mm: vmscan: stall page reclaim and writeback pages based on dirty/writepage pages...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /* Check if a page is dirty or under writeback */
673 static void page_check_dirty_writeback(struct page *page,
674                                        bool *dirty, bool *writeback)
675 {
676         /*
677          * Anonymous pages are not handled by flushers and must be written
678          * from reclaim context. Do not stall reclaim based on them
679          */
680         if (!page_is_file_cache(page)) {
681                 *dirty = false;
682                 *writeback = false;
683                 return;
684         }
685
686         /* By default assume that the page flags are accurate */
687         *dirty = PageDirty(page);
688         *writeback = PageWriteback(page);
689 }
690
691 /*
692  * shrink_page_list() returns the number of reclaimed pages
693  */
694 static unsigned long shrink_page_list(struct list_head *page_list,
695                                       struct zone *zone,
696                                       struct scan_control *sc,
697                                       enum ttu_flags ttu_flags,
698                                       unsigned long *ret_nr_unqueued_dirty,
699                                       unsigned long *ret_nr_writeback,
700                                       bool force_reclaim)
701 {
702         LIST_HEAD(ret_pages);
703         LIST_HEAD(free_pages);
704         int pgactivate = 0;
705         unsigned long nr_unqueued_dirty = 0;
706         unsigned long nr_dirty = 0;
707         unsigned long nr_congested = 0;
708         unsigned long nr_reclaimed = 0;
709         unsigned long nr_writeback = 0;
710
711         cond_resched();
712
713         mem_cgroup_uncharge_start();
714         while (!list_empty(page_list)) {
715                 struct address_space *mapping;
716                 struct page *page;
717                 int may_enter_fs;
718                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
719                 bool dirty, writeback;
720
721                 cond_resched();
722
723                 page = lru_to_page(page_list);
724                 list_del(&page->lru);
725
726                 if (!trylock_page(page))
727                         goto keep;
728
729                 VM_BUG_ON(PageActive(page));
730                 VM_BUG_ON(page_zone(page) != zone);
731
732                 sc->nr_scanned++;
733
734                 if (unlikely(!page_evictable(page)))
735                         goto cull_mlocked;
736
737                 if (!sc->may_unmap && page_mapped(page))
738                         goto keep_locked;
739
740                 /* Double the slab pressure for mapped and swapcache pages */
741                 if (page_mapped(page) || PageSwapCache(page))
742                         sc->nr_scanned++;
743
744                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
745                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
746
747                 /*
748                  * The number of dirty pages determines if a zone is marked
749                  * reclaim_congested which affects wait_iff_congested. kswapd
750                  * will stall and start writing pages if the tail of the LRU
751                  * is all dirty unqueued pages.
752                  */
753                 page_check_dirty_writeback(page, &dirty, &writeback);
754                 if (dirty || writeback)
755                         nr_dirty++;
756
757                 if (dirty && !writeback)
758                         nr_unqueued_dirty++;
759
760                 /* Treat this page as congested if underlying BDI is */
761                 mapping = page_mapping(page);
762                 if (mapping && bdi_write_congested(mapping->backing_dev_info))
763                         nr_congested++;
764
765                 /*
766                  * If a page at the tail of the LRU is under writeback, there
767                  * are three cases to consider.
768                  *
769                  * 1) If reclaim is encountering an excessive number of pages
770                  *    under writeback and this page is both under writeback and
771                  *    PageReclaim then it indicates that pages are being queued
772                  *    for IO but are being recycled through the LRU before the
773                  *    IO can complete. Waiting on the page itself risks an
774                  *    indefinite stall if it is impossible to writeback the
775                  *    page due to IO error or disconnected storage so instead
776                  *    block for HZ/10 or until some IO completes then clear the
777                  *    ZONE_WRITEBACK flag to recheck if the condition exists.
778                  *
779                  * 2) Global reclaim encounters a page, memcg encounters a
780                  *    page that is not marked for immediate reclaim or
781                  *    the caller does not have __GFP_IO. In this case mark
782                  *    the page for immediate reclaim and continue scanning.
783                  *
784                  *    __GFP_IO is checked  because a loop driver thread might
785                  *    enter reclaim, and deadlock if it waits on a page for
786                  *    which it is needed to do the write (loop masks off
787                  *    __GFP_IO|__GFP_FS for this reason); but more thought
788                  *    would probably show more reasons.
789                  *
790                  *    Don't require __GFP_FS, since we're not going into the
791                  *    FS, just waiting on its writeback completion. Worryingly,
792                  *    ext4 gfs2 and xfs allocate pages with
793                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
794                  *    may_enter_fs here is liable to OOM on them.
795                  *
796                  * 3) memcg encounters a page that is not already marked
797                  *    PageReclaim. memcg does not have any dirty pages
798                  *    throttling so we could easily OOM just because too many
799                  *    pages are in writeback and there is nothing else to
800                  *    reclaim. Wait for the writeback to complete.
801                  */
802                 if (PageWriteback(page)) {
803                         /* Case 1 above */
804                         if (current_is_kswapd() &&
805                             PageReclaim(page) &&
806                             zone_is_reclaim_writeback(zone)) {
807                                 unlock_page(page);
808                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
809                                 zone_clear_flag(zone, ZONE_WRITEBACK);
810                                 goto keep;
811
812                         /* Case 2 above */
813                         } else if (global_reclaim(sc) ||
814                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
815                                 /*
816                                  * This is slightly racy - end_page_writeback()
817                                  * might have just cleared PageReclaim, then
818                                  * setting PageReclaim here end up interpreted
819                                  * as PageReadahead - but that does not matter
820                                  * enough to care.  What we do want is for this
821                                  * page to have PageReclaim set next time memcg
822                                  * reclaim reaches the tests above, so it will
823                                  * then wait_on_page_writeback() to avoid OOM;
824                                  * and it's also appropriate in global reclaim.
825                                  */
826                                 SetPageReclaim(page);
827                                 nr_writeback++;
828
829                                 goto keep_locked;
830
831                         /* Case 3 above */
832                         } else {
833                                 wait_on_page_writeback(page);
834                         }
835                 }
836
837                 if (!force_reclaim)
838                         references = page_check_references(page, sc);
839
840                 switch (references) {
841                 case PAGEREF_ACTIVATE:
842                         goto activate_locked;
843                 case PAGEREF_KEEP:
844                         goto keep_locked;
845                 case PAGEREF_RECLAIM:
846                 case PAGEREF_RECLAIM_CLEAN:
847                         ; /* try to reclaim the page below */
848                 }
849
850                 /*
851                  * Anonymous process memory has backing store?
852                  * Try to allocate it some swap space here.
853                  */
854                 if (PageAnon(page) && !PageSwapCache(page)) {
855                         if (!(sc->gfp_mask & __GFP_IO))
856                                 goto keep_locked;
857                         if (!add_to_swap(page, page_list))
858                                 goto activate_locked;
859                         may_enter_fs = 1;
860
861                         /* Adding to swap updated mapping */
862                         mapping = page_mapping(page);
863                 }
864
865                 /*
866                  * The page is mapped into the page tables of one or more
867                  * processes. Try to unmap it here.
868                  */
869                 if (page_mapped(page) && mapping) {
870                         switch (try_to_unmap(page, ttu_flags)) {
871                         case SWAP_FAIL:
872                                 goto activate_locked;
873                         case SWAP_AGAIN:
874                                 goto keep_locked;
875                         case SWAP_MLOCK:
876                                 goto cull_mlocked;
877                         case SWAP_SUCCESS:
878                                 ; /* try to free the page below */
879                         }
880                 }
881
882                 if (PageDirty(page)) {
883                         /*
884                          * Only kswapd can writeback filesystem pages to
885                          * avoid risk of stack overflow but only writeback
886                          * if many dirty pages have been encountered.
887                          */
888                         if (page_is_file_cache(page) &&
889                                         (!current_is_kswapd() ||
890                                          !zone_is_reclaim_dirty(zone))) {
891                                 /*
892                                  * Immediately reclaim when written back.
893                                  * Similar in principal to deactivate_page()
894                                  * except we already have the page isolated
895                                  * and know it's dirty
896                                  */
897                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
898                                 SetPageReclaim(page);
899
900                                 goto keep_locked;
901                         }
902
903                         if (references == PAGEREF_RECLAIM_CLEAN)
904                                 goto keep_locked;
905                         if (!may_enter_fs)
906                                 goto keep_locked;
907                         if (!sc->may_writepage)
908                                 goto keep_locked;
909
910                         /* Page is dirty, try to write it out here */
911                         switch (pageout(page, mapping, sc)) {
912                         case PAGE_KEEP:
913                                 goto keep_locked;
914                         case PAGE_ACTIVATE:
915                                 goto activate_locked;
916                         case PAGE_SUCCESS:
917                                 if (PageWriteback(page))
918                                         goto keep;
919                                 if (PageDirty(page))
920                                         goto keep;
921
922                                 /*
923                                  * A synchronous write - probably a ramdisk.  Go
924                                  * ahead and try to reclaim the page.
925                                  */
926                                 if (!trylock_page(page))
927                                         goto keep;
928                                 if (PageDirty(page) || PageWriteback(page))
929                                         goto keep_locked;
930                                 mapping = page_mapping(page);
931                         case PAGE_CLEAN:
932                                 ; /* try to free the page below */
933                         }
934                 }
935
936                 /*
937                  * If the page has buffers, try to free the buffer mappings
938                  * associated with this page. If we succeed we try to free
939                  * the page as well.
940                  *
941                  * We do this even if the page is PageDirty().
942                  * try_to_release_page() does not perform I/O, but it is
943                  * possible for a page to have PageDirty set, but it is actually
944                  * clean (all its buffers are clean).  This happens if the
945                  * buffers were written out directly, with submit_bh(). ext3
946                  * will do this, as well as the blockdev mapping.
947                  * try_to_release_page() will discover that cleanness and will
948                  * drop the buffers and mark the page clean - it can be freed.
949                  *
950                  * Rarely, pages can have buffers and no ->mapping.  These are
951                  * the pages which were not successfully invalidated in
952                  * truncate_complete_page().  We try to drop those buffers here
953                  * and if that worked, and the page is no longer mapped into
954                  * process address space (page_count == 1) it can be freed.
955                  * Otherwise, leave the page on the LRU so it is swappable.
956                  */
957                 if (page_has_private(page)) {
958                         if (!try_to_release_page(page, sc->gfp_mask))
959                                 goto activate_locked;
960                         if (!mapping && page_count(page) == 1) {
961                                 unlock_page(page);
962                                 if (put_page_testzero(page))
963                                         goto free_it;
964                                 else {
965                                         /*
966                                          * rare race with speculative reference.
967                                          * the speculative reference will free
968                                          * this page shortly, so we may
969                                          * increment nr_reclaimed here (and
970                                          * leave it off the LRU).
971                                          */
972                                         nr_reclaimed++;
973                                         continue;
974                                 }
975                         }
976                 }
977
978                 if (!mapping || !__remove_mapping(mapping, page))
979                         goto keep_locked;
980
981                 /*
982                  * At this point, we have no other references and there is
983                  * no way to pick any more up (removed from LRU, removed
984                  * from pagecache). Can use non-atomic bitops now (and
985                  * we obviously don't have to worry about waking up a process
986                  * waiting on the page lock, because there are no references.
987                  */
988                 __clear_page_locked(page);
989 free_it:
990                 nr_reclaimed++;
991
992                 /*
993                  * Is there need to periodically free_page_list? It would
994                  * appear not as the counts should be low
995                  */
996                 list_add(&page->lru, &free_pages);
997                 continue;
998
999 cull_mlocked:
1000                 if (PageSwapCache(page))
1001                         try_to_free_swap(page);
1002                 unlock_page(page);
1003                 putback_lru_page(page);
1004                 continue;
1005
1006 activate_locked:
1007                 /* Not a candidate for swapping, so reclaim swap space. */
1008                 if (PageSwapCache(page) && vm_swap_full())
1009                         try_to_free_swap(page);
1010                 VM_BUG_ON(PageActive(page));
1011                 SetPageActive(page);
1012                 pgactivate++;
1013 keep_locked:
1014                 unlock_page(page);
1015 keep:
1016                 list_add(&page->lru, &ret_pages);
1017                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1018         }
1019
1020         /*
1021          * Tag a zone as congested if all the dirty pages encountered were
1022          * backed by a congested BDI. In this case, reclaimers should just
1023          * back off and wait for congestion to clear because further reclaim
1024          * will encounter the same problem
1025          */
1026         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1027                 zone_set_flag(zone, ZONE_CONGESTED);
1028
1029         free_hot_cold_page_list(&free_pages, 1);
1030
1031         list_splice(&ret_pages, page_list);
1032         count_vm_events(PGACTIVATE, pgactivate);
1033         mem_cgroup_uncharge_end();
1034         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1035         *ret_nr_writeback += nr_writeback;
1036         return nr_reclaimed;
1037 }
1038
1039 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1040                                             struct list_head *page_list)
1041 {
1042         struct scan_control sc = {
1043                 .gfp_mask = GFP_KERNEL,
1044                 .priority = DEF_PRIORITY,
1045                 .may_unmap = 1,
1046         };
1047         unsigned long ret, dummy1, dummy2;
1048         struct page *page, *next;
1049         LIST_HEAD(clean_pages);
1050
1051         list_for_each_entry_safe(page, next, page_list, lru) {
1052                 if (page_is_file_cache(page) && !PageDirty(page)) {
1053                         ClearPageActive(page);
1054                         list_move(&page->lru, &clean_pages);
1055                 }
1056         }
1057
1058         ret = shrink_page_list(&clean_pages, zone, &sc,
1059                                 TTU_UNMAP|TTU_IGNORE_ACCESS,
1060                                 &dummy1, &dummy2, true);
1061         list_splice(&clean_pages, page_list);
1062         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1063         return ret;
1064 }
1065
1066 /*
1067  * Attempt to remove the specified page from its LRU.  Only take this page
1068  * if it is of the appropriate PageActive status.  Pages which are being
1069  * freed elsewhere are also ignored.
1070  *
1071  * page:        page to consider
1072  * mode:        one of the LRU isolation modes defined above
1073  *
1074  * returns 0 on success, -ve errno on failure.
1075  */
1076 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1077 {
1078         int ret = -EINVAL;
1079
1080         /* Only take pages on the LRU. */
1081         if (!PageLRU(page))
1082                 return ret;
1083
1084         /* Compaction should not handle unevictable pages but CMA can do so */
1085         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1086                 return ret;
1087
1088         ret = -EBUSY;
1089
1090         /*
1091          * To minimise LRU disruption, the caller can indicate that it only
1092          * wants to isolate pages it will be able to operate on without
1093          * blocking - clean pages for the most part.
1094          *
1095          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1096          * is used by reclaim when it is cannot write to backing storage
1097          *
1098          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1099          * that it is possible to migrate without blocking
1100          */
1101         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1102                 /* All the caller can do on PageWriteback is block */
1103                 if (PageWriteback(page))
1104                         return ret;
1105
1106                 if (PageDirty(page)) {
1107                         struct address_space *mapping;
1108
1109                         /* ISOLATE_CLEAN means only clean pages */
1110                         if (mode & ISOLATE_CLEAN)
1111                                 return ret;
1112
1113                         /*
1114                          * Only pages without mappings or that have a
1115                          * ->migratepage callback are possible to migrate
1116                          * without blocking
1117                          */
1118                         mapping = page_mapping(page);
1119                         if (mapping && !mapping->a_ops->migratepage)
1120                                 return ret;
1121                 }
1122         }
1123
1124         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1125                 return ret;
1126
1127         if (likely(get_page_unless_zero(page))) {
1128                 /*
1129                  * Be careful not to clear PageLRU until after we're
1130                  * sure the page is not being freed elsewhere -- the
1131                  * page release code relies on it.
1132                  */
1133                 ClearPageLRU(page);
1134                 ret = 0;
1135         }
1136
1137         return ret;
1138 }
1139
1140 /*
1141  * zone->lru_lock is heavily contended.  Some of the functions that
1142  * shrink the lists perform better by taking out a batch of pages
1143  * and working on them outside the LRU lock.
1144  *
1145  * For pagecache intensive workloads, this function is the hottest
1146  * spot in the kernel (apart from copy_*_user functions).
1147  *
1148  * Appropriate locks must be held before calling this function.
1149  *
1150  * @nr_to_scan: The number of pages to look through on the list.
1151  * @lruvec:     The LRU vector to pull pages from.
1152  * @dst:        The temp list to put pages on to.
1153  * @nr_scanned: The number of pages that were scanned.
1154  * @sc:         The scan_control struct for this reclaim session
1155  * @mode:       One of the LRU isolation modes
1156  * @lru:        LRU list id for isolating
1157  *
1158  * returns how many pages were moved onto *@dst.
1159  */
1160 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1161                 struct lruvec *lruvec, struct list_head *dst,
1162                 unsigned long *nr_scanned, struct scan_control *sc,
1163                 isolate_mode_t mode, enum lru_list lru)
1164 {
1165         struct list_head *src = &lruvec->lists[lru];
1166         unsigned long nr_taken = 0;
1167         unsigned long scan;
1168
1169         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1170                 struct page *page;
1171                 int nr_pages;
1172
1173                 page = lru_to_page(src);
1174                 prefetchw_prev_lru_page(page, src, flags);
1175
1176                 VM_BUG_ON(!PageLRU(page));
1177
1178                 switch (__isolate_lru_page(page, mode)) {
1179                 case 0:
1180                         nr_pages = hpage_nr_pages(page);
1181                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1182                         list_move(&page->lru, dst);
1183                         nr_taken += nr_pages;
1184                         break;
1185
1186                 case -EBUSY:
1187                         /* else it is being freed elsewhere */
1188                         list_move(&page->lru, src);
1189                         continue;
1190
1191                 default:
1192                         BUG();
1193                 }
1194         }
1195
1196         *nr_scanned = scan;
1197         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1198                                     nr_taken, mode, is_file_lru(lru));
1199         return nr_taken;
1200 }
1201
1202 /**
1203  * isolate_lru_page - tries to isolate a page from its LRU list
1204  * @page: page to isolate from its LRU list
1205  *
1206  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1207  * vmstat statistic corresponding to whatever LRU list the page was on.
1208  *
1209  * Returns 0 if the page was removed from an LRU list.
1210  * Returns -EBUSY if the page was not on an LRU list.
1211  *
1212  * The returned page will have PageLRU() cleared.  If it was found on
1213  * the active list, it will have PageActive set.  If it was found on
1214  * the unevictable list, it will have the PageUnevictable bit set. That flag
1215  * may need to be cleared by the caller before letting the page go.
1216  *
1217  * The vmstat statistic corresponding to the list on which the page was
1218  * found will be decremented.
1219  *
1220  * Restrictions:
1221  * (1) Must be called with an elevated refcount on the page. This is a
1222  *     fundamentnal difference from isolate_lru_pages (which is called
1223  *     without a stable reference).
1224  * (2) the lru_lock must not be held.
1225  * (3) interrupts must be enabled.
1226  */
1227 int isolate_lru_page(struct page *page)
1228 {
1229         int ret = -EBUSY;
1230
1231         VM_BUG_ON(!page_count(page));
1232
1233         if (PageLRU(page)) {
1234                 struct zone *zone = page_zone(page);
1235                 struct lruvec *lruvec;
1236
1237                 spin_lock_irq(&zone->lru_lock);
1238                 lruvec = mem_cgroup_page_lruvec(page, zone);
1239                 if (PageLRU(page)) {
1240                         int lru = page_lru(page);
1241                         get_page(page);
1242                         ClearPageLRU(page);
1243                         del_page_from_lru_list(page, lruvec, lru);
1244                         ret = 0;
1245                 }
1246                 spin_unlock_irq(&zone->lru_lock);
1247         }
1248         return ret;
1249 }
1250
1251 /*
1252  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1253  * then get resheduled. When there are massive number of tasks doing page
1254  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1255  * the LRU list will go small and be scanned faster than necessary, leading to
1256  * unnecessary swapping, thrashing and OOM.
1257  */
1258 static int too_many_isolated(struct zone *zone, int file,
1259                 struct scan_control *sc)
1260 {
1261         unsigned long inactive, isolated;
1262
1263         if (current_is_kswapd())
1264                 return 0;
1265
1266         if (!global_reclaim(sc))
1267                 return 0;
1268
1269         if (file) {
1270                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1271                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1272         } else {
1273                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1274                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1275         }
1276
1277         /*
1278          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1279          * won't get blocked by normal direct-reclaimers, forming a circular
1280          * deadlock.
1281          */
1282         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1283                 inactive >>= 3;
1284
1285         return isolated > inactive;
1286 }
1287
1288 static noinline_for_stack void
1289 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1290 {
1291         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1292         struct zone *zone = lruvec_zone(lruvec);
1293         LIST_HEAD(pages_to_free);
1294
1295         /*
1296          * Put back any unfreeable pages.
1297          */
1298         while (!list_empty(page_list)) {
1299                 struct page *page = lru_to_page(page_list);
1300                 int lru;
1301
1302                 VM_BUG_ON(PageLRU(page));
1303                 list_del(&page->lru);
1304                 if (unlikely(!page_evictable(page))) {
1305                         spin_unlock_irq(&zone->lru_lock);
1306                         putback_lru_page(page);
1307                         spin_lock_irq(&zone->lru_lock);
1308                         continue;
1309                 }
1310
1311                 lruvec = mem_cgroup_page_lruvec(page, zone);
1312
1313                 SetPageLRU(page);
1314                 lru = page_lru(page);
1315                 add_page_to_lru_list(page, lruvec, lru);
1316
1317                 if (is_active_lru(lru)) {
1318                         int file = is_file_lru(lru);
1319                         int numpages = hpage_nr_pages(page);
1320                         reclaim_stat->recent_rotated[file] += numpages;
1321                 }
1322                 if (put_page_testzero(page)) {
1323                         __ClearPageLRU(page);
1324                         __ClearPageActive(page);
1325                         del_page_from_lru_list(page, lruvec, lru);
1326
1327                         if (unlikely(PageCompound(page))) {
1328                                 spin_unlock_irq(&zone->lru_lock);
1329                                 (*get_compound_page_dtor(page))(page);
1330                                 spin_lock_irq(&zone->lru_lock);
1331                         } else
1332                                 list_add(&page->lru, &pages_to_free);
1333                 }
1334         }
1335
1336         /*
1337          * To save our caller's stack, now use input list for pages to free.
1338          */
1339         list_splice(&pages_to_free, page_list);
1340 }
1341
1342 /*
1343  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1344  * of reclaimed pages
1345  */
1346 static noinline_for_stack unsigned long
1347 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1348                      struct scan_control *sc, enum lru_list lru)
1349 {
1350         LIST_HEAD(page_list);
1351         unsigned long nr_scanned;
1352         unsigned long nr_reclaimed = 0;
1353         unsigned long nr_taken;
1354         unsigned long nr_unqueued_dirty = 0;
1355         unsigned long nr_writeback = 0;
1356         isolate_mode_t isolate_mode = 0;
1357         int file = is_file_lru(lru);
1358         struct zone *zone = lruvec_zone(lruvec);
1359         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1360
1361         while (unlikely(too_many_isolated(zone, file, sc))) {
1362                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1363
1364                 /* We are about to die and free our memory. Return now. */
1365                 if (fatal_signal_pending(current))
1366                         return SWAP_CLUSTER_MAX;
1367         }
1368
1369         lru_add_drain();
1370
1371         if (!sc->may_unmap)
1372                 isolate_mode |= ISOLATE_UNMAPPED;
1373         if (!sc->may_writepage)
1374                 isolate_mode |= ISOLATE_CLEAN;
1375
1376         spin_lock_irq(&zone->lru_lock);
1377
1378         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1379                                      &nr_scanned, sc, isolate_mode, lru);
1380
1381         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1382         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1383
1384         if (global_reclaim(sc)) {
1385                 zone->pages_scanned += nr_scanned;
1386                 if (current_is_kswapd())
1387                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1388                 else
1389                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1390         }
1391         spin_unlock_irq(&zone->lru_lock);
1392
1393         if (nr_taken == 0)
1394                 return 0;
1395
1396         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1397                                 &nr_unqueued_dirty, &nr_writeback, false);
1398
1399         spin_lock_irq(&zone->lru_lock);
1400
1401         reclaim_stat->recent_scanned[file] += nr_taken;
1402
1403         if (global_reclaim(sc)) {
1404                 if (current_is_kswapd())
1405                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1406                                                nr_reclaimed);
1407                 else
1408                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1409                                                nr_reclaimed);
1410         }
1411
1412         putback_inactive_pages(lruvec, &page_list);
1413
1414         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1415
1416         spin_unlock_irq(&zone->lru_lock);
1417
1418         free_hot_cold_page_list(&page_list, 1);
1419
1420         /*
1421          * If reclaim is isolating dirty pages under writeback, it implies
1422          * that the long-lived page allocation rate is exceeding the page
1423          * laundering rate. Either the global limits are not being effective
1424          * at throttling processes due to the page distribution throughout
1425          * zones or there is heavy usage of a slow backing device. The
1426          * only option is to throttle from reclaim context which is not ideal
1427          * as there is no guarantee the dirtying process is throttled in the
1428          * same way balance_dirty_pages() manages.
1429          *
1430          * This scales the number of dirty pages that must be under writeback
1431          * before throttling depending on priority. It is a simple backoff
1432          * function that has the most effect in the range DEF_PRIORITY to
1433          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1434          * in trouble and reclaim is considered to be in trouble.
1435          *
1436          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1437          * DEF_PRIORITY-1  50% must be PageWriteback
1438          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1439          * ...
1440          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1441          *                     isolated page is PageWriteback
1442          */
1443         if (nr_writeback && nr_writeback >=
1444                         (nr_taken >> (DEF_PRIORITY - sc->priority))) {
1445                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1446                 zone_set_flag(zone, ZONE_WRITEBACK);
1447         }
1448
1449         /*
1450          * Similarly, if many dirty pages are encountered that are not
1451          * currently being written then flag that kswapd should start
1452          * writing back pages and stall to give a chance for flushers
1453          * to catch up.
1454          */
1455         if (global_reclaim(sc) && nr_unqueued_dirty == nr_taken) {
1456                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1457                 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1458         }
1459
1460         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1461                 zone_idx(zone),
1462                 nr_scanned, nr_reclaimed,
1463                 sc->priority,
1464                 trace_shrink_flags(file));
1465         return nr_reclaimed;
1466 }
1467
1468 /*
1469  * This moves pages from the active list to the inactive list.
1470  *
1471  * We move them the other way if the page is referenced by one or more
1472  * processes, from rmap.
1473  *
1474  * If the pages are mostly unmapped, the processing is fast and it is
1475  * appropriate to hold zone->lru_lock across the whole operation.  But if
1476  * the pages are mapped, the processing is slow (page_referenced()) so we
1477  * should drop zone->lru_lock around each page.  It's impossible to balance
1478  * this, so instead we remove the pages from the LRU while processing them.
1479  * It is safe to rely on PG_active against the non-LRU pages in here because
1480  * nobody will play with that bit on a non-LRU page.
1481  *
1482  * The downside is that we have to touch page->_count against each page.
1483  * But we had to alter page->flags anyway.
1484  */
1485
1486 static void move_active_pages_to_lru(struct lruvec *lruvec,
1487                                      struct list_head *list,
1488                                      struct list_head *pages_to_free,
1489                                      enum lru_list lru)
1490 {
1491         struct zone *zone = lruvec_zone(lruvec);
1492         unsigned long pgmoved = 0;
1493         struct page *page;
1494         int nr_pages;
1495
1496         while (!list_empty(list)) {
1497                 page = lru_to_page(list);
1498                 lruvec = mem_cgroup_page_lruvec(page, zone);
1499
1500                 VM_BUG_ON(PageLRU(page));
1501                 SetPageLRU(page);
1502
1503                 nr_pages = hpage_nr_pages(page);
1504                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1505                 list_move(&page->lru, &lruvec->lists[lru]);
1506                 pgmoved += nr_pages;
1507
1508                 if (put_page_testzero(page)) {
1509                         __ClearPageLRU(page);
1510                         __ClearPageActive(page);
1511                         del_page_from_lru_list(page, lruvec, lru);
1512
1513                         if (unlikely(PageCompound(page))) {
1514                                 spin_unlock_irq(&zone->lru_lock);
1515                                 (*get_compound_page_dtor(page))(page);
1516                                 spin_lock_irq(&zone->lru_lock);
1517                         } else
1518                                 list_add(&page->lru, pages_to_free);
1519                 }
1520         }
1521         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1522         if (!is_active_lru(lru))
1523                 __count_vm_events(PGDEACTIVATE, pgmoved);
1524 }
1525
1526 static void shrink_active_list(unsigned long nr_to_scan,
1527                                struct lruvec *lruvec,
1528                                struct scan_control *sc,
1529                                enum lru_list lru)
1530 {
1531         unsigned long nr_taken;
1532         unsigned long nr_scanned;
1533         unsigned long vm_flags;
1534         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1535         LIST_HEAD(l_active);
1536         LIST_HEAD(l_inactive);
1537         struct page *page;
1538         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1539         unsigned long nr_rotated = 0;
1540         isolate_mode_t isolate_mode = 0;
1541         int file = is_file_lru(lru);
1542         struct zone *zone = lruvec_zone(lruvec);
1543
1544         lru_add_drain();
1545
1546         if (!sc->may_unmap)
1547                 isolate_mode |= ISOLATE_UNMAPPED;
1548         if (!sc->may_writepage)
1549                 isolate_mode |= ISOLATE_CLEAN;
1550
1551         spin_lock_irq(&zone->lru_lock);
1552
1553         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1554                                      &nr_scanned, sc, isolate_mode, lru);
1555         if (global_reclaim(sc))
1556                 zone->pages_scanned += nr_scanned;
1557
1558         reclaim_stat->recent_scanned[file] += nr_taken;
1559
1560         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1561         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1562         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1563         spin_unlock_irq(&zone->lru_lock);
1564
1565         while (!list_empty(&l_hold)) {
1566                 cond_resched();
1567                 page = lru_to_page(&l_hold);
1568                 list_del(&page->lru);
1569
1570                 if (unlikely(!page_evictable(page))) {
1571                         putback_lru_page(page);
1572                         continue;
1573                 }
1574
1575                 if (unlikely(buffer_heads_over_limit)) {
1576                         if (page_has_private(page) && trylock_page(page)) {
1577                                 if (page_has_private(page))
1578                                         try_to_release_page(page, 0);
1579                                 unlock_page(page);
1580                         }
1581                 }
1582
1583                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1584                                     &vm_flags)) {
1585                         nr_rotated += hpage_nr_pages(page);
1586                         /*
1587                          * Identify referenced, file-backed active pages and
1588                          * give them one more trip around the active list. So
1589                          * that executable code get better chances to stay in
1590                          * memory under moderate memory pressure.  Anon pages
1591                          * are not likely to be evicted by use-once streaming
1592                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1593                          * so we ignore them here.
1594                          */
1595                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1596                                 list_add(&page->lru, &l_active);
1597                                 continue;
1598                         }
1599                 }
1600
1601                 ClearPageActive(page);  /* we are de-activating */
1602                 list_add(&page->lru, &l_inactive);
1603         }
1604
1605         /*
1606          * Move pages back to the lru list.
1607          */
1608         spin_lock_irq(&zone->lru_lock);
1609         /*
1610          * Count referenced pages from currently used mappings as rotated,
1611          * even though only some of them are actually re-activated.  This
1612          * helps balance scan pressure between file and anonymous pages in
1613          * get_scan_ratio.
1614          */
1615         reclaim_stat->recent_rotated[file] += nr_rotated;
1616
1617         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1618         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1619         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1620         spin_unlock_irq(&zone->lru_lock);
1621
1622         free_hot_cold_page_list(&l_hold, 1);
1623 }
1624
1625 #ifdef CONFIG_SWAP
1626 static int inactive_anon_is_low_global(struct zone *zone)
1627 {
1628         unsigned long active, inactive;
1629
1630         active = zone_page_state(zone, NR_ACTIVE_ANON);
1631         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1632
1633         if (inactive * zone->inactive_ratio < active)
1634                 return 1;
1635
1636         return 0;
1637 }
1638
1639 /**
1640  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1641  * @lruvec: LRU vector to check
1642  *
1643  * Returns true if the zone does not have enough inactive anon pages,
1644  * meaning some active anon pages need to be deactivated.
1645  */
1646 static int inactive_anon_is_low(struct lruvec *lruvec)
1647 {
1648         /*
1649          * If we don't have swap space, anonymous page deactivation
1650          * is pointless.
1651          */
1652         if (!total_swap_pages)
1653                 return 0;
1654
1655         if (!mem_cgroup_disabled())
1656                 return mem_cgroup_inactive_anon_is_low(lruvec);
1657
1658         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1659 }
1660 #else
1661 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1662 {
1663         return 0;
1664 }
1665 #endif
1666
1667 /**
1668  * inactive_file_is_low - check if file pages need to be deactivated
1669  * @lruvec: LRU vector to check
1670  *
1671  * When the system is doing streaming IO, memory pressure here
1672  * ensures that active file pages get deactivated, until more
1673  * than half of the file pages are on the inactive list.
1674  *
1675  * Once we get to that situation, protect the system's working
1676  * set from being evicted by disabling active file page aging.
1677  *
1678  * This uses a different ratio than the anonymous pages, because
1679  * the page cache uses a use-once replacement algorithm.
1680  */
1681 static int inactive_file_is_low(struct lruvec *lruvec)
1682 {
1683         unsigned long inactive;
1684         unsigned long active;
1685
1686         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1687         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1688
1689         return active > inactive;
1690 }
1691
1692 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1693 {
1694         if (is_file_lru(lru))
1695                 return inactive_file_is_low(lruvec);
1696         else
1697                 return inactive_anon_is_low(lruvec);
1698 }
1699
1700 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1701                                  struct lruvec *lruvec, struct scan_control *sc)
1702 {
1703         if (is_active_lru(lru)) {
1704                 if (inactive_list_is_low(lruvec, lru))
1705                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1706                 return 0;
1707         }
1708
1709         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1710 }
1711
1712 static int vmscan_swappiness(struct scan_control *sc)
1713 {
1714         if (global_reclaim(sc))
1715                 return vm_swappiness;
1716         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1717 }
1718
1719 enum scan_balance {
1720         SCAN_EQUAL,
1721         SCAN_FRACT,
1722         SCAN_ANON,
1723         SCAN_FILE,
1724 };
1725
1726 /*
1727  * Determine how aggressively the anon and file LRU lists should be
1728  * scanned.  The relative value of each set of LRU lists is determined
1729  * by looking at the fraction of the pages scanned we did rotate back
1730  * onto the active list instead of evict.
1731  *
1732  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1733  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1734  */
1735 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1736                            unsigned long *nr)
1737 {
1738         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1739         u64 fraction[2];
1740         u64 denominator = 0;    /* gcc */
1741         struct zone *zone = lruvec_zone(lruvec);
1742         unsigned long anon_prio, file_prio;
1743         enum scan_balance scan_balance;
1744         unsigned long anon, file, free;
1745         bool force_scan = false;
1746         unsigned long ap, fp;
1747         enum lru_list lru;
1748
1749         /*
1750          * If the zone or memcg is small, nr[l] can be 0.  This
1751          * results in no scanning on this priority and a potential
1752          * priority drop.  Global direct reclaim can go to the next
1753          * zone and tends to have no problems. Global kswapd is for
1754          * zone balancing and it needs to scan a minimum amount. When
1755          * reclaiming for a memcg, a priority drop can cause high
1756          * latencies, so it's better to scan a minimum amount there as
1757          * well.
1758          */
1759         if (current_is_kswapd() && zone->all_unreclaimable)
1760                 force_scan = true;
1761         if (!global_reclaim(sc))
1762                 force_scan = true;
1763
1764         /* If we have no swap space, do not bother scanning anon pages. */
1765         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1766                 scan_balance = SCAN_FILE;
1767                 goto out;
1768         }
1769
1770         /*
1771          * Global reclaim will swap to prevent OOM even with no
1772          * swappiness, but memcg users want to use this knob to
1773          * disable swapping for individual groups completely when
1774          * using the memory controller's swap limit feature would be
1775          * too expensive.
1776          */
1777         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1778                 scan_balance = SCAN_FILE;
1779                 goto out;
1780         }
1781
1782         /*
1783          * Do not apply any pressure balancing cleverness when the
1784          * system is close to OOM, scan both anon and file equally
1785          * (unless the swappiness setting disagrees with swapping).
1786          */
1787         if (!sc->priority && vmscan_swappiness(sc)) {
1788                 scan_balance = SCAN_EQUAL;
1789                 goto out;
1790         }
1791
1792         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1793                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1794         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1795                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1796
1797         /*
1798          * If it's foreseeable that reclaiming the file cache won't be
1799          * enough to get the zone back into a desirable shape, we have
1800          * to swap.  Better start now and leave the - probably heavily
1801          * thrashing - remaining file pages alone.
1802          */
1803         if (global_reclaim(sc)) {
1804                 free = zone_page_state(zone, NR_FREE_PAGES);
1805                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1806                         scan_balance = SCAN_ANON;
1807                         goto out;
1808                 }
1809         }
1810
1811         /*
1812          * There is enough inactive page cache, do not reclaim
1813          * anything from the anonymous working set right now.
1814          */
1815         if (!inactive_file_is_low(lruvec)) {
1816                 scan_balance = SCAN_FILE;
1817                 goto out;
1818         }
1819
1820         scan_balance = SCAN_FRACT;
1821
1822         /*
1823          * With swappiness at 100, anonymous and file have the same priority.
1824          * This scanning priority is essentially the inverse of IO cost.
1825          */
1826         anon_prio = vmscan_swappiness(sc);
1827         file_prio = 200 - anon_prio;
1828
1829         /*
1830          * OK, so we have swap space and a fair amount of page cache
1831          * pages.  We use the recently rotated / recently scanned
1832          * ratios to determine how valuable each cache is.
1833          *
1834          * Because workloads change over time (and to avoid overflow)
1835          * we keep these statistics as a floating average, which ends
1836          * up weighing recent references more than old ones.
1837          *
1838          * anon in [0], file in [1]
1839          */
1840         spin_lock_irq(&zone->lru_lock);
1841         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1842                 reclaim_stat->recent_scanned[0] /= 2;
1843                 reclaim_stat->recent_rotated[0] /= 2;
1844         }
1845
1846         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1847                 reclaim_stat->recent_scanned[1] /= 2;
1848                 reclaim_stat->recent_rotated[1] /= 2;
1849         }
1850
1851         /*
1852          * The amount of pressure on anon vs file pages is inversely
1853          * proportional to the fraction of recently scanned pages on
1854          * each list that were recently referenced and in active use.
1855          */
1856         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1857         ap /= reclaim_stat->recent_rotated[0] + 1;
1858
1859         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1860         fp /= reclaim_stat->recent_rotated[1] + 1;
1861         spin_unlock_irq(&zone->lru_lock);
1862
1863         fraction[0] = ap;
1864         fraction[1] = fp;
1865         denominator = ap + fp + 1;
1866 out:
1867         for_each_evictable_lru(lru) {
1868                 int file = is_file_lru(lru);
1869                 unsigned long size;
1870                 unsigned long scan;
1871
1872                 size = get_lru_size(lruvec, lru);
1873                 scan = size >> sc->priority;
1874
1875                 if (!scan && force_scan)
1876                         scan = min(size, SWAP_CLUSTER_MAX);
1877
1878                 switch (scan_balance) {
1879                 case SCAN_EQUAL:
1880                         /* Scan lists relative to size */
1881                         break;
1882                 case SCAN_FRACT:
1883                         /*
1884                          * Scan types proportional to swappiness and
1885                          * their relative recent reclaim efficiency.
1886                          */
1887                         scan = div64_u64(scan * fraction[file], denominator);
1888                         break;
1889                 case SCAN_FILE:
1890                 case SCAN_ANON:
1891                         /* Scan one type exclusively */
1892                         if ((scan_balance == SCAN_FILE) != file)
1893                                 scan = 0;
1894                         break;
1895                 default:
1896                         /* Look ma, no brain */
1897                         BUG();
1898                 }
1899                 nr[lru] = scan;
1900         }
1901 }
1902
1903 /*
1904  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1905  */
1906 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1907 {
1908         unsigned long nr[NR_LRU_LISTS];
1909         unsigned long targets[NR_LRU_LISTS];
1910         unsigned long nr_to_scan;
1911         enum lru_list lru;
1912         unsigned long nr_reclaimed = 0;
1913         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1914         struct blk_plug plug;
1915         bool scan_adjusted = false;
1916
1917         get_scan_count(lruvec, sc, nr);
1918
1919         /* Record the original scan target for proportional adjustments later */
1920         memcpy(targets, nr, sizeof(nr));
1921
1922         blk_start_plug(&plug);
1923         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1924                                         nr[LRU_INACTIVE_FILE]) {
1925                 unsigned long nr_anon, nr_file, percentage;
1926                 unsigned long nr_scanned;
1927
1928                 for_each_evictable_lru(lru) {
1929                         if (nr[lru]) {
1930                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1931                                 nr[lru] -= nr_to_scan;
1932
1933                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1934                                                             lruvec, sc);
1935                         }
1936                 }
1937
1938                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1939                         continue;
1940
1941                 /*
1942                  * For global direct reclaim, reclaim only the number of pages
1943                  * requested. Less care is taken to scan proportionally as it
1944                  * is more important to minimise direct reclaim stall latency
1945                  * than it is to properly age the LRU lists.
1946                  */
1947                 if (global_reclaim(sc) && !current_is_kswapd())
1948                         break;
1949
1950                 /*
1951                  * For kswapd and memcg, reclaim at least the number of pages
1952                  * requested. Ensure that the anon and file LRUs shrink
1953                  * proportionally what was requested by get_scan_count(). We
1954                  * stop reclaiming one LRU and reduce the amount scanning
1955                  * proportional to the original scan target.
1956                  */
1957                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1958                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1959
1960                 if (nr_file > nr_anon) {
1961                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1962                                                 targets[LRU_ACTIVE_ANON] + 1;
1963                         lru = LRU_BASE;
1964                         percentage = nr_anon * 100 / scan_target;
1965                 } else {
1966                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1967                                                 targets[LRU_ACTIVE_FILE] + 1;
1968                         lru = LRU_FILE;
1969                         percentage = nr_file * 100 / scan_target;
1970                 }
1971
1972                 /* Stop scanning the smaller of the LRU */
1973                 nr[lru] = 0;
1974                 nr[lru + LRU_ACTIVE] = 0;
1975
1976                 /*
1977                  * Recalculate the other LRU scan count based on its original
1978                  * scan target and the percentage scanning already complete
1979                  */
1980                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1981                 nr_scanned = targets[lru] - nr[lru];
1982                 nr[lru] = targets[lru] * (100 - percentage) / 100;
1983                 nr[lru] -= min(nr[lru], nr_scanned);
1984
1985                 lru += LRU_ACTIVE;
1986                 nr_scanned = targets[lru] - nr[lru];
1987                 nr[lru] = targets[lru] * (100 - percentage) / 100;
1988                 nr[lru] -= min(nr[lru], nr_scanned);
1989
1990                 scan_adjusted = true;
1991         }
1992         blk_finish_plug(&plug);
1993         sc->nr_reclaimed += nr_reclaimed;
1994
1995         /*
1996          * Even if we did not try to evict anon pages at all, we want to
1997          * rebalance the anon lru active/inactive ratio.
1998          */
1999         if (inactive_anon_is_low(lruvec))
2000                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2001                                    sc, LRU_ACTIVE_ANON);
2002
2003         throttle_vm_writeout(sc->gfp_mask);
2004 }
2005
2006 /* Use reclaim/compaction for costly allocs or under memory pressure */
2007 static bool in_reclaim_compaction(struct scan_control *sc)
2008 {
2009         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2010                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2011                          sc->priority < DEF_PRIORITY - 2))
2012                 return true;
2013
2014         return false;
2015 }
2016
2017 /*
2018  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2019  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2020  * true if more pages should be reclaimed such that when the page allocator
2021  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2022  * It will give up earlier than that if there is difficulty reclaiming pages.
2023  */
2024 static inline bool should_continue_reclaim(struct zone *zone,
2025                                         unsigned long nr_reclaimed,
2026                                         unsigned long nr_scanned,
2027                                         struct scan_control *sc)
2028 {
2029         unsigned long pages_for_compaction;
2030         unsigned long inactive_lru_pages;
2031
2032         /* If not in reclaim/compaction mode, stop */
2033         if (!in_reclaim_compaction(sc))
2034                 return false;
2035
2036         /* Consider stopping depending on scan and reclaim activity */
2037         if (sc->gfp_mask & __GFP_REPEAT) {
2038                 /*
2039                  * For __GFP_REPEAT allocations, stop reclaiming if the
2040                  * full LRU list has been scanned and we are still failing
2041                  * to reclaim pages. This full LRU scan is potentially
2042                  * expensive but a __GFP_REPEAT caller really wants to succeed
2043                  */
2044                 if (!nr_reclaimed && !nr_scanned)
2045                         return false;
2046         } else {
2047                 /*
2048                  * For non-__GFP_REPEAT allocations which can presumably
2049                  * fail without consequence, stop if we failed to reclaim
2050                  * any pages from the last SWAP_CLUSTER_MAX number of
2051                  * pages that were scanned. This will return to the
2052                  * caller faster at the risk reclaim/compaction and
2053                  * the resulting allocation attempt fails
2054                  */
2055                 if (!nr_reclaimed)
2056                         return false;
2057         }
2058
2059         /*
2060          * If we have not reclaimed enough pages for compaction and the
2061          * inactive lists are large enough, continue reclaiming
2062          */
2063         pages_for_compaction = (2UL << sc->order);
2064         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2065         if (get_nr_swap_pages() > 0)
2066                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2067         if (sc->nr_reclaimed < pages_for_compaction &&
2068                         inactive_lru_pages > pages_for_compaction)
2069                 return true;
2070
2071         /* If compaction would go ahead or the allocation would succeed, stop */
2072         switch (compaction_suitable(zone, sc->order)) {
2073         case COMPACT_PARTIAL:
2074         case COMPACT_CONTINUE:
2075                 return false;
2076         default:
2077                 return true;
2078         }
2079 }
2080
2081 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2082 {
2083         unsigned long nr_reclaimed, nr_scanned;
2084
2085         do {
2086                 struct mem_cgroup *root = sc->target_mem_cgroup;
2087                 struct mem_cgroup_reclaim_cookie reclaim = {
2088                         .zone = zone,
2089                         .priority = sc->priority,
2090                 };
2091                 struct mem_cgroup *memcg;
2092
2093                 nr_reclaimed = sc->nr_reclaimed;
2094                 nr_scanned = sc->nr_scanned;
2095
2096                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2097                 do {
2098                         struct lruvec *lruvec;
2099
2100                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2101
2102                         shrink_lruvec(lruvec, sc);
2103
2104                         /*
2105                          * Direct reclaim and kswapd have to scan all memory
2106                          * cgroups to fulfill the overall scan target for the
2107                          * zone.
2108                          *
2109                          * Limit reclaim, on the other hand, only cares about
2110                          * nr_to_reclaim pages to be reclaimed and it will
2111                          * retry with decreasing priority if one round over the
2112                          * whole hierarchy is not sufficient.
2113                          */
2114                         if (!global_reclaim(sc) &&
2115                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2116                                 mem_cgroup_iter_break(root, memcg);
2117                                 break;
2118                         }
2119                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2120                 } while (memcg);
2121
2122                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2123                            sc->nr_scanned - nr_scanned,
2124                            sc->nr_reclaimed - nr_reclaimed);
2125
2126         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2127                                          sc->nr_scanned - nr_scanned, sc));
2128 }
2129
2130 /* Returns true if compaction should go ahead for a high-order request */
2131 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2132 {
2133         unsigned long balance_gap, watermark;
2134         bool watermark_ok;
2135
2136         /* Do not consider compaction for orders reclaim is meant to satisfy */
2137         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2138                 return false;
2139
2140         /*
2141          * Compaction takes time to run and there are potentially other
2142          * callers using the pages just freed. Continue reclaiming until
2143          * there is a buffer of free pages available to give compaction
2144          * a reasonable chance of completing and allocating the page
2145          */
2146         balance_gap = min(low_wmark_pages(zone),
2147                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2148                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2149         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2150         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2151
2152         /*
2153          * If compaction is deferred, reclaim up to a point where
2154          * compaction will have a chance of success when re-enabled
2155          */
2156         if (compaction_deferred(zone, sc->order))
2157                 return watermark_ok;
2158
2159         /* If compaction is not ready to start, keep reclaiming */
2160         if (!compaction_suitable(zone, sc->order))
2161                 return false;
2162
2163         return watermark_ok;
2164 }
2165
2166 /*
2167  * This is the direct reclaim path, for page-allocating processes.  We only
2168  * try to reclaim pages from zones which will satisfy the caller's allocation
2169  * request.
2170  *
2171  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2172  * Because:
2173  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2174  *    allocation or
2175  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2176  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2177  *    zone defense algorithm.
2178  *
2179  * If a zone is deemed to be full of pinned pages then just give it a light
2180  * scan then give up on it.
2181  *
2182  * This function returns true if a zone is being reclaimed for a costly
2183  * high-order allocation and compaction is ready to begin. This indicates to
2184  * the caller that it should consider retrying the allocation instead of
2185  * further reclaim.
2186  */
2187 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2188 {
2189         struct zoneref *z;
2190         struct zone *zone;
2191         unsigned long nr_soft_reclaimed;
2192         unsigned long nr_soft_scanned;
2193         bool aborted_reclaim = false;
2194
2195         /*
2196          * If the number of buffer_heads in the machine exceeds the maximum
2197          * allowed level, force direct reclaim to scan the highmem zone as
2198          * highmem pages could be pinning lowmem pages storing buffer_heads
2199          */
2200         if (buffer_heads_over_limit)
2201                 sc->gfp_mask |= __GFP_HIGHMEM;
2202
2203         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2204                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2205                 if (!populated_zone(zone))
2206                         continue;
2207                 /*
2208                  * Take care memory controller reclaiming has small influence
2209                  * to global LRU.
2210                  */
2211                 if (global_reclaim(sc)) {
2212                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2213                                 continue;
2214                         if (zone->all_unreclaimable &&
2215                                         sc->priority != DEF_PRIORITY)
2216                                 continue;       /* Let kswapd poll it */
2217                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2218                                 /*
2219                                  * If we already have plenty of memory free for
2220                                  * compaction in this zone, don't free any more.
2221                                  * Even though compaction is invoked for any
2222                                  * non-zero order, only frequent costly order
2223                                  * reclamation is disruptive enough to become a
2224                                  * noticeable problem, like transparent huge
2225                                  * page allocations.
2226                                  */
2227                                 if (compaction_ready(zone, sc)) {
2228                                         aborted_reclaim = true;
2229                                         continue;
2230                                 }
2231                         }
2232                         /*
2233                          * This steals pages from memory cgroups over softlimit
2234                          * and returns the number of reclaimed pages and
2235                          * scanned pages. This works for global memory pressure
2236                          * and balancing, not for a memcg's limit.
2237                          */
2238                         nr_soft_scanned = 0;
2239                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2240                                                 sc->order, sc->gfp_mask,
2241                                                 &nr_soft_scanned);
2242                         sc->nr_reclaimed += nr_soft_reclaimed;
2243                         sc->nr_scanned += nr_soft_scanned;
2244                         /* need some check for avoid more shrink_zone() */
2245                 }
2246
2247                 shrink_zone(zone, sc);
2248         }
2249
2250         return aborted_reclaim;
2251 }
2252
2253 static bool zone_reclaimable(struct zone *zone)
2254 {
2255         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2256 }
2257
2258 /* All zones in zonelist are unreclaimable? */
2259 static bool all_unreclaimable(struct zonelist *zonelist,
2260                 struct scan_control *sc)
2261 {
2262         struct zoneref *z;
2263         struct zone *zone;
2264
2265         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2266                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2267                 if (!populated_zone(zone))
2268                         continue;
2269                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2270                         continue;
2271                 if (!zone->all_unreclaimable)
2272                         return false;
2273         }
2274
2275         return true;
2276 }
2277
2278 /*
2279  * This is the main entry point to direct page reclaim.
2280  *
2281  * If a full scan of the inactive list fails to free enough memory then we
2282  * are "out of memory" and something needs to be killed.
2283  *
2284  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2285  * high - the zone may be full of dirty or under-writeback pages, which this
2286  * caller can't do much about.  We kick the writeback threads and take explicit
2287  * naps in the hope that some of these pages can be written.  But if the
2288  * allocating task holds filesystem locks which prevent writeout this might not
2289  * work, and the allocation attempt will fail.
2290  *
2291  * returns:     0, if no pages reclaimed
2292  *              else, the number of pages reclaimed
2293  */
2294 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2295                                         struct scan_control *sc,
2296                                         struct shrink_control *shrink)
2297 {
2298         unsigned long total_scanned = 0;
2299         struct reclaim_state *reclaim_state = current->reclaim_state;
2300         struct zoneref *z;
2301         struct zone *zone;
2302         unsigned long writeback_threshold;
2303         bool aborted_reclaim;
2304
2305         delayacct_freepages_start();
2306
2307         if (global_reclaim(sc))
2308                 count_vm_event(ALLOCSTALL);
2309
2310         do {
2311                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2312                                 sc->priority);
2313                 sc->nr_scanned = 0;
2314                 aborted_reclaim = shrink_zones(zonelist, sc);
2315
2316                 /*
2317                  * Don't shrink slabs when reclaiming memory from
2318                  * over limit cgroups
2319                  */
2320                 if (global_reclaim(sc)) {
2321                         unsigned long lru_pages = 0;
2322                         for_each_zone_zonelist(zone, z, zonelist,
2323                                         gfp_zone(sc->gfp_mask)) {
2324                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2325                                         continue;
2326
2327                                 lru_pages += zone_reclaimable_pages(zone);
2328                         }
2329
2330                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2331                         if (reclaim_state) {
2332                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2333                                 reclaim_state->reclaimed_slab = 0;
2334                         }
2335                 }
2336                 total_scanned += sc->nr_scanned;
2337                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2338                         goto out;
2339
2340                 /*
2341                  * If we're getting trouble reclaiming, start doing
2342                  * writepage even in laptop mode.
2343                  */
2344                 if (sc->priority < DEF_PRIORITY - 2)
2345                         sc->may_writepage = 1;
2346
2347                 /*
2348                  * Try to write back as many pages as we just scanned.  This
2349                  * tends to cause slow streaming writers to write data to the
2350                  * disk smoothly, at the dirtying rate, which is nice.   But
2351                  * that's undesirable in laptop mode, where we *want* lumpy
2352                  * writeout.  So in laptop mode, write out the whole world.
2353                  */
2354                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2355                 if (total_scanned > writeback_threshold) {
2356                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2357                                                 WB_REASON_TRY_TO_FREE_PAGES);
2358                         sc->may_writepage = 1;
2359                 }
2360
2361                 /* Take a nap, wait for some writeback to complete */
2362                 if (!sc->hibernation_mode && sc->nr_scanned &&
2363                     sc->priority < DEF_PRIORITY - 2) {
2364                         struct zone *preferred_zone;
2365
2366                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2367                                                 &cpuset_current_mems_allowed,
2368                                                 &preferred_zone);
2369                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2370                 }
2371         } while (--sc->priority >= 0);
2372
2373 out:
2374         delayacct_freepages_end();
2375
2376         if (sc->nr_reclaimed)
2377                 return sc->nr_reclaimed;
2378
2379         /*
2380          * As hibernation is going on, kswapd is freezed so that it can't mark
2381          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2382          * check.
2383          */
2384         if (oom_killer_disabled)
2385                 return 0;
2386
2387         /* Aborted reclaim to try compaction? don't OOM, then */
2388         if (aborted_reclaim)
2389                 return 1;
2390
2391         /* top priority shrink_zones still had more to do? don't OOM, then */
2392         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2393                 return 1;
2394
2395         return 0;
2396 }
2397
2398 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2399 {
2400         struct zone *zone;
2401         unsigned long pfmemalloc_reserve = 0;
2402         unsigned long free_pages = 0;
2403         int i;
2404         bool wmark_ok;
2405
2406         for (i = 0; i <= ZONE_NORMAL; i++) {
2407                 zone = &pgdat->node_zones[i];
2408                 pfmemalloc_reserve += min_wmark_pages(zone);
2409                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2410         }
2411
2412         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2413
2414         /* kswapd must be awake if processes are being throttled */
2415         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2416                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2417                                                 (enum zone_type)ZONE_NORMAL);
2418                 wake_up_interruptible(&pgdat->kswapd_wait);
2419         }
2420
2421         return wmark_ok;
2422 }
2423
2424 /*
2425  * Throttle direct reclaimers if backing storage is backed by the network
2426  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2427  * depleted. kswapd will continue to make progress and wake the processes
2428  * when the low watermark is reached.
2429  *
2430  * Returns true if a fatal signal was delivered during throttling. If this
2431  * happens, the page allocator should not consider triggering the OOM killer.
2432  */
2433 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2434                                         nodemask_t *nodemask)
2435 {
2436         struct zone *zone;
2437         int high_zoneidx = gfp_zone(gfp_mask);
2438         pg_data_t *pgdat;
2439
2440         /*
2441          * Kernel threads should not be throttled as they may be indirectly
2442          * responsible for cleaning pages necessary for reclaim to make forward
2443          * progress. kjournald for example may enter direct reclaim while
2444          * committing a transaction where throttling it could forcing other
2445          * processes to block on log_wait_commit().
2446          */
2447         if (current->flags & PF_KTHREAD)
2448                 goto out;
2449
2450         /*
2451          * If a fatal signal is pending, this process should not throttle.
2452          * It should return quickly so it can exit and free its memory
2453          */
2454         if (fatal_signal_pending(current))
2455                 goto out;
2456
2457         /* Check if the pfmemalloc reserves are ok */
2458         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2459         pgdat = zone->zone_pgdat;
2460         if (pfmemalloc_watermark_ok(pgdat))
2461                 goto out;
2462
2463         /* Account for the throttling */
2464         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2465
2466         /*
2467          * If the caller cannot enter the filesystem, it's possible that it
2468          * is due to the caller holding an FS lock or performing a journal
2469          * transaction in the case of a filesystem like ext[3|4]. In this case,
2470          * it is not safe to block on pfmemalloc_wait as kswapd could be
2471          * blocked waiting on the same lock. Instead, throttle for up to a
2472          * second before continuing.
2473          */
2474         if (!(gfp_mask & __GFP_FS)) {
2475                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2476                         pfmemalloc_watermark_ok(pgdat), HZ);
2477
2478                 goto check_pending;
2479         }
2480
2481         /* Throttle until kswapd wakes the process */
2482         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2483                 pfmemalloc_watermark_ok(pgdat));
2484
2485 check_pending:
2486         if (fatal_signal_pending(current))
2487                 return true;
2488
2489 out:
2490         return false;
2491 }
2492
2493 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2494                                 gfp_t gfp_mask, nodemask_t *nodemask)
2495 {
2496         unsigned long nr_reclaimed;
2497         struct scan_control sc = {
2498                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2499                 .may_writepage = !laptop_mode,
2500                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2501                 .may_unmap = 1,
2502                 .may_swap = 1,
2503                 .order = order,
2504                 .priority = DEF_PRIORITY,
2505                 .target_mem_cgroup = NULL,
2506                 .nodemask = nodemask,
2507         };
2508         struct shrink_control shrink = {
2509                 .gfp_mask = sc.gfp_mask,
2510         };
2511
2512         /*
2513          * Do not enter reclaim if fatal signal was delivered while throttled.
2514          * 1 is returned so that the page allocator does not OOM kill at this
2515          * point.
2516          */
2517         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2518                 return 1;
2519
2520         trace_mm_vmscan_direct_reclaim_begin(order,
2521                                 sc.may_writepage,
2522                                 gfp_mask);
2523
2524         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2525
2526         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2527
2528         return nr_reclaimed;
2529 }
2530
2531 #ifdef CONFIG_MEMCG
2532
2533 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2534                                                 gfp_t gfp_mask, bool noswap,
2535                                                 struct zone *zone,
2536                                                 unsigned long *nr_scanned)
2537 {
2538         struct scan_control sc = {
2539                 .nr_scanned = 0,
2540                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2541                 .may_writepage = !laptop_mode,
2542                 .may_unmap = 1,
2543                 .may_swap = !noswap,
2544                 .order = 0,
2545                 .priority = 0,
2546                 .target_mem_cgroup = memcg,
2547         };
2548         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2549
2550         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2551                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2552
2553         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2554                                                       sc.may_writepage,
2555                                                       sc.gfp_mask);
2556
2557         /*
2558          * NOTE: Although we can get the priority field, using it
2559          * here is not a good idea, since it limits the pages we can scan.
2560          * if we don't reclaim here, the shrink_zone from balance_pgdat
2561          * will pick up pages from other mem cgroup's as well. We hack
2562          * the priority and make it zero.
2563          */
2564         shrink_lruvec(lruvec, &sc);
2565
2566         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2567
2568         *nr_scanned = sc.nr_scanned;
2569         return sc.nr_reclaimed;
2570 }
2571
2572 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2573                                            gfp_t gfp_mask,
2574                                            bool noswap)
2575 {
2576         struct zonelist *zonelist;
2577         unsigned long nr_reclaimed;
2578         int nid;
2579         struct scan_control sc = {
2580                 .may_writepage = !laptop_mode,
2581                 .may_unmap = 1,
2582                 .may_swap = !noswap,
2583                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2584                 .order = 0,
2585                 .priority = DEF_PRIORITY,
2586                 .target_mem_cgroup = memcg,
2587                 .nodemask = NULL, /* we don't care the placement */
2588                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2589                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2590         };
2591         struct shrink_control shrink = {
2592                 .gfp_mask = sc.gfp_mask,
2593         };
2594
2595         /*
2596          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2597          * take care of from where we get pages. So the node where we start the
2598          * scan does not need to be the current node.
2599          */
2600         nid = mem_cgroup_select_victim_node(memcg);
2601
2602         zonelist = NODE_DATA(nid)->node_zonelists;
2603
2604         trace_mm_vmscan_memcg_reclaim_begin(0,
2605                                             sc.may_writepage,
2606                                             sc.gfp_mask);
2607
2608         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2609
2610         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2611
2612         return nr_reclaimed;
2613 }
2614 #endif
2615
2616 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2617 {
2618         struct mem_cgroup *memcg;
2619
2620         if (!total_swap_pages)
2621                 return;
2622
2623         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2624         do {
2625                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2626
2627                 if (inactive_anon_is_low(lruvec))
2628                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2629                                            sc, LRU_ACTIVE_ANON);
2630
2631                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2632         } while (memcg);
2633 }
2634
2635 static bool zone_balanced(struct zone *zone, int order,
2636                           unsigned long balance_gap, int classzone_idx)
2637 {
2638         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2639                                     balance_gap, classzone_idx, 0))
2640                 return false;
2641
2642         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2643             !compaction_suitable(zone, order))
2644                 return false;
2645
2646         return true;
2647 }
2648
2649 /*
2650  * pgdat_balanced() is used when checking if a node is balanced.
2651  *
2652  * For order-0, all zones must be balanced!
2653  *
2654  * For high-order allocations only zones that meet watermarks and are in a
2655  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2656  * total of balanced pages must be at least 25% of the zones allowed by
2657  * classzone_idx for the node to be considered balanced. Forcing all zones to
2658  * be balanced for high orders can cause excessive reclaim when there are
2659  * imbalanced zones.
2660  * The choice of 25% is due to
2661  *   o a 16M DMA zone that is balanced will not balance a zone on any
2662  *     reasonable sized machine
2663  *   o On all other machines, the top zone must be at least a reasonable
2664  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2665  *     would need to be at least 256M for it to be balance a whole node.
2666  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2667  *     to balance a node on its own. These seemed like reasonable ratios.
2668  */
2669 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2670 {
2671         unsigned long managed_pages = 0;
2672         unsigned long balanced_pages = 0;
2673         int i;
2674
2675         /* Check the watermark levels */
2676         for (i = 0; i <= classzone_idx; i++) {
2677                 struct zone *zone = pgdat->node_zones + i;
2678
2679                 if (!populated_zone(zone))
2680                         continue;
2681
2682                 managed_pages += zone->managed_pages;
2683
2684                 /*
2685                  * A special case here:
2686                  *
2687                  * balance_pgdat() skips over all_unreclaimable after
2688                  * DEF_PRIORITY. Effectively, it considers them balanced so
2689                  * they must be considered balanced here as well!
2690                  */
2691                 if (zone->all_unreclaimable) {
2692                         balanced_pages += zone->managed_pages;
2693                         continue;
2694                 }
2695
2696                 if (zone_balanced(zone, order, 0, i))
2697                         balanced_pages += zone->managed_pages;
2698                 else if (!order)
2699                         return false;
2700         }
2701
2702         if (order)
2703                 return balanced_pages >= (managed_pages >> 2);
2704         else
2705                 return true;
2706 }
2707
2708 /*
2709  * Prepare kswapd for sleeping. This verifies that there are no processes
2710  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2711  *
2712  * Returns true if kswapd is ready to sleep
2713  */
2714 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2715                                         int classzone_idx)
2716 {
2717         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2718         if (remaining)
2719                 return false;
2720
2721         /*
2722          * There is a potential race between when kswapd checks its watermarks
2723          * and a process gets throttled. There is also a potential race if
2724          * processes get throttled, kswapd wakes, a large process exits therby
2725          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2726          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2727          * so wake them now if necessary. If necessary, processes will wake
2728          * kswapd and get throttled again
2729          */
2730         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2731                 wake_up(&pgdat->pfmemalloc_wait);
2732                 return false;
2733         }
2734
2735         return pgdat_balanced(pgdat, order, classzone_idx);
2736 }
2737
2738 /*
2739  * kswapd shrinks the zone by the number of pages required to reach
2740  * the high watermark.
2741  *
2742  * Returns true if kswapd scanned at least the requested number of pages to
2743  * reclaim or if the lack of progress was due to pages under writeback.
2744  * This is used to determine if the scanning priority needs to be raised.
2745  */
2746 static bool kswapd_shrink_zone(struct zone *zone,
2747                                int classzone_idx,
2748                                struct scan_control *sc,
2749                                unsigned long lru_pages,
2750                                unsigned long *nr_attempted)
2751 {
2752         unsigned long nr_slab;
2753         int testorder = sc->order;
2754         unsigned long balance_gap;
2755         struct reclaim_state *reclaim_state = current->reclaim_state;
2756         struct shrink_control shrink = {
2757                 .gfp_mask = sc->gfp_mask,
2758         };
2759         bool lowmem_pressure;
2760
2761         /* Reclaim above the high watermark. */
2762         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2763
2764         /*
2765          * Kswapd reclaims only single pages with compaction enabled. Trying
2766          * too hard to reclaim until contiguous free pages have become
2767          * available can hurt performance by evicting too much useful data
2768          * from memory. Do not reclaim more than needed for compaction.
2769          */
2770         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2771                         compaction_suitable(zone, sc->order) !=
2772                                 COMPACT_SKIPPED)
2773                 testorder = 0;
2774
2775         /*
2776          * We put equal pressure on every zone, unless one zone has way too
2777          * many pages free already. The "too many pages" is defined as the
2778          * high wmark plus a "gap" where the gap is either the low
2779          * watermark or 1% of the zone, whichever is smaller.
2780          */
2781         balance_gap = min(low_wmark_pages(zone),
2782                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2783                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2784
2785         /*
2786          * If there is no low memory pressure or the zone is balanced then no
2787          * reclaim is necessary
2788          */
2789         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2790         if (!lowmem_pressure && zone_balanced(zone, testorder,
2791                                                 balance_gap, classzone_idx))
2792                 return true;
2793
2794         shrink_zone(zone, sc);
2795
2796         reclaim_state->reclaimed_slab = 0;
2797         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2798         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2799
2800         /* Account for the number of pages attempted to reclaim */
2801         *nr_attempted += sc->nr_to_reclaim;
2802
2803         if (nr_slab == 0 && !zone_reclaimable(zone))
2804                 zone->all_unreclaimable = 1;
2805
2806         zone_clear_flag(zone, ZONE_WRITEBACK);
2807
2808         /*
2809          * If a zone reaches its high watermark, consider it to be no longer
2810          * congested. It's possible there are dirty pages backed by congested
2811          * BDIs but as pressure is relieved, speculatively avoid congestion
2812          * waits.
2813          */
2814         if (!zone->all_unreclaimable &&
2815             zone_balanced(zone, testorder, 0, classzone_idx)) {
2816                 zone_clear_flag(zone, ZONE_CONGESTED);
2817                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2818         }
2819
2820         return sc->nr_scanned >= sc->nr_to_reclaim;
2821 }
2822
2823 /*
2824  * For kswapd, balance_pgdat() will work across all this node's zones until
2825  * they are all at high_wmark_pages(zone).
2826  *
2827  * Returns the final order kswapd was reclaiming at
2828  *
2829  * There is special handling here for zones which are full of pinned pages.
2830  * This can happen if the pages are all mlocked, or if they are all used by
2831  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2832  * What we do is to detect the case where all pages in the zone have been
2833  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2834  * dead and from now on, only perform a short scan.  Basically we're polling
2835  * the zone for when the problem goes away.
2836  *
2837  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2838  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2839  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2840  * lower zones regardless of the number of free pages in the lower zones. This
2841  * interoperates with the page allocator fallback scheme to ensure that aging
2842  * of pages is balanced across the zones.
2843  */
2844 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2845                                                         int *classzone_idx)
2846 {
2847         int i;
2848         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2849         unsigned long nr_soft_reclaimed;
2850         unsigned long nr_soft_scanned;
2851         struct scan_control sc = {
2852                 .gfp_mask = GFP_KERNEL,
2853                 .priority = DEF_PRIORITY,
2854                 .may_unmap = 1,
2855                 .may_swap = 1,
2856                 .may_writepage = !laptop_mode,
2857                 .order = order,
2858                 .target_mem_cgroup = NULL,
2859         };
2860         count_vm_event(PAGEOUTRUN);
2861
2862         do {
2863                 unsigned long lru_pages = 0;
2864                 unsigned long nr_attempted = 0;
2865                 bool raise_priority = true;
2866                 bool pgdat_needs_compaction = (order > 0);
2867
2868                 sc.nr_reclaimed = 0;
2869
2870                 /*
2871                  * Scan in the highmem->dma direction for the highest
2872                  * zone which needs scanning
2873                  */
2874                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2875                         struct zone *zone = pgdat->node_zones + i;
2876
2877                         if (!populated_zone(zone))
2878                                 continue;
2879
2880                         if (zone->all_unreclaimable &&
2881                             sc.priority != DEF_PRIORITY)
2882                                 continue;
2883
2884                         /*
2885                          * Do some background aging of the anon list, to give
2886                          * pages a chance to be referenced before reclaiming.
2887                          */
2888                         age_active_anon(zone, &sc);
2889
2890                         /*
2891                          * If the number of buffer_heads in the machine
2892                          * exceeds the maximum allowed level and this node
2893                          * has a highmem zone, force kswapd to reclaim from
2894                          * it to relieve lowmem pressure.
2895                          */
2896                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2897                                 end_zone = i;
2898                                 break;
2899                         }
2900
2901                         if (!zone_balanced(zone, order, 0, 0)) {
2902                                 end_zone = i;
2903                                 break;
2904                         } else {
2905                                 /*
2906                                  * If balanced, clear the dirty and congested
2907                                  * flags
2908                                  */
2909                                 zone_clear_flag(zone, ZONE_CONGESTED);
2910                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2911                         }
2912                 }
2913
2914                 if (i < 0)
2915                         goto out;
2916
2917                 for (i = 0; i <= end_zone; i++) {
2918                         struct zone *zone = pgdat->node_zones + i;
2919
2920                         if (!populated_zone(zone))
2921                                 continue;
2922
2923                         lru_pages += zone_reclaimable_pages(zone);
2924
2925                         /*
2926                          * If any zone is currently balanced then kswapd will
2927                          * not call compaction as it is expected that the
2928                          * necessary pages are already available.
2929                          */
2930                         if (pgdat_needs_compaction &&
2931                                         zone_watermark_ok(zone, order,
2932                                                 low_wmark_pages(zone),
2933                                                 *classzone_idx, 0))
2934                                 pgdat_needs_compaction = false;
2935                 }
2936
2937                 /*
2938                  * If we're getting trouble reclaiming, start doing writepage
2939                  * even in laptop mode.
2940                  */
2941                 if (sc.priority < DEF_PRIORITY - 2)
2942                         sc.may_writepage = 1;
2943
2944                 /*
2945                  * Now scan the zone in the dma->highmem direction, stopping
2946                  * at the last zone which needs scanning.
2947                  *
2948                  * We do this because the page allocator works in the opposite
2949                  * direction.  This prevents the page allocator from allocating
2950                  * pages behind kswapd's direction of progress, which would
2951                  * cause too much scanning of the lower zones.
2952                  */
2953                 for (i = 0; i <= end_zone; i++) {
2954                         struct zone *zone = pgdat->node_zones + i;
2955
2956                         if (!populated_zone(zone))
2957                                 continue;
2958
2959                         if (zone->all_unreclaimable &&
2960                             sc.priority != DEF_PRIORITY)
2961                                 continue;
2962
2963                         sc.nr_scanned = 0;
2964
2965                         nr_soft_scanned = 0;
2966                         /*
2967                          * Call soft limit reclaim before calling shrink_zone.
2968                          */
2969                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2970                                                         order, sc.gfp_mask,
2971                                                         &nr_soft_scanned);
2972                         sc.nr_reclaimed += nr_soft_reclaimed;
2973
2974                         /*
2975                          * There should be no need to raise the scanning
2976                          * priority if enough pages are already being scanned
2977                          * that that high watermark would be met at 100%
2978                          * efficiency.
2979                          */
2980                         if (kswapd_shrink_zone(zone, end_zone, &sc,
2981                                         lru_pages, &nr_attempted))
2982                                 raise_priority = false;
2983                 }
2984
2985                 /*
2986                  * If the low watermark is met there is no need for processes
2987                  * to be throttled on pfmemalloc_wait as they should not be
2988                  * able to safely make forward progress. Wake them
2989                  */
2990                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2991                                 pfmemalloc_watermark_ok(pgdat))
2992                         wake_up(&pgdat->pfmemalloc_wait);
2993
2994                 /*
2995                  * Fragmentation may mean that the system cannot be rebalanced
2996                  * for high-order allocations in all zones. If twice the
2997                  * allocation size has been reclaimed and the zones are still
2998                  * not balanced then recheck the watermarks at order-0 to
2999                  * prevent kswapd reclaiming excessively. Assume that a
3000                  * process requested a high-order can direct reclaim/compact.
3001                  */
3002                 if (order && sc.nr_reclaimed >= 2UL << order)
3003                         order = sc.order = 0;
3004
3005                 /* Check if kswapd should be suspending */
3006                 if (try_to_freeze() || kthread_should_stop())
3007                         break;
3008
3009                 /*
3010                  * Compact if necessary and kswapd is reclaiming at least the
3011                  * high watermark number of pages as requsted
3012                  */
3013                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3014                         compact_pgdat(pgdat, order);
3015
3016                 /*
3017                  * Raise priority if scanning rate is too low or there was no
3018                  * progress in reclaiming pages
3019                  */
3020                 if (raise_priority || !sc.nr_reclaimed)
3021                         sc.priority--;
3022         } while (sc.priority >= 1 &&
3023                  !pgdat_balanced(pgdat, order, *classzone_idx));
3024
3025 out:
3026         /*
3027          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3028          * makes a decision on the order we were last reclaiming at. However,
3029          * if another caller entered the allocator slow path while kswapd
3030          * was awake, order will remain at the higher level
3031          */
3032         *classzone_idx = end_zone;
3033         return order;
3034 }
3035
3036 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3037 {
3038         long remaining = 0;
3039         DEFINE_WAIT(wait);
3040
3041         if (freezing(current) || kthread_should_stop())
3042                 return;
3043
3044         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3045
3046         /* Try to sleep for a short interval */
3047         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3048                 remaining = schedule_timeout(HZ/10);
3049                 finish_wait(&pgdat->kswapd_wait, &wait);
3050                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3051         }
3052
3053         /*
3054          * After a short sleep, check if it was a premature sleep. If not, then
3055          * go fully to sleep until explicitly woken up.
3056          */
3057         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3058                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3059
3060                 /*
3061                  * vmstat counters are not perfectly accurate and the estimated
3062                  * value for counters such as NR_FREE_PAGES can deviate from the
3063                  * true value by nr_online_cpus * threshold. To avoid the zone
3064                  * watermarks being breached while under pressure, we reduce the
3065                  * per-cpu vmstat threshold while kswapd is awake and restore
3066                  * them before going back to sleep.
3067                  */
3068                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3069
3070                 /*
3071                  * Compaction records what page blocks it recently failed to
3072                  * isolate pages from and skips them in the future scanning.
3073                  * When kswapd is going to sleep, it is reasonable to assume
3074                  * that pages and compaction may succeed so reset the cache.
3075                  */
3076                 reset_isolation_suitable(pgdat);
3077
3078                 if (!kthread_should_stop())
3079                         schedule();
3080
3081                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3082         } else {
3083                 if (remaining)
3084                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3085                 else
3086                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3087         }
3088         finish_wait(&pgdat->kswapd_wait, &wait);
3089 }
3090
3091 /*
3092  * The background pageout daemon, started as a kernel thread
3093  * from the init process.
3094  *
3095  * This basically trickles out pages so that we have _some_
3096  * free memory available even if there is no other activity
3097  * that frees anything up. This is needed for things like routing
3098  * etc, where we otherwise might have all activity going on in
3099  * asynchronous contexts that cannot page things out.
3100  *
3101  * If there are applications that are active memory-allocators
3102  * (most normal use), this basically shouldn't matter.
3103  */
3104 static int kswapd(void *p)
3105 {
3106         unsigned long order, new_order;
3107         unsigned balanced_order;
3108         int classzone_idx, new_classzone_idx;
3109         int balanced_classzone_idx;
3110         pg_data_t *pgdat = (pg_data_t*)p;
3111         struct task_struct *tsk = current;
3112
3113         struct reclaim_state reclaim_state = {
3114                 .reclaimed_slab = 0,
3115         };
3116         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3117
3118         lockdep_set_current_reclaim_state(GFP_KERNEL);
3119
3120         if (!cpumask_empty(cpumask))
3121                 set_cpus_allowed_ptr(tsk, cpumask);
3122         current->reclaim_state = &reclaim_state;
3123
3124         /*
3125          * Tell the memory management that we're a "memory allocator",
3126          * and that if we need more memory we should get access to it
3127          * regardless (see "__alloc_pages()"). "kswapd" should
3128          * never get caught in the normal page freeing logic.
3129          *
3130          * (Kswapd normally doesn't need memory anyway, but sometimes
3131          * you need a small amount of memory in order to be able to
3132          * page out something else, and this flag essentially protects
3133          * us from recursively trying to free more memory as we're
3134          * trying to free the first piece of memory in the first place).
3135          */
3136         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3137         set_freezable();
3138
3139         order = new_order = 0;
3140         balanced_order = 0;
3141         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3142         balanced_classzone_idx = classzone_idx;
3143         for ( ; ; ) {
3144                 bool ret;
3145
3146                 /*
3147                  * If the last balance_pgdat was unsuccessful it's unlikely a
3148                  * new request of a similar or harder type will succeed soon
3149                  * so consider going to sleep on the basis we reclaimed at
3150                  */
3151                 if (balanced_classzone_idx >= new_classzone_idx &&
3152                                         balanced_order == new_order) {
3153                         new_order = pgdat->kswapd_max_order;
3154                         new_classzone_idx = pgdat->classzone_idx;
3155                         pgdat->kswapd_max_order =  0;
3156                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3157                 }
3158
3159                 if (order < new_order || classzone_idx > new_classzone_idx) {
3160                         /*
3161                          * Don't sleep if someone wants a larger 'order'
3162                          * allocation or has tigher zone constraints
3163                          */
3164                         order = new_order;
3165                         classzone_idx = new_classzone_idx;
3166                 } else {
3167                         kswapd_try_to_sleep(pgdat, balanced_order,
3168                                                 balanced_classzone_idx);
3169                         order = pgdat->kswapd_max_order;
3170                         classzone_idx = pgdat->classzone_idx;
3171                         new_order = order;
3172                         new_classzone_idx = classzone_idx;
3173                         pgdat->kswapd_max_order = 0;
3174                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3175                 }
3176
3177                 ret = try_to_freeze();
3178                 if (kthread_should_stop())
3179                         break;
3180
3181                 /*
3182                  * We can speed up thawing tasks if we don't call balance_pgdat
3183                  * after returning from the refrigerator
3184                  */
3185                 if (!ret) {
3186                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3187                         balanced_classzone_idx = classzone_idx;
3188                         balanced_order = balance_pgdat(pgdat, order,
3189                                                 &balanced_classzone_idx);
3190                 }
3191         }
3192
3193         current->reclaim_state = NULL;
3194         return 0;
3195 }
3196
3197 /*
3198  * A zone is low on free memory, so wake its kswapd task to service it.
3199  */
3200 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3201 {
3202         pg_data_t *pgdat;
3203
3204         if (!populated_zone(zone))
3205                 return;
3206
3207         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3208                 return;
3209         pgdat = zone->zone_pgdat;
3210         if (pgdat->kswapd_max_order < order) {
3211                 pgdat->kswapd_max_order = order;
3212                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3213         }
3214         if (!waitqueue_active(&pgdat->kswapd_wait))
3215                 return;
3216         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3217                 return;
3218
3219         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3220         wake_up_interruptible(&pgdat->kswapd_wait);
3221 }
3222
3223 /*
3224  * The reclaimable count would be mostly accurate.
3225  * The less reclaimable pages may be
3226  * - mlocked pages, which will be moved to unevictable list when encountered
3227  * - mapped pages, which may require several travels to be reclaimed
3228  * - dirty pages, which is not "instantly" reclaimable
3229  */
3230 unsigned long global_reclaimable_pages(void)
3231 {
3232         int nr;
3233
3234         nr = global_page_state(NR_ACTIVE_FILE) +
3235              global_page_state(NR_INACTIVE_FILE);
3236
3237         if (get_nr_swap_pages() > 0)
3238                 nr += global_page_state(NR_ACTIVE_ANON) +
3239                       global_page_state(NR_INACTIVE_ANON);
3240
3241         return nr;
3242 }
3243
3244 unsigned long zone_reclaimable_pages(struct zone *zone)
3245 {
3246         int nr;
3247
3248         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3249              zone_page_state(zone, NR_INACTIVE_FILE);
3250
3251         if (get_nr_swap_pages() > 0)
3252                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3253                       zone_page_state(zone, NR_INACTIVE_ANON);
3254
3255         return nr;
3256 }
3257
3258 #ifdef CONFIG_HIBERNATION
3259 /*
3260  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3261  * freed pages.
3262  *
3263  * Rather than trying to age LRUs the aim is to preserve the overall
3264  * LRU order by reclaiming preferentially
3265  * inactive > active > active referenced > active mapped
3266  */
3267 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3268 {
3269         struct reclaim_state reclaim_state;
3270         struct scan_control sc = {
3271                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3272                 .may_swap = 1,
3273                 .may_unmap = 1,
3274                 .may_writepage = 1,
3275                 .nr_to_reclaim = nr_to_reclaim,
3276                 .hibernation_mode = 1,
3277                 .order = 0,
3278                 .priority = DEF_PRIORITY,
3279         };
3280         struct shrink_control shrink = {
3281                 .gfp_mask = sc.gfp_mask,
3282         };
3283         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3284         struct task_struct *p = current;
3285         unsigned long nr_reclaimed;
3286
3287         p->flags |= PF_MEMALLOC;
3288         lockdep_set_current_reclaim_state(sc.gfp_mask);
3289         reclaim_state.reclaimed_slab = 0;
3290         p->reclaim_state = &reclaim_state;
3291
3292         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3293
3294         p->reclaim_state = NULL;
3295         lockdep_clear_current_reclaim_state();
3296         p->flags &= ~PF_MEMALLOC;
3297
3298         return nr_reclaimed;
3299 }
3300 #endif /* CONFIG_HIBERNATION */
3301
3302 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3303    not required for correctness.  So if the last cpu in a node goes
3304    away, we get changed to run anywhere: as the first one comes back,
3305    restore their cpu bindings. */
3306 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3307                         void *hcpu)
3308 {
3309         int nid;
3310
3311         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3312                 for_each_node_state(nid, N_MEMORY) {
3313                         pg_data_t *pgdat = NODE_DATA(nid);
3314                         const struct cpumask *mask;
3315
3316                         mask = cpumask_of_node(pgdat->node_id);
3317
3318                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3319                                 /* One of our CPUs online: restore mask */
3320                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3321                 }
3322         }
3323         return NOTIFY_OK;
3324 }
3325
3326 /*
3327  * This kswapd start function will be called by init and node-hot-add.
3328  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3329  */
3330 int kswapd_run(int nid)
3331 {
3332         pg_data_t *pgdat = NODE_DATA(nid);
3333         int ret = 0;
3334
3335         if (pgdat->kswapd)
3336                 return 0;
3337
3338         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3339         if (IS_ERR(pgdat->kswapd)) {
3340                 /* failure at boot is fatal */
3341                 BUG_ON(system_state == SYSTEM_BOOTING);
3342                 pr_err("Failed to start kswapd on node %d\n", nid);
3343                 ret = PTR_ERR(pgdat->kswapd);
3344                 pgdat->kswapd = NULL;
3345         }
3346         return ret;
3347 }
3348
3349 /*
3350  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3351  * hold lock_memory_hotplug().
3352  */
3353 void kswapd_stop(int nid)
3354 {
3355         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3356
3357         if (kswapd) {
3358                 kthread_stop(kswapd);
3359                 NODE_DATA(nid)->kswapd = NULL;
3360         }
3361 }
3362
3363 static int __init kswapd_init(void)
3364 {
3365         int nid;
3366
3367         swap_setup();
3368         for_each_node_state(nid, N_MEMORY)
3369                 kswapd_run(nid);
3370         hotcpu_notifier(cpu_callback, 0);
3371         return 0;
3372 }
3373
3374 module_init(kswapd_init)
3375
3376 #ifdef CONFIG_NUMA
3377 /*
3378  * Zone reclaim mode
3379  *
3380  * If non-zero call zone_reclaim when the number of free pages falls below
3381  * the watermarks.
3382  */
3383 int zone_reclaim_mode __read_mostly;
3384
3385 #define RECLAIM_OFF 0
3386 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3387 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3388 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3389
3390 /*
3391  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3392  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3393  * a zone.
3394  */
3395 #define ZONE_RECLAIM_PRIORITY 4
3396
3397 /*
3398  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3399  * occur.
3400  */
3401 int sysctl_min_unmapped_ratio = 1;
3402
3403 /*
3404  * If the number of slab pages in a zone grows beyond this percentage then
3405  * slab reclaim needs to occur.
3406  */
3407 int sysctl_min_slab_ratio = 5;
3408
3409 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3410 {
3411         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3412         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3413                 zone_page_state(zone, NR_ACTIVE_FILE);
3414
3415         /*
3416          * It's possible for there to be more file mapped pages than
3417          * accounted for by the pages on the file LRU lists because
3418          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3419          */
3420         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3421 }
3422
3423 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3424 static long zone_pagecache_reclaimable(struct zone *zone)
3425 {
3426         long nr_pagecache_reclaimable;
3427         long delta = 0;
3428
3429         /*
3430          * If RECLAIM_SWAP is set, then all file pages are considered
3431          * potentially reclaimable. Otherwise, we have to worry about
3432          * pages like swapcache and zone_unmapped_file_pages() provides
3433          * a better estimate
3434          */
3435         if (zone_reclaim_mode & RECLAIM_SWAP)
3436                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3437         else
3438                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3439
3440         /* If we can't clean pages, remove dirty pages from consideration */
3441         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3442                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3443
3444         /* Watch for any possible underflows due to delta */
3445         if (unlikely(delta > nr_pagecache_reclaimable))
3446                 delta = nr_pagecache_reclaimable;
3447
3448         return nr_pagecache_reclaimable - delta;
3449 }
3450
3451 /*
3452  * Try to free up some pages from this zone through reclaim.
3453  */
3454 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3455 {
3456         /* Minimum pages needed in order to stay on node */
3457         const unsigned long nr_pages = 1 << order;
3458         struct task_struct *p = current;
3459         struct reclaim_state reclaim_state;
3460         struct scan_control sc = {
3461                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3462                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3463                 .may_swap = 1,
3464                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3465                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3466                 .order = order,
3467                 .priority = ZONE_RECLAIM_PRIORITY,
3468         };
3469         struct shrink_control shrink = {
3470                 .gfp_mask = sc.gfp_mask,
3471         };
3472         unsigned long nr_slab_pages0, nr_slab_pages1;
3473
3474         cond_resched();
3475         /*
3476          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3477          * and we also need to be able to write out pages for RECLAIM_WRITE
3478          * and RECLAIM_SWAP.
3479          */
3480         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3481         lockdep_set_current_reclaim_state(gfp_mask);
3482         reclaim_state.reclaimed_slab = 0;
3483         p->reclaim_state = &reclaim_state;
3484
3485         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3486                 /*
3487                  * Free memory by calling shrink zone with increasing
3488                  * priorities until we have enough memory freed.
3489                  */
3490                 do {
3491                         shrink_zone(zone, &sc);
3492                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3493         }
3494
3495         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3496         if (nr_slab_pages0 > zone->min_slab_pages) {
3497                 /*
3498                  * shrink_slab() does not currently allow us to determine how
3499                  * many pages were freed in this zone. So we take the current
3500                  * number of slab pages and shake the slab until it is reduced
3501                  * by the same nr_pages that we used for reclaiming unmapped
3502                  * pages.
3503                  *
3504                  * Note that shrink_slab will free memory on all zones and may
3505                  * take a long time.
3506                  */
3507                 for (;;) {
3508                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3509
3510                         /* No reclaimable slab or very low memory pressure */
3511                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3512                                 break;
3513
3514                         /* Freed enough memory */
3515                         nr_slab_pages1 = zone_page_state(zone,
3516                                                         NR_SLAB_RECLAIMABLE);
3517                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3518                                 break;
3519                 }
3520
3521                 /*
3522                  * Update nr_reclaimed by the number of slab pages we
3523                  * reclaimed from this zone.
3524                  */
3525                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3526                 if (nr_slab_pages1 < nr_slab_pages0)
3527                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3528         }
3529
3530         p->reclaim_state = NULL;
3531         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3532         lockdep_clear_current_reclaim_state();
3533         return sc.nr_reclaimed >= nr_pages;
3534 }
3535
3536 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3537 {
3538         int node_id;
3539         int ret;
3540
3541         /*
3542          * Zone reclaim reclaims unmapped file backed pages and
3543          * slab pages if we are over the defined limits.
3544          *
3545          * A small portion of unmapped file backed pages is needed for
3546          * file I/O otherwise pages read by file I/O will be immediately
3547          * thrown out if the zone is overallocated. So we do not reclaim
3548          * if less than a specified percentage of the zone is used by
3549          * unmapped file backed pages.
3550          */
3551         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3552             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3553                 return ZONE_RECLAIM_FULL;
3554
3555         if (zone->all_unreclaimable)
3556                 return ZONE_RECLAIM_FULL;
3557
3558         /*
3559          * Do not scan if the allocation should not be delayed.
3560          */
3561         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3562                 return ZONE_RECLAIM_NOSCAN;
3563
3564         /*
3565          * Only run zone reclaim on the local zone or on zones that do not
3566          * have associated processors. This will favor the local processor
3567          * over remote processors and spread off node memory allocations
3568          * as wide as possible.
3569          */
3570         node_id = zone_to_nid(zone);
3571         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3572                 return ZONE_RECLAIM_NOSCAN;
3573
3574         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3575                 return ZONE_RECLAIM_NOSCAN;
3576
3577         ret = __zone_reclaim(zone, gfp_mask, order);
3578         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3579
3580         if (!ret)
3581                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3582
3583         return ret;
3584 }
3585 #endif
3586
3587 /*
3588  * page_evictable - test whether a page is evictable
3589  * @page: the page to test
3590  *
3591  * Test whether page is evictable--i.e., should be placed on active/inactive
3592  * lists vs unevictable list.
3593  *
3594  * Reasons page might not be evictable:
3595  * (1) page's mapping marked unevictable
3596  * (2) page is part of an mlocked VMA
3597  *
3598  */
3599 int page_evictable(struct page *page)
3600 {
3601         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3602 }
3603
3604 #ifdef CONFIG_SHMEM
3605 /**
3606  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3607  * @pages:      array of pages to check
3608  * @nr_pages:   number of pages to check
3609  *
3610  * Checks pages for evictability and moves them to the appropriate lru list.
3611  *
3612  * This function is only used for SysV IPC SHM_UNLOCK.
3613  */
3614 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3615 {
3616         struct lruvec *lruvec;
3617         struct zone *zone = NULL;
3618         int pgscanned = 0;
3619         int pgrescued = 0;
3620         int i;
3621
3622         for (i = 0; i < nr_pages; i++) {
3623                 struct page *page = pages[i];
3624                 struct zone *pagezone;
3625
3626                 pgscanned++;
3627                 pagezone = page_zone(page);
3628                 if (pagezone != zone) {
3629                         if (zone)
3630                                 spin_unlock_irq(&zone->lru_lock);
3631                         zone = pagezone;
3632                         spin_lock_irq(&zone->lru_lock);
3633                 }
3634                 lruvec = mem_cgroup_page_lruvec(page, zone);
3635
3636                 if (!PageLRU(page) || !PageUnevictable(page))
3637                         continue;
3638
3639                 if (page_evictable(page)) {
3640                         enum lru_list lru = page_lru_base_type(page);
3641
3642                         VM_BUG_ON(PageActive(page));
3643                         ClearPageUnevictable(page);
3644                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3645                         add_page_to_lru_list(page, lruvec, lru);
3646                         pgrescued++;
3647                 }
3648         }
3649
3650         if (zone) {
3651                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3652                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3653                 spin_unlock_irq(&zone->lru_lock);
3654         }
3655 }
3656 #endif /* CONFIG_SHMEM */
3657
3658 static void warn_scan_unevictable_pages(void)
3659 {
3660         printk_once(KERN_WARNING
3661                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3662                     "disabled for lack of a legitimate use case.  If you have "
3663                     "one, please send an email to linux-mm@kvack.org.\n",
3664                     current->comm);
3665 }
3666
3667 /*
3668  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3669  * all nodes' unevictable lists for evictable pages
3670  */
3671 unsigned long scan_unevictable_pages;
3672
3673 int scan_unevictable_handler(struct ctl_table *table, int write,
3674                            void __user *buffer,
3675                            size_t *length, loff_t *ppos)
3676 {
3677         warn_scan_unevictable_pages();
3678         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3679         scan_unevictable_pages = 0;
3680         return 0;
3681 }
3682
3683 #ifdef CONFIG_NUMA
3684 /*
3685  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3686  * a specified node's per zone unevictable lists for evictable pages.
3687  */
3688
3689 static ssize_t read_scan_unevictable_node(struct device *dev,
3690                                           struct device_attribute *attr,
3691                                           char *buf)
3692 {
3693         warn_scan_unevictable_pages();
3694         return sprintf(buf, "0\n");     /* always zero; should fit... */
3695 }
3696
3697 static ssize_t write_scan_unevictable_node(struct device *dev,
3698                                            struct device_attribute *attr,
3699                                         const char *buf, size_t count)
3700 {
3701         warn_scan_unevictable_pages();
3702         return 1;
3703 }
3704
3705
3706 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3707                         read_scan_unevictable_node,
3708                         write_scan_unevictable_node);
3709
3710 int scan_unevictable_register_node(struct node *node)
3711 {
3712         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3713 }
3714
3715 void scan_unevictable_unregister_node(struct node *node)
3716 {
3717         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3718 }
3719 #endif