4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
46 #include <linux/swapops.h>
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned;
54 /* This context's GFP mask */
59 /* Can pages be swapped as part of reclaim? */
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
70 int all_unreclaimable;
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup *mem_cgroup;
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 unsigned long *scanned, int order, int mode,
80 struct zone *z, struct mem_cgroup *mem_cont,
81 int active, int file);
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
89 if ((_page)->lru.prev != _base) { \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
103 if ((_page)->lru.prev != _base) { \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness = 60;
118 long vm_total_pages; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
126 #define scan_global_lru(sc) (1)
130 * Add a shrinker callback to be called from the vm
132 void register_shrinker(struct shrinker *shrinker)
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
139 EXPORT_SYMBOL(register_shrinker);
144 void unregister_shrinker(struct shrinker *shrinker)
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
150 EXPORT_SYMBOL(unregister_shrinker);
152 #define SHRINK_BATCH 128
154 * Call the shrink functions to age shrinkable caches
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
170 * Returns the number of slab objects which we shrunk.
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 unsigned long lru_pages)
175 struct shrinker *shrinker;
176 unsigned long ret = 0;
179 scanned = SWAP_CLUSTER_MAX;
181 if (!down_read_trylock(&shrinker_rwsem))
182 return 1; /* Assume we'll be able to shrink next time */
184 list_for_each_entry(shrinker, &shrinker_list, list) {
185 unsigned long long delta;
186 unsigned long total_scan;
187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
189 delta = (4 * scanned) / shrinker->seeks;
191 do_div(delta, lru_pages + 1);
192 shrinker->nr += delta;
193 if (shrinker->nr < 0) {
194 printk(KERN_ERR "%s: nr=%ld\n",
195 __func__, shrinker->nr);
196 shrinker->nr = max_pass;
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
204 if (shrinker->nr > max_pass * 2)
205 shrinker->nr = max_pass * 2;
207 total_scan = shrinker->nr;
210 while (total_scan >= SHRINK_BATCH) {
211 long this_scan = SHRINK_BATCH;
215 nr_before = (*shrinker->shrink)(0, gfp_mask);
216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 if (shrink_ret == -1)
219 if (shrink_ret < nr_before)
220 ret += nr_before - shrink_ret;
221 count_vm_events(SLABS_SCANNED, this_scan);
222 total_scan -= this_scan;
227 shrinker->nr += total_scan;
229 up_read(&shrinker_rwsem);
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
236 struct address_space *mapping;
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page))
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page))
246 mapping = page_mapping(page);
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping);
254 static inline int is_page_cache_freeable(struct page *page)
256 return page_count(page) - !!PagePrivate(page) == 2;
259 static int may_write_to_queue(struct backing_dev_info *bdi)
261 if (current->flags & PF_SWAPWRITE)
263 if (!bdi_write_congested(bdi))
265 if (bdi == current->backing_dev_info)
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
279 * We're allowed to run sleeping lock_page() here because we know the caller has
282 static void handle_write_error(struct address_space *mapping,
283 struct page *page, int error)
286 if (page_mapping(page) == mapping)
287 mapping_set_error(mapping, error);
291 /* Request for sync pageout. */
297 /* possible outcome of pageout() */
299 /* failed to write page out, page is locked */
301 /* move page to the active list, page is locked */
303 /* page has been sent to the disk successfully, page is unlocked */
305 /* page is clean and locked */
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 enum pageout_io sync_writeback)
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
333 if (!is_page_cache_freeable(page))
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
340 if (PagePrivate(page)) {
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
343 printk("%s: orphaned page\n", __func__);
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
354 if (clear_page_dirty_for_io(page)) {
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
360 .range_end = LLONG_MAX,
365 SetPageReclaim(page);
366 res = mapping->a_ops->writepage(page, &wbc);
368 handle_write_error(mapping, page, res);
369 if (res == AOP_WRITEPAGE_ACTIVATE) {
370 ClearPageReclaim(page);
371 return PAGE_ACTIVATE;
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 wait_on_page_writeback(page);
382 if (!PageWriteback(page)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page);
386 inc_zone_page_state(page, NR_VMSCAN_WRITE);
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
399 BUG_ON(!PageLocked(page));
400 BUG_ON(mapping != page_mapping(page));
402 spin_lock_irq(&mapping->tree_lock);
404 * The non racy check for a busy page.
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
411 * get_user_pages(&page);
412 * [user mapping goes away]
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
417 * !page_count(page) [good, discard it]
419 * [oops, our write_to data is lost]
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
428 if (!page_freeze_refs(page, 2))
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page))) {
432 page_unfreeze_refs(page, 2);
436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page);
439 spin_unlock_irq(&mapping->tree_lock);
442 __remove_from_page_cache(page);
443 spin_unlock_irq(&mapping->tree_lock);
449 spin_unlock_irq(&mapping->tree_lock);
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
459 int remove_mapping(struct address_space *mapping, struct page *page)
461 if (__remove_mapping(mapping, page)) {
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
467 page_unfreeze_refs(page, 1);
474 * putback_lru_page - put previously isolated page onto appropriate LRU list
475 * @page: page to be put back to appropriate lru list
477 * Add previously isolated @page to appropriate LRU list.
478 * Page may still be unevictable for other reasons.
480 * lru_lock must not be held, interrupts must be enabled.
482 #ifdef CONFIG_UNEVICTABLE_LRU
483 void putback_lru_page(struct page *page)
486 int active = !!TestClearPageActive(page);
487 int was_unevictable = PageUnevictable(page);
489 VM_BUG_ON(PageLRU(page));
492 ClearPageUnevictable(page);
494 if (page_evictable(page, NULL)) {
496 * For evictable pages, we can use the cache.
497 * In event of a race, worst case is we end up with an
498 * unevictable page on [in]active list.
499 * We know how to handle that.
501 lru = active + page_is_file_cache(page);
502 lru_cache_add_lru(page, lru);
505 * Put unevictable pages directly on zone's unevictable
508 lru = LRU_UNEVICTABLE;
509 add_page_to_unevictable_list(page);
511 mem_cgroup_move_lists(page, lru);
514 * page's status can change while we move it among lru. If an evictable
515 * page is on unevictable list, it never be freed. To avoid that,
516 * check after we added it to the list, again.
518 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
519 if (!isolate_lru_page(page)) {
523 /* This means someone else dropped this page from LRU
524 * So, it will be freed or putback to LRU again. There is
525 * nothing to do here.
529 if (was_unevictable && lru != LRU_UNEVICTABLE)
530 count_vm_event(UNEVICTABLE_PGRESCUED);
531 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
532 count_vm_event(UNEVICTABLE_PGCULLED);
534 put_page(page); /* drop ref from isolate */
537 #else /* CONFIG_UNEVICTABLE_LRU */
539 void putback_lru_page(struct page *page)
542 VM_BUG_ON(PageLRU(page));
544 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
545 lru_cache_add_lru(page, lru);
546 mem_cgroup_move_lists(page, lru);
549 #endif /* CONFIG_UNEVICTABLE_LRU */
553 * shrink_page_list() returns the number of reclaimed pages
555 static unsigned long shrink_page_list(struct list_head *page_list,
556 struct scan_control *sc,
557 enum pageout_io sync_writeback)
559 LIST_HEAD(ret_pages);
560 struct pagevec freed_pvec;
562 unsigned long nr_reclaimed = 0;
566 pagevec_init(&freed_pvec, 1);
567 while (!list_empty(page_list)) {
568 struct address_space *mapping;
575 page = lru_to_page(page_list);
576 list_del(&page->lru);
578 if (!trylock_page(page))
581 VM_BUG_ON(PageActive(page));
585 if (unlikely(!page_evictable(page, NULL))) {
587 putback_lru_page(page);
591 if (!sc->may_swap && page_mapped(page))
594 /* Double the slab pressure for mapped and swapcache pages */
595 if (page_mapped(page) || PageSwapCache(page))
598 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
599 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
601 if (PageWriteback(page)) {
603 * Synchronous reclaim is performed in two passes,
604 * first an asynchronous pass over the list to
605 * start parallel writeback, and a second synchronous
606 * pass to wait for the IO to complete. Wait here
607 * for any page for which writeback has already
610 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
611 wait_on_page_writeback(page);
616 referenced = page_referenced(page, 1, sc->mem_cgroup);
617 /* In active use or really unfreeable? Activate it. */
618 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
619 referenced && page_mapping_inuse(page))
620 goto activate_locked;
624 * Anonymous process memory has backing store?
625 * Try to allocate it some swap space here.
627 if (PageAnon(page) && !PageSwapCache(page))
628 if (!add_to_swap(page, GFP_ATOMIC))
629 goto activate_locked;
630 #endif /* CONFIG_SWAP */
632 mapping = page_mapping(page);
635 * The page is mapped into the page tables of one or more
636 * processes. Try to unmap it here.
638 if (page_mapped(page) && mapping) {
639 switch (try_to_unmap(page, 0)) {
641 goto activate_locked;
645 ; /* try to free the page below */
649 if (PageDirty(page)) {
650 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
654 if (!sc->may_writepage)
657 /* Page is dirty, try to write it out here */
658 switch (pageout(page, mapping, sync_writeback)) {
662 goto activate_locked;
664 if (PageWriteback(page) || PageDirty(page))
667 * A synchronous write - probably a ramdisk. Go
668 * ahead and try to reclaim the page.
670 if (!trylock_page(page))
672 if (PageDirty(page) || PageWriteback(page))
674 mapping = page_mapping(page);
676 ; /* try to free the page below */
681 * If the page has buffers, try to free the buffer mappings
682 * associated with this page. If we succeed we try to free
685 * We do this even if the page is PageDirty().
686 * try_to_release_page() does not perform I/O, but it is
687 * possible for a page to have PageDirty set, but it is actually
688 * clean (all its buffers are clean). This happens if the
689 * buffers were written out directly, with submit_bh(). ext3
690 * will do this, as well as the blockdev mapping.
691 * try_to_release_page() will discover that cleanness and will
692 * drop the buffers and mark the page clean - it can be freed.
694 * Rarely, pages can have buffers and no ->mapping. These are
695 * the pages which were not successfully invalidated in
696 * truncate_complete_page(). We try to drop those buffers here
697 * and if that worked, and the page is no longer mapped into
698 * process address space (page_count == 1) it can be freed.
699 * Otherwise, leave the page on the LRU so it is swappable.
701 if (PagePrivate(page)) {
702 if (!try_to_release_page(page, sc->gfp_mask))
703 goto activate_locked;
704 if (!mapping && page_count(page) == 1) {
706 if (put_page_testzero(page))
710 * rare race with speculative reference.
711 * the speculative reference will free
712 * this page shortly, so we may
713 * increment nr_reclaimed here (and
714 * leave it off the LRU).
722 if (!mapping || !__remove_mapping(mapping, page))
728 if (!pagevec_add(&freed_pvec, page)) {
729 __pagevec_free(&freed_pvec);
730 pagevec_reinit(&freed_pvec);
735 /* Not a candidate for swapping, so reclaim swap space. */
736 if (PageSwapCache(page) && vm_swap_full())
737 remove_exclusive_swap_page_ref(page);
738 VM_BUG_ON(PageActive(page));
744 list_add(&page->lru, &ret_pages);
745 VM_BUG_ON(PageLRU(page));
747 list_splice(&ret_pages, page_list);
748 if (pagevec_count(&freed_pvec))
749 __pagevec_free(&freed_pvec);
750 count_vm_events(PGACTIVATE, pgactivate);
754 /* LRU Isolation modes. */
755 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
756 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
757 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
760 * Attempt to remove the specified page from its LRU. Only take this page
761 * if it is of the appropriate PageActive status. Pages which are being
762 * freed elsewhere are also ignored.
764 * page: page to consider
765 * mode: one of the LRU isolation modes defined above
767 * returns 0 on success, -ve errno on failure.
769 int __isolate_lru_page(struct page *page, int mode, int file)
773 /* Only take pages on the LRU. */
778 * When checking the active state, we need to be sure we are
779 * dealing with comparible boolean values. Take the logical not
782 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
785 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
789 * When this function is being called for lumpy reclaim, we
790 * initially look into all LRU pages, active, inactive and
791 * unevictable; only give shrink_page_list evictable pages.
793 if (PageUnevictable(page))
797 if (likely(get_page_unless_zero(page))) {
799 * Be careful not to clear PageLRU until after we're
800 * sure the page is not being freed elsewhere -- the
801 * page release code relies on it.
811 * zone->lru_lock is heavily contended. Some of the functions that
812 * shrink the lists perform better by taking out a batch of pages
813 * and working on them outside the LRU lock.
815 * For pagecache intensive workloads, this function is the hottest
816 * spot in the kernel (apart from copy_*_user functions).
818 * Appropriate locks must be held before calling this function.
820 * @nr_to_scan: The number of pages to look through on the list.
821 * @src: The LRU list to pull pages off.
822 * @dst: The temp list to put pages on to.
823 * @scanned: The number of pages that were scanned.
824 * @order: The caller's attempted allocation order
825 * @mode: One of the LRU isolation modes
826 * @file: True [1] if isolating file [!anon] pages
828 * returns how many pages were moved onto *@dst.
830 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
831 struct list_head *src, struct list_head *dst,
832 unsigned long *scanned, int order, int mode, int file)
834 unsigned long nr_taken = 0;
837 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
840 unsigned long end_pfn;
841 unsigned long page_pfn;
844 page = lru_to_page(src);
845 prefetchw_prev_lru_page(page, src, flags);
847 VM_BUG_ON(!PageLRU(page));
849 switch (__isolate_lru_page(page, mode, file)) {
851 list_move(&page->lru, dst);
856 /* else it is being freed elsewhere */
857 list_move(&page->lru, src);
868 * Attempt to take all pages in the order aligned region
869 * surrounding the tag page. Only take those pages of
870 * the same active state as that tag page. We may safely
871 * round the target page pfn down to the requested order
872 * as the mem_map is guarenteed valid out to MAX_ORDER,
873 * where that page is in a different zone we will detect
874 * it from its zone id and abort this block scan.
876 zone_id = page_zone_id(page);
877 page_pfn = page_to_pfn(page);
878 pfn = page_pfn & ~((1 << order) - 1);
879 end_pfn = pfn + (1 << order);
880 for (; pfn < end_pfn; pfn++) {
881 struct page *cursor_page;
883 /* The target page is in the block, ignore it. */
884 if (unlikely(pfn == page_pfn))
887 /* Avoid holes within the zone. */
888 if (unlikely(!pfn_valid_within(pfn)))
891 cursor_page = pfn_to_page(pfn);
893 /* Check that we have not crossed a zone boundary. */
894 if (unlikely(page_zone_id(cursor_page) != zone_id))
896 switch (__isolate_lru_page(cursor_page, mode, file)) {
898 list_move(&cursor_page->lru, dst);
904 /* else it is being freed elsewhere */
905 list_move(&cursor_page->lru, src);
907 break; /* ! on LRU or wrong list */
916 static unsigned long isolate_pages_global(unsigned long nr,
917 struct list_head *dst,
918 unsigned long *scanned, int order,
919 int mode, struct zone *z,
920 struct mem_cgroup *mem_cont,
921 int active, int file)
928 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
933 * clear_active_flags() is a helper for shrink_active_list(), clearing
934 * any active bits from the pages in the list.
936 static unsigned long clear_active_flags(struct list_head *page_list,
943 list_for_each_entry(page, page_list, lru) {
944 lru = page_is_file_cache(page);
945 if (PageActive(page)) {
947 ClearPageActive(page);
957 * isolate_lru_page - tries to isolate a page from its LRU list
958 * @page: page to isolate from its LRU list
960 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
961 * vmstat statistic corresponding to whatever LRU list the page was on.
963 * Returns 0 if the page was removed from an LRU list.
964 * Returns -EBUSY if the page was not on an LRU list.
966 * The returned page will have PageLRU() cleared. If it was found on
967 * the active list, it will have PageActive set. If it was found on
968 * the unevictable list, it will have the PageUnevictable bit set. That flag
969 * may need to be cleared by the caller before letting the page go.
971 * The vmstat statistic corresponding to the list on which the page was
972 * found will be decremented.
975 * (1) Must be called with an elevated refcount on the page. This is a
976 * fundamentnal difference from isolate_lru_pages (which is called
977 * without a stable reference).
978 * (2) the lru_lock must not be held.
979 * (3) interrupts must be enabled.
981 int isolate_lru_page(struct page *page)
986 struct zone *zone = page_zone(page);
988 spin_lock_irq(&zone->lru_lock);
989 if (PageLRU(page) && get_page_unless_zero(page)) {
990 int lru = page_lru(page);
994 del_page_from_lru_list(zone, page, lru);
996 spin_unlock_irq(&zone->lru_lock);
1002 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1003 * of reclaimed pages
1005 static unsigned long shrink_inactive_list(unsigned long max_scan,
1006 struct zone *zone, struct scan_control *sc,
1007 int priority, int file)
1009 LIST_HEAD(page_list);
1010 struct pagevec pvec;
1011 unsigned long nr_scanned = 0;
1012 unsigned long nr_reclaimed = 0;
1014 pagevec_init(&pvec, 1);
1017 spin_lock_irq(&zone->lru_lock);
1020 unsigned long nr_taken;
1021 unsigned long nr_scan;
1022 unsigned long nr_freed;
1023 unsigned long nr_active;
1024 unsigned int count[NR_LRU_LISTS] = { 0, };
1025 int mode = ISOLATE_INACTIVE;
1028 * If we need a large contiguous chunk of memory, or have
1029 * trouble getting a small set of contiguous pages, we
1030 * will reclaim both active and inactive pages.
1032 * We use the same threshold as pageout congestion_wait below.
1034 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1035 mode = ISOLATE_BOTH;
1036 else if (sc->order && priority < DEF_PRIORITY - 2)
1037 mode = ISOLATE_BOTH;
1039 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1040 &page_list, &nr_scan, sc->order, mode,
1041 zone, sc->mem_cgroup, 0, file);
1042 nr_active = clear_active_flags(&page_list, count);
1043 __count_vm_events(PGDEACTIVATE, nr_active);
1045 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1046 -count[LRU_ACTIVE_FILE]);
1047 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1048 -count[LRU_INACTIVE_FILE]);
1049 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1050 -count[LRU_ACTIVE_ANON]);
1051 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1052 -count[LRU_INACTIVE_ANON]);
1054 if (scan_global_lru(sc)) {
1055 zone->pages_scanned += nr_scan;
1056 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1057 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1058 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1059 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1061 spin_unlock_irq(&zone->lru_lock);
1063 nr_scanned += nr_scan;
1064 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1067 * If we are direct reclaiming for contiguous pages and we do
1068 * not reclaim everything in the list, try again and wait
1069 * for IO to complete. This will stall high-order allocations
1070 * but that should be acceptable to the caller
1072 if (nr_freed < nr_taken && !current_is_kswapd() &&
1073 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1074 congestion_wait(WRITE, HZ/10);
1077 * The attempt at page out may have made some
1078 * of the pages active, mark them inactive again.
1080 nr_active = clear_active_flags(&page_list, count);
1081 count_vm_events(PGDEACTIVATE, nr_active);
1083 nr_freed += shrink_page_list(&page_list, sc,
1087 nr_reclaimed += nr_freed;
1088 local_irq_disable();
1089 if (current_is_kswapd()) {
1090 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1091 __count_vm_events(KSWAPD_STEAL, nr_freed);
1092 } else if (scan_global_lru(sc))
1093 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1095 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1100 spin_lock(&zone->lru_lock);
1102 * Put back any unfreeable pages.
1104 while (!list_empty(&page_list)) {
1106 page = lru_to_page(&page_list);
1107 VM_BUG_ON(PageLRU(page));
1108 list_del(&page->lru);
1109 if (unlikely(!page_evictable(page, NULL))) {
1110 spin_unlock_irq(&zone->lru_lock);
1111 putback_lru_page(page);
1112 spin_lock_irq(&zone->lru_lock);
1116 lru = page_lru(page);
1117 add_page_to_lru_list(zone, page, lru);
1118 mem_cgroup_move_lists(page, lru);
1119 if (PageActive(page) && scan_global_lru(sc)) {
1120 int file = !!page_is_file_cache(page);
1121 zone->recent_rotated[file]++;
1123 if (!pagevec_add(&pvec, page)) {
1124 spin_unlock_irq(&zone->lru_lock);
1125 __pagevec_release(&pvec);
1126 spin_lock_irq(&zone->lru_lock);
1129 } while (nr_scanned < max_scan);
1130 spin_unlock(&zone->lru_lock);
1133 pagevec_release(&pvec);
1134 return nr_reclaimed;
1138 * We are about to scan this zone at a certain priority level. If that priority
1139 * level is smaller (ie: more urgent) than the previous priority, then note
1140 * that priority level within the zone. This is done so that when the next
1141 * process comes in to scan this zone, it will immediately start out at this
1142 * priority level rather than having to build up its own scanning priority.
1143 * Here, this priority affects only the reclaim-mapped threshold.
1145 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1147 if (priority < zone->prev_priority)
1148 zone->prev_priority = priority;
1151 static inline int zone_is_near_oom(struct zone *zone)
1153 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1157 * This moves pages from the active list to the inactive list.
1159 * We move them the other way if the page is referenced by one or more
1160 * processes, from rmap.
1162 * If the pages are mostly unmapped, the processing is fast and it is
1163 * appropriate to hold zone->lru_lock across the whole operation. But if
1164 * the pages are mapped, the processing is slow (page_referenced()) so we
1165 * should drop zone->lru_lock around each page. It's impossible to balance
1166 * this, so instead we remove the pages from the LRU while processing them.
1167 * It is safe to rely on PG_active against the non-LRU pages in here because
1168 * nobody will play with that bit on a non-LRU page.
1170 * The downside is that we have to touch page->_count against each page.
1171 * But we had to alter page->flags anyway.
1175 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1176 struct scan_control *sc, int priority, int file)
1178 unsigned long pgmoved;
1179 int pgdeactivate = 0;
1180 unsigned long pgscanned;
1181 LIST_HEAD(l_hold); /* The pages which were snipped off */
1182 LIST_HEAD(l_inactive);
1184 struct pagevec pvec;
1188 spin_lock_irq(&zone->lru_lock);
1189 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1190 ISOLATE_ACTIVE, zone,
1191 sc->mem_cgroup, 1, file);
1193 * zone->pages_scanned is used for detect zone's oom
1194 * mem_cgroup remembers nr_scan by itself.
1196 if (scan_global_lru(sc)) {
1197 zone->pages_scanned += pgscanned;
1198 zone->recent_scanned[!!file] += pgmoved;
1202 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1204 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1205 spin_unlock_irq(&zone->lru_lock);
1208 while (!list_empty(&l_hold)) {
1210 page = lru_to_page(&l_hold);
1211 list_del(&page->lru);
1213 if (unlikely(!page_evictable(page, NULL))) {
1214 putback_lru_page(page);
1218 /* page_referenced clears PageReferenced */
1219 if (page_mapping_inuse(page) &&
1220 page_referenced(page, 0, sc->mem_cgroup))
1223 list_add(&page->lru, &l_inactive);
1227 * Count referenced pages from currently used mappings as
1228 * rotated, even though they are moved to the inactive list.
1229 * This helps balance scan pressure between file and anonymous
1230 * pages in get_scan_ratio.
1232 zone->recent_rotated[!!file] += pgmoved;
1235 * Move the pages to the [file or anon] inactive list.
1237 pagevec_init(&pvec, 1);
1240 lru = LRU_BASE + file * LRU_FILE;
1241 spin_lock_irq(&zone->lru_lock);
1242 while (!list_empty(&l_inactive)) {
1243 page = lru_to_page(&l_inactive);
1244 prefetchw_prev_lru_page(page, &l_inactive, flags);
1245 VM_BUG_ON(PageLRU(page));
1247 VM_BUG_ON(!PageActive(page));
1248 ClearPageActive(page);
1250 list_move(&page->lru, &zone->lru[lru].list);
1251 mem_cgroup_move_lists(page, lru);
1253 if (!pagevec_add(&pvec, page)) {
1254 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1255 spin_unlock_irq(&zone->lru_lock);
1256 pgdeactivate += pgmoved;
1258 if (buffer_heads_over_limit)
1259 pagevec_strip(&pvec);
1260 __pagevec_release(&pvec);
1261 spin_lock_irq(&zone->lru_lock);
1264 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1265 pgdeactivate += pgmoved;
1266 if (buffer_heads_over_limit) {
1267 spin_unlock_irq(&zone->lru_lock);
1268 pagevec_strip(&pvec);
1269 spin_lock_irq(&zone->lru_lock);
1271 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1272 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1273 spin_unlock_irq(&zone->lru_lock);
1275 pagevec_swap_free(&pvec);
1277 pagevec_release(&pvec);
1280 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1281 struct zone *zone, struct scan_control *sc, int priority)
1283 int file = is_file_lru(lru);
1285 if (lru == LRU_ACTIVE_FILE) {
1286 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1290 if (lru == LRU_ACTIVE_ANON &&
1291 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1292 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1295 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1299 * Determine how aggressively the anon and file LRU lists should be
1300 * scanned. The relative value of each set of LRU lists is determined
1301 * by looking at the fraction of the pages scanned we did rotate back
1302 * onto the active list instead of evict.
1304 * percent[0] specifies how much pressure to put on ram/swap backed
1305 * memory, while percent[1] determines pressure on the file LRUs.
1307 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1308 unsigned long *percent)
1310 unsigned long anon, file, free;
1311 unsigned long anon_prio, file_prio;
1312 unsigned long ap, fp;
1314 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1315 zone_page_state(zone, NR_INACTIVE_ANON);
1316 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1317 zone_page_state(zone, NR_INACTIVE_FILE);
1318 free = zone_page_state(zone, NR_FREE_PAGES);
1320 /* If we have no swap space, do not bother scanning anon pages. */
1321 if (nr_swap_pages <= 0) {
1327 /* If we have very few page cache pages, force-scan anon pages. */
1328 if (unlikely(file + free <= zone->pages_high)) {
1335 * OK, so we have swap space and a fair amount of page cache
1336 * pages. We use the recently rotated / recently scanned
1337 * ratios to determine how valuable each cache is.
1339 * Because workloads change over time (and to avoid overflow)
1340 * we keep these statistics as a floating average, which ends
1341 * up weighing recent references more than old ones.
1343 * anon in [0], file in [1]
1345 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1346 spin_lock_irq(&zone->lru_lock);
1347 zone->recent_scanned[0] /= 2;
1348 zone->recent_rotated[0] /= 2;
1349 spin_unlock_irq(&zone->lru_lock);
1352 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1353 spin_lock_irq(&zone->lru_lock);
1354 zone->recent_scanned[1] /= 2;
1355 zone->recent_rotated[1] /= 2;
1356 spin_unlock_irq(&zone->lru_lock);
1360 * With swappiness at 100, anonymous and file have the same priority.
1361 * This scanning priority is essentially the inverse of IO cost.
1363 anon_prio = sc->swappiness;
1364 file_prio = 200 - sc->swappiness;
1367 * anon recent_rotated[0]
1368 * %anon = 100 * ----------- / ----------------- * IO cost
1369 * anon + file rotate_sum
1371 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1372 ap /= zone->recent_rotated[0] + 1;
1374 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1375 fp /= zone->recent_rotated[1] + 1;
1377 /* Normalize to percentages */
1378 percent[0] = 100 * ap / (ap + fp + 1);
1379 percent[1] = 100 - percent[0];
1384 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1386 static unsigned long shrink_zone(int priority, struct zone *zone,
1387 struct scan_control *sc)
1389 unsigned long nr[NR_LRU_LISTS];
1390 unsigned long nr_to_scan;
1391 unsigned long nr_reclaimed = 0;
1392 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1395 get_scan_ratio(zone, sc, percent);
1397 for_each_evictable_lru(l) {
1398 if (scan_global_lru(sc)) {
1399 int file = is_file_lru(l);
1402 * Add one to nr_to_scan just to make sure that the
1403 * kernel will slowly sift through each list.
1405 scan = zone_page_state(zone, NR_LRU_BASE + l);
1408 scan = (scan * percent[file]) / 100;
1410 zone->lru[l].nr_scan += scan + 1;
1411 nr[l] = zone->lru[l].nr_scan;
1412 if (nr[l] >= sc->swap_cluster_max)
1413 zone->lru[l].nr_scan = 0;
1418 * This reclaim occurs not because zone memory shortage
1419 * but because memory controller hits its limit.
1420 * Don't modify zone reclaim related data.
1422 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1427 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1428 nr[LRU_INACTIVE_FILE]) {
1429 for_each_evictable_lru(l) {
1431 nr_to_scan = min(nr[l],
1432 (unsigned long)sc->swap_cluster_max);
1433 nr[l] -= nr_to_scan;
1435 nr_reclaimed += shrink_list(l, nr_to_scan,
1436 zone, sc, priority);
1442 * Even if we did not try to evict anon pages at all, we want to
1443 * rebalance the anon lru active/inactive ratio.
1445 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1446 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1447 else if (!scan_global_lru(sc))
1448 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1450 throttle_vm_writeout(sc->gfp_mask);
1451 return nr_reclaimed;
1455 * This is the direct reclaim path, for page-allocating processes. We only
1456 * try to reclaim pages from zones which will satisfy the caller's allocation
1459 * We reclaim from a zone even if that zone is over pages_high. Because:
1460 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1462 * b) The zones may be over pages_high but they must go *over* pages_high to
1463 * satisfy the `incremental min' zone defense algorithm.
1465 * Returns the number of reclaimed pages.
1467 * If a zone is deemed to be full of pinned pages then just give it a light
1468 * scan then give up on it.
1470 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1471 struct scan_control *sc)
1473 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1474 unsigned long nr_reclaimed = 0;
1478 sc->all_unreclaimable = 1;
1479 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1480 if (!populated_zone(zone))
1483 * Take care memory controller reclaiming has small influence
1486 if (scan_global_lru(sc)) {
1487 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1489 note_zone_scanning_priority(zone, priority);
1491 if (zone_is_all_unreclaimable(zone) &&
1492 priority != DEF_PRIORITY)
1493 continue; /* Let kswapd poll it */
1494 sc->all_unreclaimable = 0;
1497 * Ignore cpuset limitation here. We just want to reduce
1498 * # of used pages by us regardless of memory shortage.
1500 sc->all_unreclaimable = 0;
1501 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1505 nr_reclaimed += shrink_zone(priority, zone, sc);
1508 return nr_reclaimed;
1512 * This is the main entry point to direct page reclaim.
1514 * If a full scan of the inactive list fails to free enough memory then we
1515 * are "out of memory" and something needs to be killed.
1517 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1518 * high - the zone may be full of dirty or under-writeback pages, which this
1519 * caller can't do much about. We kick pdflush and take explicit naps in the
1520 * hope that some of these pages can be written. But if the allocating task
1521 * holds filesystem locks which prevent writeout this might not work, and the
1522 * allocation attempt will fail.
1524 * returns: 0, if no pages reclaimed
1525 * else, the number of pages reclaimed
1527 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1528 struct scan_control *sc)
1531 unsigned long ret = 0;
1532 unsigned long total_scanned = 0;
1533 unsigned long nr_reclaimed = 0;
1534 struct reclaim_state *reclaim_state = current->reclaim_state;
1535 unsigned long lru_pages = 0;
1538 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1540 delayacct_freepages_start();
1542 if (scan_global_lru(sc))
1543 count_vm_event(ALLOCSTALL);
1545 * mem_cgroup will not do shrink_slab.
1547 if (scan_global_lru(sc)) {
1548 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1550 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1553 lru_pages += zone_lru_pages(zone);
1557 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1560 disable_swap_token();
1561 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1563 * Don't shrink slabs when reclaiming memory from
1564 * over limit cgroups
1566 if (scan_global_lru(sc)) {
1567 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1568 if (reclaim_state) {
1569 nr_reclaimed += reclaim_state->reclaimed_slab;
1570 reclaim_state->reclaimed_slab = 0;
1573 total_scanned += sc->nr_scanned;
1574 if (nr_reclaimed >= sc->swap_cluster_max) {
1580 * Try to write back as many pages as we just scanned. This
1581 * tends to cause slow streaming writers to write data to the
1582 * disk smoothly, at the dirtying rate, which is nice. But
1583 * that's undesirable in laptop mode, where we *want* lumpy
1584 * writeout. So in laptop mode, write out the whole world.
1586 if (total_scanned > sc->swap_cluster_max +
1587 sc->swap_cluster_max / 2) {
1588 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1589 sc->may_writepage = 1;
1592 /* Take a nap, wait for some writeback to complete */
1593 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1594 congestion_wait(WRITE, HZ/10);
1596 /* top priority shrink_zones still had more to do? don't OOM, then */
1597 if (!sc->all_unreclaimable && scan_global_lru(sc))
1601 * Now that we've scanned all the zones at this priority level, note
1602 * that level within the zone so that the next thread which performs
1603 * scanning of this zone will immediately start out at this priority
1604 * level. This affects only the decision whether or not to bring
1605 * mapped pages onto the inactive list.
1610 if (scan_global_lru(sc)) {
1611 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1613 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1616 zone->prev_priority = priority;
1619 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1621 delayacct_freepages_end();
1626 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1629 struct scan_control sc = {
1630 .gfp_mask = gfp_mask,
1631 .may_writepage = !laptop_mode,
1632 .swap_cluster_max = SWAP_CLUSTER_MAX,
1634 .swappiness = vm_swappiness,
1637 .isolate_pages = isolate_pages_global,
1640 return do_try_to_free_pages(zonelist, &sc);
1643 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1645 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1648 struct scan_control sc = {
1649 .may_writepage = !laptop_mode,
1651 .swap_cluster_max = SWAP_CLUSTER_MAX,
1652 .swappiness = vm_swappiness,
1654 .mem_cgroup = mem_cont,
1655 .isolate_pages = mem_cgroup_isolate_pages,
1657 struct zonelist *zonelist;
1659 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1660 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1661 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1662 return do_try_to_free_pages(zonelist, &sc);
1667 * For kswapd, balance_pgdat() will work across all this node's zones until
1668 * they are all at pages_high.
1670 * Returns the number of pages which were actually freed.
1672 * There is special handling here for zones which are full of pinned pages.
1673 * This can happen if the pages are all mlocked, or if they are all used by
1674 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1675 * What we do is to detect the case where all pages in the zone have been
1676 * scanned twice and there has been zero successful reclaim. Mark the zone as
1677 * dead and from now on, only perform a short scan. Basically we're polling
1678 * the zone for when the problem goes away.
1680 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1681 * zones which have free_pages > pages_high, but once a zone is found to have
1682 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1683 * of the number of free pages in the lower zones. This interoperates with
1684 * the page allocator fallback scheme to ensure that aging of pages is balanced
1687 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1692 unsigned long total_scanned;
1693 unsigned long nr_reclaimed;
1694 struct reclaim_state *reclaim_state = current->reclaim_state;
1695 struct scan_control sc = {
1696 .gfp_mask = GFP_KERNEL,
1698 .swap_cluster_max = SWAP_CLUSTER_MAX,
1699 .swappiness = vm_swappiness,
1702 .isolate_pages = isolate_pages_global,
1705 * temp_priority is used to remember the scanning priority at which
1706 * this zone was successfully refilled to free_pages == pages_high.
1708 int temp_priority[MAX_NR_ZONES];
1713 sc.may_writepage = !laptop_mode;
1714 count_vm_event(PAGEOUTRUN);
1716 for (i = 0; i < pgdat->nr_zones; i++)
1717 temp_priority[i] = DEF_PRIORITY;
1719 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1720 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1721 unsigned long lru_pages = 0;
1723 /* The swap token gets in the way of swapout... */
1725 disable_swap_token();
1730 * Scan in the highmem->dma direction for the highest
1731 * zone which needs scanning
1733 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1734 struct zone *zone = pgdat->node_zones + i;
1736 if (!populated_zone(zone))
1739 if (zone_is_all_unreclaimable(zone) &&
1740 priority != DEF_PRIORITY)
1744 * Do some background aging of the anon list, to give
1745 * pages a chance to be referenced before reclaiming.
1747 if (inactive_anon_is_low(zone))
1748 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1751 if (!zone_watermark_ok(zone, order, zone->pages_high,
1760 for (i = 0; i <= end_zone; i++) {
1761 struct zone *zone = pgdat->node_zones + i;
1763 lru_pages += zone_lru_pages(zone);
1767 * Now scan the zone in the dma->highmem direction, stopping
1768 * at the last zone which needs scanning.
1770 * We do this because the page allocator works in the opposite
1771 * direction. This prevents the page allocator from allocating
1772 * pages behind kswapd's direction of progress, which would
1773 * cause too much scanning of the lower zones.
1775 for (i = 0; i <= end_zone; i++) {
1776 struct zone *zone = pgdat->node_zones + i;
1779 if (!populated_zone(zone))
1782 if (zone_is_all_unreclaimable(zone) &&
1783 priority != DEF_PRIORITY)
1786 if (!zone_watermark_ok(zone, order, zone->pages_high,
1789 temp_priority[i] = priority;
1791 note_zone_scanning_priority(zone, priority);
1793 * We put equal pressure on every zone, unless one
1794 * zone has way too many pages free already.
1796 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1798 nr_reclaimed += shrink_zone(priority, zone, &sc);
1799 reclaim_state->reclaimed_slab = 0;
1800 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1802 nr_reclaimed += reclaim_state->reclaimed_slab;
1803 total_scanned += sc.nr_scanned;
1804 if (zone_is_all_unreclaimable(zone))
1806 if (nr_slab == 0 && zone->pages_scanned >=
1807 (zone_lru_pages(zone) * 6))
1809 ZONE_ALL_UNRECLAIMABLE);
1811 * If we've done a decent amount of scanning and
1812 * the reclaim ratio is low, start doing writepage
1813 * even in laptop mode
1815 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1816 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1817 sc.may_writepage = 1;
1820 break; /* kswapd: all done */
1822 * OK, kswapd is getting into trouble. Take a nap, then take
1823 * another pass across the zones.
1825 if (total_scanned && priority < DEF_PRIORITY - 2)
1826 congestion_wait(WRITE, HZ/10);
1829 * We do this so kswapd doesn't build up large priorities for
1830 * example when it is freeing in parallel with allocators. It
1831 * matches the direct reclaim path behaviour in terms of impact
1832 * on zone->*_priority.
1834 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1839 * Note within each zone the priority level at which this zone was
1840 * brought into a happy state. So that the next thread which scans this
1841 * zone will start out at that priority level.
1843 for (i = 0; i < pgdat->nr_zones; i++) {
1844 struct zone *zone = pgdat->node_zones + i;
1846 zone->prev_priority = temp_priority[i];
1848 if (!all_zones_ok) {
1856 return nr_reclaimed;
1860 * The background pageout daemon, started as a kernel thread
1861 * from the init process.
1863 * This basically trickles out pages so that we have _some_
1864 * free memory available even if there is no other activity
1865 * that frees anything up. This is needed for things like routing
1866 * etc, where we otherwise might have all activity going on in
1867 * asynchronous contexts that cannot page things out.
1869 * If there are applications that are active memory-allocators
1870 * (most normal use), this basically shouldn't matter.
1872 static int kswapd(void *p)
1874 unsigned long order;
1875 pg_data_t *pgdat = (pg_data_t*)p;
1876 struct task_struct *tsk = current;
1878 struct reclaim_state reclaim_state = {
1879 .reclaimed_slab = 0,
1881 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1883 if (!cpus_empty(*cpumask))
1884 set_cpus_allowed_ptr(tsk, cpumask);
1885 current->reclaim_state = &reclaim_state;
1888 * Tell the memory management that we're a "memory allocator",
1889 * and that if we need more memory we should get access to it
1890 * regardless (see "__alloc_pages()"). "kswapd" should
1891 * never get caught in the normal page freeing logic.
1893 * (Kswapd normally doesn't need memory anyway, but sometimes
1894 * you need a small amount of memory in order to be able to
1895 * page out something else, and this flag essentially protects
1896 * us from recursively trying to free more memory as we're
1897 * trying to free the first piece of memory in the first place).
1899 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1904 unsigned long new_order;
1906 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1907 new_order = pgdat->kswapd_max_order;
1908 pgdat->kswapd_max_order = 0;
1909 if (order < new_order) {
1911 * Don't sleep if someone wants a larger 'order'
1916 if (!freezing(current))
1919 order = pgdat->kswapd_max_order;
1921 finish_wait(&pgdat->kswapd_wait, &wait);
1923 if (!try_to_freeze()) {
1924 /* We can speed up thawing tasks if we don't call
1925 * balance_pgdat after returning from the refrigerator
1927 balance_pgdat(pgdat, order);
1934 * A zone is low on free memory, so wake its kswapd task to service it.
1936 void wakeup_kswapd(struct zone *zone, int order)
1940 if (!populated_zone(zone))
1943 pgdat = zone->zone_pgdat;
1944 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1946 if (pgdat->kswapd_max_order < order)
1947 pgdat->kswapd_max_order = order;
1948 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1950 if (!waitqueue_active(&pgdat->kswapd_wait))
1952 wake_up_interruptible(&pgdat->kswapd_wait);
1955 unsigned long global_lru_pages(void)
1957 return global_page_state(NR_ACTIVE_ANON)
1958 + global_page_state(NR_ACTIVE_FILE)
1959 + global_page_state(NR_INACTIVE_ANON)
1960 + global_page_state(NR_INACTIVE_FILE);
1965 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1966 * from LRU lists system-wide, for given pass and priority, and returns the
1967 * number of reclaimed pages
1969 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1971 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1972 int pass, struct scan_control *sc)
1975 unsigned long nr_to_scan, ret = 0;
1978 for_each_zone(zone) {
1980 if (!populated_zone(zone))
1983 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1986 for_each_evictable_lru(l) {
1987 /* For pass = 0, we don't shrink the active list */
1989 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
1992 zone->lru[l].nr_scan +=
1993 (zone_page_state(zone, NR_LRU_BASE + l)
1995 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1996 zone->lru[l].nr_scan = 0;
1997 nr_to_scan = min(nr_pages,
1998 zone_page_state(zone,
2000 ret += shrink_list(l, nr_to_scan, zone,
2002 if (ret >= nr_pages)
2012 * Try to free `nr_pages' of memory, system-wide, and return the number of
2015 * Rather than trying to age LRUs the aim is to preserve the overall
2016 * LRU order by reclaiming preferentially
2017 * inactive > active > active referenced > active mapped
2019 unsigned long shrink_all_memory(unsigned long nr_pages)
2021 unsigned long lru_pages, nr_slab;
2022 unsigned long ret = 0;
2024 struct reclaim_state reclaim_state;
2025 struct scan_control sc = {
2026 .gfp_mask = GFP_KERNEL,
2028 .swap_cluster_max = nr_pages,
2030 .swappiness = vm_swappiness,
2031 .isolate_pages = isolate_pages_global,
2034 current->reclaim_state = &reclaim_state;
2036 lru_pages = global_lru_pages();
2037 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2038 /* If slab caches are huge, it's better to hit them first */
2039 while (nr_slab >= lru_pages) {
2040 reclaim_state.reclaimed_slab = 0;
2041 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2042 if (!reclaim_state.reclaimed_slab)
2045 ret += reclaim_state.reclaimed_slab;
2046 if (ret >= nr_pages)
2049 nr_slab -= reclaim_state.reclaimed_slab;
2053 * We try to shrink LRUs in 5 passes:
2054 * 0 = Reclaim from inactive_list only
2055 * 1 = Reclaim from active list but don't reclaim mapped
2056 * 2 = 2nd pass of type 1
2057 * 3 = Reclaim mapped (normal reclaim)
2058 * 4 = 2nd pass of type 3
2060 for (pass = 0; pass < 5; pass++) {
2063 /* Force reclaiming mapped pages in the passes #3 and #4 */
2066 sc.swappiness = 100;
2069 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2070 unsigned long nr_to_scan = nr_pages - ret;
2073 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2074 if (ret >= nr_pages)
2077 reclaim_state.reclaimed_slab = 0;
2078 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2079 global_lru_pages());
2080 ret += reclaim_state.reclaimed_slab;
2081 if (ret >= nr_pages)
2084 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2085 congestion_wait(WRITE, HZ / 10);
2090 * If ret = 0, we could not shrink LRUs, but there may be something
2095 reclaim_state.reclaimed_slab = 0;
2096 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2097 ret += reclaim_state.reclaimed_slab;
2098 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2102 current->reclaim_state = NULL;
2108 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2109 not required for correctness. So if the last cpu in a node goes
2110 away, we get changed to run anywhere: as the first one comes back,
2111 restore their cpu bindings. */
2112 static int __devinit cpu_callback(struct notifier_block *nfb,
2113 unsigned long action, void *hcpu)
2117 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2118 for_each_node_state(nid, N_HIGH_MEMORY) {
2119 pg_data_t *pgdat = NODE_DATA(nid);
2120 node_to_cpumask_ptr(mask, pgdat->node_id);
2122 if (any_online_cpu(*mask) < nr_cpu_ids)
2123 /* One of our CPUs online: restore mask */
2124 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2131 * This kswapd start function will be called by init and node-hot-add.
2132 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2134 int kswapd_run(int nid)
2136 pg_data_t *pgdat = NODE_DATA(nid);
2142 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2143 if (IS_ERR(pgdat->kswapd)) {
2144 /* failure at boot is fatal */
2145 BUG_ON(system_state == SYSTEM_BOOTING);
2146 printk("Failed to start kswapd on node %d\n",nid);
2152 static int __init kswapd_init(void)
2157 for_each_node_state(nid, N_HIGH_MEMORY)
2159 hotcpu_notifier(cpu_callback, 0);
2163 module_init(kswapd_init)
2169 * If non-zero call zone_reclaim when the number of free pages falls below
2172 int zone_reclaim_mode __read_mostly;
2174 #define RECLAIM_OFF 0
2175 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2176 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2177 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2180 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2181 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2184 #define ZONE_RECLAIM_PRIORITY 4
2187 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2190 int sysctl_min_unmapped_ratio = 1;
2193 * If the number of slab pages in a zone grows beyond this percentage then
2194 * slab reclaim needs to occur.
2196 int sysctl_min_slab_ratio = 5;
2199 * Try to free up some pages from this zone through reclaim.
2201 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2203 /* Minimum pages needed in order to stay on node */
2204 const unsigned long nr_pages = 1 << order;
2205 struct task_struct *p = current;
2206 struct reclaim_state reclaim_state;
2208 unsigned long nr_reclaimed = 0;
2209 struct scan_control sc = {
2210 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2211 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2212 .swap_cluster_max = max_t(unsigned long, nr_pages,
2214 .gfp_mask = gfp_mask,
2215 .swappiness = vm_swappiness,
2216 .isolate_pages = isolate_pages_global,
2218 unsigned long slab_reclaimable;
2220 disable_swap_token();
2223 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2224 * and we also need to be able to write out pages for RECLAIM_WRITE
2227 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2228 reclaim_state.reclaimed_slab = 0;
2229 p->reclaim_state = &reclaim_state;
2231 if (zone_page_state(zone, NR_FILE_PAGES) -
2232 zone_page_state(zone, NR_FILE_MAPPED) >
2233 zone->min_unmapped_pages) {
2235 * Free memory by calling shrink zone with increasing
2236 * priorities until we have enough memory freed.
2238 priority = ZONE_RECLAIM_PRIORITY;
2240 note_zone_scanning_priority(zone, priority);
2241 nr_reclaimed += shrink_zone(priority, zone, &sc);
2243 } while (priority >= 0 && nr_reclaimed < nr_pages);
2246 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2247 if (slab_reclaimable > zone->min_slab_pages) {
2249 * shrink_slab() does not currently allow us to determine how
2250 * many pages were freed in this zone. So we take the current
2251 * number of slab pages and shake the slab until it is reduced
2252 * by the same nr_pages that we used for reclaiming unmapped
2255 * Note that shrink_slab will free memory on all zones and may
2258 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2259 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2260 slab_reclaimable - nr_pages)
2264 * Update nr_reclaimed by the number of slab pages we
2265 * reclaimed from this zone.
2267 nr_reclaimed += slab_reclaimable -
2268 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2271 p->reclaim_state = NULL;
2272 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2273 return nr_reclaimed >= nr_pages;
2276 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2282 * Zone reclaim reclaims unmapped file backed pages and
2283 * slab pages if we are over the defined limits.
2285 * A small portion of unmapped file backed pages is needed for
2286 * file I/O otherwise pages read by file I/O will be immediately
2287 * thrown out if the zone is overallocated. So we do not reclaim
2288 * if less than a specified percentage of the zone is used by
2289 * unmapped file backed pages.
2291 if (zone_page_state(zone, NR_FILE_PAGES) -
2292 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2293 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2294 <= zone->min_slab_pages)
2297 if (zone_is_all_unreclaimable(zone))
2301 * Do not scan if the allocation should not be delayed.
2303 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2307 * Only run zone reclaim on the local zone or on zones that do not
2308 * have associated processors. This will favor the local processor
2309 * over remote processors and spread off node memory allocations
2310 * as wide as possible.
2312 node_id = zone_to_nid(zone);
2313 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2316 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2318 ret = __zone_reclaim(zone, gfp_mask, order);
2319 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2325 #ifdef CONFIG_UNEVICTABLE_LRU
2327 * page_evictable - test whether a page is evictable
2328 * @page: the page to test
2329 * @vma: the VMA in which the page is or will be mapped, may be NULL
2331 * Test whether page is evictable--i.e., should be placed on active/inactive
2332 * lists vs unevictable list.
2334 * Reasons page might not be evictable:
2335 * (1) page's mapping marked unevictable
2337 * TODO - later patches
2339 int page_evictable(struct page *page, struct vm_area_struct *vma)
2342 if (mapping_unevictable(page_mapping(page)))
2345 /* TODO: test page [!]evictable conditions */
2351 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2352 * @page: page to check evictability and move to appropriate lru list
2353 * @zone: zone page is in
2355 * Checks a page for evictability and moves the page to the appropriate
2358 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2359 * have PageUnevictable set.
2361 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2363 VM_BUG_ON(PageActive(page));
2366 ClearPageUnevictable(page);
2367 if (page_evictable(page, NULL)) {
2368 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2369 __dec_zone_state(zone, NR_UNEVICTABLE);
2370 list_move(&page->lru, &zone->lru[l].list);
2371 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2372 __count_vm_event(UNEVICTABLE_PGRESCUED);
2375 * rotate unevictable list
2377 SetPageUnevictable(page);
2378 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2379 if (page_evictable(page, NULL))
2385 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2386 * @mapping: struct address_space to scan for evictable pages
2388 * Scan all pages in mapping. Check unevictable pages for
2389 * evictability and move them to the appropriate zone lru list.
2391 void scan_mapping_unevictable_pages(struct address_space *mapping)
2394 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2397 struct pagevec pvec;
2399 if (mapping->nrpages == 0)
2402 pagevec_init(&pvec, 0);
2403 while (next < end &&
2404 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2410 for (i = 0; i < pagevec_count(&pvec); i++) {
2411 struct page *page = pvec.pages[i];
2412 pgoff_t page_index = page->index;
2413 struct zone *pagezone = page_zone(page);
2416 if (page_index > next)
2420 if (pagezone != zone) {
2422 spin_unlock_irq(&zone->lru_lock);
2424 spin_lock_irq(&zone->lru_lock);
2427 if (PageLRU(page) && PageUnevictable(page))
2428 check_move_unevictable_page(page, zone);
2431 spin_unlock_irq(&zone->lru_lock);
2432 pagevec_release(&pvec);
2434 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);