Merge tag 'x86_urgent_for_v6.3_rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / mm / vmstat.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *              Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40         int item, cpu;
41
42         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43                 atomic_long_set(&zone->vm_numa_event[item], 0);
44                 for_each_online_cpu(cpu) {
45                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46                                                 = 0;
47                 }
48         }
49 }
50
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54         struct zone *zone;
55
56         for_each_populated_zone(zone)
57                 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63         int item;
64
65         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66                 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
69 static void invalid_numa_statistics(void)
70 {
71         zero_zones_numa_counters();
72         zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78                 void *buffer, size_t *length, loff_t *ppos)
79 {
80         int ret, oldval;
81
82         mutex_lock(&vm_numa_stat_lock);
83         if (write)
84                 oldval = sysctl_vm_numa_stat;
85         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86         if (ret || !write)
87                 goto out;
88
89         if (oldval == sysctl_vm_numa_stat)
90                 goto out;
91         else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92                 static_branch_enable(&vm_numa_stat_key);
93                 pr_info("enable numa statistics\n");
94         } else {
95                 static_branch_disable(&vm_numa_stat_key);
96                 invalid_numa_statistics();
97                 pr_info("disable numa statistics, and clear numa counters\n");
98         }
99
100 out:
101         mutex_unlock(&vm_numa_stat_lock);
102         return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110 static void sum_vm_events(unsigned long *ret)
111 {
112         int cpu;
113         int i;
114
115         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117         for_each_online_cpu(cpu) {
118                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121                         ret[i] += this->event[i];
122         }
123 }
124
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132         cpus_read_lock();
133         sum_vm_events(ret);
134         cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147         int i;
148
149         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150                 count_vm_events(i, fold_state->event[i]);
151                 fold_state->event[i] = 0;
152         }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_NUMA
169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171         unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172         int cpu;
173         enum numa_stat_item item;
174
175         for_each_online_cpu(cpu) {
176                 struct per_cpu_zonestat *pzstats;
177
178                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179                 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180                         zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181         }
182
183         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184                 zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186
187 void fold_vm_numa_events(void)
188 {
189         struct zone *zone;
190
191         for_each_populated_zone(zone)
192                 fold_vm_zone_numa_events(zone);
193 }
194 #endif
195
196 #ifdef CONFIG_SMP
197
198 int calculate_pressure_threshold(struct zone *zone)
199 {
200         int threshold;
201         int watermark_distance;
202
203         /*
204          * As vmstats are not up to date, there is drift between the estimated
205          * and real values. For high thresholds and a high number of CPUs, it
206          * is possible for the min watermark to be breached while the estimated
207          * value looks fine. The pressure threshold is a reduced value such
208          * that even the maximum amount of drift will not accidentally breach
209          * the min watermark
210          */
211         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214         /*
215          * Maximum threshold is 125
216          */
217         threshold = min(125, threshold);
218
219         return threshold;
220 }
221
222 int calculate_normal_threshold(struct zone *zone)
223 {
224         int threshold;
225         int mem;        /* memory in 128 MB units */
226
227         /*
228          * The threshold scales with the number of processors and the amount
229          * of memory per zone. More memory means that we can defer updates for
230          * longer, more processors could lead to more contention.
231          * fls() is used to have a cheap way of logarithmic scaling.
232          *
233          * Some sample thresholds:
234          *
235          * Threshold    Processors      (fls)   Zonesize        fls(mem)+1
236          * ------------------------------------------------------------------
237          * 8            1               1       0.9-1 GB        4
238          * 16           2               2       0.9-1 GB        4
239          * 20           2               2       1-2 GB          5
240          * 24           2               2       2-4 GB          6
241          * 28           2               2       4-8 GB          7
242          * 32           2               2       8-16 GB         8
243          * 4            2               2       <128M           1
244          * 30           4               3       2-4 GB          5
245          * 48           4               3       8-16 GB         8
246          * 32           8               4       1-2 GB          4
247          * 32           8               4       0.9-1GB         4
248          * 10           16              5       <128M           1
249          * 40           16              5       900M            4
250          * 70           64              7       2-4 GB          5
251          * 84           64              7       4-8 GB          6
252          * 108          512             9       4-8 GB          6
253          * 125          1024            10      8-16 GB         8
254          * 125          1024            10      16-32 GB        9
255          */
256
257         mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261         /*
262          * Maximum threshold is 125
263          */
264         threshold = min(125, threshold);
265
266         return threshold;
267 }
268
269 /*
270  * Refresh the thresholds for each zone.
271  */
272 void refresh_zone_stat_thresholds(void)
273 {
274         struct pglist_data *pgdat;
275         struct zone *zone;
276         int cpu;
277         int threshold;
278
279         /* Zero current pgdat thresholds */
280         for_each_online_pgdat(pgdat) {
281                 for_each_online_cpu(cpu) {
282                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283                 }
284         }
285
286         for_each_populated_zone(zone) {
287                 struct pglist_data *pgdat = zone->zone_pgdat;
288                 unsigned long max_drift, tolerate_drift;
289
290                 threshold = calculate_normal_threshold(zone);
291
292                 for_each_online_cpu(cpu) {
293                         int pgdat_threshold;
294
295                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296                                                         = threshold;
297
298                         /* Base nodestat threshold on the largest populated zone. */
299                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301                                 = max(threshold, pgdat_threshold);
302                 }
303
304                 /*
305                  * Only set percpu_drift_mark if there is a danger that
306                  * NR_FREE_PAGES reports the low watermark is ok when in fact
307                  * the min watermark could be breached by an allocation
308                  */
309                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310                 max_drift = num_online_cpus() * threshold;
311                 if (max_drift > tolerate_drift)
312                         zone->percpu_drift_mark = high_wmark_pages(zone) +
313                                         max_drift;
314         }
315 }
316
317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318                                 int (*calculate_pressure)(struct zone *))
319 {
320         struct zone *zone;
321         int cpu;
322         int threshold;
323         int i;
324
325         for (i = 0; i < pgdat->nr_zones; i++) {
326                 zone = &pgdat->node_zones[i];
327                 if (!zone->percpu_drift_mark)
328                         continue;
329
330                 threshold = (*calculate_pressure)(zone);
331                 for_each_online_cpu(cpu)
332                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333                                                         = threshold;
334         }
335 }
336
337 /*
338  * For use when we know that interrupts are disabled,
339  * or when we know that preemption is disabled and that
340  * particular counter cannot be updated from interrupt context.
341  */
342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343                            long delta)
344 {
345         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346         s8 __percpu *p = pcp->vm_stat_diff + item;
347         long x;
348         long t;
349
350         /*
351          * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352          * atomicity is provided by IRQs being disabled -- either explicitly
353          * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354          * CPU migrations and preemption potentially corrupts a counter so
355          * disable preemption.
356          */
357         preempt_disable_nested();
358
359         x = delta + __this_cpu_read(*p);
360
361         t = __this_cpu_read(pcp->stat_threshold);
362
363         if (unlikely(abs(x) > t)) {
364                 zone_page_state_add(x, zone, item);
365                 x = 0;
366         }
367         __this_cpu_write(*p, x);
368
369         preempt_enable_nested();
370 }
371 EXPORT_SYMBOL(__mod_zone_page_state);
372
373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374                                 long delta)
375 {
376         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377         s8 __percpu *p = pcp->vm_node_stat_diff + item;
378         long x;
379         long t;
380
381         if (vmstat_item_in_bytes(item)) {
382                 /*
383                  * Only cgroups use subpage accounting right now; at
384                  * the global level, these items still change in
385                  * multiples of whole pages. Store them as pages
386                  * internally to keep the per-cpu counters compact.
387                  */
388                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389                 delta >>= PAGE_SHIFT;
390         }
391
392         /* See __mod_node_page_state */
393         preempt_disable_nested();
394
395         x = delta + __this_cpu_read(*p);
396
397         t = __this_cpu_read(pcp->stat_threshold);
398
399         if (unlikely(abs(x) > t)) {
400                 node_page_state_add(x, pgdat, item);
401                 x = 0;
402         }
403         __this_cpu_write(*p, x);
404
405         preempt_enable_nested();
406 }
407 EXPORT_SYMBOL(__mod_node_page_state);
408
409 /*
410  * Optimized increment and decrement functions.
411  *
412  * These are only for a single page and therefore can take a struct page *
413  * argument instead of struct zone *. This allows the inclusion of the code
414  * generated for page_zone(page) into the optimized functions.
415  *
416  * No overflow check is necessary and therefore the differential can be
417  * incremented or decremented in place which may allow the compilers to
418  * generate better code.
419  * The increment or decrement is known and therefore one boundary check can
420  * be omitted.
421  *
422  * NOTE: These functions are very performance sensitive. Change only
423  * with care.
424  *
425  * Some processors have inc/dec instructions that are atomic vs an interrupt.
426  * However, the code must first determine the differential location in a zone
427  * based on the processor number and then inc/dec the counter. There is no
428  * guarantee without disabling preemption that the processor will not change
429  * in between and therefore the atomicity vs. interrupt cannot be exploited
430  * in a useful way here.
431  */
432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433 {
434         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435         s8 __percpu *p = pcp->vm_stat_diff + item;
436         s8 v, t;
437
438         /* See __mod_node_page_state */
439         preempt_disable_nested();
440
441         v = __this_cpu_inc_return(*p);
442         t = __this_cpu_read(pcp->stat_threshold);
443         if (unlikely(v > t)) {
444                 s8 overstep = t >> 1;
445
446                 zone_page_state_add(v + overstep, zone, item);
447                 __this_cpu_write(*p, -overstep);
448         }
449
450         preempt_enable_nested();
451 }
452
453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 {
455         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456         s8 __percpu *p = pcp->vm_node_stat_diff + item;
457         s8 v, t;
458
459         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461         /* See __mod_node_page_state */
462         preempt_disable_nested();
463
464         v = __this_cpu_inc_return(*p);
465         t = __this_cpu_read(pcp->stat_threshold);
466         if (unlikely(v > t)) {
467                 s8 overstep = t >> 1;
468
469                 node_page_state_add(v + overstep, pgdat, item);
470                 __this_cpu_write(*p, -overstep);
471         }
472
473         preempt_enable_nested();
474 }
475
476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477 {
478         __inc_zone_state(page_zone(page), item);
479 }
480 EXPORT_SYMBOL(__inc_zone_page_state);
481
482 void __inc_node_page_state(struct page *page, enum node_stat_item item)
483 {
484         __inc_node_state(page_pgdat(page), item);
485 }
486 EXPORT_SYMBOL(__inc_node_page_state);
487
488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489 {
490         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491         s8 __percpu *p = pcp->vm_stat_diff + item;
492         s8 v, t;
493
494         /* See __mod_node_page_state */
495         preempt_disable_nested();
496
497         v = __this_cpu_dec_return(*p);
498         t = __this_cpu_read(pcp->stat_threshold);
499         if (unlikely(v < - t)) {
500                 s8 overstep = t >> 1;
501
502                 zone_page_state_add(v - overstep, zone, item);
503                 __this_cpu_write(*p, overstep);
504         }
505
506         preempt_enable_nested();
507 }
508
509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510 {
511         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512         s8 __percpu *p = pcp->vm_node_stat_diff + item;
513         s8 v, t;
514
515         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517         /* See __mod_node_page_state */
518         preempt_disable_nested();
519
520         v = __this_cpu_dec_return(*p);
521         t = __this_cpu_read(pcp->stat_threshold);
522         if (unlikely(v < - t)) {
523                 s8 overstep = t >> 1;
524
525                 node_page_state_add(v - overstep, pgdat, item);
526                 __this_cpu_write(*p, overstep);
527         }
528
529         preempt_enable_nested();
530 }
531
532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533 {
534         __dec_zone_state(page_zone(page), item);
535 }
536 EXPORT_SYMBOL(__dec_zone_page_state);
537
538 void __dec_node_page_state(struct page *page, enum node_stat_item item)
539 {
540         __dec_node_state(page_pgdat(page), item);
541 }
542 EXPORT_SYMBOL(__dec_node_page_state);
543
544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545 /*
546  * If we have cmpxchg_local support then we do not need to incur the overhead
547  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548  *
549  * mod_state() modifies the zone counter state through atomic per cpu
550  * operations.
551  *
552  * Overstep mode specifies how overstep should handled:
553  *     0       No overstepping
554  *     1       Overstepping half of threshold
555  *     -1      Overstepping minus half of threshold
556 */
557 static inline void mod_zone_state(struct zone *zone,
558        enum zone_stat_item item, long delta, int overstep_mode)
559 {
560         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561         s8 __percpu *p = pcp->vm_stat_diff + item;
562         long o, n, t, z;
563
564         do {
565                 z = 0;  /* overflow to zone counters */
566
567                 /*
568                  * The fetching of the stat_threshold is racy. We may apply
569                  * a counter threshold to the wrong the cpu if we get
570                  * rescheduled while executing here. However, the next
571                  * counter update will apply the threshold again and
572                  * therefore bring the counter under the threshold again.
573                  *
574                  * Most of the time the thresholds are the same anyways
575                  * for all cpus in a zone.
576                  */
577                 t = this_cpu_read(pcp->stat_threshold);
578
579                 o = this_cpu_read(*p);
580                 n = delta + o;
581
582                 if (abs(n) > t) {
583                         int os = overstep_mode * (t >> 1) ;
584
585                         /* Overflow must be added to zone counters */
586                         z = n + os;
587                         n = -os;
588                 }
589         } while (this_cpu_cmpxchg(*p, o, n) != o);
590
591         if (z)
592                 zone_page_state_add(z, zone, item);
593 }
594
595 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
596                          long delta)
597 {
598         mod_zone_state(zone, item, delta, 0);
599 }
600 EXPORT_SYMBOL(mod_zone_page_state);
601
602 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
603 {
604         mod_zone_state(page_zone(page), item, 1, 1);
605 }
606 EXPORT_SYMBOL(inc_zone_page_state);
607
608 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
609 {
610         mod_zone_state(page_zone(page), item, -1, -1);
611 }
612 EXPORT_SYMBOL(dec_zone_page_state);
613
614 static inline void mod_node_state(struct pglist_data *pgdat,
615        enum node_stat_item item, int delta, int overstep_mode)
616 {
617         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618         s8 __percpu *p = pcp->vm_node_stat_diff + item;
619         long o, n, t, z;
620
621         if (vmstat_item_in_bytes(item)) {
622                 /*
623                  * Only cgroups use subpage accounting right now; at
624                  * the global level, these items still change in
625                  * multiples of whole pages. Store them as pages
626                  * internally to keep the per-cpu counters compact.
627                  */
628                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629                 delta >>= PAGE_SHIFT;
630         }
631
632         do {
633                 z = 0;  /* overflow to node counters */
634
635                 /*
636                  * The fetching of the stat_threshold is racy. We may apply
637                  * a counter threshold to the wrong the cpu if we get
638                  * rescheduled while executing here. However, the next
639                  * counter update will apply the threshold again and
640                  * therefore bring the counter under the threshold again.
641                  *
642                  * Most of the time the thresholds are the same anyways
643                  * for all cpus in a node.
644                  */
645                 t = this_cpu_read(pcp->stat_threshold);
646
647                 o = this_cpu_read(*p);
648                 n = delta + o;
649
650                 if (abs(n) > t) {
651                         int os = overstep_mode * (t >> 1) ;
652
653                         /* Overflow must be added to node counters */
654                         z = n + os;
655                         n = -os;
656                 }
657         } while (this_cpu_cmpxchg(*p, o, n) != o);
658
659         if (z)
660                 node_page_state_add(z, pgdat, item);
661 }
662
663 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
664                                         long delta)
665 {
666         mod_node_state(pgdat, item, delta, 0);
667 }
668 EXPORT_SYMBOL(mod_node_page_state);
669
670 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
671 {
672         mod_node_state(pgdat, item, 1, 1);
673 }
674
675 void inc_node_page_state(struct page *page, enum node_stat_item item)
676 {
677         mod_node_state(page_pgdat(page), item, 1, 1);
678 }
679 EXPORT_SYMBOL(inc_node_page_state);
680
681 void dec_node_page_state(struct page *page, enum node_stat_item item)
682 {
683         mod_node_state(page_pgdat(page), item, -1, -1);
684 }
685 EXPORT_SYMBOL(dec_node_page_state);
686 #else
687 /*
688  * Use interrupt disable to serialize counter updates
689  */
690 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691                          long delta)
692 {
693         unsigned long flags;
694
695         local_irq_save(flags);
696         __mod_zone_page_state(zone, item, delta);
697         local_irq_restore(flags);
698 }
699 EXPORT_SYMBOL(mod_zone_page_state);
700
701 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702 {
703         unsigned long flags;
704         struct zone *zone;
705
706         zone = page_zone(page);
707         local_irq_save(flags);
708         __inc_zone_state(zone, item);
709         local_irq_restore(flags);
710 }
711 EXPORT_SYMBOL(inc_zone_page_state);
712
713 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714 {
715         unsigned long flags;
716
717         local_irq_save(flags);
718         __dec_zone_page_state(page, item);
719         local_irq_restore(flags);
720 }
721 EXPORT_SYMBOL(dec_zone_page_state);
722
723 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
724 {
725         unsigned long flags;
726
727         local_irq_save(flags);
728         __inc_node_state(pgdat, item);
729         local_irq_restore(flags);
730 }
731 EXPORT_SYMBOL(inc_node_state);
732
733 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
734                                         long delta)
735 {
736         unsigned long flags;
737
738         local_irq_save(flags);
739         __mod_node_page_state(pgdat, item, delta);
740         local_irq_restore(flags);
741 }
742 EXPORT_SYMBOL(mod_node_page_state);
743
744 void inc_node_page_state(struct page *page, enum node_stat_item item)
745 {
746         unsigned long flags;
747         struct pglist_data *pgdat;
748
749         pgdat = page_pgdat(page);
750         local_irq_save(flags);
751         __inc_node_state(pgdat, item);
752         local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL(inc_node_page_state);
755
756 void dec_node_page_state(struct page *page, enum node_stat_item item)
757 {
758         unsigned long flags;
759
760         local_irq_save(flags);
761         __dec_node_page_state(page, item);
762         local_irq_restore(flags);
763 }
764 EXPORT_SYMBOL(dec_node_page_state);
765 #endif
766
767 /*
768  * Fold a differential into the global counters.
769  * Returns the number of counters updated.
770  */
771 static int fold_diff(int *zone_diff, int *node_diff)
772 {
773         int i;
774         int changes = 0;
775
776         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
777                 if (zone_diff[i]) {
778                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
779                         changes++;
780         }
781
782         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
783                 if (node_diff[i]) {
784                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
785                         changes++;
786         }
787         return changes;
788 }
789
790 /*
791  * Update the zone counters for the current cpu.
792  *
793  * Note that refresh_cpu_vm_stats strives to only access
794  * node local memory. The per cpu pagesets on remote zones are placed
795  * in the memory local to the processor using that pageset. So the
796  * loop over all zones will access a series of cachelines local to
797  * the processor.
798  *
799  * The call to zone_page_state_add updates the cachelines with the
800  * statistics in the remote zone struct as well as the global cachelines
801  * with the global counters. These could cause remote node cache line
802  * bouncing and will have to be only done when necessary.
803  *
804  * The function returns the number of global counters updated.
805  */
806 static int refresh_cpu_vm_stats(bool do_pagesets)
807 {
808         struct pglist_data *pgdat;
809         struct zone *zone;
810         int i;
811         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
813         int changes = 0;
814
815         for_each_populated_zone(zone) {
816                 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
817 #ifdef CONFIG_NUMA
818                 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
819 #endif
820
821                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822                         int v;
823
824                         v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825                         if (v) {
826
827                                 atomic_long_add(v, &zone->vm_stat[i]);
828                                 global_zone_diff[i] += v;
829 #ifdef CONFIG_NUMA
830                                 /* 3 seconds idle till flush */
831                                 __this_cpu_write(pcp->expire, 3);
832 #endif
833                         }
834                 }
835 #ifdef CONFIG_NUMA
836
837                 if (do_pagesets) {
838                         cond_resched();
839                         /*
840                          * Deal with draining the remote pageset of this
841                          * processor
842                          *
843                          * Check if there are pages remaining in this pageset
844                          * if not then there is nothing to expire.
845                          */
846                         if (!__this_cpu_read(pcp->expire) ||
847                                !__this_cpu_read(pcp->count))
848                                 continue;
849
850                         /*
851                          * We never drain zones local to this processor.
852                          */
853                         if (zone_to_nid(zone) == numa_node_id()) {
854                                 __this_cpu_write(pcp->expire, 0);
855                                 continue;
856                         }
857
858                         if (__this_cpu_dec_return(pcp->expire))
859                                 continue;
860
861                         if (__this_cpu_read(pcp->count)) {
862                                 drain_zone_pages(zone, this_cpu_ptr(pcp));
863                                 changes++;
864                         }
865                 }
866 #endif
867         }
868
869         for_each_online_pgdat(pgdat) {
870                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
871
872                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
873                         int v;
874
875                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
876                         if (v) {
877                                 atomic_long_add(v, &pgdat->vm_stat[i]);
878                                 global_node_diff[i] += v;
879                         }
880                 }
881         }
882
883         changes += fold_diff(global_zone_diff, global_node_diff);
884         return changes;
885 }
886
887 /*
888  * Fold the data for an offline cpu into the global array.
889  * There cannot be any access by the offline cpu and therefore
890  * synchronization is simplified.
891  */
892 void cpu_vm_stats_fold(int cpu)
893 {
894         struct pglist_data *pgdat;
895         struct zone *zone;
896         int i;
897         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
899
900         for_each_populated_zone(zone) {
901                 struct per_cpu_zonestat *pzstats;
902
903                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
904
905                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906                         if (pzstats->vm_stat_diff[i]) {
907                                 int v;
908
909                                 v = pzstats->vm_stat_diff[i];
910                                 pzstats->vm_stat_diff[i] = 0;
911                                 atomic_long_add(v, &zone->vm_stat[i]);
912                                 global_zone_diff[i] += v;
913                         }
914                 }
915 #ifdef CONFIG_NUMA
916                 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917                         if (pzstats->vm_numa_event[i]) {
918                                 unsigned long v;
919
920                                 v = pzstats->vm_numa_event[i];
921                                 pzstats->vm_numa_event[i] = 0;
922                                 zone_numa_event_add(v, zone, i);
923                         }
924                 }
925 #endif
926         }
927
928         for_each_online_pgdat(pgdat) {
929                 struct per_cpu_nodestat *p;
930
931                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
932
933                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934                         if (p->vm_node_stat_diff[i]) {
935                                 int v;
936
937                                 v = p->vm_node_stat_diff[i];
938                                 p->vm_node_stat_diff[i] = 0;
939                                 atomic_long_add(v, &pgdat->vm_stat[i]);
940                                 global_node_diff[i] += v;
941                         }
942         }
943
944         fold_diff(global_zone_diff, global_node_diff);
945 }
946
947 /*
948  * this is only called if !populated_zone(zone), which implies no other users of
949  * pset->vm_stat_diff[] exist.
950  */
951 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
952 {
953         unsigned long v;
954         int i;
955
956         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957                 if (pzstats->vm_stat_diff[i]) {
958                         v = pzstats->vm_stat_diff[i];
959                         pzstats->vm_stat_diff[i] = 0;
960                         zone_page_state_add(v, zone, i);
961                 }
962         }
963
964 #ifdef CONFIG_NUMA
965         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966                 if (pzstats->vm_numa_event[i]) {
967                         v = pzstats->vm_numa_event[i];
968                         pzstats->vm_numa_event[i] = 0;
969                         zone_numa_event_add(v, zone, i);
970                 }
971         }
972 #endif
973 }
974 #endif
975
976 #ifdef CONFIG_NUMA
977 /*
978  * Determine the per node value of a stat item. This function
979  * is called frequently in a NUMA machine, so try to be as
980  * frugal as possible.
981  */
982 unsigned long sum_zone_node_page_state(int node,
983                                  enum zone_stat_item item)
984 {
985         struct zone *zones = NODE_DATA(node)->node_zones;
986         int i;
987         unsigned long count = 0;
988
989         for (i = 0; i < MAX_NR_ZONES; i++)
990                 count += zone_page_state(zones + i, item);
991
992         return count;
993 }
994
995 /* Determine the per node value of a numa stat item. */
996 unsigned long sum_zone_numa_event_state(int node,
997                                  enum numa_stat_item item)
998 {
999         struct zone *zones = NODE_DATA(node)->node_zones;
1000         unsigned long count = 0;
1001         int i;
1002
1003         for (i = 0; i < MAX_NR_ZONES; i++)
1004                 count += zone_numa_event_state(zones + i, item);
1005
1006         return count;
1007 }
1008
1009 /*
1010  * Determine the per node value of a stat item.
1011  */
1012 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013                                     enum node_stat_item item)
1014 {
1015         long x = atomic_long_read(&pgdat->vm_stat[item]);
1016 #ifdef CONFIG_SMP
1017         if (x < 0)
1018                 x = 0;
1019 #endif
1020         return x;
1021 }
1022
1023 unsigned long node_page_state(struct pglist_data *pgdat,
1024                               enum node_stat_item item)
1025 {
1026         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028         return node_page_state_pages(pgdat, item);
1029 }
1030 #endif
1031
1032 #ifdef CONFIG_COMPACTION
1033
1034 struct contig_page_info {
1035         unsigned long free_pages;
1036         unsigned long free_blocks_total;
1037         unsigned long free_blocks_suitable;
1038 };
1039
1040 /*
1041  * Calculate the number of free pages in a zone, how many contiguous
1042  * pages are free and how many are large enough to satisfy an allocation of
1043  * the target size. Note that this function makes no attempt to estimate
1044  * how many suitable free blocks there *might* be if MOVABLE pages were
1045  * migrated. Calculating that is possible, but expensive and can be
1046  * figured out from userspace
1047  */
1048 static void fill_contig_page_info(struct zone *zone,
1049                                 unsigned int suitable_order,
1050                                 struct contig_page_info *info)
1051 {
1052         unsigned int order;
1053
1054         info->free_pages = 0;
1055         info->free_blocks_total = 0;
1056         info->free_blocks_suitable = 0;
1057
1058         for (order = 0; order < MAX_ORDER; order++) {
1059                 unsigned long blocks;
1060
1061                 /*
1062                  * Count number of free blocks.
1063                  *
1064                  * Access to nr_free is lockless as nr_free is used only for
1065                  * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066                  */
1067                 blocks = data_race(zone->free_area[order].nr_free);
1068                 info->free_blocks_total += blocks;
1069
1070                 /* Count free base pages */
1071                 info->free_pages += blocks << order;
1072
1073                 /* Count the suitable free blocks */
1074                 if (order >= suitable_order)
1075                         info->free_blocks_suitable += blocks <<
1076                                                 (order - suitable_order);
1077         }
1078 }
1079
1080 /*
1081  * A fragmentation index only makes sense if an allocation of a requested
1082  * size would fail. If that is true, the fragmentation index indicates
1083  * whether external fragmentation or a lack of memory was the problem.
1084  * The value can be used to determine if page reclaim or compaction
1085  * should be used
1086  */
1087 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088 {
1089         unsigned long requested = 1UL << order;
1090
1091         if (WARN_ON_ONCE(order >= MAX_ORDER))
1092                 return 0;
1093
1094         if (!info->free_blocks_total)
1095                 return 0;
1096
1097         /* Fragmentation index only makes sense when a request would fail */
1098         if (info->free_blocks_suitable)
1099                 return -1000;
1100
1101         /*
1102          * Index is between 0 and 1 so return within 3 decimal places
1103          *
1104          * 0 => allocation would fail due to lack of memory
1105          * 1 => allocation would fail due to fragmentation
1106          */
1107         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108 }
1109
1110 /*
1111  * Calculates external fragmentation within a zone wrt the given order.
1112  * It is defined as the percentage of pages found in blocks of size
1113  * less than 1 << order. It returns values in range [0, 100].
1114  */
1115 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116 {
1117         struct contig_page_info info;
1118
1119         fill_contig_page_info(zone, order, &info);
1120         if (info.free_pages == 0)
1121                 return 0;
1122
1123         return div_u64((info.free_pages -
1124                         (info.free_blocks_suitable << order)) * 100,
1125                         info.free_pages);
1126 }
1127
1128 /* Same as __fragmentation index but allocs contig_page_info on stack */
1129 int fragmentation_index(struct zone *zone, unsigned int order)
1130 {
1131         struct contig_page_info info;
1132
1133         fill_contig_page_info(zone, order, &info);
1134         return __fragmentation_index(order, &info);
1135 }
1136 #endif
1137
1138 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140 #ifdef CONFIG_ZONE_DMA
1141 #define TEXT_FOR_DMA(xx) xx "_dma",
1142 #else
1143 #define TEXT_FOR_DMA(xx)
1144 #endif
1145
1146 #ifdef CONFIG_ZONE_DMA32
1147 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1148 #else
1149 #define TEXT_FOR_DMA32(xx)
1150 #endif
1151
1152 #ifdef CONFIG_HIGHMEM
1153 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154 #else
1155 #define TEXT_FOR_HIGHMEM(xx)
1156 #endif
1157
1158 #ifdef CONFIG_ZONE_DEVICE
1159 #define TEXT_FOR_DEVICE(xx) xx "_device",
1160 #else
1161 #define TEXT_FOR_DEVICE(xx)
1162 #endif
1163
1164 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165                                         TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166                                         TEXT_FOR_DEVICE(xx)
1167
1168 const char * const vmstat_text[] = {
1169         /* enum zone_stat_item counters */
1170         "nr_free_pages",
1171         "nr_zone_inactive_anon",
1172         "nr_zone_active_anon",
1173         "nr_zone_inactive_file",
1174         "nr_zone_active_file",
1175         "nr_zone_unevictable",
1176         "nr_zone_write_pending",
1177         "nr_mlock",
1178         "nr_bounce",
1179 #if IS_ENABLED(CONFIG_ZSMALLOC)
1180         "nr_zspages",
1181 #endif
1182         "nr_free_cma",
1183
1184         /* enum numa_stat_item counters */
1185 #ifdef CONFIG_NUMA
1186         "numa_hit",
1187         "numa_miss",
1188         "numa_foreign",
1189         "numa_interleave",
1190         "numa_local",
1191         "numa_other",
1192 #endif
1193
1194         /* enum node_stat_item counters */
1195         "nr_inactive_anon",
1196         "nr_active_anon",
1197         "nr_inactive_file",
1198         "nr_active_file",
1199         "nr_unevictable",
1200         "nr_slab_reclaimable",
1201         "nr_slab_unreclaimable",
1202         "nr_isolated_anon",
1203         "nr_isolated_file",
1204         "workingset_nodes",
1205         "workingset_refault_anon",
1206         "workingset_refault_file",
1207         "workingset_activate_anon",
1208         "workingset_activate_file",
1209         "workingset_restore_anon",
1210         "workingset_restore_file",
1211         "workingset_nodereclaim",
1212         "nr_anon_pages",
1213         "nr_mapped",
1214         "nr_file_pages",
1215         "nr_dirty",
1216         "nr_writeback",
1217         "nr_writeback_temp",
1218         "nr_shmem",
1219         "nr_shmem_hugepages",
1220         "nr_shmem_pmdmapped",
1221         "nr_file_hugepages",
1222         "nr_file_pmdmapped",
1223         "nr_anon_transparent_hugepages",
1224         "nr_vmscan_write",
1225         "nr_vmscan_immediate_reclaim",
1226         "nr_dirtied",
1227         "nr_written",
1228         "nr_throttled_written",
1229         "nr_kernel_misc_reclaimable",
1230         "nr_foll_pin_acquired",
1231         "nr_foll_pin_released",
1232         "nr_kernel_stack",
1233 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234         "nr_shadow_call_stack",
1235 #endif
1236         "nr_page_table_pages",
1237         "nr_sec_page_table_pages",
1238 #ifdef CONFIG_SWAP
1239         "nr_swapcached",
1240 #endif
1241 #ifdef CONFIG_NUMA_BALANCING
1242         "pgpromote_success",
1243         "pgpromote_candidate",
1244 #endif
1245
1246         /* enum writeback_stat_item counters */
1247         "nr_dirty_threshold",
1248         "nr_dirty_background_threshold",
1249
1250 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251         /* enum vm_event_item counters */
1252         "pgpgin",
1253         "pgpgout",
1254         "pswpin",
1255         "pswpout",
1256
1257         TEXTS_FOR_ZONES("pgalloc")
1258         TEXTS_FOR_ZONES("allocstall")
1259         TEXTS_FOR_ZONES("pgskip")
1260
1261         "pgfree",
1262         "pgactivate",
1263         "pgdeactivate",
1264         "pglazyfree",
1265
1266         "pgfault",
1267         "pgmajfault",
1268         "pglazyfreed",
1269
1270         "pgrefill",
1271         "pgreuse",
1272         "pgsteal_kswapd",
1273         "pgsteal_direct",
1274         "pgsteal_khugepaged",
1275         "pgdemote_kswapd",
1276         "pgdemote_direct",
1277         "pgdemote_khugepaged",
1278         "pgscan_kswapd",
1279         "pgscan_direct",
1280         "pgscan_khugepaged",
1281         "pgscan_direct_throttle",
1282         "pgscan_anon",
1283         "pgscan_file",
1284         "pgsteal_anon",
1285         "pgsteal_file",
1286
1287 #ifdef CONFIG_NUMA
1288         "zone_reclaim_failed",
1289 #endif
1290         "pginodesteal",
1291         "slabs_scanned",
1292         "kswapd_inodesteal",
1293         "kswapd_low_wmark_hit_quickly",
1294         "kswapd_high_wmark_hit_quickly",
1295         "pageoutrun",
1296
1297         "pgrotated",
1298
1299         "drop_pagecache",
1300         "drop_slab",
1301         "oom_kill",
1302
1303 #ifdef CONFIG_NUMA_BALANCING
1304         "numa_pte_updates",
1305         "numa_huge_pte_updates",
1306         "numa_hint_faults",
1307         "numa_hint_faults_local",
1308         "numa_pages_migrated",
1309 #endif
1310 #ifdef CONFIG_MIGRATION
1311         "pgmigrate_success",
1312         "pgmigrate_fail",
1313         "thp_migration_success",
1314         "thp_migration_fail",
1315         "thp_migration_split",
1316 #endif
1317 #ifdef CONFIG_COMPACTION
1318         "compact_migrate_scanned",
1319         "compact_free_scanned",
1320         "compact_isolated",
1321         "compact_stall",
1322         "compact_fail",
1323         "compact_success",
1324         "compact_daemon_wake",
1325         "compact_daemon_migrate_scanned",
1326         "compact_daemon_free_scanned",
1327 #endif
1328
1329 #ifdef CONFIG_HUGETLB_PAGE
1330         "htlb_buddy_alloc_success",
1331         "htlb_buddy_alloc_fail",
1332 #endif
1333 #ifdef CONFIG_CMA
1334         "cma_alloc_success",
1335         "cma_alloc_fail",
1336 #endif
1337         "unevictable_pgs_culled",
1338         "unevictable_pgs_scanned",
1339         "unevictable_pgs_rescued",
1340         "unevictable_pgs_mlocked",
1341         "unevictable_pgs_munlocked",
1342         "unevictable_pgs_cleared",
1343         "unevictable_pgs_stranded",
1344
1345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1346         "thp_fault_alloc",
1347         "thp_fault_fallback",
1348         "thp_fault_fallback_charge",
1349         "thp_collapse_alloc",
1350         "thp_collapse_alloc_failed",
1351         "thp_file_alloc",
1352         "thp_file_fallback",
1353         "thp_file_fallback_charge",
1354         "thp_file_mapped",
1355         "thp_split_page",
1356         "thp_split_page_failed",
1357         "thp_deferred_split_page",
1358         "thp_split_pmd",
1359         "thp_scan_exceed_none_pte",
1360         "thp_scan_exceed_swap_pte",
1361         "thp_scan_exceed_share_pte",
1362 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1363         "thp_split_pud",
1364 #endif
1365         "thp_zero_page_alloc",
1366         "thp_zero_page_alloc_failed",
1367         "thp_swpout",
1368         "thp_swpout_fallback",
1369 #endif
1370 #ifdef CONFIG_MEMORY_BALLOON
1371         "balloon_inflate",
1372         "balloon_deflate",
1373 #ifdef CONFIG_BALLOON_COMPACTION
1374         "balloon_migrate",
1375 #endif
1376 #endif /* CONFIG_MEMORY_BALLOON */
1377 #ifdef CONFIG_DEBUG_TLBFLUSH
1378         "nr_tlb_remote_flush",
1379         "nr_tlb_remote_flush_received",
1380         "nr_tlb_local_flush_all",
1381         "nr_tlb_local_flush_one",
1382 #endif /* CONFIG_DEBUG_TLBFLUSH */
1383
1384 #ifdef CONFIG_SWAP
1385         "swap_ra",
1386         "swap_ra_hit",
1387 #ifdef CONFIG_KSM
1388         "ksm_swpin_copy",
1389 #endif
1390 #endif
1391 #ifdef CONFIG_KSM
1392         "cow_ksm",
1393 #endif
1394 #ifdef CONFIG_ZSWAP
1395         "zswpin",
1396         "zswpout",
1397 #endif
1398 #ifdef CONFIG_X86
1399         "direct_map_level2_splits",
1400         "direct_map_level3_splits",
1401 #endif
1402 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1403 };
1404 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1405
1406 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1407      defined(CONFIG_PROC_FS)
1408 static void *frag_start(struct seq_file *m, loff_t *pos)
1409 {
1410         pg_data_t *pgdat;
1411         loff_t node = *pos;
1412
1413         for (pgdat = first_online_pgdat();
1414              pgdat && node;
1415              pgdat = next_online_pgdat(pgdat))
1416                 --node;
1417
1418         return pgdat;
1419 }
1420
1421 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1422 {
1423         pg_data_t *pgdat = (pg_data_t *)arg;
1424
1425         (*pos)++;
1426         return next_online_pgdat(pgdat);
1427 }
1428
1429 static void frag_stop(struct seq_file *m, void *arg)
1430 {
1431 }
1432
1433 /*
1434  * Walk zones in a node and print using a callback.
1435  * If @assert_populated is true, only use callback for zones that are populated.
1436  */
1437 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1438                 bool assert_populated, bool nolock,
1439                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1440 {
1441         struct zone *zone;
1442         struct zone *node_zones = pgdat->node_zones;
1443         unsigned long flags;
1444
1445         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1446                 if (assert_populated && !populated_zone(zone))
1447                         continue;
1448
1449                 if (!nolock)
1450                         spin_lock_irqsave(&zone->lock, flags);
1451                 print(m, pgdat, zone);
1452                 if (!nolock)
1453                         spin_unlock_irqrestore(&zone->lock, flags);
1454         }
1455 }
1456 #endif
1457
1458 #ifdef CONFIG_PROC_FS
1459 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1460                                                 struct zone *zone)
1461 {
1462         int order;
1463
1464         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1465         for (order = 0; order < MAX_ORDER; ++order)
1466                 /*
1467                  * Access to nr_free is lockless as nr_free is used only for
1468                  * printing purposes. Use data_race to avoid KCSAN warning.
1469                  */
1470                 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1471         seq_putc(m, '\n');
1472 }
1473
1474 /*
1475  * This walks the free areas for each zone.
1476  */
1477 static int frag_show(struct seq_file *m, void *arg)
1478 {
1479         pg_data_t *pgdat = (pg_data_t *)arg;
1480         walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1481         return 0;
1482 }
1483
1484 static void pagetypeinfo_showfree_print(struct seq_file *m,
1485                                         pg_data_t *pgdat, struct zone *zone)
1486 {
1487         int order, mtype;
1488
1489         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1490                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1491                                         pgdat->node_id,
1492                                         zone->name,
1493                                         migratetype_names[mtype]);
1494                 for (order = 0; order < MAX_ORDER; ++order) {
1495                         unsigned long freecount = 0;
1496                         struct free_area *area;
1497                         struct list_head *curr;
1498                         bool overflow = false;
1499
1500                         area = &(zone->free_area[order]);
1501
1502                         list_for_each(curr, &area->free_list[mtype]) {
1503                                 /*
1504                                  * Cap the free_list iteration because it might
1505                                  * be really large and we are under a spinlock
1506                                  * so a long time spent here could trigger a
1507                                  * hard lockup detector. Anyway this is a
1508                                  * debugging tool so knowing there is a handful
1509                                  * of pages of this order should be more than
1510                                  * sufficient.
1511                                  */
1512                                 if (++freecount >= 100000) {
1513                                         overflow = true;
1514                                         break;
1515                                 }
1516                         }
1517                         seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1518                         spin_unlock_irq(&zone->lock);
1519                         cond_resched();
1520                         spin_lock_irq(&zone->lock);
1521                 }
1522                 seq_putc(m, '\n');
1523         }
1524 }
1525
1526 /* Print out the free pages at each order for each migatetype */
1527 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1528 {
1529         int order;
1530         pg_data_t *pgdat = (pg_data_t *)arg;
1531
1532         /* Print header */
1533         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1534         for (order = 0; order < MAX_ORDER; ++order)
1535                 seq_printf(m, "%6d ", order);
1536         seq_putc(m, '\n');
1537
1538         walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1539 }
1540
1541 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1542                                         pg_data_t *pgdat, struct zone *zone)
1543 {
1544         int mtype;
1545         unsigned long pfn;
1546         unsigned long start_pfn = zone->zone_start_pfn;
1547         unsigned long end_pfn = zone_end_pfn(zone);
1548         unsigned long count[MIGRATE_TYPES] = { 0, };
1549
1550         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1551                 struct page *page;
1552
1553                 page = pfn_to_online_page(pfn);
1554                 if (!page)
1555                         continue;
1556
1557                 if (page_zone(page) != zone)
1558                         continue;
1559
1560                 mtype = get_pageblock_migratetype(page);
1561
1562                 if (mtype < MIGRATE_TYPES)
1563                         count[mtype]++;
1564         }
1565
1566         /* Print counts */
1567         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1568         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1569                 seq_printf(m, "%12lu ", count[mtype]);
1570         seq_putc(m, '\n');
1571 }
1572
1573 /* Print out the number of pageblocks for each migratetype */
1574 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1575 {
1576         int mtype;
1577         pg_data_t *pgdat = (pg_data_t *)arg;
1578
1579         seq_printf(m, "\n%-23s", "Number of blocks type ");
1580         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1581                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1582         seq_putc(m, '\n');
1583         walk_zones_in_node(m, pgdat, true, false,
1584                 pagetypeinfo_showblockcount_print);
1585 }
1586
1587 /*
1588  * Print out the number of pageblocks for each migratetype that contain pages
1589  * of other types. This gives an indication of how well fallbacks are being
1590  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1591  * to determine what is going on
1592  */
1593 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1594 {
1595 #ifdef CONFIG_PAGE_OWNER
1596         int mtype;
1597
1598         if (!static_branch_unlikely(&page_owner_inited))
1599                 return;
1600
1601         drain_all_pages(NULL);
1602
1603         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1604         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1605                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1606         seq_putc(m, '\n');
1607
1608         walk_zones_in_node(m, pgdat, true, true,
1609                 pagetypeinfo_showmixedcount_print);
1610 #endif /* CONFIG_PAGE_OWNER */
1611 }
1612
1613 /*
1614  * This prints out statistics in relation to grouping pages by mobility.
1615  * It is expensive to collect so do not constantly read the file.
1616  */
1617 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1618 {
1619         pg_data_t *pgdat = (pg_data_t *)arg;
1620
1621         /* check memoryless node */
1622         if (!node_state(pgdat->node_id, N_MEMORY))
1623                 return 0;
1624
1625         seq_printf(m, "Page block order: %d\n", pageblock_order);
1626         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1627         seq_putc(m, '\n');
1628         pagetypeinfo_showfree(m, pgdat);
1629         pagetypeinfo_showblockcount(m, pgdat);
1630         pagetypeinfo_showmixedcount(m, pgdat);
1631
1632         return 0;
1633 }
1634
1635 static const struct seq_operations fragmentation_op = {
1636         .start  = frag_start,
1637         .next   = frag_next,
1638         .stop   = frag_stop,
1639         .show   = frag_show,
1640 };
1641
1642 static const struct seq_operations pagetypeinfo_op = {
1643         .start  = frag_start,
1644         .next   = frag_next,
1645         .stop   = frag_stop,
1646         .show   = pagetypeinfo_show,
1647 };
1648
1649 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1650 {
1651         int zid;
1652
1653         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654                 struct zone *compare = &pgdat->node_zones[zid];
1655
1656                 if (populated_zone(compare))
1657                         return zone == compare;
1658         }
1659
1660         return false;
1661 }
1662
1663 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1664                                                         struct zone *zone)
1665 {
1666         int i;
1667         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1668         if (is_zone_first_populated(pgdat, zone)) {
1669                 seq_printf(m, "\n  per-node stats");
1670                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1671                         unsigned long pages = node_page_state_pages(pgdat, i);
1672
1673                         if (vmstat_item_print_in_thp(i))
1674                                 pages /= HPAGE_PMD_NR;
1675                         seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1676                                    pages);
1677                 }
1678         }
1679         seq_printf(m,
1680                    "\n  pages free     %lu"
1681                    "\n        boost    %lu"
1682                    "\n        min      %lu"
1683                    "\n        low      %lu"
1684                    "\n        high     %lu"
1685                    "\n        spanned  %lu"
1686                    "\n        present  %lu"
1687                    "\n        managed  %lu"
1688                    "\n        cma      %lu",
1689                    zone_page_state(zone, NR_FREE_PAGES),
1690                    zone->watermark_boost,
1691                    min_wmark_pages(zone),
1692                    low_wmark_pages(zone),
1693                    high_wmark_pages(zone),
1694                    zone->spanned_pages,
1695                    zone->present_pages,
1696                    zone_managed_pages(zone),
1697                    zone_cma_pages(zone));
1698
1699         seq_printf(m,
1700                    "\n        protection: (%ld",
1701                    zone->lowmem_reserve[0]);
1702         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1703                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1704         seq_putc(m, ')');
1705
1706         /* If unpopulated, no other information is useful */
1707         if (!populated_zone(zone)) {
1708                 seq_putc(m, '\n');
1709                 return;
1710         }
1711
1712         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1713                 seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1714                            zone_page_state(zone, i));
1715
1716 #ifdef CONFIG_NUMA
1717         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1718                 seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1719                            zone_numa_event_state(zone, i));
1720 #endif
1721
1722         seq_printf(m, "\n  pagesets");
1723         for_each_online_cpu(i) {
1724                 struct per_cpu_pages *pcp;
1725                 struct per_cpu_zonestat __maybe_unused *pzstats;
1726
1727                 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1728                 seq_printf(m,
1729                            "\n    cpu: %i"
1730                            "\n              count: %i"
1731                            "\n              high:  %i"
1732                            "\n              batch: %i",
1733                            i,
1734                            pcp->count,
1735                            pcp->high,
1736                            pcp->batch);
1737 #ifdef CONFIG_SMP
1738                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1739                 seq_printf(m, "\n  vm stats threshold: %d",
1740                                 pzstats->stat_threshold);
1741 #endif
1742         }
1743         seq_printf(m,
1744                    "\n  node_unreclaimable:  %u"
1745                    "\n  start_pfn:           %lu",
1746                    pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1747                    zone->zone_start_pfn);
1748         seq_putc(m, '\n');
1749 }
1750
1751 /*
1752  * Output information about zones in @pgdat.  All zones are printed regardless
1753  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1754  * set of all zones and userspace would not be aware of such zones if they are
1755  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1756  */
1757 static int zoneinfo_show(struct seq_file *m, void *arg)
1758 {
1759         pg_data_t *pgdat = (pg_data_t *)arg;
1760         walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1761         return 0;
1762 }
1763
1764 static const struct seq_operations zoneinfo_op = {
1765         .start  = frag_start, /* iterate over all zones. The same as in
1766                                * fragmentation. */
1767         .next   = frag_next,
1768         .stop   = frag_stop,
1769         .show   = zoneinfo_show,
1770 };
1771
1772 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1773                          NR_VM_NUMA_EVENT_ITEMS + \
1774                          NR_VM_NODE_STAT_ITEMS + \
1775                          NR_VM_WRITEBACK_STAT_ITEMS + \
1776                          (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1777                           NR_VM_EVENT_ITEMS : 0))
1778
1779 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1780 {
1781         unsigned long *v;
1782         int i;
1783
1784         if (*pos >= NR_VMSTAT_ITEMS)
1785                 return NULL;
1786
1787         BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1788         fold_vm_numa_events();
1789         v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1790         m->private = v;
1791         if (!v)
1792                 return ERR_PTR(-ENOMEM);
1793         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1794                 v[i] = global_zone_page_state(i);
1795         v += NR_VM_ZONE_STAT_ITEMS;
1796
1797 #ifdef CONFIG_NUMA
1798         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1799                 v[i] = global_numa_event_state(i);
1800         v += NR_VM_NUMA_EVENT_ITEMS;
1801 #endif
1802
1803         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1804                 v[i] = global_node_page_state_pages(i);
1805                 if (vmstat_item_print_in_thp(i))
1806                         v[i] /= HPAGE_PMD_NR;
1807         }
1808         v += NR_VM_NODE_STAT_ITEMS;
1809
1810         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1811                             v + NR_DIRTY_THRESHOLD);
1812         v += NR_VM_WRITEBACK_STAT_ITEMS;
1813
1814 #ifdef CONFIG_VM_EVENT_COUNTERS
1815         all_vm_events(v);
1816         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1817         v[PGPGOUT] /= 2;
1818 #endif
1819         return (unsigned long *)m->private + *pos;
1820 }
1821
1822 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1823 {
1824         (*pos)++;
1825         if (*pos >= NR_VMSTAT_ITEMS)
1826                 return NULL;
1827         return (unsigned long *)m->private + *pos;
1828 }
1829
1830 static int vmstat_show(struct seq_file *m, void *arg)
1831 {
1832         unsigned long *l = arg;
1833         unsigned long off = l - (unsigned long *)m->private;
1834
1835         seq_puts(m, vmstat_text[off]);
1836         seq_put_decimal_ull(m, " ", *l);
1837         seq_putc(m, '\n');
1838
1839         if (off == NR_VMSTAT_ITEMS - 1) {
1840                 /*
1841                  * We've come to the end - add any deprecated counters to avoid
1842                  * breaking userspace which might depend on them being present.
1843                  */
1844                 seq_puts(m, "nr_unstable 0\n");
1845         }
1846         return 0;
1847 }
1848
1849 static void vmstat_stop(struct seq_file *m, void *arg)
1850 {
1851         kfree(m->private);
1852         m->private = NULL;
1853 }
1854
1855 static const struct seq_operations vmstat_op = {
1856         .start  = vmstat_start,
1857         .next   = vmstat_next,
1858         .stop   = vmstat_stop,
1859         .show   = vmstat_show,
1860 };
1861 #endif /* CONFIG_PROC_FS */
1862
1863 #ifdef CONFIG_SMP
1864 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1865 int sysctl_stat_interval __read_mostly = HZ;
1866
1867 #ifdef CONFIG_PROC_FS
1868 static void refresh_vm_stats(struct work_struct *work)
1869 {
1870         refresh_cpu_vm_stats(true);
1871 }
1872
1873 int vmstat_refresh(struct ctl_table *table, int write,
1874                    void *buffer, size_t *lenp, loff_t *ppos)
1875 {
1876         long val;
1877         int err;
1878         int i;
1879
1880         /*
1881          * The regular update, every sysctl_stat_interval, may come later
1882          * than expected: leaving a significant amount in per_cpu buckets.
1883          * This is particularly misleading when checking a quantity of HUGE
1884          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1885          * which can equally be echo'ed to or cat'ted from (by root),
1886          * can be used to update the stats just before reading them.
1887          *
1888          * Oh, and since global_zone_page_state() etc. are so careful to hide
1889          * transiently negative values, report an error here if any of
1890          * the stats is negative, so we know to go looking for imbalance.
1891          */
1892         err = schedule_on_each_cpu(refresh_vm_stats);
1893         if (err)
1894                 return err;
1895         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1896                 /*
1897                  * Skip checking stats known to go negative occasionally.
1898                  */
1899                 switch (i) {
1900                 case NR_ZONE_WRITE_PENDING:
1901                 case NR_FREE_CMA_PAGES:
1902                         continue;
1903                 }
1904                 val = atomic_long_read(&vm_zone_stat[i]);
1905                 if (val < 0) {
1906                         pr_warn("%s: %s %ld\n",
1907                                 __func__, zone_stat_name(i), val);
1908                 }
1909         }
1910         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1911                 /*
1912                  * Skip checking stats known to go negative occasionally.
1913                  */
1914                 switch (i) {
1915                 case NR_WRITEBACK:
1916                         continue;
1917                 }
1918                 val = atomic_long_read(&vm_node_stat[i]);
1919                 if (val < 0) {
1920                         pr_warn("%s: %s %ld\n",
1921                                 __func__, node_stat_name(i), val);
1922                 }
1923         }
1924         if (write)
1925                 *ppos += *lenp;
1926         else
1927                 *lenp = 0;
1928         return 0;
1929 }
1930 #endif /* CONFIG_PROC_FS */
1931
1932 static void vmstat_update(struct work_struct *w)
1933 {
1934         if (refresh_cpu_vm_stats(true)) {
1935                 /*
1936                  * Counters were updated so we expect more updates
1937                  * to occur in the future. Keep on running the
1938                  * update worker thread.
1939                  */
1940                 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1941                                 this_cpu_ptr(&vmstat_work),
1942                                 round_jiffies_relative(sysctl_stat_interval));
1943         }
1944 }
1945
1946 /*
1947  * Check if the diffs for a certain cpu indicate that
1948  * an update is needed.
1949  */
1950 static bool need_update(int cpu)
1951 {
1952         pg_data_t *last_pgdat = NULL;
1953         struct zone *zone;
1954
1955         for_each_populated_zone(zone) {
1956                 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1957                 struct per_cpu_nodestat *n;
1958
1959                 /*
1960                  * The fast way of checking if there are any vmstat diffs.
1961                  */
1962                 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1963                         return true;
1964
1965                 if (last_pgdat == zone->zone_pgdat)
1966                         continue;
1967                 last_pgdat = zone->zone_pgdat;
1968                 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1969                 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1970                         return true;
1971         }
1972         return false;
1973 }
1974
1975 /*
1976  * Switch off vmstat processing and then fold all the remaining differentials
1977  * until the diffs stay at zero. The function is used by NOHZ and can only be
1978  * invoked when tick processing is not active.
1979  */
1980 void quiet_vmstat(void)
1981 {
1982         if (system_state != SYSTEM_RUNNING)
1983                 return;
1984
1985         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1986                 return;
1987
1988         if (!need_update(smp_processor_id()))
1989                 return;
1990
1991         /*
1992          * Just refresh counters and do not care about the pending delayed
1993          * vmstat_update. It doesn't fire that often to matter and canceling
1994          * it would be too expensive from this path.
1995          * vmstat_shepherd will take care about that for us.
1996          */
1997         refresh_cpu_vm_stats(false);
1998 }
1999
2000 /*
2001  * Shepherd worker thread that checks the
2002  * differentials of processors that have their worker
2003  * threads for vm statistics updates disabled because of
2004  * inactivity.
2005  */
2006 static void vmstat_shepherd(struct work_struct *w);
2007
2008 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2009
2010 static void vmstat_shepherd(struct work_struct *w)
2011 {
2012         int cpu;
2013
2014         cpus_read_lock();
2015         /* Check processors whose vmstat worker threads have been disabled */
2016         for_each_online_cpu(cpu) {
2017                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2018
2019                 if (!delayed_work_pending(dw) && need_update(cpu))
2020                         queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2021
2022                 cond_resched();
2023         }
2024         cpus_read_unlock();
2025
2026         schedule_delayed_work(&shepherd,
2027                 round_jiffies_relative(sysctl_stat_interval));
2028 }
2029
2030 static void __init start_shepherd_timer(void)
2031 {
2032         int cpu;
2033
2034         for_each_possible_cpu(cpu)
2035                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2036                         vmstat_update);
2037
2038         schedule_delayed_work(&shepherd,
2039                 round_jiffies_relative(sysctl_stat_interval));
2040 }
2041
2042 static void __init init_cpu_node_state(void)
2043 {
2044         int node;
2045
2046         for_each_online_node(node) {
2047                 if (!cpumask_empty(cpumask_of_node(node)))
2048                         node_set_state(node, N_CPU);
2049         }
2050 }
2051
2052 static int vmstat_cpu_online(unsigned int cpu)
2053 {
2054         refresh_zone_stat_thresholds();
2055
2056         if (!node_state(cpu_to_node(cpu), N_CPU)) {
2057                 node_set_state(cpu_to_node(cpu), N_CPU);
2058         }
2059
2060         return 0;
2061 }
2062
2063 static int vmstat_cpu_down_prep(unsigned int cpu)
2064 {
2065         cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2066         return 0;
2067 }
2068
2069 static int vmstat_cpu_dead(unsigned int cpu)
2070 {
2071         const struct cpumask *node_cpus;
2072         int node;
2073
2074         node = cpu_to_node(cpu);
2075
2076         refresh_zone_stat_thresholds();
2077         node_cpus = cpumask_of_node(node);
2078         if (!cpumask_empty(node_cpus))
2079                 return 0;
2080
2081         node_clear_state(node, N_CPU);
2082
2083         return 0;
2084 }
2085
2086 #endif
2087
2088 struct workqueue_struct *mm_percpu_wq;
2089
2090 void __init init_mm_internals(void)
2091 {
2092         int ret __maybe_unused;
2093
2094         mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2095
2096 #ifdef CONFIG_SMP
2097         ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2098                                         NULL, vmstat_cpu_dead);
2099         if (ret < 0)
2100                 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2101
2102         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2103                                         vmstat_cpu_online,
2104                                         vmstat_cpu_down_prep);
2105         if (ret < 0)
2106                 pr_err("vmstat: failed to register 'online' hotplug state\n");
2107
2108         cpus_read_lock();
2109         init_cpu_node_state();
2110         cpus_read_unlock();
2111
2112         start_shepherd_timer();
2113 #endif
2114 #ifdef CONFIG_PROC_FS
2115         proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2116         proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2117         proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2118         proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2119 #endif
2120 }
2121
2122 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2123
2124 /*
2125  * Return an index indicating how much of the available free memory is
2126  * unusable for an allocation of the requested size.
2127  */
2128 static int unusable_free_index(unsigned int order,
2129                                 struct contig_page_info *info)
2130 {
2131         /* No free memory is interpreted as all free memory is unusable */
2132         if (info->free_pages == 0)
2133                 return 1000;
2134
2135         /*
2136          * Index should be a value between 0 and 1. Return a value to 3
2137          * decimal places.
2138          *
2139          * 0 => no fragmentation
2140          * 1 => high fragmentation
2141          */
2142         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2143
2144 }
2145
2146 static void unusable_show_print(struct seq_file *m,
2147                                         pg_data_t *pgdat, struct zone *zone)
2148 {
2149         unsigned int order;
2150         int index;
2151         struct contig_page_info info;
2152
2153         seq_printf(m, "Node %d, zone %8s ",
2154                                 pgdat->node_id,
2155                                 zone->name);
2156         for (order = 0; order < MAX_ORDER; ++order) {
2157                 fill_contig_page_info(zone, order, &info);
2158                 index = unusable_free_index(order, &info);
2159                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2160         }
2161
2162         seq_putc(m, '\n');
2163 }
2164
2165 /*
2166  * Display unusable free space index
2167  *
2168  * The unusable free space index measures how much of the available free
2169  * memory cannot be used to satisfy an allocation of a given size and is a
2170  * value between 0 and 1. The higher the value, the more of free memory is
2171  * unusable and by implication, the worse the external fragmentation is. This
2172  * can be expressed as a percentage by multiplying by 100.
2173  */
2174 static int unusable_show(struct seq_file *m, void *arg)
2175 {
2176         pg_data_t *pgdat = (pg_data_t *)arg;
2177
2178         /* check memoryless node */
2179         if (!node_state(pgdat->node_id, N_MEMORY))
2180                 return 0;
2181
2182         walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2183
2184         return 0;
2185 }
2186
2187 static const struct seq_operations unusable_sops = {
2188         .start  = frag_start,
2189         .next   = frag_next,
2190         .stop   = frag_stop,
2191         .show   = unusable_show,
2192 };
2193
2194 DEFINE_SEQ_ATTRIBUTE(unusable);
2195
2196 static void extfrag_show_print(struct seq_file *m,
2197                                         pg_data_t *pgdat, struct zone *zone)
2198 {
2199         unsigned int order;
2200         int index;
2201
2202         /* Alloc on stack as interrupts are disabled for zone walk */
2203         struct contig_page_info info;
2204
2205         seq_printf(m, "Node %d, zone %8s ",
2206                                 pgdat->node_id,
2207                                 zone->name);
2208         for (order = 0; order < MAX_ORDER; ++order) {
2209                 fill_contig_page_info(zone, order, &info);
2210                 index = __fragmentation_index(order, &info);
2211                 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2212         }
2213
2214         seq_putc(m, '\n');
2215 }
2216
2217 /*
2218  * Display fragmentation index for orders that allocations would fail for
2219  */
2220 static int extfrag_show(struct seq_file *m, void *arg)
2221 {
2222         pg_data_t *pgdat = (pg_data_t *)arg;
2223
2224         walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2225
2226         return 0;
2227 }
2228
2229 static const struct seq_operations extfrag_sops = {
2230         .start  = frag_start,
2231         .next   = frag_next,
2232         .stop   = frag_stop,
2233         .show   = extfrag_show,
2234 };
2235
2236 DEFINE_SEQ_ATTRIBUTE(extfrag);
2237
2238 static int __init extfrag_debug_init(void)
2239 {
2240         struct dentry *extfrag_debug_root;
2241
2242         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2243
2244         debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2245                             &unusable_fops);
2246
2247         debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2248                             &extfrag_fops);
2249
2250         return 0;
2251 }
2252
2253 module_init(extfrag_debug_init);
2254 #endif