4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 unsigned long hibernation_mode;
70 /* This context's GFP mask */
75 /* Can mapped pages be reclaimed? */
78 /* Can pages be swapped as part of reclaim? */
83 /* Scan (total_size >> priority) pages at once */
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
90 struct mem_cgroup *target_mem_cgroup;
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
104 if ((_page)->lru.prev != _base) { \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
118 if ((_page)->lru.prev != _base) { \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 * From 0 .. 100. Higher means more swappy.
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
139 static bool global_reclaim(struct scan_control *sc)
141 return !sc->target_mem_cgroup;
144 static bool global_reclaim(struct scan_control *sc)
150 unsigned long zone_reclaimable_pages(struct zone *zone)
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
164 bool zone_reclaimable(struct zone *zone)
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
171 if (!mem_cgroup_disabled())
172 return mem_cgroup_get_lru_size(lruvec, lru);
174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
178 * Add a shrinker callback to be called from the vm.
180 int register_shrinker(struct shrinker *shrinker)
182 size_t size = sizeof(*shrinker->nr_deferred);
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
204 EXPORT_SYMBOL(register_shrinker);
209 void unregister_shrinker(struct shrinker *shrinker)
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
214 kfree(shrinker->nr_deferred);
216 EXPORT_SYMBOL(unregister_shrinker);
218 #define SHRINK_BATCH 128
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
224 unsigned long freed = 0;
225 unsigned long long delta;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
234 max_pass = shrinker->count_objects(shrinker, shrinkctl);
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
248 do_div(delta, lru_pages + 1);
250 if (total_scan < 0) {
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
253 shrinker->scan_objects, total_scan);
254 total_scan = max_pass;
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
285 * Normally, we should not scan less than batch_size objects in one
286 * pass to avoid too frequent shrinker calls, but if the slab has less
287 * than batch_size objects in total and we are really tight on memory,
288 * we will try to reclaim all available objects, otherwise we can end
289 * up failing allocations although there are plenty of reclaimable
290 * objects spread over several slabs with usage less than the
293 * We detect the "tight on memory" situations by looking at the total
294 * number of objects we want to scan (total_scan). If it is greater
295 * than the total number of objects on slab (max_pass), we must be
296 * scanning at high prio and therefore should try to reclaim as much as
299 while (total_scan >= batch_size ||
300 total_scan >= max_pass) {
302 unsigned long nr_to_scan = min(batch_size, total_scan);
304 shrinkctl->nr_to_scan = nr_to_scan;
305 ret = shrinker->scan_objects(shrinker, shrinkctl);
306 if (ret == SHRINK_STOP)
310 count_vm_events(SLABS_SCANNED, nr_to_scan);
311 total_scan -= nr_to_scan;
317 * move the unused scan count back into the shrinker in a
318 * manner that handles concurrent updates. If we exhausted the
319 * scan, there is no need to do an update.
322 new_nr = atomic_long_add_return(total_scan,
323 &shrinker->nr_deferred[nid]);
325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
332 * Call the shrink functions to age shrinkable caches
334 * Here we assume it costs one seek to replace a lru page and that it also
335 * takes a seek to recreate a cache object. With this in mind we age equal
336 * percentages of the lru and ageable caches. This should balance the seeks
337 * generated by these structures.
339 * If the vm encountered mapped pages on the LRU it increase the pressure on
340 * slab to avoid swapping.
342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
344 * `lru_pages' represents the number of on-LRU pages in all the zones which
345 * are eligible for the caller's allocation attempt. It is used for balancing
346 * slab reclaim versus page reclaim.
348 * Returns the number of slab objects which we shrunk.
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351 unsigned long nr_pages_scanned,
352 unsigned long lru_pages)
354 struct shrinker *shrinker;
355 unsigned long freed = 0;
357 if (nr_pages_scanned == 0)
358 nr_pages_scanned = SWAP_CLUSTER_MAX;
360 if (!down_read_trylock(&shrinker_rwsem)) {
362 * If we would return 0, our callers would understand that we
363 * have nothing else to shrink and give up trying. By returning
364 * 1 we keep it going and assume we'll be able to shrink next
371 list_for_each_entry(shrinker, &shrinker_list, list) {
372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
374 freed += shrink_slab_node(shrinkctl, shrinker,
375 nr_pages_scanned, lru_pages);
379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 if (node_online(shrinkctl->nid))
381 freed += shrink_slab_node(shrinkctl, shrinker,
382 nr_pages_scanned, lru_pages);
386 up_read(&shrinker_rwsem);
392 static inline int is_page_cache_freeable(struct page *page)
395 * A freeable page cache page is referenced only by the caller
396 * that isolated the page, the page cache radix tree and
397 * optional buffer heads at page->private.
399 return page_count(page) - page_has_private(page) == 2;
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403 struct scan_control *sc)
405 if (current->flags & PF_SWAPWRITE)
407 if (!bdi_write_congested(bdi))
409 if (bdi == current->backing_dev_info)
415 * We detected a synchronous write error writing a page out. Probably
416 * -ENOSPC. We need to propagate that into the address_space for a subsequent
417 * fsync(), msync() or close().
419 * The tricky part is that after writepage we cannot touch the mapping: nothing
420 * prevents it from being freed up. But we have a ref on the page and once
421 * that page is locked, the mapping is pinned.
423 * We're allowed to run sleeping lock_page() here because we know the caller has
426 static void handle_write_error(struct address_space *mapping,
427 struct page *page, int error)
430 if (page_mapping(page) == mapping)
431 mapping_set_error(mapping, error);
435 /* possible outcome of pageout() */
437 /* failed to write page out, page is locked */
439 /* move page to the active list, page is locked */
441 /* page has been sent to the disk successfully, page is unlocked */
443 /* page is clean and locked */
448 * pageout is called by shrink_page_list() for each dirty page.
449 * Calls ->writepage().
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452 struct scan_control *sc)
455 * If the page is dirty, only perform writeback if that write
456 * will be non-blocking. To prevent this allocation from being
457 * stalled by pagecache activity. But note that there may be
458 * stalls if we need to run get_block(). We could test
459 * PagePrivate for that.
461 * If this process is currently in __generic_file_aio_write() against
462 * this page's queue, we can perform writeback even if that
465 * If the page is swapcache, write it back even if that would
466 * block, for some throttling. This happens by accident, because
467 * swap_backing_dev_info is bust: it doesn't reflect the
468 * congestion state of the swapdevs. Easy to fix, if needed.
470 if (!is_page_cache_freeable(page))
474 * Some data journaling orphaned pages can have
475 * page->mapping == NULL while being dirty with clean buffers.
477 if (page_has_private(page)) {
478 if (try_to_free_buffers(page)) {
479 ClearPageDirty(page);
480 printk("%s: orphaned page\n", __func__);
486 if (mapping->a_ops->writepage == NULL)
487 return PAGE_ACTIVATE;
488 if (!may_write_to_queue(mapping->backing_dev_info, sc))
491 if (clear_page_dirty_for_io(page)) {
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = SWAP_CLUSTER_MAX,
497 .range_end = LLONG_MAX,
501 SetPageReclaim(page);
502 res = mapping->a_ops->writepage(page, &wbc);
504 handle_write_error(mapping, page, res);
505 if (res == AOP_WRITEPAGE_ACTIVATE) {
506 ClearPageReclaim(page);
507 return PAGE_ACTIVATE;
510 if (!PageWriteback(page)) {
511 /* synchronous write or broken a_ops? */
512 ClearPageReclaim(page);
514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515 inc_zone_page_state(page, NR_VMSCAN_WRITE);
523 * Same as remove_mapping, but if the page is removed from the mapping, it
524 * gets returned with a refcount of 0.
526 static int __remove_mapping(struct address_space *mapping, struct page *page)
528 BUG_ON(!PageLocked(page));
529 BUG_ON(mapping != page_mapping(page));
531 spin_lock_irq(&mapping->tree_lock);
533 * The non racy check for a busy page.
535 * Must be careful with the order of the tests. When someone has
536 * a ref to the page, it may be possible that they dirty it then
537 * drop the reference. So if PageDirty is tested before page_count
538 * here, then the following race may occur:
540 * get_user_pages(&page);
541 * [user mapping goes away]
543 * !PageDirty(page) [good]
544 * SetPageDirty(page);
546 * !page_count(page) [good, discard it]
548 * [oops, our write_to data is lost]
550 * Reversing the order of the tests ensures such a situation cannot
551 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
552 * load is not satisfied before that of page->_count.
554 * Note that if SetPageDirty is always performed via set_page_dirty,
555 * and thus under tree_lock, then this ordering is not required.
557 if (!page_freeze_refs(page, 2))
559 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
560 if (unlikely(PageDirty(page))) {
561 page_unfreeze_refs(page, 2);
565 if (PageSwapCache(page)) {
566 swp_entry_t swap = { .val = page_private(page) };
567 __delete_from_swap_cache(page);
568 spin_unlock_irq(&mapping->tree_lock);
569 swapcache_free(swap, page);
571 void (*freepage)(struct page *);
573 freepage = mapping->a_ops->freepage;
575 __delete_from_page_cache(page);
576 spin_unlock_irq(&mapping->tree_lock);
577 mem_cgroup_uncharge_cache_page(page);
579 if (freepage != NULL)
586 spin_unlock_irq(&mapping->tree_lock);
591 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
592 * someone else has a ref on the page, abort and return 0. If it was
593 * successfully detached, return 1. Assumes the caller has a single ref on
596 int remove_mapping(struct address_space *mapping, struct page *page)
598 if (__remove_mapping(mapping, page)) {
600 * Unfreezing the refcount with 1 rather than 2 effectively
601 * drops the pagecache ref for us without requiring another
604 page_unfreeze_refs(page, 1);
611 * putback_lru_page - put previously isolated page onto appropriate LRU list
612 * @page: page to be put back to appropriate lru list
614 * Add previously isolated @page to appropriate LRU list.
615 * Page may still be unevictable for other reasons.
617 * lru_lock must not be held, interrupts must be enabled.
619 void putback_lru_page(struct page *page)
622 int was_unevictable = PageUnevictable(page);
624 VM_BUG_ON_PAGE(PageLRU(page), page);
627 ClearPageUnevictable(page);
629 if (page_evictable(page)) {
631 * For evictable pages, we can use the cache.
632 * In event of a race, worst case is we end up with an
633 * unevictable page on [in]active list.
634 * We know how to handle that.
636 is_unevictable = false;
640 * Put unevictable pages directly on zone's unevictable
643 is_unevictable = true;
644 add_page_to_unevictable_list(page);
646 * When racing with an mlock or AS_UNEVICTABLE clearing
647 * (page is unlocked) make sure that if the other thread
648 * does not observe our setting of PG_lru and fails
649 * isolation/check_move_unevictable_pages,
650 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
651 * the page back to the evictable list.
653 * The other side is TestClearPageMlocked() or shmem_lock().
659 * page's status can change while we move it among lru. If an evictable
660 * page is on unevictable list, it never be freed. To avoid that,
661 * check after we added it to the list, again.
663 if (is_unevictable && page_evictable(page)) {
664 if (!isolate_lru_page(page)) {
668 /* This means someone else dropped this page from LRU
669 * So, it will be freed or putback to LRU again. There is
670 * nothing to do here.
674 if (was_unevictable && !is_unevictable)
675 count_vm_event(UNEVICTABLE_PGRESCUED);
676 else if (!was_unevictable && is_unevictable)
677 count_vm_event(UNEVICTABLE_PGCULLED);
679 put_page(page); /* drop ref from isolate */
682 enum page_references {
684 PAGEREF_RECLAIM_CLEAN,
689 static enum page_references page_check_references(struct page *page,
690 struct scan_control *sc)
692 int referenced_ptes, referenced_page;
693 unsigned long vm_flags;
695 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
697 referenced_page = TestClearPageReferenced(page);
700 * Mlock lost the isolation race with us. Let try_to_unmap()
701 * move the page to the unevictable list.
703 if (vm_flags & VM_LOCKED)
704 return PAGEREF_RECLAIM;
706 if (referenced_ptes) {
707 if (PageSwapBacked(page))
708 return PAGEREF_ACTIVATE;
710 * All mapped pages start out with page table
711 * references from the instantiating fault, so we need
712 * to look twice if a mapped file page is used more
715 * Mark it and spare it for another trip around the
716 * inactive list. Another page table reference will
717 * lead to its activation.
719 * Note: the mark is set for activated pages as well
720 * so that recently deactivated but used pages are
723 SetPageReferenced(page);
725 if (referenced_page || referenced_ptes > 1)
726 return PAGEREF_ACTIVATE;
729 * Activate file-backed executable pages after first usage.
731 if (vm_flags & VM_EXEC)
732 return PAGEREF_ACTIVATE;
737 /* Reclaim if clean, defer dirty pages to writeback */
738 if (referenced_page && !PageSwapBacked(page))
739 return PAGEREF_RECLAIM_CLEAN;
741 return PAGEREF_RECLAIM;
744 /* Check if a page is dirty or under writeback */
745 static void page_check_dirty_writeback(struct page *page,
746 bool *dirty, bool *writeback)
748 struct address_space *mapping;
751 * Anonymous pages are not handled by flushers and must be written
752 * from reclaim context. Do not stall reclaim based on them
754 if (!page_is_file_cache(page)) {
760 /* By default assume that the page flags are accurate */
761 *dirty = PageDirty(page);
762 *writeback = PageWriteback(page);
764 /* Verify dirty/writeback state if the filesystem supports it */
765 if (!page_has_private(page))
768 mapping = page_mapping(page);
769 if (mapping && mapping->a_ops->is_dirty_writeback)
770 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
774 * shrink_page_list() returns the number of reclaimed pages
776 static unsigned long shrink_page_list(struct list_head *page_list,
778 struct scan_control *sc,
779 enum ttu_flags ttu_flags,
780 unsigned long *ret_nr_dirty,
781 unsigned long *ret_nr_unqueued_dirty,
782 unsigned long *ret_nr_congested,
783 unsigned long *ret_nr_writeback,
784 unsigned long *ret_nr_immediate,
787 LIST_HEAD(ret_pages);
788 LIST_HEAD(free_pages);
790 unsigned long nr_unqueued_dirty = 0;
791 unsigned long nr_dirty = 0;
792 unsigned long nr_congested = 0;
793 unsigned long nr_reclaimed = 0;
794 unsigned long nr_writeback = 0;
795 unsigned long nr_immediate = 0;
799 mem_cgroup_uncharge_start();
800 while (!list_empty(page_list)) {
801 struct address_space *mapping;
804 enum page_references references = PAGEREF_RECLAIM_CLEAN;
805 bool dirty, writeback;
809 page = lru_to_page(page_list);
810 list_del(&page->lru);
812 if (!trylock_page(page))
815 VM_BUG_ON_PAGE(PageActive(page), page);
816 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
820 if (unlikely(!page_evictable(page)))
823 if (!sc->may_unmap && page_mapped(page))
826 /* Double the slab pressure for mapped and swapcache pages */
827 if (page_mapped(page) || PageSwapCache(page))
830 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
831 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
834 * The number of dirty pages determines if a zone is marked
835 * reclaim_congested which affects wait_iff_congested. kswapd
836 * will stall and start writing pages if the tail of the LRU
837 * is all dirty unqueued pages.
839 page_check_dirty_writeback(page, &dirty, &writeback);
840 if (dirty || writeback)
843 if (dirty && !writeback)
847 * Treat this page as congested if the underlying BDI is or if
848 * pages are cycling through the LRU so quickly that the
849 * pages marked for immediate reclaim are making it to the
850 * end of the LRU a second time.
852 mapping = page_mapping(page);
853 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
854 (writeback && PageReclaim(page)))
858 * If a page at the tail of the LRU is under writeback, there
859 * are three cases to consider.
861 * 1) If reclaim is encountering an excessive number of pages
862 * under writeback and this page is both under writeback and
863 * PageReclaim then it indicates that pages are being queued
864 * for IO but are being recycled through the LRU before the
865 * IO can complete. Waiting on the page itself risks an
866 * indefinite stall if it is impossible to writeback the
867 * page due to IO error or disconnected storage so instead
868 * note that the LRU is being scanned too quickly and the
869 * caller can stall after page list has been processed.
871 * 2) Global reclaim encounters a page, memcg encounters a
872 * page that is not marked for immediate reclaim or
873 * the caller does not have __GFP_IO. In this case mark
874 * the page for immediate reclaim and continue scanning.
876 * __GFP_IO is checked because a loop driver thread might
877 * enter reclaim, and deadlock if it waits on a page for
878 * which it is needed to do the write (loop masks off
879 * __GFP_IO|__GFP_FS for this reason); but more thought
880 * would probably show more reasons.
882 * Don't require __GFP_FS, since we're not going into the
883 * FS, just waiting on its writeback completion. Worryingly,
884 * ext4 gfs2 and xfs allocate pages with
885 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
886 * may_enter_fs here is liable to OOM on them.
888 * 3) memcg encounters a page that is not already marked
889 * PageReclaim. memcg does not have any dirty pages
890 * throttling so we could easily OOM just because too many
891 * pages are in writeback and there is nothing else to
892 * reclaim. Wait for the writeback to complete.
894 if (PageWriteback(page)) {
896 if (current_is_kswapd() &&
898 zone_is_reclaim_writeback(zone)) {
903 } else if (global_reclaim(sc) ||
904 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
906 * This is slightly racy - end_page_writeback()
907 * might have just cleared PageReclaim, then
908 * setting PageReclaim here end up interpreted
909 * as PageReadahead - but that does not matter
910 * enough to care. What we do want is for this
911 * page to have PageReclaim set next time memcg
912 * reclaim reaches the tests above, so it will
913 * then wait_on_page_writeback() to avoid OOM;
914 * and it's also appropriate in global reclaim.
916 SetPageReclaim(page);
923 wait_on_page_writeback(page);
928 references = page_check_references(page, sc);
930 switch (references) {
931 case PAGEREF_ACTIVATE:
932 goto activate_locked;
935 case PAGEREF_RECLAIM:
936 case PAGEREF_RECLAIM_CLEAN:
937 ; /* try to reclaim the page below */
941 * Anonymous process memory has backing store?
942 * Try to allocate it some swap space here.
944 if (PageAnon(page) && !PageSwapCache(page)) {
945 if (!(sc->gfp_mask & __GFP_IO))
947 if (!add_to_swap(page, page_list))
948 goto activate_locked;
951 /* Adding to swap updated mapping */
952 mapping = page_mapping(page);
956 * The page is mapped into the page tables of one or more
957 * processes. Try to unmap it here.
959 if (page_mapped(page) && mapping) {
960 switch (try_to_unmap(page, ttu_flags)) {
962 goto activate_locked;
968 ; /* try to free the page below */
972 if (PageDirty(page)) {
974 * Only kswapd can writeback filesystem pages to
975 * avoid risk of stack overflow but only writeback
976 * if many dirty pages have been encountered.
978 if (page_is_file_cache(page) &&
979 (!current_is_kswapd() ||
980 !zone_is_reclaim_dirty(zone))) {
982 * Immediately reclaim when written back.
983 * Similar in principal to deactivate_page()
984 * except we already have the page isolated
985 * and know it's dirty
987 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
988 SetPageReclaim(page);
993 if (references == PAGEREF_RECLAIM_CLEAN)
997 if (!sc->may_writepage)
1000 /* Page is dirty, try to write it out here */
1001 switch (pageout(page, mapping, sc)) {
1005 goto activate_locked;
1007 if (PageWriteback(page))
1009 if (PageDirty(page))
1013 * A synchronous write - probably a ramdisk. Go
1014 * ahead and try to reclaim the page.
1016 if (!trylock_page(page))
1018 if (PageDirty(page) || PageWriteback(page))
1020 mapping = page_mapping(page);
1022 ; /* try to free the page below */
1027 * If the page has buffers, try to free the buffer mappings
1028 * associated with this page. If we succeed we try to free
1031 * We do this even if the page is PageDirty().
1032 * try_to_release_page() does not perform I/O, but it is
1033 * possible for a page to have PageDirty set, but it is actually
1034 * clean (all its buffers are clean). This happens if the
1035 * buffers were written out directly, with submit_bh(). ext3
1036 * will do this, as well as the blockdev mapping.
1037 * try_to_release_page() will discover that cleanness and will
1038 * drop the buffers and mark the page clean - it can be freed.
1040 * Rarely, pages can have buffers and no ->mapping. These are
1041 * the pages which were not successfully invalidated in
1042 * truncate_complete_page(). We try to drop those buffers here
1043 * and if that worked, and the page is no longer mapped into
1044 * process address space (page_count == 1) it can be freed.
1045 * Otherwise, leave the page on the LRU so it is swappable.
1047 if (page_has_private(page)) {
1048 if (!try_to_release_page(page, sc->gfp_mask))
1049 goto activate_locked;
1050 if (!mapping && page_count(page) == 1) {
1052 if (put_page_testzero(page))
1056 * rare race with speculative reference.
1057 * the speculative reference will free
1058 * this page shortly, so we may
1059 * increment nr_reclaimed here (and
1060 * leave it off the LRU).
1068 if (!mapping || !__remove_mapping(mapping, page))
1072 * At this point, we have no other references and there is
1073 * no way to pick any more up (removed from LRU, removed
1074 * from pagecache). Can use non-atomic bitops now (and
1075 * we obviously don't have to worry about waking up a process
1076 * waiting on the page lock, because there are no references.
1078 __clear_page_locked(page);
1083 * Is there need to periodically free_page_list? It would
1084 * appear not as the counts should be low
1086 list_add(&page->lru, &free_pages);
1090 if (PageSwapCache(page))
1091 try_to_free_swap(page);
1093 putback_lru_page(page);
1097 /* Not a candidate for swapping, so reclaim swap space. */
1098 if (PageSwapCache(page) && vm_swap_full())
1099 try_to_free_swap(page);
1100 VM_BUG_ON_PAGE(PageActive(page), page);
1101 SetPageActive(page);
1106 list_add(&page->lru, &ret_pages);
1107 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1110 free_hot_cold_page_list(&free_pages, 1);
1112 list_splice(&ret_pages, page_list);
1113 count_vm_events(PGACTIVATE, pgactivate);
1114 mem_cgroup_uncharge_end();
1115 *ret_nr_dirty += nr_dirty;
1116 *ret_nr_congested += nr_congested;
1117 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1118 *ret_nr_writeback += nr_writeback;
1119 *ret_nr_immediate += nr_immediate;
1120 return nr_reclaimed;
1123 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1124 struct list_head *page_list)
1126 struct scan_control sc = {
1127 .gfp_mask = GFP_KERNEL,
1128 .priority = DEF_PRIORITY,
1131 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1132 struct page *page, *next;
1133 LIST_HEAD(clean_pages);
1135 list_for_each_entry_safe(page, next, page_list, lru) {
1136 if (page_is_file_cache(page) && !PageDirty(page) &&
1137 !isolated_balloon_page(page)) {
1138 ClearPageActive(page);
1139 list_move(&page->lru, &clean_pages);
1143 ret = shrink_page_list(&clean_pages, zone, &sc,
1144 TTU_UNMAP|TTU_IGNORE_ACCESS,
1145 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1146 list_splice(&clean_pages, page_list);
1147 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1152 * Attempt to remove the specified page from its LRU. Only take this page
1153 * if it is of the appropriate PageActive status. Pages which are being
1154 * freed elsewhere are also ignored.
1156 * page: page to consider
1157 * mode: one of the LRU isolation modes defined above
1159 * returns 0 on success, -ve errno on failure.
1161 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1165 /* Only take pages on the LRU. */
1169 /* Compaction should not handle unevictable pages but CMA can do so */
1170 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1176 * To minimise LRU disruption, the caller can indicate that it only
1177 * wants to isolate pages it will be able to operate on without
1178 * blocking - clean pages for the most part.
1180 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1181 * is used by reclaim when it is cannot write to backing storage
1183 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1184 * that it is possible to migrate without blocking
1186 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1187 /* All the caller can do on PageWriteback is block */
1188 if (PageWriteback(page))
1191 if (PageDirty(page)) {
1192 struct address_space *mapping;
1194 /* ISOLATE_CLEAN means only clean pages */
1195 if (mode & ISOLATE_CLEAN)
1199 * Only pages without mappings or that have a
1200 * ->migratepage callback are possible to migrate
1203 mapping = page_mapping(page);
1204 if (mapping && !mapping->a_ops->migratepage)
1209 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1212 if (likely(get_page_unless_zero(page))) {
1214 * Be careful not to clear PageLRU until after we're
1215 * sure the page is not being freed elsewhere -- the
1216 * page release code relies on it.
1226 * zone->lru_lock is heavily contended. Some of the functions that
1227 * shrink the lists perform better by taking out a batch of pages
1228 * and working on them outside the LRU lock.
1230 * For pagecache intensive workloads, this function is the hottest
1231 * spot in the kernel (apart from copy_*_user functions).
1233 * Appropriate locks must be held before calling this function.
1235 * @nr_to_scan: The number of pages to look through on the list.
1236 * @lruvec: The LRU vector to pull pages from.
1237 * @dst: The temp list to put pages on to.
1238 * @nr_scanned: The number of pages that were scanned.
1239 * @sc: The scan_control struct for this reclaim session
1240 * @mode: One of the LRU isolation modes
1241 * @lru: LRU list id for isolating
1243 * returns how many pages were moved onto *@dst.
1245 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1246 struct lruvec *lruvec, struct list_head *dst,
1247 unsigned long *nr_scanned, struct scan_control *sc,
1248 isolate_mode_t mode, enum lru_list lru)
1250 struct list_head *src = &lruvec->lists[lru];
1251 unsigned long nr_taken = 0;
1254 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1258 page = lru_to_page(src);
1259 prefetchw_prev_lru_page(page, src, flags);
1261 VM_BUG_ON_PAGE(!PageLRU(page), page);
1263 switch (__isolate_lru_page(page, mode)) {
1265 nr_pages = hpage_nr_pages(page);
1266 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1267 list_move(&page->lru, dst);
1268 nr_taken += nr_pages;
1272 /* else it is being freed elsewhere */
1273 list_move(&page->lru, src);
1282 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1283 nr_taken, mode, is_file_lru(lru));
1288 * isolate_lru_page - tries to isolate a page from its LRU list
1289 * @page: page to isolate from its LRU list
1291 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1292 * vmstat statistic corresponding to whatever LRU list the page was on.
1294 * Returns 0 if the page was removed from an LRU list.
1295 * Returns -EBUSY if the page was not on an LRU list.
1297 * The returned page will have PageLRU() cleared. If it was found on
1298 * the active list, it will have PageActive set. If it was found on
1299 * the unevictable list, it will have the PageUnevictable bit set. That flag
1300 * may need to be cleared by the caller before letting the page go.
1302 * The vmstat statistic corresponding to the list on which the page was
1303 * found will be decremented.
1306 * (1) Must be called with an elevated refcount on the page. This is a
1307 * fundamentnal difference from isolate_lru_pages (which is called
1308 * without a stable reference).
1309 * (2) the lru_lock must not be held.
1310 * (3) interrupts must be enabled.
1312 int isolate_lru_page(struct page *page)
1316 VM_BUG_ON_PAGE(!page_count(page), page);
1318 if (PageLRU(page)) {
1319 struct zone *zone = page_zone(page);
1320 struct lruvec *lruvec;
1322 spin_lock_irq(&zone->lru_lock);
1323 lruvec = mem_cgroup_page_lruvec(page, zone);
1324 if (PageLRU(page)) {
1325 int lru = page_lru(page);
1328 del_page_from_lru_list(page, lruvec, lru);
1331 spin_unlock_irq(&zone->lru_lock);
1337 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1338 * then get resheduled. When there are massive number of tasks doing page
1339 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1340 * the LRU list will go small and be scanned faster than necessary, leading to
1341 * unnecessary swapping, thrashing and OOM.
1343 static int too_many_isolated(struct zone *zone, int file,
1344 struct scan_control *sc)
1346 unsigned long inactive, isolated;
1348 if (current_is_kswapd())
1351 if (!global_reclaim(sc))
1355 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1356 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1358 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1359 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1363 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1364 * won't get blocked by normal direct-reclaimers, forming a circular
1367 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1370 return isolated > inactive;
1373 static noinline_for_stack void
1374 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1376 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1377 struct zone *zone = lruvec_zone(lruvec);
1378 LIST_HEAD(pages_to_free);
1381 * Put back any unfreeable pages.
1383 while (!list_empty(page_list)) {
1384 struct page *page = lru_to_page(page_list);
1387 VM_BUG_ON_PAGE(PageLRU(page), page);
1388 list_del(&page->lru);
1389 if (unlikely(!page_evictable(page))) {
1390 spin_unlock_irq(&zone->lru_lock);
1391 putback_lru_page(page);
1392 spin_lock_irq(&zone->lru_lock);
1396 lruvec = mem_cgroup_page_lruvec(page, zone);
1399 lru = page_lru(page);
1400 add_page_to_lru_list(page, lruvec, lru);
1402 if (is_active_lru(lru)) {
1403 int file = is_file_lru(lru);
1404 int numpages = hpage_nr_pages(page);
1405 reclaim_stat->recent_rotated[file] += numpages;
1407 if (put_page_testzero(page)) {
1408 __ClearPageLRU(page);
1409 __ClearPageActive(page);
1410 del_page_from_lru_list(page, lruvec, lru);
1412 if (unlikely(PageCompound(page))) {
1413 spin_unlock_irq(&zone->lru_lock);
1414 (*get_compound_page_dtor(page))(page);
1415 spin_lock_irq(&zone->lru_lock);
1417 list_add(&page->lru, &pages_to_free);
1422 * To save our caller's stack, now use input list for pages to free.
1424 list_splice(&pages_to_free, page_list);
1428 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1429 * of reclaimed pages
1431 static noinline_for_stack unsigned long
1432 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1433 struct scan_control *sc, enum lru_list lru)
1435 LIST_HEAD(page_list);
1436 unsigned long nr_scanned;
1437 unsigned long nr_reclaimed = 0;
1438 unsigned long nr_taken;
1439 unsigned long nr_dirty = 0;
1440 unsigned long nr_congested = 0;
1441 unsigned long nr_unqueued_dirty = 0;
1442 unsigned long nr_writeback = 0;
1443 unsigned long nr_immediate = 0;
1444 isolate_mode_t isolate_mode = 0;
1445 int file = is_file_lru(lru);
1446 struct zone *zone = lruvec_zone(lruvec);
1447 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1449 while (unlikely(too_many_isolated(zone, file, sc))) {
1450 congestion_wait(BLK_RW_ASYNC, HZ/10);
1452 /* We are about to die and free our memory. Return now. */
1453 if (fatal_signal_pending(current))
1454 return SWAP_CLUSTER_MAX;
1460 isolate_mode |= ISOLATE_UNMAPPED;
1461 if (!sc->may_writepage)
1462 isolate_mode |= ISOLATE_CLEAN;
1464 spin_lock_irq(&zone->lru_lock);
1466 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1467 &nr_scanned, sc, isolate_mode, lru);
1469 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1470 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1472 if (global_reclaim(sc)) {
1473 zone->pages_scanned += nr_scanned;
1474 if (current_is_kswapd())
1475 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1477 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1479 spin_unlock_irq(&zone->lru_lock);
1484 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1485 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1486 &nr_writeback, &nr_immediate,
1489 spin_lock_irq(&zone->lru_lock);
1491 reclaim_stat->recent_scanned[file] += nr_taken;
1493 if (global_reclaim(sc)) {
1494 if (current_is_kswapd())
1495 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1498 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1502 putback_inactive_pages(lruvec, &page_list);
1504 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1506 spin_unlock_irq(&zone->lru_lock);
1508 free_hot_cold_page_list(&page_list, 1);
1511 * If reclaim is isolating dirty pages under writeback, it implies
1512 * that the long-lived page allocation rate is exceeding the page
1513 * laundering rate. Either the global limits are not being effective
1514 * at throttling processes due to the page distribution throughout
1515 * zones or there is heavy usage of a slow backing device. The
1516 * only option is to throttle from reclaim context which is not ideal
1517 * as there is no guarantee the dirtying process is throttled in the
1518 * same way balance_dirty_pages() manages.
1520 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1521 * of pages under pages flagged for immediate reclaim and stall if any
1522 * are encountered in the nr_immediate check below.
1524 if (nr_writeback && nr_writeback == nr_taken)
1525 zone_set_flag(zone, ZONE_WRITEBACK);
1528 * memcg will stall in page writeback so only consider forcibly
1529 * stalling for global reclaim
1531 if (global_reclaim(sc)) {
1533 * Tag a zone as congested if all the dirty pages scanned were
1534 * backed by a congested BDI and wait_iff_congested will stall.
1536 if (nr_dirty && nr_dirty == nr_congested)
1537 zone_set_flag(zone, ZONE_CONGESTED);
1540 * If dirty pages are scanned that are not queued for IO, it
1541 * implies that flushers are not keeping up. In this case, flag
1542 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1543 * pages from reclaim context. It will forcibly stall in the
1546 if (nr_unqueued_dirty == nr_taken)
1547 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1550 * In addition, if kswapd scans pages marked marked for
1551 * immediate reclaim and under writeback (nr_immediate), it
1552 * implies that pages are cycling through the LRU faster than
1553 * they are written so also forcibly stall.
1555 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1556 congestion_wait(BLK_RW_ASYNC, HZ/10);
1560 * Stall direct reclaim for IO completions if underlying BDIs or zone
1561 * is congested. Allow kswapd to continue until it starts encountering
1562 * unqueued dirty pages or cycling through the LRU too quickly.
1564 if (!sc->hibernation_mode && !current_is_kswapd())
1565 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1567 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1569 nr_scanned, nr_reclaimed,
1571 trace_shrink_flags(file));
1572 return nr_reclaimed;
1576 * This moves pages from the active list to the inactive list.
1578 * We move them the other way if the page is referenced by one or more
1579 * processes, from rmap.
1581 * If the pages are mostly unmapped, the processing is fast and it is
1582 * appropriate to hold zone->lru_lock across the whole operation. But if
1583 * the pages are mapped, the processing is slow (page_referenced()) so we
1584 * should drop zone->lru_lock around each page. It's impossible to balance
1585 * this, so instead we remove the pages from the LRU while processing them.
1586 * It is safe to rely on PG_active against the non-LRU pages in here because
1587 * nobody will play with that bit on a non-LRU page.
1589 * The downside is that we have to touch page->_count against each page.
1590 * But we had to alter page->flags anyway.
1593 static void move_active_pages_to_lru(struct lruvec *lruvec,
1594 struct list_head *list,
1595 struct list_head *pages_to_free,
1598 struct zone *zone = lruvec_zone(lruvec);
1599 unsigned long pgmoved = 0;
1603 while (!list_empty(list)) {
1604 page = lru_to_page(list);
1605 lruvec = mem_cgroup_page_lruvec(page, zone);
1607 VM_BUG_ON_PAGE(PageLRU(page), page);
1610 nr_pages = hpage_nr_pages(page);
1611 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1612 list_move(&page->lru, &lruvec->lists[lru]);
1613 pgmoved += nr_pages;
1615 if (put_page_testzero(page)) {
1616 __ClearPageLRU(page);
1617 __ClearPageActive(page);
1618 del_page_from_lru_list(page, lruvec, lru);
1620 if (unlikely(PageCompound(page))) {
1621 spin_unlock_irq(&zone->lru_lock);
1622 (*get_compound_page_dtor(page))(page);
1623 spin_lock_irq(&zone->lru_lock);
1625 list_add(&page->lru, pages_to_free);
1628 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1629 if (!is_active_lru(lru))
1630 __count_vm_events(PGDEACTIVATE, pgmoved);
1633 static void shrink_active_list(unsigned long nr_to_scan,
1634 struct lruvec *lruvec,
1635 struct scan_control *sc,
1638 unsigned long nr_taken;
1639 unsigned long nr_scanned;
1640 unsigned long vm_flags;
1641 LIST_HEAD(l_hold); /* The pages which were snipped off */
1642 LIST_HEAD(l_active);
1643 LIST_HEAD(l_inactive);
1645 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1646 unsigned long nr_rotated = 0;
1647 isolate_mode_t isolate_mode = 0;
1648 int file = is_file_lru(lru);
1649 struct zone *zone = lruvec_zone(lruvec);
1654 isolate_mode |= ISOLATE_UNMAPPED;
1655 if (!sc->may_writepage)
1656 isolate_mode |= ISOLATE_CLEAN;
1658 spin_lock_irq(&zone->lru_lock);
1660 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1661 &nr_scanned, sc, isolate_mode, lru);
1662 if (global_reclaim(sc))
1663 zone->pages_scanned += nr_scanned;
1665 reclaim_stat->recent_scanned[file] += nr_taken;
1667 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1668 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1669 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1670 spin_unlock_irq(&zone->lru_lock);
1672 while (!list_empty(&l_hold)) {
1674 page = lru_to_page(&l_hold);
1675 list_del(&page->lru);
1677 if (unlikely(!page_evictable(page))) {
1678 putback_lru_page(page);
1682 if (unlikely(buffer_heads_over_limit)) {
1683 if (page_has_private(page) && trylock_page(page)) {
1684 if (page_has_private(page))
1685 try_to_release_page(page, 0);
1690 if (page_referenced(page, 0, sc->target_mem_cgroup,
1692 nr_rotated += hpage_nr_pages(page);
1694 * Identify referenced, file-backed active pages and
1695 * give them one more trip around the active list. So
1696 * that executable code get better chances to stay in
1697 * memory under moderate memory pressure. Anon pages
1698 * are not likely to be evicted by use-once streaming
1699 * IO, plus JVM can create lots of anon VM_EXEC pages,
1700 * so we ignore them here.
1702 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1703 list_add(&page->lru, &l_active);
1708 ClearPageActive(page); /* we are de-activating */
1709 list_add(&page->lru, &l_inactive);
1713 * Move pages back to the lru list.
1715 spin_lock_irq(&zone->lru_lock);
1717 * Count referenced pages from currently used mappings as rotated,
1718 * even though only some of them are actually re-activated. This
1719 * helps balance scan pressure between file and anonymous pages in
1722 reclaim_stat->recent_rotated[file] += nr_rotated;
1724 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1725 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1726 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1727 spin_unlock_irq(&zone->lru_lock);
1729 free_hot_cold_page_list(&l_hold, 1);
1733 static int inactive_anon_is_low_global(struct zone *zone)
1735 unsigned long active, inactive;
1737 active = zone_page_state(zone, NR_ACTIVE_ANON);
1738 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1740 if (inactive * zone->inactive_ratio < active)
1747 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1748 * @lruvec: LRU vector to check
1750 * Returns true if the zone does not have enough inactive anon pages,
1751 * meaning some active anon pages need to be deactivated.
1753 static int inactive_anon_is_low(struct lruvec *lruvec)
1756 * If we don't have swap space, anonymous page deactivation
1759 if (!total_swap_pages)
1762 if (!mem_cgroup_disabled())
1763 return mem_cgroup_inactive_anon_is_low(lruvec);
1765 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1768 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1775 * inactive_file_is_low - check if file pages need to be deactivated
1776 * @lruvec: LRU vector to check
1778 * When the system is doing streaming IO, memory pressure here
1779 * ensures that active file pages get deactivated, until more
1780 * than half of the file pages are on the inactive list.
1782 * Once we get to that situation, protect the system's working
1783 * set from being evicted by disabling active file page aging.
1785 * This uses a different ratio than the anonymous pages, because
1786 * the page cache uses a use-once replacement algorithm.
1788 static int inactive_file_is_low(struct lruvec *lruvec)
1790 unsigned long inactive;
1791 unsigned long active;
1793 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1794 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1796 return active > inactive;
1799 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1801 if (is_file_lru(lru))
1802 return inactive_file_is_low(lruvec);
1804 return inactive_anon_is_low(lruvec);
1807 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1808 struct lruvec *lruvec, struct scan_control *sc)
1810 if (is_active_lru(lru)) {
1811 if (inactive_list_is_low(lruvec, lru))
1812 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1816 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1819 static int vmscan_swappiness(struct scan_control *sc)
1821 if (global_reclaim(sc))
1822 return vm_swappiness;
1823 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1834 * Determine how aggressively the anon and file LRU lists should be
1835 * scanned. The relative value of each set of LRU lists is determined
1836 * by looking at the fraction of the pages scanned we did rotate back
1837 * onto the active list instead of evict.
1839 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1840 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1842 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1845 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1847 u64 denominator = 0; /* gcc */
1848 struct zone *zone = lruvec_zone(lruvec);
1849 unsigned long anon_prio, file_prio;
1850 enum scan_balance scan_balance;
1851 unsigned long anon, file, free;
1852 bool force_scan = false;
1853 unsigned long ap, fp;
1857 * If the zone or memcg is small, nr[l] can be 0. This
1858 * results in no scanning on this priority and a potential
1859 * priority drop. Global direct reclaim can go to the next
1860 * zone and tends to have no problems. Global kswapd is for
1861 * zone balancing and it needs to scan a minimum amount. When
1862 * reclaiming for a memcg, a priority drop can cause high
1863 * latencies, so it's better to scan a minimum amount there as
1866 if (current_is_kswapd() && !zone_reclaimable(zone))
1868 if (!global_reclaim(sc))
1871 /* If we have no swap space, do not bother scanning anon pages. */
1872 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1873 scan_balance = SCAN_FILE;
1878 * Global reclaim will swap to prevent OOM even with no
1879 * swappiness, but memcg users want to use this knob to
1880 * disable swapping for individual groups completely when
1881 * using the memory controller's swap limit feature would be
1884 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1885 scan_balance = SCAN_FILE;
1890 * Do not apply any pressure balancing cleverness when the
1891 * system is close to OOM, scan both anon and file equally
1892 * (unless the swappiness setting disagrees with swapping).
1894 if (!sc->priority && vmscan_swappiness(sc)) {
1895 scan_balance = SCAN_EQUAL;
1899 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1900 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1901 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1902 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1905 * If it's foreseeable that reclaiming the file cache won't be
1906 * enough to get the zone back into a desirable shape, we have
1907 * to swap. Better start now and leave the - probably heavily
1908 * thrashing - remaining file pages alone.
1910 if (global_reclaim(sc)) {
1911 free = zone_page_state(zone, NR_FREE_PAGES);
1912 if (unlikely(file + free <= high_wmark_pages(zone))) {
1913 scan_balance = SCAN_ANON;
1919 * There is enough inactive page cache, do not reclaim
1920 * anything from the anonymous working set right now.
1922 if (!inactive_file_is_low(lruvec)) {
1923 scan_balance = SCAN_FILE;
1927 scan_balance = SCAN_FRACT;
1930 * With swappiness at 100, anonymous and file have the same priority.
1931 * This scanning priority is essentially the inverse of IO cost.
1933 anon_prio = vmscan_swappiness(sc);
1934 file_prio = 200 - anon_prio;
1937 * OK, so we have swap space and a fair amount of page cache
1938 * pages. We use the recently rotated / recently scanned
1939 * ratios to determine how valuable each cache is.
1941 * Because workloads change over time (and to avoid overflow)
1942 * we keep these statistics as a floating average, which ends
1943 * up weighing recent references more than old ones.
1945 * anon in [0], file in [1]
1947 spin_lock_irq(&zone->lru_lock);
1948 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1949 reclaim_stat->recent_scanned[0] /= 2;
1950 reclaim_stat->recent_rotated[0] /= 2;
1953 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1954 reclaim_stat->recent_scanned[1] /= 2;
1955 reclaim_stat->recent_rotated[1] /= 2;
1959 * The amount of pressure on anon vs file pages is inversely
1960 * proportional to the fraction of recently scanned pages on
1961 * each list that were recently referenced and in active use.
1963 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1964 ap /= reclaim_stat->recent_rotated[0] + 1;
1966 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1967 fp /= reclaim_stat->recent_rotated[1] + 1;
1968 spin_unlock_irq(&zone->lru_lock);
1972 denominator = ap + fp + 1;
1974 for_each_evictable_lru(lru) {
1975 int file = is_file_lru(lru);
1979 size = get_lru_size(lruvec, lru);
1980 scan = size >> sc->priority;
1982 if (!scan && force_scan)
1983 scan = min(size, SWAP_CLUSTER_MAX);
1985 switch (scan_balance) {
1987 /* Scan lists relative to size */
1991 * Scan types proportional to swappiness and
1992 * their relative recent reclaim efficiency.
1994 scan = div64_u64(scan * fraction[file], denominator);
1998 /* Scan one type exclusively */
1999 if ((scan_balance == SCAN_FILE) != file)
2003 /* Look ma, no brain */
2011 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2013 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2015 unsigned long nr[NR_LRU_LISTS];
2016 unsigned long targets[NR_LRU_LISTS];
2017 unsigned long nr_to_scan;
2019 unsigned long nr_reclaimed = 0;
2020 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2021 struct blk_plug plug;
2022 bool scan_adjusted = false;
2024 get_scan_count(lruvec, sc, nr);
2026 /* Record the original scan target for proportional adjustments later */
2027 memcpy(targets, nr, sizeof(nr));
2029 blk_start_plug(&plug);
2030 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2031 nr[LRU_INACTIVE_FILE]) {
2032 unsigned long nr_anon, nr_file, percentage;
2033 unsigned long nr_scanned;
2035 for_each_evictable_lru(lru) {
2037 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2038 nr[lru] -= nr_to_scan;
2040 nr_reclaimed += shrink_list(lru, nr_to_scan,
2045 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2049 * For global direct reclaim, reclaim only the number of pages
2050 * requested. Less care is taken to scan proportionally as it
2051 * is more important to minimise direct reclaim stall latency
2052 * than it is to properly age the LRU lists.
2054 if (global_reclaim(sc) && !current_is_kswapd())
2058 * For kswapd and memcg, reclaim at least the number of pages
2059 * requested. Ensure that the anon and file LRUs shrink
2060 * proportionally what was requested by get_scan_count(). We
2061 * stop reclaiming one LRU and reduce the amount scanning
2062 * proportional to the original scan target.
2064 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2065 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2067 if (nr_file > nr_anon) {
2068 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2069 targets[LRU_ACTIVE_ANON] + 1;
2071 percentage = nr_anon * 100 / scan_target;
2073 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2074 targets[LRU_ACTIVE_FILE] + 1;
2076 percentage = nr_file * 100 / scan_target;
2079 /* Stop scanning the smaller of the LRU */
2081 nr[lru + LRU_ACTIVE] = 0;
2084 * Recalculate the other LRU scan count based on its original
2085 * scan target and the percentage scanning already complete
2087 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2088 nr_scanned = targets[lru] - nr[lru];
2089 nr[lru] = targets[lru] * (100 - percentage) / 100;
2090 nr[lru] -= min(nr[lru], nr_scanned);
2093 nr_scanned = targets[lru] - nr[lru];
2094 nr[lru] = targets[lru] * (100 - percentage) / 100;
2095 nr[lru] -= min(nr[lru], nr_scanned);
2097 scan_adjusted = true;
2099 blk_finish_plug(&plug);
2100 sc->nr_reclaimed += nr_reclaimed;
2103 * Even if we did not try to evict anon pages at all, we want to
2104 * rebalance the anon lru active/inactive ratio.
2106 if (inactive_anon_is_low(lruvec))
2107 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2108 sc, LRU_ACTIVE_ANON);
2110 throttle_vm_writeout(sc->gfp_mask);
2113 /* Use reclaim/compaction for costly allocs or under memory pressure */
2114 static bool in_reclaim_compaction(struct scan_control *sc)
2116 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2117 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2118 sc->priority < DEF_PRIORITY - 2))
2125 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2126 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2127 * true if more pages should be reclaimed such that when the page allocator
2128 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2129 * It will give up earlier than that if there is difficulty reclaiming pages.
2131 static inline bool should_continue_reclaim(struct zone *zone,
2132 unsigned long nr_reclaimed,
2133 unsigned long nr_scanned,
2134 struct scan_control *sc)
2136 unsigned long pages_for_compaction;
2137 unsigned long inactive_lru_pages;
2139 /* If not in reclaim/compaction mode, stop */
2140 if (!in_reclaim_compaction(sc))
2143 /* Consider stopping depending on scan and reclaim activity */
2144 if (sc->gfp_mask & __GFP_REPEAT) {
2146 * For __GFP_REPEAT allocations, stop reclaiming if the
2147 * full LRU list has been scanned and we are still failing
2148 * to reclaim pages. This full LRU scan is potentially
2149 * expensive but a __GFP_REPEAT caller really wants to succeed
2151 if (!nr_reclaimed && !nr_scanned)
2155 * For non-__GFP_REPEAT allocations which can presumably
2156 * fail without consequence, stop if we failed to reclaim
2157 * any pages from the last SWAP_CLUSTER_MAX number of
2158 * pages that were scanned. This will return to the
2159 * caller faster at the risk reclaim/compaction and
2160 * the resulting allocation attempt fails
2167 * If we have not reclaimed enough pages for compaction and the
2168 * inactive lists are large enough, continue reclaiming
2170 pages_for_compaction = (2UL << sc->order);
2171 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2172 if (get_nr_swap_pages() > 0)
2173 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2174 if (sc->nr_reclaimed < pages_for_compaction &&
2175 inactive_lru_pages > pages_for_compaction)
2178 /* If compaction would go ahead or the allocation would succeed, stop */
2179 switch (compaction_suitable(zone, sc->order)) {
2180 case COMPACT_PARTIAL:
2181 case COMPACT_CONTINUE:
2188 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2190 unsigned long nr_reclaimed, nr_scanned;
2193 struct mem_cgroup *root = sc->target_mem_cgroup;
2194 struct mem_cgroup_reclaim_cookie reclaim = {
2196 .priority = sc->priority,
2198 struct mem_cgroup *memcg;
2200 nr_reclaimed = sc->nr_reclaimed;
2201 nr_scanned = sc->nr_scanned;
2203 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2205 struct lruvec *lruvec;
2207 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2209 shrink_lruvec(lruvec, sc);
2212 * Direct reclaim and kswapd have to scan all memory
2213 * cgroups to fulfill the overall scan target for the
2216 * Limit reclaim, on the other hand, only cares about
2217 * nr_to_reclaim pages to be reclaimed and it will
2218 * retry with decreasing priority if one round over the
2219 * whole hierarchy is not sufficient.
2221 if (!global_reclaim(sc) &&
2222 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2223 mem_cgroup_iter_break(root, memcg);
2226 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2229 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2230 sc->nr_scanned - nr_scanned,
2231 sc->nr_reclaimed - nr_reclaimed);
2233 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2234 sc->nr_scanned - nr_scanned, sc));
2237 /* Returns true if compaction should go ahead for a high-order request */
2238 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2240 unsigned long balance_gap, watermark;
2243 /* Do not consider compaction for orders reclaim is meant to satisfy */
2244 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2248 * Compaction takes time to run and there are potentially other
2249 * callers using the pages just freed. Continue reclaiming until
2250 * there is a buffer of free pages available to give compaction
2251 * a reasonable chance of completing and allocating the page
2253 balance_gap = min(low_wmark_pages(zone),
2254 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2255 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2256 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2257 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2260 * If compaction is deferred, reclaim up to a point where
2261 * compaction will have a chance of success when re-enabled
2263 if (compaction_deferred(zone, sc->order))
2264 return watermark_ok;
2266 /* If compaction is not ready to start, keep reclaiming */
2267 if (!compaction_suitable(zone, sc->order))
2270 return watermark_ok;
2274 * This is the direct reclaim path, for page-allocating processes. We only
2275 * try to reclaim pages from zones which will satisfy the caller's allocation
2278 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2280 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2282 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2283 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2284 * zone defense algorithm.
2286 * If a zone is deemed to be full of pinned pages then just give it a light
2287 * scan then give up on it.
2289 * This function returns true if a zone is being reclaimed for a costly
2290 * high-order allocation and compaction is ready to begin. This indicates to
2291 * the caller that it should consider retrying the allocation instead of
2294 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2298 unsigned long nr_soft_reclaimed;
2299 unsigned long nr_soft_scanned;
2300 bool aborted_reclaim = false;
2303 * If the number of buffer_heads in the machine exceeds the maximum
2304 * allowed level, force direct reclaim to scan the highmem zone as
2305 * highmem pages could be pinning lowmem pages storing buffer_heads
2307 if (buffer_heads_over_limit)
2308 sc->gfp_mask |= __GFP_HIGHMEM;
2310 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2311 gfp_zone(sc->gfp_mask), sc->nodemask) {
2312 if (!populated_zone(zone))
2315 * Take care memory controller reclaiming has small influence
2318 if (global_reclaim(sc)) {
2319 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2321 if (sc->priority != DEF_PRIORITY &&
2322 !zone_reclaimable(zone))
2323 continue; /* Let kswapd poll it */
2324 if (IS_ENABLED(CONFIG_COMPACTION)) {
2326 * If we already have plenty of memory free for
2327 * compaction in this zone, don't free any more.
2328 * Even though compaction is invoked for any
2329 * non-zero order, only frequent costly order
2330 * reclamation is disruptive enough to become a
2331 * noticeable problem, like transparent huge
2334 if (compaction_ready(zone, sc)) {
2335 aborted_reclaim = true;
2340 * This steals pages from memory cgroups over softlimit
2341 * and returns the number of reclaimed pages and
2342 * scanned pages. This works for global memory pressure
2343 * and balancing, not for a memcg's limit.
2345 nr_soft_scanned = 0;
2346 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2347 sc->order, sc->gfp_mask,
2349 sc->nr_reclaimed += nr_soft_reclaimed;
2350 sc->nr_scanned += nr_soft_scanned;
2351 /* need some check for avoid more shrink_zone() */
2354 shrink_zone(zone, sc);
2357 return aborted_reclaim;
2360 /* All zones in zonelist are unreclaimable? */
2361 static bool all_unreclaimable(struct zonelist *zonelist,
2362 struct scan_control *sc)
2367 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2368 gfp_zone(sc->gfp_mask), sc->nodemask) {
2369 if (!populated_zone(zone))
2371 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2373 if (zone_reclaimable(zone))
2381 * This is the main entry point to direct page reclaim.
2383 * If a full scan of the inactive list fails to free enough memory then we
2384 * are "out of memory" and something needs to be killed.
2386 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2387 * high - the zone may be full of dirty or under-writeback pages, which this
2388 * caller can't do much about. We kick the writeback threads and take explicit
2389 * naps in the hope that some of these pages can be written. But if the
2390 * allocating task holds filesystem locks which prevent writeout this might not
2391 * work, and the allocation attempt will fail.
2393 * returns: 0, if no pages reclaimed
2394 * else, the number of pages reclaimed
2396 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2397 struct scan_control *sc,
2398 struct shrink_control *shrink)
2400 unsigned long total_scanned = 0;
2401 struct reclaim_state *reclaim_state = current->reclaim_state;
2404 unsigned long writeback_threshold;
2405 bool aborted_reclaim;
2407 delayacct_freepages_start();
2409 if (global_reclaim(sc))
2410 count_vm_event(ALLOCSTALL);
2413 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2416 aborted_reclaim = shrink_zones(zonelist, sc);
2419 * Don't shrink slabs when reclaiming memory from over limit
2420 * cgroups but do shrink slab at least once when aborting
2421 * reclaim for compaction to avoid unevenly scanning file/anon
2422 * LRU pages over slab pages.
2424 if (global_reclaim(sc)) {
2425 unsigned long lru_pages = 0;
2427 nodes_clear(shrink->nodes_to_scan);
2428 for_each_zone_zonelist(zone, z, zonelist,
2429 gfp_zone(sc->gfp_mask)) {
2430 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2433 lru_pages += zone_reclaimable_pages(zone);
2434 node_set(zone_to_nid(zone),
2435 shrink->nodes_to_scan);
2438 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2439 if (reclaim_state) {
2440 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2441 reclaim_state->reclaimed_slab = 0;
2444 total_scanned += sc->nr_scanned;
2445 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2449 * If we're getting trouble reclaiming, start doing
2450 * writepage even in laptop mode.
2452 if (sc->priority < DEF_PRIORITY - 2)
2453 sc->may_writepage = 1;
2456 * Try to write back as many pages as we just scanned. This
2457 * tends to cause slow streaming writers to write data to the
2458 * disk smoothly, at the dirtying rate, which is nice. But
2459 * that's undesirable in laptop mode, where we *want* lumpy
2460 * writeout. So in laptop mode, write out the whole world.
2462 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2463 if (total_scanned > writeback_threshold) {
2464 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2465 WB_REASON_TRY_TO_FREE_PAGES);
2466 sc->may_writepage = 1;
2468 } while (--sc->priority >= 0 && !aborted_reclaim);
2471 delayacct_freepages_end();
2473 if (sc->nr_reclaimed)
2474 return sc->nr_reclaimed;
2477 * As hibernation is going on, kswapd is freezed so that it can't mark
2478 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2481 if (oom_killer_disabled)
2484 /* Aborted reclaim to try compaction? don't OOM, then */
2485 if (aborted_reclaim)
2488 /* top priority shrink_zones still had more to do? don't OOM, then */
2489 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2495 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2498 unsigned long pfmemalloc_reserve = 0;
2499 unsigned long free_pages = 0;
2503 for (i = 0; i <= ZONE_NORMAL; i++) {
2504 zone = &pgdat->node_zones[i];
2505 pfmemalloc_reserve += min_wmark_pages(zone);
2506 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2509 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2511 /* kswapd must be awake if processes are being throttled */
2512 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2513 pgdat->classzone_idx = min(pgdat->classzone_idx,
2514 (enum zone_type)ZONE_NORMAL);
2515 wake_up_interruptible(&pgdat->kswapd_wait);
2522 * Throttle direct reclaimers if backing storage is backed by the network
2523 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2524 * depleted. kswapd will continue to make progress and wake the processes
2525 * when the low watermark is reached.
2527 * Returns true if a fatal signal was delivered during throttling. If this
2528 * happens, the page allocator should not consider triggering the OOM killer.
2530 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2531 nodemask_t *nodemask)
2534 int high_zoneidx = gfp_zone(gfp_mask);
2538 * Kernel threads should not be throttled as they may be indirectly
2539 * responsible for cleaning pages necessary for reclaim to make forward
2540 * progress. kjournald for example may enter direct reclaim while
2541 * committing a transaction where throttling it could forcing other
2542 * processes to block on log_wait_commit().
2544 if (current->flags & PF_KTHREAD)
2548 * If a fatal signal is pending, this process should not throttle.
2549 * It should return quickly so it can exit and free its memory
2551 if (fatal_signal_pending(current))
2554 /* Check if the pfmemalloc reserves are ok */
2555 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2556 pgdat = zone->zone_pgdat;
2557 if (pfmemalloc_watermark_ok(pgdat))
2560 /* Account for the throttling */
2561 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2564 * If the caller cannot enter the filesystem, it's possible that it
2565 * is due to the caller holding an FS lock or performing a journal
2566 * transaction in the case of a filesystem like ext[3|4]. In this case,
2567 * it is not safe to block on pfmemalloc_wait as kswapd could be
2568 * blocked waiting on the same lock. Instead, throttle for up to a
2569 * second before continuing.
2571 if (!(gfp_mask & __GFP_FS)) {
2572 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2573 pfmemalloc_watermark_ok(pgdat), HZ);
2578 /* Throttle until kswapd wakes the process */
2579 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2580 pfmemalloc_watermark_ok(pgdat));
2583 if (fatal_signal_pending(current))
2590 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2591 gfp_t gfp_mask, nodemask_t *nodemask)
2593 unsigned long nr_reclaimed;
2594 struct scan_control sc = {
2595 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2596 .may_writepage = !laptop_mode,
2597 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2601 .priority = DEF_PRIORITY,
2602 .target_mem_cgroup = NULL,
2603 .nodemask = nodemask,
2605 struct shrink_control shrink = {
2606 .gfp_mask = sc.gfp_mask,
2610 * Do not enter reclaim if fatal signal was delivered while throttled.
2611 * 1 is returned so that the page allocator does not OOM kill at this
2614 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2617 trace_mm_vmscan_direct_reclaim_begin(order,
2621 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2623 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2625 return nr_reclaimed;
2630 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2631 gfp_t gfp_mask, bool noswap,
2633 unsigned long *nr_scanned)
2635 struct scan_control sc = {
2637 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2638 .may_writepage = !laptop_mode,
2640 .may_swap = !noswap,
2643 .target_mem_cgroup = memcg,
2645 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2647 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2648 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2650 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2655 * NOTE: Although we can get the priority field, using it
2656 * here is not a good idea, since it limits the pages we can scan.
2657 * if we don't reclaim here, the shrink_zone from balance_pgdat
2658 * will pick up pages from other mem cgroup's as well. We hack
2659 * the priority and make it zero.
2661 shrink_lruvec(lruvec, &sc);
2663 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2665 *nr_scanned = sc.nr_scanned;
2666 return sc.nr_reclaimed;
2669 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2673 struct zonelist *zonelist;
2674 unsigned long nr_reclaimed;
2676 struct scan_control sc = {
2677 .may_writepage = !laptop_mode,
2679 .may_swap = !noswap,
2680 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2682 .priority = DEF_PRIORITY,
2683 .target_mem_cgroup = memcg,
2684 .nodemask = NULL, /* we don't care the placement */
2685 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2686 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2688 struct shrink_control shrink = {
2689 .gfp_mask = sc.gfp_mask,
2693 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2694 * take care of from where we get pages. So the node where we start the
2695 * scan does not need to be the current node.
2697 nid = mem_cgroup_select_victim_node(memcg);
2699 zonelist = NODE_DATA(nid)->node_zonelists;
2701 trace_mm_vmscan_memcg_reclaim_begin(0,
2705 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2707 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2709 return nr_reclaimed;
2713 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2715 struct mem_cgroup *memcg;
2717 if (!total_swap_pages)
2720 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2722 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2724 if (inactive_anon_is_low(lruvec))
2725 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2726 sc, LRU_ACTIVE_ANON);
2728 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2732 static bool zone_balanced(struct zone *zone, int order,
2733 unsigned long balance_gap, int classzone_idx)
2735 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2736 balance_gap, classzone_idx, 0))
2739 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2740 !compaction_suitable(zone, order))
2747 * pgdat_balanced() is used when checking if a node is balanced.
2749 * For order-0, all zones must be balanced!
2751 * For high-order allocations only zones that meet watermarks and are in a
2752 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2753 * total of balanced pages must be at least 25% of the zones allowed by
2754 * classzone_idx for the node to be considered balanced. Forcing all zones to
2755 * be balanced for high orders can cause excessive reclaim when there are
2757 * The choice of 25% is due to
2758 * o a 16M DMA zone that is balanced will not balance a zone on any
2759 * reasonable sized machine
2760 * o On all other machines, the top zone must be at least a reasonable
2761 * percentage of the middle zones. For example, on 32-bit x86, highmem
2762 * would need to be at least 256M for it to be balance a whole node.
2763 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2764 * to balance a node on its own. These seemed like reasonable ratios.
2766 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2768 unsigned long managed_pages = 0;
2769 unsigned long balanced_pages = 0;
2772 /* Check the watermark levels */
2773 for (i = 0; i <= classzone_idx; i++) {
2774 struct zone *zone = pgdat->node_zones + i;
2776 if (!populated_zone(zone))
2779 managed_pages += zone->managed_pages;
2782 * A special case here:
2784 * balance_pgdat() skips over all_unreclaimable after
2785 * DEF_PRIORITY. Effectively, it considers them balanced so
2786 * they must be considered balanced here as well!
2788 if (!zone_reclaimable(zone)) {
2789 balanced_pages += zone->managed_pages;
2793 if (zone_balanced(zone, order, 0, i))
2794 balanced_pages += zone->managed_pages;
2800 return balanced_pages >= (managed_pages >> 2);
2806 * Prepare kswapd for sleeping. This verifies that there are no processes
2807 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2809 * Returns true if kswapd is ready to sleep
2811 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2814 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2819 * There is a potential race between when kswapd checks its watermarks
2820 * and a process gets throttled. There is also a potential race if
2821 * processes get throttled, kswapd wakes, a large process exits therby
2822 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2823 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2824 * so wake them now if necessary. If necessary, processes will wake
2825 * kswapd and get throttled again
2827 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2828 wake_up(&pgdat->pfmemalloc_wait);
2832 return pgdat_balanced(pgdat, order, classzone_idx);
2836 * kswapd shrinks the zone by the number of pages required to reach
2837 * the high watermark.
2839 * Returns true if kswapd scanned at least the requested number of pages to
2840 * reclaim or if the lack of progress was due to pages under writeback.
2841 * This is used to determine if the scanning priority needs to be raised.
2843 static bool kswapd_shrink_zone(struct zone *zone,
2845 struct scan_control *sc,
2846 unsigned long lru_pages,
2847 unsigned long *nr_attempted)
2849 int testorder = sc->order;
2850 unsigned long balance_gap;
2851 struct reclaim_state *reclaim_state = current->reclaim_state;
2852 struct shrink_control shrink = {
2853 .gfp_mask = sc->gfp_mask,
2855 bool lowmem_pressure;
2857 /* Reclaim above the high watermark. */
2858 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2861 * Kswapd reclaims only single pages with compaction enabled. Trying
2862 * too hard to reclaim until contiguous free pages have become
2863 * available can hurt performance by evicting too much useful data
2864 * from memory. Do not reclaim more than needed for compaction.
2866 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2867 compaction_suitable(zone, sc->order) !=
2872 * We put equal pressure on every zone, unless one zone has way too
2873 * many pages free already. The "too many pages" is defined as the
2874 * high wmark plus a "gap" where the gap is either the low
2875 * watermark or 1% of the zone, whichever is smaller.
2877 balance_gap = min(low_wmark_pages(zone),
2878 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2879 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2882 * If there is no low memory pressure or the zone is balanced then no
2883 * reclaim is necessary
2885 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2886 if (!lowmem_pressure && zone_balanced(zone, testorder,
2887 balance_gap, classzone_idx))
2890 shrink_zone(zone, sc);
2891 nodes_clear(shrink.nodes_to_scan);
2892 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2894 reclaim_state->reclaimed_slab = 0;
2895 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2896 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2898 /* Account for the number of pages attempted to reclaim */
2899 *nr_attempted += sc->nr_to_reclaim;
2901 zone_clear_flag(zone, ZONE_WRITEBACK);
2904 * If a zone reaches its high watermark, consider it to be no longer
2905 * congested. It's possible there are dirty pages backed by congested
2906 * BDIs but as pressure is relieved, speculatively avoid congestion
2909 if (zone_reclaimable(zone) &&
2910 zone_balanced(zone, testorder, 0, classzone_idx)) {
2911 zone_clear_flag(zone, ZONE_CONGESTED);
2912 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2915 return sc->nr_scanned >= sc->nr_to_reclaim;
2919 * For kswapd, balance_pgdat() will work across all this node's zones until
2920 * they are all at high_wmark_pages(zone).
2922 * Returns the final order kswapd was reclaiming at
2924 * There is special handling here for zones which are full of pinned pages.
2925 * This can happen if the pages are all mlocked, or if they are all used by
2926 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2927 * What we do is to detect the case where all pages in the zone have been
2928 * scanned twice and there has been zero successful reclaim. Mark the zone as
2929 * dead and from now on, only perform a short scan. Basically we're polling
2930 * the zone for when the problem goes away.
2932 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2933 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2934 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2935 * lower zones regardless of the number of free pages in the lower zones. This
2936 * interoperates with the page allocator fallback scheme to ensure that aging
2937 * of pages is balanced across the zones.
2939 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2943 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2944 unsigned long nr_soft_reclaimed;
2945 unsigned long nr_soft_scanned;
2946 struct scan_control sc = {
2947 .gfp_mask = GFP_KERNEL,
2948 .priority = DEF_PRIORITY,
2951 .may_writepage = !laptop_mode,
2953 .target_mem_cgroup = NULL,
2955 count_vm_event(PAGEOUTRUN);
2958 unsigned long lru_pages = 0;
2959 unsigned long nr_attempted = 0;
2960 bool raise_priority = true;
2961 bool pgdat_needs_compaction = (order > 0);
2963 sc.nr_reclaimed = 0;
2966 * Scan in the highmem->dma direction for the highest
2967 * zone which needs scanning
2969 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2970 struct zone *zone = pgdat->node_zones + i;
2972 if (!populated_zone(zone))
2975 if (sc.priority != DEF_PRIORITY &&
2976 !zone_reclaimable(zone))
2980 * Do some background aging of the anon list, to give
2981 * pages a chance to be referenced before reclaiming.
2983 age_active_anon(zone, &sc);
2986 * If the number of buffer_heads in the machine
2987 * exceeds the maximum allowed level and this node
2988 * has a highmem zone, force kswapd to reclaim from
2989 * it to relieve lowmem pressure.
2991 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2996 if (!zone_balanced(zone, order, 0, 0)) {
3001 * If balanced, clear the dirty and congested
3004 zone_clear_flag(zone, ZONE_CONGESTED);
3005 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3012 for (i = 0; i <= end_zone; i++) {
3013 struct zone *zone = pgdat->node_zones + i;
3015 if (!populated_zone(zone))
3018 lru_pages += zone_reclaimable_pages(zone);
3021 * If any zone is currently balanced then kswapd will
3022 * not call compaction as it is expected that the
3023 * necessary pages are already available.
3025 if (pgdat_needs_compaction &&
3026 zone_watermark_ok(zone, order,
3027 low_wmark_pages(zone),
3029 pgdat_needs_compaction = false;
3033 * If we're getting trouble reclaiming, start doing writepage
3034 * even in laptop mode.
3036 if (sc.priority < DEF_PRIORITY - 2)
3037 sc.may_writepage = 1;
3040 * Now scan the zone in the dma->highmem direction, stopping
3041 * at the last zone which needs scanning.
3043 * We do this because the page allocator works in the opposite
3044 * direction. This prevents the page allocator from allocating
3045 * pages behind kswapd's direction of progress, which would
3046 * cause too much scanning of the lower zones.
3048 for (i = 0; i <= end_zone; i++) {
3049 struct zone *zone = pgdat->node_zones + i;
3051 if (!populated_zone(zone))
3054 if (sc.priority != DEF_PRIORITY &&
3055 !zone_reclaimable(zone))
3060 nr_soft_scanned = 0;
3062 * Call soft limit reclaim before calling shrink_zone.
3064 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3067 sc.nr_reclaimed += nr_soft_reclaimed;
3070 * There should be no need to raise the scanning
3071 * priority if enough pages are already being scanned
3072 * that that high watermark would be met at 100%
3075 if (kswapd_shrink_zone(zone, end_zone, &sc,
3076 lru_pages, &nr_attempted))
3077 raise_priority = false;
3081 * If the low watermark is met there is no need for processes
3082 * to be throttled on pfmemalloc_wait as they should not be
3083 * able to safely make forward progress. Wake them
3085 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3086 pfmemalloc_watermark_ok(pgdat))
3087 wake_up(&pgdat->pfmemalloc_wait);
3090 * Fragmentation may mean that the system cannot be rebalanced
3091 * for high-order allocations in all zones. If twice the
3092 * allocation size has been reclaimed and the zones are still
3093 * not balanced then recheck the watermarks at order-0 to
3094 * prevent kswapd reclaiming excessively. Assume that a
3095 * process requested a high-order can direct reclaim/compact.
3097 if (order && sc.nr_reclaimed >= 2UL << order)
3098 order = sc.order = 0;
3100 /* Check if kswapd should be suspending */
3101 if (try_to_freeze() || kthread_should_stop())
3105 * Compact if necessary and kswapd is reclaiming at least the
3106 * high watermark number of pages as requsted
3108 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3109 compact_pgdat(pgdat, order);
3112 * Raise priority if scanning rate is too low or there was no
3113 * progress in reclaiming pages
3115 if (raise_priority || !sc.nr_reclaimed)
3117 } while (sc.priority >= 1 &&
3118 !pgdat_balanced(pgdat, order, *classzone_idx));
3122 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3123 * makes a decision on the order we were last reclaiming at. However,
3124 * if another caller entered the allocator slow path while kswapd
3125 * was awake, order will remain at the higher level
3127 *classzone_idx = end_zone;
3131 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3136 if (freezing(current) || kthread_should_stop())
3139 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3141 /* Try to sleep for a short interval */
3142 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3143 remaining = schedule_timeout(HZ/10);
3144 finish_wait(&pgdat->kswapd_wait, &wait);
3145 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3149 * After a short sleep, check if it was a premature sleep. If not, then
3150 * go fully to sleep until explicitly woken up.
3152 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3153 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3156 * vmstat counters are not perfectly accurate and the estimated
3157 * value for counters such as NR_FREE_PAGES can deviate from the
3158 * true value by nr_online_cpus * threshold. To avoid the zone
3159 * watermarks being breached while under pressure, we reduce the
3160 * per-cpu vmstat threshold while kswapd is awake and restore
3161 * them before going back to sleep.
3163 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3166 * Compaction records what page blocks it recently failed to
3167 * isolate pages from and skips them in the future scanning.
3168 * When kswapd is going to sleep, it is reasonable to assume
3169 * that pages and compaction may succeed so reset the cache.
3171 reset_isolation_suitable(pgdat);
3173 if (!kthread_should_stop())
3176 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3179 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3181 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3183 finish_wait(&pgdat->kswapd_wait, &wait);
3187 * The background pageout daemon, started as a kernel thread
3188 * from the init process.
3190 * This basically trickles out pages so that we have _some_
3191 * free memory available even if there is no other activity
3192 * that frees anything up. This is needed for things like routing
3193 * etc, where we otherwise might have all activity going on in
3194 * asynchronous contexts that cannot page things out.
3196 * If there are applications that are active memory-allocators
3197 * (most normal use), this basically shouldn't matter.
3199 static int kswapd(void *p)
3201 unsigned long order, new_order;
3202 unsigned balanced_order;
3203 int classzone_idx, new_classzone_idx;
3204 int balanced_classzone_idx;
3205 pg_data_t *pgdat = (pg_data_t*)p;
3206 struct task_struct *tsk = current;
3208 struct reclaim_state reclaim_state = {
3209 .reclaimed_slab = 0,
3211 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3213 lockdep_set_current_reclaim_state(GFP_KERNEL);
3215 if (!cpumask_empty(cpumask))
3216 set_cpus_allowed_ptr(tsk, cpumask);
3217 current->reclaim_state = &reclaim_state;
3220 * Tell the memory management that we're a "memory allocator",
3221 * and that if we need more memory we should get access to it
3222 * regardless (see "__alloc_pages()"). "kswapd" should
3223 * never get caught in the normal page freeing logic.
3225 * (Kswapd normally doesn't need memory anyway, but sometimes
3226 * you need a small amount of memory in order to be able to
3227 * page out something else, and this flag essentially protects
3228 * us from recursively trying to free more memory as we're
3229 * trying to free the first piece of memory in the first place).
3231 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3234 order = new_order = 0;
3236 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3237 balanced_classzone_idx = classzone_idx;
3242 * If the last balance_pgdat was unsuccessful it's unlikely a
3243 * new request of a similar or harder type will succeed soon
3244 * so consider going to sleep on the basis we reclaimed at
3246 if (balanced_classzone_idx >= new_classzone_idx &&
3247 balanced_order == new_order) {
3248 new_order = pgdat->kswapd_max_order;
3249 new_classzone_idx = pgdat->classzone_idx;
3250 pgdat->kswapd_max_order = 0;
3251 pgdat->classzone_idx = pgdat->nr_zones - 1;
3254 if (order < new_order || classzone_idx > new_classzone_idx) {
3256 * Don't sleep if someone wants a larger 'order'
3257 * allocation or has tigher zone constraints
3260 classzone_idx = new_classzone_idx;
3262 kswapd_try_to_sleep(pgdat, balanced_order,
3263 balanced_classzone_idx);
3264 order = pgdat->kswapd_max_order;
3265 classzone_idx = pgdat->classzone_idx;
3267 new_classzone_idx = classzone_idx;
3268 pgdat->kswapd_max_order = 0;
3269 pgdat->classzone_idx = pgdat->nr_zones - 1;
3272 ret = try_to_freeze();
3273 if (kthread_should_stop())
3277 * We can speed up thawing tasks if we don't call balance_pgdat
3278 * after returning from the refrigerator
3281 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3282 balanced_classzone_idx = classzone_idx;
3283 balanced_order = balance_pgdat(pgdat, order,
3284 &balanced_classzone_idx);
3288 current->reclaim_state = NULL;
3293 * A zone is low on free memory, so wake its kswapd task to service it.
3295 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3299 if (!populated_zone(zone))
3302 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3304 pgdat = zone->zone_pgdat;
3305 if (pgdat->kswapd_max_order < order) {
3306 pgdat->kswapd_max_order = order;
3307 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3309 if (!waitqueue_active(&pgdat->kswapd_wait))
3311 if (zone_balanced(zone, order, 0, 0))
3314 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3315 wake_up_interruptible(&pgdat->kswapd_wait);
3319 * The reclaimable count would be mostly accurate.
3320 * The less reclaimable pages may be
3321 * - mlocked pages, which will be moved to unevictable list when encountered
3322 * - mapped pages, which may require several travels to be reclaimed
3323 * - dirty pages, which is not "instantly" reclaimable
3325 unsigned long global_reclaimable_pages(void)
3329 nr = global_page_state(NR_ACTIVE_FILE) +
3330 global_page_state(NR_INACTIVE_FILE);
3332 if (get_nr_swap_pages() > 0)
3333 nr += global_page_state(NR_ACTIVE_ANON) +
3334 global_page_state(NR_INACTIVE_ANON);
3339 #ifdef CONFIG_HIBERNATION
3341 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3344 * Rather than trying to age LRUs the aim is to preserve the overall
3345 * LRU order by reclaiming preferentially
3346 * inactive > active > active referenced > active mapped
3348 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3350 struct reclaim_state reclaim_state;
3351 struct scan_control sc = {
3352 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3356 .nr_to_reclaim = nr_to_reclaim,
3357 .hibernation_mode = 1,
3359 .priority = DEF_PRIORITY,
3361 struct shrink_control shrink = {
3362 .gfp_mask = sc.gfp_mask,
3364 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3365 struct task_struct *p = current;
3366 unsigned long nr_reclaimed;
3368 p->flags |= PF_MEMALLOC;
3369 lockdep_set_current_reclaim_state(sc.gfp_mask);
3370 reclaim_state.reclaimed_slab = 0;
3371 p->reclaim_state = &reclaim_state;
3373 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3375 p->reclaim_state = NULL;
3376 lockdep_clear_current_reclaim_state();
3377 p->flags &= ~PF_MEMALLOC;
3379 return nr_reclaimed;
3381 #endif /* CONFIG_HIBERNATION */
3383 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3384 not required for correctness. So if the last cpu in a node goes
3385 away, we get changed to run anywhere: as the first one comes back,
3386 restore their cpu bindings. */
3387 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3392 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3393 for_each_node_state(nid, N_MEMORY) {
3394 pg_data_t *pgdat = NODE_DATA(nid);
3395 const struct cpumask *mask;
3397 mask = cpumask_of_node(pgdat->node_id);
3399 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3400 /* One of our CPUs online: restore mask */
3401 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3408 * This kswapd start function will be called by init and node-hot-add.
3409 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3411 int kswapd_run(int nid)
3413 pg_data_t *pgdat = NODE_DATA(nid);
3419 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3420 if (IS_ERR(pgdat->kswapd)) {
3421 /* failure at boot is fatal */
3422 BUG_ON(system_state == SYSTEM_BOOTING);
3423 pr_err("Failed to start kswapd on node %d\n", nid);
3424 ret = PTR_ERR(pgdat->kswapd);
3425 pgdat->kswapd = NULL;
3431 * Called by memory hotplug when all memory in a node is offlined. Caller must
3432 * hold lock_memory_hotplug().
3434 void kswapd_stop(int nid)
3436 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3439 kthread_stop(kswapd);
3440 NODE_DATA(nid)->kswapd = NULL;
3444 static int __init kswapd_init(void)
3449 for_each_node_state(nid, N_MEMORY)
3451 hotcpu_notifier(cpu_callback, 0);
3455 module_init(kswapd_init)
3461 * If non-zero call zone_reclaim when the number of free pages falls below
3464 int zone_reclaim_mode __read_mostly;
3466 #define RECLAIM_OFF 0
3467 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3468 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3469 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3472 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3473 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3476 #define ZONE_RECLAIM_PRIORITY 4
3479 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3482 int sysctl_min_unmapped_ratio = 1;
3485 * If the number of slab pages in a zone grows beyond this percentage then
3486 * slab reclaim needs to occur.
3488 int sysctl_min_slab_ratio = 5;
3490 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3492 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3493 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3494 zone_page_state(zone, NR_ACTIVE_FILE);
3497 * It's possible for there to be more file mapped pages than
3498 * accounted for by the pages on the file LRU lists because
3499 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3501 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3504 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3505 static long zone_pagecache_reclaimable(struct zone *zone)
3507 long nr_pagecache_reclaimable;
3511 * If RECLAIM_SWAP is set, then all file pages are considered
3512 * potentially reclaimable. Otherwise, we have to worry about
3513 * pages like swapcache and zone_unmapped_file_pages() provides
3516 if (zone_reclaim_mode & RECLAIM_SWAP)
3517 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3519 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3521 /* If we can't clean pages, remove dirty pages from consideration */
3522 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3523 delta += zone_page_state(zone, NR_FILE_DIRTY);
3525 /* Watch for any possible underflows due to delta */
3526 if (unlikely(delta > nr_pagecache_reclaimable))
3527 delta = nr_pagecache_reclaimable;
3529 return nr_pagecache_reclaimable - delta;
3533 * Try to free up some pages from this zone through reclaim.
3535 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3537 /* Minimum pages needed in order to stay on node */
3538 const unsigned long nr_pages = 1 << order;
3539 struct task_struct *p = current;
3540 struct reclaim_state reclaim_state;
3541 struct scan_control sc = {
3542 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3543 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3545 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3546 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3548 .priority = ZONE_RECLAIM_PRIORITY,
3550 struct shrink_control shrink = {
3551 .gfp_mask = sc.gfp_mask,
3553 unsigned long nr_slab_pages0, nr_slab_pages1;
3557 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3558 * and we also need to be able to write out pages for RECLAIM_WRITE
3561 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3562 lockdep_set_current_reclaim_state(gfp_mask);
3563 reclaim_state.reclaimed_slab = 0;
3564 p->reclaim_state = &reclaim_state;
3566 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3568 * Free memory by calling shrink zone with increasing
3569 * priorities until we have enough memory freed.
3572 shrink_zone(zone, &sc);
3573 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3576 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3577 if (nr_slab_pages0 > zone->min_slab_pages) {
3579 * shrink_slab() does not currently allow us to determine how
3580 * many pages were freed in this zone. So we take the current
3581 * number of slab pages and shake the slab until it is reduced
3582 * by the same nr_pages that we used for reclaiming unmapped
3585 nodes_clear(shrink.nodes_to_scan);
3586 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3588 unsigned long lru_pages = zone_reclaimable_pages(zone);
3590 /* No reclaimable slab or very low memory pressure */
3591 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3594 /* Freed enough memory */
3595 nr_slab_pages1 = zone_page_state(zone,
3596 NR_SLAB_RECLAIMABLE);
3597 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3602 * Update nr_reclaimed by the number of slab pages we
3603 * reclaimed from this zone.
3605 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3606 if (nr_slab_pages1 < nr_slab_pages0)
3607 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3610 p->reclaim_state = NULL;
3611 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3612 lockdep_clear_current_reclaim_state();
3613 return sc.nr_reclaimed >= nr_pages;
3616 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3622 * Zone reclaim reclaims unmapped file backed pages and
3623 * slab pages if we are over the defined limits.
3625 * A small portion of unmapped file backed pages is needed for
3626 * file I/O otherwise pages read by file I/O will be immediately
3627 * thrown out if the zone is overallocated. So we do not reclaim
3628 * if less than a specified percentage of the zone is used by
3629 * unmapped file backed pages.
3631 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3632 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3633 return ZONE_RECLAIM_FULL;
3635 if (!zone_reclaimable(zone))
3636 return ZONE_RECLAIM_FULL;
3639 * Do not scan if the allocation should not be delayed.
3641 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3642 return ZONE_RECLAIM_NOSCAN;
3645 * Only run zone reclaim on the local zone or on zones that do not
3646 * have associated processors. This will favor the local processor
3647 * over remote processors and spread off node memory allocations
3648 * as wide as possible.
3650 node_id = zone_to_nid(zone);
3651 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3652 return ZONE_RECLAIM_NOSCAN;
3654 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3655 return ZONE_RECLAIM_NOSCAN;
3657 ret = __zone_reclaim(zone, gfp_mask, order);
3658 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3661 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3668 * page_evictable - test whether a page is evictable
3669 * @page: the page to test
3671 * Test whether page is evictable--i.e., should be placed on active/inactive
3672 * lists vs unevictable list.
3674 * Reasons page might not be evictable:
3675 * (1) page's mapping marked unevictable
3676 * (2) page is part of an mlocked VMA
3679 int page_evictable(struct page *page)
3681 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3686 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3687 * @pages: array of pages to check
3688 * @nr_pages: number of pages to check
3690 * Checks pages for evictability and moves them to the appropriate lru list.
3692 * This function is only used for SysV IPC SHM_UNLOCK.
3694 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3696 struct lruvec *lruvec;
3697 struct zone *zone = NULL;
3702 for (i = 0; i < nr_pages; i++) {
3703 struct page *page = pages[i];
3704 struct zone *pagezone;
3707 pagezone = page_zone(page);
3708 if (pagezone != zone) {
3710 spin_unlock_irq(&zone->lru_lock);
3712 spin_lock_irq(&zone->lru_lock);
3714 lruvec = mem_cgroup_page_lruvec(page, zone);
3716 if (!PageLRU(page) || !PageUnevictable(page))
3719 if (page_evictable(page)) {
3720 enum lru_list lru = page_lru_base_type(page);
3722 VM_BUG_ON_PAGE(PageActive(page), page);
3723 ClearPageUnevictable(page);
3724 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3725 add_page_to_lru_list(page, lruvec, lru);
3731 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3732 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3733 spin_unlock_irq(&zone->lru_lock);
3736 #endif /* CONFIG_SHMEM */
3738 static void warn_scan_unevictable_pages(void)
3740 printk_once(KERN_WARNING
3741 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3742 "disabled for lack of a legitimate use case. If you have "
3743 "one, please send an email to linux-mm@kvack.org.\n",
3748 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3749 * all nodes' unevictable lists for evictable pages
3751 unsigned long scan_unevictable_pages;
3753 int scan_unevictable_handler(struct ctl_table *table, int write,
3754 void __user *buffer,
3755 size_t *length, loff_t *ppos)
3757 warn_scan_unevictable_pages();
3758 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3759 scan_unevictable_pages = 0;
3765 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3766 * a specified node's per zone unevictable lists for evictable pages.
3769 static ssize_t read_scan_unevictable_node(struct device *dev,
3770 struct device_attribute *attr,
3773 warn_scan_unevictable_pages();
3774 return sprintf(buf, "0\n"); /* always zero; should fit... */
3777 static ssize_t write_scan_unevictable_node(struct device *dev,
3778 struct device_attribute *attr,
3779 const char *buf, size_t count)
3781 warn_scan_unevictable_pages();
3786 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3787 read_scan_unevictable_node,
3788 write_scan_unevictable_node);
3790 int scan_unevictable_register_node(struct node *node)
3792 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3795 void scan_unevictable_unregister_node(struct node *node)
3797 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);