */
978         "nr_dirty_threshold",
979         "nr_dirty_background_threshold",
980
981 #ifdef CONFIG_VM_EVENT_COUNTERS
982         /* enum vm_event_item counters */
983         "pgpgin",
984         "pgpgout",
985         "pswpin",
986         "pswpout",
987
988         TEXTS_FOR_ZONES("pgalloc")
989         TEXTS_FOR_ZONES("allocstall")
990         TEXTS_FOR_ZONES("pgskip")
991
992         "pgfree",
993         "pgactivate",
994         "pgdeactivate",
995
996         "pgfault",
997         "pgmajfault",
998         "pglazyfreed",
999
1000         "pgrefill",
1001         "pgsteal_kswapd",
1002         "pgsteal_direct",
1003         "pgscan_kswapd",
1004         "pgscan_direct",
1005         "pgscan_direct_throttle",
1006
1007 #ifdef CONFIG_NUMA
1008         "zone_reclaim_failed",
1009 #endif
1010         "pginodesteal",
1011         "slabs_scanned",
1012         "kswapd_inodesteal",
1013         "kswapd_low_wmark_hit_quickly",
1014         "kswapd_high_wmark_hit_quickly",
1015         "pageoutrun",
1016
1017         "pgrotated",
1018
1019         "drop_pagecache",
1020         "drop_slab",
1021
1022 #ifdef CONFIG_NUMA_BALANCING
1023         "numa_pte_updates",
1024         "numa_huge_pte_updates",
1025         "numa_hint_faults",
1026         "numa_hint_faults_local",
1027         "numa_pages_migrated",
1028 #endif
1029 #ifdef CONFIG_MIGRATION
1030         "pgmigrate_success",
1031         "pgmigrate_fail",
1032 #endif
1033 #ifdef CONFIG_COMPACTION
1034         "compact_migrate_scanned",
1035         "compact_free_scanned",
1036         "compact_isolated",
1037         "compact_stall",
1038         "compact_fail",
1039         "compact_success",
1040         "compact_daemon_wake",
1041 #endif
1042
1043 #ifdef CONFIG_HUGETLB_PAGE
1044         "htlb_buddy_alloc_success",
1045         "htlb_buddy_alloc_fail",
1046 #endif
1047         "unevictable_pgs_culled",
1048         "unevictable_pgs_scanned",
1049         "unevictable_pgs_rescued",
1050         "unevictable_pgs_mlocked",
1051         "unevictable_pgs_munlocked",
1052         "unevictable_pgs_cleared",
1053         "unevictable_pgs_stranded",
1054
1055 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1056         "thp_fault_alloc",
1057         "thp_fault_fallback",
1058         "thp_collapse_alloc",
1059         "thp_collapse_alloc_failed",
1060         "thp_file_alloc",
1061         "thp_file_mapped",
1062         "thp_split_page",
1063         "thp_split_page_failed",
1064         "thp_deferred_split_page",
1065         "thp_split_pmd",
1066         "thp_zero_page_alloc",
1067         "thp_zero_page_alloc_failed",
1068 #endif
1069 #ifdef CONFIG_MEMORY_BALLOON
1070         "balloon_inflate",
1071         "balloon_deflate",
1072 #ifdef CONFIG_BALLOON_COMPACTION
1073         "balloon_migrate",
1074 #endif
1075 #endif /* CONFIG_MEMORY_BALLOON */
1076 #ifdef CONFIG_DEBUG_TLBFLUSH
1077 #ifdef CONFIG_SMP
1078         "nr_tlb_remote_flush",
1079         "nr_tlb_remote_flush_received",
1080 #endif /* CONFIG_SMP */
1081         "nr_tlb_local_flush_all",
1082         "nr_tlb_local_flush_one",
1083 #endif /* CONFIG_DEBUG_TLBFLUSH */
1084
1085 #ifdef CONFIG_DEBUG_VM_VMACACHE
1086         "vmacache_find_calls",
1087         "vmacache_find_hits",
1088         "vmacache_full_flushes",
1089 #endif
1090 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1091 };
1092 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1093
1094
1095 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1096      defined(CONFIG_PROC_FS)
1097 static void *frag_start(struct seq_file *m, loff_t *pos)
1098 {
1099         pg_data_t *pgdat;
1100         loff_t node = *pos;
1101
1102         for (pgdat = first_online_pgdat();
1103              pgdat && node;
1104              pgdat = next_online_pgdat(pgdat))
1105                 --node;
1106
1107         return pgdat;
1108 }
1109
1110 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1111 {
1112         pg_data_t *pgdat = (pg_data_t *)arg;
1113
1114         (*pos)++;
1115         return next_online_pgdat(pgdat);
1116 }
1117
1118 static void frag_stop(struct seq_file *m, void *arg)
1119 {
1120 }
1121
1122 /* Walk all the zones in a node and print using a callback */
1123 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1124                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1125 {
1126         struct zone *zone;
1127         struct zone *node_zones = pgdat->node_zones;
1128         unsigned long flags;
1129
1130         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1131                 if (!populated_zone(zone))
1132                         continue;
1133
1134                 spin_lock_irqsave(&zone->lock, flags);
1135                 print(m, pgdat, zone);
1136                 spin_unlock_irqrestore(&zone->lock, flags);
1137         }
1138 }
1139 #endif
1140
1141 #ifdef CONFIG_PROC_FS
1142 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1143                                                 struct zone *zone)
1144 {
1145         int order;
1146
1147         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1148         for (order = 0; order < MAX_ORDER; ++order)
1149                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1150         seq_putc(m, '\n');
1151 }
1152
1153 /*
1154  * This walks the free areas for each zone.
1155  */
1156 static int frag_show(struct seq_file *m, void *arg)
1157 {
1158         pg_data_t *pgdat = (pg_data_t *)arg;
1159         walk_zones_in_node(m, pgdat, frag_show_print);
1160         return 0;
1161 }
1162
1163 static void pagetypeinfo_showfree_print(struct seq_file *m,
1164                                         pg_data_t *pgdat, struct zone *zone)
1165 {
1166         int order, mtype;
1167
1168         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1169                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1170                                         pgdat->node_id,
1171                                         zone->name,
1172                                         migratetype_names[mtype]);
1173                 for (order = 0; order < MAX_ORDER; ++order) {
1174                         unsigned long freecount = 0;
1175                         struct free_area *area;
1176                         struct list_head *curr;
1177
1178                         area = &(zone->free_area[order]);
1179
1180                         list_for_each(curr, &area->free_list[mtype])
1181                                 freecount++;
1182                         seq_printf(m, "%6lu ", freecount);
1183                 }
1184                 seq_putc(m, '\n');
1185         }
1186 }
1187
1188 /* Print out the free pages at each order for each migatetype */
1189 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1190 {
1191         int order;
1192         pg_data_t *pgdat = (pg_data_t *)arg;
1193
1194         /* Print header */
1195         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1196         for (order = 0; order < MAX_ORDER; ++order)
1197                 seq_printf(m, "%6d ", order);
1198         seq_putc(m, '\n');
1199
1200         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1201
1202         return 0;
1203 }
1204
1205 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1206                                         pg_data_t *pgdat, struct zone *zone)
1207 {
1208         int mtype;
1209         unsigned long pfn;
1210         unsigned long start_pfn = zone->zone_start_pfn;
1211         unsigned long end_pfn = zone_end_pfn(zone);
1212         unsigned long count[MIGRATE_TYPES] = { 0, };
1213
1214         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1215                 struct page *page;
1216
1217                 if (!pfn_valid(pfn))
1218                         continue;
1219
1220                 page = pfn_to_page(pfn);
1221
1222                 /* Watch for unexpected holes punched in the memmap */
1223                 if (!memmap_valid_within(pfn, page, zone))
1224                         continue;
1225
1226                 if (page_zone(page) != zone)
1227                         continue;
1228
1229                 mtype = get_pageblock_migratetype(page);
1230
1231                 if (mtype < MIGRATE_TYPES)
1232                         count[mtype]++;
1233         }
1234
1235         /* Print counts */
1236         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1237         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1238                 seq_printf(m, "%12lu ", count[mtype]);
1239         seq_putc(m, '\n');
1240 }
1241
1242 /* Print out the free pages at each order for each migratetype */
1243 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1244 {
1245         int mtype;
1246         pg_data_t *pgdat = (pg_data_t *)arg;
1247
1248         seq_printf(m, "\n%-23s", "Number of blocks type ");
1249         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1250                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1251         seq_putc(m, '\n');
1252         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1253
1254         return 0;
1255 }
1256
1257 #ifdef CONFIG_PAGE_OWNER
1258 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1259                                                         pg_data_t *pgdat,
1260                                                         struct zone *zone)
1261 {
1262         struct page *page;
1263         struct page_ext *page_ext;
1264         unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1265         unsigned long end_pfn = pfn + zone->spanned_pages;
1266         unsigned long count[MIGRATE_TYPES] = { 0, };
1267         int pageblock_mt, page_mt;
1268         int i;
1269
1270         /* Scan block by block. First and last block may be incomplete */
1271         pfn = zone->zone_start_pfn;
1272
1273         /*
1274          * Walk the zone in pageblock_nr_pages steps. If a page block spans
1275          * a zone boundary, it will be double counted between zones. This does
1276          * not matter as the mixed block count will still be correct
1277          */
1278         for (; pfn < end_pfn; ) {
1279                 if (!pfn_valid(pfn)) {
1280                         pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1281                         continue;
1282                 }
1283
1284                 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1285                 block_end_pfn = min(block_end_pfn, end_pfn);
1286
1287                 page = pfn_to_page(pfn);
1288                 pageblock_mt = get_pageblock_migratetype(page);
1289
1290                 for (; pfn < block_end_pfn; pfn++) {
1291                         if (!pfn_valid_within(pfn))
1292                                 continue;
1293
1294                         page = pfn_to_page(pfn);
1295
1296                         if (page_zone(page) != zone)
1297                                 continue;
1298
1299                         if (PageBuddy(page)) {
1300                                 pfn += (1UL << page_order(page)) - 1;
1301                                 continue;
1302                         }
1303
1304                         if (PageReserved(page))
1305                                 continue;
1306
1307                         page_ext = lookup_page_ext(page);
1308                         if (unlikely(!page_ext))
1309                                 continue;
1310
1311                         if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1312                                 continue;
1313
1314                         page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1315                         if (pageblock_mt != page_mt) {
1316                                 if (is_migrate_cma(pageblock_mt))
1317                                         count[MIGRATE_MOVABLE]++;
1318                                 else
1319                                         count[pageblock_mt]++;
1320
1321                                 pfn = block_end_pfn;
1322                                 break;
1323                         }
1324                         pfn += (1UL << page_ext->order) - 1;
1325                 }
1326         }
1327
1328         /* Print counts */
1329         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1330         for (i = 0; i < MIGRATE_TYPES; i++)
1331                 seq_printf(m, "%12lu ", count[i]);
1332         seq_putc(m, '\n');
1333 }
1334 #endif /* CONFIG_PAGE_OWNER */
1335
1336 /*
1337  * Print out the number of pageblocks for each migratetype that contain pages
1338  * of other types. This gives an indication of how well fallbacks are being
1339  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1340  * to determine what is going on
1341  */
1342 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1343 {
1344 #ifdef CONFIG_PAGE_OWNER
1345         int mtype;
1346
1347         if (!static_branch_unlikely(&page_owner_inited))
1348                 return;
1349
1350         drain_all_pages(NULL);
1351
1352         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1353         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1354                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1355         seq_putc(m, '\n');
1356
1357         walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1358 #endif /* CONFIG_PAGE_OWNER */
1359 }
1360
1361 /*
1362  * This prints out statistics in relation to grouping pages by mobility.
1363  * It is expensive to collect so do not constantly read the file.
1364  */
1365 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1366 {
1367         pg_data_t *pgdat = (pg_data_t *)arg;
1368
1369         /* check memoryless node */
1370         if (!node_state(pgdat->node_id, N_MEMORY))
1371                 return 0;
1372
1373         seq_printf(m, "Page block order: %d\n", pageblock_order);
1374         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1375         seq_putc(m, '\n');
1376         pagetypeinfo_showfree(m, pgdat);
1377         pagetypeinfo_showblockcount(m, pgdat);
1378         pagetypeinfo_showmixedcount(m, pgdat);
1379
1380         return 0;
1381 }
1382
1383 static const struct seq_operations fragmentation_op = {
1384         .start  = frag_start,
1385         .next   = frag_next,
1386         .stop   = frag_stop,
1387         .show   = frag_show,
1388 };
1389
1390 static int fragmentation_open(struct inode *inode, struct file *file)
1391 {
1392         return seq_open(file, &fragmentation_op);
1393 }
1394
1395 static const struct file_operations fragmentation_file_operations = {
1396         .open           = fragmentation_open,
1397         .read           = seq_read,
1398         .llseek         = seq_lseek,
1399         .release        = seq_release,
1400 };
1401
1402 static const struct seq_operations pagetypeinfo_op = {
1403         .start  = frag_start,
1404         .next   = frag_next,
1405         .stop   = frag_stop,
1406         .show   = pagetypeinfo_show,
1407 };
1408
1409 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1410 {
1411         return seq_open(file, &pagetypeinfo_op);
1412 }
1413
1414 static const struct file_operations pagetypeinfo_file_ops = {
1415         .open           = pagetypeinfo_open,
1416         .read           = seq_read,
1417         .llseek         = seq_lseek,
1418         .release        = seq_release,
1419 };
1420
1421 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1422 {
1423         int zid;
1424
1425         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1426                 struct zone *compare = &pgdat->node_zones[zid];
1427
1428                 if (populated_zone(compare))
1429                         return zone == compare;
1430         }
1431
1432         /* The zone must be somewhere! */
1433         WARN_ON_ONCE(1);
1434         return false;
1435 }
1436
1437 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1438                                                         struct zone *zone)
1439 {
1440         int i;
1441         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1442         if (is_zone_first_populated(pgdat, zone)) {
1443                 seq_printf(m, "\n  per-node stats");
1444                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1445                         seq_printf(m, "\n      %-12s %lu",
1446                                 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1447                                 node_page_state(pgdat, i));
1448                 }
1449         }
1450         seq_printf(m,
1451                    "\n  pages free     %lu"
1452                    "\n        min      %lu"
1453                    "\n        low      %lu"
1454                    "\n        high     %lu"
1455                    "\n   node_scanned  %lu"
1456                    "\n        spanned  %lu"
1457                    "\n        present  %lu"
1458                    "\n        managed  %lu",
1459                    zone_page_state(zone, NR_FREE_PAGES),
1460                    min_wmark_pages(zone),
1461                    low_wmark_pages(zone),
1462                    high_wmark_pages(zone),
1463                    node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED),
1464                    zone->spanned_pages,
1465                    zone->present_pages,
1466                    zone->managed_pages);
1467
1468         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1469                 seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1470                                 zone_page_state(zone, i));
1471
1472         seq_printf(m,
1473                    "\n        protection: (%ld",
1474                    zone->lowmem_reserve[0]);
1475         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1476                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1477         seq_printf(m,
1478                    ")"
1479                    "\n  pagesets");
1480         for_each_online_cpu(i) {
1481                 struct per_cpu_pageset *pageset;
1482
1483                 pageset = per_cpu_ptr(zone->pageset, i);
1484                 seq_printf(m,
1485                            "\n    cpu: %i"
1486                            "\n              count: %i"
1487                            "\n              high:  %i"
1488                            "\n              batch: %i",
1489                            i,
1490                            pageset->pcp.count,
1491                            pageset->pcp.high,
1492                            pageset->pcp.batch);
1493 #ifdef CONFIG_SMP
1494                 seq_printf(m, "\n  vm stats threshold: %d",
1495                                 pageset->stat_threshold);
1496 #endif
1497         }
1498         seq_printf(m,
1499                    "\n  node_unreclaimable:  %u"
1500                    "\n  start_pfn:           %lu"
1501                    "\n  node_inactive_ratio: %u",
1502                    !pgdat_reclaimable(zone->zone_pgdat),
1503                    zone->zone_start_pfn,
1504                    zone->zone_pgdat->inactive_ratio);
1505         seq_putc(m, '\n');
1506 }
1507
1508 /*
1509  * Output information about zones in @pgdat.
1510  */
1511 static int zoneinfo_show(struct seq_file *m, void *arg)
1512 {
1513         pg_data_t *pgdat = (pg_data_t *)arg;
1514         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1515         return 0;
1516 }
1517
1518 static const struct seq_operations zoneinfo_op = {
1519         .start  = frag_start, /* iterate over all zones. The same as in
1520                                * fragmentation. */
1521         .next   = frag_next,
1522         .stop   = frag_stop,
1523         .show   = zoneinfo_show,
1524 };
1525
1526 static int zoneinfo_open(struct inode *inode, struct file *file)
1527 {
1528         return seq_open(file, &zoneinfo_op);
1529 }
1530
1531 static const struct file_operations proc_zoneinfo_file_operations = {
1532         .open           = zoneinfo_open,
1533         .read           = seq_read,
1534         .llseek         = seq_lseek,
1535         .release        = seq_release,
1536 };
1537
1538 enum writeback_stat_item {
1539         NR_DIRTY_THRESHOLD,
1540         NR_DIRTY_BG_THRESHOLD,
1541         NR_VM_WRITEBACK_STAT_ITEMS,
1542 };
1543
1544 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1545 {
1546         unsigned long *v;
1547         int i, stat_items_size;
1548
1549         if (*pos >= ARRAY_SIZE(vmstat_text))
1550                 return NULL;
1551         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1552                           NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1553                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1554
1555 #ifdef CONFIG_VM_EVENT_COUNTERS
1556         stat_items_size += sizeof(struct vm_event_state);
1557 #endif
1558
1559         v = kmalloc(stat_items_size, GFP_KERNEL);
1560         m->private = v;
1561         if (!v)
1562                 return ERR_PTR(-ENOMEM);
1563         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1564                 v[i] = global_page_state(i);
1565         v += NR_VM_ZONE_STAT_ITEMS;
1566
1567         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1568                 v[i] = global_node_page_state(i);
1569         v += NR_VM_NODE_STAT_ITEMS;
1570
1571         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1572                             v + NR_DIRTY_THRESHOLD);
1573         v += NR_VM_WRITEBACK_STAT_ITEMS;
1574
1575 #ifdef CONFIG_VM_EVENT_COUNTERS
1576         all_vm_events(v);
1577         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1578         v[PGPGOUT] /= 2;
1579 #endif
1580         return (unsigned long *)m->private + *pos;
1581 }
1582
1583 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1584 {
1585         (*pos)++;
1586         if (*pos >= ARRAY_SIZE(vmstat_text))
1587                 return NULL;
1588         return (unsigned long *)m->private + *pos;
1589 }
1590
1591 static int vmstat_show(struct seq_file *m, void *arg)
1592 {
1593         unsigned long *l = arg;
1594         unsigned long off = l - (unsigned long *)m->private;
1595         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1596         return 0;
1597 }
1598
1599 static void vmstat_stop(struct seq_file *m, void *arg)
1600 {
1601         kfree(m->private);
1602         m->private = NULL;
1603 }
1604
1605 static const struct seq_operations vmstat_op = {
1606         .start  = vmstat_start,
1607         .next   = vmstat_next,
1608         .stop   = vmstat_stop,
1609         .show   = vmstat_show,
1610 };
1611
1612 static int vmstat_open(struct inode *inode, struct file *file)
1613 {
1614         return seq_open(file, &vmstat_op);
1615 }
1616
1617 static const struct file_operations proc_vmstat_file_operations = {
1618         .open           = vmstat_open,
1619         .read           = seq_read,
1620         .llseek         = seq_lseek,
1621         .release        = seq_release,
1622 };
1623 #endif /* CONFIG_PROC_FS */
1624
1625 #ifdef CONFIG_SMP
1626 static struct workqueue_struct *vmstat_wq;
1627 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1628 int sysctl_stat_interval __read_mostly = HZ;
1629
1630 #ifdef CONFIG_PROC_FS
1631 static void refresh_vm_stats(struct work_struct *work)
1632 {
1633         refresh_cpu_vm_stats(true);
1634 }
1635
1636 int vmstat_refresh(struct ctl_table *table, int write,
1637                    void __user *buffer, size_t *lenp, loff_t *ppos)
1638 {
1639         long val;
1640         int err;
1641         int i;
1642
1643         /*
1644          * The regular update, every sysctl_stat_interval, may come later
1645          * than expected: leaving a significant amount in per_cpu buckets.
1646          * This is particularly misleading when checking a quantity of HUGE
1647          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1648          * which can equally be echo'ed to or cat'ted from (by root),
1649          * can be used to update the stats just before reading them.
1650          *
1651          * Oh, and since global_page_state() etc. are so careful to hide
1652          * transiently negative values, report an error here if any of
1653          * the stats is negative, so we know to go looking for imbalance.
1654          */
1655         err = schedule_on_each_cpu(refresh_vm_stats);
1656         if (err)
1657                 return err;
1658         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1659                 val = atomic_long_read(&vm_zone_stat[i]);
1660                 if (val < 0) {
1661                         switch (i) {
1662                         case NR_PAGES_SCANNED:
1663                                 /*
1664                                  * This is often seen to go negative in
1665                                  * recent kernels, but not to go permanently
1666                                  * negative.  Whilst it would be nicer not to
1667                                  * have exceptions, rooting them out would be
1668                                  * another task, of rather low priority.
1669                                  */
1670                                 break;
1671                         default:
1672                                 pr_warn("%s: %s %ld\n",
1673                                         __func__, vmstat_text[i], val);
1674                                 err = -EINVAL;
1675                                 break;
1676                         }
1677                 }
1678         }
1679         if (err)
1680                 return err;
1681         if (write)
1682                 *ppos += *lenp;
1683         else
1684                 *lenp = 0;
1685         return 0;
1686 }
1687 #endif /* CONFIG_PROC_FS */
1688
1689 static void vmstat_update(struct work_struct *w)
1690 {
1691         if (refresh_cpu_vm_stats(true)) {
1692                 /*
1693                  * Counters were updated so we expect more updates
1694                  * to occur in the future. Keep on running the
1695                  * update worker thread.
1696                  */
1697                 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1698                                 this_cpu_ptr(&vmstat_work),
1699                                 round_jiffies_relative(sysctl_stat_interval));
1700         }
1701 }
1702
1703 /*
1704  * Switch off vmstat processing and then fold all the remaining differentials
1705  * until the diffs stay at zero. The function is used by NOHZ and can only be
1706  * invoked when tick processing is not active.
1707  */
1708 /*
1709  * Check if the diffs for a certain cpu indicate that
1710  * an update is needed.
1711  */
1712 static bool need_update(int cpu)
1713 {
1714         struct zone *zone;
1715
1716         for_each_populated_zone(zone) {
1717                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1718
1719                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1720                 /*
1721                  * The fast way of checking if there are any vmstat diffs.
1722                  * This works because the diffs are byte sized items.
1723                  */
1724                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1725                         return true;
1726
1727         }
1728         return false;
1729 }
1730
1731 /*
1732  * Switch off vmstat processing and then fold all the remaining differentials
1733  * until the diffs stay at zero. The function is used by NOHZ and can only be
1734  * invoked when tick processing is not active.
1735  */
1736 void quiet_vmstat(void)
1737 {
1738         if (system_state != SYSTEM_RUNNING)
1739                 return;
1740
1741         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1742                 return;
1743
1744         if (!need_update(smp_processor_id()))
1745                 return;
1746
1747         /*
1748          * Just refresh counters and do not care about the pending delayed
1749          * vmstat_update. It doesn't fire that often to matter and canceling
1750          * it would be too expensive from this path.
1751          * vmstat_shepherd will take care about that for us.
1752          */
1753         refresh_cpu_vm_stats(false);
1754 }
1755
1756 /*
1757  * Shepherd worker thread that checks the
1758  * differentials of processors that have their worker
1759  * threads for vm statistics updates disabled because of
1760  * inactivity.
1761  */
1762 static void vmstat_shepherd(struct work_struct *w);
1763
1764 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1765
1766 static void vmstat_shepherd(struct work_struct *w)
1767 {
1768         int cpu;
1769
1770         get_online_cpus();
1771         /* Check processors whose vmstat worker threads have been disabled */
1772         for_each_online_cpu(cpu) {
1773                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1774
1775                 if (!delayed_work_pending(dw) && need_update(cpu))
1776                         queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1777         }
1778         put_online_cpus();
1779
1780         schedule_delayed_work(&shepherd,
1781                 round_jiffies_relative(sysctl_stat_interval));
1782 }
1783
1784 static void __init start_shepherd_timer(void)
1785 {
1786         int cpu;
1787
1788         for_each_possible_cpu(cpu)
1789                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1790                         vmstat_update);
1791
1792         vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1793         schedule_delayed_work(&shepherd,
1794                 round_jiffies_relative(sysctl_stat_interval));
1795 }
1796
1797 static void vmstat_cpu_dead(int node)
1798 {
1799         int cpu;
1800
1801         get_online_cpus();
1802         for_each_online_cpu(cpu)
1803                 if (cpu_to_node(cpu) == node)
1804                         goto end;
1805
1806         node_clear_state(node, N_CPU);
1807 end:
1808         put_online_cpus();
1809 }
1810
1811 /*
1812  * Use the cpu notifier to insure that the thresholds are recalculated
1813  * when necessary.
1814  */
1815 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1816                 unsigned long action,
1817                 void *hcpu)
1818 {
1819         long cpu = (long)hcpu;
1820
1821         switch (action) {
1822         case CPU_ONLINE:
1823         case CPU_ONLINE_FROZEN:
1824                 refresh_zone_stat_thresholds();
1825                 node_set_state(cpu_to_node(cpu), N_CPU);
1826                 break;
1827         case CPU_DOWN_PREPARE:
1828         case CPU_DOWN_PREPARE_FROZEN:
1829                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1830                 break;
1831         case CPU_DOWN_FAILED:
1832         case CPU_DOWN_FAILED_FROZEN:
1833                 break;
1834         case CPU_DEAD:
1835         case CPU_DEAD_FROZEN:
1836                 refresh_zone_stat_thresholds();
1837                 vmstat_cpu_dead(cpu_to_node(cpu));
1838                 break;
1839         default:
1840                 break;
1841         }
1842         return NOTIFY_OK;
1843 }
1844
1845 static struct notifier_block vmstat_notifier =
1846         { &vmstat_cpuup_callback, NULL, 0 };
1847 #endif
1848
1849 static int __init setup_vmstat(void)
1850 {
1851 #ifdef CONFIG_SMP
1852         cpu_notifier_register_begin();
1853         __register_cpu_notifier(&vmstat_notifier);
1854
1855         start_shepherd_timer();
1856         cpu_notifier_register_done();
1857 #endif
1858 #ifdef CONFIG_PROC_FS
1859         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1860         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1861         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1862         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1863 #endif
1864         return 0;
1865 }
1866 module_init(setup_vmstat)
1867
1868 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1869
1870 /*
1871  * Return an index indicating how much of the available free memory is
1872  * unusable for an allocation of the requested size.
1873  */
1874 static int unusable_free_index(unsigned int order,
1875                                 struct contig_page_info *info)
1876 {
1877         /* No free memory is interpreted as all free memory is unusable */
1878         if (info->free_pages == 0)
1879                 return 1000;
1880
1881         /*
1882          * Index should be a value between 0 and 1. Return a value to 3
1883          * decimal places.
1884          *
1885          * 0 => no fragmentation
1886          * 1 => high fragmentation
1887          */
1888         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1889
1890 }
1891
1892 static void unusable_show_print(struct seq_file *m,
1893                                         pg_data_t *pgdat, struct zone *zone)
1894 {
1895         unsigned int order;
1896         int index;
1897         struct contig_page_info info;
1898
1899         seq_printf(m, "Node %d, zone %8s ",
1900                                 pgdat->node_id,
1901                                 zone->name);
1902         for (order = 0; order < MAX_ORDER; ++order) {
1903                 fill_contig_page_info(zone, order, &info);
1904                 index = unusable_free_index(order, &info);
1905                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1906         }
1907
1908         seq_putc(m, '\n');
1909 }
1910
1911 /*
1912  * Display unusable free space index
1913  *
1914  * The unusable free space index measures how much of the available free
1915  * memory cannot be used to satisfy an allocation of a given size and is a
1916  * value between 0 and 1. The higher the value, the more of free memory is
1917  * unusable and by implication, the worse the external fragmentation is. This
1918  * can be expressed as a percentage by multiplying by 100.
1919  */
1920 static int unusable_show(struct seq_file *m, void *arg)
1921 {
1922         pg_data_t *pgdat = (pg_data_t *)arg;
1923
1924         /* check memoryless node */
1925         if (!node_state(pgdat->node_id, N_MEMORY))
1926                 return 0;
1927
1928         walk_zones_in_node(m, pgdat, unusable_show_print);
1929
1930         return 0;
1931 }
1932
1933 static const struct seq_operations unusable_op = {
1934         .start  = frag_start,
1935         .next   = frag_next,
1936         .stop   = frag_stop,
1937         .show   = unusable_show,
1938 };
1939
1940 static int unusable_open(struct inode *inode, struct file *file)
1941 {
1942         return seq_open(file, &unusable_op);
1943 }
1944
1945 static const struct file_operations unusable_file_ops = {
1946         .open           = unusable_open,
1947         .read           = seq_read,
1948         .llseek         = seq_lseek,
1949         .release        = seq_release,
1950 };
1951
1952 static void extfrag_show_print(struct seq_file *m,
1953                                         pg_data_t *pgdat, struct zone *zone)
1954 {
1955         unsigned int order;
1956         int index;
1957
1958         /* Alloc on stack as interrupts are disabled for zone walk */
1959         struct contig_page_info info;
1960
1961         seq_printf(m, "Node %d, zone %8s ",
1962                                 pgdat->node_id,
1963                                 zone->name);
1964         for (order = 0; order < MAX_ORDER; ++order) {
1965                 fill_contig_page_info(zone, order, &info);
1966                 index = __fragmentation_index(order, &info);
1967                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1968         }
1969
1970         seq_putc(m, '\n');
1971 }
1972
1973 /*
1974  * Display fragmentation index for orders that allocations would fail for
1975  */
1976 static int extfrag_show(struct seq_file *m, void *arg)
1977 {
1978         pg_data_t *pgdat = (pg_data_t *)arg;
1979
1980         walk_zones_in_node(m, pgdat, extfrag_show_print);
1981
1982         return 0;
1983 }
1984
1985 static const struct seq_operations extfrag_op = {
1986         .start  = frag_start,
1987         .next   = frag_next,
1988         .stop   = frag_stop,
1989         .show   = extfrag_show,
1990 };
1991
1992 static int extfrag_open(struct inode *inode, struct file *file)
1993 {
1994         return seq_open(file, &extfrag_op);
1995 }
1996
1997 static const struct file_operations extfrag_file_ops = {
1998         .open           = extfrag_open,
1999         .read           = seq_read,
2000         .llseek         = seq_lseek,
2001         .release        = seq_release,
2002 };
2003
2004 static int __init extfrag_debug_init(void)
2005 {
2006         struct dentry *extfrag_debug_root;
2007
2008         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2009         if (!extfrag_debug_root)
2010                 return -ENOMEM;
2011
2012         if (!debugfs_create_file("unusable_index", 0444,
2013                         extfrag_debug_root, NULL, &unusable_file_ops))
2014                 goto fail;
2015
2016         if (!debugfs_create_file("extfrag_index", 0444,
2017                         extfrag_debug_root, NULL, &extfrag_file_ops))
2018                 goto fail;
2019
2020         return 0;
2021 fail:
2022         debugfs_remove_recursive(extfrag_debug_root);
2023         return -ENOMEM;
2024 }
2025
2026 module_init(extfrag_debug_init);
2027 #endif