Merge remote-tracking branch 'spi/fix/grant' into spi-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /*
673  * shrink_page_list() returns the number of reclaimed pages
674  */
675 static unsigned long shrink_page_list(struct list_head *page_list,
676                                       struct zone *zone,
677                                       struct scan_control *sc,
678                                       enum ttu_flags ttu_flags,
679                                       unsigned long *ret_nr_dirty,
680                                       unsigned long *ret_nr_writeback,
681                                       bool force_reclaim)
682 {
683         LIST_HEAD(ret_pages);
684         LIST_HEAD(free_pages);
685         int pgactivate = 0;
686         unsigned long nr_dirty = 0;
687         unsigned long nr_congested = 0;
688         unsigned long nr_reclaimed = 0;
689         unsigned long nr_writeback = 0;
690
691         cond_resched();
692
693         mem_cgroup_uncharge_start();
694         while (!list_empty(page_list)) {
695                 struct address_space *mapping;
696                 struct page *page;
697                 int may_enter_fs;
698                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
699
700                 cond_resched();
701
702                 page = lru_to_page(page_list);
703                 list_del(&page->lru);
704
705                 if (!trylock_page(page))
706                         goto keep;
707
708                 VM_BUG_ON(PageActive(page));
709                 VM_BUG_ON(page_zone(page) != zone);
710
711                 sc->nr_scanned++;
712
713                 if (unlikely(!page_evictable(page)))
714                         goto cull_mlocked;
715
716                 if (!sc->may_unmap && page_mapped(page))
717                         goto keep_locked;
718
719                 /* Double the slab pressure for mapped and swapcache pages */
720                 if (page_mapped(page) || PageSwapCache(page))
721                         sc->nr_scanned++;
722
723                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
724                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
725
726                 if (PageWriteback(page)) {
727                         /*
728                          * memcg doesn't have any dirty pages throttling so we
729                          * could easily OOM just because too many pages are in
730                          * writeback and there is nothing else to reclaim.
731                          *
732                          * Check __GFP_IO, certainly because a loop driver
733                          * thread might enter reclaim, and deadlock if it waits
734                          * on a page for which it is needed to do the write
735                          * (loop masks off __GFP_IO|__GFP_FS for this reason);
736                          * but more thought would probably show more reasons.
737                          *
738                          * Don't require __GFP_FS, since we're not going into
739                          * the FS, just waiting on its writeback completion.
740                          * Worryingly, ext4 gfs2 and xfs allocate pages with
741                          * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
742                          * testing may_enter_fs here is liable to OOM on them.
743                          */
744                         if (global_reclaim(sc) ||
745                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
746                                 /*
747                                  * This is slightly racy - end_page_writeback()
748                                  * might have just cleared PageReclaim, then
749                                  * setting PageReclaim here end up interpreted
750                                  * as PageReadahead - but that does not matter
751                                  * enough to care.  What we do want is for this
752                                  * page to have PageReclaim set next time memcg
753                                  * reclaim reaches the tests above, so it will
754                                  * then wait_on_page_writeback() to avoid OOM;
755                                  * and it's also appropriate in global reclaim.
756                                  */
757                                 SetPageReclaim(page);
758                                 nr_writeback++;
759                                 goto keep_locked;
760                         }
761                         wait_on_page_writeback(page);
762                 }
763
764                 if (!force_reclaim)
765                         references = page_check_references(page, sc);
766
767                 switch (references) {
768                 case PAGEREF_ACTIVATE:
769                         goto activate_locked;
770                 case PAGEREF_KEEP:
771                         goto keep_locked;
772                 case PAGEREF_RECLAIM:
773                 case PAGEREF_RECLAIM_CLEAN:
774                         ; /* try to reclaim the page below */
775                 }
776
777                 /*
778                  * Anonymous process memory has backing store?
779                  * Try to allocate it some swap space here.
780                  */
781                 if (PageAnon(page) && !PageSwapCache(page)) {
782                         if (!(sc->gfp_mask & __GFP_IO))
783                                 goto keep_locked;
784                         if (!add_to_swap(page, page_list))
785                                 goto activate_locked;
786                         may_enter_fs = 1;
787                 }
788
789                 mapping = page_mapping(page);
790
791                 /*
792                  * The page is mapped into the page tables of one or more
793                  * processes. Try to unmap it here.
794                  */
795                 if (page_mapped(page) && mapping) {
796                         switch (try_to_unmap(page, ttu_flags)) {
797                         case SWAP_FAIL:
798                                 goto activate_locked;
799                         case SWAP_AGAIN:
800                                 goto keep_locked;
801                         case SWAP_MLOCK:
802                                 goto cull_mlocked;
803                         case SWAP_SUCCESS:
804                                 ; /* try to free the page below */
805                         }
806                 }
807
808                 if (PageDirty(page)) {
809                         nr_dirty++;
810
811                         /*
812                          * Only kswapd can writeback filesystem pages to
813                          * avoid risk of stack overflow but do not writeback
814                          * unless under significant pressure.
815                          */
816                         if (page_is_file_cache(page) &&
817                                         (!current_is_kswapd() ||
818                                          sc->priority >= DEF_PRIORITY - 2)) {
819                                 /*
820                                  * Immediately reclaim when written back.
821                                  * Similar in principal to deactivate_page()
822                                  * except we already have the page isolated
823                                  * and know it's dirty
824                                  */
825                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
826                                 SetPageReclaim(page);
827
828                                 goto keep_locked;
829                         }
830
831                         if (references == PAGEREF_RECLAIM_CLEAN)
832                                 goto keep_locked;
833                         if (!may_enter_fs)
834                                 goto keep_locked;
835                         if (!sc->may_writepage)
836                                 goto keep_locked;
837
838                         /* Page is dirty, try to write it out here */
839                         switch (pageout(page, mapping, sc)) {
840                         case PAGE_KEEP:
841                                 nr_congested++;
842                                 goto keep_locked;
843                         case PAGE_ACTIVATE:
844                                 goto activate_locked;
845                         case PAGE_SUCCESS:
846                                 if (PageWriteback(page))
847                                         goto keep;
848                                 if (PageDirty(page))
849                                         goto keep;
850
851                                 /*
852                                  * A synchronous write - probably a ramdisk.  Go
853                                  * ahead and try to reclaim the page.
854                                  */
855                                 if (!trylock_page(page))
856                                         goto keep;
857                                 if (PageDirty(page) || PageWriteback(page))
858                                         goto keep_locked;
859                                 mapping = page_mapping(page);
860                         case PAGE_CLEAN:
861                                 ; /* try to free the page below */
862                         }
863                 }
864
865                 /*
866                  * If the page has buffers, try to free the buffer mappings
867                  * associated with this page. If we succeed we try to free
868                  * the page as well.
869                  *
870                  * We do this even if the page is PageDirty().
871                  * try_to_release_page() does not perform I/O, but it is
872                  * possible for a page to have PageDirty set, but it is actually
873                  * clean (all its buffers are clean).  This happens if the
874                  * buffers were written out directly, with submit_bh(). ext3
875                  * will do this, as well as the blockdev mapping.
876                  * try_to_release_page() will discover that cleanness and will
877                  * drop the buffers and mark the page clean - it can be freed.
878                  *
879                  * Rarely, pages can have buffers and no ->mapping.  These are
880                  * the pages which were not successfully invalidated in
881                  * truncate_complete_page().  We try to drop those buffers here
882                  * and if that worked, and the page is no longer mapped into
883                  * process address space (page_count == 1) it can be freed.
884                  * Otherwise, leave the page on the LRU so it is swappable.
885                  */
886                 if (page_has_private(page)) {
887                         if (!try_to_release_page(page, sc->gfp_mask))
888                                 goto activate_locked;
889                         if (!mapping && page_count(page) == 1) {
890                                 unlock_page(page);
891                                 if (put_page_testzero(page))
892                                         goto free_it;
893                                 else {
894                                         /*
895                                          * rare race with speculative reference.
896                                          * the speculative reference will free
897                                          * this page shortly, so we may
898                                          * increment nr_reclaimed here (and
899                                          * leave it off the LRU).
900                                          */
901                                         nr_reclaimed++;
902                                         continue;
903                                 }
904                         }
905                 }
906
907                 if (!mapping || !__remove_mapping(mapping, page))
908                         goto keep_locked;
909
910                 /*
911                  * At this point, we have no other references and there is
912                  * no way to pick any more up (removed from LRU, removed
913                  * from pagecache). Can use non-atomic bitops now (and
914                  * we obviously don't have to worry about waking up a process
915                  * waiting on the page lock, because there are no references.
916                  */
917                 __clear_page_locked(page);
918 free_it:
919                 nr_reclaimed++;
920
921                 /*
922                  * Is there need to periodically free_page_list? It would
923                  * appear not as the counts should be low
924                  */
925                 list_add(&page->lru, &free_pages);
926                 continue;
927
928 cull_mlocked:
929                 if (PageSwapCache(page))
930                         try_to_free_swap(page);
931                 unlock_page(page);
932                 putback_lru_page(page);
933                 continue;
934
935 activate_locked:
936                 /* Not a candidate for swapping, so reclaim swap space. */
937                 if (PageSwapCache(page) && vm_swap_full())
938                         try_to_free_swap(page);
939                 VM_BUG_ON(PageActive(page));
940                 SetPageActive(page);
941                 pgactivate++;
942 keep_locked:
943                 unlock_page(page);
944 keep:
945                 list_add(&page->lru, &ret_pages);
946                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947         }
948
949         /*
950          * Tag a zone as congested if all the dirty pages encountered were
951          * backed by a congested BDI. In this case, reclaimers should just
952          * back off and wait for congestion to clear because further reclaim
953          * will encounter the same problem
954          */
955         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
956                 zone_set_flag(zone, ZONE_CONGESTED);
957
958         free_hot_cold_page_list(&free_pages, 1);
959
960         list_splice(&ret_pages, page_list);
961         count_vm_events(PGACTIVATE, pgactivate);
962         mem_cgroup_uncharge_end();
963         *ret_nr_dirty += nr_dirty;
964         *ret_nr_writeback += nr_writeback;
965         return nr_reclaimed;
966 }
967
968 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
969                                             struct list_head *page_list)
970 {
971         struct scan_control sc = {
972                 .gfp_mask = GFP_KERNEL,
973                 .priority = DEF_PRIORITY,
974                 .may_unmap = 1,
975         };
976         unsigned long ret, dummy1, dummy2;
977         struct page *page, *next;
978         LIST_HEAD(clean_pages);
979
980         list_for_each_entry_safe(page, next, page_list, lru) {
981                 if (page_is_file_cache(page) && !PageDirty(page)) {
982                         ClearPageActive(page);
983                         list_move(&page->lru, &clean_pages);
984                 }
985         }
986
987         ret = shrink_page_list(&clean_pages, zone, &sc,
988                                 TTU_UNMAP|TTU_IGNORE_ACCESS,
989                                 &dummy1, &dummy2, true);
990         list_splice(&clean_pages, page_list);
991         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
992         return ret;
993 }
994
995 /*
996  * Attempt to remove the specified page from its LRU.  Only take this page
997  * if it is of the appropriate PageActive status.  Pages which are being
998  * freed elsewhere are also ignored.
999  *
1000  * page:        page to consider
1001  * mode:        one of the LRU isolation modes defined above
1002  *
1003  * returns 0 on success, -ve errno on failure.
1004  */
1005 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1006 {
1007         int ret = -EINVAL;
1008
1009         /* Only take pages on the LRU. */
1010         if (!PageLRU(page))
1011                 return ret;
1012
1013         /* Compaction should not handle unevictable pages but CMA can do so */
1014         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1015                 return ret;
1016
1017         ret = -EBUSY;
1018
1019         /*
1020          * To minimise LRU disruption, the caller can indicate that it only
1021          * wants to isolate pages it will be able to operate on without
1022          * blocking - clean pages for the most part.
1023          *
1024          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1025          * is used by reclaim when it is cannot write to backing storage
1026          *
1027          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1028          * that it is possible to migrate without blocking
1029          */
1030         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1031                 /* All the caller can do on PageWriteback is block */
1032                 if (PageWriteback(page))
1033                         return ret;
1034
1035                 if (PageDirty(page)) {
1036                         struct address_space *mapping;
1037
1038                         /* ISOLATE_CLEAN means only clean pages */
1039                         if (mode & ISOLATE_CLEAN)
1040                                 return ret;
1041
1042                         /*
1043                          * Only pages without mappings or that have a
1044                          * ->migratepage callback are possible to migrate
1045                          * without blocking
1046                          */
1047                         mapping = page_mapping(page);
1048                         if (mapping && !mapping->a_ops->migratepage)
1049                                 return ret;
1050                 }
1051         }
1052
1053         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1054                 return ret;
1055
1056         if (likely(get_page_unless_zero(page))) {
1057                 /*
1058                  * Be careful not to clear PageLRU until after we're
1059                  * sure the page is not being freed elsewhere -- the
1060                  * page release code relies on it.
1061                  */
1062                 ClearPageLRU(page);
1063                 ret = 0;
1064         }
1065
1066         return ret;
1067 }
1068
1069 /*
1070  * zone->lru_lock is heavily contended.  Some of the functions that
1071  * shrink the lists perform better by taking out a batch of pages
1072  * and working on them outside the LRU lock.
1073  *
1074  * For pagecache intensive workloads, this function is the hottest
1075  * spot in the kernel (apart from copy_*_user functions).
1076  *
1077  * Appropriate locks must be held before calling this function.
1078  *
1079  * @nr_to_scan: The number of pages to look through on the list.
1080  * @lruvec:     The LRU vector to pull pages from.
1081  * @dst:        The temp list to put pages on to.
1082  * @nr_scanned: The number of pages that were scanned.
1083  * @sc:         The scan_control struct for this reclaim session
1084  * @mode:       One of the LRU isolation modes
1085  * @lru:        LRU list id for isolating
1086  *
1087  * returns how many pages were moved onto *@dst.
1088  */
1089 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1090                 struct lruvec *lruvec, struct list_head *dst,
1091                 unsigned long *nr_scanned, struct scan_control *sc,
1092                 isolate_mode_t mode, enum lru_list lru)
1093 {
1094         struct list_head *src = &lruvec->lists[lru];
1095         unsigned long nr_taken = 0;
1096         unsigned long scan;
1097
1098         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1099                 struct page *page;
1100                 int nr_pages;
1101
1102                 page = lru_to_page(src);
1103                 prefetchw_prev_lru_page(page, src, flags);
1104
1105                 VM_BUG_ON(!PageLRU(page));
1106
1107                 switch (__isolate_lru_page(page, mode)) {
1108                 case 0:
1109                         nr_pages = hpage_nr_pages(page);
1110                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1111                         list_move(&page->lru, dst);
1112                         nr_taken += nr_pages;
1113                         break;
1114
1115                 case -EBUSY:
1116                         /* else it is being freed elsewhere */
1117                         list_move(&page->lru, src);
1118                         continue;
1119
1120                 default:
1121                         BUG();
1122                 }
1123         }
1124
1125         *nr_scanned = scan;
1126         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1127                                     nr_taken, mode, is_file_lru(lru));
1128         return nr_taken;
1129 }
1130
1131 /**
1132  * isolate_lru_page - tries to isolate a page from its LRU list
1133  * @page: page to isolate from its LRU list
1134  *
1135  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1136  * vmstat statistic corresponding to whatever LRU list the page was on.
1137  *
1138  * Returns 0 if the page was removed from an LRU list.
1139  * Returns -EBUSY if the page was not on an LRU list.
1140  *
1141  * The returned page will have PageLRU() cleared.  If it was found on
1142  * the active list, it will have PageActive set.  If it was found on
1143  * the unevictable list, it will have the PageUnevictable bit set. That flag
1144  * may need to be cleared by the caller before letting the page go.
1145  *
1146  * The vmstat statistic corresponding to the list on which the page was
1147  * found will be decremented.
1148  *
1149  * Restrictions:
1150  * (1) Must be called with an elevated refcount on the page. This is a
1151  *     fundamentnal difference from isolate_lru_pages (which is called
1152  *     without a stable reference).
1153  * (2) the lru_lock must not be held.
1154  * (3) interrupts must be enabled.
1155  */
1156 int isolate_lru_page(struct page *page)
1157 {
1158         int ret = -EBUSY;
1159
1160         VM_BUG_ON(!page_count(page));
1161
1162         if (PageLRU(page)) {
1163                 struct zone *zone = page_zone(page);
1164                 struct lruvec *lruvec;
1165
1166                 spin_lock_irq(&zone->lru_lock);
1167                 lruvec = mem_cgroup_page_lruvec(page, zone);
1168                 if (PageLRU(page)) {
1169                         int lru = page_lru(page);
1170                         get_page(page);
1171                         ClearPageLRU(page);
1172                         del_page_from_lru_list(page, lruvec, lru);
1173                         ret = 0;
1174                 }
1175                 spin_unlock_irq(&zone->lru_lock);
1176         }
1177         return ret;
1178 }
1179
1180 /*
1181  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1182  * then get resheduled. When there are massive number of tasks doing page
1183  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1184  * the LRU list will go small and be scanned faster than necessary, leading to
1185  * unnecessary swapping, thrashing and OOM.
1186  */
1187 static int too_many_isolated(struct zone *zone, int file,
1188                 struct scan_control *sc)
1189 {
1190         unsigned long inactive, isolated;
1191
1192         if (current_is_kswapd())
1193                 return 0;
1194
1195         if (!global_reclaim(sc))
1196                 return 0;
1197
1198         if (file) {
1199                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1200                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1201         } else {
1202                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1203                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1204         }
1205
1206         /*
1207          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1208          * won't get blocked by normal direct-reclaimers, forming a circular
1209          * deadlock.
1210          */
1211         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1212                 inactive >>= 3;
1213
1214         return isolated > inactive;
1215 }
1216
1217 static noinline_for_stack void
1218 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1219 {
1220         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1221         struct zone *zone = lruvec_zone(lruvec);
1222         LIST_HEAD(pages_to_free);
1223
1224         /*
1225          * Put back any unfreeable pages.
1226          */
1227         while (!list_empty(page_list)) {
1228                 struct page *page = lru_to_page(page_list);
1229                 int lru;
1230
1231                 VM_BUG_ON(PageLRU(page));
1232                 list_del(&page->lru);
1233                 if (unlikely(!page_evictable(page))) {
1234                         spin_unlock_irq(&zone->lru_lock);
1235                         putback_lru_page(page);
1236                         spin_lock_irq(&zone->lru_lock);
1237                         continue;
1238                 }
1239
1240                 lruvec = mem_cgroup_page_lruvec(page, zone);
1241
1242                 SetPageLRU(page);
1243                 lru = page_lru(page);
1244                 add_page_to_lru_list(page, lruvec, lru);
1245
1246                 if (is_active_lru(lru)) {
1247                         int file = is_file_lru(lru);
1248                         int numpages = hpage_nr_pages(page);
1249                         reclaim_stat->recent_rotated[file] += numpages;
1250                 }
1251                 if (put_page_testzero(page)) {
1252                         __ClearPageLRU(page);
1253                         __ClearPageActive(page);
1254                         del_page_from_lru_list(page, lruvec, lru);
1255
1256                         if (unlikely(PageCompound(page))) {
1257                                 spin_unlock_irq(&zone->lru_lock);
1258                                 (*get_compound_page_dtor(page))(page);
1259                                 spin_lock_irq(&zone->lru_lock);
1260                         } else
1261                                 list_add(&page->lru, &pages_to_free);
1262                 }
1263         }
1264
1265         /*
1266          * To save our caller's stack, now use input list for pages to free.
1267          */
1268         list_splice(&pages_to_free, page_list);
1269 }
1270
1271 /*
1272  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1273  * of reclaimed pages
1274  */
1275 static noinline_for_stack unsigned long
1276 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1277                      struct scan_control *sc, enum lru_list lru)
1278 {
1279         LIST_HEAD(page_list);
1280         unsigned long nr_scanned;
1281         unsigned long nr_reclaimed = 0;
1282         unsigned long nr_taken;
1283         unsigned long nr_dirty = 0;
1284         unsigned long nr_writeback = 0;
1285         isolate_mode_t isolate_mode = 0;
1286         int file = is_file_lru(lru);
1287         struct zone *zone = lruvec_zone(lruvec);
1288         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1289
1290         while (unlikely(too_many_isolated(zone, file, sc))) {
1291                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1292
1293                 /* We are about to die and free our memory. Return now. */
1294                 if (fatal_signal_pending(current))
1295                         return SWAP_CLUSTER_MAX;
1296         }
1297
1298         lru_add_drain();
1299
1300         if (!sc->may_unmap)
1301                 isolate_mode |= ISOLATE_UNMAPPED;
1302         if (!sc->may_writepage)
1303                 isolate_mode |= ISOLATE_CLEAN;
1304
1305         spin_lock_irq(&zone->lru_lock);
1306
1307         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1308                                      &nr_scanned, sc, isolate_mode, lru);
1309
1310         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1311         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1312
1313         if (global_reclaim(sc)) {
1314                 zone->pages_scanned += nr_scanned;
1315                 if (current_is_kswapd())
1316                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1317                 else
1318                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1319         }
1320         spin_unlock_irq(&zone->lru_lock);
1321
1322         if (nr_taken == 0)
1323                 return 0;
1324
1325         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1326                                         &nr_dirty, &nr_writeback, false);
1327
1328         spin_lock_irq(&zone->lru_lock);
1329
1330         reclaim_stat->recent_scanned[file] += nr_taken;
1331
1332         if (global_reclaim(sc)) {
1333                 if (current_is_kswapd())
1334                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1335                                                nr_reclaimed);
1336                 else
1337                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1338                                                nr_reclaimed);
1339         }
1340
1341         putback_inactive_pages(lruvec, &page_list);
1342
1343         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1344
1345         spin_unlock_irq(&zone->lru_lock);
1346
1347         free_hot_cold_page_list(&page_list, 1);
1348
1349         /*
1350          * If reclaim is isolating dirty pages under writeback, it implies
1351          * that the long-lived page allocation rate is exceeding the page
1352          * laundering rate. Either the global limits are not being effective
1353          * at throttling processes due to the page distribution throughout
1354          * zones or there is heavy usage of a slow backing device. The
1355          * only option is to throttle from reclaim context which is not ideal
1356          * as there is no guarantee the dirtying process is throttled in the
1357          * same way balance_dirty_pages() manages.
1358          *
1359          * This scales the number of dirty pages that must be under writeback
1360          * before throttling depending on priority. It is a simple backoff
1361          * function that has the most effect in the range DEF_PRIORITY to
1362          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1363          * in trouble and reclaim is considered to be in trouble.
1364          *
1365          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1366          * DEF_PRIORITY-1  50% must be PageWriteback
1367          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1368          * ...
1369          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1370          *                     isolated page is PageWriteback
1371          */
1372         if (nr_writeback && nr_writeback >=
1373                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1374                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1375
1376         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1377                 zone_idx(zone),
1378                 nr_scanned, nr_reclaimed,
1379                 sc->priority,
1380                 trace_shrink_flags(file));
1381         return nr_reclaimed;
1382 }
1383
1384 /*
1385  * This moves pages from the active list to the inactive list.
1386  *
1387  * We move them the other way if the page is referenced by one or more
1388  * processes, from rmap.
1389  *
1390  * If the pages are mostly unmapped, the processing is fast and it is
1391  * appropriate to hold zone->lru_lock across the whole operation.  But if
1392  * the pages are mapped, the processing is slow (page_referenced()) so we
1393  * should drop zone->lru_lock around each page.  It's impossible to balance
1394  * this, so instead we remove the pages from the LRU while processing them.
1395  * It is safe to rely on PG_active against the non-LRU pages in here because
1396  * nobody will play with that bit on a non-LRU page.
1397  *
1398  * The downside is that we have to touch page->_count against each page.
1399  * But we had to alter page->flags anyway.
1400  */
1401
1402 static void move_active_pages_to_lru(struct lruvec *lruvec,
1403                                      struct list_head *list,
1404                                      struct list_head *pages_to_free,
1405                                      enum lru_list lru)
1406 {
1407         struct zone *zone = lruvec_zone(lruvec);
1408         unsigned long pgmoved = 0;
1409         struct page *page;
1410         int nr_pages;
1411
1412         while (!list_empty(list)) {
1413                 page = lru_to_page(list);
1414                 lruvec = mem_cgroup_page_lruvec(page, zone);
1415
1416                 VM_BUG_ON(PageLRU(page));
1417                 SetPageLRU(page);
1418
1419                 nr_pages = hpage_nr_pages(page);
1420                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1421                 list_move(&page->lru, &lruvec->lists[lru]);
1422                 pgmoved += nr_pages;
1423
1424                 if (put_page_testzero(page)) {
1425                         __ClearPageLRU(page);
1426                         __ClearPageActive(page);
1427                         del_page_from_lru_list(page, lruvec, lru);
1428
1429                         if (unlikely(PageCompound(page))) {
1430                                 spin_unlock_irq(&zone->lru_lock);
1431                                 (*get_compound_page_dtor(page))(page);
1432                                 spin_lock_irq(&zone->lru_lock);
1433                         } else
1434                                 list_add(&page->lru, pages_to_free);
1435                 }
1436         }
1437         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1438         if (!is_active_lru(lru))
1439                 __count_vm_events(PGDEACTIVATE, pgmoved);
1440 }
1441
1442 static void shrink_active_list(unsigned long nr_to_scan,
1443                                struct lruvec *lruvec,
1444                                struct scan_control *sc,
1445                                enum lru_list lru)
1446 {
1447         unsigned long nr_taken;
1448         unsigned long nr_scanned;
1449         unsigned long vm_flags;
1450         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1451         LIST_HEAD(l_active);
1452         LIST_HEAD(l_inactive);
1453         struct page *page;
1454         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1455         unsigned long nr_rotated = 0;
1456         isolate_mode_t isolate_mode = 0;
1457         int file = is_file_lru(lru);
1458         struct zone *zone = lruvec_zone(lruvec);
1459
1460         lru_add_drain();
1461
1462         if (!sc->may_unmap)
1463                 isolate_mode |= ISOLATE_UNMAPPED;
1464         if (!sc->may_writepage)
1465                 isolate_mode |= ISOLATE_CLEAN;
1466
1467         spin_lock_irq(&zone->lru_lock);
1468
1469         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1470                                      &nr_scanned, sc, isolate_mode, lru);
1471         if (global_reclaim(sc))
1472                 zone->pages_scanned += nr_scanned;
1473
1474         reclaim_stat->recent_scanned[file] += nr_taken;
1475
1476         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1477         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1478         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1479         spin_unlock_irq(&zone->lru_lock);
1480
1481         while (!list_empty(&l_hold)) {
1482                 cond_resched();
1483                 page = lru_to_page(&l_hold);
1484                 list_del(&page->lru);
1485
1486                 if (unlikely(!page_evictable(page))) {
1487                         putback_lru_page(page);
1488                         continue;
1489                 }
1490
1491                 if (unlikely(buffer_heads_over_limit)) {
1492                         if (page_has_private(page) && trylock_page(page)) {
1493                                 if (page_has_private(page))
1494                                         try_to_release_page(page, 0);
1495                                 unlock_page(page);
1496                         }
1497                 }
1498
1499                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1500                                     &vm_flags)) {
1501                         nr_rotated += hpage_nr_pages(page);
1502                         /*
1503                          * Identify referenced, file-backed active pages and
1504                          * give them one more trip around the active list. So
1505                          * that executable code get better chances to stay in
1506                          * memory under moderate memory pressure.  Anon pages
1507                          * are not likely to be evicted by use-once streaming
1508                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1509                          * so we ignore them here.
1510                          */
1511                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1512                                 list_add(&page->lru, &l_active);
1513                                 continue;
1514                         }
1515                 }
1516
1517                 ClearPageActive(page);  /* we are de-activating */
1518                 list_add(&page->lru, &l_inactive);
1519         }
1520
1521         /*
1522          * Move pages back to the lru list.
1523          */
1524         spin_lock_irq(&zone->lru_lock);
1525         /*
1526          * Count referenced pages from currently used mappings as rotated,
1527          * even though only some of them are actually re-activated.  This
1528          * helps balance scan pressure between file and anonymous pages in
1529          * get_scan_ratio.
1530          */
1531         reclaim_stat->recent_rotated[file] += nr_rotated;
1532
1533         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1534         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1535         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1536         spin_unlock_irq(&zone->lru_lock);
1537
1538         free_hot_cold_page_list(&l_hold, 1);
1539 }
1540
1541 #ifdef CONFIG_SWAP
1542 static int inactive_anon_is_low_global(struct zone *zone)
1543 {
1544         unsigned long active, inactive;
1545
1546         active = zone_page_state(zone, NR_ACTIVE_ANON);
1547         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1548
1549         if (inactive * zone->inactive_ratio < active)
1550                 return 1;
1551
1552         return 0;
1553 }
1554
1555 /**
1556  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1557  * @lruvec: LRU vector to check
1558  *
1559  * Returns true if the zone does not have enough inactive anon pages,
1560  * meaning some active anon pages need to be deactivated.
1561  */
1562 static int inactive_anon_is_low(struct lruvec *lruvec)
1563 {
1564         /*
1565          * If we don't have swap space, anonymous page deactivation
1566          * is pointless.
1567          */
1568         if (!total_swap_pages)
1569                 return 0;
1570
1571         if (!mem_cgroup_disabled())
1572                 return mem_cgroup_inactive_anon_is_low(lruvec);
1573
1574         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1575 }
1576 #else
1577 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1578 {
1579         return 0;
1580 }
1581 #endif
1582
1583 /**
1584  * inactive_file_is_low - check if file pages need to be deactivated
1585  * @lruvec: LRU vector to check
1586  *
1587  * When the system is doing streaming IO, memory pressure here
1588  * ensures that active file pages get deactivated, until more
1589  * than half of the file pages are on the inactive list.
1590  *
1591  * Once we get to that situation, protect the system's working
1592  * set from being evicted by disabling active file page aging.
1593  *
1594  * This uses a different ratio than the anonymous pages, because
1595  * the page cache uses a use-once replacement algorithm.
1596  */
1597 static int inactive_file_is_low(struct lruvec *lruvec)
1598 {
1599         unsigned long inactive;
1600         unsigned long active;
1601
1602         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1603         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1604
1605         return active > inactive;
1606 }
1607
1608 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1609 {
1610         if (is_file_lru(lru))
1611                 return inactive_file_is_low(lruvec);
1612         else
1613                 return inactive_anon_is_low(lruvec);
1614 }
1615
1616 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1617                                  struct lruvec *lruvec, struct scan_control *sc)
1618 {
1619         if (is_active_lru(lru)) {
1620                 if (inactive_list_is_low(lruvec, lru))
1621                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1622                 return 0;
1623         }
1624
1625         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1626 }
1627
1628 static int vmscan_swappiness(struct scan_control *sc)
1629 {
1630         if (global_reclaim(sc))
1631                 return vm_swappiness;
1632         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1633 }
1634
1635 enum scan_balance {
1636         SCAN_EQUAL,
1637         SCAN_FRACT,
1638         SCAN_ANON,
1639         SCAN_FILE,
1640 };
1641
1642 /*
1643  * Determine how aggressively the anon and file LRU lists should be
1644  * scanned.  The relative value of each set of LRU lists is determined
1645  * by looking at the fraction of the pages scanned we did rotate back
1646  * onto the active list instead of evict.
1647  *
1648  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1649  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1650  */
1651 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1652                            unsigned long *nr)
1653 {
1654         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1655         u64 fraction[2];
1656         u64 denominator = 0;    /* gcc */
1657         struct zone *zone = lruvec_zone(lruvec);
1658         unsigned long anon_prio, file_prio;
1659         enum scan_balance scan_balance;
1660         unsigned long anon, file, free;
1661         bool force_scan = false;
1662         unsigned long ap, fp;
1663         enum lru_list lru;
1664
1665         /*
1666          * If the zone or memcg is small, nr[l] can be 0.  This
1667          * results in no scanning on this priority and a potential
1668          * priority drop.  Global direct reclaim can go to the next
1669          * zone and tends to have no problems. Global kswapd is for
1670          * zone balancing and it needs to scan a minimum amount. When
1671          * reclaiming for a memcg, a priority drop can cause high
1672          * latencies, so it's better to scan a minimum amount there as
1673          * well.
1674          */
1675         if (current_is_kswapd() && zone->all_unreclaimable)
1676                 force_scan = true;
1677         if (!global_reclaim(sc))
1678                 force_scan = true;
1679
1680         /* If we have no swap space, do not bother scanning anon pages. */
1681         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1682                 scan_balance = SCAN_FILE;
1683                 goto out;
1684         }
1685
1686         /*
1687          * Global reclaim will swap to prevent OOM even with no
1688          * swappiness, but memcg users want to use this knob to
1689          * disable swapping for individual groups completely when
1690          * using the memory controller's swap limit feature would be
1691          * too expensive.
1692          */
1693         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1694                 scan_balance = SCAN_FILE;
1695                 goto out;
1696         }
1697
1698         /*
1699          * Do not apply any pressure balancing cleverness when the
1700          * system is close to OOM, scan both anon and file equally
1701          * (unless the swappiness setting disagrees with swapping).
1702          */
1703         if (!sc->priority && vmscan_swappiness(sc)) {
1704                 scan_balance = SCAN_EQUAL;
1705                 goto out;
1706         }
1707
1708         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1709                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1710         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1711                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1712
1713         /*
1714          * If it's foreseeable that reclaiming the file cache won't be
1715          * enough to get the zone back into a desirable shape, we have
1716          * to swap.  Better start now and leave the - probably heavily
1717          * thrashing - remaining file pages alone.
1718          */
1719         if (global_reclaim(sc)) {
1720                 free = zone_page_state(zone, NR_FREE_PAGES);
1721                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1722                         scan_balance = SCAN_ANON;
1723                         goto out;
1724                 }
1725         }
1726
1727         /*
1728          * There is enough inactive page cache, do not reclaim
1729          * anything from the anonymous working set right now.
1730          */
1731         if (!inactive_file_is_low(lruvec)) {
1732                 scan_balance = SCAN_FILE;
1733                 goto out;
1734         }
1735
1736         scan_balance = SCAN_FRACT;
1737
1738         /*
1739          * With swappiness at 100, anonymous and file have the same priority.
1740          * This scanning priority is essentially the inverse of IO cost.
1741          */
1742         anon_prio = vmscan_swappiness(sc);
1743         file_prio = 200 - anon_prio;
1744
1745         /*
1746          * OK, so we have swap space and a fair amount of page cache
1747          * pages.  We use the recently rotated / recently scanned
1748          * ratios to determine how valuable each cache is.
1749          *
1750          * Because workloads change over time (and to avoid overflow)
1751          * we keep these statistics as a floating average, which ends
1752          * up weighing recent references more than old ones.
1753          *
1754          * anon in [0], file in [1]
1755          */
1756         spin_lock_irq(&zone->lru_lock);
1757         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1758                 reclaim_stat->recent_scanned[0] /= 2;
1759                 reclaim_stat->recent_rotated[0] /= 2;
1760         }
1761
1762         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1763                 reclaim_stat->recent_scanned[1] /= 2;
1764                 reclaim_stat->recent_rotated[1] /= 2;
1765         }
1766
1767         /*
1768          * The amount of pressure on anon vs file pages is inversely
1769          * proportional to the fraction of recently scanned pages on
1770          * each list that were recently referenced and in active use.
1771          */
1772         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1773         ap /= reclaim_stat->recent_rotated[0] + 1;
1774
1775         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1776         fp /= reclaim_stat->recent_rotated[1] + 1;
1777         spin_unlock_irq(&zone->lru_lock);
1778
1779         fraction[0] = ap;
1780         fraction[1] = fp;
1781         denominator = ap + fp + 1;
1782 out:
1783         for_each_evictable_lru(lru) {
1784                 int file = is_file_lru(lru);
1785                 unsigned long size;
1786                 unsigned long scan;
1787
1788                 size = get_lru_size(lruvec, lru);
1789                 scan = size >> sc->priority;
1790
1791                 if (!scan && force_scan)
1792                         scan = min(size, SWAP_CLUSTER_MAX);
1793
1794                 switch (scan_balance) {
1795                 case SCAN_EQUAL:
1796                         /* Scan lists relative to size */
1797                         break;
1798                 case SCAN_FRACT:
1799                         /*
1800                          * Scan types proportional to swappiness and
1801                          * their relative recent reclaim efficiency.
1802                          */
1803                         scan = div64_u64(scan * fraction[file], denominator);
1804                         break;
1805                 case SCAN_FILE:
1806                 case SCAN_ANON:
1807                         /* Scan one type exclusively */
1808                         if ((scan_balance == SCAN_FILE) != file)
1809                                 scan = 0;
1810                         break;
1811                 default:
1812                         /* Look ma, no brain */
1813                         BUG();
1814                 }
1815                 nr[lru] = scan;
1816         }
1817 }
1818
1819 /*
1820  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1821  */
1822 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1823 {
1824         unsigned long nr[NR_LRU_LISTS];
1825         unsigned long nr_to_scan;
1826         enum lru_list lru;
1827         unsigned long nr_reclaimed = 0;
1828         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1829         struct blk_plug plug;
1830
1831         get_scan_count(lruvec, sc, nr);
1832
1833         blk_start_plug(&plug);
1834         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1835                                         nr[LRU_INACTIVE_FILE]) {
1836                 for_each_evictable_lru(lru) {
1837                         if (nr[lru]) {
1838                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1839                                 nr[lru] -= nr_to_scan;
1840
1841                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1842                                                             lruvec, sc);
1843                         }
1844                 }
1845                 /*
1846                  * On large memory systems, scan >> priority can become
1847                  * really large. This is fine for the starting priority;
1848                  * we want to put equal scanning pressure on each zone.
1849                  * However, if the VM has a harder time of freeing pages,
1850                  * with multiple processes reclaiming pages, the total
1851                  * freeing target can get unreasonably large.
1852                  */
1853                 if (nr_reclaimed >= nr_to_reclaim &&
1854                     sc->priority < DEF_PRIORITY)
1855                         break;
1856         }
1857         blk_finish_plug(&plug);
1858         sc->nr_reclaimed += nr_reclaimed;
1859
1860         /*
1861          * Even if we did not try to evict anon pages at all, we want to
1862          * rebalance the anon lru active/inactive ratio.
1863          */
1864         if (inactive_anon_is_low(lruvec))
1865                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1866                                    sc, LRU_ACTIVE_ANON);
1867
1868         throttle_vm_writeout(sc->gfp_mask);
1869 }
1870
1871 /* Use reclaim/compaction for costly allocs or under memory pressure */
1872 static bool in_reclaim_compaction(struct scan_control *sc)
1873 {
1874         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1875                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1876                          sc->priority < DEF_PRIORITY - 2))
1877                 return true;
1878
1879         return false;
1880 }
1881
1882 /*
1883  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1884  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1885  * true if more pages should be reclaimed such that when the page allocator
1886  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1887  * It will give up earlier than that if there is difficulty reclaiming pages.
1888  */
1889 static inline bool should_continue_reclaim(struct zone *zone,
1890                                         unsigned long nr_reclaimed,
1891                                         unsigned long nr_scanned,
1892                                         struct scan_control *sc)
1893 {
1894         unsigned long pages_for_compaction;
1895         unsigned long inactive_lru_pages;
1896
1897         /* If not in reclaim/compaction mode, stop */
1898         if (!in_reclaim_compaction(sc))
1899                 return false;
1900
1901         /* Consider stopping depending on scan and reclaim activity */
1902         if (sc->gfp_mask & __GFP_REPEAT) {
1903                 /*
1904                  * For __GFP_REPEAT allocations, stop reclaiming if the
1905                  * full LRU list has been scanned and we are still failing
1906                  * to reclaim pages. This full LRU scan is potentially
1907                  * expensive but a __GFP_REPEAT caller really wants to succeed
1908                  */
1909                 if (!nr_reclaimed && !nr_scanned)
1910                         return false;
1911         } else {
1912                 /*
1913                  * For non-__GFP_REPEAT allocations which can presumably
1914                  * fail without consequence, stop if we failed to reclaim
1915                  * any pages from the last SWAP_CLUSTER_MAX number of
1916                  * pages that were scanned. This will return to the
1917                  * caller faster at the risk reclaim/compaction and
1918                  * the resulting allocation attempt fails
1919                  */
1920                 if (!nr_reclaimed)
1921                         return false;
1922         }
1923
1924         /*
1925          * If we have not reclaimed enough pages for compaction and the
1926          * inactive lists are large enough, continue reclaiming
1927          */
1928         pages_for_compaction = (2UL << sc->order);
1929         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1930         if (get_nr_swap_pages() > 0)
1931                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1932         if (sc->nr_reclaimed < pages_for_compaction &&
1933                         inactive_lru_pages > pages_for_compaction)
1934                 return true;
1935
1936         /* If compaction would go ahead or the allocation would succeed, stop */
1937         switch (compaction_suitable(zone, sc->order)) {
1938         case COMPACT_PARTIAL:
1939         case COMPACT_CONTINUE:
1940                 return false;
1941         default:
1942                 return true;
1943         }
1944 }
1945
1946 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1947 {
1948         unsigned long nr_reclaimed, nr_scanned;
1949
1950         do {
1951                 struct mem_cgroup *root = sc->target_mem_cgroup;
1952                 struct mem_cgroup_reclaim_cookie reclaim = {
1953                         .zone = zone,
1954                         .priority = sc->priority,
1955                 };
1956                 struct mem_cgroup *memcg;
1957
1958                 nr_reclaimed = sc->nr_reclaimed;
1959                 nr_scanned = sc->nr_scanned;
1960
1961                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1962                 do {
1963                         struct lruvec *lruvec;
1964
1965                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1966
1967                         shrink_lruvec(lruvec, sc);
1968
1969                         /*
1970                          * Direct reclaim and kswapd have to scan all memory
1971                          * cgroups to fulfill the overall scan target for the
1972                          * zone.
1973                          *
1974                          * Limit reclaim, on the other hand, only cares about
1975                          * nr_to_reclaim pages to be reclaimed and it will
1976                          * retry with decreasing priority if one round over the
1977                          * whole hierarchy is not sufficient.
1978                          */
1979                         if (!global_reclaim(sc) &&
1980                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
1981                                 mem_cgroup_iter_break(root, memcg);
1982                                 break;
1983                         }
1984                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
1985                 } while (memcg);
1986
1987                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
1988                            sc->nr_scanned - nr_scanned,
1989                            sc->nr_reclaimed - nr_reclaimed);
1990
1991         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
1992                                          sc->nr_scanned - nr_scanned, sc));
1993 }
1994
1995 /* Returns true if compaction should go ahead for a high-order request */
1996 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1997 {
1998         unsigned long balance_gap, watermark;
1999         bool watermark_ok;
2000
2001         /* Do not consider compaction for orders reclaim is meant to satisfy */
2002         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2003                 return false;
2004
2005         /*
2006          * Compaction takes time to run and there are potentially other
2007          * callers using the pages just freed. Continue reclaiming until
2008          * there is a buffer of free pages available to give compaction
2009          * a reasonable chance of completing and allocating the page
2010          */
2011         balance_gap = min(low_wmark_pages(zone),
2012                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2013                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2014         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2015         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2016
2017         /*
2018          * If compaction is deferred, reclaim up to a point where
2019          * compaction will have a chance of success when re-enabled
2020          */
2021         if (compaction_deferred(zone, sc->order))
2022                 return watermark_ok;
2023
2024         /* If compaction is not ready to start, keep reclaiming */
2025         if (!compaction_suitable(zone, sc->order))
2026                 return false;
2027
2028         return watermark_ok;
2029 }
2030
2031 /*
2032  * This is the direct reclaim path, for page-allocating processes.  We only
2033  * try to reclaim pages from zones which will satisfy the caller's allocation
2034  * request.
2035  *
2036  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2037  * Because:
2038  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2039  *    allocation or
2040  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2041  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2042  *    zone defense algorithm.
2043  *
2044  * If a zone is deemed to be full of pinned pages then just give it a light
2045  * scan then give up on it.
2046  *
2047  * This function returns true if a zone is being reclaimed for a costly
2048  * high-order allocation and compaction is ready to begin. This indicates to
2049  * the caller that it should consider retrying the allocation instead of
2050  * further reclaim.
2051  */
2052 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2053 {
2054         struct zoneref *z;
2055         struct zone *zone;
2056         unsigned long nr_soft_reclaimed;
2057         unsigned long nr_soft_scanned;
2058         bool aborted_reclaim = false;
2059
2060         /*
2061          * If the number of buffer_heads in the machine exceeds the maximum
2062          * allowed level, force direct reclaim to scan the highmem zone as
2063          * highmem pages could be pinning lowmem pages storing buffer_heads
2064          */
2065         if (buffer_heads_over_limit)
2066                 sc->gfp_mask |= __GFP_HIGHMEM;
2067
2068         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2069                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2070                 if (!populated_zone(zone))
2071                         continue;
2072                 /*
2073                  * Take care memory controller reclaiming has small influence
2074                  * to global LRU.
2075                  */
2076                 if (global_reclaim(sc)) {
2077                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2078                                 continue;
2079                         if (zone->all_unreclaimable &&
2080                                         sc->priority != DEF_PRIORITY)
2081                                 continue;       /* Let kswapd poll it */
2082                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2083                                 /*
2084                                  * If we already have plenty of memory free for
2085                                  * compaction in this zone, don't free any more.
2086                                  * Even though compaction is invoked for any
2087                                  * non-zero order, only frequent costly order
2088                                  * reclamation is disruptive enough to become a
2089                                  * noticeable problem, like transparent huge
2090                                  * page allocations.
2091                                  */
2092                                 if (compaction_ready(zone, sc)) {
2093                                         aborted_reclaim = true;
2094                                         continue;
2095                                 }
2096                         }
2097                         /*
2098                          * This steals pages from memory cgroups over softlimit
2099                          * and returns the number of reclaimed pages and
2100                          * scanned pages. This works for global memory pressure
2101                          * and balancing, not for a memcg's limit.
2102                          */
2103                         nr_soft_scanned = 0;
2104                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2105                                                 sc->order, sc->gfp_mask,
2106                                                 &nr_soft_scanned);
2107                         sc->nr_reclaimed += nr_soft_reclaimed;
2108                         sc->nr_scanned += nr_soft_scanned;
2109                         /* need some check for avoid more shrink_zone() */
2110                 }
2111
2112                 shrink_zone(zone, sc);
2113         }
2114
2115         return aborted_reclaim;
2116 }
2117
2118 static bool zone_reclaimable(struct zone *zone)
2119 {
2120         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2121 }
2122
2123 /* All zones in zonelist are unreclaimable? */
2124 static bool all_unreclaimable(struct zonelist *zonelist,
2125                 struct scan_control *sc)
2126 {
2127         struct zoneref *z;
2128         struct zone *zone;
2129
2130         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2131                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2132                 if (!populated_zone(zone))
2133                         continue;
2134                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2135                         continue;
2136                 if (!zone->all_unreclaimable)
2137                         return false;
2138         }
2139
2140         return true;
2141 }
2142
2143 /*
2144  * This is the main entry point to direct page reclaim.
2145  *
2146  * If a full scan of the inactive list fails to free enough memory then we
2147  * are "out of memory" and something needs to be killed.
2148  *
2149  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2150  * high - the zone may be full of dirty or under-writeback pages, which this
2151  * caller can't do much about.  We kick the writeback threads and take explicit
2152  * naps in the hope that some of these pages can be written.  But if the
2153  * allocating task holds filesystem locks which prevent writeout this might not
2154  * work, and the allocation attempt will fail.
2155  *
2156  * returns:     0, if no pages reclaimed
2157  *              else, the number of pages reclaimed
2158  */
2159 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2160                                         struct scan_control *sc,
2161                                         struct shrink_control *shrink)
2162 {
2163         unsigned long total_scanned = 0;
2164         struct reclaim_state *reclaim_state = current->reclaim_state;
2165         struct zoneref *z;
2166         struct zone *zone;
2167         unsigned long writeback_threshold;
2168         bool aborted_reclaim;
2169
2170         delayacct_freepages_start();
2171
2172         if (global_reclaim(sc))
2173                 count_vm_event(ALLOCSTALL);
2174
2175         do {
2176                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2177                                 sc->priority);
2178                 sc->nr_scanned = 0;
2179                 aborted_reclaim = shrink_zones(zonelist, sc);
2180
2181                 /*
2182                  * Don't shrink slabs when reclaiming memory from
2183                  * over limit cgroups
2184                  */
2185                 if (global_reclaim(sc)) {
2186                         unsigned long lru_pages = 0;
2187                         for_each_zone_zonelist(zone, z, zonelist,
2188                                         gfp_zone(sc->gfp_mask)) {
2189                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2190                                         continue;
2191
2192                                 lru_pages += zone_reclaimable_pages(zone);
2193                         }
2194
2195                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2196                         if (reclaim_state) {
2197                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2198                                 reclaim_state->reclaimed_slab = 0;
2199                         }
2200                 }
2201                 total_scanned += sc->nr_scanned;
2202                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2203                         goto out;
2204
2205                 /*
2206                  * If we're getting trouble reclaiming, start doing
2207                  * writepage even in laptop mode.
2208                  */
2209                 if (sc->priority < DEF_PRIORITY - 2)
2210                         sc->may_writepage = 1;
2211
2212                 /*
2213                  * Try to write back as many pages as we just scanned.  This
2214                  * tends to cause slow streaming writers to write data to the
2215                  * disk smoothly, at the dirtying rate, which is nice.   But
2216                  * that's undesirable in laptop mode, where we *want* lumpy
2217                  * writeout.  So in laptop mode, write out the whole world.
2218                  */
2219                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2220                 if (total_scanned > writeback_threshold) {
2221                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2222                                                 WB_REASON_TRY_TO_FREE_PAGES);
2223                         sc->may_writepage = 1;
2224                 }
2225
2226                 /* Take a nap, wait for some writeback to complete */
2227                 if (!sc->hibernation_mode && sc->nr_scanned &&
2228                     sc->priority < DEF_PRIORITY - 2) {
2229                         struct zone *preferred_zone;
2230
2231                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2232                                                 &cpuset_current_mems_allowed,
2233                                                 &preferred_zone);
2234                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2235                 }
2236         } while (--sc->priority >= 0);
2237
2238 out:
2239         delayacct_freepages_end();
2240
2241         if (sc->nr_reclaimed)
2242                 return sc->nr_reclaimed;
2243
2244         /*
2245          * As hibernation is going on, kswapd is freezed so that it can't mark
2246          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2247          * check.
2248          */
2249         if (oom_killer_disabled)
2250                 return 0;
2251
2252         /* Aborted reclaim to try compaction? don't OOM, then */
2253         if (aborted_reclaim)
2254                 return 1;
2255
2256         /* top priority shrink_zones still had more to do? don't OOM, then */
2257         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2258                 return 1;
2259
2260         return 0;
2261 }
2262
2263 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2264 {
2265         struct zone *zone;
2266         unsigned long pfmemalloc_reserve = 0;
2267         unsigned long free_pages = 0;
2268         int i;
2269         bool wmark_ok;
2270
2271         for (i = 0; i <= ZONE_NORMAL; i++) {
2272                 zone = &pgdat->node_zones[i];
2273                 pfmemalloc_reserve += min_wmark_pages(zone);
2274                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2275         }
2276
2277         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2278
2279         /* kswapd must be awake if processes are being throttled */
2280         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2281                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2282                                                 (enum zone_type)ZONE_NORMAL);
2283                 wake_up_interruptible(&pgdat->kswapd_wait);
2284         }
2285
2286         return wmark_ok;
2287 }
2288
2289 /*
2290  * Throttle direct reclaimers if backing storage is backed by the network
2291  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2292  * depleted. kswapd will continue to make progress and wake the processes
2293  * when the low watermark is reached.
2294  *
2295  * Returns true if a fatal signal was delivered during throttling. If this
2296  * happens, the page allocator should not consider triggering the OOM killer.
2297  */
2298 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2299                                         nodemask_t *nodemask)
2300 {
2301         struct zone *zone;
2302         int high_zoneidx = gfp_zone(gfp_mask);
2303         pg_data_t *pgdat;
2304
2305         /*
2306          * Kernel threads should not be throttled as they may be indirectly
2307          * responsible for cleaning pages necessary for reclaim to make forward
2308          * progress. kjournald for example may enter direct reclaim while
2309          * committing a transaction where throttling it could forcing other
2310          * processes to block on log_wait_commit().
2311          */
2312         if (current->flags & PF_KTHREAD)
2313                 goto out;
2314
2315         /*
2316          * If a fatal signal is pending, this process should not throttle.
2317          * It should return quickly so it can exit and free its memory
2318          */
2319         if (fatal_signal_pending(current))
2320                 goto out;
2321
2322         /* Check if the pfmemalloc reserves are ok */
2323         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2324         pgdat = zone->zone_pgdat;
2325         if (pfmemalloc_watermark_ok(pgdat))
2326                 goto out;
2327
2328         /* Account for the throttling */
2329         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2330
2331         /*
2332          * If the caller cannot enter the filesystem, it's possible that it
2333          * is due to the caller holding an FS lock or performing a journal
2334          * transaction in the case of a filesystem like ext[3|4]. In this case,
2335          * it is not safe to block on pfmemalloc_wait as kswapd could be
2336          * blocked waiting on the same lock. Instead, throttle for up to a
2337          * second before continuing.
2338          */
2339         if (!(gfp_mask & __GFP_FS)) {
2340                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2341                         pfmemalloc_watermark_ok(pgdat), HZ);
2342
2343                 goto check_pending;
2344         }
2345
2346         /* Throttle until kswapd wakes the process */
2347         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2348                 pfmemalloc_watermark_ok(pgdat));
2349
2350 check_pending:
2351         if (fatal_signal_pending(current))
2352                 return true;
2353
2354 out:
2355         return false;
2356 }
2357
2358 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2359                                 gfp_t gfp_mask, nodemask_t *nodemask)
2360 {
2361         unsigned long nr_reclaimed;
2362         struct scan_control sc = {
2363                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2364                 .may_writepage = !laptop_mode,
2365                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2366                 .may_unmap = 1,
2367                 .may_swap = 1,
2368                 .order = order,
2369                 .priority = DEF_PRIORITY,
2370                 .target_mem_cgroup = NULL,
2371                 .nodemask = nodemask,
2372         };
2373         struct shrink_control shrink = {
2374                 .gfp_mask = sc.gfp_mask,
2375         };
2376
2377         /*
2378          * Do not enter reclaim if fatal signal was delivered while throttled.
2379          * 1 is returned so that the page allocator does not OOM kill at this
2380          * point.
2381          */
2382         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2383                 return 1;
2384
2385         trace_mm_vmscan_direct_reclaim_begin(order,
2386                                 sc.may_writepage,
2387                                 gfp_mask);
2388
2389         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2390
2391         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2392
2393         return nr_reclaimed;
2394 }
2395
2396 #ifdef CONFIG_MEMCG
2397
2398 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2399                                                 gfp_t gfp_mask, bool noswap,
2400                                                 struct zone *zone,
2401                                                 unsigned long *nr_scanned)
2402 {
2403         struct scan_control sc = {
2404                 .nr_scanned = 0,
2405                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2406                 .may_writepage = !laptop_mode,
2407                 .may_unmap = 1,
2408                 .may_swap = !noswap,
2409                 .order = 0,
2410                 .priority = 0,
2411                 .target_mem_cgroup = memcg,
2412         };
2413         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2414
2415         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2416                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2417
2418         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2419                                                       sc.may_writepage,
2420                                                       sc.gfp_mask);
2421
2422         /*
2423          * NOTE: Although we can get the priority field, using it
2424          * here is not a good idea, since it limits the pages we can scan.
2425          * if we don't reclaim here, the shrink_zone from balance_pgdat
2426          * will pick up pages from other mem cgroup's as well. We hack
2427          * the priority and make it zero.
2428          */
2429         shrink_lruvec(lruvec, &sc);
2430
2431         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2432
2433         *nr_scanned = sc.nr_scanned;
2434         return sc.nr_reclaimed;
2435 }
2436
2437 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2438                                            gfp_t gfp_mask,
2439                                            bool noswap)
2440 {
2441         struct zonelist *zonelist;
2442         unsigned long nr_reclaimed;
2443         int nid;
2444         struct scan_control sc = {
2445                 .may_writepage = !laptop_mode,
2446                 .may_unmap = 1,
2447                 .may_swap = !noswap,
2448                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2449                 .order = 0,
2450                 .priority = DEF_PRIORITY,
2451                 .target_mem_cgroup = memcg,
2452                 .nodemask = NULL, /* we don't care the placement */
2453                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2454                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2455         };
2456         struct shrink_control shrink = {
2457                 .gfp_mask = sc.gfp_mask,
2458         };
2459
2460         /*
2461          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2462          * take care of from where we get pages. So the node where we start the
2463          * scan does not need to be the current node.
2464          */
2465         nid = mem_cgroup_select_victim_node(memcg);
2466
2467         zonelist = NODE_DATA(nid)->node_zonelists;
2468
2469         trace_mm_vmscan_memcg_reclaim_begin(0,
2470                                             sc.may_writepage,
2471                                             sc.gfp_mask);
2472
2473         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2474
2475         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2476
2477         return nr_reclaimed;
2478 }
2479 #endif
2480
2481 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2482 {
2483         struct mem_cgroup *memcg;
2484
2485         if (!total_swap_pages)
2486                 return;
2487
2488         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2489         do {
2490                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2491
2492                 if (inactive_anon_is_low(lruvec))
2493                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2494                                            sc, LRU_ACTIVE_ANON);
2495
2496                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2497         } while (memcg);
2498 }
2499
2500 static bool zone_balanced(struct zone *zone, int order,
2501                           unsigned long balance_gap, int classzone_idx)
2502 {
2503         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2504                                     balance_gap, classzone_idx, 0))
2505                 return false;
2506
2507         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2508             !compaction_suitable(zone, order))
2509                 return false;
2510
2511         return true;
2512 }
2513
2514 /*
2515  * pgdat_balanced() is used when checking if a node is balanced.
2516  *
2517  * For order-0, all zones must be balanced!
2518  *
2519  * For high-order allocations only zones that meet watermarks and are in a
2520  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2521  * total of balanced pages must be at least 25% of the zones allowed by
2522  * classzone_idx for the node to be considered balanced. Forcing all zones to
2523  * be balanced for high orders can cause excessive reclaim when there are
2524  * imbalanced zones.
2525  * The choice of 25% is due to
2526  *   o a 16M DMA zone that is balanced will not balance a zone on any
2527  *     reasonable sized machine
2528  *   o On all other machines, the top zone must be at least a reasonable
2529  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2530  *     would need to be at least 256M for it to be balance a whole node.
2531  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2532  *     to balance a node on its own. These seemed like reasonable ratios.
2533  */
2534 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2535 {
2536         unsigned long managed_pages = 0;
2537         unsigned long balanced_pages = 0;
2538         int i;
2539
2540         /* Check the watermark levels */
2541         for (i = 0; i <= classzone_idx; i++) {
2542                 struct zone *zone = pgdat->node_zones + i;
2543
2544                 if (!populated_zone(zone))
2545                         continue;
2546
2547                 managed_pages += zone->managed_pages;
2548
2549                 /*
2550                  * A special case here:
2551                  *
2552                  * balance_pgdat() skips over all_unreclaimable after
2553                  * DEF_PRIORITY. Effectively, it considers them balanced so
2554                  * they must be considered balanced here as well!
2555                  */
2556                 if (zone->all_unreclaimable) {
2557                         balanced_pages += zone->managed_pages;
2558                         continue;
2559                 }
2560
2561                 if (zone_balanced(zone, order, 0, i))
2562                         balanced_pages += zone->managed_pages;
2563                 else if (!order)
2564                         return false;
2565         }
2566
2567         if (order)
2568                 return balanced_pages >= (managed_pages >> 2);
2569         else
2570                 return true;
2571 }
2572
2573 /*
2574  * Prepare kswapd for sleeping. This verifies that there are no processes
2575  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2576  *
2577  * Returns true if kswapd is ready to sleep
2578  */
2579 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2580                                         int classzone_idx)
2581 {
2582         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2583         if (remaining)
2584                 return false;
2585
2586         /*
2587          * There is a potential race between when kswapd checks its watermarks
2588          * and a process gets throttled. There is also a potential race if
2589          * processes get throttled, kswapd wakes, a large process exits therby
2590          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2591          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2592          * so wake them now if necessary. If necessary, processes will wake
2593          * kswapd and get throttled again
2594          */
2595         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2596                 wake_up(&pgdat->pfmemalloc_wait);
2597                 return false;
2598         }
2599
2600         return pgdat_balanced(pgdat, order, classzone_idx);
2601 }
2602
2603 /*
2604  * For kswapd, balance_pgdat() will work across all this node's zones until
2605  * they are all at high_wmark_pages(zone).
2606  *
2607  * Returns the final order kswapd was reclaiming at
2608  *
2609  * There is special handling here for zones which are full of pinned pages.
2610  * This can happen if the pages are all mlocked, or if they are all used by
2611  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2612  * What we do is to detect the case where all pages in the zone have been
2613  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2614  * dead and from now on, only perform a short scan.  Basically we're polling
2615  * the zone for when the problem goes away.
2616  *
2617  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2618  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2619  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2620  * lower zones regardless of the number of free pages in the lower zones. This
2621  * interoperates with the page allocator fallback scheme to ensure that aging
2622  * of pages is balanced across the zones.
2623  */
2624 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2625                                                         int *classzone_idx)
2626 {
2627         bool pgdat_is_balanced = false;
2628         int i;
2629         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2630         struct reclaim_state *reclaim_state = current->reclaim_state;
2631         unsigned long nr_soft_reclaimed;
2632         unsigned long nr_soft_scanned;
2633         struct scan_control sc = {
2634                 .gfp_mask = GFP_KERNEL,
2635                 .may_unmap = 1,
2636                 .may_swap = 1,
2637                 /*
2638                  * kswapd doesn't want to be bailed out while reclaim. because
2639                  * we want to put equal scanning pressure on each zone.
2640                  */
2641                 .nr_to_reclaim = ULONG_MAX,
2642                 .order = order,
2643                 .target_mem_cgroup = NULL,
2644         };
2645         struct shrink_control shrink = {
2646                 .gfp_mask = sc.gfp_mask,
2647         };
2648 loop_again:
2649         sc.priority = DEF_PRIORITY;
2650         sc.nr_reclaimed = 0;
2651         sc.may_writepage = !laptop_mode;
2652         count_vm_event(PAGEOUTRUN);
2653
2654         do {
2655                 unsigned long lru_pages = 0;
2656
2657                 /*
2658                  * Scan in the highmem->dma direction for the highest
2659                  * zone which needs scanning
2660                  */
2661                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2662                         struct zone *zone = pgdat->node_zones + i;
2663
2664                         if (!populated_zone(zone))
2665                                 continue;
2666
2667                         if (zone->all_unreclaimable &&
2668                             sc.priority != DEF_PRIORITY)
2669                                 continue;
2670
2671                         /*
2672                          * Do some background aging of the anon list, to give
2673                          * pages a chance to be referenced before reclaiming.
2674                          */
2675                         age_active_anon(zone, &sc);
2676
2677                         /*
2678                          * If the number of buffer_heads in the machine
2679                          * exceeds the maximum allowed level and this node
2680                          * has a highmem zone, force kswapd to reclaim from
2681                          * it to relieve lowmem pressure.
2682                          */
2683                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2684                                 end_zone = i;
2685                                 break;
2686                         }
2687
2688                         if (!zone_balanced(zone, order, 0, 0)) {
2689                                 end_zone = i;
2690                                 break;
2691                         } else {
2692                                 /* If balanced, clear the congested flag */
2693                                 zone_clear_flag(zone, ZONE_CONGESTED);
2694                         }
2695                 }
2696
2697                 if (i < 0) {
2698                         pgdat_is_balanced = true;
2699                         goto out;
2700                 }
2701
2702                 for (i = 0; i <= end_zone; i++) {
2703                         struct zone *zone = pgdat->node_zones + i;
2704
2705                         lru_pages += zone_reclaimable_pages(zone);
2706                 }
2707
2708                 /*
2709                  * Now scan the zone in the dma->highmem direction, stopping
2710                  * at the last zone which needs scanning.
2711                  *
2712                  * We do this because the page allocator works in the opposite
2713                  * direction.  This prevents the page allocator from allocating
2714                  * pages behind kswapd's direction of progress, which would
2715                  * cause too much scanning of the lower zones.
2716                  */
2717                 for (i = 0; i <= end_zone; i++) {
2718                         struct zone *zone = pgdat->node_zones + i;
2719                         int nr_slab, testorder;
2720                         unsigned long balance_gap;
2721
2722                         if (!populated_zone(zone))
2723                                 continue;
2724
2725                         if (zone->all_unreclaimable &&
2726                             sc.priority != DEF_PRIORITY)
2727                                 continue;
2728
2729                         sc.nr_scanned = 0;
2730
2731                         nr_soft_scanned = 0;
2732                         /*
2733                          * Call soft limit reclaim before calling shrink_zone.
2734                          */
2735                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2736                                                         order, sc.gfp_mask,
2737                                                         &nr_soft_scanned);
2738                         sc.nr_reclaimed += nr_soft_reclaimed;
2739
2740                         /*
2741                          * We put equal pressure on every zone, unless
2742                          * one zone has way too many pages free
2743                          * already. The "too many pages" is defined
2744                          * as the high wmark plus a "gap" where the
2745                          * gap is either the low watermark or 1%
2746                          * of the zone, whichever is smaller.
2747                          */
2748                         balance_gap = min(low_wmark_pages(zone),
2749                                 (zone->managed_pages +
2750                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2751                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2752                         /*
2753                          * Kswapd reclaims only single pages with compaction
2754                          * enabled. Trying too hard to reclaim until contiguous
2755                          * free pages have become available can hurt performance
2756                          * by evicting too much useful data from memory.
2757                          * Do not reclaim more than needed for compaction.
2758                          */
2759                         testorder = order;
2760                         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2761                                         compaction_suitable(zone, order) !=
2762                                                 COMPACT_SKIPPED)
2763                                 testorder = 0;
2764
2765                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2766                             !zone_balanced(zone, testorder,
2767                                            balance_gap, end_zone)) {
2768                                 shrink_zone(zone, &sc);
2769
2770                                 reclaim_state->reclaimed_slab = 0;
2771                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2772                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2773
2774                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2775                                         zone->all_unreclaimable = 1;
2776                         }
2777
2778                         /*
2779                          * If we're getting trouble reclaiming, start doing
2780                          * writepage even in laptop mode.
2781                          */
2782                         if (sc.priority < DEF_PRIORITY - 2)
2783                                 sc.may_writepage = 1;
2784
2785                         if (zone->all_unreclaimable) {
2786                                 if (end_zone && end_zone == i)
2787                                         end_zone--;
2788                                 continue;
2789                         }
2790
2791                         if (zone_balanced(zone, testorder, 0, end_zone))
2792                                 /*
2793                                  * If a zone reaches its high watermark,
2794                                  * consider it to be no longer congested. It's
2795                                  * possible there are dirty pages backed by
2796                                  * congested BDIs but as pressure is relieved,
2797                                  * speculatively avoid congestion waits
2798                                  */
2799                                 zone_clear_flag(zone, ZONE_CONGESTED);
2800                 }
2801
2802                 /*
2803                  * If the low watermark is met there is no need for processes
2804                  * to be throttled on pfmemalloc_wait as they should not be
2805                  * able to safely make forward progress. Wake them
2806                  */
2807                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2808                                 pfmemalloc_watermark_ok(pgdat))
2809                         wake_up(&pgdat->pfmemalloc_wait);
2810
2811                 if (pgdat_balanced(pgdat, order, *classzone_idx)) {
2812                         pgdat_is_balanced = true;
2813                         break;          /* kswapd: all done */
2814                 }
2815
2816                 /*
2817                  * We do this so kswapd doesn't build up large priorities for
2818                  * example when it is freeing in parallel with allocators. It
2819                  * matches the direct reclaim path behaviour in terms of impact
2820                  * on zone->*_priority.
2821                  */
2822                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2823                         break;
2824         } while (--sc.priority >= 0);
2825
2826 out:
2827         if (!pgdat_is_balanced) {
2828                 cond_resched();
2829
2830                 try_to_freeze();
2831
2832                 /*
2833                  * Fragmentation may mean that the system cannot be
2834                  * rebalanced for high-order allocations in all zones.
2835                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2836                  * it means the zones have been fully scanned and are still
2837                  * not balanced. For high-order allocations, there is
2838                  * little point trying all over again as kswapd may
2839                  * infinite loop.
2840                  *
2841                  * Instead, recheck all watermarks at order-0 as they
2842                  * are the most important. If watermarks are ok, kswapd will go
2843                  * back to sleep. High-order users can still perform direct
2844                  * reclaim if they wish.
2845                  */
2846                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2847                         order = sc.order = 0;
2848
2849                 goto loop_again;
2850         }
2851
2852         /*
2853          * If kswapd was reclaiming at a higher order, it has the option of
2854          * sleeping without all zones being balanced. Before it does, it must
2855          * ensure that the watermarks for order-0 on *all* zones are met and
2856          * that the congestion flags are cleared. The congestion flag must
2857          * be cleared as kswapd is the only mechanism that clears the flag
2858          * and it is potentially going to sleep here.
2859          */
2860         if (order) {
2861                 int zones_need_compaction = 1;
2862
2863                 for (i = 0; i <= end_zone; i++) {
2864                         struct zone *zone = pgdat->node_zones + i;
2865
2866                         if (!populated_zone(zone))
2867                                 continue;
2868
2869                         /* Check if the memory needs to be defragmented. */
2870                         if (zone_watermark_ok(zone, order,
2871                                     low_wmark_pages(zone), *classzone_idx, 0))
2872                                 zones_need_compaction = 0;
2873                 }
2874
2875                 if (zones_need_compaction)
2876                         compact_pgdat(pgdat, order);
2877         }
2878
2879         /*
2880          * Return the order we were reclaiming at so prepare_kswapd_sleep()
2881          * makes a decision on the order we were last reclaiming at. However,
2882          * if another caller entered the allocator slow path while kswapd
2883          * was awake, order will remain at the higher level
2884          */
2885         *classzone_idx = end_zone;
2886         return order;
2887 }
2888
2889 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2890 {
2891         long remaining = 0;
2892         DEFINE_WAIT(wait);
2893
2894         if (freezing(current) || kthread_should_stop())
2895                 return;
2896
2897         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2898
2899         /* Try to sleep for a short interval */
2900         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2901                 remaining = schedule_timeout(HZ/10);
2902                 finish_wait(&pgdat->kswapd_wait, &wait);
2903                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2904         }
2905
2906         /*
2907          * After a short sleep, check if it was a premature sleep. If not, then
2908          * go fully to sleep until explicitly woken up.
2909          */
2910         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2911                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2912
2913                 /*
2914                  * vmstat counters are not perfectly accurate and the estimated
2915                  * value for counters such as NR_FREE_PAGES can deviate from the
2916                  * true value by nr_online_cpus * threshold. To avoid the zone
2917                  * watermarks being breached while under pressure, we reduce the
2918                  * per-cpu vmstat threshold while kswapd is awake and restore
2919                  * them before going back to sleep.
2920                  */
2921                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2922
2923                 /*
2924                  * Compaction records what page blocks it recently failed to
2925                  * isolate pages from and skips them in the future scanning.
2926                  * When kswapd is going to sleep, it is reasonable to assume
2927                  * that pages and compaction may succeed so reset the cache.
2928                  */
2929                 reset_isolation_suitable(pgdat);
2930
2931                 if (!kthread_should_stop())
2932                         schedule();
2933
2934                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2935         } else {
2936                 if (remaining)
2937                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2938                 else
2939                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2940         }
2941         finish_wait(&pgdat->kswapd_wait, &wait);
2942 }
2943
2944 /*
2945  * The background pageout daemon, started as a kernel thread
2946  * from the init process.
2947  *
2948  * This basically trickles out pages so that we have _some_
2949  * free memory available even if there is no other activity
2950  * that frees anything up. This is needed for things like routing
2951  * etc, where we otherwise might have all activity going on in
2952  * asynchronous contexts that cannot page things out.
2953  *
2954  * If there are applications that are active memory-allocators
2955  * (most normal use), this basically shouldn't matter.
2956  */
2957 static int kswapd(void *p)
2958 {
2959         unsigned long order, new_order;
2960         unsigned balanced_order;
2961         int classzone_idx, new_classzone_idx;
2962         int balanced_classzone_idx;
2963         pg_data_t *pgdat = (pg_data_t*)p;
2964         struct task_struct *tsk = current;
2965
2966         struct reclaim_state reclaim_state = {
2967                 .reclaimed_slab = 0,
2968         };
2969         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2970
2971         lockdep_set_current_reclaim_state(GFP_KERNEL);
2972
2973         if (!cpumask_empty(cpumask))
2974                 set_cpus_allowed_ptr(tsk, cpumask);
2975         current->reclaim_state = &reclaim_state;
2976
2977         /*
2978          * Tell the memory management that we're a "memory allocator",
2979          * and that if we need more memory we should get access to it
2980          * regardless (see "__alloc_pages()"). "kswapd" should
2981          * never get caught in the normal page freeing logic.
2982          *
2983          * (Kswapd normally doesn't need memory anyway, but sometimes
2984          * you need a small amount of memory in order to be able to
2985          * page out something else, and this flag essentially protects
2986          * us from recursively trying to free more memory as we're
2987          * trying to free the first piece of memory in the first place).
2988          */
2989         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2990         set_freezable();
2991
2992         order = new_order = 0;
2993         balanced_order = 0;
2994         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2995         balanced_classzone_idx = classzone_idx;
2996         for ( ; ; ) {
2997                 bool ret;
2998
2999                 /*
3000                  * If the last balance_pgdat was unsuccessful it's unlikely a
3001                  * new request of a similar or harder type will succeed soon
3002                  * so consider going to sleep on the basis we reclaimed at
3003                  */
3004                 if (balanced_classzone_idx >= new_classzone_idx &&
3005                                         balanced_order == new_order) {
3006                         new_order = pgdat->kswapd_max_order;
3007                         new_classzone_idx = pgdat->classzone_idx;
3008                         pgdat->kswapd_max_order =  0;
3009                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3010                 }
3011
3012                 if (order < new_order || classzone_idx > new_classzone_idx) {
3013                         /*
3014                          * Don't sleep if someone wants a larger 'order'
3015                          * allocation or has tigher zone constraints
3016                          */
3017                         order = new_order;
3018                         classzone_idx = new_classzone_idx;
3019                 } else {
3020                         kswapd_try_to_sleep(pgdat, balanced_order,
3021                                                 balanced_classzone_idx);
3022                         order = pgdat->kswapd_max_order;
3023                         classzone_idx = pgdat->classzone_idx;
3024                         new_order = order;
3025                         new_classzone_idx = classzone_idx;
3026                         pgdat->kswapd_max_order = 0;
3027                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3028                 }
3029
3030                 ret = try_to_freeze();
3031                 if (kthread_should_stop())
3032                         break;
3033
3034                 /*
3035                  * We can speed up thawing tasks if we don't call balance_pgdat
3036                  * after returning from the refrigerator
3037                  */
3038                 if (!ret) {
3039                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3040                         balanced_classzone_idx = classzone_idx;
3041                         balanced_order = balance_pgdat(pgdat, order,
3042                                                 &balanced_classzone_idx);
3043                 }
3044         }
3045
3046         current->reclaim_state = NULL;
3047         return 0;
3048 }
3049
3050 /*
3051  * A zone is low on free memory, so wake its kswapd task to service it.
3052  */
3053 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3054 {
3055         pg_data_t *pgdat;
3056
3057         if (!populated_zone(zone))
3058                 return;
3059
3060         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3061                 return;
3062         pgdat = zone->zone_pgdat;
3063         if (pgdat->kswapd_max_order < order) {
3064                 pgdat->kswapd_max_order = order;
3065                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3066         }
3067         if (!waitqueue_active(&pgdat->kswapd_wait))
3068                 return;
3069         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3070                 return;
3071
3072         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3073         wake_up_interruptible(&pgdat->kswapd_wait);
3074 }
3075
3076 /*
3077  * The reclaimable count would be mostly accurate.
3078  * The less reclaimable pages may be
3079  * - mlocked pages, which will be moved to unevictable list when encountered
3080  * - mapped pages, which may require several travels to be reclaimed
3081  * - dirty pages, which is not "instantly" reclaimable
3082  */
3083 unsigned long global_reclaimable_pages(void)
3084 {
3085         int nr;
3086
3087         nr = global_page_state(NR_ACTIVE_FILE) +
3088              global_page_state(NR_INACTIVE_FILE);
3089
3090         if (get_nr_swap_pages() > 0)
3091                 nr += global_page_state(NR_ACTIVE_ANON) +
3092                       global_page_state(NR_INACTIVE_ANON);
3093
3094         return nr;
3095 }
3096
3097 unsigned long zone_reclaimable_pages(struct zone *zone)
3098 {
3099         int nr;
3100
3101         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3102              zone_page_state(zone, NR_INACTIVE_FILE);
3103
3104         if (get_nr_swap_pages() > 0)
3105                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3106                       zone_page_state(zone, NR_INACTIVE_ANON);
3107
3108         return nr;
3109 }
3110
3111 #ifdef CONFIG_HIBERNATION
3112 /*
3113  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3114  * freed pages.
3115  *
3116  * Rather than trying to age LRUs the aim is to preserve the overall
3117  * LRU order by reclaiming preferentially
3118  * inactive > active > active referenced > active mapped
3119  */
3120 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3121 {
3122         struct reclaim_state reclaim_state;
3123         struct scan_control sc = {
3124                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3125                 .may_swap = 1,
3126                 .may_unmap = 1,
3127                 .may_writepage = 1,
3128                 .nr_to_reclaim = nr_to_reclaim,
3129                 .hibernation_mode = 1,
3130                 .order = 0,
3131                 .priority = DEF_PRIORITY,
3132         };
3133         struct shrink_control shrink = {
3134                 .gfp_mask = sc.gfp_mask,
3135         };
3136         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3137         struct task_struct *p = current;
3138         unsigned long nr_reclaimed;
3139
3140         p->flags |= PF_MEMALLOC;
3141         lockdep_set_current_reclaim_state(sc.gfp_mask);
3142         reclaim_state.reclaimed_slab = 0;
3143         p->reclaim_state = &reclaim_state;
3144
3145         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3146
3147         p->reclaim_state = NULL;
3148         lockdep_clear_current_reclaim_state();
3149         p->flags &= ~PF_MEMALLOC;
3150
3151         return nr_reclaimed;
3152 }
3153 #endif /* CONFIG_HIBERNATION */
3154
3155 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3156    not required for correctness.  So if the last cpu in a node goes
3157    away, we get changed to run anywhere: as the first one comes back,
3158    restore their cpu bindings. */
3159 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3160                         void *hcpu)
3161 {
3162         int nid;
3163
3164         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3165                 for_each_node_state(nid, N_MEMORY) {
3166                         pg_data_t *pgdat = NODE_DATA(nid);
3167                         const struct cpumask *mask;
3168
3169                         mask = cpumask_of_node(pgdat->node_id);
3170
3171                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3172                                 /* One of our CPUs online: restore mask */
3173                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3174                 }
3175         }
3176         return NOTIFY_OK;
3177 }
3178
3179 /*
3180  * This kswapd start function will be called by init and node-hot-add.
3181  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3182  */
3183 int kswapd_run(int nid)
3184 {
3185         pg_data_t *pgdat = NODE_DATA(nid);
3186         int ret = 0;
3187
3188         if (pgdat->kswapd)
3189                 return 0;
3190
3191         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3192         if (IS_ERR(pgdat->kswapd)) {
3193                 /* failure at boot is fatal */
3194                 BUG_ON(system_state == SYSTEM_BOOTING);
3195                 pr_err("Failed to start kswapd on node %d\n", nid);
3196                 ret = PTR_ERR(pgdat->kswapd);
3197                 pgdat->kswapd = NULL;
3198         }
3199         return ret;
3200 }
3201
3202 /*
3203  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3204  * hold lock_memory_hotplug().
3205  */
3206 void kswapd_stop(int nid)
3207 {
3208         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3209
3210         if (kswapd) {
3211                 kthread_stop(kswapd);
3212                 NODE_DATA(nid)->kswapd = NULL;
3213         }
3214 }
3215
3216 static int __init kswapd_init(void)
3217 {
3218         int nid;
3219
3220         swap_setup();
3221         for_each_node_state(nid, N_MEMORY)
3222                 kswapd_run(nid);
3223         hotcpu_notifier(cpu_callback, 0);
3224         return 0;
3225 }
3226
3227 module_init(kswapd_init)
3228
3229 #ifdef CONFIG_NUMA
3230 /*
3231  * Zone reclaim mode
3232  *
3233  * If non-zero call zone_reclaim when the number of free pages falls below
3234  * the watermarks.
3235  */
3236 int zone_reclaim_mode __read_mostly;
3237
3238 #define RECLAIM_OFF 0
3239 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3240 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3241 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3242
3243 /*
3244  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3245  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3246  * a zone.
3247  */
3248 #define ZONE_RECLAIM_PRIORITY 4
3249
3250 /*
3251  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3252  * occur.
3253  */
3254 int sysctl_min_unmapped_ratio = 1;
3255
3256 /*
3257  * If the number of slab pages in a zone grows beyond this percentage then
3258  * slab reclaim needs to occur.
3259  */
3260 int sysctl_min_slab_ratio = 5;
3261
3262 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3263 {
3264         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3265         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3266                 zone_page_state(zone, NR_ACTIVE_FILE);
3267
3268         /*
3269          * It's possible for there to be more file mapped pages than
3270          * accounted for by the pages on the file LRU lists because
3271          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3272          */
3273         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3274 }
3275
3276 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3277 static long zone_pagecache_reclaimable(struct zone *zone)
3278 {
3279         long nr_pagecache_reclaimable;
3280         long delta = 0;
3281
3282         /*
3283          * If RECLAIM_SWAP is set, then all file pages are considered
3284          * potentially reclaimable. Otherwise, we have to worry about
3285          * pages like swapcache and zone_unmapped_file_pages() provides
3286          * a better estimate
3287          */
3288         if (zone_reclaim_mode & RECLAIM_SWAP)
3289                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3290         else
3291                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3292
3293         /* If we can't clean pages, remove dirty pages from consideration */
3294         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3295                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3296
3297         /* Watch for any possible underflows due to delta */
3298         if (unlikely(delta > nr_pagecache_reclaimable))
3299                 delta = nr_pagecache_reclaimable;
3300
3301         return nr_pagecache_reclaimable - delta;
3302 }
3303
3304 /*
3305  * Try to free up some pages from this zone through reclaim.
3306  */
3307 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3308 {
3309         /* Minimum pages needed in order to stay on node */
3310         const unsigned long nr_pages = 1 << order;
3311         struct task_struct *p = current;
3312         struct reclaim_state reclaim_state;
3313         struct scan_control sc = {
3314                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3315                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3316                 .may_swap = 1,
3317                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3318                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3319                 .order = order,
3320                 .priority = ZONE_RECLAIM_PRIORITY,
3321         };
3322         struct shrink_control shrink = {
3323                 .gfp_mask = sc.gfp_mask,
3324         };
3325         unsigned long nr_slab_pages0, nr_slab_pages1;
3326
3327         cond_resched();
3328         /*
3329          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3330          * and we also need to be able to write out pages for RECLAIM_WRITE
3331          * and RECLAIM_SWAP.
3332          */
3333         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3334         lockdep_set_current_reclaim_state(gfp_mask);
3335         reclaim_state.reclaimed_slab = 0;
3336         p->reclaim_state = &reclaim_state;
3337
3338         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3339                 /*
3340                  * Free memory by calling shrink zone with increasing
3341                  * priorities until we have enough memory freed.
3342                  */
3343                 do {
3344                         shrink_zone(zone, &sc);
3345                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3346         }
3347
3348         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3349         if (nr_slab_pages0 > zone->min_slab_pages) {
3350                 /*
3351                  * shrink_slab() does not currently allow us to determine how
3352                  * many pages were freed in this zone. So we take the current
3353                  * number of slab pages and shake the slab until it is reduced
3354                  * by the same nr_pages that we used for reclaiming unmapped
3355                  * pages.
3356                  *
3357                  * Note that shrink_slab will free memory on all zones and may
3358                  * take a long time.
3359                  */
3360                 for (;;) {
3361                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3362
3363                         /* No reclaimable slab or very low memory pressure */
3364                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3365                                 break;
3366
3367                         /* Freed enough memory */
3368                         nr_slab_pages1 = zone_page_state(zone,
3369                                                         NR_SLAB_RECLAIMABLE);
3370                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3371                                 break;
3372                 }
3373
3374                 /*
3375                  * Update nr_reclaimed by the number of slab pages we
3376                  * reclaimed from this zone.
3377                  */
3378                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3379                 if (nr_slab_pages1 < nr_slab_pages0)
3380                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3381         }
3382
3383         p->reclaim_state = NULL;
3384         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3385         lockdep_clear_current_reclaim_state();
3386         return sc.nr_reclaimed >= nr_pages;
3387 }
3388
3389 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3390 {
3391         int node_id;
3392         int ret;
3393
3394         /*
3395          * Zone reclaim reclaims unmapped file backed pages and
3396          * slab pages if we are over the defined limits.
3397          *
3398          * A small portion of unmapped file backed pages is needed for
3399          * file I/O otherwise pages read by file I/O will be immediately
3400          * thrown out if the zone is overallocated. So we do not reclaim
3401          * if less than a specified percentage of the zone is used by
3402          * unmapped file backed pages.
3403          */
3404         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3405             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3406                 return ZONE_RECLAIM_FULL;
3407
3408         if (zone->all_unreclaimable)
3409                 return ZONE_RECLAIM_FULL;
3410
3411         /*
3412          * Do not scan if the allocation should not be delayed.
3413          */
3414         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3415                 return ZONE_RECLAIM_NOSCAN;
3416
3417         /*
3418          * Only run zone reclaim on the local zone or on zones that do not
3419          * have associated processors. This will favor the local processor
3420          * over remote processors and spread off node memory allocations
3421          * as wide as possible.
3422          */
3423         node_id = zone_to_nid(zone);
3424         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3425                 return ZONE_RECLAIM_NOSCAN;
3426
3427         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3428                 return ZONE_RECLAIM_NOSCAN;
3429
3430         ret = __zone_reclaim(zone, gfp_mask, order);
3431         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3432
3433         if (!ret)
3434                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3435
3436         return ret;
3437 }
3438 #endif
3439
3440 /*
3441  * page_evictable - test whether a page is evictable
3442  * @page: the page to test
3443  *
3444  * Test whether page is evictable--i.e., should be placed on active/inactive
3445  * lists vs unevictable list.
3446  *
3447  * Reasons page might not be evictable:
3448  * (1) page's mapping marked unevictable
3449  * (2) page is part of an mlocked VMA
3450  *
3451  */
3452 int page_evictable(struct page *page)
3453 {
3454         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3455 }
3456
3457 #ifdef CONFIG_SHMEM
3458 /**
3459  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3460  * @pages:      array of pages to check
3461  * @nr_pages:   number of pages to check
3462  *
3463  * Checks pages for evictability and moves them to the appropriate lru list.
3464  *
3465  * This function is only used for SysV IPC SHM_UNLOCK.
3466  */
3467 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3468 {
3469         struct lruvec *lruvec;
3470         struct zone *zone = NULL;
3471         int pgscanned = 0;
3472         int pgrescued = 0;
3473         int i;
3474
3475         for (i = 0; i < nr_pages; i++) {
3476                 struct page *page = pages[i];
3477                 struct zone *pagezone;
3478
3479                 pgscanned++;
3480                 pagezone = page_zone(page);
3481                 if (pagezone != zone) {
3482                         if (zone)
3483                                 spin_unlock_irq(&zone->lru_lock);
3484                         zone = pagezone;
3485                         spin_lock_irq(&zone->lru_lock);
3486                 }
3487                 lruvec = mem_cgroup_page_lruvec(page, zone);
3488
3489                 if (!PageLRU(page) || !PageUnevictable(page))
3490                         continue;
3491
3492                 if (page_evictable(page)) {
3493                         enum lru_list lru = page_lru_base_type(page);
3494
3495                         VM_BUG_ON(PageActive(page));
3496                         ClearPageUnevictable(page);
3497                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3498                         add_page_to_lru_list(page, lruvec, lru);
3499                         pgrescued++;
3500                 }
3501         }
3502
3503         if (zone) {
3504                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3505                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3506                 spin_unlock_irq(&zone->lru_lock);
3507         }
3508 }
3509 #endif /* CONFIG_SHMEM */
3510
3511 static void warn_scan_unevictable_pages(void)
3512 {
3513         printk_once(KERN_WARNING
3514                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3515                     "disabled for lack of a legitimate use case.  If you have "
3516                     "one, please send an email to linux-mm@kvack.org.\n",
3517                     current->comm);
3518 }
3519
3520 /*
3521  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3522  * all nodes' unevictable lists for evictable pages
3523  */
3524 unsigned long scan_unevictable_pages;
3525
3526 int scan_unevictable_handler(struct ctl_table *table, int write,
3527                            void __user *buffer,
3528                            size_t *length, loff_t *ppos)
3529 {
3530         warn_scan_unevictable_pages();
3531         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3532         scan_unevictable_pages = 0;
3533         return 0;
3534 }
3535
3536 #ifdef CONFIG_NUMA
3537 /*
3538  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3539  * a specified node's per zone unevictable lists for evictable pages.
3540  */
3541
3542 static ssize_t read_scan_unevictable_node(struct device *dev,
3543                                           struct device_attribute *attr,
3544                                           char *buf)
3545 {
3546         warn_scan_unevictable_pages();
3547         return sprintf(buf, "0\n");     /* always zero; should fit... */
3548 }
3549
3550 static ssize_t write_scan_unevictable_node(struct device *dev,
3551                                            struct device_attribute *attr,
3552                                         const char *buf, size_t count)
3553 {
3554         warn_scan_unevictable_pages();
3555         return 1;
3556 }
3557
3558
3559 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3560                         read_scan_unevictable_node,
3561                         write_scan_unevictable_node);
3562
3563 int scan_unevictable_register_node(struct node *node)
3564 {
3565         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3566 }
3567
3568 void scan_unevictable_unregister_node(struct node *node)
3569 {
3570         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3571 }
3572 #endif