memcg, vmscan: do not fall into reclaim-all pass too quickly
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142
143 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
144 {
145         struct mem_cgroup *root = sc->target_mem_cgroup;
146         return !mem_cgroup_disabled() &&
147                 mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE;
148 }
149 #else
150 static bool global_reclaim(struct scan_control *sc)
151 {
152         return true;
153 }
154
155 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
156 {
157         return false;
158 }
159 #endif
160
161 unsigned long zone_reclaimable_pages(struct zone *zone)
162 {
163         int nr;
164
165         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166              zone_page_state(zone, NR_INACTIVE_FILE);
167
168         if (get_nr_swap_pages() > 0)
169                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170                       zone_page_state(zone, NR_INACTIVE_ANON);
171
172         return nr;
173 }
174
175 bool zone_reclaimable(struct zone *zone)
176 {
177         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
178 }
179
180 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
181 {
182         if (!mem_cgroup_disabled())
183                 return mem_cgroup_get_lru_size(lruvec, lru);
184
185         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
186 }
187
188 /*
189  * Add a shrinker callback to be called from the vm
190  */
191 void register_shrinker(struct shrinker *shrinker)
192 {
193         atomic_long_set(&shrinker->nr_in_batch, 0);
194         down_write(&shrinker_rwsem);
195         list_add_tail(&shrinker->list, &shrinker_list);
196         up_write(&shrinker_rwsem);
197 }
198 EXPORT_SYMBOL(register_shrinker);
199
200 /*
201  * Remove one
202  */
203 void unregister_shrinker(struct shrinker *shrinker)
204 {
205         down_write(&shrinker_rwsem);
206         list_del(&shrinker->list);
207         up_write(&shrinker_rwsem);
208 }
209 EXPORT_SYMBOL(unregister_shrinker);
210
211 static inline int do_shrinker_shrink(struct shrinker *shrinker,
212                                      struct shrink_control *sc,
213                                      unsigned long nr_to_scan)
214 {
215         sc->nr_to_scan = nr_to_scan;
216         return (*shrinker->shrink)(shrinker, sc);
217 }
218
219 #define SHRINK_BATCH 128
220 /*
221  * Call the shrink functions to age shrinkable caches
222  *
223  * Here we assume it costs one seek to replace a lru page and that it also
224  * takes a seek to recreate a cache object.  With this in mind we age equal
225  * percentages of the lru and ageable caches.  This should balance the seeks
226  * generated by these structures.
227  *
228  * If the vm encountered mapped pages on the LRU it increase the pressure on
229  * slab to avoid swapping.
230  *
231  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
232  *
233  * `lru_pages' represents the number of on-LRU pages in all the zones which
234  * are eligible for the caller's allocation attempt.  It is used for balancing
235  * slab reclaim versus page reclaim.
236  *
237  * Returns the number of slab objects which we shrunk.
238  */
239 unsigned long shrink_slab(struct shrink_control *shrink,
240                           unsigned long nr_pages_scanned,
241                           unsigned long lru_pages)
242 {
243         struct shrinker *shrinker;
244         unsigned long ret = 0;
245
246         if (nr_pages_scanned == 0)
247                 nr_pages_scanned = SWAP_CLUSTER_MAX;
248
249         if (!down_read_trylock(&shrinker_rwsem)) {
250                 /* Assume we'll be able to shrink next time */
251                 ret = 1;
252                 goto out;
253         }
254
255         list_for_each_entry(shrinker, &shrinker_list, list) {
256                 unsigned long long delta;
257                 long total_scan;
258                 long max_pass;
259                 int shrink_ret = 0;
260                 long nr;
261                 long new_nr;
262                 long batch_size = shrinker->batch ? shrinker->batch
263                                                   : SHRINK_BATCH;
264
265                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
266                 if (max_pass <= 0)
267                         continue;
268
269                 /*
270                  * copy the current shrinker scan count into a local variable
271                  * and zero it so that other concurrent shrinker invocations
272                  * don't also do this scanning work.
273                  */
274                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
275
276                 total_scan = nr;
277                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
278                 delta *= max_pass;
279                 do_div(delta, lru_pages + 1);
280                 total_scan += delta;
281                 if (total_scan < 0) {
282                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
283                                "delete nr=%ld\n",
284                                shrinker->shrink, total_scan);
285                         total_scan = max_pass;
286                 }
287
288                 /*
289                  * We need to avoid excessive windup on filesystem shrinkers
290                  * due to large numbers of GFP_NOFS allocations causing the
291                  * shrinkers to return -1 all the time. This results in a large
292                  * nr being built up so when a shrink that can do some work
293                  * comes along it empties the entire cache due to nr >>>
294                  * max_pass.  This is bad for sustaining a working set in
295                  * memory.
296                  *
297                  * Hence only allow the shrinker to scan the entire cache when
298                  * a large delta change is calculated directly.
299                  */
300                 if (delta < max_pass / 4)
301                         total_scan = min(total_scan, max_pass / 2);
302
303                 /*
304                  * Avoid risking looping forever due to too large nr value:
305                  * never try to free more than twice the estimate number of
306                  * freeable entries.
307                  */
308                 if (total_scan > max_pass * 2)
309                         total_scan = max_pass * 2;
310
311                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
312                                         nr_pages_scanned, lru_pages,
313                                         max_pass, delta, total_scan);
314
315                 while (total_scan >= batch_size) {
316                         int nr_before;
317
318                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
319                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
320                                                         batch_size);
321                         if (shrink_ret == -1)
322                                 break;
323                         if (shrink_ret < nr_before)
324                                 ret += nr_before - shrink_ret;
325                         count_vm_events(SLABS_SCANNED, batch_size);
326                         total_scan -= batch_size;
327
328                         cond_resched();
329                 }
330
331                 /*
332                  * move the unused scan count back into the shrinker in a
333                  * manner that handles concurrent updates. If we exhausted the
334                  * scan, there is no need to do an update.
335                  */
336                 if (total_scan > 0)
337                         new_nr = atomic_long_add_return(total_scan,
338                                         &shrinker->nr_in_batch);
339                 else
340                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
341
342                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
343         }
344         up_read(&shrinker_rwsem);
345 out:
346         cond_resched();
347         return ret;
348 }
349
350 static inline int is_page_cache_freeable(struct page *page)
351 {
352         /*
353          * A freeable page cache page is referenced only by the caller
354          * that isolated the page, the page cache radix tree and
355          * optional buffer heads at page->private.
356          */
357         return page_count(page) - page_has_private(page) == 2;
358 }
359
360 static int may_write_to_queue(struct backing_dev_info *bdi,
361                               struct scan_control *sc)
362 {
363         if (current->flags & PF_SWAPWRITE)
364                 return 1;
365         if (!bdi_write_congested(bdi))
366                 return 1;
367         if (bdi == current->backing_dev_info)
368                 return 1;
369         return 0;
370 }
371
372 /*
373  * We detected a synchronous write error writing a page out.  Probably
374  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
375  * fsync(), msync() or close().
376  *
377  * The tricky part is that after writepage we cannot touch the mapping: nothing
378  * prevents it from being freed up.  But we have a ref on the page and once
379  * that page is locked, the mapping is pinned.
380  *
381  * We're allowed to run sleeping lock_page() here because we know the caller has
382  * __GFP_FS.
383  */
384 static void handle_write_error(struct address_space *mapping,
385                                 struct page *page, int error)
386 {
387         lock_page(page);
388         if (page_mapping(page) == mapping)
389                 mapping_set_error(mapping, error);
390         unlock_page(page);
391 }
392
393 /* possible outcome of pageout() */
394 typedef enum {
395         /* failed to write page out, page is locked */
396         PAGE_KEEP,
397         /* move page to the active list, page is locked */
398         PAGE_ACTIVATE,
399         /* page has been sent to the disk successfully, page is unlocked */
400         PAGE_SUCCESS,
401         /* page is clean and locked */
402         PAGE_CLEAN,
403 } pageout_t;
404
405 /*
406  * pageout is called by shrink_page_list() for each dirty page.
407  * Calls ->writepage().
408  */
409 static pageout_t pageout(struct page *page, struct address_space *mapping,
410                          struct scan_control *sc)
411 {
412         /*
413          * If the page is dirty, only perform writeback if that write
414          * will be non-blocking.  To prevent this allocation from being
415          * stalled by pagecache activity.  But note that there may be
416          * stalls if we need to run get_block().  We could test
417          * PagePrivate for that.
418          *
419          * If this process is currently in __generic_file_aio_write() against
420          * this page's queue, we can perform writeback even if that
421          * will block.
422          *
423          * If the page is swapcache, write it back even if that would
424          * block, for some throttling. This happens by accident, because
425          * swap_backing_dev_info is bust: it doesn't reflect the
426          * congestion state of the swapdevs.  Easy to fix, if needed.
427          */
428         if (!is_page_cache_freeable(page))
429                 return PAGE_KEEP;
430         if (!mapping) {
431                 /*
432                  * Some data journaling orphaned pages can have
433                  * page->mapping == NULL while being dirty with clean buffers.
434                  */
435                 if (page_has_private(page)) {
436                         if (try_to_free_buffers(page)) {
437                                 ClearPageDirty(page);
438                                 printk("%s: orphaned page\n", __func__);
439                                 return PAGE_CLEAN;
440                         }
441                 }
442                 return PAGE_KEEP;
443         }
444         if (mapping->a_ops->writepage == NULL)
445                 return PAGE_ACTIVATE;
446         if (!may_write_to_queue(mapping->backing_dev_info, sc))
447                 return PAGE_KEEP;
448
449         if (clear_page_dirty_for_io(page)) {
450                 int res;
451                 struct writeback_control wbc = {
452                         .sync_mode = WB_SYNC_NONE,
453                         .nr_to_write = SWAP_CLUSTER_MAX,
454                         .range_start = 0,
455                         .range_end = LLONG_MAX,
456                         .for_reclaim = 1,
457                 };
458
459                 SetPageReclaim(page);
460                 res = mapping->a_ops->writepage(page, &wbc);
461                 if (res < 0)
462                         handle_write_error(mapping, page, res);
463                 if (res == AOP_WRITEPAGE_ACTIVATE) {
464                         ClearPageReclaim(page);
465                         return PAGE_ACTIVATE;
466                 }
467
468                 if (!PageWriteback(page)) {
469                         /* synchronous write or broken a_ops? */
470                         ClearPageReclaim(page);
471                 }
472                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
473                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
474                 return PAGE_SUCCESS;
475         }
476
477         return PAGE_CLEAN;
478 }
479
480 /*
481  * Same as remove_mapping, but if the page is removed from the mapping, it
482  * gets returned with a refcount of 0.
483  */
484 static int __remove_mapping(struct address_space *mapping, struct page *page)
485 {
486         BUG_ON(!PageLocked(page));
487         BUG_ON(mapping != page_mapping(page));
488
489         spin_lock_irq(&mapping->tree_lock);
490         /*
491          * The non racy check for a busy page.
492          *
493          * Must be careful with the order of the tests. When someone has
494          * a ref to the page, it may be possible that they dirty it then
495          * drop the reference. So if PageDirty is tested before page_count
496          * here, then the following race may occur:
497          *
498          * get_user_pages(&page);
499          * [user mapping goes away]
500          * write_to(page);
501          *                              !PageDirty(page)    [good]
502          * SetPageDirty(page);
503          * put_page(page);
504          *                              !page_count(page)   [good, discard it]
505          *
506          * [oops, our write_to data is lost]
507          *
508          * Reversing the order of the tests ensures such a situation cannot
509          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510          * load is not satisfied before that of page->_count.
511          *
512          * Note that if SetPageDirty is always performed via set_page_dirty,
513          * and thus under tree_lock, then this ordering is not required.
514          */
515         if (!page_freeze_refs(page, 2))
516                 goto cannot_free;
517         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518         if (unlikely(PageDirty(page))) {
519                 page_unfreeze_refs(page, 2);
520                 goto cannot_free;
521         }
522
523         if (PageSwapCache(page)) {
524                 swp_entry_t swap = { .val = page_private(page) };
525                 __delete_from_swap_cache(page);
526                 spin_unlock_irq(&mapping->tree_lock);
527                 swapcache_free(swap, page);
528         } else {
529                 void (*freepage)(struct page *);
530
531                 freepage = mapping->a_ops->freepage;
532
533                 __delete_from_page_cache(page);
534                 spin_unlock_irq(&mapping->tree_lock);
535                 mem_cgroup_uncharge_cache_page(page);
536
537                 if (freepage != NULL)
538                         freepage(page);
539         }
540
541         return 1;
542
543 cannot_free:
544         spin_unlock_irq(&mapping->tree_lock);
545         return 0;
546 }
547
548 /*
549  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
550  * someone else has a ref on the page, abort and return 0.  If it was
551  * successfully detached, return 1.  Assumes the caller has a single ref on
552  * this page.
553  */
554 int remove_mapping(struct address_space *mapping, struct page *page)
555 {
556         if (__remove_mapping(mapping, page)) {
557                 /*
558                  * Unfreezing the refcount with 1 rather than 2 effectively
559                  * drops the pagecache ref for us without requiring another
560                  * atomic operation.
561                  */
562                 page_unfreeze_refs(page, 1);
563                 return 1;
564         }
565         return 0;
566 }
567
568 /**
569  * putback_lru_page - put previously isolated page onto appropriate LRU list
570  * @page: page to be put back to appropriate lru list
571  *
572  * Add previously isolated @page to appropriate LRU list.
573  * Page may still be unevictable for other reasons.
574  *
575  * lru_lock must not be held, interrupts must be enabled.
576  */
577 void putback_lru_page(struct page *page)
578 {
579         bool is_unevictable;
580         int was_unevictable = PageUnevictable(page);
581
582         VM_BUG_ON(PageLRU(page));
583
584 redo:
585         ClearPageUnevictable(page);
586
587         if (page_evictable(page)) {
588                 /*
589                  * For evictable pages, we can use the cache.
590                  * In event of a race, worst case is we end up with an
591                  * unevictable page on [in]active list.
592                  * We know how to handle that.
593                  */
594                 is_unevictable = false;
595                 lru_cache_add(page);
596         } else {
597                 /*
598                  * Put unevictable pages directly on zone's unevictable
599                  * list.
600                  */
601                 is_unevictable = true;
602                 add_page_to_unevictable_list(page);
603                 /*
604                  * When racing with an mlock or AS_UNEVICTABLE clearing
605                  * (page is unlocked) make sure that if the other thread
606                  * does not observe our setting of PG_lru and fails
607                  * isolation/check_move_unevictable_pages,
608                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
609                  * the page back to the evictable list.
610                  *
611                  * The other side is TestClearPageMlocked() or shmem_lock().
612                  */
613                 smp_mb();
614         }
615
616         /*
617          * page's status can change while we move it among lru. If an evictable
618          * page is on unevictable list, it never be freed. To avoid that,
619          * check after we added it to the list, again.
620          */
621         if (is_unevictable && page_evictable(page)) {
622                 if (!isolate_lru_page(page)) {
623                         put_page(page);
624                         goto redo;
625                 }
626                 /* This means someone else dropped this page from LRU
627                  * So, it will be freed or putback to LRU again. There is
628                  * nothing to do here.
629                  */
630         }
631
632         if (was_unevictable && !is_unevictable)
633                 count_vm_event(UNEVICTABLE_PGRESCUED);
634         else if (!was_unevictable && is_unevictable)
635                 count_vm_event(UNEVICTABLE_PGCULLED);
636
637         put_page(page);         /* drop ref from isolate */
638 }
639
640 enum page_references {
641         PAGEREF_RECLAIM,
642         PAGEREF_RECLAIM_CLEAN,
643         PAGEREF_KEEP,
644         PAGEREF_ACTIVATE,
645 };
646
647 static enum page_references page_check_references(struct page *page,
648                                                   struct scan_control *sc)
649 {
650         int referenced_ptes, referenced_page;
651         unsigned long vm_flags;
652
653         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
654                                           &vm_flags);
655         referenced_page = TestClearPageReferenced(page);
656
657         /*
658          * Mlock lost the isolation race with us.  Let try_to_unmap()
659          * move the page to the unevictable list.
660          */
661         if (vm_flags & VM_LOCKED)
662                 return PAGEREF_RECLAIM;
663
664         if (referenced_ptes) {
665                 if (PageSwapBacked(page))
666                         return PAGEREF_ACTIVATE;
667                 /*
668                  * All mapped pages start out with page table
669                  * references from the instantiating fault, so we need
670                  * to look twice if a mapped file page is used more
671                  * than once.
672                  *
673                  * Mark it and spare it for another trip around the
674                  * inactive list.  Another page table reference will
675                  * lead to its activation.
676                  *
677                  * Note: the mark is set for activated pages as well
678                  * so that recently deactivated but used pages are
679                  * quickly recovered.
680                  */
681                 SetPageReferenced(page);
682
683                 if (referenced_page || referenced_ptes > 1)
684                         return PAGEREF_ACTIVATE;
685
686                 /*
687                  * Activate file-backed executable pages after first usage.
688                  */
689                 if (vm_flags & VM_EXEC)
690                         return PAGEREF_ACTIVATE;
691
692                 return PAGEREF_KEEP;
693         }
694
695         /* Reclaim if clean, defer dirty pages to writeback */
696         if (referenced_page && !PageSwapBacked(page))
697                 return PAGEREF_RECLAIM_CLEAN;
698
699         return PAGEREF_RECLAIM;
700 }
701
702 /* Check if a page is dirty or under writeback */
703 static void page_check_dirty_writeback(struct page *page,
704                                        bool *dirty, bool *writeback)
705 {
706         struct address_space *mapping;
707
708         /*
709          * Anonymous pages are not handled by flushers and must be written
710          * from reclaim context. Do not stall reclaim based on them
711          */
712         if (!page_is_file_cache(page)) {
713                 *dirty = false;
714                 *writeback = false;
715                 return;
716         }
717
718         /* By default assume that the page flags are accurate */
719         *dirty = PageDirty(page);
720         *writeback = PageWriteback(page);
721
722         /* Verify dirty/writeback state if the filesystem supports it */
723         if (!page_has_private(page))
724                 return;
725
726         mapping = page_mapping(page);
727         if (mapping && mapping->a_ops->is_dirty_writeback)
728                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
729 }
730
731 /*
732  * shrink_page_list() returns the number of reclaimed pages
733  */
734 static unsigned long shrink_page_list(struct list_head *page_list,
735                                       struct zone *zone,
736                                       struct scan_control *sc,
737                                       enum ttu_flags ttu_flags,
738                                       unsigned long *ret_nr_dirty,
739                                       unsigned long *ret_nr_unqueued_dirty,
740                                       unsigned long *ret_nr_congested,
741                                       unsigned long *ret_nr_writeback,
742                                       unsigned long *ret_nr_immediate,
743                                       bool force_reclaim)
744 {
745         LIST_HEAD(ret_pages);
746         LIST_HEAD(free_pages);
747         int pgactivate = 0;
748         unsigned long nr_unqueued_dirty = 0;
749         unsigned long nr_dirty = 0;
750         unsigned long nr_congested = 0;
751         unsigned long nr_reclaimed = 0;
752         unsigned long nr_writeback = 0;
753         unsigned long nr_immediate = 0;
754
755         cond_resched();
756
757         mem_cgroup_uncharge_start();
758         while (!list_empty(page_list)) {
759                 struct address_space *mapping;
760                 struct page *page;
761                 int may_enter_fs;
762                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
763                 bool dirty, writeback;
764
765                 cond_resched();
766
767                 page = lru_to_page(page_list);
768                 list_del(&page->lru);
769
770                 if (!trylock_page(page))
771                         goto keep;
772
773                 VM_BUG_ON(PageActive(page));
774                 VM_BUG_ON(page_zone(page) != zone);
775
776                 sc->nr_scanned++;
777
778                 if (unlikely(!page_evictable(page)))
779                         goto cull_mlocked;
780
781                 if (!sc->may_unmap && page_mapped(page))
782                         goto keep_locked;
783
784                 /* Double the slab pressure for mapped and swapcache pages */
785                 if (page_mapped(page) || PageSwapCache(page))
786                         sc->nr_scanned++;
787
788                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
789                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
790
791                 /*
792                  * The number of dirty pages determines if a zone is marked
793                  * reclaim_congested which affects wait_iff_congested. kswapd
794                  * will stall and start writing pages if the tail of the LRU
795                  * is all dirty unqueued pages.
796                  */
797                 page_check_dirty_writeback(page, &dirty, &writeback);
798                 if (dirty || writeback)
799                         nr_dirty++;
800
801                 if (dirty && !writeback)
802                         nr_unqueued_dirty++;
803
804                 /*
805                  * Treat this page as congested if the underlying BDI is or if
806                  * pages are cycling through the LRU so quickly that the
807                  * pages marked for immediate reclaim are making it to the
808                  * end of the LRU a second time.
809                  */
810                 mapping = page_mapping(page);
811                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
812                     (writeback && PageReclaim(page)))
813                         nr_congested++;
814
815                 /*
816                  * If a page at the tail of the LRU is under writeback, there
817                  * are three cases to consider.
818                  *
819                  * 1) If reclaim is encountering an excessive number of pages
820                  *    under writeback and this page is both under writeback and
821                  *    PageReclaim then it indicates that pages are being queued
822                  *    for IO but are being recycled through the LRU before the
823                  *    IO can complete. Waiting on the page itself risks an
824                  *    indefinite stall if it is impossible to writeback the
825                  *    page due to IO error or disconnected storage so instead
826                  *    note that the LRU is being scanned too quickly and the
827                  *    caller can stall after page list has been processed.
828                  *
829                  * 2) Global reclaim encounters a page, memcg encounters a
830                  *    page that is not marked for immediate reclaim or
831                  *    the caller does not have __GFP_IO. In this case mark
832                  *    the page for immediate reclaim and continue scanning.
833                  *
834                  *    __GFP_IO is checked  because a loop driver thread might
835                  *    enter reclaim, and deadlock if it waits on a page for
836                  *    which it is needed to do the write (loop masks off
837                  *    __GFP_IO|__GFP_FS for this reason); but more thought
838                  *    would probably show more reasons.
839                  *
840                  *    Don't require __GFP_FS, since we're not going into the
841                  *    FS, just waiting on its writeback completion. Worryingly,
842                  *    ext4 gfs2 and xfs allocate pages with
843                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
844                  *    may_enter_fs here is liable to OOM on them.
845                  *
846                  * 3) memcg encounters a page that is not already marked
847                  *    PageReclaim. memcg does not have any dirty pages
848                  *    throttling so we could easily OOM just because too many
849                  *    pages are in writeback and there is nothing else to
850                  *    reclaim. Wait for the writeback to complete.
851                  */
852                 if (PageWriteback(page)) {
853                         /* Case 1 above */
854                         if (current_is_kswapd() &&
855                             PageReclaim(page) &&
856                             zone_is_reclaim_writeback(zone)) {
857                                 nr_immediate++;
858                                 goto keep_locked;
859
860                         /* Case 2 above */
861                         } else if (global_reclaim(sc) ||
862                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
863                                 /*
864                                  * This is slightly racy - end_page_writeback()
865                                  * might have just cleared PageReclaim, then
866                                  * setting PageReclaim here end up interpreted
867                                  * as PageReadahead - but that does not matter
868                                  * enough to care.  What we do want is for this
869                                  * page to have PageReclaim set next time memcg
870                                  * reclaim reaches the tests above, so it will
871                                  * then wait_on_page_writeback() to avoid OOM;
872                                  * and it's also appropriate in global reclaim.
873                                  */
874                                 SetPageReclaim(page);
875                                 nr_writeback++;
876
877                                 goto keep_locked;
878
879                         /* Case 3 above */
880                         } else {
881                                 wait_on_page_writeback(page);
882                         }
883                 }
884
885                 if (!force_reclaim)
886                         references = page_check_references(page, sc);
887
888                 switch (references) {
889                 case PAGEREF_ACTIVATE:
890                         goto activate_locked;
891                 case PAGEREF_KEEP:
892                         goto keep_locked;
893                 case PAGEREF_RECLAIM:
894                 case PAGEREF_RECLAIM_CLEAN:
895                         ; /* try to reclaim the page below */
896                 }
897
898                 /*
899                  * Anonymous process memory has backing store?
900                  * Try to allocate it some swap space here.
901                  */
902                 if (PageAnon(page) && !PageSwapCache(page)) {
903                         if (!(sc->gfp_mask & __GFP_IO))
904                                 goto keep_locked;
905                         if (!add_to_swap(page, page_list))
906                                 goto activate_locked;
907                         may_enter_fs = 1;
908
909                         /* Adding to swap updated mapping */
910                         mapping = page_mapping(page);
911                 }
912
913                 /*
914                  * The page is mapped into the page tables of one or more
915                  * processes. Try to unmap it here.
916                  */
917                 if (page_mapped(page) && mapping) {
918                         switch (try_to_unmap(page, ttu_flags)) {
919                         case SWAP_FAIL:
920                                 goto activate_locked;
921                         case SWAP_AGAIN:
922                                 goto keep_locked;
923                         case SWAP_MLOCK:
924                                 goto cull_mlocked;
925                         case SWAP_SUCCESS:
926                                 ; /* try to free the page below */
927                         }
928                 }
929
930                 if (PageDirty(page)) {
931                         /*
932                          * Only kswapd can writeback filesystem pages to
933                          * avoid risk of stack overflow but only writeback
934                          * if many dirty pages have been encountered.
935                          */
936                         if (page_is_file_cache(page) &&
937                                         (!current_is_kswapd() ||
938                                          !zone_is_reclaim_dirty(zone))) {
939                                 /*
940                                  * Immediately reclaim when written back.
941                                  * Similar in principal to deactivate_page()
942                                  * except we already have the page isolated
943                                  * and know it's dirty
944                                  */
945                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
946                                 SetPageReclaim(page);
947
948                                 goto keep_locked;
949                         }
950
951                         if (references == PAGEREF_RECLAIM_CLEAN)
952                                 goto keep_locked;
953                         if (!may_enter_fs)
954                                 goto keep_locked;
955                         if (!sc->may_writepage)
956                                 goto keep_locked;
957
958                         /* Page is dirty, try to write it out here */
959                         switch (pageout(page, mapping, sc)) {
960                         case PAGE_KEEP:
961                                 goto keep_locked;
962                         case PAGE_ACTIVATE:
963                                 goto activate_locked;
964                         case PAGE_SUCCESS:
965                                 if (PageWriteback(page))
966                                         goto keep;
967                                 if (PageDirty(page))
968                                         goto keep;
969
970                                 /*
971                                  * A synchronous write - probably a ramdisk.  Go
972                                  * ahead and try to reclaim the page.
973                                  */
974                                 if (!trylock_page(page))
975                                         goto keep;
976                                 if (PageDirty(page) || PageWriteback(page))
977                                         goto keep_locked;
978                                 mapping = page_mapping(page);
979                         case PAGE_CLEAN:
980                                 ; /* try to free the page below */
981                         }
982                 }
983
984                 /*
985                  * If the page has buffers, try to free the buffer mappings
986                  * associated with this page. If we succeed we try to free
987                  * the page as well.
988                  *
989                  * We do this even if the page is PageDirty().
990                  * try_to_release_page() does not perform I/O, but it is
991                  * possible for a page to have PageDirty set, but it is actually
992                  * clean (all its buffers are clean).  This happens if the
993                  * buffers were written out directly, with submit_bh(). ext3
994                  * will do this, as well as the blockdev mapping.
995                  * try_to_release_page() will discover that cleanness and will
996                  * drop the buffers and mark the page clean - it can be freed.
997                  *
998                  * Rarely, pages can have buffers and no ->mapping.  These are
999                  * the pages which were not successfully invalidated in
1000                  * truncate_complete_page().  We try to drop those buffers here
1001                  * and if that worked, and the page is no longer mapped into
1002                  * process address space (page_count == 1) it can be freed.
1003                  * Otherwise, leave the page on the LRU so it is swappable.
1004                  */
1005                 if (page_has_private(page)) {
1006                         if (!try_to_release_page(page, sc->gfp_mask))
1007                                 goto activate_locked;
1008                         if (!mapping && page_count(page) == 1) {
1009                                 unlock_page(page);
1010                                 if (put_page_testzero(page))
1011                                         goto free_it;
1012                                 else {
1013                                         /*
1014                                          * rare race with speculative reference.
1015                                          * the speculative reference will free
1016                                          * this page shortly, so we may
1017                                          * increment nr_reclaimed here (and
1018                                          * leave it off the LRU).
1019                                          */
1020                                         nr_reclaimed++;
1021                                         continue;
1022                                 }
1023                         }
1024                 }
1025
1026                 if (!mapping || !__remove_mapping(mapping, page))
1027                         goto keep_locked;
1028
1029                 /*
1030                  * At this point, we have no other references and there is
1031                  * no way to pick any more up (removed from LRU, removed
1032                  * from pagecache). Can use non-atomic bitops now (and
1033                  * we obviously don't have to worry about waking up a process
1034                  * waiting on the page lock, because there are no references.
1035                  */
1036                 __clear_page_locked(page);
1037 free_it:
1038                 nr_reclaimed++;
1039
1040                 /*
1041                  * Is there need to periodically free_page_list? It would
1042                  * appear not as the counts should be low
1043                  */
1044                 list_add(&page->lru, &free_pages);
1045                 continue;
1046
1047 cull_mlocked:
1048                 if (PageSwapCache(page))
1049                         try_to_free_swap(page);
1050                 unlock_page(page);
1051                 putback_lru_page(page);
1052                 continue;
1053
1054 activate_locked:
1055                 /* Not a candidate for swapping, so reclaim swap space. */
1056                 if (PageSwapCache(page) && vm_swap_full())
1057                         try_to_free_swap(page);
1058                 VM_BUG_ON(PageActive(page));
1059                 SetPageActive(page);
1060                 pgactivate++;
1061 keep_locked:
1062                 unlock_page(page);
1063 keep:
1064                 list_add(&page->lru, &ret_pages);
1065                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1066         }
1067
1068         free_hot_cold_page_list(&free_pages, 1);
1069
1070         list_splice(&ret_pages, page_list);
1071         count_vm_events(PGACTIVATE, pgactivate);
1072         mem_cgroup_uncharge_end();
1073         *ret_nr_dirty += nr_dirty;
1074         *ret_nr_congested += nr_congested;
1075         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1076         *ret_nr_writeback += nr_writeback;
1077         *ret_nr_immediate += nr_immediate;
1078         return nr_reclaimed;
1079 }
1080
1081 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1082                                             struct list_head *page_list)
1083 {
1084         struct scan_control sc = {
1085                 .gfp_mask = GFP_KERNEL,
1086                 .priority = DEF_PRIORITY,
1087                 .may_unmap = 1,
1088         };
1089         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1090         struct page *page, *next;
1091         LIST_HEAD(clean_pages);
1092
1093         list_for_each_entry_safe(page, next, page_list, lru) {
1094                 if (page_is_file_cache(page) && !PageDirty(page)) {
1095                         ClearPageActive(page);
1096                         list_move(&page->lru, &clean_pages);
1097                 }
1098         }
1099
1100         ret = shrink_page_list(&clean_pages, zone, &sc,
1101                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1102                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1103         list_splice(&clean_pages, page_list);
1104         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1105         return ret;
1106 }
1107
1108 /*
1109  * Attempt to remove the specified page from its LRU.  Only take this page
1110  * if it is of the appropriate PageActive status.  Pages which are being
1111  * freed elsewhere are also ignored.
1112  *
1113  * page:        page to consider
1114  * mode:        one of the LRU isolation modes defined above
1115  *
1116  * returns 0 on success, -ve errno on failure.
1117  */
1118 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1119 {
1120         int ret = -EINVAL;
1121
1122         /* Only take pages on the LRU. */
1123         if (!PageLRU(page))
1124                 return ret;
1125
1126         /* Compaction should not handle unevictable pages but CMA can do so */
1127         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1128                 return ret;
1129
1130         ret = -EBUSY;
1131
1132         /*
1133          * To minimise LRU disruption, the caller can indicate that it only
1134          * wants to isolate pages it will be able to operate on without
1135          * blocking - clean pages for the most part.
1136          *
1137          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1138          * is used by reclaim when it is cannot write to backing storage
1139          *
1140          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1141          * that it is possible to migrate without blocking
1142          */
1143         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1144                 /* All the caller can do on PageWriteback is block */
1145                 if (PageWriteback(page))
1146                         return ret;
1147
1148                 if (PageDirty(page)) {
1149                         struct address_space *mapping;
1150
1151                         /* ISOLATE_CLEAN means only clean pages */
1152                         if (mode & ISOLATE_CLEAN)
1153                                 return ret;
1154
1155                         /*
1156                          * Only pages without mappings or that have a
1157                          * ->migratepage callback are possible to migrate
1158                          * without blocking
1159                          */
1160                         mapping = page_mapping(page);
1161                         if (mapping && !mapping->a_ops->migratepage)
1162                                 return ret;
1163                 }
1164         }
1165
1166         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1167                 return ret;
1168
1169         if (likely(get_page_unless_zero(page))) {
1170                 /*
1171                  * Be careful not to clear PageLRU until after we're
1172                  * sure the page is not being freed elsewhere -- the
1173                  * page release code relies on it.
1174                  */
1175                 ClearPageLRU(page);
1176                 ret = 0;
1177         }
1178
1179         return ret;
1180 }
1181
1182 /*
1183  * zone->lru_lock is heavily contended.  Some of the functions that
1184  * shrink the lists perform better by taking out a batch of pages
1185  * and working on them outside the LRU lock.
1186  *
1187  * For pagecache intensive workloads, this function is the hottest
1188  * spot in the kernel (apart from copy_*_user functions).
1189  *
1190  * Appropriate locks must be held before calling this function.
1191  *
1192  * @nr_to_scan: The number of pages to look through on the list.
1193  * @lruvec:     The LRU vector to pull pages from.
1194  * @dst:        The temp list to put pages on to.
1195  * @nr_scanned: The number of pages that were scanned.
1196  * @sc:         The scan_control struct for this reclaim session
1197  * @mode:       One of the LRU isolation modes
1198  * @lru:        LRU list id for isolating
1199  *
1200  * returns how many pages were moved onto *@dst.
1201  */
1202 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1203                 struct lruvec *lruvec, struct list_head *dst,
1204                 unsigned long *nr_scanned, struct scan_control *sc,
1205                 isolate_mode_t mode, enum lru_list lru)
1206 {
1207         struct list_head *src = &lruvec->lists[lru];
1208         unsigned long nr_taken = 0;
1209         unsigned long scan;
1210
1211         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1212                 struct page *page;
1213                 int nr_pages;
1214
1215                 page = lru_to_page(src);
1216                 prefetchw_prev_lru_page(page, src, flags);
1217
1218                 VM_BUG_ON(!PageLRU(page));
1219
1220                 switch (__isolate_lru_page(page, mode)) {
1221                 case 0:
1222                         nr_pages = hpage_nr_pages(page);
1223                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1224                         list_move(&page->lru, dst);
1225                         nr_taken += nr_pages;
1226                         break;
1227
1228                 case -EBUSY:
1229                         /* else it is being freed elsewhere */
1230                         list_move(&page->lru, src);
1231                         continue;
1232
1233                 default:
1234                         BUG();
1235                 }
1236         }
1237
1238         *nr_scanned = scan;
1239         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1240                                     nr_taken, mode, is_file_lru(lru));
1241         return nr_taken;
1242 }
1243
1244 /**
1245  * isolate_lru_page - tries to isolate a page from its LRU list
1246  * @page: page to isolate from its LRU list
1247  *
1248  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1249  * vmstat statistic corresponding to whatever LRU list the page was on.
1250  *
1251  * Returns 0 if the page was removed from an LRU list.
1252  * Returns -EBUSY if the page was not on an LRU list.
1253  *
1254  * The returned page will have PageLRU() cleared.  If it was found on
1255  * the active list, it will have PageActive set.  If it was found on
1256  * the unevictable list, it will have the PageUnevictable bit set. That flag
1257  * may need to be cleared by the caller before letting the page go.
1258  *
1259  * The vmstat statistic corresponding to the list on which the page was
1260  * found will be decremented.
1261  *
1262  * Restrictions:
1263  * (1) Must be called with an elevated refcount on the page. This is a
1264  *     fundamentnal difference from isolate_lru_pages (which is called
1265  *     without a stable reference).
1266  * (2) the lru_lock must not be held.
1267  * (3) interrupts must be enabled.
1268  */
1269 int isolate_lru_page(struct page *page)
1270 {
1271         int ret = -EBUSY;
1272
1273         VM_BUG_ON(!page_count(page));
1274
1275         if (PageLRU(page)) {
1276                 struct zone *zone = page_zone(page);
1277                 struct lruvec *lruvec;
1278
1279                 spin_lock_irq(&zone->lru_lock);
1280                 lruvec = mem_cgroup_page_lruvec(page, zone);
1281                 if (PageLRU(page)) {
1282                         int lru = page_lru(page);
1283                         get_page(page);
1284                         ClearPageLRU(page);
1285                         del_page_from_lru_list(page, lruvec, lru);
1286                         ret = 0;
1287                 }
1288                 spin_unlock_irq(&zone->lru_lock);
1289         }
1290         return ret;
1291 }
1292
1293 /*
1294  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1295  * then get resheduled. When there are massive number of tasks doing page
1296  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1297  * the LRU list will go small and be scanned faster than necessary, leading to
1298  * unnecessary swapping, thrashing and OOM.
1299  */
1300 static int too_many_isolated(struct zone *zone, int file,
1301                 struct scan_control *sc)
1302 {
1303         unsigned long inactive, isolated;
1304
1305         if (current_is_kswapd())
1306                 return 0;
1307
1308         if (!global_reclaim(sc))
1309                 return 0;
1310
1311         if (file) {
1312                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1313                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1314         } else {
1315                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1316                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1317         }
1318
1319         /*
1320          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1321          * won't get blocked by normal direct-reclaimers, forming a circular
1322          * deadlock.
1323          */
1324         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1325                 inactive >>= 3;
1326
1327         return isolated > inactive;
1328 }
1329
1330 static noinline_for_stack void
1331 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1332 {
1333         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1334         struct zone *zone = lruvec_zone(lruvec);
1335         LIST_HEAD(pages_to_free);
1336
1337         /*
1338          * Put back any unfreeable pages.
1339          */
1340         while (!list_empty(page_list)) {
1341                 struct page *page = lru_to_page(page_list);
1342                 int lru;
1343
1344                 VM_BUG_ON(PageLRU(page));
1345                 list_del(&page->lru);
1346                 if (unlikely(!page_evictable(page))) {
1347                         spin_unlock_irq(&zone->lru_lock);
1348                         putback_lru_page(page);
1349                         spin_lock_irq(&zone->lru_lock);
1350                         continue;
1351                 }
1352
1353                 lruvec = mem_cgroup_page_lruvec(page, zone);
1354
1355                 SetPageLRU(page);
1356                 lru = page_lru(page);
1357                 add_page_to_lru_list(page, lruvec, lru);
1358
1359                 if (is_active_lru(lru)) {
1360                         int file = is_file_lru(lru);
1361                         int numpages = hpage_nr_pages(page);
1362                         reclaim_stat->recent_rotated[file] += numpages;
1363                 }
1364                 if (put_page_testzero(page)) {
1365                         __ClearPageLRU(page);
1366                         __ClearPageActive(page);
1367                         del_page_from_lru_list(page, lruvec, lru);
1368
1369                         if (unlikely(PageCompound(page))) {
1370                                 spin_unlock_irq(&zone->lru_lock);
1371                                 (*get_compound_page_dtor(page))(page);
1372                                 spin_lock_irq(&zone->lru_lock);
1373                         } else
1374                                 list_add(&page->lru, &pages_to_free);
1375                 }
1376         }
1377
1378         /*
1379          * To save our caller's stack, now use input list for pages to free.
1380          */
1381         list_splice(&pages_to_free, page_list);
1382 }
1383
1384 /*
1385  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1386  * of reclaimed pages
1387  */
1388 static noinline_for_stack unsigned long
1389 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1390                      struct scan_control *sc, enum lru_list lru)
1391 {
1392         LIST_HEAD(page_list);
1393         unsigned long nr_scanned;
1394         unsigned long nr_reclaimed = 0;
1395         unsigned long nr_taken;
1396         unsigned long nr_dirty = 0;
1397         unsigned long nr_congested = 0;
1398         unsigned long nr_unqueued_dirty = 0;
1399         unsigned long nr_writeback = 0;
1400         unsigned long nr_immediate = 0;
1401         isolate_mode_t isolate_mode = 0;
1402         int file = is_file_lru(lru);
1403         struct zone *zone = lruvec_zone(lruvec);
1404         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1405
1406         while (unlikely(too_many_isolated(zone, file, sc))) {
1407                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1408
1409                 /* We are about to die and free our memory. Return now. */
1410                 if (fatal_signal_pending(current))
1411                         return SWAP_CLUSTER_MAX;
1412         }
1413
1414         lru_add_drain();
1415
1416         if (!sc->may_unmap)
1417                 isolate_mode |= ISOLATE_UNMAPPED;
1418         if (!sc->may_writepage)
1419                 isolate_mode |= ISOLATE_CLEAN;
1420
1421         spin_lock_irq(&zone->lru_lock);
1422
1423         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1424                                      &nr_scanned, sc, isolate_mode, lru);
1425
1426         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1427         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1428
1429         if (global_reclaim(sc)) {
1430                 zone->pages_scanned += nr_scanned;
1431                 if (current_is_kswapd())
1432                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1433                 else
1434                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1435         }
1436         spin_unlock_irq(&zone->lru_lock);
1437
1438         if (nr_taken == 0)
1439                 return 0;
1440
1441         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1442                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1443                                 &nr_writeback, &nr_immediate,
1444                                 false);
1445
1446         spin_lock_irq(&zone->lru_lock);
1447
1448         reclaim_stat->recent_scanned[file] += nr_taken;
1449
1450         if (global_reclaim(sc)) {
1451                 if (current_is_kswapd())
1452                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1453                                                nr_reclaimed);
1454                 else
1455                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1456                                                nr_reclaimed);
1457         }
1458
1459         putback_inactive_pages(lruvec, &page_list);
1460
1461         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1462
1463         spin_unlock_irq(&zone->lru_lock);
1464
1465         free_hot_cold_page_list(&page_list, 1);
1466
1467         /*
1468          * If reclaim is isolating dirty pages under writeback, it implies
1469          * that the long-lived page allocation rate is exceeding the page
1470          * laundering rate. Either the global limits are not being effective
1471          * at throttling processes due to the page distribution throughout
1472          * zones or there is heavy usage of a slow backing device. The
1473          * only option is to throttle from reclaim context which is not ideal
1474          * as there is no guarantee the dirtying process is throttled in the
1475          * same way balance_dirty_pages() manages.
1476          *
1477          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1478          * of pages under pages flagged for immediate reclaim and stall if any
1479          * are encountered in the nr_immediate check below.
1480          */
1481         if (nr_writeback && nr_writeback == nr_taken)
1482                 zone_set_flag(zone, ZONE_WRITEBACK);
1483
1484         /*
1485          * memcg will stall in page writeback so only consider forcibly
1486          * stalling for global reclaim
1487          */
1488         if (global_reclaim(sc)) {
1489                 /*
1490                  * Tag a zone as congested if all the dirty pages scanned were
1491                  * backed by a congested BDI and wait_iff_congested will stall.
1492                  */
1493                 if (nr_dirty && nr_dirty == nr_congested)
1494                         zone_set_flag(zone, ZONE_CONGESTED);
1495
1496                 /*
1497                  * If dirty pages are scanned that are not queued for IO, it
1498                  * implies that flushers are not keeping up. In this case, flag
1499                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1500                  * pages from reclaim context. It will forcibly stall in the
1501                  * next check.
1502                  */
1503                 if (nr_unqueued_dirty == nr_taken)
1504                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1505
1506                 /*
1507                  * In addition, if kswapd scans pages marked marked for
1508                  * immediate reclaim and under writeback (nr_immediate), it
1509                  * implies that pages are cycling through the LRU faster than
1510                  * they are written so also forcibly stall.
1511                  */
1512                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1513                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1514         }
1515
1516         /*
1517          * Stall direct reclaim for IO completions if underlying BDIs or zone
1518          * is congested. Allow kswapd to continue until it starts encountering
1519          * unqueued dirty pages or cycling through the LRU too quickly.
1520          */
1521         if (!sc->hibernation_mode && !current_is_kswapd())
1522                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1523
1524         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1525                 zone_idx(zone),
1526                 nr_scanned, nr_reclaimed,
1527                 sc->priority,
1528                 trace_shrink_flags(file));
1529         return nr_reclaimed;
1530 }
1531
1532 /*
1533  * This moves pages from the active list to the inactive list.
1534  *
1535  * We move them the other way if the page is referenced by one or more
1536  * processes, from rmap.
1537  *
1538  * If the pages are mostly unmapped, the processing is fast and it is
1539  * appropriate to hold zone->lru_lock across the whole operation.  But if
1540  * the pages are mapped, the processing is slow (page_referenced()) so we
1541  * should drop zone->lru_lock around each page.  It's impossible to balance
1542  * this, so instead we remove the pages from the LRU while processing them.
1543  * It is safe to rely on PG_active against the non-LRU pages in here because
1544  * nobody will play with that bit on a non-LRU page.
1545  *
1546  * The downside is that we have to touch page->_count against each page.
1547  * But we had to alter page->flags anyway.
1548  */
1549
1550 static void move_active_pages_to_lru(struct lruvec *lruvec,
1551                                      struct list_head *list,
1552                                      struct list_head *pages_to_free,
1553                                      enum lru_list lru)
1554 {
1555         struct zone *zone = lruvec_zone(lruvec);
1556         unsigned long pgmoved = 0;
1557         struct page *page;
1558         int nr_pages;
1559
1560         while (!list_empty(list)) {
1561                 page = lru_to_page(list);
1562                 lruvec = mem_cgroup_page_lruvec(page, zone);
1563
1564                 VM_BUG_ON(PageLRU(page));
1565                 SetPageLRU(page);
1566
1567                 nr_pages = hpage_nr_pages(page);
1568                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1569                 list_move(&page->lru, &lruvec->lists[lru]);
1570                 pgmoved += nr_pages;
1571
1572                 if (put_page_testzero(page)) {
1573                         __ClearPageLRU(page);
1574                         __ClearPageActive(page);
1575                         del_page_from_lru_list(page, lruvec, lru);
1576
1577                         if (unlikely(PageCompound(page))) {
1578                                 spin_unlock_irq(&zone->lru_lock);
1579                                 (*get_compound_page_dtor(page))(page);
1580                                 spin_lock_irq(&zone->lru_lock);
1581                         } else
1582                                 list_add(&page->lru, pages_to_free);
1583                 }
1584         }
1585         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1586         if (!is_active_lru(lru))
1587                 __count_vm_events(PGDEACTIVATE, pgmoved);
1588 }
1589
1590 static void shrink_active_list(unsigned long nr_to_scan,
1591                                struct lruvec *lruvec,
1592                                struct scan_control *sc,
1593                                enum lru_list lru)
1594 {
1595         unsigned long nr_taken;
1596         unsigned long nr_scanned;
1597         unsigned long vm_flags;
1598         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1599         LIST_HEAD(l_active);
1600         LIST_HEAD(l_inactive);
1601         struct page *page;
1602         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1603         unsigned long nr_rotated = 0;
1604         isolate_mode_t isolate_mode = 0;
1605         int file = is_file_lru(lru);
1606         struct zone *zone = lruvec_zone(lruvec);
1607
1608         lru_add_drain();
1609
1610         if (!sc->may_unmap)
1611                 isolate_mode |= ISOLATE_UNMAPPED;
1612         if (!sc->may_writepage)
1613                 isolate_mode |= ISOLATE_CLEAN;
1614
1615         spin_lock_irq(&zone->lru_lock);
1616
1617         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1618                                      &nr_scanned, sc, isolate_mode, lru);
1619         if (global_reclaim(sc))
1620                 zone->pages_scanned += nr_scanned;
1621
1622         reclaim_stat->recent_scanned[file] += nr_taken;
1623
1624         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1625         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1626         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1627         spin_unlock_irq(&zone->lru_lock);
1628
1629         while (!list_empty(&l_hold)) {
1630                 cond_resched();
1631                 page = lru_to_page(&l_hold);
1632                 list_del(&page->lru);
1633
1634                 if (unlikely(!page_evictable(page))) {
1635                         putback_lru_page(page);
1636                         continue;
1637                 }
1638
1639                 if (unlikely(buffer_heads_over_limit)) {
1640                         if (page_has_private(page) && trylock_page(page)) {
1641                                 if (page_has_private(page))
1642                                         try_to_release_page(page, 0);
1643                                 unlock_page(page);
1644                         }
1645                 }
1646
1647                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1648                                     &vm_flags)) {
1649                         nr_rotated += hpage_nr_pages(page);
1650                         /*
1651                          * Identify referenced, file-backed active pages and
1652                          * give them one more trip around the active list. So
1653                          * that executable code get better chances to stay in
1654                          * memory under moderate memory pressure.  Anon pages
1655                          * are not likely to be evicted by use-once streaming
1656                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1657                          * so we ignore them here.
1658                          */
1659                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1660                                 list_add(&page->lru, &l_active);
1661                                 continue;
1662                         }
1663                 }
1664
1665                 ClearPageActive(page);  /* we are de-activating */
1666                 list_add(&page->lru, &l_inactive);
1667         }
1668
1669         /*
1670          * Move pages back to the lru list.
1671          */
1672         spin_lock_irq(&zone->lru_lock);
1673         /*
1674          * Count referenced pages from currently used mappings as rotated,
1675          * even though only some of them are actually re-activated.  This
1676          * helps balance scan pressure between file and anonymous pages in
1677          * get_scan_ratio.
1678          */
1679         reclaim_stat->recent_rotated[file] += nr_rotated;
1680
1681         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1682         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1683         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1684         spin_unlock_irq(&zone->lru_lock);
1685
1686         free_hot_cold_page_list(&l_hold, 1);
1687 }
1688
1689 #ifdef CONFIG_SWAP
1690 static int inactive_anon_is_low_global(struct zone *zone)
1691 {
1692         unsigned long active, inactive;
1693
1694         active = zone_page_state(zone, NR_ACTIVE_ANON);
1695         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1696
1697         if (inactive * zone->inactive_ratio < active)
1698                 return 1;
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1705  * @lruvec: LRU vector to check
1706  *
1707  * Returns true if the zone does not have enough inactive anon pages,
1708  * meaning some active anon pages need to be deactivated.
1709  */
1710 static int inactive_anon_is_low(struct lruvec *lruvec)
1711 {
1712         /*
1713          * If we don't have swap space, anonymous page deactivation
1714          * is pointless.
1715          */
1716         if (!total_swap_pages)
1717                 return 0;
1718
1719         if (!mem_cgroup_disabled())
1720                 return mem_cgroup_inactive_anon_is_low(lruvec);
1721
1722         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1723 }
1724 #else
1725 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1726 {
1727         return 0;
1728 }
1729 #endif
1730
1731 /**
1732  * inactive_file_is_low - check if file pages need to be deactivated
1733  * @lruvec: LRU vector to check
1734  *
1735  * When the system is doing streaming IO, memory pressure here
1736  * ensures that active file pages get deactivated, until more
1737  * than half of the file pages are on the inactive list.
1738  *
1739  * Once we get to that situation, protect the system's working
1740  * set from being evicted by disabling active file page aging.
1741  *
1742  * This uses a different ratio than the anonymous pages, because
1743  * the page cache uses a use-once replacement algorithm.
1744  */
1745 static int inactive_file_is_low(struct lruvec *lruvec)
1746 {
1747         unsigned long inactive;
1748         unsigned long active;
1749
1750         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1751         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1752
1753         return active > inactive;
1754 }
1755
1756 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1757 {
1758         if (is_file_lru(lru))
1759                 return inactive_file_is_low(lruvec);
1760         else
1761                 return inactive_anon_is_low(lruvec);
1762 }
1763
1764 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1765                                  struct lruvec *lruvec, struct scan_control *sc)
1766 {
1767         if (is_active_lru(lru)) {
1768                 if (inactive_list_is_low(lruvec, lru))
1769                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1770                 return 0;
1771         }
1772
1773         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1774 }
1775
1776 static int vmscan_swappiness(struct scan_control *sc)
1777 {
1778         if (global_reclaim(sc))
1779                 return vm_swappiness;
1780         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1781 }
1782
1783 enum scan_balance {
1784         SCAN_EQUAL,
1785         SCAN_FRACT,
1786         SCAN_ANON,
1787         SCAN_FILE,
1788 };
1789
1790 /*
1791  * Determine how aggressively the anon and file LRU lists should be
1792  * scanned.  The relative value of each set of LRU lists is determined
1793  * by looking at the fraction of the pages scanned we did rotate back
1794  * onto the active list instead of evict.
1795  *
1796  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1797  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1798  */
1799 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1800                            unsigned long *nr)
1801 {
1802         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1803         u64 fraction[2];
1804         u64 denominator = 0;    /* gcc */
1805         struct zone *zone = lruvec_zone(lruvec);
1806         unsigned long anon_prio, file_prio;
1807         enum scan_balance scan_balance;
1808         unsigned long anon, file, free;
1809         bool force_scan = false;
1810         unsigned long ap, fp;
1811         enum lru_list lru;
1812
1813         /*
1814          * If the zone or memcg is small, nr[l] can be 0.  This
1815          * results in no scanning on this priority and a potential
1816          * priority drop.  Global direct reclaim can go to the next
1817          * zone and tends to have no problems. Global kswapd is for
1818          * zone balancing and it needs to scan a minimum amount. When
1819          * reclaiming for a memcg, a priority drop can cause high
1820          * latencies, so it's better to scan a minimum amount there as
1821          * well.
1822          */
1823         if (current_is_kswapd() && !zone_reclaimable(zone))
1824                 force_scan = true;
1825         if (!global_reclaim(sc))
1826                 force_scan = true;
1827
1828         /* If we have no swap space, do not bother scanning anon pages. */
1829         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1830                 scan_balance = SCAN_FILE;
1831                 goto out;
1832         }
1833
1834         /*
1835          * Global reclaim will swap to prevent OOM even with no
1836          * swappiness, but memcg users want to use this knob to
1837          * disable swapping for individual groups completely when
1838          * using the memory controller's swap limit feature would be
1839          * too expensive.
1840          */
1841         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1842                 scan_balance = SCAN_FILE;
1843                 goto out;
1844         }
1845
1846         /*
1847          * Do not apply any pressure balancing cleverness when the
1848          * system is close to OOM, scan both anon and file equally
1849          * (unless the swappiness setting disagrees with swapping).
1850          */
1851         if (!sc->priority && vmscan_swappiness(sc)) {
1852                 scan_balance = SCAN_EQUAL;
1853                 goto out;
1854         }
1855
1856         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1857                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1858         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1859                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1860
1861         /*
1862          * If it's foreseeable that reclaiming the file cache won't be
1863          * enough to get the zone back into a desirable shape, we have
1864          * to swap.  Better start now and leave the - probably heavily
1865          * thrashing - remaining file pages alone.
1866          */
1867         if (global_reclaim(sc)) {
1868                 free = zone_page_state(zone, NR_FREE_PAGES);
1869                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1870                         scan_balance = SCAN_ANON;
1871                         goto out;
1872                 }
1873         }
1874
1875         /*
1876          * There is enough inactive page cache, do not reclaim
1877          * anything from the anonymous working set right now.
1878          */
1879         if (!inactive_file_is_low(lruvec)) {
1880                 scan_balance = SCAN_FILE;
1881                 goto out;
1882         }
1883
1884         scan_balance = SCAN_FRACT;
1885
1886         /*
1887          * With swappiness at 100, anonymous and file have the same priority.
1888          * This scanning priority is essentially the inverse of IO cost.
1889          */
1890         anon_prio = vmscan_swappiness(sc);
1891         file_prio = 200 - anon_prio;
1892
1893         /*
1894          * OK, so we have swap space and a fair amount of page cache
1895          * pages.  We use the recently rotated / recently scanned
1896          * ratios to determine how valuable each cache is.
1897          *
1898          * Because workloads change over time (and to avoid overflow)
1899          * we keep these statistics as a floating average, which ends
1900          * up weighing recent references more than old ones.
1901          *
1902          * anon in [0], file in [1]
1903          */
1904         spin_lock_irq(&zone->lru_lock);
1905         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1906                 reclaim_stat->recent_scanned[0] /= 2;
1907                 reclaim_stat->recent_rotated[0] /= 2;
1908         }
1909
1910         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1911                 reclaim_stat->recent_scanned[1] /= 2;
1912                 reclaim_stat->recent_rotated[1] /= 2;
1913         }
1914
1915         /*
1916          * The amount of pressure on anon vs file pages is inversely
1917          * proportional to the fraction of recently scanned pages on
1918          * each list that were recently referenced and in active use.
1919          */
1920         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1921         ap /= reclaim_stat->recent_rotated[0] + 1;
1922
1923         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1924         fp /= reclaim_stat->recent_rotated[1] + 1;
1925         spin_unlock_irq(&zone->lru_lock);
1926
1927         fraction[0] = ap;
1928         fraction[1] = fp;
1929         denominator = ap + fp + 1;
1930 out:
1931         for_each_evictable_lru(lru) {
1932                 int file = is_file_lru(lru);
1933                 unsigned long size;
1934                 unsigned long scan;
1935
1936                 size = get_lru_size(lruvec, lru);
1937                 scan = size >> sc->priority;
1938
1939                 if (!scan && force_scan)
1940                         scan = min(size, SWAP_CLUSTER_MAX);
1941
1942                 switch (scan_balance) {
1943                 case SCAN_EQUAL:
1944                         /* Scan lists relative to size */
1945                         break;
1946                 case SCAN_FRACT:
1947                         /*
1948                          * Scan types proportional to swappiness and
1949                          * their relative recent reclaim efficiency.
1950                          */
1951                         scan = div64_u64(scan * fraction[file], denominator);
1952                         break;
1953                 case SCAN_FILE:
1954                 case SCAN_ANON:
1955                         /* Scan one type exclusively */
1956                         if ((scan_balance == SCAN_FILE) != file)
1957                                 scan = 0;
1958                         break;
1959                 default:
1960                         /* Look ma, no brain */
1961                         BUG();
1962                 }
1963                 nr[lru] = scan;
1964         }
1965 }
1966
1967 /*
1968  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1969  */
1970 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1971 {
1972         unsigned long nr[NR_LRU_LISTS];
1973         unsigned long targets[NR_LRU_LISTS];
1974         unsigned long nr_to_scan;
1975         enum lru_list lru;
1976         unsigned long nr_reclaimed = 0;
1977         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1978         struct blk_plug plug;
1979         bool scan_adjusted = false;
1980
1981         get_scan_count(lruvec, sc, nr);
1982
1983         /* Record the original scan target for proportional adjustments later */
1984         memcpy(targets, nr, sizeof(nr));
1985
1986         blk_start_plug(&plug);
1987         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1988                                         nr[LRU_INACTIVE_FILE]) {
1989                 unsigned long nr_anon, nr_file, percentage;
1990                 unsigned long nr_scanned;
1991
1992                 for_each_evictable_lru(lru) {
1993                         if (nr[lru]) {
1994                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1995                                 nr[lru] -= nr_to_scan;
1996
1997                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1998                                                             lruvec, sc);
1999                         }
2000                 }
2001
2002                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2003                         continue;
2004
2005                 /*
2006                  * For global direct reclaim, reclaim only the number of pages
2007                  * requested. Less care is taken to scan proportionally as it
2008                  * is more important to minimise direct reclaim stall latency
2009                  * than it is to properly age the LRU lists.
2010                  */
2011                 if (global_reclaim(sc) && !current_is_kswapd())
2012                         break;
2013
2014                 /*
2015                  * For kswapd and memcg, reclaim at least the number of pages
2016                  * requested. Ensure that the anon and file LRUs shrink
2017                  * proportionally what was requested by get_scan_count(). We
2018                  * stop reclaiming one LRU and reduce the amount scanning
2019                  * proportional to the original scan target.
2020                  */
2021                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2022                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2023
2024                 if (nr_file > nr_anon) {
2025                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2026                                                 targets[LRU_ACTIVE_ANON] + 1;
2027                         lru = LRU_BASE;
2028                         percentage = nr_anon * 100 / scan_target;
2029                 } else {
2030                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2031                                                 targets[LRU_ACTIVE_FILE] + 1;
2032                         lru = LRU_FILE;
2033                         percentage = nr_file * 100 / scan_target;
2034                 }
2035
2036                 /* Stop scanning the smaller of the LRU */
2037                 nr[lru] = 0;
2038                 nr[lru + LRU_ACTIVE] = 0;
2039
2040                 /*
2041                  * Recalculate the other LRU scan count based on its original
2042                  * scan target and the percentage scanning already complete
2043                  */
2044                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2045                 nr_scanned = targets[lru] - nr[lru];
2046                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2047                 nr[lru] -= min(nr[lru], nr_scanned);
2048
2049                 lru += LRU_ACTIVE;
2050                 nr_scanned = targets[lru] - nr[lru];
2051                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2052                 nr[lru] -= min(nr[lru], nr_scanned);
2053
2054                 scan_adjusted = true;
2055         }
2056         blk_finish_plug(&plug);
2057         sc->nr_reclaimed += nr_reclaimed;
2058
2059         /*
2060          * Even if we did not try to evict anon pages at all, we want to
2061          * rebalance the anon lru active/inactive ratio.
2062          */
2063         if (inactive_anon_is_low(lruvec))
2064                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2065                                    sc, LRU_ACTIVE_ANON);
2066
2067         throttle_vm_writeout(sc->gfp_mask);
2068 }
2069
2070 /* Use reclaim/compaction for costly allocs or under memory pressure */
2071 static bool in_reclaim_compaction(struct scan_control *sc)
2072 {
2073         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2074                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2075                          sc->priority < DEF_PRIORITY - 2))
2076                 return true;
2077
2078         return false;
2079 }
2080
2081 /*
2082  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2083  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2084  * true if more pages should be reclaimed such that when the page allocator
2085  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2086  * It will give up earlier than that if there is difficulty reclaiming pages.
2087  */
2088 static inline bool should_continue_reclaim(struct zone *zone,
2089                                         unsigned long nr_reclaimed,
2090                                         unsigned long nr_scanned,
2091                                         struct scan_control *sc)
2092 {
2093         unsigned long pages_for_compaction;
2094         unsigned long inactive_lru_pages;
2095
2096         /* If not in reclaim/compaction mode, stop */
2097         if (!in_reclaim_compaction(sc))
2098                 return false;
2099
2100         /* Consider stopping depending on scan and reclaim activity */
2101         if (sc->gfp_mask & __GFP_REPEAT) {
2102                 /*
2103                  * For __GFP_REPEAT allocations, stop reclaiming if the
2104                  * full LRU list has been scanned and we are still failing
2105                  * to reclaim pages. This full LRU scan is potentially
2106                  * expensive but a __GFP_REPEAT caller really wants to succeed
2107                  */
2108                 if (!nr_reclaimed && !nr_scanned)
2109                         return false;
2110         } else {
2111                 /*
2112                  * For non-__GFP_REPEAT allocations which can presumably
2113                  * fail without consequence, stop if we failed to reclaim
2114                  * any pages from the last SWAP_CLUSTER_MAX number of
2115                  * pages that were scanned. This will return to the
2116                  * caller faster at the risk reclaim/compaction and
2117                  * the resulting allocation attempt fails
2118                  */
2119                 if (!nr_reclaimed)
2120                         return false;
2121         }
2122
2123         /*
2124          * If we have not reclaimed enough pages for compaction and the
2125          * inactive lists are large enough, continue reclaiming
2126          */
2127         pages_for_compaction = (2UL << sc->order);
2128         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2129         if (get_nr_swap_pages() > 0)
2130                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2131         if (sc->nr_reclaimed < pages_for_compaction &&
2132                         inactive_lru_pages > pages_for_compaction)
2133                 return true;
2134
2135         /* If compaction would go ahead or the allocation would succeed, stop */
2136         switch (compaction_suitable(zone, sc->order)) {
2137         case COMPACT_PARTIAL:
2138         case COMPACT_CONTINUE:
2139                 return false;
2140         default:
2141                 return true;
2142         }
2143 }
2144
2145 static int
2146 __shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
2147 {
2148         unsigned long nr_reclaimed, nr_scanned;
2149         int groups_scanned = 0;
2150
2151         do {
2152                 struct mem_cgroup *root = sc->target_mem_cgroup;
2153                 struct mem_cgroup_reclaim_cookie reclaim = {
2154                         .zone = zone,
2155                         .priority = sc->priority,
2156                 };
2157                 struct mem_cgroup *memcg = NULL;
2158                 mem_cgroup_iter_filter filter = (soft_reclaim) ?
2159                         mem_cgroup_soft_reclaim_eligible : NULL;
2160
2161                 nr_reclaimed = sc->nr_reclaimed;
2162                 nr_scanned = sc->nr_scanned;
2163
2164                 while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
2165                         struct lruvec *lruvec;
2166
2167                         groups_scanned++;
2168                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2169
2170                         shrink_lruvec(lruvec, sc);
2171
2172                         /*
2173                          * Direct reclaim and kswapd have to scan all memory
2174                          * cgroups to fulfill the overall scan target for the
2175                          * zone.
2176                          *
2177                          * Limit reclaim, on the other hand, only cares about
2178                          * nr_to_reclaim pages to be reclaimed and it will
2179                          * retry with decreasing priority if one round over the
2180                          * whole hierarchy is not sufficient.
2181                          */
2182                         if (!global_reclaim(sc) &&
2183                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2184                                 mem_cgroup_iter_break(root, memcg);
2185                                 break;
2186                         }
2187                 }
2188
2189                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2190                            sc->nr_scanned - nr_scanned,
2191                            sc->nr_reclaimed - nr_reclaimed);
2192
2193         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2194                                          sc->nr_scanned - nr_scanned, sc));
2195
2196         return groups_scanned;
2197 }
2198
2199
2200 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2201 {
2202         bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2203         unsigned long nr_scanned = sc->nr_scanned;
2204         int scanned_groups;
2205
2206         scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim);
2207         /*
2208          * memcg iterator might race with other reclaimer or start from
2209          * a incomplete tree walk so the tree walk in __shrink_zone
2210          * might have missed groups that are above the soft limit. Try
2211          * another loop to catch up with others. Do it just once to
2212          * prevent from reclaim latencies when other reclaimers always
2213          * preempt this one.
2214          */
2215         if (do_soft_reclaim && !scanned_groups)
2216                 __shrink_zone(zone, sc, do_soft_reclaim);
2217
2218         /*
2219          * No group is over the soft limit or those that are do not have
2220          * pages in the zone we are reclaiming so we have to reclaim everybody
2221          */
2222         if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2223                 __shrink_zone(zone, sc, false);
2224                 return;
2225         }
2226 }
2227
2228 /* Returns true if compaction should go ahead for a high-order request */
2229 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2230 {
2231         unsigned long balance_gap, watermark;
2232         bool watermark_ok;
2233
2234         /* Do not consider compaction for orders reclaim is meant to satisfy */
2235         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2236                 return false;
2237
2238         /*
2239          * Compaction takes time to run and there are potentially other
2240          * callers using the pages just freed. Continue reclaiming until
2241          * there is a buffer of free pages available to give compaction
2242          * a reasonable chance of completing and allocating the page
2243          */
2244         balance_gap = min(low_wmark_pages(zone),
2245                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2246                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2247         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2248         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2249
2250         /*
2251          * If compaction is deferred, reclaim up to a point where
2252          * compaction will have a chance of success when re-enabled
2253          */
2254         if (compaction_deferred(zone, sc->order))
2255                 return watermark_ok;
2256
2257         /* If compaction is not ready to start, keep reclaiming */
2258         if (!compaction_suitable(zone, sc->order))
2259                 return false;
2260
2261         return watermark_ok;
2262 }
2263
2264 /*
2265  * This is the direct reclaim path, for page-allocating processes.  We only
2266  * try to reclaim pages from zones which will satisfy the caller's allocation
2267  * request.
2268  *
2269  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2270  * Because:
2271  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2272  *    allocation or
2273  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2274  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2275  *    zone defense algorithm.
2276  *
2277  * If a zone is deemed to be full of pinned pages then just give it a light
2278  * scan then give up on it.
2279  *
2280  * This function returns true if a zone is being reclaimed for a costly
2281  * high-order allocation and compaction is ready to begin. This indicates to
2282  * the caller that it should consider retrying the allocation instead of
2283  * further reclaim.
2284  */
2285 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2286 {
2287         struct zoneref *z;
2288         struct zone *zone;
2289         bool aborted_reclaim = false;
2290
2291         /*
2292          * If the number of buffer_heads in the machine exceeds the maximum
2293          * allowed level, force direct reclaim to scan the highmem zone as
2294          * highmem pages could be pinning lowmem pages storing buffer_heads
2295          */
2296         if (buffer_heads_over_limit)
2297                 sc->gfp_mask |= __GFP_HIGHMEM;
2298
2299         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2300                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2301                 if (!populated_zone(zone))
2302                         continue;
2303                 /*
2304                  * Take care memory controller reclaiming has small influence
2305                  * to global LRU.
2306                  */
2307                 if (global_reclaim(sc)) {
2308                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2309                                 continue;
2310                         if (sc->priority != DEF_PRIORITY &&
2311                             !zone_reclaimable(zone))
2312                                 continue;       /* Let kswapd poll it */
2313                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2314                                 /*
2315                                  * If we already have plenty of memory free for
2316                                  * compaction in this zone, don't free any more.
2317                                  * Even though compaction is invoked for any
2318                                  * non-zero order, only frequent costly order
2319                                  * reclamation is disruptive enough to become a
2320                                  * noticeable problem, like transparent huge
2321                                  * page allocations.
2322                                  */
2323                                 if (compaction_ready(zone, sc)) {
2324                                         aborted_reclaim = true;
2325                                         continue;
2326                                 }
2327                         }
2328                         /* need some check for avoid more shrink_zone() */
2329                 }
2330
2331                 shrink_zone(zone, sc);
2332         }
2333
2334         return aborted_reclaim;
2335 }
2336
2337 /* All zones in zonelist are unreclaimable? */
2338 static bool all_unreclaimable(struct zonelist *zonelist,
2339                 struct scan_control *sc)
2340 {
2341         struct zoneref *z;
2342         struct zone *zone;
2343
2344         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2345                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2346                 if (!populated_zone(zone))
2347                         continue;
2348                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2349                         continue;
2350                 if (zone_reclaimable(zone))
2351                         return false;
2352         }
2353
2354         return true;
2355 }
2356
2357 /*
2358  * This is the main entry point to direct page reclaim.
2359  *
2360  * If a full scan of the inactive list fails to free enough memory then we
2361  * are "out of memory" and something needs to be killed.
2362  *
2363  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2364  * high - the zone may be full of dirty or under-writeback pages, which this
2365  * caller can't do much about.  We kick the writeback threads and take explicit
2366  * naps in the hope that some of these pages can be written.  But if the
2367  * allocating task holds filesystem locks which prevent writeout this might not
2368  * work, and the allocation attempt will fail.
2369  *
2370  * returns:     0, if no pages reclaimed
2371  *              else, the number of pages reclaimed
2372  */
2373 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2374                                         struct scan_control *sc,
2375                                         struct shrink_control *shrink)
2376 {
2377         unsigned long total_scanned = 0;
2378         struct reclaim_state *reclaim_state = current->reclaim_state;
2379         struct zoneref *z;
2380         struct zone *zone;
2381         unsigned long writeback_threshold;
2382         bool aborted_reclaim;
2383
2384         delayacct_freepages_start();
2385
2386         if (global_reclaim(sc))
2387                 count_vm_event(ALLOCSTALL);
2388
2389         do {
2390                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2391                                 sc->priority);
2392                 sc->nr_scanned = 0;
2393                 aborted_reclaim = shrink_zones(zonelist, sc);
2394
2395                 /*
2396                  * Don't shrink slabs when reclaiming memory from over limit
2397                  * cgroups but do shrink slab at least once when aborting
2398                  * reclaim for compaction to avoid unevenly scanning file/anon
2399                  * LRU pages over slab pages.
2400                  */
2401                 if (global_reclaim(sc)) {
2402                         unsigned long lru_pages = 0;
2403                         for_each_zone_zonelist(zone, z, zonelist,
2404                                         gfp_zone(sc->gfp_mask)) {
2405                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2406                                         continue;
2407
2408                                 lru_pages += zone_reclaimable_pages(zone);
2409                         }
2410
2411                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2412                         if (reclaim_state) {
2413                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2414                                 reclaim_state->reclaimed_slab = 0;
2415                         }
2416                 }
2417                 total_scanned += sc->nr_scanned;
2418                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2419                         goto out;
2420
2421                 /*
2422                  * If we're getting trouble reclaiming, start doing
2423                  * writepage even in laptop mode.
2424                  */
2425                 if (sc->priority < DEF_PRIORITY - 2)
2426                         sc->may_writepage = 1;
2427
2428                 /*
2429                  * Try to write back as many pages as we just scanned.  This
2430                  * tends to cause slow streaming writers to write data to the
2431                  * disk smoothly, at the dirtying rate, which is nice.   But
2432                  * that's undesirable in laptop mode, where we *want* lumpy
2433                  * writeout.  So in laptop mode, write out the whole world.
2434                  */
2435                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2436                 if (total_scanned > writeback_threshold) {
2437                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2438                                                 WB_REASON_TRY_TO_FREE_PAGES);
2439                         sc->may_writepage = 1;
2440                 }
2441         } while (--sc->priority >= 0 && !aborted_reclaim);
2442
2443 out:
2444         delayacct_freepages_end();
2445
2446         if (sc->nr_reclaimed)
2447                 return sc->nr_reclaimed;
2448
2449         /*
2450          * As hibernation is going on, kswapd is freezed so that it can't mark
2451          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2452          * check.
2453          */
2454         if (oom_killer_disabled)
2455                 return 0;
2456
2457         /* Aborted reclaim to try compaction? don't OOM, then */
2458         if (aborted_reclaim)
2459                 return 1;
2460
2461         /* top priority shrink_zones still had more to do? don't OOM, then */
2462         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2463                 return 1;
2464
2465         return 0;
2466 }
2467
2468 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2469 {
2470         struct zone *zone;
2471         unsigned long pfmemalloc_reserve = 0;
2472         unsigned long free_pages = 0;
2473         int i;
2474         bool wmark_ok;
2475
2476         for (i = 0; i <= ZONE_NORMAL; i++) {
2477                 zone = &pgdat->node_zones[i];
2478                 pfmemalloc_reserve += min_wmark_pages(zone);
2479                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2480         }
2481
2482         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2483
2484         /* kswapd must be awake if processes are being throttled */
2485         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2486                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2487                                                 (enum zone_type)ZONE_NORMAL);
2488                 wake_up_interruptible(&pgdat->kswapd_wait);
2489         }
2490
2491         return wmark_ok;
2492 }
2493
2494 /*
2495  * Throttle direct reclaimers if backing storage is backed by the network
2496  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2497  * depleted. kswapd will continue to make progress and wake the processes
2498  * when the low watermark is reached.
2499  *
2500  * Returns true if a fatal signal was delivered during throttling. If this
2501  * happens, the page allocator should not consider triggering the OOM killer.
2502  */
2503 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2504                                         nodemask_t *nodemask)
2505 {
2506         struct zone *zone;
2507         int high_zoneidx = gfp_zone(gfp_mask);
2508         pg_data_t *pgdat;
2509
2510         /*
2511          * Kernel threads should not be throttled as they may be indirectly
2512          * responsible for cleaning pages necessary for reclaim to make forward
2513          * progress. kjournald for example may enter direct reclaim while
2514          * committing a transaction where throttling it could forcing other
2515          * processes to block on log_wait_commit().
2516          */
2517         if (current->flags & PF_KTHREAD)
2518                 goto out;
2519
2520         /*
2521          * If a fatal signal is pending, this process should not throttle.
2522          * It should return quickly so it can exit and free its memory
2523          */
2524         if (fatal_signal_pending(current))
2525                 goto out;
2526
2527         /* Check if the pfmemalloc reserves are ok */
2528         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2529         pgdat = zone->zone_pgdat;
2530         if (pfmemalloc_watermark_ok(pgdat))
2531                 goto out;
2532
2533         /* Account for the throttling */
2534         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2535
2536         /*
2537          * If the caller cannot enter the filesystem, it's possible that it
2538          * is due to the caller holding an FS lock or performing a journal
2539          * transaction in the case of a filesystem like ext[3|4]. In this case,
2540          * it is not safe to block on pfmemalloc_wait as kswapd could be
2541          * blocked waiting on the same lock. Instead, throttle for up to a
2542          * second before continuing.
2543          */
2544         if (!(gfp_mask & __GFP_FS)) {
2545                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2546                         pfmemalloc_watermark_ok(pgdat), HZ);
2547
2548                 goto check_pending;
2549         }
2550
2551         /* Throttle until kswapd wakes the process */
2552         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2553                 pfmemalloc_watermark_ok(pgdat));
2554
2555 check_pending:
2556         if (fatal_signal_pending(current))
2557                 return true;
2558
2559 out:
2560         return false;
2561 }
2562
2563 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2564                                 gfp_t gfp_mask, nodemask_t *nodemask)
2565 {
2566         unsigned long nr_reclaimed;
2567         struct scan_control sc = {
2568                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2569                 .may_writepage = !laptop_mode,
2570                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2571                 .may_unmap = 1,
2572                 .may_swap = 1,
2573                 .order = order,
2574                 .priority = DEF_PRIORITY,
2575                 .target_mem_cgroup = NULL,
2576                 .nodemask = nodemask,
2577         };
2578         struct shrink_control shrink = {
2579                 .gfp_mask = sc.gfp_mask,
2580         };
2581
2582         /*
2583          * Do not enter reclaim if fatal signal was delivered while throttled.
2584          * 1 is returned so that the page allocator does not OOM kill at this
2585          * point.
2586          */
2587         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2588                 return 1;
2589
2590         trace_mm_vmscan_direct_reclaim_begin(order,
2591                                 sc.may_writepage,
2592                                 gfp_mask);
2593
2594         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2595
2596         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2597
2598         return nr_reclaimed;
2599 }
2600
2601 #ifdef CONFIG_MEMCG
2602
2603 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2604                                                 gfp_t gfp_mask, bool noswap,
2605                                                 struct zone *zone,
2606                                                 unsigned long *nr_scanned)
2607 {
2608         struct scan_control sc = {
2609                 .nr_scanned = 0,
2610                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2611                 .may_writepage = !laptop_mode,
2612                 .may_unmap = 1,
2613                 .may_swap = !noswap,
2614                 .order = 0,
2615                 .priority = 0,
2616                 .target_mem_cgroup = memcg,
2617         };
2618         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2619
2620         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2621                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2622
2623         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2624                                                       sc.may_writepage,
2625                                                       sc.gfp_mask);
2626
2627         /*
2628          * NOTE: Although we can get the priority field, using it
2629          * here is not a good idea, since it limits the pages we can scan.
2630          * if we don't reclaim here, the shrink_zone from balance_pgdat
2631          * will pick up pages from other mem cgroup's as well. We hack
2632          * the priority and make it zero.
2633          */
2634         shrink_lruvec(lruvec, &sc);
2635
2636         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2637
2638         *nr_scanned = sc.nr_scanned;
2639         return sc.nr_reclaimed;
2640 }
2641
2642 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2643                                            gfp_t gfp_mask,
2644                                            bool noswap)
2645 {
2646         struct zonelist *zonelist;
2647         unsigned long nr_reclaimed;
2648         int nid;
2649         struct scan_control sc = {
2650                 .may_writepage = !laptop_mode,
2651                 .may_unmap = 1,
2652                 .may_swap = !noswap,
2653                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2654                 .order = 0,
2655                 .priority = DEF_PRIORITY,
2656                 .target_mem_cgroup = memcg,
2657                 .nodemask = NULL, /* we don't care the placement */
2658                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2659                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2660         };
2661         struct shrink_control shrink = {
2662                 .gfp_mask = sc.gfp_mask,
2663         };
2664
2665         /*
2666          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2667          * take care of from where we get pages. So the node where we start the
2668          * scan does not need to be the current node.
2669          */
2670         nid = mem_cgroup_select_victim_node(memcg);
2671
2672         zonelist = NODE_DATA(nid)->node_zonelists;
2673
2674         trace_mm_vmscan_memcg_reclaim_begin(0,
2675                                             sc.may_writepage,
2676                                             sc.gfp_mask);
2677
2678         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2679
2680         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2681
2682         return nr_reclaimed;
2683 }
2684 #endif
2685
2686 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2687 {
2688         struct mem_cgroup *memcg;
2689
2690         if (!total_swap_pages)
2691                 return;
2692
2693         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2694         do {
2695                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2696
2697                 if (inactive_anon_is_low(lruvec))
2698                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2699                                            sc, LRU_ACTIVE_ANON);
2700
2701                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2702         } while (memcg);
2703 }
2704
2705 static bool zone_balanced(struct zone *zone, int order,
2706                           unsigned long balance_gap, int classzone_idx)
2707 {
2708         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2709                                     balance_gap, classzone_idx, 0))
2710                 return false;
2711
2712         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2713             !compaction_suitable(zone, order))
2714                 return false;
2715
2716         return true;
2717 }
2718
2719 /*
2720  * pgdat_balanced() is used when checking if a node is balanced.
2721  *
2722  * For order-0, all zones must be balanced!
2723  *
2724  * For high-order allocations only zones that meet watermarks and are in a
2725  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2726  * total of balanced pages must be at least 25% of the zones allowed by
2727  * classzone_idx for the node to be considered balanced. Forcing all zones to
2728  * be balanced for high orders can cause excessive reclaim when there are
2729  * imbalanced zones.
2730  * The choice of 25% is due to
2731  *   o a 16M DMA zone that is balanced will not balance a zone on any
2732  *     reasonable sized machine
2733  *   o On all other machines, the top zone must be at least a reasonable
2734  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2735  *     would need to be at least 256M for it to be balance a whole node.
2736  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2737  *     to balance a node on its own. These seemed like reasonable ratios.
2738  */
2739 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2740 {
2741         unsigned long managed_pages = 0;
2742         unsigned long balanced_pages = 0;
2743         int i;
2744
2745         /* Check the watermark levels */
2746         for (i = 0; i <= classzone_idx; i++) {
2747                 struct zone *zone = pgdat->node_zones + i;
2748
2749                 if (!populated_zone(zone))
2750                         continue;
2751
2752                 managed_pages += zone->managed_pages;
2753
2754                 /*
2755                  * A special case here:
2756                  *
2757                  * balance_pgdat() skips over all_unreclaimable after
2758                  * DEF_PRIORITY. Effectively, it considers them balanced so
2759                  * they must be considered balanced here as well!
2760                  */
2761                 if (!zone_reclaimable(zone)) {
2762                         balanced_pages += zone->managed_pages;
2763                         continue;
2764                 }
2765
2766                 if (zone_balanced(zone, order, 0, i))
2767                         balanced_pages += zone->managed_pages;
2768                 else if (!order)
2769                         return false;
2770         }
2771
2772         if (order)
2773                 return balanced_pages >= (managed_pages >> 2);
2774         else
2775                 return true;
2776 }
2777
2778 /*
2779  * Prepare kswapd for sleeping. This verifies that there are no processes
2780  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2781  *
2782  * Returns true if kswapd is ready to sleep
2783  */
2784 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2785                                         int classzone_idx)
2786 {
2787         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2788         if (remaining)
2789                 return false;
2790
2791         /*
2792          * There is a potential race between when kswapd checks its watermarks
2793          * and a process gets throttled. There is also a potential race if
2794          * processes get throttled, kswapd wakes, a large process exits therby
2795          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2796          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2797          * so wake them now if necessary. If necessary, processes will wake
2798          * kswapd and get throttled again
2799          */
2800         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2801                 wake_up(&pgdat->pfmemalloc_wait);
2802                 return false;
2803         }
2804
2805         return pgdat_balanced(pgdat, order, classzone_idx);
2806 }
2807
2808 /*
2809  * kswapd shrinks the zone by the number of pages required to reach
2810  * the high watermark.
2811  *
2812  * Returns true if kswapd scanned at least the requested number of pages to
2813  * reclaim or if the lack of progress was due to pages under writeback.
2814  * This is used to determine if the scanning priority needs to be raised.
2815  */
2816 static bool kswapd_shrink_zone(struct zone *zone,
2817                                int classzone_idx,
2818                                struct scan_control *sc,
2819                                unsigned long lru_pages,
2820                                unsigned long *nr_attempted)
2821 {
2822         int testorder = sc->order;
2823         unsigned long balance_gap;
2824         struct reclaim_state *reclaim_state = current->reclaim_state;
2825         struct shrink_control shrink = {
2826                 .gfp_mask = sc->gfp_mask,
2827         };
2828         bool lowmem_pressure;
2829
2830         /* Reclaim above the high watermark. */
2831         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2832
2833         /*
2834          * Kswapd reclaims only single pages with compaction enabled. Trying
2835          * too hard to reclaim until contiguous free pages have become
2836          * available can hurt performance by evicting too much useful data
2837          * from memory. Do not reclaim more than needed for compaction.
2838          */
2839         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2840                         compaction_suitable(zone, sc->order) !=
2841                                 COMPACT_SKIPPED)
2842                 testorder = 0;
2843
2844         /*
2845          * We put equal pressure on every zone, unless one zone has way too
2846          * many pages free already. The "too many pages" is defined as the
2847          * high wmark plus a "gap" where the gap is either the low
2848          * watermark or 1% of the zone, whichever is smaller.
2849          */
2850         balance_gap = min(low_wmark_pages(zone),
2851                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2852                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2853
2854         /*
2855          * If there is no low memory pressure or the zone is balanced then no
2856          * reclaim is necessary
2857          */
2858         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2859         if (!lowmem_pressure && zone_balanced(zone, testorder,
2860                                                 balance_gap, classzone_idx))
2861                 return true;
2862
2863         shrink_zone(zone, sc);
2864
2865         reclaim_state->reclaimed_slab = 0;
2866         shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2867         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2868
2869         /* Account for the number of pages attempted to reclaim */
2870         *nr_attempted += sc->nr_to_reclaim;
2871
2872         zone_clear_flag(zone, ZONE_WRITEBACK);
2873
2874         /*
2875          * If a zone reaches its high watermark, consider it to be no longer
2876          * congested. It's possible there are dirty pages backed by congested
2877          * BDIs but as pressure is relieved, speculatively avoid congestion
2878          * waits.
2879          */
2880         if (zone_reclaimable(zone) &&
2881             zone_balanced(zone, testorder, 0, classzone_idx)) {
2882                 zone_clear_flag(zone, ZONE_CONGESTED);
2883                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2884         }
2885
2886         return sc->nr_scanned >= sc->nr_to_reclaim;
2887 }
2888
2889 /*
2890  * For kswapd, balance_pgdat() will work across all this node's zones until
2891  * they are all at high_wmark_pages(zone).
2892  *
2893  * Returns the final order kswapd was reclaiming at
2894  *
2895  * There is special handling here for zones which are full of pinned pages.
2896  * This can happen if the pages are all mlocked, or if they are all used by
2897  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2898  * What we do is to detect the case where all pages in the zone have been
2899  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2900  * dead and from now on, only perform a short scan.  Basically we're polling
2901  * the zone for when the problem goes away.
2902  *
2903  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2904  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2905  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2906  * lower zones regardless of the number of free pages in the lower zones. This
2907  * interoperates with the page allocator fallback scheme to ensure that aging
2908  * of pages is balanced across the zones.
2909  */
2910 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2911                                                         int *classzone_idx)
2912 {
2913         int i;
2914         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2915         struct scan_control sc = {
2916                 .gfp_mask = GFP_KERNEL,
2917                 .priority = DEF_PRIORITY,
2918                 .may_unmap = 1,
2919                 .may_swap = 1,
2920                 .may_writepage = !laptop_mode,
2921                 .order = order,
2922                 .target_mem_cgroup = NULL,
2923         };
2924         count_vm_event(PAGEOUTRUN);
2925
2926         do {
2927                 unsigned long lru_pages = 0;
2928                 unsigned long nr_attempted = 0;
2929                 bool raise_priority = true;
2930                 bool pgdat_needs_compaction = (order > 0);
2931
2932                 sc.nr_reclaimed = 0;
2933
2934                 /*
2935                  * Scan in the highmem->dma direction for the highest
2936                  * zone which needs scanning
2937                  */
2938                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2939                         struct zone *zone = pgdat->node_zones + i;
2940
2941                         if (!populated_zone(zone))
2942                                 continue;
2943
2944                         if (sc.priority != DEF_PRIORITY &&
2945                             !zone_reclaimable(zone))
2946                                 continue;
2947
2948                         /*
2949                          * Do some background aging of the anon list, to give
2950                          * pages a chance to be referenced before reclaiming.
2951                          */
2952                         age_active_anon(zone, &sc);
2953
2954                         /*
2955                          * If the number of buffer_heads in the machine
2956                          * exceeds the maximum allowed level and this node
2957                          * has a highmem zone, force kswapd to reclaim from
2958                          * it to relieve lowmem pressure.
2959                          */
2960                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2961                                 end_zone = i;
2962                                 break;
2963                         }
2964
2965                         if (!zone_balanced(zone, order, 0, 0)) {
2966                                 end_zone = i;
2967                                 break;
2968                         } else {
2969                                 /*
2970                                  * If balanced, clear the dirty and congested
2971                                  * flags
2972                                  */
2973                                 zone_clear_flag(zone, ZONE_CONGESTED);
2974                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2975                         }
2976                 }
2977
2978                 if (i < 0)
2979                         goto out;
2980
2981                 for (i = 0; i <= end_zone; i++) {
2982                         struct zone *zone = pgdat->node_zones + i;
2983
2984                         if (!populated_zone(zone))
2985                                 continue;
2986
2987                         lru_pages += zone_reclaimable_pages(zone);
2988
2989                         /*
2990                          * If any zone is currently balanced then kswapd will
2991                          * not call compaction as it is expected that the
2992                          * necessary pages are already available.
2993                          */
2994                         if (pgdat_needs_compaction &&
2995                                         zone_watermark_ok(zone, order,
2996                                                 low_wmark_pages(zone),
2997                                                 *classzone_idx, 0))
2998                                 pgdat_needs_compaction = false;
2999                 }
3000
3001                 /*
3002                  * If we're getting trouble reclaiming, start doing writepage
3003                  * even in laptop mode.
3004                  */
3005                 if (sc.priority < DEF_PRIORITY - 2)
3006                         sc.may_writepage = 1;
3007
3008                 /*
3009                  * Now scan the zone in the dma->highmem direction, stopping
3010                  * at the last zone which needs scanning.
3011                  *
3012                  * We do this because the page allocator works in the opposite
3013                  * direction.  This prevents the page allocator from allocating
3014                  * pages behind kswapd's direction of progress, which would
3015                  * cause too much scanning of the lower zones.
3016                  */
3017                 for (i = 0; i <= end_zone; i++) {
3018                         struct zone *zone = pgdat->node_zones + i;
3019
3020                         if (!populated_zone(zone))
3021                                 continue;
3022
3023                         if (sc.priority != DEF_PRIORITY &&
3024                             !zone_reclaimable(zone))
3025                                 continue;
3026
3027                         sc.nr_scanned = 0;
3028
3029                         /*
3030                          * There should be no need to raise the scanning
3031                          * priority if enough pages are already being scanned
3032                          * that that high watermark would be met at 100%
3033                          * efficiency.
3034                          */
3035                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3036                                         lru_pages, &nr_attempted))
3037                                 raise_priority = false;
3038                 }
3039
3040                 /*
3041                  * If the low watermark is met there is no need for processes
3042                  * to be throttled on pfmemalloc_wait as they should not be
3043                  * able to safely make forward progress. Wake them
3044                  */
3045                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3046                                 pfmemalloc_watermark_ok(pgdat))
3047                         wake_up(&pgdat->pfmemalloc_wait);
3048
3049                 /*
3050                  * Fragmentation may mean that the system cannot be rebalanced
3051                  * for high-order allocations in all zones. If twice the
3052                  * allocation size has been reclaimed and the zones are still
3053                  * not balanced then recheck the watermarks at order-0 to
3054                  * prevent kswapd reclaiming excessively. Assume that a
3055                  * process requested a high-order can direct reclaim/compact.
3056                  */
3057                 if (order && sc.nr_reclaimed >= 2UL << order)
3058                         order = sc.order = 0;
3059
3060                 /* Check if kswapd should be suspending */
3061                 if (try_to_freeze() || kthread_should_stop())
3062                         break;
3063
3064                 /*
3065                  * Compact if necessary and kswapd is reclaiming at least the
3066                  * high watermark number of pages as requsted
3067                  */
3068                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3069                         compact_pgdat(pgdat, order);
3070
3071                 /*
3072                  * Raise priority if scanning rate is too low or there was no
3073                  * progress in reclaiming pages
3074                  */
3075                 if (raise_priority || !sc.nr_reclaimed)
3076                         sc.priority--;
3077         } while (sc.priority >= 1 &&
3078                  !pgdat_balanced(pgdat, order, *classzone_idx));
3079
3080 out:
3081         /*
3082          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3083          * makes a decision on the order we were last reclaiming at. However,
3084          * if another caller entered the allocator slow path while kswapd
3085          * was awake, order will remain at the higher level
3086          */
3087         *classzone_idx = end_zone;
3088         return order;
3089 }
3090
3091 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3092 {
3093         long remaining = 0;
3094         DEFINE_WAIT(wait);
3095
3096         if (freezing(current) || kthread_should_stop())
3097                 return;
3098
3099         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3100
3101         /* Try to sleep for a short interval */
3102         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3103                 remaining = schedule_timeout(HZ/10);
3104                 finish_wait(&pgdat->kswapd_wait, &wait);
3105                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3106         }
3107
3108         /*
3109          * After a short sleep, check if it was a premature sleep. If not, then
3110          * go fully to sleep until explicitly woken up.
3111          */
3112         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3113                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3114
3115                 /*
3116                  * vmstat counters are not perfectly accurate and the estimated
3117                  * value for counters such as NR_FREE_PAGES can deviate from the
3118                  * true value by nr_online_cpus * threshold. To avoid the zone
3119                  * watermarks being breached while under pressure, we reduce the
3120                  * per-cpu vmstat threshold while kswapd is awake and restore
3121                  * them before going back to sleep.
3122                  */
3123                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3124
3125                 /*
3126                  * Compaction records what page blocks it recently failed to
3127                  * isolate pages from and skips them in the future scanning.
3128                  * When kswapd is going to sleep, it is reasonable to assume
3129                  * that pages and compaction may succeed so reset the cache.
3130                  */
3131                 reset_isolation_suitable(pgdat);
3132
3133                 if (!kthread_should_stop())
3134                         schedule();
3135
3136                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3137         } else {
3138                 if (remaining)
3139                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3140                 else
3141                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3142         }
3143         finish_wait(&pgdat->kswapd_wait, &wait);
3144 }
3145
3146 /*
3147  * The background pageout daemon, started as a kernel thread
3148  * from the init process.
3149  *
3150  * This basically trickles out pages so that we have _some_
3151  * free memory available even if there is no other activity
3152  * that frees anything up. This is needed for things like routing
3153  * etc, where we otherwise might have all activity going on in
3154  * asynchronous contexts that cannot page things out.
3155  *
3156  * If there are applications that are active memory-allocators
3157  * (most normal use), this basically shouldn't matter.
3158  */
3159 static int kswapd(void *p)
3160 {
3161         unsigned long order, new_order;
3162         unsigned balanced_order;
3163         int classzone_idx, new_classzone_idx;
3164         int balanced_classzone_idx;
3165         pg_data_t *pgdat = (pg_data_t*)p;
3166         struct task_struct *tsk = current;
3167
3168         struct reclaim_state reclaim_state = {
3169                 .reclaimed_slab = 0,
3170         };
3171         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3172
3173         lockdep_set_current_reclaim_state(GFP_KERNEL);
3174
3175         if (!cpumask_empty(cpumask))
3176                 set_cpus_allowed_ptr(tsk, cpumask);
3177         current->reclaim_state = &reclaim_state;
3178
3179         /*
3180          * Tell the memory management that we're a "memory allocator",
3181          * and that if we need more memory we should get access to it
3182          * regardless (see "__alloc_pages()"). "kswapd" should
3183          * never get caught in the normal page freeing logic.
3184          *
3185          * (Kswapd normally doesn't need memory anyway, but sometimes
3186          * you need a small amount of memory in order to be able to
3187          * page out something else, and this flag essentially protects
3188          * us from recursively trying to free more memory as we're
3189          * trying to free the first piece of memory in the first place).
3190          */
3191         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3192         set_freezable();
3193
3194         order = new_order = 0;
3195         balanced_order = 0;
3196         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3197         balanced_classzone_idx = classzone_idx;
3198         for ( ; ; ) {
3199                 bool ret;
3200
3201                 /*
3202                  * If the last balance_pgdat was unsuccessful it's unlikely a
3203                  * new request of a similar or harder type will succeed soon
3204                  * so consider going to sleep on the basis we reclaimed at
3205                  */
3206                 if (balanced_classzone_idx >= new_classzone_idx &&
3207                                         balanced_order == new_order) {
3208                         new_order = pgdat->kswapd_max_order;
3209                         new_classzone_idx = pgdat->classzone_idx;
3210                         pgdat->kswapd_max_order =  0;
3211                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3212                 }
3213
3214                 if (order < new_order || classzone_idx > new_classzone_idx) {
3215                         /*
3216                          * Don't sleep if someone wants a larger 'order'
3217                          * allocation or has tigher zone constraints
3218                          */
3219                         order = new_order;
3220                         classzone_idx = new_classzone_idx;
3221                 } else {
3222                         kswapd_try_to_sleep(pgdat, balanced_order,
3223                                                 balanced_classzone_idx);
3224                         order = pgdat->kswapd_max_order;
3225                         classzone_idx = pgdat->classzone_idx;
3226                         new_order = order;
3227                         new_classzone_idx = classzone_idx;
3228                         pgdat->kswapd_max_order = 0;
3229                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3230                 }
3231
3232                 ret = try_to_freeze();
3233                 if (kthread_should_stop())
3234                         break;
3235
3236                 /*
3237                  * We can speed up thawing tasks if we don't call balance_pgdat
3238                  * after returning from the refrigerator
3239                  */
3240                 if (!ret) {
3241                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3242                         balanced_classzone_idx = classzone_idx;
3243                         balanced_order = balance_pgdat(pgdat, order,
3244                                                 &balanced_classzone_idx);
3245                 }
3246         }
3247
3248         current->reclaim_state = NULL;
3249         return 0;
3250 }
3251
3252 /*
3253  * A zone is low on free memory, so wake its kswapd task to service it.
3254  */
3255 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3256 {
3257         pg_data_t *pgdat;
3258
3259         if (!populated_zone(zone))
3260                 return;
3261
3262         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3263                 return;
3264         pgdat = zone->zone_pgdat;
3265         if (pgdat->kswapd_max_order < order) {
3266                 pgdat->kswapd_max_order = order;
3267                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3268         }
3269         if (!waitqueue_active(&pgdat->kswapd_wait))
3270                 return;
3271         if (zone_balanced(zone, order, 0, 0))
3272                 return;
3273
3274         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3275         wake_up_interruptible(&pgdat->kswapd_wait);
3276 }
3277
3278 /*
3279  * The reclaimable count would be mostly accurate.
3280  * The less reclaimable pages may be
3281  * - mlocked pages, which will be moved to unevictable list when encountered
3282  * - mapped pages, which may require several travels to be reclaimed
3283  * - dirty pages, which is not "instantly" reclaimable
3284  */
3285 unsigned long global_reclaimable_pages(void)
3286 {
3287         int nr;
3288
3289         nr = global_page_state(NR_ACTIVE_FILE) +
3290              global_page_state(NR_INACTIVE_FILE);
3291
3292         if (get_nr_swap_pages() > 0)
3293                 nr += global_page_state(NR_ACTIVE_ANON) +
3294                       global_page_state(NR_INACTIVE_ANON);
3295
3296         return nr;
3297 }
3298
3299 #ifdef CONFIG_HIBERNATION
3300 /*
3301  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3302  * freed pages.
3303  *
3304  * Rather than trying to age LRUs the aim is to preserve the overall
3305  * LRU order by reclaiming preferentially
3306  * inactive > active > active referenced > active mapped
3307  */
3308 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3309 {
3310         struct reclaim_state reclaim_state;
3311         struct scan_control sc = {
3312                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3313                 .may_swap = 1,
3314                 .may_unmap = 1,
3315                 .may_writepage = 1,
3316                 .nr_to_reclaim = nr_to_reclaim,
3317                 .hibernation_mode = 1,
3318                 .order = 0,
3319                 .priority = DEF_PRIORITY,
3320         };
3321         struct shrink_control shrink = {
3322                 .gfp_mask = sc.gfp_mask,
3323         };
3324         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3325         struct task_struct *p = current;
3326         unsigned long nr_reclaimed;
3327
3328         p->flags |= PF_MEMALLOC;
3329         lockdep_set_current_reclaim_state(sc.gfp_mask);
3330         reclaim_state.reclaimed_slab = 0;
3331         p->reclaim_state = &reclaim_state;
3332
3333         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3334
3335         p->reclaim_state = NULL;
3336         lockdep_clear_current_reclaim_state();
3337         p->flags &= ~PF_MEMALLOC;
3338
3339         return nr_reclaimed;
3340 }
3341 #endif /* CONFIG_HIBERNATION */
3342
3343 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3344    not required for correctness.  So if the last cpu in a node goes
3345    away, we get changed to run anywhere: as the first one comes back,
3346    restore their cpu bindings. */
3347 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3348                         void *hcpu)
3349 {
3350         int nid;
3351
3352         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3353                 for_each_node_state(nid, N_MEMORY) {
3354                         pg_data_t *pgdat = NODE_DATA(nid);
3355                         const struct cpumask *mask;
3356
3357                         mask = cpumask_of_node(pgdat->node_id);
3358
3359                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3360                                 /* One of our CPUs online: restore mask */
3361                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3362                 }
3363         }
3364         return NOTIFY_OK;
3365 }
3366
3367 /*
3368  * This kswapd start function will be called by init and node-hot-add.
3369  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3370  */
3371 int kswapd_run(int nid)
3372 {
3373         pg_data_t *pgdat = NODE_DATA(nid);
3374         int ret = 0;
3375
3376         if (pgdat->kswapd)
3377                 return 0;
3378
3379         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3380         if (IS_ERR(pgdat->kswapd)) {
3381                 /* failure at boot is fatal */
3382                 BUG_ON(system_state == SYSTEM_BOOTING);
3383                 pr_err("Failed to start kswapd on node %d\n", nid);
3384                 ret = PTR_ERR(pgdat->kswapd);
3385                 pgdat->kswapd = NULL;
3386         }
3387         return ret;
3388 }
3389
3390 /*
3391  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3392  * hold lock_memory_hotplug().
3393  */
3394 void kswapd_stop(int nid)
3395 {
3396         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3397
3398         if (kswapd) {
3399                 kthread_stop(kswapd);
3400                 NODE_DATA(nid)->kswapd = NULL;
3401         }
3402 }
3403
3404 static int __init kswapd_init(void)
3405 {
3406         int nid;
3407
3408         swap_setup();
3409         for_each_node_state(nid, N_MEMORY)
3410                 kswapd_run(nid);
3411         hotcpu_notifier(cpu_callback, 0);
3412         return 0;
3413 }
3414
3415 module_init(kswapd_init)
3416
3417 #ifdef CONFIG_NUMA
3418 /*
3419  * Zone reclaim mode
3420  *
3421  * If non-zero call zone_reclaim when the number of free pages falls below
3422  * the watermarks.
3423  */
3424 int zone_reclaim_mode __read_mostly;
3425
3426 #define RECLAIM_OFF 0
3427 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3428 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3429 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3430
3431 /*
3432  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3433  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3434  * a zone.
3435  */
3436 #define ZONE_RECLAIM_PRIORITY 4
3437
3438 /*
3439  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3440  * occur.
3441  */
3442 int sysctl_min_unmapped_ratio = 1;
3443
3444 /*
3445  * If the number of slab pages in a zone grows beyond this percentage then
3446  * slab reclaim needs to occur.
3447  */
3448 int sysctl_min_slab_ratio = 5;
3449
3450 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3451 {
3452         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3453         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3454                 zone_page_state(zone, NR_ACTIVE_FILE);
3455
3456         /*
3457          * It's possible for there to be more file mapped pages than
3458          * accounted for by the pages on the file LRU lists because
3459          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3460          */
3461         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3462 }
3463
3464 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3465 static long zone_pagecache_reclaimable(struct zone *zone)
3466 {
3467         long nr_pagecache_reclaimable;
3468         long delta = 0;
3469
3470         /*
3471          * If RECLAIM_SWAP is set, then all file pages are considered
3472          * potentially reclaimable. Otherwise, we have to worry about
3473          * pages like swapcache and zone_unmapped_file_pages() provides
3474          * a better estimate
3475          */
3476         if (zone_reclaim_mode & RECLAIM_SWAP)
3477                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3478         else
3479                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3480
3481         /* If we can't clean pages, remove dirty pages from consideration */
3482         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3483                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3484
3485         /* Watch for any possible underflows due to delta */
3486         if (unlikely(delta > nr_pagecache_reclaimable))
3487                 delta = nr_pagecache_reclaimable;
3488
3489         return nr_pagecache_reclaimable - delta;
3490 }
3491
3492 /*
3493  * Try to free up some pages from this zone through reclaim.
3494  */
3495 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3496 {
3497         /* Minimum pages needed in order to stay on node */
3498         const unsigned long nr_pages = 1 << order;
3499         struct task_struct *p = current;
3500         struct reclaim_state reclaim_state;
3501         struct scan_control sc = {
3502                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3503                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3504                 .may_swap = 1,
3505                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3506                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3507                 .order = order,
3508                 .priority = ZONE_RECLAIM_PRIORITY,
3509         };
3510         struct shrink_control shrink = {
3511                 .gfp_mask = sc.gfp_mask,
3512         };
3513         unsigned long nr_slab_pages0, nr_slab_pages1;
3514
3515         cond_resched();
3516         /*
3517          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3518          * and we also need to be able to write out pages for RECLAIM_WRITE
3519          * and RECLAIM_SWAP.
3520          */
3521         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3522         lockdep_set_current_reclaim_state(gfp_mask);
3523         reclaim_state.reclaimed_slab = 0;
3524         p->reclaim_state = &reclaim_state;
3525
3526         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3527                 /*
3528                  * Free memory by calling shrink zone with increasing
3529                  * priorities until we have enough memory freed.
3530                  */
3531                 do {
3532                         shrink_zone(zone, &sc);
3533                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3534         }
3535
3536         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3537         if (nr_slab_pages0 > zone->min_slab_pages) {
3538                 /*
3539                  * shrink_slab() does not currently allow us to determine how
3540                  * many pages were freed in this zone. So we take the current
3541                  * number of slab pages and shake the slab until it is reduced
3542                  * by the same nr_pages that we used for reclaiming unmapped
3543                  * pages.
3544                  *
3545                  * Note that shrink_slab will free memory on all zones and may
3546                  * take a long time.
3547                  */
3548                 for (;;) {
3549                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3550
3551                         /* No reclaimable slab or very low memory pressure */
3552                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3553                                 break;
3554
3555                         /* Freed enough memory */
3556                         nr_slab_pages1 = zone_page_state(zone,
3557                                                         NR_SLAB_RECLAIMABLE);
3558                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3559                                 break;
3560                 }
3561
3562                 /*
3563                  * Update nr_reclaimed by the number of slab pages we
3564                  * reclaimed from this zone.
3565                  */
3566                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3567                 if (nr_slab_pages1 < nr_slab_pages0)
3568                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3569         }
3570
3571         p->reclaim_state = NULL;
3572         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3573         lockdep_clear_current_reclaim_state();
3574         return sc.nr_reclaimed >= nr_pages;
3575 }
3576
3577 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3578 {
3579         int node_id;
3580         int ret;
3581
3582         /*
3583          * Zone reclaim reclaims unmapped file backed pages and
3584          * slab pages if we are over the defined limits.
3585          *
3586          * A small portion of unmapped file backed pages is needed for
3587          * file I/O otherwise pages read by file I/O will be immediately
3588          * thrown out if the zone is overallocated. So we do not reclaim
3589          * if less than a specified percentage of the zone is used by
3590          * unmapped file backed pages.
3591          */
3592         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3593             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3594                 return ZONE_RECLAIM_FULL;
3595
3596         if (!zone_reclaimable(zone))
3597                 return ZONE_RECLAIM_FULL;
3598
3599         /*
3600          * Do not scan if the allocation should not be delayed.
3601          */
3602         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3603                 return ZONE_RECLAIM_NOSCAN;
3604
3605         /*
3606          * Only run zone reclaim on the local zone or on zones that do not
3607          * have associated processors. This will favor the local processor
3608          * over remote processors and spread off node memory allocations
3609          * as wide as possible.
3610          */
3611         node_id = zone_to_nid(zone);
3612         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3613                 return ZONE_RECLAIM_NOSCAN;
3614
3615         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3616                 return ZONE_RECLAIM_NOSCAN;
3617
3618         ret = __zone_reclaim(zone, gfp_mask, order);
3619         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3620
3621         if (!ret)
3622                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3623
3624         return ret;
3625 }
3626 #endif
3627
3628 /*
3629  * page_evictable - test whether a page is evictable
3630  * @page: the page to test
3631  *
3632  * Test whether page is evictable--i.e., should be placed on active/inactive
3633  * lists vs unevictable list.
3634  *
3635  * Reasons page might not be evictable:
3636  * (1) page's mapping marked unevictable
3637  * (2) page is part of an mlocked VMA
3638  *
3639  */
3640 int page_evictable(struct page *page)
3641 {
3642         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3643 }
3644
3645 #ifdef CONFIG_SHMEM
3646 /**
3647  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3648  * @pages:      array of pages to check
3649  * @nr_pages:   number of pages to check
3650  *
3651  * Checks pages for evictability and moves them to the appropriate lru list.
3652  *
3653  * This function is only used for SysV IPC SHM_UNLOCK.
3654  */
3655 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3656 {
3657         struct lruvec *lruvec;
3658         struct zone *zone = NULL;
3659         int pgscanned = 0;
3660         int pgrescued = 0;
3661         int i;
3662
3663         for (i = 0; i < nr_pages; i++) {
3664                 struct page *page = pages[i];
3665                 struct zone *pagezone;
3666
3667                 pgscanned++;
3668                 pagezone = page_zone(page);
3669                 if (pagezone != zone) {
3670                         if (zone)
3671                                 spin_unlock_irq(&zone->lru_lock);
3672                         zone = pagezone;
3673                         spin_lock_irq(&zone->lru_lock);
3674                 }
3675                 lruvec = mem_cgroup_page_lruvec(page, zone);
3676
3677                 if (!PageLRU(page) || !PageUnevictable(page))
3678                         continue;
3679
3680                 if (page_evictable(page)) {
3681                         enum lru_list lru = page_lru_base_type(page);
3682
3683                         VM_BUG_ON(PageActive(page));
3684                         ClearPageUnevictable(page);
3685                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3686                         add_page_to_lru_list(page, lruvec, lru);
3687                         pgrescued++;
3688                 }
3689         }
3690
3691         if (zone) {
3692                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3693                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3694                 spin_unlock_irq(&zone->lru_lock);
3695         }
3696 }
3697 #endif /* CONFIG_SHMEM */
3698
3699 static void warn_scan_unevictable_pages(void)
3700 {
3701         printk_once(KERN_WARNING
3702                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3703                     "disabled for lack of a legitimate use case.  If you have "
3704                     "one, please send an email to linux-mm@kvack.org.\n",
3705                     current->comm);
3706 }
3707
3708 /*
3709  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3710  * all nodes' unevictable lists for evictable pages
3711  */
3712 unsigned long scan_unevictable_pages;
3713
3714 int scan_unevictable_handler(struct ctl_table *table, int write,
3715                            void __user *buffer,
3716                            size_t *length, loff_t *ppos)
3717 {
3718         warn_scan_unevictable_pages();
3719         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3720         scan_unevictable_pages = 0;
3721         return 0;
3722 }
3723
3724 #ifdef CONFIG_NUMA
3725 /*
3726  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3727  * a specified node's per zone unevictable lists for evictable pages.
3728  */
3729
3730 static ssize_t read_scan_unevictable_node(struct device *dev,
3731                                           struct device_attribute *attr,
3732                                           char *buf)
3733 {
3734         warn_scan_unevictable_pages();
3735         return sprintf(buf, "0\n");     /* always zero; should fit... */
3736 }
3737
3738 static ssize_t write_scan_unevictable_node(struct device *dev,
3739                                            struct device_attribute *attr,
3740                                         const char *buf, size_t count)
3741 {
3742         warn_scan_unevictable_pages();
3743         return 1;
3744 }
3745
3746
3747 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3748                         read_scan_unevictable_node,
3749                         write_scan_unevictable_node);
3750
3751 int scan_unevictable_register_node(struct node *node)
3752 {
3753         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3754 }
3755
3756 void scan_unevictable_unregister_node(struct node *node)
3757 {
3758         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3759 }
3760 #endif