d6c916d808ba2248e112a3dc3767647abf857fc3
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /*
673  * shrink_page_list() returns the number of reclaimed pages
674  */
675 static unsigned long shrink_page_list(struct list_head *page_list,
676                                       struct zone *zone,
677                                       struct scan_control *sc,
678                                       enum ttu_flags ttu_flags,
679                                       unsigned long *ret_nr_unqueued_dirty,
680                                       unsigned long *ret_nr_writeback,
681                                       bool force_reclaim)
682 {
683         LIST_HEAD(ret_pages);
684         LIST_HEAD(free_pages);
685         int pgactivate = 0;
686         unsigned long nr_unqueued_dirty = 0;
687         unsigned long nr_dirty = 0;
688         unsigned long nr_congested = 0;
689         unsigned long nr_reclaimed = 0;
690         unsigned long nr_writeback = 0;
691
692         cond_resched();
693
694         mem_cgroup_uncharge_start();
695         while (!list_empty(page_list)) {
696                 struct address_space *mapping;
697                 struct page *page;
698                 int may_enter_fs;
699                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
700
701                 cond_resched();
702
703                 page = lru_to_page(page_list);
704                 list_del(&page->lru);
705
706                 if (!trylock_page(page))
707                         goto keep;
708
709                 VM_BUG_ON(PageActive(page));
710                 VM_BUG_ON(page_zone(page) != zone);
711
712                 sc->nr_scanned++;
713
714                 if (unlikely(!page_evictable(page)))
715                         goto cull_mlocked;
716
717                 if (!sc->may_unmap && page_mapped(page))
718                         goto keep_locked;
719
720                 /* Double the slab pressure for mapped and swapcache pages */
721                 if (page_mapped(page) || PageSwapCache(page))
722                         sc->nr_scanned++;
723
724                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727                 if (PageWriteback(page)) {
728                         /*
729                          * memcg doesn't have any dirty pages throttling so we
730                          * could easily OOM just because too many pages are in
731                          * writeback and there is nothing else to reclaim.
732                          *
733                          * Check __GFP_IO, certainly because a loop driver
734                          * thread might enter reclaim, and deadlock if it waits
735                          * on a page for which it is needed to do the write
736                          * (loop masks off __GFP_IO|__GFP_FS for this reason);
737                          * but more thought would probably show more reasons.
738                          *
739                          * Don't require __GFP_FS, since we're not going into
740                          * the FS, just waiting on its writeback completion.
741                          * Worryingly, ext4 gfs2 and xfs allocate pages with
742                          * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
743                          * testing may_enter_fs here is liable to OOM on them.
744                          */
745                         if (global_reclaim(sc) ||
746                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
747                                 /*
748                                  * This is slightly racy - end_page_writeback()
749                                  * might have just cleared PageReclaim, then
750                                  * setting PageReclaim here end up interpreted
751                                  * as PageReadahead - but that does not matter
752                                  * enough to care.  What we do want is for this
753                                  * page to have PageReclaim set next time memcg
754                                  * reclaim reaches the tests above, so it will
755                                  * then wait_on_page_writeback() to avoid OOM;
756                                  * and it's also appropriate in global reclaim.
757                                  */
758                                 SetPageReclaim(page);
759                                 nr_writeback++;
760                                 goto keep_locked;
761                         }
762                         wait_on_page_writeback(page);
763                 }
764
765                 if (!force_reclaim)
766                         references = page_check_references(page, sc);
767
768                 switch (references) {
769                 case PAGEREF_ACTIVATE:
770                         goto activate_locked;
771                 case PAGEREF_KEEP:
772                         goto keep_locked;
773                 case PAGEREF_RECLAIM:
774                 case PAGEREF_RECLAIM_CLEAN:
775                         ; /* try to reclaim the page below */
776                 }
777
778                 /*
779                  * Anonymous process memory has backing store?
780                  * Try to allocate it some swap space here.
781                  */
782                 if (PageAnon(page) && !PageSwapCache(page)) {
783                         if (!(sc->gfp_mask & __GFP_IO))
784                                 goto keep_locked;
785                         if (!add_to_swap(page, page_list))
786                                 goto activate_locked;
787                         may_enter_fs = 1;
788                 }
789
790                 mapping = page_mapping(page);
791
792                 /*
793                  * The page is mapped into the page tables of one or more
794                  * processes. Try to unmap it here.
795                  */
796                 if (page_mapped(page) && mapping) {
797                         switch (try_to_unmap(page, ttu_flags)) {
798                         case SWAP_FAIL:
799                                 goto activate_locked;
800                         case SWAP_AGAIN:
801                                 goto keep_locked;
802                         case SWAP_MLOCK:
803                                 goto cull_mlocked;
804                         case SWAP_SUCCESS:
805                                 ; /* try to free the page below */
806                         }
807                 }
808
809                 if (PageDirty(page)) {
810                         nr_dirty++;
811
812                         if (!PageWriteback(page))
813                                 nr_unqueued_dirty++;
814
815                         /*
816                          * Only kswapd can writeback filesystem pages to
817                          * avoid risk of stack overflow but only writeback
818                          * if many dirty pages have been encountered.
819                          */
820                         if (page_is_file_cache(page) &&
821                                         (!current_is_kswapd() ||
822                                          !zone_is_reclaim_dirty(zone))) {
823                                 /*
824                                  * Immediately reclaim when written back.
825                                  * Similar in principal to deactivate_page()
826                                  * except we already have the page isolated
827                                  * and know it's dirty
828                                  */
829                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
830                                 SetPageReclaim(page);
831
832                                 goto keep_locked;
833                         }
834
835                         if (references == PAGEREF_RECLAIM_CLEAN)
836                                 goto keep_locked;
837                         if (!may_enter_fs)
838                                 goto keep_locked;
839                         if (!sc->may_writepage)
840                                 goto keep_locked;
841
842                         /* Page is dirty, try to write it out here */
843                         switch (pageout(page, mapping, sc)) {
844                         case PAGE_KEEP:
845                                 nr_congested++;
846                                 goto keep_locked;
847                         case PAGE_ACTIVATE:
848                                 goto activate_locked;
849                         case PAGE_SUCCESS:
850                                 if (PageWriteback(page))
851                                         goto keep;
852                                 if (PageDirty(page))
853                                         goto keep;
854
855                                 /*
856                                  * A synchronous write - probably a ramdisk.  Go
857                                  * ahead and try to reclaim the page.
858                                  */
859                                 if (!trylock_page(page))
860                                         goto keep;
861                                 if (PageDirty(page) || PageWriteback(page))
862                                         goto keep_locked;
863                                 mapping = page_mapping(page);
864                         case PAGE_CLEAN:
865                                 ; /* try to free the page below */
866                         }
867                 }
868
869                 /*
870                  * If the page has buffers, try to free the buffer mappings
871                  * associated with this page. If we succeed we try to free
872                  * the page as well.
873                  *
874                  * We do this even if the page is PageDirty().
875                  * try_to_release_page() does not perform I/O, but it is
876                  * possible for a page to have PageDirty set, but it is actually
877                  * clean (all its buffers are clean).  This happens if the
878                  * buffers were written out directly, with submit_bh(). ext3
879                  * will do this, as well as the blockdev mapping.
880                  * try_to_release_page() will discover that cleanness and will
881                  * drop the buffers and mark the page clean - it can be freed.
882                  *
883                  * Rarely, pages can have buffers and no ->mapping.  These are
884                  * the pages which were not successfully invalidated in
885                  * truncate_complete_page().  We try to drop those buffers here
886                  * and if that worked, and the page is no longer mapped into
887                  * process address space (page_count == 1) it can be freed.
888                  * Otherwise, leave the page on the LRU so it is swappable.
889                  */
890                 if (page_has_private(page)) {
891                         if (!try_to_release_page(page, sc->gfp_mask))
892                                 goto activate_locked;
893                         if (!mapping && page_count(page) == 1) {
894                                 unlock_page(page);
895                                 if (put_page_testzero(page))
896                                         goto free_it;
897                                 else {
898                                         /*
899                                          * rare race with speculative reference.
900                                          * the speculative reference will free
901                                          * this page shortly, so we may
902                                          * increment nr_reclaimed here (and
903                                          * leave it off the LRU).
904                                          */
905                                         nr_reclaimed++;
906                                         continue;
907                                 }
908                         }
909                 }
910
911                 if (!mapping || !__remove_mapping(mapping, page))
912                         goto keep_locked;
913
914                 /*
915                  * At this point, we have no other references and there is
916                  * no way to pick any more up (removed from LRU, removed
917                  * from pagecache). Can use non-atomic bitops now (and
918                  * we obviously don't have to worry about waking up a process
919                  * waiting on the page lock, because there are no references.
920                  */
921                 __clear_page_locked(page);
922 free_it:
923                 nr_reclaimed++;
924
925                 /*
926                  * Is there need to periodically free_page_list? It would
927                  * appear not as the counts should be low
928                  */
929                 list_add(&page->lru, &free_pages);
930                 continue;
931
932 cull_mlocked:
933                 if (PageSwapCache(page))
934                         try_to_free_swap(page);
935                 unlock_page(page);
936                 putback_lru_page(page);
937                 continue;
938
939 activate_locked:
940                 /* Not a candidate for swapping, so reclaim swap space. */
941                 if (PageSwapCache(page) && vm_swap_full())
942                         try_to_free_swap(page);
943                 VM_BUG_ON(PageActive(page));
944                 SetPageActive(page);
945                 pgactivate++;
946 keep_locked:
947                 unlock_page(page);
948 keep:
949                 list_add(&page->lru, &ret_pages);
950                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
951         }
952
953         /*
954          * Tag a zone as congested if all the dirty pages encountered were
955          * backed by a congested BDI. In this case, reclaimers should just
956          * back off and wait for congestion to clear because further reclaim
957          * will encounter the same problem
958          */
959         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
960                 zone_set_flag(zone, ZONE_CONGESTED);
961
962         free_hot_cold_page_list(&free_pages, 1);
963
964         list_splice(&ret_pages, page_list);
965         count_vm_events(PGACTIVATE, pgactivate);
966         mem_cgroup_uncharge_end();
967         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
968         *ret_nr_writeback += nr_writeback;
969         return nr_reclaimed;
970 }
971
972 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
973                                             struct list_head *page_list)
974 {
975         struct scan_control sc = {
976                 .gfp_mask = GFP_KERNEL,
977                 .priority = DEF_PRIORITY,
978                 .may_unmap = 1,
979         };
980         unsigned long ret, dummy1, dummy2;
981         struct page *page, *next;
982         LIST_HEAD(clean_pages);
983
984         list_for_each_entry_safe(page, next, page_list, lru) {
985                 if (page_is_file_cache(page) && !PageDirty(page)) {
986                         ClearPageActive(page);
987                         list_move(&page->lru, &clean_pages);
988                 }
989         }
990
991         ret = shrink_page_list(&clean_pages, zone, &sc,
992                                 TTU_UNMAP|TTU_IGNORE_ACCESS,
993                                 &dummy1, &dummy2, true);
994         list_splice(&clean_pages, page_list);
995         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
996         return ret;
997 }
998
999 /*
1000  * Attempt to remove the specified page from its LRU.  Only take this page
1001  * if it is of the appropriate PageActive status.  Pages which are being
1002  * freed elsewhere are also ignored.
1003  *
1004  * page:        page to consider
1005  * mode:        one of the LRU isolation modes defined above
1006  *
1007  * returns 0 on success, -ve errno on failure.
1008  */
1009 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1010 {
1011         int ret = -EINVAL;
1012
1013         /* Only take pages on the LRU. */
1014         if (!PageLRU(page))
1015                 return ret;
1016
1017         /* Compaction should not handle unevictable pages but CMA can do so */
1018         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1019                 return ret;
1020
1021         ret = -EBUSY;
1022
1023         /*
1024          * To minimise LRU disruption, the caller can indicate that it only
1025          * wants to isolate pages it will be able to operate on without
1026          * blocking - clean pages for the most part.
1027          *
1028          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1029          * is used by reclaim when it is cannot write to backing storage
1030          *
1031          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1032          * that it is possible to migrate without blocking
1033          */
1034         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1035                 /* All the caller can do on PageWriteback is block */
1036                 if (PageWriteback(page))
1037                         return ret;
1038
1039                 if (PageDirty(page)) {
1040                         struct address_space *mapping;
1041
1042                         /* ISOLATE_CLEAN means only clean pages */
1043                         if (mode & ISOLATE_CLEAN)
1044                                 return ret;
1045
1046                         /*
1047                          * Only pages without mappings or that have a
1048                          * ->migratepage callback are possible to migrate
1049                          * without blocking
1050                          */
1051                         mapping = page_mapping(page);
1052                         if (mapping && !mapping->a_ops->migratepage)
1053                                 return ret;
1054                 }
1055         }
1056
1057         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1058                 return ret;
1059
1060         if (likely(get_page_unless_zero(page))) {
1061                 /*
1062                  * Be careful not to clear PageLRU until after we're
1063                  * sure the page is not being freed elsewhere -- the
1064                  * page release code relies on it.
1065                  */
1066                 ClearPageLRU(page);
1067                 ret = 0;
1068         }
1069
1070         return ret;
1071 }
1072
1073 /*
1074  * zone->lru_lock is heavily contended.  Some of the functions that
1075  * shrink the lists perform better by taking out a batch of pages
1076  * and working on them outside the LRU lock.
1077  *
1078  * For pagecache intensive workloads, this function is the hottest
1079  * spot in the kernel (apart from copy_*_user functions).
1080  *
1081  * Appropriate locks must be held before calling this function.
1082  *
1083  * @nr_to_scan: The number of pages to look through on the list.
1084  * @lruvec:     The LRU vector to pull pages from.
1085  * @dst:        The temp list to put pages on to.
1086  * @nr_scanned: The number of pages that were scanned.
1087  * @sc:         The scan_control struct for this reclaim session
1088  * @mode:       One of the LRU isolation modes
1089  * @lru:        LRU list id for isolating
1090  *
1091  * returns how many pages were moved onto *@dst.
1092  */
1093 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1094                 struct lruvec *lruvec, struct list_head *dst,
1095                 unsigned long *nr_scanned, struct scan_control *sc,
1096                 isolate_mode_t mode, enum lru_list lru)
1097 {
1098         struct list_head *src = &lruvec->lists[lru];
1099         unsigned long nr_taken = 0;
1100         unsigned long scan;
1101
1102         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1103                 struct page *page;
1104                 int nr_pages;
1105
1106                 page = lru_to_page(src);
1107                 prefetchw_prev_lru_page(page, src, flags);
1108
1109                 VM_BUG_ON(!PageLRU(page));
1110
1111                 switch (__isolate_lru_page(page, mode)) {
1112                 case 0:
1113                         nr_pages = hpage_nr_pages(page);
1114                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1115                         list_move(&page->lru, dst);
1116                         nr_taken += nr_pages;
1117                         break;
1118
1119                 case -EBUSY:
1120                         /* else it is being freed elsewhere */
1121                         list_move(&page->lru, src);
1122                         continue;
1123
1124                 default:
1125                         BUG();
1126                 }
1127         }
1128
1129         *nr_scanned = scan;
1130         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1131                                     nr_taken, mode, is_file_lru(lru));
1132         return nr_taken;
1133 }
1134
1135 /**
1136  * isolate_lru_page - tries to isolate a page from its LRU list
1137  * @page: page to isolate from its LRU list
1138  *
1139  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1140  * vmstat statistic corresponding to whatever LRU list the page was on.
1141  *
1142  * Returns 0 if the page was removed from an LRU list.
1143  * Returns -EBUSY if the page was not on an LRU list.
1144  *
1145  * The returned page will have PageLRU() cleared.  If it was found on
1146  * the active list, it will have PageActive set.  If it was found on
1147  * the unevictable list, it will have the PageUnevictable bit set. That flag
1148  * may need to be cleared by the caller before letting the page go.
1149  *
1150  * The vmstat statistic corresponding to the list on which the page was
1151  * found will be decremented.
1152  *
1153  * Restrictions:
1154  * (1) Must be called with an elevated refcount on the page. This is a
1155  *     fundamentnal difference from isolate_lru_pages (which is called
1156  *     without a stable reference).
1157  * (2) the lru_lock must not be held.
1158  * (3) interrupts must be enabled.
1159  */
1160 int isolate_lru_page(struct page *page)
1161 {
1162         int ret = -EBUSY;
1163
1164         VM_BUG_ON(!page_count(page));
1165
1166         if (PageLRU(page)) {
1167                 struct zone *zone = page_zone(page);
1168                 struct lruvec *lruvec;
1169
1170                 spin_lock_irq(&zone->lru_lock);
1171                 lruvec = mem_cgroup_page_lruvec(page, zone);
1172                 if (PageLRU(page)) {
1173                         int lru = page_lru(page);
1174                         get_page(page);
1175                         ClearPageLRU(page);
1176                         del_page_from_lru_list(page, lruvec, lru);
1177                         ret = 0;
1178                 }
1179                 spin_unlock_irq(&zone->lru_lock);
1180         }
1181         return ret;
1182 }
1183
1184 /*
1185  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1186  * then get resheduled. When there are massive number of tasks doing page
1187  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1188  * the LRU list will go small and be scanned faster than necessary, leading to
1189  * unnecessary swapping, thrashing and OOM.
1190  */
1191 static int too_many_isolated(struct zone *zone, int file,
1192                 struct scan_control *sc)
1193 {
1194         unsigned long inactive, isolated;
1195
1196         if (current_is_kswapd())
1197                 return 0;
1198
1199         if (!global_reclaim(sc))
1200                 return 0;
1201
1202         if (file) {
1203                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1204                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1205         } else {
1206                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1207                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1208         }
1209
1210         /*
1211          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1212          * won't get blocked by normal direct-reclaimers, forming a circular
1213          * deadlock.
1214          */
1215         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1216                 inactive >>= 3;
1217
1218         return isolated > inactive;
1219 }
1220
1221 static noinline_for_stack void
1222 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1223 {
1224         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1225         struct zone *zone = lruvec_zone(lruvec);
1226         LIST_HEAD(pages_to_free);
1227
1228         /*
1229          * Put back any unfreeable pages.
1230          */
1231         while (!list_empty(page_list)) {
1232                 struct page *page = lru_to_page(page_list);
1233                 int lru;
1234
1235                 VM_BUG_ON(PageLRU(page));
1236                 list_del(&page->lru);
1237                 if (unlikely(!page_evictable(page))) {
1238                         spin_unlock_irq(&zone->lru_lock);
1239                         putback_lru_page(page);
1240                         spin_lock_irq(&zone->lru_lock);
1241                         continue;
1242                 }
1243
1244                 lruvec = mem_cgroup_page_lruvec(page, zone);
1245
1246                 SetPageLRU(page);
1247                 lru = page_lru(page);
1248                 add_page_to_lru_list(page, lruvec, lru);
1249
1250                 if (is_active_lru(lru)) {
1251                         int file = is_file_lru(lru);
1252                         int numpages = hpage_nr_pages(page);
1253                         reclaim_stat->recent_rotated[file] += numpages;
1254                 }
1255                 if (put_page_testzero(page)) {
1256                         __ClearPageLRU(page);
1257                         __ClearPageActive(page);
1258                         del_page_from_lru_list(page, lruvec, lru);
1259
1260                         if (unlikely(PageCompound(page))) {
1261                                 spin_unlock_irq(&zone->lru_lock);
1262                                 (*get_compound_page_dtor(page))(page);
1263                                 spin_lock_irq(&zone->lru_lock);
1264                         } else
1265                                 list_add(&page->lru, &pages_to_free);
1266                 }
1267         }
1268
1269         /*
1270          * To save our caller's stack, now use input list for pages to free.
1271          */
1272         list_splice(&pages_to_free, page_list);
1273 }
1274
1275 /*
1276  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1277  * of reclaimed pages
1278  */
1279 static noinline_for_stack unsigned long
1280 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1281                      struct scan_control *sc, enum lru_list lru)
1282 {
1283         LIST_HEAD(page_list);
1284         unsigned long nr_scanned;
1285         unsigned long nr_reclaimed = 0;
1286         unsigned long nr_taken;
1287         unsigned long nr_dirty = 0;
1288         unsigned long nr_writeback = 0;
1289         isolate_mode_t isolate_mode = 0;
1290         int file = is_file_lru(lru);
1291         struct zone *zone = lruvec_zone(lruvec);
1292         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1293
1294         while (unlikely(too_many_isolated(zone, file, sc))) {
1295                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1296
1297                 /* We are about to die and free our memory. Return now. */
1298                 if (fatal_signal_pending(current))
1299                         return SWAP_CLUSTER_MAX;
1300         }
1301
1302         lru_add_drain();
1303
1304         if (!sc->may_unmap)
1305                 isolate_mode |= ISOLATE_UNMAPPED;
1306         if (!sc->may_writepage)
1307                 isolate_mode |= ISOLATE_CLEAN;
1308
1309         spin_lock_irq(&zone->lru_lock);
1310
1311         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1312                                      &nr_scanned, sc, isolate_mode, lru);
1313
1314         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1315         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1316
1317         if (global_reclaim(sc)) {
1318                 zone->pages_scanned += nr_scanned;
1319                 if (current_is_kswapd())
1320                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1321                 else
1322                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1323         }
1324         spin_unlock_irq(&zone->lru_lock);
1325
1326         if (nr_taken == 0)
1327                 return 0;
1328
1329         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1330                                         &nr_dirty, &nr_writeback, false);
1331
1332         spin_lock_irq(&zone->lru_lock);
1333
1334         reclaim_stat->recent_scanned[file] += nr_taken;
1335
1336         if (global_reclaim(sc)) {
1337                 if (current_is_kswapd())
1338                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1339                                                nr_reclaimed);
1340                 else
1341                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1342                                                nr_reclaimed);
1343         }
1344
1345         putback_inactive_pages(lruvec, &page_list);
1346
1347         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1348
1349         spin_unlock_irq(&zone->lru_lock);
1350
1351         free_hot_cold_page_list(&page_list, 1);
1352
1353         /*
1354          * If reclaim is isolating dirty pages under writeback, it implies
1355          * that the long-lived page allocation rate is exceeding the page
1356          * laundering rate. Either the global limits are not being effective
1357          * at throttling processes due to the page distribution throughout
1358          * zones or there is heavy usage of a slow backing device. The
1359          * only option is to throttle from reclaim context which is not ideal
1360          * as there is no guarantee the dirtying process is throttled in the
1361          * same way balance_dirty_pages() manages.
1362          *
1363          * This scales the number of dirty pages that must be under writeback
1364          * before throttling depending on priority. It is a simple backoff
1365          * function that has the most effect in the range DEF_PRIORITY to
1366          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1367          * in trouble and reclaim is considered to be in trouble.
1368          *
1369          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1370          * DEF_PRIORITY-1  50% must be PageWriteback
1371          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1372          * ...
1373          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1374          *                     isolated page is PageWriteback
1375          */
1376         if (nr_writeback && nr_writeback >=
1377                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1378                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1379
1380         /*
1381          * Similarly, if many dirty pages are encountered that are not
1382          * currently being written then flag that kswapd should start
1383          * writing back pages.
1384          */
1385         if (global_reclaim(sc) && nr_dirty &&
1386                         nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
1387                 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1388
1389         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1390                 zone_idx(zone),
1391                 nr_scanned, nr_reclaimed,
1392                 sc->priority,
1393                 trace_shrink_flags(file));
1394         return nr_reclaimed;
1395 }
1396
1397 /*
1398  * This moves pages from the active list to the inactive list.
1399  *
1400  * We move them the other way if the page is referenced by one or more
1401  * processes, from rmap.
1402  *
1403  * If the pages are mostly unmapped, the processing is fast and it is
1404  * appropriate to hold zone->lru_lock across the whole operation.  But if
1405  * the pages are mapped, the processing is slow (page_referenced()) so we
1406  * should drop zone->lru_lock around each page.  It's impossible to balance
1407  * this, so instead we remove the pages from the LRU while processing them.
1408  * It is safe to rely on PG_active against the non-LRU pages in here because
1409  * nobody will play with that bit on a non-LRU page.
1410  *
1411  * The downside is that we have to touch page->_count against each page.
1412  * But we had to alter page->flags anyway.
1413  */
1414
1415 static void move_active_pages_to_lru(struct lruvec *lruvec,
1416                                      struct list_head *list,
1417                                      struct list_head *pages_to_free,
1418                                      enum lru_list lru)
1419 {
1420         struct zone *zone = lruvec_zone(lruvec);
1421         unsigned long pgmoved = 0;
1422         struct page *page;
1423         int nr_pages;
1424
1425         while (!list_empty(list)) {
1426                 page = lru_to_page(list);
1427                 lruvec = mem_cgroup_page_lruvec(page, zone);
1428
1429                 VM_BUG_ON(PageLRU(page));
1430                 SetPageLRU(page);
1431
1432                 nr_pages = hpage_nr_pages(page);
1433                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1434                 list_move(&page->lru, &lruvec->lists[lru]);
1435                 pgmoved += nr_pages;
1436
1437                 if (put_page_testzero(page)) {
1438                         __ClearPageLRU(page);
1439                         __ClearPageActive(page);
1440                         del_page_from_lru_list(page, lruvec, lru);
1441
1442                         if (unlikely(PageCompound(page))) {
1443                                 spin_unlock_irq(&zone->lru_lock);
1444                                 (*get_compound_page_dtor(page))(page);
1445                                 spin_lock_irq(&zone->lru_lock);
1446                         } else
1447                                 list_add(&page->lru, pages_to_free);
1448                 }
1449         }
1450         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1451         if (!is_active_lru(lru))
1452                 __count_vm_events(PGDEACTIVATE, pgmoved);
1453 }
1454
1455 static void shrink_active_list(unsigned long nr_to_scan,
1456                                struct lruvec *lruvec,
1457                                struct scan_control *sc,
1458                                enum lru_list lru)
1459 {
1460         unsigned long nr_taken;
1461         unsigned long nr_scanned;
1462         unsigned long vm_flags;
1463         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1464         LIST_HEAD(l_active);
1465         LIST_HEAD(l_inactive);
1466         struct page *page;
1467         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1468         unsigned long nr_rotated = 0;
1469         isolate_mode_t isolate_mode = 0;
1470         int file = is_file_lru(lru);
1471         struct zone *zone = lruvec_zone(lruvec);
1472
1473         lru_add_drain();
1474
1475         if (!sc->may_unmap)
1476                 isolate_mode |= ISOLATE_UNMAPPED;
1477         if (!sc->may_writepage)
1478                 isolate_mode |= ISOLATE_CLEAN;
1479
1480         spin_lock_irq(&zone->lru_lock);
1481
1482         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1483                                      &nr_scanned, sc, isolate_mode, lru);
1484         if (global_reclaim(sc))
1485                 zone->pages_scanned += nr_scanned;
1486
1487         reclaim_stat->recent_scanned[file] += nr_taken;
1488
1489         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1490         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1491         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1492         spin_unlock_irq(&zone->lru_lock);
1493
1494         while (!list_empty(&l_hold)) {
1495                 cond_resched();
1496                 page = lru_to_page(&l_hold);
1497                 list_del(&page->lru);
1498
1499                 if (unlikely(!page_evictable(page))) {
1500                         putback_lru_page(page);
1501                         continue;
1502                 }
1503
1504                 if (unlikely(buffer_heads_over_limit)) {
1505                         if (page_has_private(page) && trylock_page(page)) {
1506                                 if (page_has_private(page))
1507                                         try_to_release_page(page, 0);
1508                                 unlock_page(page);
1509                         }
1510                 }
1511
1512                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1513                                     &vm_flags)) {
1514                         nr_rotated += hpage_nr_pages(page);
1515                         /*
1516                          * Identify referenced, file-backed active pages and
1517                          * give them one more trip around the active list. So
1518                          * that executable code get better chances to stay in
1519                          * memory under moderate memory pressure.  Anon pages
1520                          * are not likely to be evicted by use-once streaming
1521                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1522                          * so we ignore them here.
1523                          */
1524                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1525                                 list_add(&page->lru, &l_active);
1526                                 continue;
1527                         }
1528                 }
1529
1530                 ClearPageActive(page);  /* we are de-activating */
1531                 list_add(&page->lru, &l_inactive);
1532         }
1533
1534         /*
1535          * Move pages back to the lru list.
1536          */
1537         spin_lock_irq(&zone->lru_lock);
1538         /*
1539          * Count referenced pages from currently used mappings as rotated,
1540          * even though only some of them are actually re-activated.  This
1541          * helps balance scan pressure between file and anonymous pages in
1542          * get_scan_ratio.
1543          */
1544         reclaim_stat->recent_rotated[file] += nr_rotated;
1545
1546         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1547         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1548         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1549         spin_unlock_irq(&zone->lru_lock);
1550
1551         free_hot_cold_page_list(&l_hold, 1);
1552 }
1553
1554 #ifdef CONFIG_SWAP
1555 static int inactive_anon_is_low_global(struct zone *zone)
1556 {
1557         unsigned long active, inactive;
1558
1559         active = zone_page_state(zone, NR_ACTIVE_ANON);
1560         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1561
1562         if (inactive * zone->inactive_ratio < active)
1563                 return 1;
1564
1565         return 0;
1566 }
1567
1568 /**
1569  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1570  * @lruvec: LRU vector to check
1571  *
1572  * Returns true if the zone does not have enough inactive anon pages,
1573  * meaning some active anon pages need to be deactivated.
1574  */
1575 static int inactive_anon_is_low(struct lruvec *lruvec)
1576 {
1577         /*
1578          * If we don't have swap space, anonymous page deactivation
1579          * is pointless.
1580          */
1581         if (!total_swap_pages)
1582                 return 0;
1583
1584         if (!mem_cgroup_disabled())
1585                 return mem_cgroup_inactive_anon_is_low(lruvec);
1586
1587         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1588 }
1589 #else
1590 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1591 {
1592         return 0;
1593 }
1594 #endif
1595
1596 /**
1597  * inactive_file_is_low - check if file pages need to be deactivated
1598  * @lruvec: LRU vector to check
1599  *
1600  * When the system is doing streaming IO, memory pressure here
1601  * ensures that active file pages get deactivated, until more
1602  * than half of the file pages are on the inactive list.
1603  *
1604  * Once we get to that situation, protect the system's working
1605  * set from being evicted by disabling active file page aging.
1606  *
1607  * This uses a different ratio than the anonymous pages, because
1608  * the page cache uses a use-once replacement algorithm.
1609  */
1610 static int inactive_file_is_low(struct lruvec *lruvec)
1611 {
1612         unsigned long inactive;
1613         unsigned long active;
1614
1615         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1616         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1617
1618         return active > inactive;
1619 }
1620
1621 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1622 {
1623         if (is_file_lru(lru))
1624                 return inactive_file_is_low(lruvec);
1625         else
1626                 return inactive_anon_is_low(lruvec);
1627 }
1628
1629 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1630                                  struct lruvec *lruvec, struct scan_control *sc)
1631 {
1632         if (is_active_lru(lru)) {
1633                 if (inactive_list_is_low(lruvec, lru))
1634                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1635                 return 0;
1636         }
1637
1638         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1639 }
1640
1641 static int vmscan_swappiness(struct scan_control *sc)
1642 {
1643         if (global_reclaim(sc))
1644                 return vm_swappiness;
1645         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1646 }
1647
1648 enum scan_balance {
1649         SCAN_EQUAL,
1650         SCAN_FRACT,
1651         SCAN_ANON,
1652         SCAN_FILE,
1653 };
1654
1655 /*
1656  * Determine how aggressively the anon and file LRU lists should be
1657  * scanned.  The relative value of each set of LRU lists is determined
1658  * by looking at the fraction of the pages scanned we did rotate back
1659  * onto the active list instead of evict.
1660  *
1661  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1662  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1663  */
1664 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1665                            unsigned long *nr)
1666 {
1667         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1668         u64 fraction[2];
1669         u64 denominator = 0;    /* gcc */
1670         struct zone *zone = lruvec_zone(lruvec);
1671         unsigned long anon_prio, file_prio;
1672         enum scan_balance scan_balance;
1673         unsigned long anon, file, free;
1674         bool force_scan = false;
1675         unsigned long ap, fp;
1676         enum lru_list lru;
1677
1678         /*
1679          * If the zone or memcg is small, nr[l] can be 0.  This
1680          * results in no scanning on this priority and a potential
1681          * priority drop.  Global direct reclaim can go to the next
1682          * zone and tends to have no problems. Global kswapd is for
1683          * zone balancing and it needs to scan a minimum amount. When
1684          * reclaiming for a memcg, a priority drop can cause high
1685          * latencies, so it's better to scan a minimum amount there as
1686          * well.
1687          */
1688         if (current_is_kswapd() && zone->all_unreclaimable)
1689                 force_scan = true;
1690         if (!global_reclaim(sc))
1691                 force_scan = true;
1692
1693         /* If we have no swap space, do not bother scanning anon pages. */
1694         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1695                 scan_balance = SCAN_FILE;
1696                 goto out;
1697         }
1698
1699         /*
1700          * Global reclaim will swap to prevent OOM even with no
1701          * swappiness, but memcg users want to use this knob to
1702          * disable swapping for individual groups completely when
1703          * using the memory controller's swap limit feature would be
1704          * too expensive.
1705          */
1706         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1707                 scan_balance = SCAN_FILE;
1708                 goto out;
1709         }
1710
1711         /*
1712          * Do not apply any pressure balancing cleverness when the
1713          * system is close to OOM, scan both anon and file equally
1714          * (unless the swappiness setting disagrees with swapping).
1715          */
1716         if (!sc->priority && vmscan_swappiness(sc)) {
1717                 scan_balance = SCAN_EQUAL;
1718                 goto out;
1719         }
1720
1721         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1722                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1723         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1724                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1725
1726         /*
1727          * If it's foreseeable that reclaiming the file cache won't be
1728          * enough to get the zone back into a desirable shape, we have
1729          * to swap.  Better start now and leave the - probably heavily
1730          * thrashing - remaining file pages alone.
1731          */
1732         if (global_reclaim(sc)) {
1733                 free = zone_page_state(zone, NR_FREE_PAGES);
1734                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1735                         scan_balance = SCAN_ANON;
1736                         goto out;
1737                 }
1738         }
1739
1740         /*
1741          * There is enough inactive page cache, do not reclaim
1742          * anything from the anonymous working set right now.
1743          */
1744         if (!inactive_file_is_low(lruvec)) {
1745                 scan_balance = SCAN_FILE;
1746                 goto out;
1747         }
1748
1749         scan_balance = SCAN_FRACT;
1750
1751         /*
1752          * With swappiness at 100, anonymous and file have the same priority.
1753          * This scanning priority is essentially the inverse of IO cost.
1754          */
1755         anon_prio = vmscan_swappiness(sc);
1756         file_prio = 200 - anon_prio;
1757
1758         /*
1759          * OK, so we have swap space and a fair amount of page cache
1760          * pages.  We use the recently rotated / recently scanned
1761          * ratios to determine how valuable each cache is.
1762          *
1763          * Because workloads change over time (and to avoid overflow)
1764          * we keep these statistics as a floating average, which ends
1765          * up weighing recent references more than old ones.
1766          *
1767          * anon in [0], file in [1]
1768          */
1769         spin_lock_irq(&zone->lru_lock);
1770         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1771                 reclaim_stat->recent_scanned[0] /= 2;
1772                 reclaim_stat->recent_rotated[0] /= 2;
1773         }
1774
1775         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1776                 reclaim_stat->recent_scanned[1] /= 2;
1777                 reclaim_stat->recent_rotated[1] /= 2;
1778         }
1779
1780         /*
1781          * The amount of pressure on anon vs file pages is inversely
1782          * proportional to the fraction of recently scanned pages on
1783          * each list that were recently referenced and in active use.
1784          */
1785         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1786         ap /= reclaim_stat->recent_rotated[0] + 1;
1787
1788         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1789         fp /= reclaim_stat->recent_rotated[1] + 1;
1790         spin_unlock_irq(&zone->lru_lock);
1791
1792         fraction[0] = ap;
1793         fraction[1] = fp;
1794         denominator = ap + fp + 1;
1795 out:
1796         for_each_evictable_lru(lru) {
1797                 int file = is_file_lru(lru);
1798                 unsigned long size;
1799                 unsigned long scan;
1800
1801                 size = get_lru_size(lruvec, lru);
1802                 scan = size >> sc->priority;
1803
1804                 if (!scan && force_scan)
1805                         scan = min(size, SWAP_CLUSTER_MAX);
1806
1807                 switch (scan_balance) {
1808                 case SCAN_EQUAL:
1809                         /* Scan lists relative to size */
1810                         break;
1811                 case SCAN_FRACT:
1812                         /*
1813                          * Scan types proportional to swappiness and
1814                          * their relative recent reclaim efficiency.
1815                          */
1816                         scan = div64_u64(scan * fraction[file], denominator);
1817                         break;
1818                 case SCAN_FILE:
1819                 case SCAN_ANON:
1820                         /* Scan one type exclusively */
1821                         if ((scan_balance == SCAN_FILE) != file)
1822                                 scan = 0;
1823                         break;
1824                 default:
1825                         /* Look ma, no brain */
1826                         BUG();
1827                 }
1828                 nr[lru] = scan;
1829         }
1830 }
1831
1832 /*
1833  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1834  */
1835 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1836 {
1837         unsigned long nr[NR_LRU_LISTS];
1838         unsigned long targets[NR_LRU_LISTS];
1839         unsigned long nr_to_scan;
1840         enum lru_list lru;
1841         unsigned long nr_reclaimed = 0;
1842         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1843         struct blk_plug plug;
1844         bool scan_adjusted = false;
1845
1846         get_scan_count(lruvec, sc, nr);
1847
1848         /* Record the original scan target for proportional adjustments later */
1849         memcpy(targets, nr, sizeof(nr));
1850
1851         blk_start_plug(&plug);
1852         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1853                                         nr[LRU_INACTIVE_FILE]) {
1854                 unsigned long nr_anon, nr_file, percentage;
1855                 unsigned long nr_scanned;
1856
1857                 for_each_evictable_lru(lru) {
1858                         if (nr[lru]) {
1859                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1860                                 nr[lru] -= nr_to_scan;
1861
1862                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1863                                                             lruvec, sc);
1864                         }
1865                 }
1866
1867                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1868                         continue;
1869
1870                 /*
1871                  * For global direct reclaim, reclaim only the number of pages
1872                  * requested. Less care is taken to scan proportionally as it
1873                  * is more important to minimise direct reclaim stall latency
1874                  * than it is to properly age the LRU lists.
1875                  */
1876                 if (global_reclaim(sc) && !current_is_kswapd())
1877                         break;
1878
1879                 /*
1880                  * For kswapd and memcg, reclaim at least the number of pages
1881                  * requested. Ensure that the anon and file LRUs shrink
1882                  * proportionally what was requested by get_scan_count(). We
1883                  * stop reclaiming one LRU and reduce the amount scanning
1884                  * proportional to the original scan target.
1885                  */
1886                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1887                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1888
1889                 if (nr_file > nr_anon) {
1890                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1891                                                 targets[LRU_ACTIVE_ANON] + 1;
1892                         lru = LRU_BASE;
1893                         percentage = nr_anon * 100 / scan_target;
1894                 } else {
1895                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1896                                                 targets[LRU_ACTIVE_FILE] + 1;
1897                         lru = LRU_FILE;
1898                         percentage = nr_file * 100 / scan_target;
1899                 }
1900
1901                 /* Stop scanning the smaller of the LRU */
1902                 nr[lru] = 0;
1903                 nr[lru + LRU_ACTIVE] = 0;
1904
1905                 /*
1906                  * Recalculate the other LRU scan count based on its original
1907                  * scan target and the percentage scanning already complete
1908                  */
1909                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1910                 nr_scanned = targets[lru] - nr[lru];
1911                 nr[lru] = targets[lru] * (100 - percentage) / 100;
1912                 nr[lru] -= min(nr[lru], nr_scanned);
1913
1914                 lru += LRU_ACTIVE;
1915                 nr_scanned = targets[lru] - nr[lru];
1916                 nr[lru] = targets[lru] * (100 - percentage) / 100;
1917                 nr[lru] -= min(nr[lru], nr_scanned);
1918
1919                 scan_adjusted = true;
1920         }
1921         blk_finish_plug(&plug);
1922         sc->nr_reclaimed += nr_reclaimed;
1923
1924         /*
1925          * Even if we did not try to evict anon pages at all, we want to
1926          * rebalance the anon lru active/inactive ratio.
1927          */
1928         if (inactive_anon_is_low(lruvec))
1929                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1930                                    sc, LRU_ACTIVE_ANON);
1931
1932         throttle_vm_writeout(sc->gfp_mask);
1933 }
1934
1935 /* Use reclaim/compaction for costly allocs or under memory pressure */
1936 static bool in_reclaim_compaction(struct scan_control *sc)
1937 {
1938         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1939                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1940                          sc->priority < DEF_PRIORITY - 2))
1941                 return true;
1942
1943         return false;
1944 }
1945
1946 /*
1947  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1948  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1949  * true if more pages should be reclaimed such that when the page allocator
1950  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1951  * It will give up earlier than that if there is difficulty reclaiming pages.
1952  */
1953 static inline bool should_continue_reclaim(struct zone *zone,
1954                                         unsigned long nr_reclaimed,
1955                                         unsigned long nr_scanned,
1956                                         struct scan_control *sc)
1957 {
1958         unsigned long pages_for_compaction;
1959         unsigned long inactive_lru_pages;
1960
1961         /* If not in reclaim/compaction mode, stop */
1962         if (!in_reclaim_compaction(sc))
1963                 return false;
1964
1965         /* Consider stopping depending on scan and reclaim activity */
1966         if (sc->gfp_mask & __GFP_REPEAT) {
1967                 /*
1968                  * For __GFP_REPEAT allocations, stop reclaiming if the
1969                  * full LRU list has been scanned and we are still failing
1970                  * to reclaim pages. This full LRU scan is potentially
1971                  * expensive but a __GFP_REPEAT caller really wants to succeed
1972                  */
1973                 if (!nr_reclaimed && !nr_scanned)
1974                         return false;
1975         } else {
1976                 /*
1977                  * For non-__GFP_REPEAT allocations which can presumably
1978                  * fail without consequence, stop if we failed to reclaim
1979                  * any pages from the last SWAP_CLUSTER_MAX number of
1980                  * pages that were scanned. This will return to the
1981                  * caller faster at the risk reclaim/compaction and
1982                  * the resulting allocation attempt fails
1983                  */
1984                 if (!nr_reclaimed)
1985                         return false;
1986         }
1987
1988         /*
1989          * If we have not reclaimed enough pages for compaction and the
1990          * inactive lists are large enough, continue reclaiming
1991          */
1992         pages_for_compaction = (2UL << sc->order);
1993         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1994         if (get_nr_swap_pages() > 0)
1995                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1996         if (sc->nr_reclaimed < pages_for_compaction &&
1997                         inactive_lru_pages > pages_for_compaction)
1998                 return true;
1999
2000         /* If compaction would go ahead or the allocation would succeed, stop */
2001         switch (compaction_suitable(zone, sc->order)) {
2002         case COMPACT_PARTIAL:
2003         case COMPACT_CONTINUE:
2004                 return false;
2005         default:
2006                 return true;
2007         }
2008 }
2009
2010 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2011 {
2012         unsigned long nr_reclaimed, nr_scanned;
2013
2014         do {
2015                 struct mem_cgroup *root = sc->target_mem_cgroup;
2016                 struct mem_cgroup_reclaim_cookie reclaim = {
2017                         .zone = zone,
2018                         .priority = sc->priority,
2019                 };
2020                 struct mem_cgroup *memcg;
2021
2022                 nr_reclaimed = sc->nr_reclaimed;
2023                 nr_scanned = sc->nr_scanned;
2024
2025                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2026                 do {
2027                         struct lruvec *lruvec;
2028
2029                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2030
2031                         shrink_lruvec(lruvec, sc);
2032
2033                         /*
2034                          * Direct reclaim and kswapd have to scan all memory
2035                          * cgroups to fulfill the overall scan target for the
2036                          * zone.
2037                          *
2038                          * Limit reclaim, on the other hand, only cares about
2039                          * nr_to_reclaim pages to be reclaimed and it will
2040                          * retry with decreasing priority if one round over the
2041                          * whole hierarchy is not sufficient.
2042                          */
2043                         if (!global_reclaim(sc) &&
2044                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2045                                 mem_cgroup_iter_break(root, memcg);
2046                                 break;
2047                         }
2048                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2049                 } while (memcg);
2050
2051                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2052                            sc->nr_scanned - nr_scanned,
2053                            sc->nr_reclaimed - nr_reclaimed);
2054
2055         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2056                                          sc->nr_scanned - nr_scanned, sc));
2057 }
2058
2059 /* Returns true if compaction should go ahead for a high-order request */
2060 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2061 {
2062         unsigned long balance_gap, watermark;
2063         bool watermark_ok;
2064
2065         /* Do not consider compaction for orders reclaim is meant to satisfy */
2066         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2067                 return false;
2068
2069         /*
2070          * Compaction takes time to run and there are potentially other
2071          * callers using the pages just freed. Continue reclaiming until
2072          * there is a buffer of free pages available to give compaction
2073          * a reasonable chance of completing and allocating the page
2074          */
2075         balance_gap = min(low_wmark_pages(zone),
2076                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2077                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2078         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2079         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2080
2081         /*
2082          * If compaction is deferred, reclaim up to a point where
2083          * compaction will have a chance of success when re-enabled
2084          */
2085         if (compaction_deferred(zone, sc->order))
2086                 return watermark_ok;
2087
2088         /* If compaction is not ready to start, keep reclaiming */
2089         if (!compaction_suitable(zone, sc->order))
2090                 return false;
2091
2092         return watermark_ok;
2093 }
2094
2095 /*
2096  * This is the direct reclaim path, for page-allocating processes.  We only
2097  * try to reclaim pages from zones which will satisfy the caller's allocation
2098  * request.
2099  *
2100  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2101  * Because:
2102  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2103  *    allocation or
2104  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2105  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2106  *    zone defense algorithm.
2107  *
2108  * If a zone is deemed to be full of pinned pages then just give it a light
2109  * scan then give up on it.
2110  *
2111  * This function returns true if a zone is being reclaimed for a costly
2112  * high-order allocation and compaction is ready to begin. This indicates to
2113  * the caller that it should consider retrying the allocation instead of
2114  * further reclaim.
2115  */
2116 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2117 {
2118         struct zoneref *z;
2119         struct zone *zone;
2120         unsigned long nr_soft_reclaimed;
2121         unsigned long nr_soft_scanned;
2122         bool aborted_reclaim = false;
2123
2124         /*
2125          * If the number of buffer_heads in the machine exceeds the maximum
2126          * allowed level, force direct reclaim to scan the highmem zone as
2127          * highmem pages could be pinning lowmem pages storing buffer_heads
2128          */
2129         if (buffer_heads_over_limit)
2130                 sc->gfp_mask |= __GFP_HIGHMEM;
2131
2132         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2133                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2134                 if (!populated_zone(zone))
2135                         continue;
2136                 /*
2137                  * Take care memory controller reclaiming has small influence
2138                  * to global LRU.
2139                  */
2140                 if (global_reclaim(sc)) {
2141                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2142                                 continue;
2143                         if (zone->all_unreclaimable &&
2144                                         sc->priority != DEF_PRIORITY)
2145                                 continue;       /* Let kswapd poll it */
2146                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2147                                 /*
2148                                  * If we already have plenty of memory free for
2149                                  * compaction in this zone, don't free any more.
2150                                  * Even though compaction is invoked for any
2151                                  * non-zero order, only frequent costly order
2152                                  * reclamation is disruptive enough to become a
2153                                  * noticeable problem, like transparent huge
2154                                  * page allocations.
2155                                  */
2156                                 if (compaction_ready(zone, sc)) {
2157                                         aborted_reclaim = true;
2158                                         continue;
2159                                 }
2160                         }
2161                         /*
2162                          * This steals pages from memory cgroups over softlimit
2163                          * and returns the number of reclaimed pages and
2164                          * scanned pages. This works for global memory pressure
2165                          * and balancing, not for a memcg's limit.
2166                          */
2167                         nr_soft_scanned = 0;
2168                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2169                                                 sc->order, sc->gfp_mask,
2170                                                 &nr_soft_scanned);
2171                         sc->nr_reclaimed += nr_soft_reclaimed;
2172                         sc->nr_scanned += nr_soft_scanned;
2173                         /* need some check for avoid more shrink_zone() */
2174                 }
2175
2176                 shrink_zone(zone, sc);
2177         }
2178
2179         return aborted_reclaim;
2180 }
2181
2182 static bool zone_reclaimable(struct zone *zone)
2183 {
2184         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2185 }
2186
2187 /* All zones in zonelist are unreclaimable? */
2188 static bool all_unreclaimable(struct zonelist *zonelist,
2189                 struct scan_control *sc)
2190 {
2191         struct zoneref *z;
2192         struct zone *zone;
2193
2194         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2195                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2196                 if (!populated_zone(zone))
2197                         continue;
2198                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2199                         continue;
2200                 if (!zone->all_unreclaimable)
2201                         return false;
2202         }
2203
2204         return true;
2205 }
2206
2207 /*
2208  * This is the main entry point to direct page reclaim.
2209  *
2210  * If a full scan of the inactive list fails to free enough memory then we
2211  * are "out of memory" and something needs to be killed.
2212  *
2213  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2214  * high - the zone may be full of dirty or under-writeback pages, which this
2215  * caller can't do much about.  We kick the writeback threads and take explicit
2216  * naps in the hope that some of these pages can be written.  But if the
2217  * allocating task holds filesystem locks which prevent writeout this might not
2218  * work, and the allocation attempt will fail.
2219  *
2220  * returns:     0, if no pages reclaimed
2221  *              else, the number of pages reclaimed
2222  */
2223 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2224                                         struct scan_control *sc,
2225                                         struct shrink_control *shrink)
2226 {
2227         unsigned long total_scanned = 0;
2228         struct reclaim_state *reclaim_state = current->reclaim_state;
2229         struct zoneref *z;
2230         struct zone *zone;
2231         unsigned long writeback_threshold;
2232         bool aborted_reclaim;
2233
2234         delayacct_freepages_start();
2235
2236         if (global_reclaim(sc))
2237                 count_vm_event(ALLOCSTALL);
2238
2239         do {
2240                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2241                                 sc->priority);
2242                 sc->nr_scanned = 0;
2243                 aborted_reclaim = shrink_zones(zonelist, sc);
2244
2245                 /*
2246                  * Don't shrink slabs when reclaiming memory from
2247                  * over limit cgroups
2248                  */
2249                 if (global_reclaim(sc)) {
2250                         unsigned long lru_pages = 0;
2251                         for_each_zone_zonelist(zone, z, zonelist,
2252                                         gfp_zone(sc->gfp_mask)) {
2253                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2254                                         continue;
2255
2256                                 lru_pages += zone_reclaimable_pages(zone);
2257                         }
2258
2259                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2260                         if (reclaim_state) {
2261                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2262                                 reclaim_state->reclaimed_slab = 0;
2263                         }
2264                 }
2265                 total_scanned += sc->nr_scanned;
2266                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2267                         goto out;
2268
2269                 /*
2270                  * If we're getting trouble reclaiming, start doing
2271                  * writepage even in laptop mode.
2272                  */
2273                 if (sc->priority < DEF_PRIORITY - 2)
2274                         sc->may_writepage = 1;
2275
2276                 /*
2277                  * Try to write back as many pages as we just scanned.  This
2278                  * tends to cause slow streaming writers to write data to the
2279                  * disk smoothly, at the dirtying rate, which is nice.   But
2280                  * that's undesirable in laptop mode, where we *want* lumpy
2281                  * writeout.  So in laptop mode, write out the whole world.
2282                  */
2283                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2284                 if (total_scanned > writeback_threshold) {
2285                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2286                                                 WB_REASON_TRY_TO_FREE_PAGES);
2287                         sc->may_writepage = 1;
2288                 }
2289
2290                 /* Take a nap, wait for some writeback to complete */
2291                 if (!sc->hibernation_mode && sc->nr_scanned &&
2292                     sc->priority < DEF_PRIORITY - 2) {
2293                         struct zone *preferred_zone;
2294
2295                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2296                                                 &cpuset_current_mems_allowed,
2297                                                 &preferred_zone);
2298                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2299                 }
2300         } while (--sc->priority >= 0);
2301
2302 out:
2303         delayacct_freepages_end();
2304
2305         if (sc->nr_reclaimed)
2306                 return sc->nr_reclaimed;
2307
2308         /*
2309          * As hibernation is going on, kswapd is freezed so that it can't mark
2310          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2311          * check.
2312          */
2313         if (oom_killer_disabled)
2314                 return 0;
2315
2316         /* Aborted reclaim to try compaction? don't OOM, then */
2317         if (aborted_reclaim)
2318                 return 1;
2319
2320         /* top priority shrink_zones still had more to do? don't OOM, then */
2321         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2322                 return 1;
2323
2324         return 0;
2325 }
2326
2327 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2328 {
2329         struct zone *zone;
2330         unsigned long pfmemalloc_reserve = 0;
2331         unsigned long free_pages = 0;
2332         int i;
2333         bool wmark_ok;
2334
2335         for (i = 0; i <= ZONE_NORMAL; i++) {
2336                 zone = &pgdat->node_zones[i];
2337                 pfmemalloc_reserve += min_wmark_pages(zone);
2338                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2339         }
2340
2341         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2342
2343         /* kswapd must be awake if processes are being throttled */
2344         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2345                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2346                                                 (enum zone_type)ZONE_NORMAL);
2347                 wake_up_interruptible(&pgdat->kswapd_wait);
2348         }
2349
2350         return wmark_ok;
2351 }
2352
2353 /*
2354  * Throttle direct reclaimers if backing storage is backed by the network
2355  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2356  * depleted. kswapd will continue to make progress and wake the processes
2357  * when the low watermark is reached.
2358  *
2359  * Returns true if a fatal signal was delivered during throttling. If this
2360  * happens, the page allocator should not consider triggering the OOM killer.
2361  */
2362 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2363                                         nodemask_t *nodemask)
2364 {
2365         struct zone *zone;
2366         int high_zoneidx = gfp_zone(gfp_mask);
2367         pg_data_t *pgdat;
2368
2369         /*
2370          * Kernel threads should not be throttled as they may be indirectly
2371          * responsible for cleaning pages necessary for reclaim to make forward
2372          * progress. kjournald for example may enter direct reclaim while
2373          * committing a transaction where throttling it could forcing other
2374          * processes to block on log_wait_commit().
2375          */
2376         if (current->flags & PF_KTHREAD)
2377                 goto out;
2378
2379         /*
2380          * If a fatal signal is pending, this process should not throttle.
2381          * It should return quickly so it can exit and free its memory
2382          */
2383         if (fatal_signal_pending(current))
2384                 goto out;
2385
2386         /* Check if the pfmemalloc reserves are ok */
2387         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2388         pgdat = zone->zone_pgdat;
2389         if (pfmemalloc_watermark_ok(pgdat))
2390                 goto out;
2391
2392         /* Account for the throttling */
2393         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2394
2395         /*
2396          * If the caller cannot enter the filesystem, it's possible that it
2397          * is due to the caller holding an FS lock or performing a journal
2398          * transaction in the case of a filesystem like ext[3|4]. In this case,
2399          * it is not safe to block on pfmemalloc_wait as kswapd could be
2400          * blocked waiting on the same lock. Instead, throttle for up to a
2401          * second before continuing.
2402          */
2403         if (!(gfp_mask & __GFP_FS)) {
2404                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2405                         pfmemalloc_watermark_ok(pgdat), HZ);
2406
2407                 goto check_pending;
2408         }
2409
2410         /* Throttle until kswapd wakes the process */
2411         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2412                 pfmemalloc_watermark_ok(pgdat));
2413
2414 check_pending:
2415         if (fatal_signal_pending(current))
2416                 return true;
2417
2418 out:
2419         return false;
2420 }
2421
2422 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2423                                 gfp_t gfp_mask, nodemask_t *nodemask)
2424 {
2425         unsigned long nr_reclaimed;
2426         struct scan_control sc = {
2427                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2428                 .may_writepage = !laptop_mode,
2429                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2430                 .may_unmap = 1,
2431                 .may_swap = 1,
2432                 .order = order,
2433                 .priority = DEF_PRIORITY,
2434                 .target_mem_cgroup = NULL,
2435                 .nodemask = nodemask,
2436         };
2437         struct shrink_control shrink = {
2438                 .gfp_mask = sc.gfp_mask,
2439         };
2440
2441         /*
2442          * Do not enter reclaim if fatal signal was delivered while throttled.
2443          * 1 is returned so that the page allocator does not OOM kill at this
2444          * point.
2445          */
2446         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2447                 return 1;
2448
2449         trace_mm_vmscan_direct_reclaim_begin(order,
2450                                 sc.may_writepage,
2451                                 gfp_mask);
2452
2453         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2454
2455         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2456
2457         return nr_reclaimed;
2458 }
2459
2460 #ifdef CONFIG_MEMCG
2461
2462 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2463                                                 gfp_t gfp_mask, bool noswap,
2464                                                 struct zone *zone,
2465                                                 unsigned long *nr_scanned)
2466 {
2467         struct scan_control sc = {
2468                 .nr_scanned = 0,
2469                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2470                 .may_writepage = !laptop_mode,
2471                 .may_unmap = 1,
2472                 .may_swap = !noswap,
2473                 .order = 0,
2474                 .priority = 0,
2475                 .target_mem_cgroup = memcg,
2476         };
2477         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2478
2479         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2480                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2481
2482         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2483                                                       sc.may_writepage,
2484                                                       sc.gfp_mask);
2485
2486         /*
2487          * NOTE: Although we can get the priority field, using it
2488          * here is not a good idea, since it limits the pages we can scan.
2489          * if we don't reclaim here, the shrink_zone from balance_pgdat
2490          * will pick up pages from other mem cgroup's as well. We hack
2491          * the priority and make it zero.
2492          */
2493         shrink_lruvec(lruvec, &sc);
2494
2495         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2496
2497         *nr_scanned = sc.nr_scanned;
2498         return sc.nr_reclaimed;
2499 }
2500
2501 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2502                                            gfp_t gfp_mask,
2503                                            bool noswap)
2504 {
2505         struct zonelist *zonelist;
2506         unsigned long nr_reclaimed;
2507         int nid;
2508         struct scan_control sc = {
2509                 .may_writepage = !laptop_mode,
2510                 .may_unmap = 1,
2511                 .may_swap = !noswap,
2512                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2513                 .order = 0,
2514                 .priority = DEF_PRIORITY,
2515                 .target_mem_cgroup = memcg,
2516                 .nodemask = NULL, /* we don't care the placement */
2517                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2518                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2519         };
2520         struct shrink_control shrink = {
2521                 .gfp_mask = sc.gfp_mask,
2522         };
2523
2524         /*
2525          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2526          * take care of from where we get pages. So the node where we start the
2527          * scan does not need to be the current node.
2528          */
2529         nid = mem_cgroup_select_victim_node(memcg);
2530
2531         zonelist = NODE_DATA(nid)->node_zonelists;
2532
2533         trace_mm_vmscan_memcg_reclaim_begin(0,
2534                                             sc.may_writepage,
2535                                             sc.gfp_mask);
2536
2537         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2538
2539         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2540
2541         return nr_reclaimed;
2542 }
2543 #endif
2544
2545 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2546 {
2547         struct mem_cgroup *memcg;
2548
2549         if (!total_swap_pages)
2550                 return;
2551
2552         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2553         do {
2554                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2555
2556                 if (inactive_anon_is_low(lruvec))
2557                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2558                                            sc, LRU_ACTIVE_ANON);
2559
2560                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2561         } while (memcg);
2562 }
2563
2564 static bool zone_balanced(struct zone *zone, int order,
2565                           unsigned long balance_gap, int classzone_idx)
2566 {
2567         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2568                                     balance_gap, classzone_idx, 0))
2569                 return false;
2570
2571         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2572             !compaction_suitable(zone, order))
2573                 return false;
2574
2575         return true;
2576 }
2577
2578 /*
2579  * pgdat_balanced() is used when checking if a node is balanced.
2580  *
2581  * For order-0, all zones must be balanced!
2582  *
2583  * For high-order allocations only zones that meet watermarks and are in a
2584  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2585  * total of balanced pages must be at least 25% of the zones allowed by
2586  * classzone_idx for the node to be considered balanced. Forcing all zones to
2587  * be balanced for high orders can cause excessive reclaim when there are
2588  * imbalanced zones.
2589  * The choice of 25% is due to
2590  *   o a 16M DMA zone that is balanced will not balance a zone on any
2591  *     reasonable sized machine
2592  *   o On all other machines, the top zone must be at least a reasonable
2593  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2594  *     would need to be at least 256M for it to be balance a whole node.
2595  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2596  *     to balance a node on its own. These seemed like reasonable ratios.
2597  */
2598 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2599 {
2600         unsigned long managed_pages = 0;
2601         unsigned long balanced_pages = 0;
2602         int i;
2603
2604         /* Check the watermark levels */
2605         for (i = 0; i <= classzone_idx; i++) {
2606                 struct zone *zone = pgdat->node_zones + i;
2607
2608                 if (!populated_zone(zone))
2609                         continue;
2610
2611                 managed_pages += zone->managed_pages;
2612
2613                 /*
2614                  * A special case here:
2615                  *
2616                  * balance_pgdat() skips over all_unreclaimable after
2617                  * DEF_PRIORITY. Effectively, it considers them balanced so
2618                  * they must be considered balanced here as well!
2619                  */
2620                 if (zone->all_unreclaimable) {
2621                         balanced_pages += zone->managed_pages;
2622                         continue;
2623                 }
2624
2625                 if (zone_balanced(zone, order, 0, i))
2626                         balanced_pages += zone->managed_pages;
2627                 else if (!order)
2628                         return false;
2629         }
2630
2631         if (order)
2632                 return balanced_pages >= (managed_pages >> 2);
2633         else
2634                 return true;
2635 }
2636
2637 /*
2638  * Prepare kswapd for sleeping. This verifies that there are no processes
2639  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2640  *
2641  * Returns true if kswapd is ready to sleep
2642  */
2643 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2644                                         int classzone_idx)
2645 {
2646         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2647         if (remaining)
2648                 return false;
2649
2650         /*
2651          * There is a potential race between when kswapd checks its watermarks
2652          * and a process gets throttled. There is also a potential race if
2653          * processes get throttled, kswapd wakes, a large process exits therby
2654          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2655          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2656          * so wake them now if necessary. If necessary, processes will wake
2657          * kswapd and get throttled again
2658          */
2659         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2660                 wake_up(&pgdat->pfmemalloc_wait);
2661                 return false;
2662         }
2663
2664         return pgdat_balanced(pgdat, order, classzone_idx);
2665 }
2666
2667 /*
2668  * kswapd shrinks the zone by the number of pages required to reach
2669  * the high watermark.
2670  *
2671  * Returns true if kswapd scanned at least the requested number of pages to
2672  * reclaim. This is used to determine if the scanning priority needs to be
2673  * raised.
2674  */
2675 static bool kswapd_shrink_zone(struct zone *zone,
2676                                struct scan_control *sc,
2677                                unsigned long lru_pages,
2678                                unsigned long *nr_attempted)
2679 {
2680         unsigned long nr_slab;
2681         struct reclaim_state *reclaim_state = current->reclaim_state;
2682         struct shrink_control shrink = {
2683                 .gfp_mask = sc->gfp_mask,
2684         };
2685
2686         /* Reclaim above the high watermark. */
2687         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2688         shrink_zone(zone, sc);
2689
2690         reclaim_state->reclaimed_slab = 0;
2691         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2692         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2693
2694         /* Account for the number of pages attempted to reclaim */
2695         *nr_attempted += sc->nr_to_reclaim;
2696
2697         if (nr_slab == 0 && !zone_reclaimable(zone))
2698                 zone->all_unreclaimable = 1;
2699
2700         return sc->nr_scanned >= sc->nr_to_reclaim;
2701 }
2702
2703 /*
2704  * For kswapd, balance_pgdat() will work across all this node's zones until
2705  * they are all at high_wmark_pages(zone).
2706  *
2707  * Returns the final order kswapd was reclaiming at
2708  *
2709  * There is special handling here for zones which are full of pinned pages.
2710  * This can happen if the pages are all mlocked, or if they are all used by
2711  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2712  * What we do is to detect the case where all pages in the zone have been
2713  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2714  * dead and from now on, only perform a short scan.  Basically we're polling
2715  * the zone for when the problem goes away.
2716  *
2717  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2718  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2719  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2720  * lower zones regardless of the number of free pages in the lower zones. This
2721  * interoperates with the page allocator fallback scheme to ensure that aging
2722  * of pages is balanced across the zones.
2723  */
2724 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2725                                                         int *classzone_idx)
2726 {
2727         int i;
2728         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2729         unsigned long nr_soft_reclaimed;
2730         unsigned long nr_soft_scanned;
2731         struct scan_control sc = {
2732                 .gfp_mask = GFP_KERNEL,
2733                 .priority = DEF_PRIORITY,
2734                 .may_unmap = 1,
2735                 .may_swap = 1,
2736                 .may_writepage = !laptop_mode,
2737                 .order = order,
2738                 .target_mem_cgroup = NULL,
2739         };
2740         count_vm_event(PAGEOUTRUN);
2741
2742         do {
2743                 unsigned long lru_pages = 0;
2744                 unsigned long nr_attempted = 0;
2745                 bool raise_priority = true;
2746                 bool pgdat_needs_compaction = (order > 0);
2747
2748                 sc.nr_reclaimed = 0;
2749
2750                 /*
2751                  * Scan in the highmem->dma direction for the highest
2752                  * zone which needs scanning
2753                  */
2754                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2755                         struct zone *zone = pgdat->node_zones + i;
2756
2757                         if (!populated_zone(zone))
2758                                 continue;
2759
2760                         if (zone->all_unreclaimable &&
2761                             sc.priority != DEF_PRIORITY)
2762                                 continue;
2763
2764                         /*
2765                          * Do some background aging of the anon list, to give
2766                          * pages a chance to be referenced before reclaiming.
2767                          */
2768                         age_active_anon(zone, &sc);
2769
2770                         /*
2771                          * If the number of buffer_heads in the machine
2772                          * exceeds the maximum allowed level and this node
2773                          * has a highmem zone, force kswapd to reclaim from
2774                          * it to relieve lowmem pressure.
2775                          */
2776                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2777                                 end_zone = i;
2778                                 break;
2779                         }
2780
2781                         if (!zone_balanced(zone, order, 0, 0)) {
2782                                 end_zone = i;
2783                                 break;
2784                         } else {
2785                                 /*
2786                                  * If balanced, clear the dirty and congested
2787                                  * flags
2788                                  */
2789                                 zone_clear_flag(zone, ZONE_CONGESTED);
2790                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2791                         }
2792                 }
2793
2794                 if (i < 0)
2795                         goto out;
2796
2797                 for (i = 0; i <= end_zone; i++) {
2798                         struct zone *zone = pgdat->node_zones + i;
2799
2800                         if (!populated_zone(zone))
2801                                 continue;
2802
2803                         lru_pages += zone_reclaimable_pages(zone);
2804
2805                         /*
2806                          * If any zone is currently balanced then kswapd will
2807                          * not call compaction as it is expected that the
2808                          * necessary pages are already available.
2809                          */
2810                         if (pgdat_needs_compaction &&
2811                                         zone_watermark_ok(zone, order,
2812                                                 low_wmark_pages(zone),
2813                                                 *classzone_idx, 0))
2814                                 pgdat_needs_compaction = false;
2815                 }
2816
2817                 /*
2818                  * Now scan the zone in the dma->highmem direction, stopping
2819                  * at the last zone which needs scanning.
2820                  *
2821                  * We do this because the page allocator works in the opposite
2822                  * direction.  This prevents the page allocator from allocating
2823                  * pages behind kswapd's direction of progress, which would
2824                  * cause too much scanning of the lower zones.
2825                  */
2826                 for (i = 0; i <= end_zone; i++) {
2827                         struct zone *zone = pgdat->node_zones + i;
2828                         int testorder;
2829                         unsigned long balance_gap;
2830
2831                         if (!populated_zone(zone))
2832                                 continue;
2833
2834                         if (zone->all_unreclaimable &&
2835                             sc.priority != DEF_PRIORITY)
2836                                 continue;
2837
2838                         sc.nr_scanned = 0;
2839
2840                         nr_soft_scanned = 0;
2841                         /*
2842                          * Call soft limit reclaim before calling shrink_zone.
2843                          */
2844                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2845                                                         order, sc.gfp_mask,
2846                                                         &nr_soft_scanned);
2847                         sc.nr_reclaimed += nr_soft_reclaimed;
2848
2849                         /*
2850                          * We put equal pressure on every zone, unless
2851                          * one zone has way too many pages free
2852                          * already. The "too many pages" is defined
2853                          * as the high wmark plus a "gap" where the
2854                          * gap is either the low watermark or 1%
2855                          * of the zone, whichever is smaller.
2856                          */
2857                         balance_gap = min(low_wmark_pages(zone),
2858                                 (zone->managed_pages +
2859                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2860                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2861                         /*
2862                          * Kswapd reclaims only single pages with compaction
2863                          * enabled. Trying too hard to reclaim until contiguous
2864                          * free pages have become available can hurt performance
2865                          * by evicting too much useful data from memory.
2866                          * Do not reclaim more than needed for compaction.
2867                          */
2868                         testorder = order;
2869                         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2870                                         compaction_suitable(zone, order) !=
2871                                                 COMPACT_SKIPPED)
2872                                 testorder = 0;
2873
2874                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2875                             !zone_balanced(zone, testorder,
2876                                            balance_gap, end_zone)) {
2877                                 /*
2878                                  * There should be no need to raise the
2879                                  * scanning priority if enough pages are
2880                                  * already being scanned that high
2881                                  * watermark would be met at 100% efficiency.
2882                                  */
2883                                 if (kswapd_shrink_zone(zone, &sc, lru_pages,
2884                                                        &nr_attempted))
2885                                         raise_priority = false;
2886                         }
2887
2888                         /*
2889                          * If we're getting trouble reclaiming, start doing
2890                          * writepage even in laptop mode.
2891                          */
2892                         if (sc.priority < DEF_PRIORITY - 2)
2893                                 sc.may_writepage = 1;
2894
2895                         if (zone->all_unreclaimable) {
2896                                 if (end_zone && end_zone == i)
2897                                         end_zone--;
2898                                 continue;
2899                         }
2900
2901                         if (zone_balanced(zone, testorder, 0, end_zone))
2902                                 /*
2903                                  * If a zone reaches its high watermark,
2904                                  * consider it to be no longer congested. It's
2905                                  * possible there are dirty pages backed by
2906                                  * congested BDIs but as pressure is relieved,
2907                                  * speculatively avoid congestion waits
2908                                  * or writing pages from kswapd context.
2909                                  */
2910                                 zone_clear_flag(zone, ZONE_CONGESTED);
2911                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2912                 }
2913
2914                 /*
2915                  * If the low watermark is met there is no need for processes
2916                  * to be throttled on pfmemalloc_wait as they should not be
2917                  * able to safely make forward progress. Wake them
2918                  */
2919                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2920                                 pfmemalloc_watermark_ok(pgdat))
2921                         wake_up(&pgdat->pfmemalloc_wait);
2922
2923                 /*
2924                  * Fragmentation may mean that the system cannot be rebalanced
2925                  * for high-order allocations in all zones. If twice the
2926                  * allocation size has been reclaimed and the zones are still
2927                  * not balanced then recheck the watermarks at order-0 to
2928                  * prevent kswapd reclaiming excessively. Assume that a
2929                  * process requested a high-order can direct reclaim/compact.
2930                  */
2931                 if (order && sc.nr_reclaimed >= 2UL << order)
2932                         order = sc.order = 0;
2933
2934                 /* Check if kswapd should be suspending */
2935                 if (try_to_freeze() || kthread_should_stop())
2936                         break;
2937
2938                 /*
2939                  * Compact if necessary and kswapd is reclaiming at least the
2940                  * high watermark number of pages as requsted
2941                  */
2942                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
2943                         compact_pgdat(pgdat, order);
2944
2945                 /*
2946                  * Raise priority if scanning rate is too low or there was no
2947                  * progress in reclaiming pages
2948                  */
2949                 if (raise_priority || !sc.nr_reclaimed)
2950                         sc.priority--;
2951         } while (sc.priority >= 1 &&
2952                  !pgdat_balanced(pgdat, order, *classzone_idx));
2953
2954 out:
2955         /*
2956          * Return the order we were reclaiming at so prepare_kswapd_sleep()
2957          * makes a decision on the order we were last reclaiming at. However,
2958          * if another caller entered the allocator slow path while kswapd
2959          * was awake, order will remain at the higher level
2960          */
2961         *classzone_idx = end_zone;
2962         return order;
2963 }
2964
2965 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2966 {
2967         long remaining = 0;
2968         DEFINE_WAIT(wait);
2969
2970         if (freezing(current) || kthread_should_stop())
2971                 return;
2972
2973         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2974
2975         /* Try to sleep for a short interval */
2976         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2977                 remaining = schedule_timeout(HZ/10);
2978                 finish_wait(&pgdat->kswapd_wait, &wait);
2979                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2980         }
2981
2982         /*
2983          * After a short sleep, check if it was a premature sleep. If not, then
2984          * go fully to sleep until explicitly woken up.
2985          */
2986         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2987                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2988
2989                 /*
2990                  * vmstat counters are not perfectly accurate and the estimated
2991                  * value for counters such as NR_FREE_PAGES can deviate from the
2992                  * true value by nr_online_cpus * threshold. To avoid the zone
2993                  * watermarks being breached while under pressure, we reduce the
2994                  * per-cpu vmstat threshold while kswapd is awake and restore
2995                  * them before going back to sleep.
2996                  */
2997                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2998
2999                 /*
3000                  * Compaction records what page blocks it recently failed to
3001                  * isolate pages from and skips them in the future scanning.
3002                  * When kswapd is going to sleep, it is reasonable to assume
3003                  * that pages and compaction may succeed so reset the cache.
3004                  */
3005                 reset_isolation_suitable(pgdat);
3006
3007                 if (!kthread_should_stop())
3008                         schedule();
3009
3010                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3011         } else {
3012                 if (remaining)
3013                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3014                 else
3015                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3016         }
3017         finish_wait(&pgdat->kswapd_wait, &wait);
3018 }
3019
3020 /*
3021  * The background pageout daemon, started as a kernel thread
3022  * from the init process.
3023  *
3024  * This basically trickles out pages so that we have _some_
3025  * free memory available even if there is no other activity
3026  * that frees anything up. This is needed for things like routing
3027  * etc, where we otherwise might have all activity going on in
3028  * asynchronous contexts that cannot page things out.
3029  *
3030  * If there are applications that are active memory-allocators
3031  * (most normal use), this basically shouldn't matter.
3032  */
3033 static int kswapd(void *p)
3034 {
3035         unsigned long order, new_order;
3036         unsigned balanced_order;
3037         int classzone_idx, new_classzone_idx;
3038         int balanced_classzone_idx;
3039         pg_data_t *pgdat = (pg_data_t*)p;
3040         struct task_struct *tsk = current;
3041
3042         struct reclaim_state reclaim_state = {
3043                 .reclaimed_slab = 0,
3044         };
3045         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3046
3047         lockdep_set_current_reclaim_state(GFP_KERNEL);
3048
3049         if (!cpumask_empty(cpumask))
3050                 set_cpus_allowed_ptr(tsk, cpumask);
3051         current->reclaim_state = &reclaim_state;
3052
3053         /*
3054          * Tell the memory management that we're a "memory allocator",
3055          * and that if we need more memory we should get access to it
3056          * regardless (see "__alloc_pages()"). "kswapd" should
3057          * never get caught in the normal page freeing logic.
3058          *
3059          * (Kswapd normally doesn't need memory anyway, but sometimes
3060          * you need a small amount of memory in order to be able to
3061          * page out something else, and this flag essentially protects
3062          * us from recursively trying to free more memory as we're
3063          * trying to free the first piece of memory in the first place).
3064          */
3065         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3066         set_freezable();
3067
3068         order = new_order = 0;
3069         balanced_order = 0;
3070         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3071         balanced_classzone_idx = classzone_idx;
3072         for ( ; ; ) {
3073                 bool ret;
3074
3075                 /*
3076                  * If the last balance_pgdat was unsuccessful it's unlikely a
3077                  * new request of a similar or harder type will succeed soon
3078                  * so consider going to sleep on the basis we reclaimed at
3079                  */
3080                 if (balanced_classzone_idx >= new_classzone_idx &&
3081                                         balanced_order == new_order) {
3082                         new_order = pgdat->kswapd_max_order;
3083                         new_classzone_idx = pgdat->classzone_idx;
3084                         pgdat->kswapd_max_order =  0;
3085                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3086                 }
3087
3088                 if (order < new_order || classzone_idx > new_classzone_idx) {
3089                         /*
3090                          * Don't sleep if someone wants a larger 'order'
3091                          * allocation or has tigher zone constraints
3092                          */
3093                         order = new_order;
3094                         classzone_idx = new_classzone_idx;
3095                 } else {
3096                         kswapd_try_to_sleep(pgdat, balanced_order,
3097                                                 balanced_classzone_idx);
3098                         order = pgdat->kswapd_max_order;
3099                         classzone_idx = pgdat->classzone_idx;
3100                         new_order = order;
3101                         new_classzone_idx = classzone_idx;
3102                         pgdat->kswapd_max_order = 0;
3103                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3104                 }
3105
3106                 ret = try_to_freeze();
3107                 if (kthread_should_stop())
3108                         break;
3109
3110                 /*
3111                  * We can speed up thawing tasks if we don't call balance_pgdat
3112                  * after returning from the refrigerator
3113                  */
3114                 if (!ret) {
3115                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3116                         balanced_classzone_idx = classzone_idx;
3117                         balanced_order = balance_pgdat(pgdat, order,
3118                                                 &balanced_classzone_idx);
3119                 }
3120         }
3121
3122         current->reclaim_state = NULL;
3123         return 0;
3124 }
3125
3126 /*
3127  * A zone is low on free memory, so wake its kswapd task to service it.
3128  */
3129 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3130 {
3131         pg_data_t *pgdat;
3132
3133         if (!populated_zone(zone))
3134                 return;
3135
3136         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3137                 return;
3138         pgdat = zone->zone_pgdat;
3139         if (pgdat->kswapd_max_order < order) {
3140                 pgdat->kswapd_max_order = order;
3141                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3142         }
3143         if (!waitqueue_active(&pgdat->kswapd_wait))
3144                 return;
3145         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3146                 return;
3147
3148         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3149         wake_up_interruptible(&pgdat->kswapd_wait);
3150 }
3151
3152 /*
3153  * The reclaimable count would be mostly accurate.
3154  * The less reclaimable pages may be
3155  * - mlocked pages, which will be moved to unevictable list when encountered
3156  * - mapped pages, which may require several travels to be reclaimed
3157  * - dirty pages, which is not "instantly" reclaimable
3158  */
3159 unsigned long global_reclaimable_pages(void)
3160 {
3161         int nr;
3162
3163         nr = global_page_state(NR_ACTIVE_FILE) +
3164              global_page_state(NR_INACTIVE_FILE);
3165
3166         if (get_nr_swap_pages() > 0)
3167                 nr += global_page_state(NR_ACTIVE_ANON) +
3168                       global_page_state(NR_INACTIVE_ANON);
3169
3170         return nr;
3171 }
3172
3173 unsigned long zone_reclaimable_pages(struct zone *zone)
3174 {
3175         int nr;
3176
3177         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3178              zone_page_state(zone, NR_INACTIVE_FILE);
3179
3180         if (get_nr_swap_pages() > 0)
3181                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3182                       zone_page_state(zone, NR_INACTIVE_ANON);
3183
3184         return nr;
3185 }
3186
3187 #ifdef CONFIG_HIBERNATION
3188 /*
3189  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3190  * freed pages.
3191  *
3192  * Rather than trying to age LRUs the aim is to preserve the overall
3193  * LRU order by reclaiming preferentially
3194  * inactive > active > active referenced > active mapped
3195  */
3196 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3197 {
3198         struct reclaim_state reclaim_state;
3199         struct scan_control sc = {
3200                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3201                 .may_swap = 1,
3202                 .may_unmap = 1,
3203                 .may_writepage = 1,
3204                 .nr_to_reclaim = nr_to_reclaim,
3205                 .hibernation_mode = 1,
3206                 .order = 0,
3207                 .priority = DEF_PRIORITY,
3208         };
3209         struct shrink_control shrink = {
3210                 .gfp_mask = sc.gfp_mask,
3211         };
3212         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3213         struct task_struct *p = current;
3214         unsigned long nr_reclaimed;
3215
3216         p->flags |= PF_MEMALLOC;
3217         lockdep_set_current_reclaim_state(sc.gfp_mask);
3218         reclaim_state.reclaimed_slab = 0;
3219         p->reclaim_state = &reclaim_state;
3220
3221         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3222
3223         p->reclaim_state = NULL;
3224         lockdep_clear_current_reclaim_state();
3225         p->flags &= ~PF_MEMALLOC;
3226
3227         return nr_reclaimed;
3228 }
3229 #endif /* CONFIG_HIBERNATION */
3230
3231 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3232    not required for correctness.  So if the last cpu in a node goes
3233    away, we get changed to run anywhere: as the first one comes back,
3234    restore their cpu bindings. */
3235 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3236                         void *hcpu)
3237 {
3238         int nid;
3239
3240         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3241                 for_each_node_state(nid, N_MEMORY) {
3242                         pg_data_t *pgdat = NODE_DATA(nid);
3243                         const struct cpumask *mask;
3244
3245                         mask = cpumask_of_node(pgdat->node_id);
3246
3247                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3248                                 /* One of our CPUs online: restore mask */
3249                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3250                 }
3251         }
3252         return NOTIFY_OK;
3253 }
3254
3255 /*
3256  * This kswapd start function will be called by init and node-hot-add.
3257  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3258  */
3259 int kswapd_run(int nid)
3260 {
3261         pg_data_t *pgdat = NODE_DATA(nid);
3262         int ret = 0;
3263
3264         if (pgdat->kswapd)
3265                 return 0;
3266
3267         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3268         if (IS_ERR(pgdat->kswapd)) {
3269                 /* failure at boot is fatal */
3270                 BUG_ON(system_state == SYSTEM_BOOTING);
3271                 pr_err("Failed to start kswapd on node %d\n", nid);
3272                 ret = PTR_ERR(pgdat->kswapd);
3273                 pgdat->kswapd = NULL;
3274         }
3275         return ret;
3276 }
3277
3278 /*
3279  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3280  * hold lock_memory_hotplug().
3281  */
3282 void kswapd_stop(int nid)
3283 {
3284         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3285
3286         if (kswapd) {
3287                 kthread_stop(kswapd);
3288                 NODE_DATA(nid)->kswapd = NULL;
3289         }
3290 }
3291
3292 static int __init kswapd_init(void)
3293 {
3294         int nid;
3295
3296         swap_setup();
3297         for_each_node_state(nid, N_MEMORY)
3298                 kswapd_run(nid);
3299         hotcpu_notifier(cpu_callback, 0);
3300         return 0;
3301 }
3302
3303 module_init(kswapd_init)
3304
3305 #ifdef CONFIG_NUMA
3306 /*
3307  * Zone reclaim mode
3308  *
3309  * If non-zero call zone_reclaim when the number of free pages falls below
3310  * the watermarks.
3311  */
3312 int zone_reclaim_mode __read_mostly;
3313
3314 #define RECLAIM_OFF 0
3315 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3316 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3317 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3318
3319 /*
3320  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3321  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3322  * a zone.
3323  */
3324 #define ZONE_RECLAIM_PRIORITY 4
3325
3326 /*
3327  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3328  * occur.
3329  */
3330 int sysctl_min_unmapped_ratio = 1;
3331
3332 /*
3333  * If the number of slab pages in a zone grows beyond this percentage then
3334  * slab reclaim needs to occur.
3335  */
3336 int sysctl_min_slab_ratio = 5;
3337
3338 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3339 {
3340         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3341         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3342                 zone_page_state(zone, NR_ACTIVE_FILE);
3343
3344         /*
3345          * It's possible for there to be more file mapped pages than
3346          * accounted for by the pages on the file LRU lists because
3347          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3348          */
3349         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3350 }
3351
3352 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3353 static long zone_pagecache_reclaimable(struct zone *zone)
3354 {
3355         long nr_pagecache_reclaimable;
3356         long delta = 0;
3357
3358         /*
3359          * If RECLAIM_SWAP is set, then all file pages are considered
3360          * potentially reclaimable. Otherwise, we have to worry about
3361          * pages like swapcache and zone_unmapped_file_pages() provides
3362          * a better estimate
3363          */
3364         if (zone_reclaim_mode & RECLAIM_SWAP)
3365                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3366         else
3367                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3368
3369         /* If we can't clean pages, remove dirty pages from consideration */
3370         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3371                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3372
3373         /* Watch for any possible underflows due to delta */
3374         if (unlikely(delta > nr_pagecache_reclaimable))
3375                 delta = nr_pagecache_reclaimable;
3376
3377         return nr_pagecache_reclaimable - delta;
3378 }
3379
3380 /*
3381  * Try to free up some pages from this zone through reclaim.
3382  */
3383 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3384 {
3385         /* Minimum pages needed in order to stay on node */
3386         const unsigned long nr_pages = 1 << order;
3387         struct task_struct *p = current;
3388         struct reclaim_state reclaim_state;
3389         struct scan_control sc = {
3390                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3391                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3392                 .may_swap = 1,
3393                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3394                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3395                 .order = order,
3396                 .priority = ZONE_RECLAIM_PRIORITY,
3397         };
3398         struct shrink_control shrink = {
3399                 .gfp_mask = sc.gfp_mask,
3400         };
3401         unsigned long nr_slab_pages0, nr_slab_pages1;
3402
3403         cond_resched();
3404         /*
3405          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3406          * and we also need to be able to write out pages for RECLAIM_WRITE
3407          * and RECLAIM_SWAP.
3408          */
3409         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3410         lockdep_set_current_reclaim_state(gfp_mask);
3411         reclaim_state.reclaimed_slab = 0;
3412         p->reclaim_state = &reclaim_state;
3413
3414         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3415                 /*
3416                  * Free memory by calling shrink zone with increasing
3417                  * priorities until we have enough memory freed.
3418                  */
3419                 do {
3420                         shrink_zone(zone, &sc);
3421                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3422         }
3423
3424         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3425         if (nr_slab_pages0 > zone->min_slab_pages) {
3426                 /*
3427                  * shrink_slab() does not currently allow us to determine how
3428                  * many pages were freed in this zone. So we take the current
3429                  * number of slab pages and shake the slab until it is reduced
3430                  * by the same nr_pages that we used for reclaiming unmapped
3431                  * pages.
3432                  *
3433                  * Note that shrink_slab will free memory on all zones and may
3434                  * take a long time.
3435                  */
3436                 for (;;) {
3437                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3438
3439                         /* No reclaimable slab or very low memory pressure */
3440                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3441                                 break;
3442
3443                         /* Freed enough memory */
3444                         nr_slab_pages1 = zone_page_state(zone,
3445                                                         NR_SLAB_RECLAIMABLE);
3446                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3447                                 break;
3448                 }
3449
3450                 /*
3451                  * Update nr_reclaimed by the number of slab pages we
3452                  * reclaimed from this zone.
3453                  */
3454                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3455                 if (nr_slab_pages1 < nr_slab_pages0)
3456                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3457         }
3458
3459         p->reclaim_state = NULL;
3460         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3461         lockdep_clear_current_reclaim_state();
3462         return sc.nr_reclaimed >= nr_pages;
3463 }
3464
3465 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3466 {
3467         int node_id;
3468         int ret;
3469
3470         /*
3471          * Zone reclaim reclaims unmapped file backed pages and
3472          * slab pages if we are over the defined limits.
3473          *
3474          * A small portion of unmapped file backed pages is needed for
3475          * file I/O otherwise pages read by file I/O will be immediately
3476          * thrown out if the zone is overallocated. So we do not reclaim
3477          * if less than a specified percentage of the zone is used by
3478          * unmapped file backed pages.
3479          */
3480         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3481             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3482                 return ZONE_RECLAIM_FULL;
3483
3484         if (zone->all_unreclaimable)
3485                 return ZONE_RECLAIM_FULL;
3486
3487         /*
3488          * Do not scan if the allocation should not be delayed.
3489          */
3490         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3491                 return ZONE_RECLAIM_NOSCAN;
3492
3493         /*
3494          * Only run zone reclaim on the local zone or on zones that do not
3495          * have associated processors. This will favor the local processor
3496          * over remote processors and spread off node memory allocations
3497          * as wide as possible.
3498          */
3499         node_id = zone_to_nid(zone);
3500         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3501                 return ZONE_RECLAIM_NOSCAN;
3502
3503         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3504                 return ZONE_RECLAIM_NOSCAN;
3505
3506         ret = __zone_reclaim(zone, gfp_mask, order);
3507         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3508
3509         if (!ret)
3510                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3511
3512         return ret;
3513 }
3514 #endif
3515
3516 /*
3517  * page_evictable - test whether a page is evictable
3518  * @page: the page to test
3519  *
3520  * Test whether page is evictable--i.e., should be placed on active/inactive
3521  * lists vs unevictable list.
3522  *
3523  * Reasons page might not be evictable:
3524  * (1) page's mapping marked unevictable
3525  * (2) page is part of an mlocked VMA
3526  *
3527  */
3528 int page_evictable(struct page *page)
3529 {
3530         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3531 }
3532
3533 #ifdef CONFIG_SHMEM
3534 /**
3535  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3536  * @pages:      array of pages to check
3537  * @nr_pages:   number of pages to check
3538  *
3539  * Checks pages for evictability and moves them to the appropriate lru list.
3540  *
3541  * This function is only used for SysV IPC SHM_UNLOCK.
3542  */
3543 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3544 {
3545         struct lruvec *lruvec;
3546         struct zone *zone = NULL;
3547         int pgscanned = 0;
3548         int pgrescued = 0;
3549         int i;
3550
3551         for (i = 0; i < nr_pages; i++) {
3552                 struct page *page = pages[i];
3553                 struct zone *pagezone;
3554
3555                 pgscanned++;
3556                 pagezone = page_zone(page);
3557                 if (pagezone != zone) {
3558                         if (zone)
3559                                 spin_unlock_irq(&zone->lru_lock);
3560                         zone = pagezone;
3561                         spin_lock_irq(&zone->lru_lock);
3562                 }
3563                 lruvec = mem_cgroup_page_lruvec(page, zone);
3564
3565                 if (!PageLRU(page) || !PageUnevictable(page))
3566                         continue;
3567
3568                 if (page_evictable(page)) {
3569                         enum lru_list lru = page_lru_base_type(page);
3570
3571                         VM_BUG_ON(PageActive(page));
3572                         ClearPageUnevictable(page);
3573                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3574                         add_page_to_lru_list(page, lruvec, lru);
3575                         pgrescued++;
3576                 }
3577         }
3578
3579         if (zone) {
3580                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3581                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3582                 spin_unlock_irq(&zone->lru_lock);
3583         }
3584 }
3585 #endif /* CONFIG_SHMEM */
3586
3587 static void warn_scan_unevictable_pages(void)
3588 {
3589         printk_once(KERN_WARNING
3590                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3591                     "disabled for lack of a legitimate use case.  If you have "
3592                     "one, please send an email to linux-mm@kvack.org.\n",
3593                     current->comm);
3594 }
3595
3596 /*
3597  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3598  * all nodes' unevictable lists for evictable pages
3599  */
3600 unsigned long scan_unevictable_pages;
3601
3602 int scan_unevictable_handler(struct ctl_table *table, int write,
3603                            void __user *buffer,
3604                            size_t *length, loff_t *ppos)
3605 {
3606         warn_scan_unevictable_pages();
3607         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3608         scan_unevictable_pages = 0;
3609         return 0;
3610 }
3611
3612 #ifdef CONFIG_NUMA
3613 /*
3614  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3615  * a specified node's per zone unevictable lists for evictable pages.
3616  */
3617
3618 static ssize_t read_scan_unevictable_node(struct device *dev,
3619                                           struct device_attribute *attr,
3620                                           char *buf)
3621 {
3622         warn_scan_unevictable_pages();
3623         return sprintf(buf, "0\n");     /* always zero; should fit... */
3624 }
3625
3626 static ssize_t write_scan_unevictable_node(struct device *dev,
3627                                            struct device_attribute *attr,
3628                                         const char *buf, size_t count)
3629 {
3630         warn_scan_unevictable_pages();
3631         return 1;
3632 }
3633
3634
3635 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3636                         read_scan_unevictable_node,
3637                         write_scan_unevictable_node);
3638
3639 int scan_unevictable_register_node(struct node *node)
3640 {
3641         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3642 }
3643
3644 void scan_unevictable_unregister_node(struct node *node)
3645 {
3646         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3647 }
3648 #endif