Build dummy_hcd and g_ffs as a modules
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23
24 #include "internal.h"
25
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
30 static void sum_vm_events(unsigned long *ret)
31 {
32         int cpu;
33         int i;
34
35         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
37         for_each_online_cpu(cpu) {
38                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
40                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41                         ret[i] += this->event[i];
42         }
43 }
44
45 /*
46  * Accumulate the vm event counters across all CPUs.
47  * The result is unavoidably approximate - it can change
48  * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52         get_online_cpus();
53         sum_vm_events(ret);
54         put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57
58 /*
59  * Fold the foreign cpu events into our own.
60  *
61  * This is adding to the events on one processor
62  * but keeps the global counts constant.
63  */
64 void vm_events_fold_cpu(int cpu)
65 {
66         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67         int i;
68
69         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70                 count_vm_events(i, fold_state->event[i]);
71                 fold_state->event[i] = 0;
72         }
73 }
74
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76
77 /*
78  * Manage combined zone based / global counters
79  *
80  * vm_stat contains the global counters
81  */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84
85 #ifdef CONFIG_SMP
86
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89         int threshold;
90         int watermark_distance;
91
92         /*
93          * As vmstats are not up to date, there is drift between the estimated
94          * and real values. For high thresholds and a high number of CPUs, it
95          * is possible for the min watermark to be breached while the estimated
96          * value looks fine. The pressure threshold is a reduced value such
97          * that even the maximum amount of drift will not accidentally breach
98          * the min watermark
99          */
100         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103         /*
104          * Maximum threshold is 125
105          */
106         threshold = min(125, threshold);
107
108         return threshold;
109 }
110
111 int calculate_normal_threshold(struct zone *zone)
112 {
113         int threshold;
114         int mem;        /* memory in 128 MB units */
115
116         /*
117          * The threshold scales with the number of processors and the amount
118          * of memory per zone. More memory means that we can defer updates for
119          * longer, more processors could lead to more contention.
120          * fls() is used to have a cheap way of logarithmic scaling.
121          *
122          * Some sample thresholds:
123          *
124          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
125          * ------------------------------------------------------------------
126          * 8            1               1       0.9-1 GB        4
127          * 16           2               2       0.9-1 GB        4
128          * 20           2               2       1-2 GB          5
129          * 24           2               2       2-4 GB          6
130          * 28           2               2       4-8 GB          7
131          * 32           2               2       8-16 GB         8
132          * 4            2               2       <128M           1
133          * 30           4               3       2-4 GB          5
134          * 48           4               3       8-16 GB         8
135          * 32           8               4       1-2 GB          4
136          * 32           8               4       0.9-1GB         4
137          * 10           16              5       <128M           1
138          * 40           16              5       900M            4
139          * 70           64              7       2-4 GB          5
140          * 84           64              7       4-8 GB          6
141          * 108          512             9       4-8 GB          6
142          * 125          1024            10      8-16 GB         8
143          * 125          1024            10      16-32 GB        9
144          */
145
146         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147
148         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150         /*
151          * Maximum threshold is 125
152          */
153         threshold = min(125, threshold);
154
155         return threshold;
156 }
157
158 /*
159  * Refresh the thresholds for each zone.
160  */
161 void refresh_zone_stat_thresholds(void)
162 {
163         struct zone *zone;
164         int cpu;
165         int threshold;
166
167         for_each_populated_zone(zone) {
168                 unsigned long max_drift, tolerate_drift;
169
170                 threshold = calculate_normal_threshold(zone);
171
172                 for_each_online_cpu(cpu)
173                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174                                                         = threshold;
175
176                 /*
177                  * Only set percpu_drift_mark if there is a danger that
178                  * NR_FREE_PAGES reports the low watermark is ok when in fact
179                  * the min watermark could be breached by an allocation
180                  */
181                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182                 max_drift = num_online_cpus() * threshold;
183                 if (max_drift > tolerate_drift)
184                         zone->percpu_drift_mark = high_wmark_pages(zone) +
185                                         max_drift;
186         }
187 }
188
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190                                 int (*calculate_pressure)(struct zone *))
191 {
192         struct zone *zone;
193         int cpu;
194         int threshold;
195         int i;
196
197         for (i = 0; i < pgdat->nr_zones; i++) {
198                 zone = &pgdat->node_zones[i];
199                 if (!zone->percpu_drift_mark)
200                         continue;
201
202                 threshold = (*calculate_pressure)(zone);
203                 for_each_possible_cpu(cpu)
204                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205                                                         = threshold;
206         }
207 }
208
209 /*
210  * For use when we know that interrupts are disabled.
211  */
212 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
213                                 int delta)
214 {
215         struct per_cpu_pageset __percpu *pcp = zone->pageset;
216         s8 __percpu *p = pcp->vm_stat_diff + item;
217         long x;
218         long t;
219
220         x = delta + __this_cpu_read(*p);
221
222         t = __this_cpu_read(pcp->stat_threshold);
223
224         if (unlikely(x > t || x < -t)) {
225                 zone_page_state_add(x, zone, item);
226                 x = 0;
227         }
228         __this_cpu_write(*p, x);
229 }
230 EXPORT_SYMBOL(__mod_zone_page_state);
231
232 /*
233  * Optimized increment and decrement functions.
234  *
235  * These are only for a single page and therefore can take a struct page *
236  * argument instead of struct zone *. This allows the inclusion of the code
237  * generated for page_zone(page) into the optimized functions.
238  *
239  * No overflow check is necessary and therefore the differential can be
240  * incremented or decremented in place which may allow the compilers to
241  * generate better code.
242  * The increment or decrement is known and therefore one boundary check can
243  * be omitted.
244  *
245  * NOTE: These functions are very performance sensitive. Change only
246  * with care.
247  *
248  * Some processors have inc/dec instructions that are atomic vs an interrupt.
249  * However, the code must first determine the differential location in a zone
250  * based on the processor number and then inc/dec the counter. There is no
251  * guarantee without disabling preemption that the processor will not change
252  * in between and therefore the atomicity vs. interrupt cannot be exploited
253  * in a useful way here.
254  */
255 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
256 {
257         struct per_cpu_pageset __percpu *pcp = zone->pageset;
258         s8 __percpu *p = pcp->vm_stat_diff + item;
259         s8 v, t;
260
261         v = __this_cpu_inc_return(*p);
262         t = __this_cpu_read(pcp->stat_threshold);
263         if (unlikely(v > t)) {
264                 s8 overstep = t >> 1;
265
266                 zone_page_state_add(v + overstep, zone, item);
267                 __this_cpu_write(*p, -overstep);
268         }
269 }
270
271 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
272 {
273         __inc_zone_state(page_zone(page), item);
274 }
275 EXPORT_SYMBOL(__inc_zone_page_state);
276
277 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
278 {
279         struct per_cpu_pageset __percpu *pcp = zone->pageset;
280         s8 __percpu *p = pcp->vm_stat_diff + item;
281         s8 v, t;
282
283         v = __this_cpu_dec_return(*p);
284         t = __this_cpu_read(pcp->stat_threshold);
285         if (unlikely(v < - t)) {
286                 s8 overstep = t >> 1;
287
288                 zone_page_state_add(v - overstep, zone, item);
289                 __this_cpu_write(*p, overstep);
290         }
291 }
292
293 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
294 {
295         __dec_zone_state(page_zone(page), item);
296 }
297 EXPORT_SYMBOL(__dec_zone_page_state);
298
299 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
300 /*
301  * If we have cmpxchg_local support then we do not need to incur the overhead
302  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303  *
304  * mod_state() modifies the zone counter state through atomic per cpu
305  * operations.
306  *
307  * Overstep mode specifies how overstep should handled:
308  *     0       No overstepping
309  *     1       Overstepping half of threshold
310  *     -1      Overstepping minus half of threshold
311 */
312 static inline void mod_state(struct zone *zone,
313        enum zone_stat_item item, int delta, int overstep_mode)
314 {
315         struct per_cpu_pageset __percpu *pcp = zone->pageset;
316         s8 __percpu *p = pcp->vm_stat_diff + item;
317         long o, n, t, z;
318
319         do {
320                 z = 0;  /* overflow to zone counters */
321
322                 /*
323                  * The fetching of the stat_threshold is racy. We may apply
324                  * a counter threshold to the wrong the cpu if we get
325                  * rescheduled while executing here. However, the next
326                  * counter update will apply the threshold again and
327                  * therefore bring the counter under the threshold again.
328                  *
329                  * Most of the time the thresholds are the same anyways
330                  * for all cpus in a zone.
331                  */
332                 t = this_cpu_read(pcp->stat_threshold);
333
334                 o = this_cpu_read(*p);
335                 n = delta + o;
336
337                 if (n > t || n < -t) {
338                         int os = overstep_mode * (t >> 1) ;
339
340                         /* Overflow must be added to zone counters */
341                         z = n + os;
342                         n = -os;
343                 }
344         } while (this_cpu_cmpxchg(*p, o, n) != o);
345
346         if (z)
347                 zone_page_state_add(z, zone, item);
348 }
349
350 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
351                                         int delta)
352 {
353         mod_state(zone, item, delta, 0);
354 }
355 EXPORT_SYMBOL(mod_zone_page_state);
356
357 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
358 {
359         mod_state(zone, item, 1, 1);
360 }
361
362 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
363 {
364         mod_state(page_zone(page), item, 1, 1);
365 }
366 EXPORT_SYMBOL(inc_zone_page_state);
367
368 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
369 {
370         mod_state(page_zone(page), item, -1, -1);
371 }
372 EXPORT_SYMBOL(dec_zone_page_state);
373 #else
374 /*
375  * Use interrupt disable to serialize counter updates
376  */
377 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
378                                         int delta)
379 {
380         unsigned long flags;
381
382         local_irq_save(flags);
383         __mod_zone_page_state(zone, item, delta);
384         local_irq_restore(flags);
385 }
386 EXPORT_SYMBOL(mod_zone_page_state);
387
388 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
389 {
390         unsigned long flags;
391
392         local_irq_save(flags);
393         __inc_zone_state(zone, item);
394         local_irq_restore(flags);
395 }
396
397 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
398 {
399         unsigned long flags;
400         struct zone *zone;
401
402         zone = page_zone(page);
403         local_irq_save(flags);
404         __inc_zone_state(zone, item);
405         local_irq_restore(flags);
406 }
407 EXPORT_SYMBOL(inc_zone_page_state);
408
409 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
410 {
411         unsigned long flags;
412
413         local_irq_save(flags);
414         __dec_zone_page_state(page, item);
415         local_irq_restore(flags);
416 }
417 EXPORT_SYMBOL(dec_zone_page_state);
418 #endif
419
420 /*
421  * Update the zone counters for one cpu.
422  *
423  * The cpu specified must be either the current cpu or a processor that
424  * is not online. If it is the current cpu then the execution thread must
425  * be pinned to the current cpu.
426  *
427  * Note that refresh_cpu_vm_stats strives to only access
428  * node local memory. The per cpu pagesets on remote zones are placed
429  * in the memory local to the processor using that pageset. So the
430  * loop over all zones will access a series of cachelines local to
431  * the processor.
432  *
433  * The call to zone_page_state_add updates the cachelines with the
434  * statistics in the remote zone struct as well as the global cachelines
435  * with the global counters. These could cause remote node cache line
436  * bouncing and will have to be only done when necessary.
437  */
438 void refresh_cpu_vm_stats(int cpu)
439 {
440         struct zone *zone;
441         int i;
442         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
443
444         for_each_populated_zone(zone) {
445                 struct per_cpu_pageset *p;
446
447                 p = per_cpu_ptr(zone->pageset, cpu);
448
449                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
450                         if (p->vm_stat_diff[i]) {
451                                 unsigned long flags;
452                                 int v;
453
454                                 local_irq_save(flags);
455                                 v = p->vm_stat_diff[i];
456                                 p->vm_stat_diff[i] = 0;
457                                 local_irq_restore(flags);
458                                 atomic_long_add(v, &zone->vm_stat[i]);
459                                 global_diff[i] += v;
460 #ifdef CONFIG_NUMA
461                                 /* 3 seconds idle till flush */
462                                 p->expire = 3;
463 #endif
464                         }
465                 cond_resched();
466 #ifdef CONFIG_NUMA
467                 /*
468                  * Deal with draining the remote pageset of this
469                  * processor
470                  *
471                  * Check if there are pages remaining in this pageset
472                  * if not then there is nothing to expire.
473                  */
474                 if (!p->expire || !p->pcp.count)
475                         continue;
476
477                 /*
478                  * We never drain zones local to this processor.
479                  */
480                 if (zone_to_nid(zone) == numa_node_id()) {
481                         p->expire = 0;
482                         continue;
483                 }
484
485                 p->expire--;
486                 if (p->expire)
487                         continue;
488
489                 if (p->pcp.count)
490                         drain_zone_pages(zone, &p->pcp);
491 #endif
492         }
493
494         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
495                 if (global_diff[i])
496                         atomic_long_add(global_diff[i], &vm_stat[i]);
497 }
498
499 /*
500  * this is only called if !populated_zone(zone), which implies no other users of
501  * pset->vm_stat_diff[] exsist.
502  */
503 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
504 {
505         int i;
506
507         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
508                 if (pset->vm_stat_diff[i]) {
509                         int v = pset->vm_stat_diff[i];
510                         pset->vm_stat_diff[i] = 0;
511                         atomic_long_add(v, &zone->vm_stat[i]);
512                         atomic_long_add(v, &vm_stat[i]);
513                 }
514 }
515 #endif
516
517 #ifdef CONFIG_NUMA
518 /*
519  * zonelist = the list of zones passed to the allocator
520  * z        = the zone from which the allocation occurred.
521  *
522  * Must be called with interrupts disabled.
523  *
524  * When __GFP_OTHER_NODE is set assume the node of the preferred
525  * zone is the local node. This is useful for daemons who allocate
526  * memory on behalf of other processes.
527  */
528 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
529 {
530         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
531                 __inc_zone_state(z, NUMA_HIT);
532         } else {
533                 __inc_zone_state(z, NUMA_MISS);
534                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
535         }
536         if (z->node == ((flags & __GFP_OTHER_NODE) ?
537                         preferred_zone->node : numa_node_id()))
538                 __inc_zone_state(z, NUMA_LOCAL);
539         else
540                 __inc_zone_state(z, NUMA_OTHER);
541 }
542 #endif
543
544 #ifdef CONFIG_COMPACTION
545
546 struct contig_page_info {
547         unsigned long free_pages;
548         unsigned long free_blocks_total;
549         unsigned long free_blocks_suitable;
550 };
551
552 /*
553  * Calculate the number of free pages in a zone, how many contiguous
554  * pages are free and how many are large enough to satisfy an allocation of
555  * the target size. Note that this function makes no attempt to estimate
556  * how many suitable free blocks there *might* be if MOVABLE pages were
557  * migrated. Calculating that is possible, but expensive and can be
558  * figured out from userspace
559  */
560 static void fill_contig_page_info(struct zone *zone,
561                                 unsigned int suitable_order,
562                                 struct contig_page_info *info)
563 {
564         unsigned int order;
565
566         info->free_pages = 0;
567         info->free_blocks_total = 0;
568         info->free_blocks_suitable = 0;
569
570         for (order = 0; order < MAX_ORDER; order++) {
571                 unsigned long blocks;
572
573                 /* Count number of free blocks */
574                 blocks = zone->free_area[order].nr_free;
575                 info->free_blocks_total += blocks;
576
577                 /* Count free base pages */
578                 info->free_pages += blocks << order;
579
580                 /* Count the suitable free blocks */
581                 if (order >= suitable_order)
582                         info->free_blocks_suitable += blocks <<
583                                                 (order - suitable_order);
584         }
585 }
586
587 /*
588  * A fragmentation index only makes sense if an allocation of a requested
589  * size would fail. If that is true, the fragmentation index indicates
590  * whether external fragmentation or a lack of memory was the problem.
591  * The value can be used to determine if page reclaim or compaction
592  * should be used
593  */
594 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
595 {
596         unsigned long requested = 1UL << order;
597
598         if (!info->free_blocks_total)
599                 return 0;
600
601         /* Fragmentation index only makes sense when a request would fail */
602         if (info->free_blocks_suitable)
603                 return -1000;
604
605         /*
606          * Index is between 0 and 1 so return within 3 decimal places
607          *
608          * 0 => allocation would fail due to lack of memory
609          * 1 => allocation would fail due to fragmentation
610          */
611         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
612 }
613
614 /* Same as __fragmentation index but allocs contig_page_info on stack */
615 int fragmentation_index(struct zone *zone, unsigned int order)
616 {
617         struct contig_page_info info;
618
619         fill_contig_page_info(zone, order, &info);
620         return __fragmentation_index(order, &info);
621 }
622 #endif
623
624 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
625 #include <linux/proc_fs.h>
626 #include <linux/seq_file.h>
627
628 static char * const migratetype_names[MIGRATE_TYPES] = {
629         "Unmovable",
630         "Reclaimable",
631         "Movable",
632         "Reserve",
633 #ifdef CONFIG_CMA
634         "CMA",
635 #endif
636 #ifdef CONFIG_MEMORY_ISOLATION
637         "Isolate",
638 #endif
639 };
640
641 static void *frag_start(struct seq_file *m, loff_t *pos)
642 {
643         pg_data_t *pgdat;
644         loff_t node = *pos;
645         for (pgdat = first_online_pgdat();
646              pgdat && node;
647              pgdat = next_online_pgdat(pgdat))
648                 --node;
649
650         return pgdat;
651 }
652
653 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
654 {
655         pg_data_t *pgdat = (pg_data_t *)arg;
656
657         (*pos)++;
658         return next_online_pgdat(pgdat);
659 }
660
661 static void frag_stop(struct seq_file *m, void *arg)
662 {
663 }
664
665 /* Walk all the zones in a node and print using a callback */
666 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
667                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
668 {
669         struct zone *zone;
670         struct zone *node_zones = pgdat->node_zones;
671         unsigned long flags;
672
673         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
674                 if (!populated_zone(zone))
675                         continue;
676
677                 spin_lock_irqsave(&zone->lock, flags);
678                 print(m, pgdat, zone);
679                 spin_unlock_irqrestore(&zone->lock, flags);
680         }
681 }
682 #endif
683
684 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
685 #ifdef CONFIG_ZONE_DMA
686 #define TEXT_FOR_DMA(xx) xx "_dma",
687 #else
688 #define TEXT_FOR_DMA(xx)
689 #endif
690
691 #ifdef CONFIG_ZONE_DMA32
692 #define TEXT_FOR_DMA32(xx) xx "_dma32",
693 #else
694 #define TEXT_FOR_DMA32(xx)
695 #endif
696
697 #ifdef CONFIG_HIGHMEM
698 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
699 #else
700 #define TEXT_FOR_HIGHMEM(xx)
701 #endif
702
703 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
704                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
705
706 const char * const vmstat_text[] = {
707         /* Zoned VM counters */
708         "nr_free_pages",
709         "nr_inactive_anon",
710         "nr_active_anon",
711         "nr_inactive_file",
712         "nr_active_file",
713         "nr_unevictable",
714         "nr_mlock",
715         "nr_anon_pages",
716         "nr_mapped",
717         "nr_file_pages",
718         "nr_dirty",
719         "nr_writeback",
720         "nr_slab_reclaimable",
721         "nr_slab_unreclaimable",
722         "nr_page_table_pages",
723         "nr_kernel_stack",
724         "nr_unstable",
725         "nr_bounce",
726         "nr_vmscan_write",
727         "nr_vmscan_immediate_reclaim",
728         "nr_writeback_temp",
729         "nr_isolated_anon",
730         "nr_isolated_file",
731         "nr_shmem",
732         "nr_dirtied",
733         "nr_written",
734
735 #ifdef CONFIG_NUMA
736         "numa_hit",
737         "numa_miss",
738         "numa_foreign",
739         "numa_interleave",
740         "numa_local",
741         "numa_other",
742 #endif
743         "nr_anon_transparent_hugepages",
744         "nr_free_cma",
745         "nr_dirty_threshold",
746         "nr_dirty_background_threshold",
747
748 #ifdef CONFIG_VM_EVENT_COUNTERS
749         "pgpgin",
750         "pgpgout",
751         "pswpin",
752         "pswpout",
753
754         TEXTS_FOR_ZONES("pgalloc")
755
756         "pgfree",
757         "pgactivate",
758         "pgdeactivate",
759
760         "pgfault",
761         "pgmajfault",
762
763         TEXTS_FOR_ZONES("pgrefill")
764         TEXTS_FOR_ZONES("pgsteal_kswapd")
765         TEXTS_FOR_ZONES("pgsteal_direct")
766         TEXTS_FOR_ZONES("pgscan_kswapd")
767         TEXTS_FOR_ZONES("pgscan_direct")
768         "pgscan_direct_throttle",
769
770 #ifdef CONFIG_NUMA
771         "zone_reclaim_failed",
772 #endif
773         "pginodesteal",
774         "slabs_scanned",
775         "kswapd_inodesteal",
776         "kswapd_low_wmark_hit_quickly",
777         "kswapd_high_wmark_hit_quickly",
778         "pageoutrun",
779         "allocstall",
780         "slowpath_entered",
781         "pgrotated",
782
783 #ifdef CONFIG_NUMA_BALANCING
784         "numa_pte_updates",
785         "numa_hint_faults",
786         "numa_hint_faults_local",
787         "numa_pages_migrated",
788 #endif
789 #ifdef CONFIG_MIGRATION
790         "pgmigrate_success",
791         "pgmigrate_fail",
792 #endif
793 #ifdef CONFIG_COMPACTION
794         "compact_migrate_scanned",
795         "compact_free_scanned",
796         "compact_isolated",
797         "compact_stall",
798         "compact_fail",
799         "compact_success",
800 #endif
801
802 #ifdef CONFIG_HUGETLB_PAGE
803         "htlb_buddy_alloc_success",
804         "htlb_buddy_alloc_fail",
805 #endif
806         "unevictable_pgs_culled",
807         "unevictable_pgs_scanned",
808         "unevictable_pgs_rescued",
809         "unevictable_pgs_mlocked",
810         "unevictable_pgs_munlocked",
811         "unevictable_pgs_cleared",
812         "unevictable_pgs_stranded",
813
814 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
815         "thp_fault_alloc",
816         "thp_fault_fallback",
817         "thp_collapse_alloc",
818         "thp_collapse_alloc_failed",
819         "thp_split",
820         "thp_zero_page_alloc",
821         "thp_zero_page_alloc_failed",
822 #endif
823
824 #endif /* CONFIG_VM_EVENTS_COUNTERS */
825 };
826 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
827
828
829 #ifdef CONFIG_PROC_FS
830 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
831                                                 struct zone *zone)
832 {
833         int order;
834
835         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
836         for (order = 0; order < MAX_ORDER; ++order)
837                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
838         seq_putc(m, '\n');
839 }
840
841 /*
842  * This walks the free areas for each zone.
843  */
844 static int frag_show(struct seq_file *m, void *arg)
845 {
846         pg_data_t *pgdat = (pg_data_t *)arg;
847         walk_zones_in_node(m, pgdat, frag_show_print);
848         return 0;
849 }
850
851 static void pagetypeinfo_showfree_print(struct seq_file *m,
852                                         pg_data_t *pgdat, struct zone *zone)
853 {
854         int order, mtype;
855
856         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
857                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
858                                         pgdat->node_id,
859                                         zone->name,
860                                         migratetype_names[mtype]);
861                 for (order = 0; order < MAX_ORDER; ++order) {
862                         unsigned long freecount = 0;
863                         struct free_area *area;
864                         struct list_head *curr;
865
866                         area = &(zone->free_area[order]);
867
868                         list_for_each(curr, &area->free_list[mtype])
869                                 freecount++;
870                         seq_printf(m, "%6lu ", freecount);
871                 }
872                 seq_putc(m, '\n');
873         }
874 }
875
876 /* Print out the free pages at each order for each migatetype */
877 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
878 {
879         int order;
880         pg_data_t *pgdat = (pg_data_t *)arg;
881
882         /* Print header */
883         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
884         for (order = 0; order < MAX_ORDER; ++order)
885                 seq_printf(m, "%6d ", order);
886         seq_putc(m, '\n');
887
888         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
889
890         return 0;
891 }
892
893 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
894                                         pg_data_t *pgdat, struct zone *zone)
895 {
896         int mtype;
897         unsigned long pfn;
898         unsigned long start_pfn = zone->zone_start_pfn;
899         unsigned long end_pfn = zone_end_pfn(zone);
900         unsigned long count[MIGRATE_TYPES] = { 0, };
901
902         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
903                 struct page *page;
904
905                 if (!pfn_valid(pfn))
906                         continue;
907
908                 page = pfn_to_page(pfn);
909
910                 /* Watch for unexpected holes punched in the memmap */
911                 if (!memmap_valid_within(pfn, page, zone))
912                         continue;
913
914                 mtype = get_pageblock_migratetype(page);
915
916                 if (mtype < MIGRATE_TYPES)
917                         count[mtype]++;
918         }
919
920         /* Print counts */
921         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
922         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
923                 seq_printf(m, "%12lu ", count[mtype]);
924         seq_putc(m, '\n');
925 }
926
927 /* Print out the free pages at each order for each migratetype */
928 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
929 {
930         int mtype;
931         pg_data_t *pgdat = (pg_data_t *)arg;
932
933         seq_printf(m, "\n%-23s", "Number of blocks type ");
934         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
935                 seq_printf(m, "%12s ", migratetype_names[mtype]);
936         seq_putc(m, '\n');
937         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
938
939         return 0;
940 }
941
942 /*
943  * This prints out statistics in relation to grouping pages by mobility.
944  * It is expensive to collect so do not constantly read the file.
945  */
946 static int pagetypeinfo_show(struct seq_file *m, void *arg)
947 {
948         pg_data_t *pgdat = (pg_data_t *)arg;
949
950         /* check memoryless node */
951         if (!node_state(pgdat->node_id, N_MEMORY))
952                 return 0;
953
954         seq_printf(m, "Page block order: %d\n", pageblock_order);
955         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
956         seq_putc(m, '\n');
957         pagetypeinfo_showfree(m, pgdat);
958         pagetypeinfo_showblockcount(m, pgdat);
959
960         return 0;
961 }
962
963 static const struct seq_operations fragmentation_op = {
964         .start  = frag_start,
965         .next   = frag_next,
966         .stop   = frag_stop,
967         .show   = frag_show,
968 };
969
970 static int fragmentation_open(struct inode *inode, struct file *file)
971 {
972         return seq_open(file, &fragmentation_op);
973 }
974
975 static const struct file_operations fragmentation_file_operations = {
976         .open           = fragmentation_open,
977         .read           = seq_read,
978         .llseek         = seq_lseek,
979         .release        = seq_release,
980 };
981
982 static const struct seq_operations pagetypeinfo_op = {
983         .start  = frag_start,
984         .next   = frag_next,
985         .stop   = frag_stop,
986         .show   = pagetypeinfo_show,
987 };
988
989 static int pagetypeinfo_open(struct inode *inode, struct file *file)
990 {
991         return seq_open(file, &pagetypeinfo_op);
992 }
993
994 static const struct file_operations pagetypeinfo_file_ops = {
995         .open           = pagetypeinfo_open,
996         .read           = seq_read,
997         .llseek         = seq_lseek,
998         .release        = seq_release,
999 };
1000
1001 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1002                                                         struct zone *zone)
1003 {
1004         int i;
1005         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1006         seq_printf(m,
1007                    "\n  pages free     %lu"
1008                    "\n        min      %lu"
1009                    "\n        low      %lu"
1010                    "\n        high     %lu"
1011                    "\n        scanned  %lu"
1012                    "\n        spanned  %lu"
1013                    "\n        present  %lu"
1014                    "\n        managed  %lu",
1015                    zone_page_state(zone, NR_FREE_PAGES),
1016                    min_wmark_pages(zone),
1017                    low_wmark_pages(zone),
1018                    high_wmark_pages(zone),
1019                    zone->pages_scanned,
1020                    zone->spanned_pages,
1021                    zone->present_pages,
1022                    zone->managed_pages);
1023
1024         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1025                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1026                                 zone_page_state(zone, i));
1027
1028         seq_printf(m,
1029                    "\n        protection: (%lu",
1030                    zone->lowmem_reserve[0]);
1031         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1032                 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1033         seq_printf(m,
1034                    ")"
1035                    "\n  pagesets");
1036         for_each_online_cpu(i) {
1037                 struct per_cpu_pageset *pageset;
1038
1039                 pageset = per_cpu_ptr(zone->pageset, i);
1040                 seq_printf(m,
1041                            "\n    cpu: %i"
1042                            "\n              count: %i"
1043                            "\n              high:  %i"
1044                            "\n              batch: %i",
1045                            i,
1046                            pageset->pcp.count,
1047                            pageset->pcp.high,
1048                            pageset->pcp.batch);
1049 #ifdef CONFIG_SMP
1050                 seq_printf(m, "\n  vm stats threshold: %d",
1051                                 pageset->stat_threshold);
1052 #endif
1053         }
1054         seq_printf(m,
1055                    "\n  all_unreclaimable: %u"
1056                    "\n  start_pfn:         %lu"
1057                    "\n  inactive_ratio:    %u",
1058                    !zone_reclaimable(zone),
1059                    zone->zone_start_pfn,
1060                    zone->inactive_ratio);
1061         seq_putc(m, '\n');
1062 }
1063
1064 /*
1065  * Output information about zones in @pgdat.
1066  */
1067 static int zoneinfo_show(struct seq_file *m, void *arg)
1068 {
1069         pg_data_t *pgdat = (pg_data_t *)arg;
1070         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1071         return 0;
1072 }
1073
1074 static const struct seq_operations zoneinfo_op = {
1075         .start  = frag_start, /* iterate over all zones. The same as in
1076                                * fragmentation. */
1077         .next   = frag_next,
1078         .stop   = frag_stop,
1079         .show   = zoneinfo_show,
1080 };
1081
1082 static int zoneinfo_open(struct inode *inode, struct file *file)
1083 {
1084         return seq_open(file, &zoneinfo_op);
1085 }
1086
1087 static const struct file_operations proc_zoneinfo_file_operations = {
1088         .open           = zoneinfo_open,
1089         .read           = seq_read,
1090         .llseek         = seq_lseek,
1091         .release        = seq_release,
1092 };
1093
1094 enum writeback_stat_item {
1095         NR_DIRTY_THRESHOLD,
1096         NR_DIRTY_BG_THRESHOLD,
1097         NR_VM_WRITEBACK_STAT_ITEMS,
1098 };
1099
1100 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1101 {
1102         unsigned long *v;
1103         int i, stat_items_size;
1104
1105         if (*pos >= ARRAY_SIZE(vmstat_text))
1106                 return NULL;
1107         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1108                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1109
1110 #ifdef CONFIG_VM_EVENT_COUNTERS
1111         stat_items_size += sizeof(struct vm_event_state);
1112 #endif
1113
1114         v = kmalloc(stat_items_size, GFP_KERNEL);
1115         m->private = v;
1116         if (!v)
1117                 return ERR_PTR(-ENOMEM);
1118         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1119                 v[i] = global_page_state(i);
1120         v += NR_VM_ZONE_STAT_ITEMS;
1121
1122         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1123                             v + NR_DIRTY_THRESHOLD);
1124         v += NR_VM_WRITEBACK_STAT_ITEMS;
1125
1126 #ifdef CONFIG_VM_EVENT_COUNTERS
1127         all_vm_events(v);
1128         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1129         v[PGPGOUT] /= 2;
1130 #endif
1131         return (unsigned long *)m->private + *pos;
1132 }
1133
1134 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1135 {
1136         (*pos)++;
1137         if (*pos >= ARRAY_SIZE(vmstat_text))
1138                 return NULL;
1139         return (unsigned long *)m->private + *pos;
1140 }
1141
1142 static int vmstat_show(struct seq_file *m, void *arg)
1143 {
1144         unsigned long *l = arg;
1145         unsigned long off = l - (unsigned long *)m->private;
1146
1147         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1148         return 0;
1149 }
1150
1151 static void vmstat_stop(struct seq_file *m, void *arg)
1152 {
1153         kfree(m->private);
1154         m->private = NULL;
1155 }
1156
1157 static const struct seq_operations vmstat_op = {
1158         .start  = vmstat_start,
1159         .next   = vmstat_next,
1160         .stop   = vmstat_stop,
1161         .show   = vmstat_show,
1162 };
1163
1164 static int vmstat_open(struct inode *inode, struct file *file)
1165 {
1166         return seq_open(file, &vmstat_op);
1167 }
1168
1169 static const struct file_operations proc_vmstat_file_operations = {
1170         .open           = vmstat_open,
1171         .read           = seq_read,
1172         .llseek         = seq_lseek,
1173         .release        = seq_release,
1174 };
1175 #endif /* CONFIG_PROC_FS */
1176
1177 #ifdef CONFIG_SMP
1178 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1179 int sysctl_stat_interval __read_mostly = HZ;
1180
1181 static void vmstat_update(struct work_struct *w)
1182 {
1183         refresh_cpu_vm_stats(smp_processor_id());
1184         schedule_delayed_work(&__get_cpu_var(vmstat_work),
1185                 round_jiffies_relative(sysctl_stat_interval));
1186 }
1187
1188 static void __cpuinit start_cpu_timer(int cpu)
1189 {
1190         struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1191
1192         INIT_DEFERRABLE_WORK(work, vmstat_update);
1193         schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1194 }
1195
1196 /*
1197  * Use the cpu notifier to insure that the thresholds are recalculated
1198  * when necessary.
1199  */
1200 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1201                 unsigned long action,
1202                 void *hcpu)
1203 {
1204         long cpu = (long)hcpu;
1205
1206         switch (action) {
1207         case CPU_ONLINE:
1208         case CPU_ONLINE_FROZEN:
1209                 refresh_zone_stat_thresholds();
1210                 start_cpu_timer(cpu);
1211                 node_set_state(cpu_to_node(cpu), N_CPU);
1212                 break;
1213         case CPU_DOWN_PREPARE:
1214         case CPU_DOWN_PREPARE_FROZEN:
1215                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1216                 per_cpu(vmstat_work, cpu).work.func = NULL;
1217                 break;
1218         case CPU_DOWN_FAILED:
1219         case CPU_DOWN_FAILED_FROZEN:
1220                 start_cpu_timer(cpu);
1221                 break;
1222         case CPU_DEAD:
1223         case CPU_DEAD_FROZEN:
1224                 refresh_zone_stat_thresholds();
1225                 break;
1226         default:
1227                 break;
1228         }
1229         return NOTIFY_OK;
1230 }
1231
1232 static struct notifier_block __cpuinitdata vmstat_notifier =
1233         { &vmstat_cpuup_callback, NULL, 0 };
1234 #endif
1235
1236 static int __init setup_vmstat(void)
1237 {
1238 #ifdef CONFIG_SMP
1239         int cpu;
1240
1241         register_cpu_notifier(&vmstat_notifier);
1242
1243         for_each_online_cpu(cpu)
1244                 start_cpu_timer(cpu);
1245 #endif
1246 #ifdef CONFIG_PROC_FS
1247         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1248         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1249         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1250         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1251 #endif
1252         return 0;
1253 }
1254 module_init(setup_vmstat)
1255
1256 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1257 #include <linux/debugfs.h>
1258
1259
1260 /*
1261  * Return an index indicating how much of the available free memory is
1262  * unusable for an allocation of the requested size.
1263  */
1264 static int unusable_free_index(unsigned int order,
1265                                 struct contig_page_info *info)
1266 {
1267         /* No free memory is interpreted as all free memory is unusable */
1268         if (info->free_pages == 0)
1269                 return 1000;
1270
1271         /*
1272          * Index should be a value between 0 and 1. Return a value to 3
1273          * decimal places.
1274          *
1275          * 0 => no fragmentation
1276          * 1 => high fragmentation
1277          */
1278         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1279
1280 }
1281
1282 static void unusable_show_print(struct seq_file *m,
1283                                         pg_data_t *pgdat, struct zone *zone)
1284 {
1285         unsigned int order;
1286         int index;
1287         struct contig_page_info info;
1288
1289         seq_printf(m, "Node %d, zone %8s ",
1290                                 pgdat->node_id,
1291                                 zone->name);
1292         for (order = 0; order < MAX_ORDER; ++order) {
1293                 fill_contig_page_info(zone, order, &info);
1294                 index = unusable_free_index(order, &info);
1295                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1296         }
1297
1298         seq_putc(m, '\n');
1299 }
1300
1301 /*
1302  * Display unusable free space index
1303  *
1304  * The unusable free space index measures how much of the available free
1305  * memory cannot be used to satisfy an allocation of a given size and is a
1306  * value between 0 and 1. The higher the value, the more of free memory is
1307  * unusable and by implication, the worse the external fragmentation is. This
1308  * can be expressed as a percentage by multiplying by 100.
1309  */
1310 static int unusable_show(struct seq_file *m, void *arg)
1311 {
1312         pg_data_t *pgdat = (pg_data_t *)arg;
1313
1314         /* check memoryless node */
1315         if (!node_state(pgdat->node_id, N_MEMORY))
1316                 return 0;
1317
1318         walk_zones_in_node(m, pgdat, unusable_show_print);
1319
1320         return 0;
1321 }
1322
1323 static const struct seq_operations unusable_op = {
1324         .start  = frag_start,
1325         .next   = frag_next,
1326         .stop   = frag_stop,
1327         .show   = unusable_show,
1328 };
1329
1330 static int unusable_open(struct inode *inode, struct file *file)
1331 {
1332         return seq_open(file, &unusable_op);
1333 }
1334
1335 static const struct file_operations unusable_file_ops = {
1336         .open           = unusable_open,
1337         .read           = seq_read,
1338         .llseek         = seq_lseek,
1339         .release        = seq_release,
1340 };
1341
1342 static void extfrag_show_print(struct seq_file *m,
1343                                         pg_data_t *pgdat, struct zone *zone)
1344 {
1345         unsigned int order;
1346         int index;
1347
1348         /* Alloc on stack as interrupts are disabled for zone walk */
1349         struct contig_page_info info;
1350
1351         seq_printf(m, "Node %d, zone %8s ",
1352                                 pgdat->node_id,
1353                                 zone->name);
1354         for (order = 0; order < MAX_ORDER; ++order) {
1355                 fill_contig_page_info(zone, order, &info);
1356                 index = __fragmentation_index(order, &info);
1357                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1358         }
1359
1360         seq_putc(m, '\n');
1361 }
1362
1363 /*
1364  * Display fragmentation index for orders that allocations would fail for
1365  */
1366 static int extfrag_show(struct seq_file *m, void *arg)
1367 {
1368         pg_data_t *pgdat = (pg_data_t *)arg;
1369
1370         walk_zones_in_node(m, pgdat, extfrag_show_print);
1371
1372         return 0;
1373 }
1374
1375 static const struct seq_operations extfrag_op = {
1376         .start  = frag_start,
1377         .next   = frag_next,
1378         .stop   = frag_stop,
1379         .show   = extfrag_show,
1380 };
1381
1382 static int extfrag_open(struct inode *inode, struct file *file)
1383 {
1384         return seq_open(file, &extfrag_op);
1385 }
1386
1387 static const struct file_operations extfrag_file_ops = {
1388         .open           = extfrag_open,
1389         .read           = seq_read,
1390         .llseek         = seq_lseek,
1391         .release        = seq_release,
1392 };
1393
1394 static int __init extfrag_debug_init(void)
1395 {
1396         struct dentry *extfrag_debug_root;
1397
1398         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1399         if (!extfrag_debug_root)
1400                 return -ENOMEM;
1401
1402         if (!debugfs_create_file("unusable_index", 0444,
1403                         extfrag_debug_root, NULL, &unusable_file_ops))
1404                 goto fail;
1405
1406         if (!debugfs_create_file("extfrag_index", 0444,
1407                         extfrag_debug_root, NULL, &extfrag_file_ops))
1408                 goto fail;
1409
1410         return 0;
1411 fail:
1412         debugfs_remove_recursive(extfrag_debug_root);
1413         return -ENOMEM;
1414 }
1415
1416 module_init(extfrag_debug_init);
1417 #endif