f2e35099508bd495c466d222e6cfb0d542b43ad5
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142
143 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
144 {
145         return !mem_cgroup_disabled();
146 }
147 #else
148 static bool global_reclaim(struct scan_control *sc)
149 {
150         return true;
151 }
152
153 static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
154 {
155         return false;
156 }
157 #endif
158
159 unsigned long zone_reclaimable_pages(struct zone *zone)
160 {
161         int nr;
162
163         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
164              zone_page_state(zone, NR_INACTIVE_FILE);
165
166         if (get_nr_swap_pages() > 0)
167                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
168                       zone_page_state(zone, NR_INACTIVE_ANON);
169
170         return nr;
171 }
172
173 bool zone_reclaimable(struct zone *zone)
174 {
175         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
176 }
177
178 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
179 {
180         if (!mem_cgroup_disabled())
181                 return mem_cgroup_get_lru_size(lruvec, lru);
182
183         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
184 }
185
186 /*
187  * Add a shrinker callback to be called from the vm
188  */
189 void register_shrinker(struct shrinker *shrinker)
190 {
191         atomic_long_set(&shrinker->nr_in_batch, 0);
192         down_write(&shrinker_rwsem);
193         list_add_tail(&shrinker->list, &shrinker_list);
194         up_write(&shrinker_rwsem);
195 }
196 EXPORT_SYMBOL(register_shrinker);
197
198 /*
199  * Remove one
200  */
201 void unregister_shrinker(struct shrinker *shrinker)
202 {
203         down_write(&shrinker_rwsem);
204         list_del(&shrinker->list);
205         up_write(&shrinker_rwsem);
206 }
207 EXPORT_SYMBOL(unregister_shrinker);
208
209 static inline int do_shrinker_shrink(struct shrinker *shrinker,
210                                      struct shrink_control *sc,
211                                      unsigned long nr_to_scan)
212 {
213         sc->nr_to_scan = nr_to_scan;
214         return (*shrinker->shrink)(shrinker, sc);
215 }
216
217 #define SHRINK_BATCH 128
218 /*
219  * Call the shrink functions to age shrinkable caches
220  *
221  * Here we assume it costs one seek to replace a lru page and that it also
222  * takes a seek to recreate a cache object.  With this in mind we age equal
223  * percentages of the lru and ageable caches.  This should balance the seeks
224  * generated by these structures.
225  *
226  * If the vm encountered mapped pages on the LRU it increase the pressure on
227  * slab to avoid swapping.
228  *
229  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
230  *
231  * `lru_pages' represents the number of on-LRU pages in all the zones which
232  * are eligible for the caller's allocation attempt.  It is used for balancing
233  * slab reclaim versus page reclaim.
234  *
235  * Returns the number of slab objects which we shrunk.
236  */
237 unsigned long shrink_slab(struct shrink_control *shrink,
238                           unsigned long nr_pages_scanned,
239                           unsigned long lru_pages)
240 {
241         struct shrinker *shrinker;
242         unsigned long ret = 0;
243
244         if (nr_pages_scanned == 0)
245                 nr_pages_scanned = SWAP_CLUSTER_MAX;
246
247         if (!down_read_trylock(&shrinker_rwsem)) {
248                 /* Assume we'll be able to shrink next time */
249                 ret = 1;
250                 goto out;
251         }
252
253         list_for_each_entry(shrinker, &shrinker_list, list) {
254                 unsigned long long delta;
255                 long total_scan;
256                 long max_pass;
257                 int shrink_ret = 0;
258                 long nr;
259                 long new_nr;
260                 long batch_size = shrinker->batch ? shrinker->batch
261                                                   : SHRINK_BATCH;
262
263                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
264                 if (max_pass <= 0)
265                         continue;
266
267                 /*
268                  * copy the current shrinker scan count into a local variable
269                  * and zero it so that other concurrent shrinker invocations
270                  * don't also do this scanning work.
271                  */
272                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
273
274                 total_scan = nr;
275                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
276                 delta *= max_pass;
277                 do_div(delta, lru_pages + 1);
278                 total_scan += delta;
279                 if (total_scan < 0) {
280                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
281                                "delete nr=%ld\n",
282                                shrinker->shrink, total_scan);
283                         total_scan = max_pass;
284                 }
285
286                 /*
287                  * We need to avoid excessive windup on filesystem shrinkers
288                  * due to large numbers of GFP_NOFS allocations causing the
289                  * shrinkers to return -1 all the time. This results in a large
290                  * nr being built up so when a shrink that can do some work
291                  * comes along it empties the entire cache due to nr >>>
292                  * max_pass.  This is bad for sustaining a working set in
293                  * memory.
294                  *
295                  * Hence only allow the shrinker to scan the entire cache when
296                  * a large delta change is calculated directly.
297                  */
298                 if (delta < max_pass / 4)
299                         total_scan = min(total_scan, max_pass / 2);
300
301                 /*
302                  * Avoid risking looping forever due to too large nr value:
303                  * never try to free more than twice the estimate number of
304                  * freeable entries.
305                  */
306                 if (total_scan > max_pass * 2)
307                         total_scan = max_pass * 2;
308
309                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
310                                         nr_pages_scanned, lru_pages,
311                                         max_pass, delta, total_scan);
312
313                 while (total_scan >= batch_size) {
314                         int nr_before;
315
316                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
317                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
318                                                         batch_size);
319                         if (shrink_ret == -1)
320                                 break;
321                         if (shrink_ret < nr_before)
322                                 ret += nr_before - shrink_ret;
323                         count_vm_events(SLABS_SCANNED, batch_size);
324                         total_scan -= batch_size;
325
326                         cond_resched();
327                 }
328
329                 /*
330                  * move the unused scan count back into the shrinker in a
331                  * manner that handles concurrent updates. If we exhausted the
332                  * scan, there is no need to do an update.
333                  */
334                 if (total_scan > 0)
335                         new_nr = atomic_long_add_return(total_scan,
336                                         &shrinker->nr_in_batch);
337                 else
338                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
339
340                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
341         }
342         up_read(&shrinker_rwsem);
343 out:
344         cond_resched();
345         return ret;
346 }
347
348 static inline int is_page_cache_freeable(struct page *page)
349 {
350         /*
351          * A freeable page cache page is referenced only by the caller
352          * that isolated the page, the page cache radix tree and
353          * optional buffer heads at page->private.
354          */
355         return page_count(page) - page_has_private(page) == 2;
356 }
357
358 static int may_write_to_queue(struct backing_dev_info *bdi,
359                               struct scan_control *sc)
360 {
361         if (current->flags & PF_SWAPWRITE)
362                 return 1;
363         if (!bdi_write_congested(bdi))
364                 return 1;
365         if (bdi == current->backing_dev_info)
366                 return 1;
367         return 0;
368 }
369
370 /*
371  * We detected a synchronous write error writing a page out.  Probably
372  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
373  * fsync(), msync() or close().
374  *
375  * The tricky part is that after writepage we cannot touch the mapping: nothing
376  * prevents it from being freed up.  But we have a ref on the page and once
377  * that page is locked, the mapping is pinned.
378  *
379  * We're allowed to run sleeping lock_page() here because we know the caller has
380  * __GFP_FS.
381  */
382 static void handle_write_error(struct address_space *mapping,
383                                 struct page *page, int error)
384 {
385         lock_page(page);
386         if (page_mapping(page) == mapping)
387                 mapping_set_error(mapping, error);
388         unlock_page(page);
389 }
390
391 /* possible outcome of pageout() */
392 typedef enum {
393         /* failed to write page out, page is locked */
394         PAGE_KEEP,
395         /* move page to the active list, page is locked */
396         PAGE_ACTIVATE,
397         /* page has been sent to the disk successfully, page is unlocked */
398         PAGE_SUCCESS,
399         /* page is clean and locked */
400         PAGE_CLEAN,
401 } pageout_t;
402
403 /*
404  * pageout is called by shrink_page_list() for each dirty page.
405  * Calls ->writepage().
406  */
407 static pageout_t pageout(struct page *page, struct address_space *mapping,
408                          struct scan_control *sc)
409 {
410         /*
411          * If the page is dirty, only perform writeback if that write
412          * will be non-blocking.  To prevent this allocation from being
413          * stalled by pagecache activity.  But note that there may be
414          * stalls if we need to run get_block().  We could test
415          * PagePrivate for that.
416          *
417          * If this process is currently in __generic_file_aio_write() against
418          * this page's queue, we can perform writeback even if that
419          * will block.
420          *
421          * If the page is swapcache, write it back even if that would
422          * block, for some throttling. This happens by accident, because
423          * swap_backing_dev_info is bust: it doesn't reflect the
424          * congestion state of the swapdevs.  Easy to fix, if needed.
425          */
426         if (!is_page_cache_freeable(page))
427                 return PAGE_KEEP;
428         if (!mapping) {
429                 /*
430                  * Some data journaling orphaned pages can have
431                  * page->mapping == NULL while being dirty with clean buffers.
432                  */
433                 if (page_has_private(page)) {
434                         if (try_to_free_buffers(page)) {
435                                 ClearPageDirty(page);
436                                 printk("%s: orphaned page\n", __func__);
437                                 return PAGE_CLEAN;
438                         }
439                 }
440                 return PAGE_KEEP;
441         }
442         if (mapping->a_ops->writepage == NULL)
443                 return PAGE_ACTIVATE;
444         if (!may_write_to_queue(mapping->backing_dev_info, sc))
445                 return PAGE_KEEP;
446
447         if (clear_page_dirty_for_io(page)) {
448                 int res;
449                 struct writeback_control wbc = {
450                         .sync_mode = WB_SYNC_NONE,
451                         .nr_to_write = SWAP_CLUSTER_MAX,
452                         .range_start = 0,
453                         .range_end = LLONG_MAX,
454                         .for_reclaim = 1,
455                 };
456
457                 SetPageReclaim(page);
458                 res = mapping->a_ops->writepage(page, &wbc);
459                 if (res < 0)
460                         handle_write_error(mapping, page, res);
461                 if (res == AOP_WRITEPAGE_ACTIVATE) {
462                         ClearPageReclaim(page);
463                         return PAGE_ACTIVATE;
464                 }
465
466                 if (!PageWriteback(page)) {
467                         /* synchronous write or broken a_ops? */
468                         ClearPageReclaim(page);
469                 }
470                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
471                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
472                 return PAGE_SUCCESS;
473         }
474
475         return PAGE_CLEAN;
476 }
477
478 /*
479  * Same as remove_mapping, but if the page is removed from the mapping, it
480  * gets returned with a refcount of 0.
481  */
482 static int __remove_mapping(struct address_space *mapping, struct page *page)
483 {
484         BUG_ON(!PageLocked(page));
485         BUG_ON(mapping != page_mapping(page));
486
487         spin_lock_irq(&mapping->tree_lock);
488         /*
489          * The non racy check for a busy page.
490          *
491          * Must be careful with the order of the tests. When someone has
492          * a ref to the page, it may be possible that they dirty it then
493          * drop the reference. So if PageDirty is tested before page_count
494          * here, then the following race may occur:
495          *
496          * get_user_pages(&page);
497          * [user mapping goes away]
498          * write_to(page);
499          *                              !PageDirty(page)    [good]
500          * SetPageDirty(page);
501          * put_page(page);
502          *                              !page_count(page)   [good, discard it]
503          *
504          * [oops, our write_to data is lost]
505          *
506          * Reversing the order of the tests ensures such a situation cannot
507          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
508          * load is not satisfied before that of page->_count.
509          *
510          * Note that if SetPageDirty is always performed via set_page_dirty,
511          * and thus under tree_lock, then this ordering is not required.
512          */
513         if (!page_freeze_refs(page, 2))
514                 goto cannot_free;
515         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
516         if (unlikely(PageDirty(page))) {
517                 page_unfreeze_refs(page, 2);
518                 goto cannot_free;
519         }
520
521         if (PageSwapCache(page)) {
522                 swp_entry_t swap = { .val = page_private(page) };
523                 __delete_from_swap_cache(page);
524                 spin_unlock_irq(&mapping->tree_lock);
525                 swapcache_free(swap, page);
526         } else {
527                 void (*freepage)(struct page *);
528
529                 freepage = mapping->a_ops->freepage;
530
531                 __delete_from_page_cache(page);
532                 spin_unlock_irq(&mapping->tree_lock);
533                 mem_cgroup_uncharge_cache_page(page);
534
535                 if (freepage != NULL)
536                         freepage(page);
537         }
538
539         return 1;
540
541 cannot_free:
542         spin_unlock_irq(&mapping->tree_lock);
543         return 0;
544 }
545
546 /*
547  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
548  * someone else has a ref on the page, abort and return 0.  If it was
549  * successfully detached, return 1.  Assumes the caller has a single ref on
550  * this page.
551  */
552 int remove_mapping(struct address_space *mapping, struct page *page)
553 {
554         if (__remove_mapping(mapping, page)) {
555                 /*
556                  * Unfreezing the refcount with 1 rather than 2 effectively
557                  * drops the pagecache ref for us without requiring another
558                  * atomic operation.
559                  */
560                 page_unfreeze_refs(page, 1);
561                 return 1;
562         }
563         return 0;
564 }
565
566 /**
567  * putback_lru_page - put previously isolated page onto appropriate LRU list
568  * @page: page to be put back to appropriate lru list
569  *
570  * Add previously isolated @page to appropriate LRU list.
571  * Page may still be unevictable for other reasons.
572  *
573  * lru_lock must not be held, interrupts must be enabled.
574  */
575 void putback_lru_page(struct page *page)
576 {
577         bool is_unevictable;
578         int was_unevictable = PageUnevictable(page);
579
580         VM_BUG_ON(PageLRU(page));
581
582 redo:
583         ClearPageUnevictable(page);
584
585         if (page_evictable(page)) {
586                 /*
587                  * For evictable pages, we can use the cache.
588                  * In event of a race, worst case is we end up with an
589                  * unevictable page on [in]active list.
590                  * We know how to handle that.
591                  */
592                 is_unevictable = false;
593                 lru_cache_add(page);
594         } else {
595                 /*
596                  * Put unevictable pages directly on zone's unevictable
597                  * list.
598                  */
599                 is_unevictable = true;
600                 add_page_to_unevictable_list(page);
601                 /*
602                  * When racing with an mlock or AS_UNEVICTABLE clearing
603                  * (page is unlocked) make sure that if the other thread
604                  * does not observe our setting of PG_lru and fails
605                  * isolation/check_move_unevictable_pages,
606                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
607                  * the page back to the evictable list.
608                  *
609                  * The other side is TestClearPageMlocked() or shmem_lock().
610                  */
611                 smp_mb();
612         }
613
614         /*
615          * page's status can change while we move it among lru. If an evictable
616          * page is on unevictable list, it never be freed. To avoid that,
617          * check after we added it to the list, again.
618          */
619         if (is_unevictable && page_evictable(page)) {
620                 if (!isolate_lru_page(page)) {
621                         put_page(page);
622                         goto redo;
623                 }
624                 /* This means someone else dropped this page from LRU
625                  * So, it will be freed or putback to LRU again. There is
626                  * nothing to do here.
627                  */
628         }
629
630         if (was_unevictable && !is_unevictable)
631                 count_vm_event(UNEVICTABLE_PGRESCUED);
632         else if (!was_unevictable && is_unevictable)
633                 count_vm_event(UNEVICTABLE_PGCULLED);
634
635         put_page(page);         /* drop ref from isolate */
636 }
637
638 enum page_references {
639         PAGEREF_RECLAIM,
640         PAGEREF_RECLAIM_CLEAN,
641         PAGEREF_KEEP,
642         PAGEREF_ACTIVATE,
643 };
644
645 static enum page_references page_check_references(struct page *page,
646                                                   struct scan_control *sc)
647 {
648         int referenced_ptes, referenced_page;
649         unsigned long vm_flags;
650
651         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
652                                           &vm_flags);
653         referenced_page = TestClearPageReferenced(page);
654
655         /*
656          * Mlock lost the isolation race with us.  Let try_to_unmap()
657          * move the page to the unevictable list.
658          */
659         if (vm_flags & VM_LOCKED)
660                 return PAGEREF_RECLAIM;
661
662         if (referenced_ptes) {
663                 if (PageSwapBacked(page))
664                         return PAGEREF_ACTIVATE;
665                 /*
666                  * All mapped pages start out with page table
667                  * references from the instantiating fault, so we need
668                  * to look twice if a mapped file page is used more
669                  * than once.
670                  *
671                  * Mark it and spare it for another trip around the
672                  * inactive list.  Another page table reference will
673                  * lead to its activation.
674                  *
675                  * Note: the mark is set for activated pages as well
676                  * so that recently deactivated but used pages are
677                  * quickly recovered.
678                  */
679                 SetPageReferenced(page);
680
681                 if (referenced_page || referenced_ptes > 1)
682                         return PAGEREF_ACTIVATE;
683
684                 /*
685                  * Activate file-backed executable pages after first usage.
686                  */
687                 if (vm_flags & VM_EXEC)
688                         return PAGEREF_ACTIVATE;
689
690                 return PAGEREF_KEEP;
691         }
692
693         /* Reclaim if clean, defer dirty pages to writeback */
694         if (referenced_page && !PageSwapBacked(page))
695                 return PAGEREF_RECLAIM_CLEAN;
696
697         return PAGEREF_RECLAIM;
698 }
699
700 /* Check if a page is dirty or under writeback */
701 static void page_check_dirty_writeback(struct page *page,
702                                        bool *dirty, bool *writeback)
703 {
704         struct address_space *mapping;
705
706         /*
707          * Anonymous pages are not handled by flushers and must be written
708          * from reclaim context. Do not stall reclaim based on them
709          */
710         if (!page_is_file_cache(page)) {
711                 *dirty = false;
712                 *writeback = false;
713                 return;
714         }
715
716         /* By default assume that the page flags are accurate */
717         *dirty = PageDirty(page);
718         *writeback = PageWriteback(page);
719
720         /* Verify dirty/writeback state if the filesystem supports it */
721         if (!page_has_private(page))
722                 return;
723
724         mapping = page_mapping(page);
725         if (mapping && mapping->a_ops->is_dirty_writeback)
726                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
727 }
728
729 /*
730  * shrink_page_list() returns the number of reclaimed pages
731  */
732 static unsigned long shrink_page_list(struct list_head *page_list,
733                                       struct zone *zone,
734                                       struct scan_control *sc,
735                                       enum ttu_flags ttu_flags,
736                                       unsigned long *ret_nr_dirty,
737                                       unsigned long *ret_nr_unqueued_dirty,
738                                       unsigned long *ret_nr_congested,
739                                       unsigned long *ret_nr_writeback,
740                                       unsigned long *ret_nr_immediate,
741                                       bool force_reclaim)
742 {
743         LIST_HEAD(ret_pages);
744         LIST_HEAD(free_pages);
745         int pgactivate = 0;
746         unsigned long nr_unqueued_dirty = 0;
747         unsigned long nr_dirty = 0;
748         unsigned long nr_congested = 0;
749         unsigned long nr_reclaimed = 0;
750         unsigned long nr_writeback = 0;
751         unsigned long nr_immediate = 0;
752
753         cond_resched();
754
755         mem_cgroup_uncharge_start();
756         while (!list_empty(page_list)) {
757                 struct address_space *mapping;
758                 struct page *page;
759                 int may_enter_fs;
760                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
761                 bool dirty, writeback;
762
763                 cond_resched();
764
765                 page = lru_to_page(page_list);
766                 list_del(&page->lru);
767
768                 if (!trylock_page(page))
769                         goto keep;
770
771                 VM_BUG_ON(PageActive(page));
772                 VM_BUG_ON(page_zone(page) != zone);
773
774                 sc->nr_scanned++;
775
776                 if (unlikely(!page_evictable(page)))
777                         goto cull_mlocked;
778
779                 if (!sc->may_unmap && page_mapped(page))
780                         goto keep_locked;
781
782                 /* Double the slab pressure for mapped and swapcache pages */
783                 if (page_mapped(page) || PageSwapCache(page))
784                         sc->nr_scanned++;
785
786                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
787                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
788
789                 /*
790                  * The number of dirty pages determines if a zone is marked
791                  * reclaim_congested which affects wait_iff_congested. kswapd
792                  * will stall and start writing pages if the tail of the LRU
793                  * is all dirty unqueued pages.
794                  */
795                 page_check_dirty_writeback(page, &dirty, &writeback);
796                 if (dirty || writeback)
797                         nr_dirty++;
798
799                 if (dirty && !writeback)
800                         nr_unqueued_dirty++;
801
802                 /*
803                  * Treat this page as congested if the underlying BDI is or if
804                  * pages are cycling through the LRU so quickly that the
805                  * pages marked for immediate reclaim are making it to the
806                  * end of the LRU a second time.
807                  */
808                 mapping = page_mapping(page);
809                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
810                     (writeback && PageReclaim(page)))
811                         nr_congested++;
812
813                 /*
814                  * If a page at the tail of the LRU is under writeback, there
815                  * are three cases to consider.
816                  *
817                  * 1) If reclaim is encountering an excessive number of pages
818                  *    under writeback and this page is both under writeback and
819                  *    PageReclaim then it indicates that pages are being queued
820                  *    for IO but are being recycled through the LRU before the
821                  *    IO can complete. Waiting on the page itself risks an
822                  *    indefinite stall if it is impossible to writeback the
823                  *    page due to IO error or disconnected storage so instead
824                  *    note that the LRU is being scanned too quickly and the
825                  *    caller can stall after page list has been processed.
826                  *
827                  * 2) Global reclaim encounters a page, memcg encounters a
828                  *    page that is not marked for immediate reclaim or
829                  *    the caller does not have __GFP_IO. In this case mark
830                  *    the page for immediate reclaim and continue scanning.
831                  *
832                  *    __GFP_IO is checked  because a loop driver thread might
833                  *    enter reclaim, and deadlock if it waits on a page for
834                  *    which it is needed to do the write (loop masks off
835                  *    __GFP_IO|__GFP_FS for this reason); but more thought
836                  *    would probably show more reasons.
837                  *
838                  *    Don't require __GFP_FS, since we're not going into the
839                  *    FS, just waiting on its writeback completion. Worryingly,
840                  *    ext4 gfs2 and xfs allocate pages with
841                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
842                  *    may_enter_fs here is liable to OOM on them.
843                  *
844                  * 3) memcg encounters a page that is not already marked
845                  *    PageReclaim. memcg does not have any dirty pages
846                  *    throttling so we could easily OOM just because too many
847                  *    pages are in writeback and there is nothing else to
848                  *    reclaim. Wait for the writeback to complete.
849                  */
850                 if (PageWriteback(page)) {
851                         /* Case 1 above */
852                         if (current_is_kswapd() &&
853                             PageReclaim(page) &&
854                             zone_is_reclaim_writeback(zone)) {
855                                 nr_immediate++;
856                                 goto keep_locked;
857
858                         /* Case 2 above */
859                         } else if (global_reclaim(sc) ||
860                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
861                                 /*
862                                  * This is slightly racy - end_page_writeback()
863                                  * might have just cleared PageReclaim, then
864                                  * setting PageReclaim here end up interpreted
865                                  * as PageReadahead - but that does not matter
866                                  * enough to care.  What we do want is for this
867                                  * page to have PageReclaim set next time memcg
868                                  * reclaim reaches the tests above, so it will
869                                  * then wait_on_page_writeback() to avoid OOM;
870                                  * and it's also appropriate in global reclaim.
871                                  */
872                                 SetPageReclaim(page);
873                                 nr_writeback++;
874
875                                 goto keep_locked;
876
877                         /* Case 3 above */
878                         } else {
879                                 wait_on_page_writeback(page);
880                         }
881                 }
882
883                 if (!force_reclaim)
884                         references = page_check_references(page, sc);
885
886                 switch (references) {
887                 case PAGEREF_ACTIVATE:
888                         goto activate_locked;
889                 case PAGEREF_KEEP:
890                         goto keep_locked;
891                 case PAGEREF_RECLAIM:
892                 case PAGEREF_RECLAIM_CLEAN:
893                         ; /* try to reclaim the page below */
894                 }
895
896                 /*
897                  * Anonymous process memory has backing store?
898                  * Try to allocate it some swap space here.
899                  */
900                 if (PageAnon(page) && !PageSwapCache(page)) {
901                         if (!(sc->gfp_mask & __GFP_IO))
902                                 goto keep_locked;
903                         if (!add_to_swap(page, page_list))
904                                 goto activate_locked;
905                         may_enter_fs = 1;
906
907                         /* Adding to swap updated mapping */
908                         mapping = page_mapping(page);
909                 }
910
911                 /*
912                  * The page is mapped into the page tables of one or more
913                  * processes. Try to unmap it here.
914                  */
915                 if (page_mapped(page) && mapping) {
916                         switch (try_to_unmap(page, ttu_flags)) {
917                         case SWAP_FAIL:
918                                 goto activate_locked;
919                         case SWAP_AGAIN:
920                                 goto keep_locked;
921                         case SWAP_MLOCK:
922                                 goto cull_mlocked;
923                         case SWAP_SUCCESS:
924                                 ; /* try to free the page below */
925                         }
926                 }
927
928                 if (PageDirty(page)) {
929                         /*
930                          * Only kswapd can writeback filesystem pages to
931                          * avoid risk of stack overflow but only writeback
932                          * if many dirty pages have been encountered.
933                          */
934                         if (page_is_file_cache(page) &&
935                                         (!current_is_kswapd() ||
936                                          !zone_is_reclaim_dirty(zone))) {
937                                 /*
938                                  * Immediately reclaim when written back.
939                                  * Similar in principal to deactivate_page()
940                                  * except we already have the page isolated
941                                  * and know it's dirty
942                                  */
943                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
944                                 SetPageReclaim(page);
945
946                                 goto keep_locked;
947                         }
948
949                         if (references == PAGEREF_RECLAIM_CLEAN)
950                                 goto keep_locked;
951                         if (!may_enter_fs)
952                                 goto keep_locked;
953                         if (!sc->may_writepage)
954                                 goto keep_locked;
955
956                         /* Page is dirty, try to write it out here */
957                         switch (pageout(page, mapping, sc)) {
958                         case PAGE_KEEP:
959                                 goto keep_locked;
960                         case PAGE_ACTIVATE:
961                                 goto activate_locked;
962                         case PAGE_SUCCESS:
963                                 if (PageWriteback(page))
964                                         goto keep;
965                                 if (PageDirty(page))
966                                         goto keep;
967
968                                 /*
969                                  * A synchronous write - probably a ramdisk.  Go
970                                  * ahead and try to reclaim the page.
971                                  */
972                                 if (!trylock_page(page))
973                                         goto keep;
974                                 if (PageDirty(page) || PageWriteback(page))
975                                         goto keep_locked;
976                                 mapping = page_mapping(page);
977                         case PAGE_CLEAN:
978                                 ; /* try to free the page below */
979                         }
980                 }
981
982                 /*
983                  * If the page has buffers, try to free the buffer mappings
984                  * associated with this page. If we succeed we try to free
985                  * the page as well.
986                  *
987                  * We do this even if the page is PageDirty().
988                  * try_to_release_page() does not perform I/O, but it is
989                  * possible for a page to have PageDirty set, but it is actually
990                  * clean (all its buffers are clean).  This happens if the
991                  * buffers were written out directly, with submit_bh(). ext3
992                  * will do this, as well as the blockdev mapping.
993                  * try_to_release_page() will discover that cleanness and will
994                  * drop the buffers and mark the page clean - it can be freed.
995                  *
996                  * Rarely, pages can have buffers and no ->mapping.  These are
997                  * the pages which were not successfully invalidated in
998                  * truncate_complete_page().  We try to drop those buffers here
999                  * and if that worked, and the page is no longer mapped into
1000                  * process address space (page_count == 1) it can be freed.
1001                  * Otherwise, leave the page on the LRU so it is swappable.
1002                  */
1003                 if (page_has_private(page)) {
1004                         if (!try_to_release_page(page, sc->gfp_mask))
1005                                 goto activate_locked;
1006                         if (!mapping && page_count(page) == 1) {
1007                                 unlock_page(page);
1008                                 if (put_page_testzero(page))
1009                                         goto free_it;
1010                                 else {
1011                                         /*
1012                                          * rare race with speculative reference.
1013                                          * the speculative reference will free
1014                                          * this page shortly, so we may
1015                                          * increment nr_reclaimed here (and
1016                                          * leave it off the LRU).
1017                                          */
1018                                         nr_reclaimed++;
1019                                         continue;
1020                                 }
1021                         }
1022                 }
1023
1024                 if (!mapping || !__remove_mapping(mapping, page))
1025                         goto keep_locked;
1026
1027                 /*
1028                  * At this point, we have no other references and there is
1029                  * no way to pick any more up (removed from LRU, removed
1030                  * from pagecache). Can use non-atomic bitops now (and
1031                  * we obviously don't have to worry about waking up a process
1032                  * waiting on the page lock, because there are no references.
1033                  */
1034                 __clear_page_locked(page);
1035 free_it:
1036                 nr_reclaimed++;
1037
1038                 /*
1039                  * Is there need to periodically free_page_list? It would
1040                  * appear not as the counts should be low
1041                  */
1042                 list_add(&page->lru, &free_pages);
1043                 continue;
1044
1045 cull_mlocked:
1046                 if (PageSwapCache(page))
1047                         try_to_free_swap(page);
1048                 unlock_page(page);
1049                 putback_lru_page(page);
1050                 continue;
1051
1052 activate_locked:
1053                 /* Not a candidate for swapping, so reclaim swap space. */
1054                 if (PageSwapCache(page) && vm_swap_full())
1055                         try_to_free_swap(page);
1056                 VM_BUG_ON(PageActive(page));
1057                 SetPageActive(page);
1058                 pgactivate++;
1059 keep_locked:
1060                 unlock_page(page);
1061 keep:
1062                 list_add(&page->lru, &ret_pages);
1063                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1064         }
1065
1066         free_hot_cold_page_list(&free_pages, 1);
1067
1068         list_splice(&ret_pages, page_list);
1069         count_vm_events(PGACTIVATE, pgactivate);
1070         mem_cgroup_uncharge_end();
1071         *ret_nr_dirty += nr_dirty;
1072         *ret_nr_congested += nr_congested;
1073         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1074         *ret_nr_writeback += nr_writeback;
1075         *ret_nr_immediate += nr_immediate;
1076         return nr_reclaimed;
1077 }
1078
1079 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1080                                             struct list_head *page_list)
1081 {
1082         struct scan_control sc = {
1083                 .gfp_mask = GFP_KERNEL,
1084                 .priority = DEF_PRIORITY,
1085                 .may_unmap = 1,
1086         };
1087         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1088         struct page *page, *next;
1089         LIST_HEAD(clean_pages);
1090
1091         list_for_each_entry_safe(page, next, page_list, lru) {
1092                 if (page_is_file_cache(page) && !PageDirty(page)) {
1093                         ClearPageActive(page);
1094                         list_move(&page->lru, &clean_pages);
1095                 }
1096         }
1097
1098         ret = shrink_page_list(&clean_pages, zone, &sc,
1099                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1100                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1101         list_splice(&clean_pages, page_list);
1102         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1103         return ret;
1104 }
1105
1106 /*
1107  * Attempt to remove the specified page from its LRU.  Only take this page
1108  * if it is of the appropriate PageActive status.  Pages which are being
1109  * freed elsewhere are also ignored.
1110  *
1111  * page:        page to consider
1112  * mode:        one of the LRU isolation modes defined above
1113  *
1114  * returns 0 on success, -ve errno on failure.
1115  */
1116 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1117 {
1118         int ret = -EINVAL;
1119
1120         /* Only take pages on the LRU. */
1121         if (!PageLRU(page))
1122                 return ret;
1123
1124         /* Compaction should not handle unevictable pages but CMA can do so */
1125         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1126                 return ret;
1127
1128         ret = -EBUSY;
1129
1130         /*
1131          * To minimise LRU disruption, the caller can indicate that it only
1132          * wants to isolate pages it will be able to operate on without
1133          * blocking - clean pages for the most part.
1134          *
1135          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1136          * is used by reclaim when it is cannot write to backing storage
1137          *
1138          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1139          * that it is possible to migrate without blocking
1140          */
1141         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1142                 /* All the caller can do on PageWriteback is block */
1143                 if (PageWriteback(page))
1144                         return ret;
1145
1146                 if (PageDirty(page)) {
1147                         struct address_space *mapping;
1148
1149                         /* ISOLATE_CLEAN means only clean pages */
1150                         if (mode & ISOLATE_CLEAN)
1151                                 return ret;
1152
1153                         /*
1154                          * Only pages without mappings or that have a
1155                          * ->migratepage callback are possible to migrate
1156                          * without blocking
1157                          */
1158                         mapping = page_mapping(page);
1159                         if (mapping && !mapping->a_ops->migratepage)
1160                                 return ret;
1161                 }
1162         }
1163
1164         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1165                 return ret;
1166
1167         if (likely(get_page_unless_zero(page))) {
1168                 /*
1169                  * Be careful not to clear PageLRU until after we're
1170                  * sure the page is not being freed elsewhere -- the
1171                  * page release code relies on it.
1172                  */
1173                 ClearPageLRU(page);
1174                 ret = 0;
1175         }
1176
1177         return ret;
1178 }
1179
1180 /*
1181  * zone->lru_lock is heavily contended.  Some of the functions that
1182  * shrink the lists perform better by taking out a batch of pages
1183  * and working on them outside the LRU lock.
1184  *
1185  * For pagecache intensive workloads, this function is the hottest
1186  * spot in the kernel (apart from copy_*_user functions).
1187  *
1188  * Appropriate locks must be held before calling this function.
1189  *
1190  * @nr_to_scan: The number of pages to look through on the list.
1191  * @lruvec:     The LRU vector to pull pages from.
1192  * @dst:        The temp list to put pages on to.
1193  * @nr_scanned: The number of pages that were scanned.
1194  * @sc:         The scan_control struct for this reclaim session
1195  * @mode:       One of the LRU isolation modes
1196  * @lru:        LRU list id for isolating
1197  *
1198  * returns how many pages were moved onto *@dst.
1199  */
1200 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1201                 struct lruvec *lruvec, struct list_head *dst,
1202                 unsigned long *nr_scanned, struct scan_control *sc,
1203                 isolate_mode_t mode, enum lru_list lru)
1204 {
1205         struct list_head *src = &lruvec->lists[lru];
1206         unsigned long nr_taken = 0;
1207         unsigned long scan;
1208
1209         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1210                 struct page *page;
1211                 int nr_pages;
1212
1213                 page = lru_to_page(src);
1214                 prefetchw_prev_lru_page(page, src, flags);
1215
1216                 VM_BUG_ON(!PageLRU(page));
1217
1218                 switch (__isolate_lru_page(page, mode)) {
1219                 case 0:
1220                         nr_pages = hpage_nr_pages(page);
1221                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1222                         list_move(&page->lru, dst);
1223                         nr_taken += nr_pages;
1224                         break;
1225
1226                 case -EBUSY:
1227                         /* else it is being freed elsewhere */
1228                         list_move(&page->lru, src);
1229                         continue;
1230
1231                 default:
1232                         BUG();
1233                 }
1234         }
1235
1236         *nr_scanned = scan;
1237         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1238                                     nr_taken, mode, is_file_lru(lru));
1239         return nr_taken;
1240 }
1241
1242 /**
1243  * isolate_lru_page - tries to isolate a page from its LRU list
1244  * @page: page to isolate from its LRU list
1245  *
1246  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247  * vmstat statistic corresponding to whatever LRU list the page was on.
1248  *
1249  * Returns 0 if the page was removed from an LRU list.
1250  * Returns -EBUSY if the page was not on an LRU list.
1251  *
1252  * The returned page will have PageLRU() cleared.  If it was found on
1253  * the active list, it will have PageActive set.  If it was found on
1254  * the unevictable list, it will have the PageUnevictable bit set. That flag
1255  * may need to be cleared by the caller before letting the page go.
1256  *
1257  * The vmstat statistic corresponding to the list on which the page was
1258  * found will be decremented.
1259  *
1260  * Restrictions:
1261  * (1) Must be called with an elevated refcount on the page. This is a
1262  *     fundamentnal difference from isolate_lru_pages (which is called
1263  *     without a stable reference).
1264  * (2) the lru_lock must not be held.
1265  * (3) interrupts must be enabled.
1266  */
1267 int isolate_lru_page(struct page *page)
1268 {
1269         int ret = -EBUSY;
1270
1271         VM_BUG_ON(!page_count(page));
1272
1273         if (PageLRU(page)) {
1274                 struct zone *zone = page_zone(page);
1275                 struct lruvec *lruvec;
1276
1277                 spin_lock_irq(&zone->lru_lock);
1278                 lruvec = mem_cgroup_page_lruvec(page, zone);
1279                 if (PageLRU(page)) {
1280                         int lru = page_lru(page);
1281                         get_page(page);
1282                         ClearPageLRU(page);
1283                         del_page_from_lru_list(page, lruvec, lru);
1284                         ret = 0;
1285                 }
1286                 spin_unlock_irq(&zone->lru_lock);
1287         }
1288         return ret;
1289 }
1290
1291 /*
1292  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1293  * then get resheduled. When there are massive number of tasks doing page
1294  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1295  * the LRU list will go small and be scanned faster than necessary, leading to
1296  * unnecessary swapping, thrashing and OOM.
1297  */
1298 static int too_many_isolated(struct zone *zone, int file,
1299                 struct scan_control *sc)
1300 {
1301         unsigned long inactive, isolated;
1302
1303         if (current_is_kswapd())
1304                 return 0;
1305
1306         if (!global_reclaim(sc))
1307                 return 0;
1308
1309         if (file) {
1310                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1311                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1312         } else {
1313                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1314                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1315         }
1316
1317         /*
1318          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1319          * won't get blocked by normal direct-reclaimers, forming a circular
1320          * deadlock.
1321          */
1322         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1323                 inactive >>= 3;
1324
1325         return isolated > inactive;
1326 }
1327
1328 static noinline_for_stack void
1329 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1330 {
1331         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1332         struct zone *zone = lruvec_zone(lruvec);
1333         LIST_HEAD(pages_to_free);
1334
1335         /*
1336          * Put back any unfreeable pages.
1337          */
1338         while (!list_empty(page_list)) {
1339                 struct page *page = lru_to_page(page_list);
1340                 int lru;
1341
1342                 VM_BUG_ON(PageLRU(page));
1343                 list_del(&page->lru);
1344                 if (unlikely(!page_evictable(page))) {
1345                         spin_unlock_irq(&zone->lru_lock);
1346                         putback_lru_page(page);
1347                         spin_lock_irq(&zone->lru_lock);
1348                         continue;
1349                 }
1350
1351                 lruvec = mem_cgroup_page_lruvec(page, zone);
1352
1353                 SetPageLRU(page);
1354                 lru = page_lru(page);
1355                 add_page_to_lru_list(page, lruvec, lru);
1356
1357                 if (is_active_lru(lru)) {
1358                         int file = is_file_lru(lru);
1359                         int numpages = hpage_nr_pages(page);
1360                         reclaim_stat->recent_rotated[file] += numpages;
1361                 }
1362                 if (put_page_testzero(page)) {
1363                         __ClearPageLRU(page);
1364                         __ClearPageActive(page);
1365                         del_page_from_lru_list(page, lruvec, lru);
1366
1367                         if (unlikely(PageCompound(page))) {
1368                                 spin_unlock_irq(&zone->lru_lock);
1369                                 (*get_compound_page_dtor(page))(page);
1370                                 spin_lock_irq(&zone->lru_lock);
1371                         } else
1372                                 list_add(&page->lru, &pages_to_free);
1373                 }
1374         }
1375
1376         /*
1377          * To save our caller's stack, now use input list for pages to free.
1378          */
1379         list_splice(&pages_to_free, page_list);
1380 }
1381
1382 /*
1383  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1384  * of reclaimed pages
1385  */
1386 static noinline_for_stack unsigned long
1387 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1388                      struct scan_control *sc, enum lru_list lru)
1389 {
1390         LIST_HEAD(page_list);
1391         unsigned long nr_scanned;
1392         unsigned long nr_reclaimed = 0;
1393         unsigned long nr_taken;
1394         unsigned long nr_dirty = 0;
1395         unsigned long nr_congested = 0;
1396         unsigned long nr_unqueued_dirty = 0;
1397         unsigned long nr_writeback = 0;
1398         unsigned long nr_immediate = 0;
1399         isolate_mode_t isolate_mode = 0;
1400         int file = is_file_lru(lru);
1401         struct zone *zone = lruvec_zone(lruvec);
1402         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1403
1404         while (unlikely(too_many_isolated(zone, file, sc))) {
1405                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1406
1407                 /* We are about to die and free our memory. Return now. */
1408                 if (fatal_signal_pending(current))
1409                         return SWAP_CLUSTER_MAX;
1410         }
1411
1412         lru_add_drain();
1413
1414         if (!sc->may_unmap)
1415                 isolate_mode |= ISOLATE_UNMAPPED;
1416         if (!sc->may_writepage)
1417                 isolate_mode |= ISOLATE_CLEAN;
1418
1419         spin_lock_irq(&zone->lru_lock);
1420
1421         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1422                                      &nr_scanned, sc, isolate_mode, lru);
1423
1424         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1425         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1426
1427         if (global_reclaim(sc)) {
1428                 zone->pages_scanned += nr_scanned;
1429                 if (current_is_kswapd())
1430                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1431                 else
1432                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1433         }
1434         spin_unlock_irq(&zone->lru_lock);
1435
1436         if (nr_taken == 0)
1437                 return 0;
1438
1439         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1440                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1441                                 &nr_writeback, &nr_immediate,
1442                                 false);
1443
1444         spin_lock_irq(&zone->lru_lock);
1445
1446         reclaim_stat->recent_scanned[file] += nr_taken;
1447
1448         if (global_reclaim(sc)) {
1449                 if (current_is_kswapd())
1450                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1451                                                nr_reclaimed);
1452                 else
1453                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1454                                                nr_reclaimed);
1455         }
1456
1457         putback_inactive_pages(lruvec, &page_list);
1458
1459         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1460
1461         spin_unlock_irq(&zone->lru_lock);
1462
1463         free_hot_cold_page_list(&page_list, 1);
1464
1465         /*
1466          * If reclaim is isolating dirty pages under writeback, it implies
1467          * that the long-lived page allocation rate is exceeding the page
1468          * laundering rate. Either the global limits are not being effective
1469          * at throttling processes due to the page distribution throughout
1470          * zones or there is heavy usage of a slow backing device. The
1471          * only option is to throttle from reclaim context which is not ideal
1472          * as there is no guarantee the dirtying process is throttled in the
1473          * same way balance_dirty_pages() manages.
1474          *
1475          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1476          * of pages under pages flagged for immediate reclaim and stall if any
1477          * are encountered in the nr_immediate check below.
1478          */
1479         if (nr_writeback && nr_writeback == nr_taken)
1480                 zone_set_flag(zone, ZONE_WRITEBACK);
1481
1482         /*
1483          * memcg will stall in page writeback so only consider forcibly
1484          * stalling for global reclaim
1485          */
1486         if (global_reclaim(sc)) {
1487                 /*
1488                  * Tag a zone as congested if all the dirty pages scanned were
1489                  * backed by a congested BDI and wait_iff_congested will stall.
1490                  */
1491                 if (nr_dirty && nr_dirty == nr_congested)
1492                         zone_set_flag(zone, ZONE_CONGESTED);
1493
1494                 /*
1495                  * If dirty pages are scanned that are not queued for IO, it
1496                  * implies that flushers are not keeping up. In this case, flag
1497                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1498                  * pages from reclaim context. It will forcibly stall in the
1499                  * next check.
1500                  */
1501                 if (nr_unqueued_dirty == nr_taken)
1502                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1503
1504                 /*
1505                  * In addition, if kswapd scans pages marked marked for
1506                  * immediate reclaim and under writeback (nr_immediate), it
1507                  * implies that pages are cycling through the LRU faster than
1508                  * they are written so also forcibly stall.
1509                  */
1510                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1511                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1512         }
1513
1514         /*
1515          * Stall direct reclaim for IO completions if underlying BDIs or zone
1516          * is congested. Allow kswapd to continue until it starts encountering
1517          * unqueued dirty pages or cycling through the LRU too quickly.
1518          */
1519         if (!sc->hibernation_mode && !current_is_kswapd())
1520                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1521
1522         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1523                 zone_idx(zone),
1524                 nr_scanned, nr_reclaimed,
1525                 sc->priority,
1526                 trace_shrink_flags(file));
1527         return nr_reclaimed;
1528 }
1529
1530 /*
1531  * This moves pages from the active list to the inactive list.
1532  *
1533  * We move them the other way if the page is referenced by one or more
1534  * processes, from rmap.
1535  *
1536  * If the pages are mostly unmapped, the processing is fast and it is
1537  * appropriate to hold zone->lru_lock across the whole operation.  But if
1538  * the pages are mapped, the processing is slow (page_referenced()) so we
1539  * should drop zone->lru_lock around each page.  It's impossible to balance
1540  * this, so instead we remove the pages from the LRU while processing them.
1541  * It is safe to rely on PG_active against the non-LRU pages in here because
1542  * nobody will play with that bit on a non-LRU page.
1543  *
1544  * The downside is that we have to touch page->_count against each page.
1545  * But we had to alter page->flags anyway.
1546  */
1547
1548 static void move_active_pages_to_lru(struct lruvec *lruvec,
1549                                      struct list_head *list,
1550                                      struct list_head *pages_to_free,
1551                                      enum lru_list lru)
1552 {
1553         struct zone *zone = lruvec_zone(lruvec);
1554         unsigned long pgmoved = 0;
1555         struct page *page;
1556         int nr_pages;
1557
1558         while (!list_empty(list)) {
1559                 page = lru_to_page(list);
1560                 lruvec = mem_cgroup_page_lruvec(page, zone);
1561
1562                 VM_BUG_ON(PageLRU(page));
1563                 SetPageLRU(page);
1564
1565                 nr_pages = hpage_nr_pages(page);
1566                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1567                 list_move(&page->lru, &lruvec->lists[lru]);
1568                 pgmoved += nr_pages;
1569
1570                 if (put_page_testzero(page)) {
1571                         __ClearPageLRU(page);
1572                         __ClearPageActive(page);
1573                         del_page_from_lru_list(page, lruvec, lru);
1574
1575                         if (unlikely(PageCompound(page))) {
1576                                 spin_unlock_irq(&zone->lru_lock);
1577                                 (*get_compound_page_dtor(page))(page);
1578                                 spin_lock_irq(&zone->lru_lock);
1579                         } else
1580                                 list_add(&page->lru, pages_to_free);
1581                 }
1582         }
1583         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1584         if (!is_active_lru(lru))
1585                 __count_vm_events(PGDEACTIVATE, pgmoved);
1586 }
1587
1588 static void shrink_active_list(unsigned long nr_to_scan,
1589                                struct lruvec *lruvec,
1590                                struct scan_control *sc,
1591                                enum lru_list lru)
1592 {
1593         unsigned long nr_taken;
1594         unsigned long nr_scanned;
1595         unsigned long vm_flags;
1596         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1597         LIST_HEAD(l_active);
1598         LIST_HEAD(l_inactive);
1599         struct page *page;
1600         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1601         unsigned long nr_rotated = 0;
1602         isolate_mode_t isolate_mode = 0;
1603         int file = is_file_lru(lru);
1604         struct zone *zone = lruvec_zone(lruvec);
1605
1606         lru_add_drain();
1607
1608         if (!sc->may_unmap)
1609                 isolate_mode |= ISOLATE_UNMAPPED;
1610         if (!sc->may_writepage)
1611                 isolate_mode |= ISOLATE_CLEAN;
1612
1613         spin_lock_irq(&zone->lru_lock);
1614
1615         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1616                                      &nr_scanned, sc, isolate_mode, lru);
1617         if (global_reclaim(sc))
1618                 zone->pages_scanned += nr_scanned;
1619
1620         reclaim_stat->recent_scanned[file] += nr_taken;
1621
1622         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1623         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1624         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1625         spin_unlock_irq(&zone->lru_lock);
1626
1627         while (!list_empty(&l_hold)) {
1628                 cond_resched();
1629                 page = lru_to_page(&l_hold);
1630                 list_del(&page->lru);
1631
1632                 if (unlikely(!page_evictable(page))) {
1633                         putback_lru_page(page);
1634                         continue;
1635                 }
1636
1637                 if (unlikely(buffer_heads_over_limit)) {
1638                         if (page_has_private(page) && trylock_page(page)) {
1639                                 if (page_has_private(page))
1640                                         try_to_release_page(page, 0);
1641                                 unlock_page(page);
1642                         }
1643                 }
1644
1645                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1646                                     &vm_flags)) {
1647                         nr_rotated += hpage_nr_pages(page);
1648                         /*
1649                          * Identify referenced, file-backed active pages and
1650                          * give them one more trip around the active list. So
1651                          * that executable code get better chances to stay in
1652                          * memory under moderate memory pressure.  Anon pages
1653                          * are not likely to be evicted by use-once streaming
1654                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1655                          * so we ignore them here.
1656                          */
1657                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1658                                 list_add(&page->lru, &l_active);
1659                                 continue;
1660                         }
1661                 }
1662
1663                 ClearPageActive(page);  /* we are de-activating */
1664                 list_add(&page->lru, &l_inactive);
1665         }
1666
1667         /*
1668          * Move pages back to the lru list.
1669          */
1670         spin_lock_irq(&zone->lru_lock);
1671         /*
1672          * Count referenced pages from currently used mappings as rotated,
1673          * even though only some of them are actually re-activated.  This
1674          * helps balance scan pressure between file and anonymous pages in
1675          * get_scan_ratio.
1676          */
1677         reclaim_stat->recent_rotated[file] += nr_rotated;
1678
1679         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1680         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1681         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1682         spin_unlock_irq(&zone->lru_lock);
1683
1684         free_hot_cold_page_list(&l_hold, 1);
1685 }
1686
1687 #ifdef CONFIG_SWAP
1688 static int inactive_anon_is_low_global(struct zone *zone)
1689 {
1690         unsigned long active, inactive;
1691
1692         active = zone_page_state(zone, NR_ACTIVE_ANON);
1693         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1694
1695         if (inactive * zone->inactive_ratio < active)
1696                 return 1;
1697
1698         return 0;
1699 }
1700
1701 /**
1702  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1703  * @lruvec: LRU vector to check
1704  *
1705  * Returns true if the zone does not have enough inactive anon pages,
1706  * meaning some active anon pages need to be deactivated.
1707  */
1708 static int inactive_anon_is_low(struct lruvec *lruvec)
1709 {
1710         /*
1711          * If we don't have swap space, anonymous page deactivation
1712          * is pointless.
1713          */
1714         if (!total_swap_pages)
1715                 return 0;
1716
1717         if (!mem_cgroup_disabled())
1718                 return mem_cgroup_inactive_anon_is_low(lruvec);
1719
1720         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1721 }
1722 #else
1723 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1724 {
1725         return 0;
1726 }
1727 #endif
1728
1729 /**
1730  * inactive_file_is_low - check if file pages need to be deactivated
1731  * @lruvec: LRU vector to check
1732  *
1733  * When the system is doing streaming IO, memory pressure here
1734  * ensures that active file pages get deactivated, until more
1735  * than half of the file pages are on the inactive list.
1736  *
1737  * Once we get to that situation, protect the system's working
1738  * set from being evicted by disabling active file page aging.
1739  *
1740  * This uses a different ratio than the anonymous pages, because
1741  * the page cache uses a use-once replacement algorithm.
1742  */
1743 static int inactive_file_is_low(struct lruvec *lruvec)
1744 {
1745         unsigned long inactive;
1746         unsigned long active;
1747
1748         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1749         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1750
1751         return active > inactive;
1752 }
1753
1754 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1755 {
1756         if (is_file_lru(lru))
1757                 return inactive_file_is_low(lruvec);
1758         else
1759                 return inactive_anon_is_low(lruvec);
1760 }
1761
1762 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1763                                  struct lruvec *lruvec, struct scan_control *sc)
1764 {
1765         if (is_active_lru(lru)) {
1766                 if (inactive_list_is_low(lruvec, lru))
1767                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1768                 return 0;
1769         }
1770
1771         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1772 }
1773
1774 static int vmscan_swappiness(struct scan_control *sc)
1775 {
1776         if (global_reclaim(sc))
1777                 return vm_swappiness;
1778         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1779 }
1780
1781 enum scan_balance {
1782         SCAN_EQUAL,
1783         SCAN_FRACT,
1784         SCAN_ANON,
1785         SCAN_FILE,
1786 };
1787
1788 /*
1789  * Determine how aggressively the anon and file LRU lists should be
1790  * scanned.  The relative value of each set of LRU lists is determined
1791  * by looking at the fraction of the pages scanned we did rotate back
1792  * onto the active list instead of evict.
1793  *
1794  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1795  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1796  */
1797 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1798                            unsigned long *nr)
1799 {
1800         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1801         u64 fraction[2];
1802         u64 denominator = 0;    /* gcc */
1803         struct zone *zone = lruvec_zone(lruvec);
1804         unsigned long anon_prio, file_prio;
1805         enum scan_balance scan_balance;
1806         unsigned long anon, file, free;
1807         bool force_scan = false;
1808         unsigned long ap, fp;
1809         enum lru_list lru;
1810
1811         /*
1812          * If the zone or memcg is small, nr[l] can be 0.  This
1813          * results in no scanning on this priority and a potential
1814          * priority drop.  Global direct reclaim can go to the next
1815          * zone and tends to have no problems. Global kswapd is for
1816          * zone balancing and it needs to scan a minimum amount. When
1817          * reclaiming for a memcg, a priority drop can cause high
1818          * latencies, so it's better to scan a minimum amount there as
1819          * well.
1820          */
1821         if (current_is_kswapd() && !zone_reclaimable(zone))
1822                 force_scan = true;
1823         if (!global_reclaim(sc))
1824                 force_scan = true;
1825
1826         /* If we have no swap space, do not bother scanning anon pages. */
1827         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1828                 scan_balance = SCAN_FILE;
1829                 goto out;
1830         }
1831
1832         /*
1833          * Global reclaim will swap to prevent OOM even with no
1834          * swappiness, but memcg users want to use this knob to
1835          * disable swapping for individual groups completely when
1836          * using the memory controller's swap limit feature would be
1837          * too expensive.
1838          */
1839         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1840                 scan_balance = SCAN_FILE;
1841                 goto out;
1842         }
1843
1844         /*
1845          * Do not apply any pressure balancing cleverness when the
1846          * system is close to OOM, scan both anon and file equally
1847          * (unless the swappiness setting disagrees with swapping).
1848          */
1849         if (!sc->priority && vmscan_swappiness(sc)) {
1850                 scan_balance = SCAN_EQUAL;
1851                 goto out;
1852         }
1853
1854         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1855                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1856         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1857                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1858
1859         /*
1860          * If it's foreseeable that reclaiming the file cache won't be
1861          * enough to get the zone back into a desirable shape, we have
1862          * to swap.  Better start now and leave the - probably heavily
1863          * thrashing - remaining file pages alone.
1864          */
1865         if (global_reclaim(sc)) {
1866                 free = zone_page_state(zone, NR_FREE_PAGES);
1867                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1868                         scan_balance = SCAN_ANON;
1869                         goto out;
1870                 }
1871         }
1872
1873         /*
1874          * There is enough inactive page cache, do not reclaim
1875          * anything from the anonymous working set right now.
1876          */
1877         if (!inactive_file_is_low(lruvec)) {
1878                 scan_balance = SCAN_FILE;
1879                 goto out;
1880         }
1881
1882         scan_balance = SCAN_FRACT;
1883
1884         /*
1885          * With swappiness at 100, anonymous and file have the same priority.
1886          * This scanning priority is essentially the inverse of IO cost.
1887          */
1888         anon_prio = vmscan_swappiness(sc);
1889         file_prio = 200 - anon_prio;
1890
1891         /*
1892          * OK, so we have swap space and a fair amount of page cache
1893          * pages.  We use the recently rotated / recently scanned
1894          * ratios to determine how valuable each cache is.
1895          *
1896          * Because workloads change over time (and to avoid overflow)
1897          * we keep these statistics as a floating average, which ends
1898          * up weighing recent references more than old ones.
1899          *
1900          * anon in [0], file in [1]
1901          */
1902         spin_lock_irq(&zone->lru_lock);
1903         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1904                 reclaim_stat->recent_scanned[0] /= 2;
1905                 reclaim_stat->recent_rotated[0] /= 2;
1906         }
1907
1908         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1909                 reclaim_stat->recent_scanned[1] /= 2;
1910                 reclaim_stat->recent_rotated[1] /= 2;
1911         }
1912
1913         /*
1914          * The amount of pressure on anon vs file pages is inversely
1915          * proportional to the fraction of recently scanned pages on
1916          * each list that were recently referenced and in active use.
1917          */
1918         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1919         ap /= reclaim_stat->recent_rotated[0] + 1;
1920
1921         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1922         fp /= reclaim_stat->recent_rotated[1] + 1;
1923         spin_unlock_irq(&zone->lru_lock);
1924
1925         fraction[0] = ap;
1926         fraction[1] = fp;
1927         denominator = ap + fp + 1;
1928 out:
1929         for_each_evictable_lru(lru) {
1930                 int file = is_file_lru(lru);
1931                 unsigned long size;
1932                 unsigned long scan;
1933
1934                 size = get_lru_size(lruvec, lru);
1935                 scan = size >> sc->priority;
1936
1937                 if (!scan && force_scan)
1938                         scan = min(size, SWAP_CLUSTER_MAX);
1939
1940                 switch (scan_balance) {
1941                 case SCAN_EQUAL:
1942                         /* Scan lists relative to size */
1943                         break;
1944                 case SCAN_FRACT:
1945                         /*
1946                          * Scan types proportional to swappiness and
1947                          * their relative recent reclaim efficiency.
1948                          */
1949                         scan = div64_u64(scan * fraction[file], denominator);
1950                         break;
1951                 case SCAN_FILE:
1952                 case SCAN_ANON:
1953                         /* Scan one type exclusively */
1954                         if ((scan_balance == SCAN_FILE) != file)
1955                                 scan = 0;
1956                         break;
1957                 default:
1958                         /* Look ma, no brain */
1959                         BUG();
1960                 }
1961                 nr[lru] = scan;
1962         }
1963 }
1964
1965 /*
1966  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1967  */
1968 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1969 {
1970         unsigned long nr[NR_LRU_LISTS];
1971         unsigned long targets[NR_LRU_LISTS];
1972         unsigned long nr_to_scan;
1973         enum lru_list lru;
1974         unsigned long nr_reclaimed = 0;
1975         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1976         struct blk_plug plug;
1977         bool scan_adjusted = false;
1978
1979         get_scan_count(lruvec, sc, nr);
1980
1981         /* Record the original scan target for proportional adjustments later */
1982         memcpy(targets, nr, sizeof(nr));
1983
1984         blk_start_plug(&plug);
1985         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1986                                         nr[LRU_INACTIVE_FILE]) {
1987                 unsigned long nr_anon, nr_file, percentage;
1988                 unsigned long nr_scanned;
1989
1990                 for_each_evictable_lru(lru) {
1991                         if (nr[lru]) {
1992                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1993                                 nr[lru] -= nr_to_scan;
1994
1995                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1996                                                             lruvec, sc);
1997                         }
1998                 }
1999
2000                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2001                         continue;
2002
2003                 /*
2004                  * For global direct reclaim, reclaim only the number of pages
2005                  * requested. Less care is taken to scan proportionally as it
2006                  * is more important to minimise direct reclaim stall latency
2007                  * than it is to properly age the LRU lists.
2008                  */
2009                 if (global_reclaim(sc) && !current_is_kswapd())
2010                         break;
2011
2012                 /*
2013                  * For kswapd and memcg, reclaim at least the number of pages
2014                  * requested. Ensure that the anon and file LRUs shrink
2015                  * proportionally what was requested by get_scan_count(). We
2016                  * stop reclaiming one LRU and reduce the amount scanning
2017                  * proportional to the original scan target.
2018                  */
2019                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2020                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2021
2022                 if (nr_file > nr_anon) {
2023                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2024                                                 targets[LRU_ACTIVE_ANON] + 1;
2025                         lru = LRU_BASE;
2026                         percentage = nr_anon * 100 / scan_target;
2027                 } else {
2028                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2029                                                 targets[LRU_ACTIVE_FILE] + 1;
2030                         lru = LRU_FILE;
2031                         percentage = nr_file * 100 / scan_target;
2032                 }
2033
2034                 /* Stop scanning the smaller of the LRU */
2035                 nr[lru] = 0;
2036                 nr[lru + LRU_ACTIVE] = 0;
2037
2038                 /*
2039                  * Recalculate the other LRU scan count based on its original
2040                  * scan target and the percentage scanning already complete
2041                  */
2042                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2043                 nr_scanned = targets[lru] - nr[lru];
2044                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2045                 nr[lru] -= min(nr[lru], nr_scanned);
2046
2047                 lru += LRU_ACTIVE;
2048                 nr_scanned = targets[lru] - nr[lru];
2049                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2050                 nr[lru] -= min(nr[lru], nr_scanned);
2051
2052                 scan_adjusted = true;
2053         }
2054         blk_finish_plug(&plug);
2055         sc->nr_reclaimed += nr_reclaimed;
2056
2057         /*
2058          * Even if we did not try to evict anon pages at all, we want to
2059          * rebalance the anon lru active/inactive ratio.
2060          */
2061         if (inactive_anon_is_low(lruvec))
2062                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2063                                    sc, LRU_ACTIVE_ANON);
2064
2065         throttle_vm_writeout(sc->gfp_mask);
2066 }
2067
2068 /* Use reclaim/compaction for costly allocs or under memory pressure */
2069 static bool in_reclaim_compaction(struct scan_control *sc)
2070 {
2071         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2072                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2073                          sc->priority < DEF_PRIORITY - 2))
2074                 return true;
2075
2076         return false;
2077 }
2078
2079 /*
2080  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2081  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2082  * true if more pages should be reclaimed such that when the page allocator
2083  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2084  * It will give up earlier than that if there is difficulty reclaiming pages.
2085  */
2086 static inline bool should_continue_reclaim(struct zone *zone,
2087                                         unsigned long nr_reclaimed,
2088                                         unsigned long nr_scanned,
2089                                         struct scan_control *sc)
2090 {
2091         unsigned long pages_for_compaction;
2092         unsigned long inactive_lru_pages;
2093
2094         /* If not in reclaim/compaction mode, stop */
2095         if (!in_reclaim_compaction(sc))
2096                 return false;
2097
2098         /* Consider stopping depending on scan and reclaim activity */
2099         if (sc->gfp_mask & __GFP_REPEAT) {
2100                 /*
2101                  * For __GFP_REPEAT allocations, stop reclaiming if the
2102                  * full LRU list has been scanned and we are still failing
2103                  * to reclaim pages. This full LRU scan is potentially
2104                  * expensive but a __GFP_REPEAT caller really wants to succeed
2105                  */
2106                 if (!nr_reclaimed && !nr_scanned)
2107                         return false;
2108         } else {
2109                 /*
2110                  * For non-__GFP_REPEAT allocations which can presumably
2111                  * fail without consequence, stop if we failed to reclaim
2112                  * any pages from the last SWAP_CLUSTER_MAX number of
2113                  * pages that were scanned. This will return to the
2114                  * caller faster at the risk reclaim/compaction and
2115                  * the resulting allocation attempt fails
2116                  */
2117                 if (!nr_reclaimed)
2118                         return false;
2119         }
2120
2121         /*
2122          * If we have not reclaimed enough pages for compaction and the
2123          * inactive lists are large enough, continue reclaiming
2124          */
2125         pages_for_compaction = (2UL << sc->order);
2126         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2127         if (get_nr_swap_pages() > 0)
2128                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2129         if (sc->nr_reclaimed < pages_for_compaction &&
2130                         inactive_lru_pages > pages_for_compaction)
2131                 return true;
2132
2133         /* If compaction would go ahead or the allocation would succeed, stop */
2134         switch (compaction_suitable(zone, sc->order)) {
2135         case COMPACT_PARTIAL:
2136         case COMPACT_CONTINUE:
2137                 return false;
2138         default:
2139                 return true;
2140         }
2141 }
2142
2143 static void
2144 __shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
2145 {
2146         unsigned long nr_reclaimed, nr_scanned;
2147
2148         do {
2149                 struct mem_cgroup *root = sc->target_mem_cgroup;
2150                 struct mem_cgroup_reclaim_cookie reclaim = {
2151                         .zone = zone,
2152                         .priority = sc->priority,
2153                 };
2154                 struct mem_cgroup *memcg = NULL;
2155                 mem_cgroup_iter_filter filter = (soft_reclaim) ?
2156                         mem_cgroup_soft_reclaim_eligible : NULL;
2157
2158                 nr_reclaimed = sc->nr_reclaimed;
2159                 nr_scanned = sc->nr_scanned;
2160
2161                 while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
2162                         struct lruvec *lruvec;
2163
2164                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2165
2166                         shrink_lruvec(lruvec, sc);
2167
2168                         /*
2169                          * Direct reclaim and kswapd have to scan all memory
2170                          * cgroups to fulfill the overall scan target for the
2171                          * zone.
2172                          *
2173                          * Limit reclaim, on the other hand, only cares about
2174                          * nr_to_reclaim pages to be reclaimed and it will
2175                          * retry with decreasing priority if one round over the
2176                          * whole hierarchy is not sufficient.
2177                          */
2178                         if (!global_reclaim(sc) &&
2179                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2180                                 mem_cgroup_iter_break(root, memcg);
2181                                 break;
2182                         }
2183                 }
2184
2185                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2186                            sc->nr_scanned - nr_scanned,
2187                            sc->nr_reclaimed - nr_reclaimed);
2188
2189         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2190                                          sc->nr_scanned - nr_scanned, sc));
2191 }
2192
2193
2194 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2195 {
2196         bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2197         unsigned long nr_scanned = sc->nr_scanned;
2198
2199         __shrink_zone(zone, sc, do_soft_reclaim);
2200
2201         /*
2202          * No group is over the soft limit or those that are do not have
2203          * pages in the zone we are reclaiming so we have to reclaim everybody
2204          */
2205         if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2206                 __shrink_zone(zone, sc, false);
2207                 return;
2208         }
2209 }
2210
2211 /* Returns true if compaction should go ahead for a high-order request */
2212 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2213 {
2214         unsigned long balance_gap, watermark;
2215         bool watermark_ok;
2216
2217         /* Do not consider compaction for orders reclaim is meant to satisfy */
2218         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2219                 return false;
2220
2221         /*
2222          * Compaction takes time to run and there are potentially other
2223          * callers using the pages just freed. Continue reclaiming until
2224          * there is a buffer of free pages available to give compaction
2225          * a reasonable chance of completing and allocating the page
2226          */
2227         balance_gap = min(low_wmark_pages(zone),
2228                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2229                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2230         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2231         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2232
2233         /*
2234          * If compaction is deferred, reclaim up to a point where
2235          * compaction will have a chance of success when re-enabled
2236          */
2237         if (compaction_deferred(zone, sc->order))
2238                 return watermark_ok;
2239
2240         /* If compaction is not ready to start, keep reclaiming */
2241         if (!compaction_suitable(zone, sc->order))
2242                 return false;
2243
2244         return watermark_ok;
2245 }
2246
2247 /*
2248  * This is the direct reclaim path, for page-allocating processes.  We only
2249  * try to reclaim pages from zones which will satisfy the caller's allocation
2250  * request.
2251  *
2252  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2253  * Because:
2254  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2255  *    allocation or
2256  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2257  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2258  *    zone defense algorithm.
2259  *
2260  * If a zone is deemed to be full of pinned pages then just give it a light
2261  * scan then give up on it.
2262  *
2263  * This function returns true if a zone is being reclaimed for a costly
2264  * high-order allocation and compaction is ready to begin. This indicates to
2265  * the caller that it should consider retrying the allocation instead of
2266  * further reclaim.
2267  */
2268 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2269 {
2270         struct zoneref *z;
2271         struct zone *zone;
2272         bool aborted_reclaim = false;
2273
2274         /*
2275          * If the number of buffer_heads in the machine exceeds the maximum
2276          * allowed level, force direct reclaim to scan the highmem zone as
2277          * highmem pages could be pinning lowmem pages storing buffer_heads
2278          */
2279         if (buffer_heads_over_limit)
2280                 sc->gfp_mask |= __GFP_HIGHMEM;
2281
2282         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2283                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2284                 if (!populated_zone(zone))
2285                         continue;
2286                 /*
2287                  * Take care memory controller reclaiming has small influence
2288                  * to global LRU.
2289                  */
2290                 if (global_reclaim(sc)) {
2291                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2292                                 continue;
2293                         if (sc->priority != DEF_PRIORITY &&
2294                             !zone_reclaimable(zone))
2295                                 continue;       /* Let kswapd poll it */
2296                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2297                                 /*
2298                                  * If we already have plenty of memory free for
2299                                  * compaction in this zone, don't free any more.
2300                                  * Even though compaction is invoked for any
2301                                  * non-zero order, only frequent costly order
2302                                  * reclamation is disruptive enough to become a
2303                                  * noticeable problem, like transparent huge
2304                                  * page allocations.
2305                                  */
2306                                 if (compaction_ready(zone, sc)) {
2307                                         aborted_reclaim = true;
2308                                         continue;
2309                                 }
2310                         }
2311                         /* need some check for avoid more shrink_zone() */
2312                 }
2313
2314                 shrink_zone(zone, sc);
2315         }
2316
2317         return aborted_reclaim;
2318 }
2319
2320 /* All zones in zonelist are unreclaimable? */
2321 static bool all_unreclaimable(struct zonelist *zonelist,
2322                 struct scan_control *sc)
2323 {
2324         struct zoneref *z;
2325         struct zone *zone;
2326
2327         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2328                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2329                 if (!populated_zone(zone))
2330                         continue;
2331                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2332                         continue;
2333                 if (zone_reclaimable(zone))
2334                         return false;
2335         }
2336
2337         return true;
2338 }
2339
2340 /*
2341  * This is the main entry point to direct page reclaim.
2342  *
2343  * If a full scan of the inactive list fails to free enough memory then we
2344  * are "out of memory" and something needs to be killed.
2345  *
2346  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2347  * high - the zone may be full of dirty or under-writeback pages, which this
2348  * caller can't do much about.  We kick the writeback threads and take explicit
2349  * naps in the hope that some of these pages can be written.  But if the
2350  * allocating task holds filesystem locks which prevent writeout this might not
2351  * work, and the allocation attempt will fail.
2352  *
2353  * returns:     0, if no pages reclaimed
2354  *              else, the number of pages reclaimed
2355  */
2356 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2357                                         struct scan_control *sc,
2358                                         struct shrink_control *shrink)
2359 {
2360         unsigned long total_scanned = 0;
2361         struct reclaim_state *reclaim_state = current->reclaim_state;
2362         struct zoneref *z;
2363         struct zone *zone;
2364         unsigned long writeback_threshold;
2365         bool aborted_reclaim;
2366
2367         delayacct_freepages_start();
2368
2369         if (global_reclaim(sc))
2370                 count_vm_event(ALLOCSTALL);
2371
2372         do {
2373                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2374                                 sc->priority);
2375                 sc->nr_scanned = 0;
2376                 aborted_reclaim = shrink_zones(zonelist, sc);
2377
2378                 /*
2379                  * Don't shrink slabs when reclaiming memory from over limit
2380                  * cgroups but do shrink slab at least once when aborting
2381                  * reclaim for compaction to avoid unevenly scanning file/anon
2382                  * LRU pages over slab pages.
2383                  */
2384                 if (global_reclaim(sc)) {
2385                         unsigned long lru_pages = 0;
2386                         for_each_zone_zonelist(zone, z, zonelist,
2387                                         gfp_zone(sc->gfp_mask)) {
2388                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2389                                         continue;
2390
2391                                 lru_pages += zone_reclaimable_pages(zone);
2392                         }
2393
2394                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2395                         if (reclaim_state) {
2396                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2397                                 reclaim_state->reclaimed_slab = 0;
2398                         }
2399                 }
2400                 total_scanned += sc->nr_scanned;
2401                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2402                         goto out;
2403
2404                 /*
2405                  * If we're getting trouble reclaiming, start doing
2406                  * writepage even in laptop mode.
2407                  */
2408                 if (sc->priority < DEF_PRIORITY - 2)
2409                         sc->may_writepage = 1;
2410
2411                 /*
2412                  * Try to write back as many pages as we just scanned.  This
2413                  * tends to cause slow streaming writers to write data to the
2414                  * disk smoothly, at the dirtying rate, which is nice.   But
2415                  * that's undesirable in laptop mode, where we *want* lumpy
2416                  * writeout.  So in laptop mode, write out the whole world.
2417                  */
2418                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2419                 if (total_scanned > writeback_threshold) {
2420                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2421                                                 WB_REASON_TRY_TO_FREE_PAGES);
2422                         sc->may_writepage = 1;
2423                 }
2424         } while (--sc->priority >= 0 && !aborted_reclaim);
2425
2426 out:
2427         delayacct_freepages_end();
2428
2429         if (sc->nr_reclaimed)
2430                 return sc->nr_reclaimed;
2431
2432         /*
2433          * As hibernation is going on, kswapd is freezed so that it can't mark
2434          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2435          * check.
2436          */
2437         if (oom_killer_disabled)
2438                 return 0;
2439
2440         /* Aborted reclaim to try compaction? don't OOM, then */
2441         if (aborted_reclaim)
2442                 return 1;
2443
2444         /* top priority shrink_zones still had more to do? don't OOM, then */
2445         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2446                 return 1;
2447
2448         return 0;
2449 }
2450
2451 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2452 {
2453         struct zone *zone;
2454         unsigned long pfmemalloc_reserve = 0;
2455         unsigned long free_pages = 0;
2456         int i;
2457         bool wmark_ok;
2458
2459         for (i = 0; i <= ZONE_NORMAL; i++) {
2460                 zone = &pgdat->node_zones[i];
2461                 pfmemalloc_reserve += min_wmark_pages(zone);
2462                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2463         }
2464
2465         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2466
2467         /* kswapd must be awake if processes are being throttled */
2468         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2469                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2470                                                 (enum zone_type)ZONE_NORMAL);
2471                 wake_up_interruptible(&pgdat->kswapd_wait);
2472         }
2473
2474         return wmark_ok;
2475 }
2476
2477 /*
2478  * Throttle direct reclaimers if backing storage is backed by the network
2479  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2480  * depleted. kswapd will continue to make progress and wake the processes
2481  * when the low watermark is reached.
2482  *
2483  * Returns true if a fatal signal was delivered during throttling. If this
2484  * happens, the page allocator should not consider triggering the OOM killer.
2485  */
2486 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2487                                         nodemask_t *nodemask)
2488 {
2489         struct zone *zone;
2490         int high_zoneidx = gfp_zone(gfp_mask);
2491         pg_data_t *pgdat;
2492
2493         /*
2494          * Kernel threads should not be throttled as they may be indirectly
2495          * responsible for cleaning pages necessary for reclaim to make forward
2496          * progress. kjournald for example may enter direct reclaim while
2497          * committing a transaction where throttling it could forcing other
2498          * processes to block on log_wait_commit().
2499          */
2500         if (current->flags & PF_KTHREAD)
2501                 goto out;
2502
2503         /*
2504          * If a fatal signal is pending, this process should not throttle.
2505          * It should return quickly so it can exit and free its memory
2506          */
2507         if (fatal_signal_pending(current))
2508                 goto out;
2509
2510         /* Check if the pfmemalloc reserves are ok */
2511         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2512         pgdat = zone->zone_pgdat;
2513         if (pfmemalloc_watermark_ok(pgdat))
2514                 goto out;
2515
2516         /* Account for the throttling */
2517         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2518
2519         /*
2520          * If the caller cannot enter the filesystem, it's possible that it
2521          * is due to the caller holding an FS lock or performing a journal
2522          * transaction in the case of a filesystem like ext[3|4]. In this case,
2523          * it is not safe to block on pfmemalloc_wait as kswapd could be
2524          * blocked waiting on the same lock. Instead, throttle for up to a
2525          * second before continuing.
2526          */
2527         if (!(gfp_mask & __GFP_FS)) {
2528                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2529                         pfmemalloc_watermark_ok(pgdat), HZ);
2530
2531                 goto check_pending;
2532         }
2533
2534         /* Throttle until kswapd wakes the process */
2535         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2536                 pfmemalloc_watermark_ok(pgdat));
2537
2538 check_pending:
2539         if (fatal_signal_pending(current))
2540                 return true;
2541
2542 out:
2543         return false;
2544 }
2545
2546 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2547                                 gfp_t gfp_mask, nodemask_t *nodemask)
2548 {
2549         unsigned long nr_reclaimed;
2550         struct scan_control sc = {
2551                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2552                 .may_writepage = !laptop_mode,
2553                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2554                 .may_unmap = 1,
2555                 .may_swap = 1,
2556                 .order = order,
2557                 .priority = DEF_PRIORITY,
2558                 .target_mem_cgroup = NULL,
2559                 .nodemask = nodemask,
2560         };
2561         struct shrink_control shrink = {
2562                 .gfp_mask = sc.gfp_mask,
2563         };
2564
2565         /*
2566          * Do not enter reclaim if fatal signal was delivered while throttled.
2567          * 1 is returned so that the page allocator does not OOM kill at this
2568          * point.
2569          */
2570         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2571                 return 1;
2572
2573         trace_mm_vmscan_direct_reclaim_begin(order,
2574                                 sc.may_writepage,
2575                                 gfp_mask);
2576
2577         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2578
2579         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2580
2581         return nr_reclaimed;
2582 }
2583
2584 #ifdef CONFIG_MEMCG
2585
2586 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2587                                                 gfp_t gfp_mask, bool noswap,
2588                                                 struct zone *zone,
2589                                                 unsigned long *nr_scanned)
2590 {
2591         struct scan_control sc = {
2592                 .nr_scanned = 0,
2593                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2594                 .may_writepage = !laptop_mode,
2595                 .may_unmap = 1,
2596                 .may_swap = !noswap,
2597                 .order = 0,
2598                 .priority = 0,
2599                 .target_mem_cgroup = memcg,
2600         };
2601         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2602
2603         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2604                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2605
2606         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2607                                                       sc.may_writepage,
2608                                                       sc.gfp_mask);
2609
2610         /*
2611          * NOTE: Although we can get the priority field, using it
2612          * here is not a good idea, since it limits the pages we can scan.
2613          * if we don't reclaim here, the shrink_zone from balance_pgdat
2614          * will pick up pages from other mem cgroup's as well. We hack
2615          * the priority and make it zero.
2616          */
2617         shrink_lruvec(lruvec, &sc);
2618
2619         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2620
2621         *nr_scanned = sc.nr_scanned;
2622         return sc.nr_reclaimed;
2623 }
2624
2625 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2626                                            gfp_t gfp_mask,
2627                                            bool noswap)
2628 {
2629         struct zonelist *zonelist;
2630         unsigned long nr_reclaimed;
2631         int nid;
2632         struct scan_control sc = {
2633                 .may_writepage = !laptop_mode,
2634                 .may_unmap = 1,
2635                 .may_swap = !noswap,
2636                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2637                 .order = 0,
2638                 .priority = DEF_PRIORITY,
2639                 .target_mem_cgroup = memcg,
2640                 .nodemask = NULL, /* we don't care the placement */
2641                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2642                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2643         };
2644         struct shrink_control shrink = {
2645                 .gfp_mask = sc.gfp_mask,
2646         };
2647
2648         /*
2649          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2650          * take care of from where we get pages. So the node where we start the
2651          * scan does not need to be the current node.
2652          */
2653         nid = mem_cgroup_select_victim_node(memcg);
2654
2655         zonelist = NODE_DATA(nid)->node_zonelists;
2656
2657         trace_mm_vmscan_memcg_reclaim_begin(0,
2658                                             sc.may_writepage,
2659                                             sc.gfp_mask);
2660
2661         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2662
2663         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2664
2665         return nr_reclaimed;
2666 }
2667 #endif
2668
2669 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2670 {
2671         struct mem_cgroup *memcg;
2672
2673         if (!total_swap_pages)
2674                 return;
2675
2676         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2677         do {
2678                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2679
2680                 if (inactive_anon_is_low(lruvec))
2681                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2682                                            sc, LRU_ACTIVE_ANON);
2683
2684                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2685         } while (memcg);
2686 }
2687
2688 static bool zone_balanced(struct zone *zone, int order,
2689                           unsigned long balance_gap, int classzone_idx)
2690 {
2691         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2692                                     balance_gap, classzone_idx, 0))
2693                 return false;
2694
2695         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2696             !compaction_suitable(zone, order))
2697                 return false;
2698
2699         return true;
2700 }
2701
2702 /*
2703  * pgdat_balanced() is used when checking if a node is balanced.
2704  *
2705  * For order-0, all zones must be balanced!
2706  *
2707  * For high-order allocations only zones that meet watermarks and are in a
2708  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2709  * total of balanced pages must be at least 25% of the zones allowed by
2710  * classzone_idx for the node to be considered balanced. Forcing all zones to
2711  * be balanced for high orders can cause excessive reclaim when there are
2712  * imbalanced zones.
2713  * The choice of 25% is due to
2714  *   o a 16M DMA zone that is balanced will not balance a zone on any
2715  *     reasonable sized machine
2716  *   o On all other machines, the top zone must be at least a reasonable
2717  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2718  *     would need to be at least 256M for it to be balance a whole node.
2719  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2720  *     to balance a node on its own. These seemed like reasonable ratios.
2721  */
2722 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2723 {
2724         unsigned long managed_pages = 0;
2725         unsigned long balanced_pages = 0;
2726         int i;
2727
2728         /* Check the watermark levels */
2729         for (i = 0; i <= classzone_idx; i++) {
2730                 struct zone *zone = pgdat->node_zones + i;
2731
2732                 if (!populated_zone(zone))
2733                         continue;
2734
2735                 managed_pages += zone->managed_pages;
2736
2737                 /*
2738                  * A special case here:
2739                  *
2740                  * balance_pgdat() skips over all_unreclaimable after
2741                  * DEF_PRIORITY. Effectively, it considers them balanced so
2742                  * they must be considered balanced here as well!
2743                  */
2744                 if (!zone_reclaimable(zone)) {
2745                         balanced_pages += zone->managed_pages;
2746                         continue;
2747                 }
2748
2749                 if (zone_balanced(zone, order, 0, i))
2750                         balanced_pages += zone->managed_pages;
2751                 else if (!order)
2752                         return false;
2753         }
2754
2755         if (order)
2756                 return balanced_pages >= (managed_pages >> 2);
2757         else
2758                 return true;
2759 }
2760
2761 /*
2762  * Prepare kswapd for sleeping. This verifies that there are no processes
2763  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2764  *
2765  * Returns true if kswapd is ready to sleep
2766  */
2767 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2768                                         int classzone_idx)
2769 {
2770         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2771         if (remaining)
2772                 return false;
2773
2774         /*
2775          * There is a potential race between when kswapd checks its watermarks
2776          * and a process gets throttled. There is also a potential race if
2777          * processes get throttled, kswapd wakes, a large process exits therby
2778          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2779          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2780          * so wake them now if necessary. If necessary, processes will wake
2781          * kswapd and get throttled again
2782          */
2783         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2784                 wake_up(&pgdat->pfmemalloc_wait);
2785                 return false;
2786         }
2787
2788         return pgdat_balanced(pgdat, order, classzone_idx);
2789 }
2790
2791 /*
2792  * kswapd shrinks the zone by the number of pages required to reach
2793  * the high watermark.
2794  *
2795  * Returns true if kswapd scanned at least the requested number of pages to
2796  * reclaim or if the lack of progress was due to pages under writeback.
2797  * This is used to determine if the scanning priority needs to be raised.
2798  */
2799 static bool kswapd_shrink_zone(struct zone *zone,
2800                                int classzone_idx,
2801                                struct scan_control *sc,
2802                                unsigned long lru_pages,
2803                                unsigned long *nr_attempted)
2804 {
2805         int testorder = sc->order;
2806         unsigned long balance_gap;
2807         struct reclaim_state *reclaim_state = current->reclaim_state;
2808         struct shrink_control shrink = {
2809                 .gfp_mask = sc->gfp_mask,
2810         };
2811         bool lowmem_pressure;
2812
2813         /* Reclaim above the high watermark. */
2814         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2815
2816         /*
2817          * Kswapd reclaims only single pages with compaction enabled. Trying
2818          * too hard to reclaim until contiguous free pages have become
2819          * available can hurt performance by evicting too much useful data
2820          * from memory. Do not reclaim more than needed for compaction.
2821          */
2822         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2823                         compaction_suitable(zone, sc->order) !=
2824                                 COMPACT_SKIPPED)
2825                 testorder = 0;
2826
2827         /*
2828          * We put equal pressure on every zone, unless one zone has way too
2829          * many pages free already. The "too many pages" is defined as the
2830          * high wmark plus a "gap" where the gap is either the low
2831          * watermark or 1% of the zone, whichever is smaller.
2832          */
2833         balance_gap = min(low_wmark_pages(zone),
2834                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2835                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2836
2837         /*
2838          * If there is no low memory pressure or the zone is balanced then no
2839          * reclaim is necessary
2840          */
2841         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2842         if (!lowmem_pressure && zone_balanced(zone, testorder,
2843                                                 balance_gap, classzone_idx))
2844                 return true;
2845
2846         shrink_zone(zone, sc);
2847
2848         reclaim_state->reclaimed_slab = 0;
2849         shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2850         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2851
2852         /* Account for the number of pages attempted to reclaim */
2853         *nr_attempted += sc->nr_to_reclaim;
2854
2855         zone_clear_flag(zone, ZONE_WRITEBACK);
2856
2857         /*
2858          * If a zone reaches its high watermark, consider it to be no longer
2859          * congested. It's possible there are dirty pages backed by congested
2860          * BDIs but as pressure is relieved, speculatively avoid congestion
2861          * waits.
2862          */
2863         if (zone_reclaimable(zone) &&
2864             zone_balanced(zone, testorder, 0, classzone_idx)) {
2865                 zone_clear_flag(zone, ZONE_CONGESTED);
2866                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2867         }
2868
2869         return sc->nr_scanned >= sc->nr_to_reclaim;
2870 }
2871
2872 /*
2873  * For kswapd, balance_pgdat() will work across all this node's zones until
2874  * they are all at high_wmark_pages(zone).
2875  *
2876  * Returns the final order kswapd was reclaiming at
2877  *
2878  * There is special handling here for zones which are full of pinned pages.
2879  * This can happen if the pages are all mlocked, or if they are all used by
2880  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2881  * What we do is to detect the case where all pages in the zone have been
2882  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2883  * dead and from now on, only perform a short scan.  Basically we're polling
2884  * the zone for when the problem goes away.
2885  *
2886  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2887  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2888  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2889  * lower zones regardless of the number of free pages in the lower zones. This
2890  * interoperates with the page allocator fallback scheme to ensure that aging
2891  * of pages is balanced across the zones.
2892  */
2893 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2894                                                         int *classzone_idx)
2895 {
2896         int i;
2897         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2898         struct scan_control sc = {
2899                 .gfp_mask = GFP_KERNEL,
2900                 .priority = DEF_PRIORITY,
2901                 .may_unmap = 1,
2902                 .may_swap = 1,
2903                 .may_writepage = !laptop_mode,
2904                 .order = order,
2905                 .target_mem_cgroup = NULL,
2906         };
2907         count_vm_event(PAGEOUTRUN);
2908
2909         do {
2910                 unsigned long lru_pages = 0;
2911                 unsigned long nr_attempted = 0;
2912                 bool raise_priority = true;
2913                 bool pgdat_needs_compaction = (order > 0);
2914
2915                 sc.nr_reclaimed = 0;
2916
2917                 /*
2918                  * Scan in the highmem->dma direction for the highest
2919                  * zone which needs scanning
2920                  */
2921                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2922                         struct zone *zone = pgdat->node_zones + i;
2923
2924                         if (!populated_zone(zone))
2925                                 continue;
2926
2927                         if (sc.priority != DEF_PRIORITY &&
2928                             !zone_reclaimable(zone))
2929                                 continue;
2930
2931                         /*
2932                          * Do some background aging of the anon list, to give
2933                          * pages a chance to be referenced before reclaiming.
2934                          */
2935                         age_active_anon(zone, &sc);
2936
2937                         /*
2938                          * If the number of buffer_heads in the machine
2939                          * exceeds the maximum allowed level and this node
2940                          * has a highmem zone, force kswapd to reclaim from
2941                          * it to relieve lowmem pressure.
2942                          */
2943                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2944                                 end_zone = i;
2945                                 break;
2946                         }
2947
2948                         if (!zone_balanced(zone, order, 0, 0)) {
2949                                 end_zone = i;
2950                                 break;
2951                         } else {
2952                                 /*
2953                                  * If balanced, clear the dirty and congested
2954                                  * flags
2955                                  */
2956                                 zone_clear_flag(zone, ZONE_CONGESTED);
2957                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2958                         }
2959                 }
2960
2961                 if (i < 0)
2962                         goto out;
2963
2964                 for (i = 0; i <= end_zone; i++) {
2965                         struct zone *zone = pgdat->node_zones + i;
2966
2967                         if (!populated_zone(zone))
2968                                 continue;
2969
2970                         lru_pages += zone_reclaimable_pages(zone);
2971
2972                         /*
2973                          * If any zone is currently balanced then kswapd will
2974                          * not call compaction as it is expected that the
2975                          * necessary pages are already available.
2976                          */
2977                         if (pgdat_needs_compaction &&
2978                                         zone_watermark_ok(zone, order,
2979                                                 low_wmark_pages(zone),
2980                                                 *classzone_idx, 0))
2981                                 pgdat_needs_compaction = false;
2982                 }
2983
2984                 /*
2985                  * If we're getting trouble reclaiming, start doing writepage
2986                  * even in laptop mode.
2987                  */
2988                 if (sc.priority < DEF_PRIORITY - 2)
2989                         sc.may_writepage = 1;
2990
2991                 /*
2992                  * Now scan the zone in the dma->highmem direction, stopping
2993                  * at the last zone which needs scanning.
2994                  *
2995                  * We do this because the page allocator works in the opposite
2996                  * direction.  This prevents the page allocator from allocating
2997                  * pages behind kswapd's direction of progress, which would
2998                  * cause too much scanning of the lower zones.
2999                  */
3000                 for (i = 0; i <= end_zone; i++) {
3001                         struct zone *zone = pgdat->node_zones + i;
3002
3003                         if (!populated_zone(zone))
3004                                 continue;
3005
3006                         if (sc.priority != DEF_PRIORITY &&
3007                             !zone_reclaimable(zone))
3008                                 continue;
3009
3010                         sc.nr_scanned = 0;
3011
3012                         /*
3013                          * There should be no need to raise the scanning
3014                          * priority if enough pages are already being scanned
3015                          * that that high watermark would be met at 100%
3016                          * efficiency.
3017                          */
3018                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3019                                         lru_pages, &nr_attempted))
3020                                 raise_priority = false;
3021                 }
3022
3023                 /*
3024                  * If the low watermark is met there is no need for processes
3025                  * to be throttled on pfmemalloc_wait as they should not be
3026                  * able to safely make forward progress. Wake them
3027                  */
3028                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3029                                 pfmemalloc_watermark_ok(pgdat))
3030                         wake_up(&pgdat->pfmemalloc_wait);
3031
3032                 /*
3033                  * Fragmentation may mean that the system cannot be rebalanced
3034                  * for high-order allocations in all zones. If twice the
3035                  * allocation size has been reclaimed and the zones are still
3036                  * not balanced then recheck the watermarks at order-0 to
3037                  * prevent kswapd reclaiming excessively. Assume that a
3038                  * process requested a high-order can direct reclaim/compact.
3039                  */
3040                 if (order && sc.nr_reclaimed >= 2UL << order)
3041                         order = sc.order = 0;
3042
3043                 /* Check if kswapd should be suspending */
3044                 if (try_to_freeze() || kthread_should_stop())
3045                         break;
3046
3047                 /*
3048                  * Compact if necessary and kswapd is reclaiming at least the
3049                  * high watermark number of pages as requsted
3050                  */
3051                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3052                         compact_pgdat(pgdat, order);
3053
3054                 /*
3055                  * Raise priority if scanning rate is too low or there was no
3056                  * progress in reclaiming pages
3057                  */
3058                 if (raise_priority || !sc.nr_reclaimed)
3059                         sc.priority--;
3060         } while (sc.priority >= 1 &&
3061                  !pgdat_balanced(pgdat, order, *classzone_idx));
3062
3063 out:
3064         /*
3065          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3066          * makes a decision on the order we were last reclaiming at. However,
3067          * if another caller entered the allocator slow path while kswapd
3068          * was awake, order will remain at the higher level
3069          */
3070         *classzone_idx = end_zone;
3071         return order;
3072 }
3073
3074 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3075 {
3076         long remaining = 0;
3077         DEFINE_WAIT(wait);
3078
3079         if (freezing(current) || kthread_should_stop())
3080                 return;
3081
3082         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3083
3084         /* Try to sleep for a short interval */
3085         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3086                 remaining = schedule_timeout(HZ/10);
3087                 finish_wait(&pgdat->kswapd_wait, &wait);
3088                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3089         }
3090
3091         /*
3092          * After a short sleep, check if it was a premature sleep. If not, then
3093          * go fully to sleep until explicitly woken up.
3094          */
3095         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3096                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3097
3098                 /*
3099                  * vmstat counters are not perfectly accurate and the estimated
3100                  * value for counters such as NR_FREE_PAGES can deviate from the
3101                  * true value by nr_online_cpus * threshold. To avoid the zone
3102                  * watermarks being breached while under pressure, we reduce the
3103                  * per-cpu vmstat threshold while kswapd is awake and restore
3104                  * them before going back to sleep.
3105                  */
3106                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3107
3108                 /*
3109                  * Compaction records what page blocks it recently failed to
3110                  * isolate pages from and skips them in the future scanning.
3111                  * When kswapd is going to sleep, it is reasonable to assume
3112                  * that pages and compaction may succeed so reset the cache.
3113                  */
3114                 reset_isolation_suitable(pgdat);
3115
3116                 if (!kthread_should_stop())
3117                         schedule();
3118
3119                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3120         } else {
3121                 if (remaining)
3122                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3123                 else
3124                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3125         }
3126         finish_wait(&pgdat->kswapd_wait, &wait);
3127 }
3128
3129 /*
3130  * The background pageout daemon, started as a kernel thread
3131  * from the init process.
3132  *
3133  * This basically trickles out pages so that we have _some_
3134  * free memory available even if there is no other activity
3135  * that frees anything up. This is needed for things like routing
3136  * etc, where we otherwise might have all activity going on in
3137  * asynchronous contexts that cannot page things out.
3138  *
3139  * If there are applications that are active memory-allocators
3140  * (most normal use), this basically shouldn't matter.
3141  */
3142 static int kswapd(void *p)
3143 {
3144         unsigned long order, new_order;
3145         unsigned balanced_order;
3146         int classzone_idx, new_classzone_idx;
3147         int balanced_classzone_idx;
3148         pg_data_t *pgdat = (pg_data_t*)p;
3149         struct task_struct *tsk = current;
3150
3151         struct reclaim_state reclaim_state = {
3152                 .reclaimed_slab = 0,
3153         };
3154         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3155
3156         lockdep_set_current_reclaim_state(GFP_KERNEL);
3157
3158         if (!cpumask_empty(cpumask))
3159                 set_cpus_allowed_ptr(tsk, cpumask);
3160         current->reclaim_state = &reclaim_state;
3161
3162         /*
3163          * Tell the memory management that we're a "memory allocator",
3164          * and that if we need more memory we should get access to it
3165          * regardless (see "__alloc_pages()"). "kswapd" should
3166          * never get caught in the normal page freeing logic.
3167          *
3168          * (Kswapd normally doesn't need memory anyway, but sometimes
3169          * you need a small amount of memory in order to be able to
3170          * page out something else, and this flag essentially protects
3171          * us from recursively trying to free more memory as we're
3172          * trying to free the first piece of memory in the first place).
3173          */
3174         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3175         set_freezable();
3176
3177         order = new_order = 0;
3178         balanced_order = 0;
3179         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3180         balanced_classzone_idx = classzone_idx;
3181         for ( ; ; ) {
3182                 bool ret;
3183
3184                 /*
3185                  * If the last balance_pgdat was unsuccessful it's unlikely a
3186                  * new request of a similar or harder type will succeed soon
3187                  * so consider going to sleep on the basis we reclaimed at
3188                  */
3189                 if (balanced_classzone_idx >= new_classzone_idx &&
3190                                         balanced_order == new_order) {
3191                         new_order = pgdat->kswapd_max_order;
3192                         new_classzone_idx = pgdat->classzone_idx;
3193                         pgdat->kswapd_max_order =  0;
3194                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3195                 }
3196
3197                 if (order < new_order || classzone_idx > new_classzone_idx) {
3198                         /*
3199                          * Don't sleep if someone wants a larger 'order'
3200                          * allocation or has tigher zone constraints
3201                          */
3202                         order = new_order;
3203                         classzone_idx = new_classzone_idx;
3204                 } else {
3205                         kswapd_try_to_sleep(pgdat, balanced_order,
3206                                                 balanced_classzone_idx);
3207                         order = pgdat->kswapd_max_order;
3208                         classzone_idx = pgdat->classzone_idx;
3209                         new_order = order;
3210                         new_classzone_idx = classzone_idx;
3211                         pgdat->kswapd_max_order = 0;
3212                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3213                 }
3214
3215                 ret = try_to_freeze();
3216                 if (kthread_should_stop())
3217                         break;
3218
3219                 /*
3220                  * We can speed up thawing tasks if we don't call balance_pgdat
3221                  * after returning from the refrigerator
3222                  */
3223                 if (!ret) {
3224                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3225                         balanced_classzone_idx = classzone_idx;
3226                         balanced_order = balance_pgdat(pgdat, order,
3227                                                 &balanced_classzone_idx);
3228                 }
3229         }
3230
3231         current->reclaim_state = NULL;
3232         return 0;
3233 }
3234
3235 /*
3236  * A zone is low on free memory, so wake its kswapd task to service it.
3237  */
3238 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3239 {
3240         pg_data_t *pgdat;
3241
3242         if (!populated_zone(zone))
3243                 return;
3244
3245         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3246                 return;
3247         pgdat = zone->zone_pgdat;
3248         if (pgdat->kswapd_max_order < order) {
3249                 pgdat->kswapd_max_order = order;
3250                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3251         }
3252         if (!waitqueue_active(&pgdat->kswapd_wait))
3253                 return;
3254         if (zone_balanced(zone, order, 0, 0))
3255                 return;
3256
3257         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3258         wake_up_interruptible(&pgdat->kswapd_wait);
3259 }
3260
3261 /*
3262  * The reclaimable count would be mostly accurate.
3263  * The less reclaimable pages may be
3264  * - mlocked pages, which will be moved to unevictable list when encountered
3265  * - mapped pages, which may require several travels to be reclaimed
3266  * - dirty pages, which is not "instantly" reclaimable
3267  */
3268 unsigned long global_reclaimable_pages(void)
3269 {
3270         int nr;
3271
3272         nr = global_page_state(NR_ACTIVE_FILE) +
3273              global_page_state(NR_INACTIVE_FILE);
3274
3275         if (get_nr_swap_pages() > 0)
3276                 nr += global_page_state(NR_ACTIVE_ANON) +
3277                       global_page_state(NR_INACTIVE_ANON);
3278
3279         return nr;
3280 }
3281
3282 #ifdef CONFIG_HIBERNATION
3283 /*
3284  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3285  * freed pages.
3286  *
3287  * Rather than trying to age LRUs the aim is to preserve the overall
3288  * LRU order by reclaiming preferentially
3289  * inactive > active > active referenced > active mapped
3290  */
3291 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3292 {
3293         struct reclaim_state reclaim_state;
3294         struct scan_control sc = {
3295                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3296                 .may_swap = 1,
3297                 .may_unmap = 1,
3298                 .may_writepage = 1,
3299                 .nr_to_reclaim = nr_to_reclaim,
3300                 .hibernation_mode = 1,
3301                 .order = 0,
3302                 .priority = DEF_PRIORITY,
3303         };
3304         struct shrink_control shrink = {
3305                 .gfp_mask = sc.gfp_mask,
3306         };
3307         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3308         struct task_struct *p = current;
3309         unsigned long nr_reclaimed;
3310
3311         p->flags |= PF_MEMALLOC;
3312         lockdep_set_current_reclaim_state(sc.gfp_mask);
3313         reclaim_state.reclaimed_slab = 0;
3314         p->reclaim_state = &reclaim_state;
3315
3316         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3317
3318         p->reclaim_state = NULL;
3319         lockdep_clear_current_reclaim_state();
3320         p->flags &= ~PF_MEMALLOC;
3321
3322         return nr_reclaimed;
3323 }
3324 #endif /* CONFIG_HIBERNATION */
3325
3326 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3327    not required for correctness.  So if the last cpu in a node goes
3328    away, we get changed to run anywhere: as the first one comes back,
3329    restore their cpu bindings. */
3330 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3331                         void *hcpu)
3332 {
3333         int nid;
3334
3335         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3336                 for_each_node_state(nid, N_MEMORY) {
3337                         pg_data_t *pgdat = NODE_DATA(nid);
3338                         const struct cpumask *mask;
3339
3340                         mask = cpumask_of_node(pgdat->node_id);
3341
3342                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3343                                 /* One of our CPUs online: restore mask */
3344                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3345                 }
3346         }
3347         return NOTIFY_OK;
3348 }
3349
3350 /*
3351  * This kswapd start function will be called by init and node-hot-add.
3352  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3353  */
3354 int kswapd_run(int nid)
3355 {
3356         pg_data_t *pgdat = NODE_DATA(nid);
3357         int ret = 0;
3358
3359         if (pgdat->kswapd)
3360                 return 0;
3361
3362         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3363         if (IS_ERR(pgdat->kswapd)) {
3364                 /* failure at boot is fatal */
3365                 BUG_ON(system_state == SYSTEM_BOOTING);
3366                 pr_err("Failed to start kswapd on node %d\n", nid);
3367                 ret = PTR_ERR(pgdat->kswapd);
3368                 pgdat->kswapd = NULL;
3369         }
3370         return ret;
3371 }
3372
3373 /*
3374  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3375  * hold lock_memory_hotplug().
3376  */
3377 void kswapd_stop(int nid)
3378 {
3379         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3380
3381         if (kswapd) {
3382                 kthread_stop(kswapd);
3383                 NODE_DATA(nid)->kswapd = NULL;
3384         }
3385 }
3386
3387 static int __init kswapd_init(void)
3388 {
3389         int nid;
3390
3391         swap_setup();
3392         for_each_node_state(nid, N_MEMORY)
3393                 kswapd_run(nid);
3394         hotcpu_notifier(cpu_callback, 0);
3395         return 0;
3396 }
3397
3398 module_init(kswapd_init)
3399
3400 #ifdef CONFIG_NUMA
3401 /*
3402  * Zone reclaim mode
3403  *
3404  * If non-zero call zone_reclaim when the number of free pages falls below
3405  * the watermarks.
3406  */
3407 int zone_reclaim_mode __read_mostly;
3408
3409 #define RECLAIM_OFF 0
3410 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3411 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3412 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3413
3414 /*
3415  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3416  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3417  * a zone.
3418  */
3419 #define ZONE_RECLAIM_PRIORITY 4
3420
3421 /*
3422  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3423  * occur.
3424  */
3425 int sysctl_min_unmapped_ratio = 1;
3426
3427 /*
3428  * If the number of slab pages in a zone grows beyond this percentage then
3429  * slab reclaim needs to occur.
3430  */
3431 int sysctl_min_slab_ratio = 5;
3432
3433 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3434 {
3435         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3436         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3437                 zone_page_state(zone, NR_ACTIVE_FILE);
3438
3439         /*
3440          * It's possible for there to be more file mapped pages than
3441          * accounted for by the pages on the file LRU lists because
3442          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3443          */
3444         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3445 }
3446
3447 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3448 static long zone_pagecache_reclaimable(struct zone *zone)
3449 {
3450         long nr_pagecache_reclaimable;
3451         long delta = 0;
3452
3453         /*
3454          * If RECLAIM_SWAP is set, then all file pages are considered
3455          * potentially reclaimable. Otherwise, we have to worry about
3456          * pages like swapcache and zone_unmapped_file_pages() provides
3457          * a better estimate
3458          */
3459         if (zone_reclaim_mode & RECLAIM_SWAP)
3460                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3461         else
3462                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3463
3464         /* If we can't clean pages, remove dirty pages from consideration */
3465         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3466                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3467
3468         /* Watch for any possible underflows due to delta */
3469         if (unlikely(delta > nr_pagecache_reclaimable))
3470                 delta = nr_pagecache_reclaimable;
3471
3472         return nr_pagecache_reclaimable - delta;
3473 }
3474
3475 /*
3476  * Try to free up some pages from this zone through reclaim.
3477  */
3478 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3479 {
3480         /* Minimum pages needed in order to stay on node */
3481         const unsigned long nr_pages = 1 << order;
3482         struct task_struct *p = current;
3483         struct reclaim_state reclaim_state;
3484         struct scan_control sc = {
3485                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3486                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3487                 .may_swap = 1,
3488                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3489                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3490                 .order = order,
3491                 .priority = ZONE_RECLAIM_PRIORITY,
3492         };
3493         struct shrink_control shrink = {
3494                 .gfp_mask = sc.gfp_mask,
3495         };
3496         unsigned long nr_slab_pages0, nr_slab_pages1;
3497
3498         cond_resched();
3499         /*
3500          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3501          * and we also need to be able to write out pages for RECLAIM_WRITE
3502          * and RECLAIM_SWAP.
3503          */
3504         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3505         lockdep_set_current_reclaim_state(gfp_mask);
3506         reclaim_state.reclaimed_slab = 0;
3507         p->reclaim_state = &reclaim_state;
3508
3509         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3510                 /*
3511                  * Free memory by calling shrink zone with increasing
3512                  * priorities until we have enough memory freed.
3513                  */
3514                 do {
3515                         shrink_zone(zone, &sc);
3516                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3517         }
3518
3519         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3520         if (nr_slab_pages0 > zone->min_slab_pages) {
3521                 /*
3522                  * shrink_slab() does not currently allow us to determine how
3523                  * many pages were freed in this zone. So we take the current
3524                  * number of slab pages and shake the slab until it is reduced
3525                  * by the same nr_pages that we used for reclaiming unmapped
3526                  * pages.
3527                  *
3528                  * Note that shrink_slab will free memory on all zones and may
3529                  * take a long time.
3530                  */
3531                 for (;;) {
3532                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3533
3534                         /* No reclaimable slab or very low memory pressure */
3535                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3536                                 break;
3537
3538                         /* Freed enough memory */
3539                         nr_slab_pages1 = zone_page_state(zone,
3540                                                         NR_SLAB_RECLAIMABLE);
3541                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3542                                 break;
3543                 }
3544
3545                 /*
3546                  * Update nr_reclaimed by the number of slab pages we
3547                  * reclaimed from this zone.
3548                  */
3549                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3550                 if (nr_slab_pages1 < nr_slab_pages0)
3551                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3552         }
3553
3554         p->reclaim_state = NULL;
3555         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3556         lockdep_clear_current_reclaim_state();
3557         return sc.nr_reclaimed >= nr_pages;
3558 }
3559
3560 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3561 {
3562         int node_id;
3563         int ret;
3564
3565         /*
3566          * Zone reclaim reclaims unmapped file backed pages and
3567          * slab pages if we are over the defined limits.
3568          *
3569          * A small portion of unmapped file backed pages is needed for
3570          * file I/O otherwise pages read by file I/O will be immediately
3571          * thrown out if the zone is overallocated. So we do not reclaim
3572          * if less than a specified percentage of the zone is used by
3573          * unmapped file backed pages.
3574          */
3575         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3576             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3577                 return ZONE_RECLAIM_FULL;
3578
3579         if (!zone_reclaimable(zone))
3580                 return ZONE_RECLAIM_FULL;
3581
3582         /*
3583          * Do not scan if the allocation should not be delayed.
3584          */
3585         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3586                 return ZONE_RECLAIM_NOSCAN;
3587
3588         /*
3589          * Only run zone reclaim on the local zone or on zones that do not
3590          * have associated processors. This will favor the local processor
3591          * over remote processors and spread off node memory allocations
3592          * as wide as possible.
3593          */
3594         node_id = zone_to_nid(zone);
3595         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3596                 return ZONE_RECLAIM_NOSCAN;
3597
3598         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3599                 return ZONE_RECLAIM_NOSCAN;
3600
3601         ret = __zone_reclaim(zone, gfp_mask, order);
3602         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3603
3604         if (!ret)
3605                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3606
3607         return ret;
3608 }
3609 #endif
3610
3611 /*
3612  * page_evictable - test whether a page is evictable
3613  * @page: the page to test
3614  *
3615  * Test whether page is evictable--i.e., should be placed on active/inactive
3616  * lists vs unevictable list.
3617  *
3618  * Reasons page might not be evictable:
3619  * (1) page's mapping marked unevictable
3620  * (2) page is part of an mlocked VMA
3621  *
3622  */
3623 int page_evictable(struct page *page)
3624 {
3625         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3626 }
3627
3628 #ifdef CONFIG_SHMEM
3629 /**
3630  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3631  * @pages:      array of pages to check
3632  * @nr_pages:   number of pages to check
3633  *
3634  * Checks pages for evictability and moves them to the appropriate lru list.
3635  *
3636  * This function is only used for SysV IPC SHM_UNLOCK.
3637  */
3638 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3639 {
3640         struct lruvec *lruvec;
3641         struct zone *zone = NULL;
3642         int pgscanned = 0;
3643         int pgrescued = 0;
3644         int i;
3645
3646         for (i = 0; i < nr_pages; i++) {
3647                 struct page *page = pages[i];
3648                 struct zone *pagezone;
3649
3650                 pgscanned++;
3651                 pagezone = page_zone(page);
3652                 if (pagezone != zone) {
3653                         if (zone)
3654                                 spin_unlock_irq(&zone->lru_lock);
3655                         zone = pagezone;
3656                         spin_lock_irq(&zone->lru_lock);
3657                 }
3658                 lruvec = mem_cgroup_page_lruvec(page, zone);
3659
3660                 if (!PageLRU(page) || !PageUnevictable(page))
3661                         continue;
3662
3663                 if (page_evictable(page)) {
3664                         enum lru_list lru = page_lru_base_type(page);
3665
3666                         VM_BUG_ON(PageActive(page));
3667                         ClearPageUnevictable(page);
3668                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3669                         add_page_to_lru_list(page, lruvec, lru);
3670                         pgrescued++;
3671                 }
3672         }
3673
3674         if (zone) {
3675                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3676                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3677                 spin_unlock_irq(&zone->lru_lock);
3678         }
3679 }
3680 #endif /* CONFIG_SHMEM */
3681
3682 static void warn_scan_unevictable_pages(void)
3683 {
3684         printk_once(KERN_WARNING
3685                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3686                     "disabled for lack of a legitimate use case.  If you have "
3687                     "one, please send an email to linux-mm@kvack.org.\n",
3688                     current->comm);
3689 }
3690
3691 /*
3692  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3693  * all nodes' unevictable lists for evictable pages
3694  */
3695 unsigned long scan_unevictable_pages;
3696
3697 int scan_unevictable_handler(struct ctl_table *table, int write,
3698                            void __user *buffer,
3699                            size_t *length, loff_t *ppos)
3700 {
3701         warn_scan_unevictable_pages();
3702         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3703         scan_unevictable_pages = 0;
3704         return 0;
3705 }
3706
3707 #ifdef CONFIG_NUMA
3708 /*
3709  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3710  * a specified node's per zone unevictable lists for evictable pages.
3711  */
3712
3713 static ssize_t read_scan_unevictable_node(struct device *dev,
3714                                           struct device_attribute *attr,
3715                                           char *buf)
3716 {
3717         warn_scan_unevictable_pages();
3718         return sprintf(buf, "0\n");     /* always zero; should fit... */
3719 }
3720
3721 static ssize_t write_scan_unevictable_node(struct device *dev,
3722                                            struct device_attribute *attr,
3723                                         const char *buf, size_t count)
3724 {
3725         warn_scan_unevictable_pages();
3726         return 1;
3727 }
3728
3729
3730 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3731                         read_scan_unevictable_node,
3732                         write_scan_unevictable_node);
3733
3734 int scan_unevictable_register_node(struct node *node)
3735 {
3736         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3737 }
3738
3739 void scan_unevictable_unregister_node(struct node *node)
3740 {
3741         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3742 }
3743 #endif