1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
76 /* How many pages shrink_list() should reclaim */
77 unsigned long nr_to_reclaim;
80 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup *target_mem_cgroup;
92 * Scan pressure balancing between anon and file LRUs
94 unsigned long anon_cost;
95 unsigned long file_cost;
97 /* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 unsigned int may_deactivate:2;
101 unsigned int force_deactivate:1;
102 unsigned int skipped_deactivate:1;
104 /* Writepage batching in laptop mode; RECLAIM_WRITE */
105 unsigned int may_writepage:1;
107 /* Can mapped folios be reclaimed? */
108 unsigned int may_unmap:1;
110 /* Can folios be swapped as part of reclaim? */
111 unsigned int may_swap:1;
113 /* Proactive reclaim invoked by userspace through memory.reclaim */
114 unsigned int proactive:1;
117 * Cgroup memory below memory.low is protected as long as we
118 * don't threaten to OOM. If any cgroup is reclaimed at
119 * reduced force or passed over entirely due to its memory.low
120 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 * result, then go back for one more cycle that reclaims the protected
122 * memory (memcg_low_reclaim) to avert OOM.
124 unsigned int memcg_low_reclaim:1;
125 unsigned int memcg_low_skipped:1;
127 unsigned int hibernation_mode:1;
129 /* One of the zones is ready for compaction */
130 unsigned int compaction_ready:1;
132 /* There is easily reclaimable cold cache in the current node */
133 unsigned int cache_trim_mode:1;
135 /* The file folios on the current node are dangerously low */
136 unsigned int file_is_tiny:1;
138 /* Always discard instead of demoting to lower tier memory */
139 unsigned int no_demotion:1;
141 /* Allocation order */
144 /* Scan (total_size >> priority) pages at once */
147 /* The highest zone to isolate folios for reclaim from */
150 /* This context's GFP mask */
153 /* Incremented by the number of inactive pages that were scanned */
154 unsigned long nr_scanned;
156 /* Number of pages freed so far during a call to shrink_zones() */
157 unsigned long nr_reclaimed;
161 unsigned int unqueued_dirty;
162 unsigned int congested;
163 unsigned int writeback;
164 unsigned int immediate;
165 unsigned int file_taken;
169 /* for recording the reclaimed slab by now */
170 struct reclaim_state reclaim_state;
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
176 if ((_folio)->lru.prev != _base) { \
177 struct folio *prev; \
179 prev = lru_to_folio(&(_folio->lru)); \
180 prefetchw(&prev->_field); \
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 * From 0 .. 200. Higher means more swappy.
190 int vm_swappiness = 60;
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
198 static int shrinker_nr_max;
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
206 static inline int shrinker_defer_size(int nr_items)
208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
216 lockdep_is_held(&shrinker_mutex));
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
226 static void free_shrinker_info_rcu(struct rcu_head *head)
228 kvfree(container_of(head, struct shrinker_info, rcu));
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size,
236 struct shrinker_info *new, *old;
237 struct mem_cgroup_per_node *pn;
239 int size = map_size + defer_size;
242 pn = memcg->nodeinfo[nid];
243 old = shrinker_info_protected(memcg, nid);
244 /* Not yet online memcg */
248 /* Already expanded this shrinker_info */
249 if (new_nr_max <= old->map_nr_max)
252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
256 new->nr_deferred = (atomic_long_t *)(new + 1);
257 new->map = (void *)new->nr_deferred + defer_size;
258 new->map_nr_max = new_nr_max;
260 /* map: set all old bits, clear all new bits */
261 memset(new->map, (int)0xff, old_map_size);
262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 /* nr_deferred: copy old values, clear all new values */
264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 memset((void *)new->nr_deferred + old_defer_size, 0,
266 defer_size - old_defer_size);
268 rcu_assign_pointer(pn->shrinker_info, new);
269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
275 void free_shrinker_info(struct mem_cgroup *memcg)
277 struct mem_cgroup_per_node *pn;
278 struct shrinker_info *info;
282 pn = memcg->nodeinfo[nid];
283 info = rcu_dereference_protected(pn->shrinker_info, true);
285 rcu_assign_pointer(pn->shrinker_info, NULL);
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
291 struct shrinker_info *info;
292 int nid, size, ret = 0;
293 int map_size, defer_size = 0;
295 mutex_lock(&shrinker_mutex);
296 map_size = shrinker_map_size(shrinker_nr_max);
297 defer_size = shrinker_defer_size(shrinker_nr_max);
298 size = map_size + defer_size;
300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
302 free_shrinker_info(memcg);
306 info->nr_deferred = (atomic_long_t *)(info + 1);
307 info->map = (void *)info->nr_deferred + defer_size;
308 info->map_nr_max = shrinker_nr_max;
309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
311 mutex_unlock(&shrinker_mutex);
316 static int expand_shrinker_info(int new_id)
319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 int map_size, defer_size = 0;
321 int old_map_size, old_defer_size = 0;
322 struct mem_cgroup *memcg;
324 if (!root_mem_cgroup)
327 lockdep_assert_held(&shrinker_mutex);
329 map_size = shrinker_map_size(new_nr_max);
330 defer_size = shrinker_defer_size(new_nr_max);
331 old_map_size = shrinker_map_size(shrinker_nr_max);
332 old_defer_size = shrinker_defer_size(shrinker_nr_max);
334 memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 old_map_size, old_defer_size,
340 mem_cgroup_iter_break(NULL, memcg);
343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
346 shrinker_nr_max = new_nr_max;
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 struct shrinker_info *info;
357 srcu_idx = srcu_read_lock(&shrinker_srcu);
358 info = shrinker_info_srcu(memcg, nid);
359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 /* Pairs with smp mb in shrink_slab() */
361 smp_mb__before_atomic();
362 set_bit(shrinker_id, info->map);
364 srcu_read_unlock(&shrinker_srcu, srcu_idx);
368 static DEFINE_IDR(shrinker_idr);
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
372 int id, ret = -ENOMEM;
374 if (mem_cgroup_disabled())
377 mutex_lock(&shrinker_mutex);
378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
382 if (id >= shrinker_nr_max) {
383 if (expand_shrinker_info(id)) {
384 idr_remove(&shrinker_idr, id);
391 mutex_unlock(&shrinker_mutex);
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
397 int id = shrinker->id;
401 lockdep_assert_held(&shrinker_mutex);
403 idr_remove(&shrinker_idr, id);
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 struct mem_cgroup *memcg)
409 struct shrinker_info *info;
411 info = shrinker_info_srcu(memcg, nid);
412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 struct mem_cgroup *memcg)
418 struct shrinker_info *info;
420 info = shrinker_info_srcu(memcg, nid);
421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
428 struct mem_cgroup *parent;
429 struct shrinker_info *child_info, *parent_info;
431 parent = parent_mem_cgroup(memcg);
433 parent = root_mem_cgroup;
435 /* Prevent from concurrent shrinker_info expand */
436 mutex_lock(&shrinker_mutex);
438 child_info = shrinker_info_protected(memcg, nid);
439 parent_info = shrinker_info_protected(parent, nid);
440 for (i = 0; i < child_info->map_nr_max; i++) {
441 nr = atomic_long_read(&child_info->nr_deferred[i]);
442 atomic_long_add(nr, &parent_info->nr_deferred[i]);
445 mutex_unlock(&shrinker_mutex);
448 static bool cgroup_reclaim(struct scan_control *sc)
450 return sc->target_mem_cgroup;
453 static bool global_reclaim(struct scan_control *sc)
455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
459 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460 * @sc: scan_control in question
462 * The normal page dirty throttling mechanism in balance_dirty_pages() is
463 * completely broken with the legacy memcg and direct stalling in
464 * shrink_folio_list() is used for throttling instead, which lacks all the
465 * niceties such as fairness, adaptive pausing, bandwidth proportional
466 * allocation and configurability.
468 * This function tests whether the vmscan currently in progress can assume
469 * that the normal dirty throttling mechanism is operational.
471 static bool writeback_throttling_sane(struct scan_control *sc)
473 if (!cgroup_reclaim(sc))
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 struct mem_cgroup *memcg)
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 struct mem_cgroup *memcg)
503 static bool cgroup_reclaim(struct scan_control *sc)
508 static bool global_reclaim(struct scan_control *sc)
513 static bool writeback_throttling_sane(struct scan_control *sc)
519 static void set_task_reclaim_state(struct task_struct *task,
520 struct reclaim_state *rs)
522 /* Check for an overwrite */
523 WARN_ON_ONCE(rs && task->reclaim_state);
525 /* Check for the nulling of an already-nulled member */
526 WARN_ON_ONCE(!rs && !task->reclaim_state);
528 task->reclaim_state = rs;
532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533 * scan_control->nr_reclaimed.
535 static void flush_reclaim_state(struct scan_control *sc)
538 * Currently, reclaim_state->reclaimed includes three types of pages
539 * freed outside of vmscan:
541 * (2) Clean file pages from pruned inodes (on highmem systems).
542 * (3) XFS freed buffer pages.
544 * For all of these cases, we cannot universally link the pages to a
545 * single memcg. For example, a memcg-aware shrinker can free one object
546 * charged to the target memcg, causing an entire page to be freed.
547 * If we count the entire page as reclaimed from the memcg, we end up
548 * overestimating the reclaimed amount (potentially under-reclaiming).
550 * Only count such pages for global reclaim to prevent under-reclaiming
551 * from the target memcg; preventing unnecessary retries during memcg
552 * charging and false positives from proactive reclaim.
554 * For uncommon cases where the freed pages were actually mostly
555 * charged to the target memcg, we end up underestimating the reclaimed
556 * amount. This should be fine. The freed pages will be uncharged
557 * anyway, even if they are not counted here properly, and we will be
558 * able to make forward progress in charging (which is usually in a
561 * We can go one step further, and report the uncharged objcg pages in
562 * memcg reclaim, to make reporting more accurate and reduce
563 * underestimation, but it's probably not worth the complexity for now.
565 if (current->reclaim_state && global_reclaim(sc)) {
566 sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 current->reclaim_state->reclaimed = 0;
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 struct shrink_control *sc)
576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
580 (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 return xchg_nr_deferred_memcg(nid, shrinker,
584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 struct shrink_control *sc)
593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
597 (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 return add_nr_deferred_memcg(nr, nid, shrinker,
601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
604 static bool can_demote(int nid, struct scan_control *sc)
606 if (!numa_demotion_enabled)
608 if (sc && sc->no_demotion)
610 if (next_demotion_node(nid) == NUMA_NO_NODE)
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
618 struct scan_control *sc)
622 * For non-memcg reclaim, is there
623 * space in any swap device?
625 if (get_nr_swap_pages() > 0)
628 /* Is the memcg below its swap limit? */
629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
634 * The page can not be swapped.
636 * Can it be reclaimed from this node via demotion?
638 return can_demote(nid, sc);
642 * This misses isolated folios which are not accounted for to save counters.
643 * As the data only determines if reclaim or compaction continues, it is
644 * not expected that isolated folios will be a dominating factor.
646 unsigned long zone_reclaimable_pages(struct zone *zone)
650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
660 * lruvec_lru_size - Returns the number of pages on the given LRU list.
661 * @lruvec: lru vector
663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
668 unsigned long size = 0;
671 for (zid = 0; zid <= zone_idx; zid++) {
672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
674 if (!managed_zone(zone))
677 if (!mem_cgroup_disabled())
678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
686 * Add a shrinker callback to be called from the vm.
688 static int __prealloc_shrinker(struct shrinker *shrinker)
693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 err = prealloc_memcg_shrinker(shrinker);
698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
701 size = sizeof(*shrinker->nr_deferred);
702 if (shrinker->flags & SHRINKER_NUMA_AWARE)
705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 if (!shrinker->nr_deferred)
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
724 err = __prealloc_shrinker(shrinker);
726 kfree_const(shrinker->name);
727 shrinker->name = NULL;
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
735 return __prealloc_shrinker(shrinker);
739 void free_prealloced_shrinker(struct shrinker *shrinker)
741 #ifdef CONFIG_SHRINKER_DEBUG
742 kfree_const(shrinker->name);
743 shrinker->name = NULL;
745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 mutex_lock(&shrinker_mutex);
747 unregister_memcg_shrinker(shrinker);
748 mutex_unlock(&shrinker_mutex);
752 kfree(shrinker->nr_deferred);
753 shrinker->nr_deferred = NULL;
756 void register_shrinker_prepared(struct shrinker *shrinker)
758 mutex_lock(&shrinker_mutex);
759 list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 shrinker->flags |= SHRINKER_REGISTERED;
761 shrinker_debugfs_add(shrinker);
762 mutex_unlock(&shrinker_mutex);
765 static int __register_shrinker(struct shrinker *shrinker)
767 int err = __prealloc_shrinker(shrinker);
771 register_shrinker_prepared(shrinker);
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
787 err = __register_shrinker(shrinker);
789 kfree_const(shrinker->name);
790 shrinker->name = NULL;
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
797 return __register_shrinker(shrinker);
800 EXPORT_SYMBOL(register_shrinker);
805 void unregister_shrinker(struct shrinker *shrinker)
807 struct dentry *debugfs_entry;
809 if (!(shrinker->flags & SHRINKER_REGISTERED))
812 mutex_lock(&shrinker_mutex);
813 list_del_rcu(&shrinker->list);
814 shrinker->flags &= ~SHRINKER_REGISTERED;
815 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
816 unregister_memcg_shrinker(shrinker);
817 debugfs_entry = shrinker_debugfs_remove(shrinker);
818 mutex_unlock(&shrinker_mutex);
820 atomic_inc(&shrinker_srcu_generation);
821 synchronize_srcu(&shrinker_srcu);
823 debugfs_remove_recursive(debugfs_entry);
825 kfree(shrinker->nr_deferred);
826 shrinker->nr_deferred = NULL;
828 EXPORT_SYMBOL(unregister_shrinker);
831 * synchronize_shrinkers - Wait for all running shrinkers to complete.
833 * This is useful to guarantee that all shrinker invocations have seen an
834 * update, before freeing memory.
836 void synchronize_shrinkers(void)
838 atomic_inc(&shrinker_srcu_generation);
839 synchronize_srcu(&shrinker_srcu);
841 EXPORT_SYMBOL(synchronize_shrinkers);
843 #define SHRINK_BATCH 128
845 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
846 struct shrinker *shrinker, int priority)
848 unsigned long freed = 0;
849 unsigned long long delta;
854 long batch_size = shrinker->batch ? shrinker->batch
856 long scanned = 0, next_deferred;
858 freeable = shrinker->count_objects(shrinker, shrinkctl);
859 if (freeable == 0 || freeable == SHRINK_EMPTY)
863 * copy the current shrinker scan count into a local variable
864 * and zero it so that other concurrent shrinker invocations
865 * don't also do this scanning work.
867 nr = xchg_nr_deferred(shrinker, shrinkctl);
869 if (shrinker->seeks) {
870 delta = freeable >> priority;
872 do_div(delta, shrinker->seeks);
875 * These objects don't require any IO to create. Trim
876 * them aggressively under memory pressure to keep
877 * them from causing refetches in the IO caches.
879 delta = freeable / 2;
882 total_scan = nr >> priority;
884 total_scan = min(total_scan, (2 * freeable));
886 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
887 freeable, delta, total_scan, priority);
890 * Normally, we should not scan less than batch_size objects in one
891 * pass to avoid too frequent shrinker calls, but if the slab has less
892 * than batch_size objects in total and we are really tight on memory,
893 * we will try to reclaim all available objects, otherwise we can end
894 * up failing allocations although there are plenty of reclaimable
895 * objects spread over several slabs with usage less than the
898 * We detect the "tight on memory" situations by looking at the total
899 * number of objects we want to scan (total_scan). If it is greater
900 * than the total number of objects on slab (freeable), we must be
901 * scanning at high prio and therefore should try to reclaim as much as
904 while (total_scan >= batch_size ||
905 total_scan >= freeable) {
907 unsigned long nr_to_scan = min(batch_size, total_scan);
909 shrinkctl->nr_to_scan = nr_to_scan;
910 shrinkctl->nr_scanned = nr_to_scan;
911 ret = shrinker->scan_objects(shrinker, shrinkctl);
912 if (ret == SHRINK_STOP)
916 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
917 total_scan -= shrinkctl->nr_scanned;
918 scanned += shrinkctl->nr_scanned;
924 * The deferred work is increased by any new work (delta) that wasn't
925 * done, decreased by old deferred work that was done now.
927 * And it is capped to two times of the freeable items.
929 next_deferred = max_t(long, (nr + delta - scanned), 0);
930 next_deferred = min(next_deferred, (2 * freeable));
933 * move the unused scan count back into the shrinker in a
934 * manner that handles concurrent updates.
936 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
938 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
943 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
944 struct mem_cgroup *memcg, int priority)
946 struct shrinker_info *info;
947 unsigned long ret, freed = 0;
948 int srcu_idx, generation;
951 if (!mem_cgroup_online(memcg))
955 srcu_idx = srcu_read_lock(&shrinker_srcu);
956 info = shrinker_info_srcu(memcg, nid);
960 generation = atomic_read(&shrinker_srcu_generation);
961 for_each_set_bit_from(i, info->map, info->map_nr_max) {
962 struct shrink_control sc = {
963 .gfp_mask = gfp_mask,
967 struct shrinker *shrinker;
969 shrinker = idr_find(&shrinker_idr, i);
970 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
972 clear_bit(i, info->map);
976 /* Call non-slab shrinkers even though kmem is disabled */
977 if (!memcg_kmem_online() &&
978 !(shrinker->flags & SHRINKER_NONSLAB))
981 ret = do_shrink_slab(&sc, shrinker, priority);
982 if (ret == SHRINK_EMPTY) {
983 clear_bit(i, info->map);
985 * After the shrinker reported that it had no objects to
986 * free, but before we cleared the corresponding bit in
987 * the memcg shrinker map, a new object might have been
988 * added. To make sure, we have the bit set in this
989 * case, we invoke the shrinker one more time and reset
990 * the bit if it reports that it is not empty anymore.
991 * The memory barrier here pairs with the barrier in
992 * set_shrinker_bit():
994 * list_lru_add() shrink_slab_memcg()
995 * list_add_tail() clear_bit()
997 * set_bit() do_shrink_slab()
999 smp_mb__after_atomic();
1000 ret = do_shrink_slab(&sc, shrinker, priority);
1001 if (ret == SHRINK_EMPTY)
1004 set_shrinker_bit(memcg, nid, i);
1007 if (atomic_read(&shrinker_srcu_generation) != generation) {
1008 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1014 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1017 #else /* CONFIG_MEMCG */
1018 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1019 struct mem_cgroup *memcg, int priority)
1023 #endif /* CONFIG_MEMCG */
1026 * shrink_slab - shrink slab caches
1027 * @gfp_mask: allocation context
1028 * @nid: node whose slab caches to target
1029 * @memcg: memory cgroup whose slab caches to target
1030 * @priority: the reclaim priority
1032 * Call the shrink functions to age shrinkable caches.
1034 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1035 * unaware shrinkers will receive a node id of 0 instead.
1037 * @memcg specifies the memory cgroup to target. Unaware shrinkers
1038 * are called only if it is the root cgroup.
1040 * @priority is sc->priority, we take the number of objects and >> by priority
1041 * in order to get the scan target.
1043 * Returns the number of reclaimed slab objects.
1045 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1046 struct mem_cgroup *memcg,
1049 unsigned long ret, freed = 0;
1050 struct shrinker *shrinker;
1051 int srcu_idx, generation;
1054 * The root memcg might be allocated even though memcg is disabled
1055 * via "cgroup_disable=memory" boot parameter. This could make
1056 * mem_cgroup_is_root() return false, then just run memcg slab
1057 * shrink, but skip global shrink. This may result in premature
1060 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1061 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1063 srcu_idx = srcu_read_lock(&shrinker_srcu);
1065 generation = atomic_read(&shrinker_srcu_generation);
1066 list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1067 srcu_read_lock_held(&shrinker_srcu)) {
1068 struct shrink_control sc = {
1069 .gfp_mask = gfp_mask,
1074 ret = do_shrink_slab(&sc, shrinker, priority);
1075 if (ret == SHRINK_EMPTY)
1079 if (atomic_read(&shrinker_srcu_generation) != generation) {
1080 freed = freed ? : 1;
1085 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1090 static unsigned long drop_slab_node(int nid)
1092 unsigned long freed = 0;
1093 struct mem_cgroup *memcg = NULL;
1095 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1097 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1098 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1103 void drop_slab(void)
1107 unsigned long freed;
1111 for_each_online_node(nid) {
1112 if (fatal_signal_pending(current))
1115 freed += drop_slab_node(nid);
1117 } while ((freed >> shift++) > 1);
1120 static int reclaimer_offset(void)
1122 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1123 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1124 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1125 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1126 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1127 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1128 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1129 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1131 if (current_is_kswapd())
1133 if (current_is_khugepaged())
1134 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1135 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1138 static inline int is_page_cache_freeable(struct folio *folio)
1141 * A freeable page cache folio is referenced only by the caller
1142 * that isolated the folio, the page cache and optional filesystem
1143 * private data at folio->private.
1145 return folio_ref_count(folio) - folio_test_private(folio) ==
1146 1 + folio_nr_pages(folio);
1150 * We detected a synchronous write error writing a folio out. Probably
1151 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1152 * fsync(), msync() or close().
1154 * The tricky part is that after writepage we cannot touch the mapping: nothing
1155 * prevents it from being freed up. But we have a ref on the folio and once
1156 * that folio is locked, the mapping is pinned.
1158 * We're allowed to run sleeping folio_lock() here because we know the caller has
1161 static void handle_write_error(struct address_space *mapping,
1162 struct folio *folio, int error)
1165 if (folio_mapping(folio) == mapping)
1166 mapping_set_error(mapping, error);
1167 folio_unlock(folio);
1170 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1172 int reclaimable = 0, write_pending = 0;
1176 * If kswapd is disabled, reschedule if necessary but do not
1177 * throttle as the system is likely near OOM.
1179 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1183 * If there are a lot of dirty/writeback folios then do not
1184 * throttle as throttling will occur when the folios cycle
1185 * towards the end of the LRU if still under writeback.
1187 for (i = 0; i < MAX_NR_ZONES; i++) {
1188 struct zone *zone = pgdat->node_zones + i;
1190 if (!managed_zone(zone))
1193 reclaimable += zone_reclaimable_pages(zone);
1194 write_pending += zone_page_state_snapshot(zone,
1195 NR_ZONE_WRITE_PENDING);
1197 if (2 * write_pending <= reclaimable)
1203 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1205 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1210 * Do not throttle user workers, kthreads other than kswapd or
1211 * workqueues. They may be required for reclaim to make
1212 * forward progress (e.g. journalling workqueues or kthreads).
1214 if (!current_is_kswapd() &&
1215 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1221 * These figures are pulled out of thin air.
1222 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1223 * parallel reclaimers which is a short-lived event so the timeout is
1224 * short. Failing to make progress or waiting on writeback are
1225 * potentially long-lived events so use a longer timeout. This is shaky
1226 * logic as a failure to make progress could be due to anything from
1227 * writeback to a slow device to excessive referenced folios at the tail
1228 * of the inactive LRU.
1231 case VMSCAN_THROTTLE_WRITEBACK:
1234 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1235 WRITE_ONCE(pgdat->nr_reclaim_start,
1236 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1240 case VMSCAN_THROTTLE_CONGESTED:
1242 case VMSCAN_THROTTLE_NOPROGRESS:
1243 if (skip_throttle_noprogress(pgdat)) {
1251 case VMSCAN_THROTTLE_ISOLATED:
1260 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1261 ret = schedule_timeout(timeout);
1262 finish_wait(wqh, &wait);
1264 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1265 atomic_dec(&pgdat->nr_writeback_throttled);
1267 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1268 jiffies_to_usecs(timeout - ret),
1273 * Account for folios written if tasks are throttled waiting on dirty
1274 * folios to clean. If enough folios have been cleaned since throttling
1275 * started then wakeup the throttled tasks.
1277 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1280 unsigned long nr_written;
1282 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1285 * This is an inaccurate read as the per-cpu deltas may not
1286 * be synchronised. However, given that the system is
1287 * writeback throttled, it is not worth taking the penalty
1288 * of getting an accurate count. At worst, the throttle
1289 * timeout guarantees forward progress.
1291 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1292 READ_ONCE(pgdat->nr_reclaim_start);
1294 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1295 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1298 /* possible outcome of pageout() */
1300 /* failed to write folio out, folio is locked */
1302 /* move folio to the active list, folio is locked */
1304 /* folio has been sent to the disk successfully, folio is unlocked */
1306 /* folio is clean and locked */
1311 * pageout is called by shrink_folio_list() for each dirty folio.
1312 * Calls ->writepage().
1314 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1315 struct swap_iocb **plug)
1318 * If the folio is dirty, only perform writeback if that write
1319 * will be non-blocking. To prevent this allocation from being
1320 * stalled by pagecache activity. But note that there may be
1321 * stalls if we need to run get_block(). We could test
1322 * PagePrivate for that.
1324 * If this process is currently in __generic_file_write_iter() against
1325 * this folio's queue, we can perform writeback even if that
1328 * If the folio is swapcache, write it back even if that would
1329 * block, for some throttling. This happens by accident, because
1330 * swap_backing_dev_info is bust: it doesn't reflect the
1331 * congestion state of the swapdevs. Easy to fix, if needed.
1333 if (!is_page_cache_freeable(folio))
1337 * Some data journaling orphaned folios can have
1338 * folio->mapping == NULL while being dirty with clean buffers.
1340 if (folio_test_private(folio)) {
1341 if (try_to_free_buffers(folio)) {
1342 folio_clear_dirty(folio);
1343 pr_info("%s: orphaned folio\n", __func__);
1349 if (mapping->a_ops->writepage == NULL)
1350 return PAGE_ACTIVATE;
1352 if (folio_clear_dirty_for_io(folio)) {
1354 struct writeback_control wbc = {
1355 .sync_mode = WB_SYNC_NONE,
1356 .nr_to_write = SWAP_CLUSTER_MAX,
1358 .range_end = LLONG_MAX,
1363 folio_set_reclaim(folio);
1364 res = mapping->a_ops->writepage(&folio->page, &wbc);
1366 handle_write_error(mapping, folio, res);
1367 if (res == AOP_WRITEPAGE_ACTIVATE) {
1368 folio_clear_reclaim(folio);
1369 return PAGE_ACTIVATE;
1372 if (!folio_test_writeback(folio)) {
1373 /* synchronous write or broken a_ops? */
1374 folio_clear_reclaim(folio);
1376 trace_mm_vmscan_write_folio(folio);
1377 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1378 return PAGE_SUCCESS;
1385 * Same as remove_mapping, but if the folio is removed from the mapping, it
1386 * gets returned with a refcount of 0.
1388 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1389 bool reclaimed, struct mem_cgroup *target_memcg)
1392 void *shadow = NULL;
1394 BUG_ON(!folio_test_locked(folio));
1395 BUG_ON(mapping != folio_mapping(folio));
1397 if (!folio_test_swapcache(folio))
1398 spin_lock(&mapping->host->i_lock);
1399 xa_lock_irq(&mapping->i_pages);
1401 * The non racy check for a busy folio.
1403 * Must be careful with the order of the tests. When someone has
1404 * a ref to the folio, it may be possible that they dirty it then
1405 * drop the reference. So if the dirty flag is tested before the
1406 * refcount here, then the following race may occur:
1408 * get_user_pages(&page);
1409 * [user mapping goes away]
1411 * !folio_test_dirty(folio) [good]
1412 * folio_set_dirty(folio);
1414 * !refcount(folio) [good, discard it]
1416 * [oops, our write_to data is lost]
1418 * Reversing the order of the tests ensures such a situation cannot
1419 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1420 * load is not satisfied before that of folio->_refcount.
1422 * Note that if the dirty flag is always set via folio_mark_dirty,
1423 * and thus under the i_pages lock, then this ordering is not required.
1425 refcount = 1 + folio_nr_pages(folio);
1426 if (!folio_ref_freeze(folio, refcount))
1428 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1429 if (unlikely(folio_test_dirty(folio))) {
1430 folio_ref_unfreeze(folio, refcount);
1434 if (folio_test_swapcache(folio)) {
1435 swp_entry_t swap = folio_swap_entry(folio);
1437 if (reclaimed && !mapping_exiting(mapping))
1438 shadow = workingset_eviction(folio, target_memcg);
1439 __delete_from_swap_cache(folio, swap, shadow);
1440 mem_cgroup_swapout(folio, swap);
1441 xa_unlock_irq(&mapping->i_pages);
1442 put_swap_folio(folio, swap);
1444 void (*free_folio)(struct folio *);
1446 free_folio = mapping->a_ops->free_folio;
1448 * Remember a shadow entry for reclaimed file cache in
1449 * order to detect refaults, thus thrashing, later on.
1451 * But don't store shadows in an address space that is
1452 * already exiting. This is not just an optimization,
1453 * inode reclaim needs to empty out the radix tree or
1454 * the nodes are lost. Don't plant shadows behind its
1457 * We also don't store shadows for DAX mappings because the
1458 * only page cache folios found in these are zero pages
1459 * covering holes, and because we don't want to mix DAX
1460 * exceptional entries and shadow exceptional entries in the
1461 * same address_space.
1463 if (reclaimed && folio_is_file_lru(folio) &&
1464 !mapping_exiting(mapping) && !dax_mapping(mapping))
1465 shadow = workingset_eviction(folio, target_memcg);
1466 __filemap_remove_folio(folio, shadow);
1467 xa_unlock_irq(&mapping->i_pages);
1468 if (mapping_shrinkable(mapping))
1469 inode_add_lru(mapping->host);
1470 spin_unlock(&mapping->host->i_lock);
1479 xa_unlock_irq(&mapping->i_pages);
1480 if (!folio_test_swapcache(folio))
1481 spin_unlock(&mapping->host->i_lock);
1486 * remove_mapping() - Attempt to remove a folio from its mapping.
1487 * @mapping: The address space.
1488 * @folio: The folio to remove.
1490 * If the folio is dirty, under writeback or if someone else has a ref
1491 * on it, removal will fail.
1492 * Return: The number of pages removed from the mapping. 0 if the folio
1493 * could not be removed.
1494 * Context: The caller should have a single refcount on the folio and
1497 long remove_mapping(struct address_space *mapping, struct folio *folio)
1499 if (__remove_mapping(mapping, folio, false, NULL)) {
1501 * Unfreezing the refcount with 1 effectively
1502 * drops the pagecache ref for us without requiring another
1505 folio_ref_unfreeze(folio, 1);
1506 return folio_nr_pages(folio);
1512 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1513 * @folio: Folio to be returned to an LRU list.
1515 * Add previously isolated @folio to appropriate LRU list.
1516 * The folio may still be unevictable for other reasons.
1518 * Context: lru_lock must not be held, interrupts must be enabled.
1520 void folio_putback_lru(struct folio *folio)
1522 folio_add_lru(folio);
1523 folio_put(folio); /* drop ref from isolate */
1526 enum folio_references {
1528 FOLIOREF_RECLAIM_CLEAN,
1533 static enum folio_references folio_check_references(struct folio *folio,
1534 struct scan_control *sc)
1536 int referenced_ptes, referenced_folio;
1537 unsigned long vm_flags;
1539 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1541 referenced_folio = folio_test_clear_referenced(folio);
1544 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1545 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1547 if (vm_flags & VM_LOCKED)
1548 return FOLIOREF_ACTIVATE;
1550 /* rmap lock contention: rotate */
1551 if (referenced_ptes == -1)
1552 return FOLIOREF_KEEP;
1554 if (referenced_ptes) {
1556 * All mapped folios start out with page table
1557 * references from the instantiating fault, so we need
1558 * to look twice if a mapped file/anon folio is used more
1561 * Mark it and spare it for another trip around the
1562 * inactive list. Another page table reference will
1563 * lead to its activation.
1565 * Note: the mark is set for activated folios as well
1566 * so that recently deactivated but used folios are
1567 * quickly recovered.
1569 folio_set_referenced(folio);
1571 if (referenced_folio || referenced_ptes > 1)
1572 return FOLIOREF_ACTIVATE;
1575 * Activate file-backed executable folios after first usage.
1577 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1578 return FOLIOREF_ACTIVATE;
1580 return FOLIOREF_KEEP;
1583 /* Reclaim if clean, defer dirty folios to writeback */
1584 if (referenced_folio && folio_is_file_lru(folio))
1585 return FOLIOREF_RECLAIM_CLEAN;
1587 return FOLIOREF_RECLAIM;
1590 /* Check if a folio is dirty or under writeback */
1591 static void folio_check_dirty_writeback(struct folio *folio,
1592 bool *dirty, bool *writeback)
1594 struct address_space *mapping;
1597 * Anonymous folios are not handled by flushers and must be written
1598 * from reclaim context. Do not stall reclaim based on them.
1599 * MADV_FREE anonymous folios are put into inactive file list too.
1600 * They could be mistakenly treated as file lru. So further anon
1603 if (!folio_is_file_lru(folio) ||
1604 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1610 /* By default assume that the folio flags are accurate */
1611 *dirty = folio_test_dirty(folio);
1612 *writeback = folio_test_writeback(folio);
1614 /* Verify dirty/writeback state if the filesystem supports it */
1615 if (!folio_test_private(folio))
1618 mapping = folio_mapping(folio);
1619 if (mapping && mapping->a_ops->is_dirty_writeback)
1620 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1623 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1625 struct page *target_page;
1626 nodemask_t *allowed_mask;
1627 struct migration_target_control *mtc;
1629 mtc = (struct migration_target_control *)private;
1631 allowed_mask = mtc->nmask;
1633 * make sure we allocate from the target node first also trying to
1634 * demote or reclaim pages from the target node via kswapd if we are
1635 * low on free memory on target node. If we don't do this and if
1636 * we have free memory on the slower(lower) memtier, we would start
1637 * allocating pages from slower(lower) memory tiers without even forcing
1638 * a demotion of cold pages from the target memtier. This can result
1639 * in the kernel placing hot pages in slower(lower) memory tiers.
1642 mtc->gfp_mask |= __GFP_THISNODE;
1643 target_page = alloc_migration_target(page, (unsigned long)mtc);
1647 mtc->gfp_mask &= ~__GFP_THISNODE;
1648 mtc->nmask = allowed_mask;
1650 return alloc_migration_target(page, (unsigned long)mtc);
1654 * Take folios on @demote_folios and attempt to demote them to another node.
1655 * Folios which are not demoted are left on @demote_folios.
1657 static unsigned int demote_folio_list(struct list_head *demote_folios,
1658 struct pglist_data *pgdat)
1660 int target_nid = next_demotion_node(pgdat->node_id);
1661 unsigned int nr_succeeded;
1662 nodemask_t allowed_mask;
1664 struct migration_target_control mtc = {
1666 * Allocate from 'node', or fail quickly and quietly.
1667 * When this happens, 'page' will likely just be discarded
1668 * instead of migrated.
1670 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1671 __GFP_NOMEMALLOC | GFP_NOWAIT,
1673 .nmask = &allowed_mask
1676 if (list_empty(demote_folios))
1679 if (target_nid == NUMA_NO_NODE)
1682 node_get_allowed_targets(pgdat, &allowed_mask);
1684 /* Demotion ignores all cpuset and mempolicy settings */
1685 migrate_pages(demote_folios, alloc_demote_page, NULL,
1686 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1689 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1691 return nr_succeeded;
1694 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1696 if (gfp_mask & __GFP_FS)
1698 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1701 * We can "enter_fs" for swap-cache with only __GFP_IO
1702 * providing this isn't SWP_FS_OPS.
1703 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1704 * but that will never affect SWP_FS_OPS, so the data_race
1707 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1711 * shrink_folio_list() returns the number of reclaimed pages
1713 static unsigned int shrink_folio_list(struct list_head *folio_list,
1714 struct pglist_data *pgdat, struct scan_control *sc,
1715 struct reclaim_stat *stat, bool ignore_references)
1717 LIST_HEAD(ret_folios);
1718 LIST_HEAD(free_folios);
1719 LIST_HEAD(demote_folios);
1720 unsigned int nr_reclaimed = 0;
1721 unsigned int pgactivate = 0;
1722 bool do_demote_pass;
1723 struct swap_iocb *plug = NULL;
1725 memset(stat, 0, sizeof(*stat));
1727 do_demote_pass = can_demote(pgdat->node_id, sc);
1730 while (!list_empty(folio_list)) {
1731 struct address_space *mapping;
1732 struct folio *folio;
1733 enum folio_references references = FOLIOREF_RECLAIM;
1734 bool dirty, writeback;
1735 unsigned int nr_pages;
1739 folio = lru_to_folio(folio_list);
1740 list_del(&folio->lru);
1742 if (!folio_trylock(folio))
1745 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1747 nr_pages = folio_nr_pages(folio);
1749 /* Account the number of base pages */
1750 sc->nr_scanned += nr_pages;
1752 if (unlikely(!folio_evictable(folio)))
1753 goto activate_locked;
1755 if (!sc->may_unmap && folio_mapped(folio))
1758 /* folio_update_gen() tried to promote this page? */
1759 if (lru_gen_enabled() && !ignore_references &&
1760 folio_mapped(folio) && folio_test_referenced(folio))
1764 * The number of dirty pages determines if a node is marked
1765 * reclaim_congested. kswapd will stall and start writing
1766 * folios if the tail of the LRU is all dirty unqueued folios.
1768 folio_check_dirty_writeback(folio, &dirty, &writeback);
1769 if (dirty || writeback)
1770 stat->nr_dirty += nr_pages;
1772 if (dirty && !writeback)
1773 stat->nr_unqueued_dirty += nr_pages;
1776 * Treat this folio as congested if folios are cycling
1777 * through the LRU so quickly that the folios marked
1778 * for immediate reclaim are making it to the end of
1779 * the LRU a second time.
1781 if (writeback && folio_test_reclaim(folio))
1782 stat->nr_congested += nr_pages;
1785 * If a folio at the tail of the LRU is under writeback, there
1786 * are three cases to consider.
1788 * 1) If reclaim is encountering an excessive number
1789 * of folios under writeback and this folio has both
1790 * the writeback and reclaim flags set, then it
1791 * indicates that folios are being queued for I/O but
1792 * are being recycled through the LRU before the I/O
1793 * can complete. Waiting on the folio itself risks an
1794 * indefinite stall if it is impossible to writeback
1795 * the folio due to I/O error or disconnected storage
1796 * so instead note that the LRU is being scanned too
1797 * quickly and the caller can stall after the folio
1798 * list has been processed.
1800 * 2) Global or new memcg reclaim encounters a folio that is
1801 * not marked for immediate reclaim, or the caller does not
1802 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1803 * not to fs). In this case mark the folio for immediate
1804 * reclaim and continue scanning.
1806 * Require may_enter_fs() because we would wait on fs, which
1807 * may not have submitted I/O yet. And the loop driver might
1808 * enter reclaim, and deadlock if it waits on a folio for
1809 * which it is needed to do the write (loop masks off
1810 * __GFP_IO|__GFP_FS for this reason); but more thought
1811 * would probably show more reasons.
1813 * 3) Legacy memcg encounters a folio that already has the
1814 * reclaim flag set. memcg does not have any dirty folio
1815 * throttling so we could easily OOM just because too many
1816 * folios are in writeback and there is nothing else to
1817 * reclaim. Wait for the writeback to complete.
1819 * In cases 1) and 2) we activate the folios to get them out of
1820 * the way while we continue scanning for clean folios on the
1821 * inactive list and refilling from the active list. The
1822 * observation here is that waiting for disk writes is more
1823 * expensive than potentially causing reloads down the line.
1824 * Since they're marked for immediate reclaim, they won't put
1825 * memory pressure on the cache working set any longer than it
1826 * takes to write them to disk.
1828 if (folio_test_writeback(folio)) {
1830 if (current_is_kswapd() &&
1831 folio_test_reclaim(folio) &&
1832 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1833 stat->nr_immediate += nr_pages;
1834 goto activate_locked;
1837 } else if (writeback_throttling_sane(sc) ||
1838 !folio_test_reclaim(folio) ||
1839 !may_enter_fs(folio, sc->gfp_mask)) {
1841 * This is slightly racy -
1842 * folio_end_writeback() might have
1843 * just cleared the reclaim flag, then
1844 * setting the reclaim flag here ends up
1845 * interpreted as the readahead flag - but
1846 * that does not matter enough to care.
1847 * What we do want is for this folio to
1848 * have the reclaim flag set next time
1849 * memcg reclaim reaches the tests above,
1850 * so it will then wait for writeback to
1851 * avoid OOM; and it's also appropriate
1852 * in global reclaim.
1854 folio_set_reclaim(folio);
1855 stat->nr_writeback += nr_pages;
1856 goto activate_locked;
1860 folio_unlock(folio);
1861 folio_wait_writeback(folio);
1862 /* then go back and try same folio again */
1863 list_add_tail(&folio->lru, folio_list);
1868 if (!ignore_references)
1869 references = folio_check_references(folio, sc);
1871 switch (references) {
1872 case FOLIOREF_ACTIVATE:
1873 goto activate_locked;
1875 stat->nr_ref_keep += nr_pages;
1877 case FOLIOREF_RECLAIM:
1878 case FOLIOREF_RECLAIM_CLEAN:
1879 ; /* try to reclaim the folio below */
1883 * Before reclaiming the folio, try to relocate
1884 * its contents to another node.
1886 if (do_demote_pass &&
1887 (thp_migration_supported() || !folio_test_large(folio))) {
1888 list_add(&folio->lru, &demote_folios);
1889 folio_unlock(folio);
1894 * Anonymous process memory has backing store?
1895 * Try to allocate it some swap space here.
1896 * Lazyfree folio could be freed directly
1898 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1899 if (!folio_test_swapcache(folio)) {
1900 if (!(sc->gfp_mask & __GFP_IO))
1902 if (folio_maybe_dma_pinned(folio))
1904 if (folio_test_large(folio)) {
1905 /* cannot split folio, skip it */
1906 if (!can_split_folio(folio, NULL))
1907 goto activate_locked;
1909 * Split folios without a PMD map right
1910 * away. Chances are some or all of the
1911 * tail pages can be freed without IO.
1913 if (!folio_entire_mapcount(folio) &&
1914 split_folio_to_list(folio,
1916 goto activate_locked;
1918 if (!add_to_swap(folio)) {
1919 if (!folio_test_large(folio))
1920 goto activate_locked_split;
1921 /* Fallback to swap normal pages */
1922 if (split_folio_to_list(folio,
1924 goto activate_locked;
1925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1926 count_vm_event(THP_SWPOUT_FALLBACK);
1928 if (!add_to_swap(folio))
1929 goto activate_locked_split;
1932 } else if (folio_test_swapbacked(folio) &&
1933 folio_test_large(folio)) {
1934 /* Split shmem folio */
1935 if (split_folio_to_list(folio, folio_list))
1940 * If the folio was split above, the tail pages will make
1941 * their own pass through this function and be accounted
1944 if ((nr_pages > 1) && !folio_test_large(folio)) {
1945 sc->nr_scanned -= (nr_pages - 1);
1950 * The folio is mapped into the page tables of one or more
1951 * processes. Try to unmap it here.
1953 if (folio_mapped(folio)) {
1954 enum ttu_flags flags = TTU_BATCH_FLUSH;
1955 bool was_swapbacked = folio_test_swapbacked(folio);
1957 if (folio_test_pmd_mappable(folio))
1958 flags |= TTU_SPLIT_HUGE_PMD;
1960 try_to_unmap(folio, flags);
1961 if (folio_mapped(folio)) {
1962 stat->nr_unmap_fail += nr_pages;
1963 if (!was_swapbacked &&
1964 folio_test_swapbacked(folio))
1965 stat->nr_lazyfree_fail += nr_pages;
1966 goto activate_locked;
1971 * Folio is unmapped now so it cannot be newly pinned anymore.
1972 * No point in trying to reclaim folio if it is pinned.
1973 * Furthermore we don't want to reclaim underlying fs metadata
1974 * if the folio is pinned and thus potentially modified by the
1975 * pinning process as that may upset the filesystem.
1977 if (folio_maybe_dma_pinned(folio))
1978 goto activate_locked;
1980 mapping = folio_mapping(folio);
1981 if (folio_test_dirty(folio)) {
1983 * Only kswapd can writeback filesystem folios
1984 * to avoid risk of stack overflow. But avoid
1985 * injecting inefficient single-folio I/O into
1986 * flusher writeback as much as possible: only
1987 * write folios when we've encountered many
1988 * dirty folios, and when we've already scanned
1989 * the rest of the LRU for clean folios and see
1990 * the same dirty folios again (with the reclaim
1993 if (folio_is_file_lru(folio) &&
1994 (!current_is_kswapd() ||
1995 !folio_test_reclaim(folio) ||
1996 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1998 * Immediately reclaim when written back.
1999 * Similar in principle to folio_deactivate()
2000 * except we already have the folio isolated
2001 * and know it's dirty
2003 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2005 folio_set_reclaim(folio);
2007 goto activate_locked;
2010 if (references == FOLIOREF_RECLAIM_CLEAN)
2012 if (!may_enter_fs(folio, sc->gfp_mask))
2014 if (!sc->may_writepage)
2018 * Folio is dirty. Flush the TLB if a writable entry
2019 * potentially exists to avoid CPU writes after I/O
2020 * starts and then write it out here.
2022 try_to_unmap_flush_dirty();
2023 switch (pageout(folio, mapping, &plug)) {
2027 goto activate_locked;
2029 stat->nr_pageout += nr_pages;
2031 if (folio_test_writeback(folio))
2033 if (folio_test_dirty(folio))
2037 * A synchronous write - probably a ramdisk. Go
2038 * ahead and try to reclaim the folio.
2040 if (!folio_trylock(folio))
2042 if (folio_test_dirty(folio) ||
2043 folio_test_writeback(folio))
2045 mapping = folio_mapping(folio);
2048 ; /* try to free the folio below */
2053 * If the folio has buffers, try to free the buffer
2054 * mappings associated with this folio. If we succeed
2055 * we try to free the folio as well.
2057 * We do this even if the folio is dirty.
2058 * filemap_release_folio() does not perform I/O, but it
2059 * is possible for a folio to have the dirty flag set,
2060 * but it is actually clean (all its buffers are clean).
2061 * This happens if the buffers were written out directly,
2062 * with submit_bh(). ext3 will do this, as well as
2063 * the blockdev mapping. filemap_release_folio() will
2064 * discover that cleanness and will drop the buffers
2065 * and mark the folio clean - it can be freed.
2067 * Rarely, folios can have buffers and no ->mapping.
2068 * These are the folios which were not successfully
2069 * invalidated in truncate_cleanup_folio(). We try to
2070 * drop those buffers here and if that worked, and the
2071 * folio is no longer mapped into process address space
2072 * (refcount == 1) it can be freed. Otherwise, leave
2073 * the folio on the LRU so it is swappable.
2075 if (folio_has_private(folio)) {
2076 if (!filemap_release_folio(folio, sc->gfp_mask))
2077 goto activate_locked;
2078 if (!mapping && folio_ref_count(folio) == 1) {
2079 folio_unlock(folio);
2080 if (folio_put_testzero(folio))
2084 * rare race with speculative reference.
2085 * the speculative reference will free
2086 * this folio shortly, so we may
2087 * increment nr_reclaimed here (and
2088 * leave it off the LRU).
2090 nr_reclaimed += nr_pages;
2096 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2097 /* follow __remove_mapping for reference */
2098 if (!folio_ref_freeze(folio, 1))
2101 * The folio has only one reference left, which is
2102 * from the isolation. After the caller puts the
2103 * folio back on the lru and drops the reference, the
2104 * folio will be freed anyway. It doesn't matter
2105 * which lru it goes on. So we don't bother checking
2106 * the dirty flag here.
2108 count_vm_events(PGLAZYFREED, nr_pages);
2109 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2110 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2111 sc->target_mem_cgroup))
2114 folio_unlock(folio);
2117 * Folio may get swapped out as a whole, need to account
2120 nr_reclaimed += nr_pages;
2123 * Is there need to periodically free_folio_list? It would
2124 * appear not as the counts should be low
2126 if (unlikely(folio_test_large(folio)))
2127 destroy_large_folio(folio);
2129 list_add(&folio->lru, &free_folios);
2132 activate_locked_split:
2134 * The tail pages that are failed to add into swap cache
2135 * reach here. Fixup nr_scanned and nr_pages.
2138 sc->nr_scanned -= (nr_pages - 1);
2142 /* Not a candidate for swapping, so reclaim swap space. */
2143 if (folio_test_swapcache(folio) &&
2144 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2145 folio_free_swap(folio);
2146 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2147 if (!folio_test_mlocked(folio)) {
2148 int type = folio_is_file_lru(folio);
2149 folio_set_active(folio);
2150 stat->nr_activate[type] += nr_pages;
2151 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2154 folio_unlock(folio);
2156 list_add(&folio->lru, &ret_folios);
2157 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2158 folio_test_unevictable(folio), folio);
2160 /* 'folio_list' is always empty here */
2162 /* Migrate folios selected for demotion */
2163 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2164 /* Folios that could not be demoted are still in @demote_folios */
2165 if (!list_empty(&demote_folios)) {
2166 /* Folios which weren't demoted go back on @folio_list */
2167 list_splice_init(&demote_folios, folio_list);
2170 * goto retry to reclaim the undemoted folios in folio_list if
2173 * Reclaiming directly from top tier nodes is not often desired
2174 * due to it breaking the LRU ordering: in general memory
2175 * should be reclaimed from lower tier nodes and demoted from
2178 * However, disabling reclaim from top tier nodes entirely
2179 * would cause ooms in edge scenarios where lower tier memory
2180 * is unreclaimable for whatever reason, eg memory being
2181 * mlocked or too hot to reclaim. We can disable reclaim
2182 * from top tier nodes in proactive reclaim though as that is
2183 * not real memory pressure.
2185 if (!sc->proactive) {
2186 do_demote_pass = false;
2191 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2193 mem_cgroup_uncharge_list(&free_folios);
2194 try_to_unmap_flush();
2195 free_unref_page_list(&free_folios);
2197 list_splice(&ret_folios, folio_list);
2198 count_vm_events(PGACTIVATE, pgactivate);
2201 swap_write_unplug(plug);
2202 return nr_reclaimed;
2205 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2206 struct list_head *folio_list)
2208 struct scan_control sc = {
2209 .gfp_mask = GFP_KERNEL,
2212 struct reclaim_stat stat;
2213 unsigned int nr_reclaimed;
2214 struct folio *folio, *next;
2215 LIST_HEAD(clean_folios);
2216 unsigned int noreclaim_flag;
2218 list_for_each_entry_safe(folio, next, folio_list, lru) {
2219 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2220 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2221 !folio_test_unevictable(folio)) {
2222 folio_clear_active(folio);
2223 list_move(&folio->lru, &clean_folios);
2228 * We should be safe here since we are only dealing with file pages and
2229 * we are not kswapd and therefore cannot write dirty file pages. But
2230 * call memalloc_noreclaim_save() anyway, just in case these conditions
2231 * change in the future.
2233 noreclaim_flag = memalloc_noreclaim_save();
2234 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2236 memalloc_noreclaim_restore(noreclaim_flag);
2238 list_splice(&clean_folios, folio_list);
2239 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2240 -(long)nr_reclaimed);
2242 * Since lazyfree pages are isolated from file LRU from the beginning,
2243 * they will rotate back to anonymous LRU in the end if it failed to
2244 * discard so isolated count will be mismatched.
2245 * Compensate the isolated count for both LRU lists.
2247 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2248 stat.nr_lazyfree_fail);
2249 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2250 -(long)stat.nr_lazyfree_fail);
2251 return nr_reclaimed;
2255 * Update LRU sizes after isolating pages. The LRU size updates must
2256 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2258 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2259 enum lru_list lru, unsigned long *nr_zone_taken)
2263 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2264 if (!nr_zone_taken[zid])
2267 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2273 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2275 * lruvec->lru_lock is heavily contended. Some of the functions that
2276 * shrink the lists perform better by taking out a batch of pages
2277 * and working on them outside the LRU lock.
2279 * For pagecache intensive workloads, this function is the hottest
2280 * spot in the kernel (apart from copy_*_user functions).
2282 * Lru_lock must be held before calling this function.
2284 * @nr_to_scan: The number of eligible pages to look through on the list.
2285 * @lruvec: The LRU vector to pull pages from.
2286 * @dst: The temp list to put pages on to.
2287 * @nr_scanned: The number of pages that were scanned.
2288 * @sc: The scan_control struct for this reclaim session
2289 * @lru: LRU list id for isolating
2291 * returns how many pages were moved onto *@dst.
2293 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2294 struct lruvec *lruvec, struct list_head *dst,
2295 unsigned long *nr_scanned, struct scan_control *sc,
2298 struct list_head *src = &lruvec->lists[lru];
2299 unsigned long nr_taken = 0;
2300 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2301 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2302 unsigned long skipped = 0;
2303 unsigned long scan, total_scan, nr_pages;
2304 LIST_HEAD(folios_skipped);
2308 while (scan < nr_to_scan && !list_empty(src)) {
2309 struct list_head *move_to = src;
2310 struct folio *folio;
2312 folio = lru_to_folio(src);
2313 prefetchw_prev_lru_folio(folio, src, flags);
2315 nr_pages = folio_nr_pages(folio);
2316 total_scan += nr_pages;
2318 if (folio_zonenum(folio) > sc->reclaim_idx) {
2319 nr_skipped[folio_zonenum(folio)] += nr_pages;
2320 move_to = &folios_skipped;
2325 * Do not count skipped folios because that makes the function
2326 * return with no isolated folios if the LRU mostly contains
2327 * ineligible folios. This causes the VM to not reclaim any
2328 * folios, triggering a premature OOM.
2329 * Account all pages in a folio.
2333 if (!folio_test_lru(folio))
2335 if (!sc->may_unmap && folio_mapped(folio))
2339 * Be careful not to clear the lru flag until after we're
2340 * sure the folio is not being freed elsewhere -- the
2341 * folio release code relies on it.
2343 if (unlikely(!folio_try_get(folio)))
2346 if (!folio_test_clear_lru(folio)) {
2347 /* Another thread is already isolating this folio */
2352 nr_taken += nr_pages;
2353 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2356 list_move(&folio->lru, move_to);
2360 * Splice any skipped folios to the start of the LRU list. Note that
2361 * this disrupts the LRU order when reclaiming for lower zones but
2362 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2363 * scanning would soon rescan the same folios to skip and waste lots
2366 if (!list_empty(&folios_skipped)) {
2369 list_splice(&folios_skipped, src);
2370 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2371 if (!nr_skipped[zid])
2374 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2375 skipped += nr_skipped[zid];
2378 *nr_scanned = total_scan;
2379 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2380 total_scan, skipped, nr_taken,
2381 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2382 update_lru_sizes(lruvec, lru, nr_zone_taken);
2387 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2388 * @folio: Folio to isolate from its LRU list.
2390 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2391 * corresponding to whatever LRU list the folio was on.
2393 * The folio will have its LRU flag cleared. If it was found on the
2394 * active list, it will have the Active flag set. If it was found on the
2395 * unevictable list, it will have the Unevictable flag set. These flags
2396 * may need to be cleared by the caller before letting the page go.
2400 * (1) Must be called with an elevated refcount on the folio. This is a
2401 * fundamental difference from isolate_lru_folios() (which is called
2402 * without a stable reference).
2403 * (2) The lru_lock must not be held.
2404 * (3) Interrupts must be enabled.
2406 * Return: true if the folio was removed from an LRU list.
2407 * false if the folio was not on an LRU list.
2409 bool folio_isolate_lru(struct folio *folio)
2413 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2415 if (folio_test_clear_lru(folio)) {
2416 struct lruvec *lruvec;
2419 lruvec = folio_lruvec_lock_irq(folio);
2420 lruvec_del_folio(lruvec, folio);
2421 unlock_page_lruvec_irq(lruvec);
2429 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2430 * then get rescheduled. When there are massive number of tasks doing page
2431 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2432 * the LRU list will go small and be scanned faster than necessary, leading to
2433 * unnecessary swapping, thrashing and OOM.
2435 static int too_many_isolated(struct pglist_data *pgdat, int file,
2436 struct scan_control *sc)
2438 unsigned long inactive, isolated;
2441 if (current_is_kswapd())
2444 if (!writeback_throttling_sane(sc))
2448 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2449 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2451 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2452 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2456 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2457 * won't get blocked by normal direct-reclaimers, forming a circular
2460 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2463 too_many = isolated > inactive;
2465 /* Wake up tasks throttled due to too_many_isolated. */
2467 wake_throttle_isolated(pgdat);
2473 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2474 * On return, @list is reused as a list of folios to be freed by the caller.
2476 * Returns the number of pages moved to the given lruvec.
2478 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2479 struct list_head *list)
2481 int nr_pages, nr_moved = 0;
2482 LIST_HEAD(folios_to_free);
2484 while (!list_empty(list)) {
2485 struct folio *folio = lru_to_folio(list);
2487 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2488 list_del(&folio->lru);
2489 if (unlikely(!folio_evictable(folio))) {
2490 spin_unlock_irq(&lruvec->lru_lock);
2491 folio_putback_lru(folio);
2492 spin_lock_irq(&lruvec->lru_lock);
2497 * The folio_set_lru needs to be kept here for list integrity.
2499 * #0 move_folios_to_lru #1 release_pages
2500 * if (!folio_put_testzero())
2501 * if (folio_put_testzero())
2502 * !lru //skip lru_lock
2504 * list_add(&folio->lru,)
2505 * list_add(&folio->lru,)
2507 folio_set_lru(folio);
2509 if (unlikely(folio_put_testzero(folio))) {
2510 __folio_clear_lru_flags(folio);
2512 if (unlikely(folio_test_large(folio))) {
2513 spin_unlock_irq(&lruvec->lru_lock);
2514 destroy_large_folio(folio);
2515 spin_lock_irq(&lruvec->lru_lock);
2517 list_add(&folio->lru, &folios_to_free);
2523 * All pages were isolated from the same lruvec (and isolation
2524 * inhibits memcg migration).
2526 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2527 lruvec_add_folio(lruvec, folio);
2528 nr_pages = folio_nr_pages(folio);
2529 nr_moved += nr_pages;
2530 if (folio_test_active(folio))
2531 workingset_age_nonresident(lruvec, nr_pages);
2535 * To save our caller's stack, now use input list for pages to free.
2537 list_splice(&folios_to_free, list);
2543 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2544 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2545 * we should not throttle. Otherwise it is safe to do so.
2547 static int current_may_throttle(void)
2549 return !(current->flags & PF_LOCAL_THROTTLE);
2553 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2554 * of reclaimed pages
2556 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2557 struct lruvec *lruvec, struct scan_control *sc,
2560 LIST_HEAD(folio_list);
2561 unsigned long nr_scanned;
2562 unsigned int nr_reclaimed = 0;
2563 unsigned long nr_taken;
2564 struct reclaim_stat stat;
2565 bool file = is_file_lru(lru);
2566 enum vm_event_item item;
2567 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2568 bool stalled = false;
2570 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2574 /* wait a bit for the reclaimer. */
2576 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2578 /* We are about to die and free our memory. Return now. */
2579 if (fatal_signal_pending(current))
2580 return SWAP_CLUSTER_MAX;
2585 spin_lock_irq(&lruvec->lru_lock);
2587 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2588 &nr_scanned, sc, lru);
2590 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2591 item = PGSCAN_KSWAPD + reclaimer_offset();
2592 if (!cgroup_reclaim(sc))
2593 __count_vm_events(item, nr_scanned);
2594 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2595 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2597 spin_unlock_irq(&lruvec->lru_lock);
2602 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2604 spin_lock_irq(&lruvec->lru_lock);
2605 move_folios_to_lru(lruvec, &folio_list);
2607 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2608 item = PGSTEAL_KSWAPD + reclaimer_offset();
2609 if (!cgroup_reclaim(sc))
2610 __count_vm_events(item, nr_reclaimed);
2611 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2612 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2613 spin_unlock_irq(&lruvec->lru_lock);
2615 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2616 mem_cgroup_uncharge_list(&folio_list);
2617 free_unref_page_list(&folio_list);
2620 * If dirty folios are scanned that are not queued for IO, it
2621 * implies that flushers are not doing their job. This can
2622 * happen when memory pressure pushes dirty folios to the end of
2623 * the LRU before the dirty limits are breached and the dirty
2624 * data has expired. It can also happen when the proportion of
2625 * dirty folios grows not through writes but through memory
2626 * pressure reclaiming all the clean cache. And in some cases,
2627 * the flushers simply cannot keep up with the allocation
2628 * rate. Nudge the flusher threads in case they are asleep.
2630 if (stat.nr_unqueued_dirty == nr_taken) {
2631 wakeup_flusher_threads(WB_REASON_VMSCAN);
2633 * For cgroupv1 dirty throttling is achieved by waking up
2634 * the kernel flusher here and later waiting on folios
2635 * which are in writeback to finish (see shrink_folio_list()).
2637 * Flusher may not be able to issue writeback quickly
2638 * enough for cgroupv1 writeback throttling to work
2639 * on a large system.
2641 if (!writeback_throttling_sane(sc))
2642 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2645 sc->nr.dirty += stat.nr_dirty;
2646 sc->nr.congested += stat.nr_congested;
2647 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2648 sc->nr.writeback += stat.nr_writeback;
2649 sc->nr.immediate += stat.nr_immediate;
2650 sc->nr.taken += nr_taken;
2652 sc->nr.file_taken += nr_taken;
2654 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2655 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2656 return nr_reclaimed;
2660 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2662 * We move them the other way if the folio is referenced by one or more
2665 * If the folios are mostly unmapped, the processing is fast and it is
2666 * appropriate to hold lru_lock across the whole operation. But if
2667 * the folios are mapped, the processing is slow (folio_referenced()), so
2668 * we should drop lru_lock around each folio. It's impossible to balance
2669 * this, so instead we remove the folios from the LRU while processing them.
2670 * It is safe to rely on the active flag against the non-LRU folios in here
2671 * because nobody will play with that bit on a non-LRU folio.
2673 * The downside is that we have to touch folio->_refcount against each folio.
2674 * But we had to alter folio->flags anyway.
2676 static void shrink_active_list(unsigned long nr_to_scan,
2677 struct lruvec *lruvec,
2678 struct scan_control *sc,
2681 unsigned long nr_taken;
2682 unsigned long nr_scanned;
2683 unsigned long vm_flags;
2684 LIST_HEAD(l_hold); /* The folios which were snipped off */
2685 LIST_HEAD(l_active);
2686 LIST_HEAD(l_inactive);
2687 unsigned nr_deactivate, nr_activate;
2688 unsigned nr_rotated = 0;
2689 int file = is_file_lru(lru);
2690 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2694 spin_lock_irq(&lruvec->lru_lock);
2696 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2697 &nr_scanned, sc, lru);
2699 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2701 if (!cgroup_reclaim(sc))
2702 __count_vm_events(PGREFILL, nr_scanned);
2703 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2705 spin_unlock_irq(&lruvec->lru_lock);
2707 while (!list_empty(&l_hold)) {
2708 struct folio *folio;
2711 folio = lru_to_folio(&l_hold);
2712 list_del(&folio->lru);
2714 if (unlikely(!folio_evictable(folio))) {
2715 folio_putback_lru(folio);
2719 if (unlikely(buffer_heads_over_limit)) {
2720 if (folio_test_private(folio) && folio_trylock(folio)) {
2721 if (folio_test_private(folio))
2722 filemap_release_folio(folio, 0);
2723 folio_unlock(folio);
2727 /* Referenced or rmap lock contention: rotate */
2728 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2731 * Identify referenced, file-backed active folios and
2732 * give them one more trip around the active list. So
2733 * that executable code get better chances to stay in
2734 * memory under moderate memory pressure. Anon folios
2735 * are not likely to be evicted by use-once streaming
2736 * IO, plus JVM can create lots of anon VM_EXEC folios,
2737 * so we ignore them here.
2739 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2740 nr_rotated += folio_nr_pages(folio);
2741 list_add(&folio->lru, &l_active);
2746 folio_clear_active(folio); /* we are de-activating */
2747 folio_set_workingset(folio);
2748 list_add(&folio->lru, &l_inactive);
2752 * Move folios back to the lru list.
2754 spin_lock_irq(&lruvec->lru_lock);
2756 nr_activate = move_folios_to_lru(lruvec, &l_active);
2757 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2758 /* Keep all free folios in l_active list */
2759 list_splice(&l_inactive, &l_active);
2761 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2762 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2764 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2765 spin_unlock_irq(&lruvec->lru_lock);
2768 lru_note_cost(lruvec, file, 0, nr_rotated);
2769 mem_cgroup_uncharge_list(&l_active);
2770 free_unref_page_list(&l_active);
2771 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2772 nr_deactivate, nr_rotated, sc->priority, file);
2775 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2776 struct pglist_data *pgdat)
2778 struct reclaim_stat dummy_stat;
2779 unsigned int nr_reclaimed;
2780 struct folio *folio;
2781 struct scan_control sc = {
2782 .gfp_mask = GFP_KERNEL,
2789 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2790 while (!list_empty(folio_list)) {
2791 folio = lru_to_folio(folio_list);
2792 list_del(&folio->lru);
2793 folio_putback_lru(folio);
2796 return nr_reclaimed;
2799 unsigned long reclaim_pages(struct list_head *folio_list)
2802 unsigned int nr_reclaimed = 0;
2803 LIST_HEAD(node_folio_list);
2804 unsigned int noreclaim_flag;
2806 if (list_empty(folio_list))
2807 return nr_reclaimed;
2809 noreclaim_flag = memalloc_noreclaim_save();
2811 nid = folio_nid(lru_to_folio(folio_list));
2813 struct folio *folio = lru_to_folio(folio_list);
2815 if (nid == folio_nid(folio)) {
2816 folio_clear_active(folio);
2817 list_move(&folio->lru, &node_folio_list);
2821 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2822 nid = folio_nid(lru_to_folio(folio_list));
2823 } while (!list_empty(folio_list));
2825 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2827 memalloc_noreclaim_restore(noreclaim_flag);
2829 return nr_reclaimed;
2832 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2833 struct lruvec *lruvec, struct scan_control *sc)
2835 if (is_active_lru(lru)) {
2836 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2837 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2839 sc->skipped_deactivate = 1;
2843 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2847 * The inactive anon list should be small enough that the VM never has
2848 * to do too much work.
2850 * The inactive file list should be small enough to leave most memory
2851 * to the established workingset on the scan-resistant active list,
2852 * but large enough to avoid thrashing the aggregate readahead window.
2854 * Both inactive lists should also be large enough that each inactive
2855 * folio has a chance to be referenced again before it is reclaimed.
2857 * If that fails and refaulting is observed, the inactive list grows.
2859 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2860 * on this LRU, maintained by the pageout code. An inactive_ratio
2861 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2864 * memory ratio inactive
2865 * -------------------------------------
2874 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2876 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2877 unsigned long inactive, active;
2878 unsigned long inactive_ratio;
2881 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2882 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2884 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2886 inactive_ratio = int_sqrt(10 * gb);
2890 return inactive * inactive_ratio < active;
2900 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2903 struct lruvec *target_lruvec;
2905 if (lru_gen_enabled())
2908 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2911 * Flush the memory cgroup stats, so that we read accurate per-memcg
2912 * lruvec stats for heuristics.
2914 mem_cgroup_flush_stats();
2917 * Determine the scan balance between anon and file LRUs.
2919 spin_lock_irq(&target_lruvec->lru_lock);
2920 sc->anon_cost = target_lruvec->anon_cost;
2921 sc->file_cost = target_lruvec->file_cost;
2922 spin_unlock_irq(&target_lruvec->lru_lock);
2925 * Target desirable inactive:active list ratios for the anon
2926 * and file LRU lists.
2928 if (!sc->force_deactivate) {
2929 unsigned long refaults;
2932 * When refaults are being observed, it means a new
2933 * workingset is being established. Deactivate to get
2934 * rid of any stale active pages quickly.
2936 refaults = lruvec_page_state(target_lruvec,
2937 WORKINGSET_ACTIVATE_ANON);
2938 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2939 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2940 sc->may_deactivate |= DEACTIVATE_ANON;
2942 sc->may_deactivate &= ~DEACTIVATE_ANON;
2944 refaults = lruvec_page_state(target_lruvec,
2945 WORKINGSET_ACTIVATE_FILE);
2946 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2947 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2948 sc->may_deactivate |= DEACTIVATE_FILE;
2950 sc->may_deactivate &= ~DEACTIVATE_FILE;
2952 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2955 * If we have plenty of inactive file pages that aren't
2956 * thrashing, try to reclaim those first before touching
2959 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2960 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2961 sc->cache_trim_mode = 1;
2963 sc->cache_trim_mode = 0;
2966 * Prevent the reclaimer from falling into the cache trap: as
2967 * cache pages start out inactive, every cache fault will tip
2968 * the scan balance towards the file LRU. And as the file LRU
2969 * shrinks, so does the window for rotation from references.
2970 * This means we have a runaway feedback loop where a tiny
2971 * thrashing file LRU becomes infinitely more attractive than
2972 * anon pages. Try to detect this based on file LRU size.
2974 if (!cgroup_reclaim(sc)) {
2975 unsigned long total_high_wmark = 0;
2976 unsigned long free, anon;
2979 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2980 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2981 node_page_state(pgdat, NR_INACTIVE_FILE);
2983 for (z = 0; z < MAX_NR_ZONES; z++) {
2984 struct zone *zone = &pgdat->node_zones[z];
2986 if (!managed_zone(zone))
2989 total_high_wmark += high_wmark_pages(zone);
2993 * Consider anon: if that's low too, this isn't a
2994 * runaway file reclaim problem, but rather just
2995 * extreme pressure. Reclaim as per usual then.
2997 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3000 file + free <= total_high_wmark &&
3001 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3002 anon >> sc->priority;
3007 * Determine how aggressively the anon and file LRU lists should be
3010 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3011 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3013 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3016 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3017 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3018 unsigned long anon_cost, file_cost, total_cost;
3019 int swappiness = mem_cgroup_swappiness(memcg);
3020 u64 fraction[ANON_AND_FILE];
3021 u64 denominator = 0; /* gcc */
3022 enum scan_balance scan_balance;
3023 unsigned long ap, fp;
3026 /* If we have no swap space, do not bother scanning anon folios. */
3027 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3028 scan_balance = SCAN_FILE;
3033 * Global reclaim will swap to prevent OOM even with no
3034 * swappiness, but memcg users want to use this knob to
3035 * disable swapping for individual groups completely when
3036 * using the memory controller's swap limit feature would be
3039 if (cgroup_reclaim(sc) && !swappiness) {
3040 scan_balance = SCAN_FILE;
3045 * Do not apply any pressure balancing cleverness when the
3046 * system is close to OOM, scan both anon and file equally
3047 * (unless the swappiness setting disagrees with swapping).
3049 if (!sc->priority && swappiness) {
3050 scan_balance = SCAN_EQUAL;
3055 * If the system is almost out of file pages, force-scan anon.
3057 if (sc->file_is_tiny) {
3058 scan_balance = SCAN_ANON;
3063 * If there is enough inactive page cache, we do not reclaim
3064 * anything from the anonymous working right now.
3066 if (sc->cache_trim_mode) {
3067 scan_balance = SCAN_FILE;
3071 scan_balance = SCAN_FRACT;
3073 * Calculate the pressure balance between anon and file pages.
3075 * The amount of pressure we put on each LRU is inversely
3076 * proportional to the cost of reclaiming each list, as
3077 * determined by the share of pages that are refaulting, times
3078 * the relative IO cost of bringing back a swapped out
3079 * anonymous page vs reloading a filesystem page (swappiness).
3081 * Although we limit that influence to ensure no list gets
3082 * left behind completely: at least a third of the pressure is
3083 * applied, before swappiness.
3085 * With swappiness at 100, anon and file have equal IO cost.
3087 total_cost = sc->anon_cost + sc->file_cost;
3088 anon_cost = total_cost + sc->anon_cost;
3089 file_cost = total_cost + sc->file_cost;
3090 total_cost = anon_cost + file_cost;
3092 ap = swappiness * (total_cost + 1);
3093 ap /= anon_cost + 1;
3095 fp = (200 - swappiness) * (total_cost + 1);
3096 fp /= file_cost + 1;
3100 denominator = ap + fp;
3102 for_each_evictable_lru(lru) {
3103 int file = is_file_lru(lru);
3104 unsigned long lruvec_size;
3105 unsigned long low, min;
3108 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3109 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3114 * Scale a cgroup's reclaim pressure by proportioning
3115 * its current usage to its memory.low or memory.min
3118 * This is important, as otherwise scanning aggression
3119 * becomes extremely binary -- from nothing as we
3120 * approach the memory protection threshold, to totally
3121 * nominal as we exceed it. This results in requiring
3122 * setting extremely liberal protection thresholds. It
3123 * also means we simply get no protection at all if we
3124 * set it too low, which is not ideal.
3126 * If there is any protection in place, we reduce scan
3127 * pressure by how much of the total memory used is
3128 * within protection thresholds.
3130 * There is one special case: in the first reclaim pass,
3131 * we skip over all groups that are within their low
3132 * protection. If that fails to reclaim enough pages to
3133 * satisfy the reclaim goal, we come back and override
3134 * the best-effort low protection. However, we still
3135 * ideally want to honor how well-behaved groups are in
3136 * that case instead of simply punishing them all
3137 * equally. As such, we reclaim them based on how much
3138 * memory they are using, reducing the scan pressure
3139 * again by how much of the total memory used is under
3142 unsigned long cgroup_size = mem_cgroup_size(memcg);
3143 unsigned long protection;
3145 /* memory.low scaling, make sure we retry before OOM */
3146 if (!sc->memcg_low_reclaim && low > min) {
3148 sc->memcg_low_skipped = 1;
3153 /* Avoid TOCTOU with earlier protection check */
3154 cgroup_size = max(cgroup_size, protection);
3156 scan = lruvec_size - lruvec_size * protection /
3160 * Minimally target SWAP_CLUSTER_MAX pages to keep
3161 * reclaim moving forwards, avoiding decrementing
3162 * sc->priority further than desirable.
3164 scan = max(scan, SWAP_CLUSTER_MAX);
3169 scan >>= sc->priority;
3172 * If the cgroup's already been deleted, make sure to
3173 * scrape out the remaining cache.
3175 if (!scan && !mem_cgroup_online(memcg))
3176 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3178 switch (scan_balance) {
3180 /* Scan lists relative to size */
3184 * Scan types proportional to swappiness and
3185 * their relative recent reclaim efficiency.
3186 * Make sure we don't miss the last page on
3187 * the offlined memory cgroups because of a
3190 scan = mem_cgroup_online(memcg) ?
3191 div64_u64(scan * fraction[file], denominator) :
3192 DIV64_U64_ROUND_UP(scan * fraction[file],
3197 /* Scan one type exclusively */
3198 if ((scan_balance == SCAN_FILE) != file)
3202 /* Look ma, no brain */
3211 * Anonymous LRU management is a waste if there is
3212 * ultimately no way to reclaim the memory.
3214 static bool can_age_anon_pages(struct pglist_data *pgdat,
3215 struct scan_control *sc)
3217 /* Aging the anon LRU is valuable if swap is present: */
3218 if (total_swap_pages > 0)
3221 /* Also valuable if anon pages can be demoted: */
3222 return can_demote(pgdat->node_id, sc);
3225 #ifdef CONFIG_LRU_GEN
3227 #ifdef CONFIG_LRU_GEN_ENABLED
3228 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3229 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3231 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3232 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3235 /******************************************************************************
3237 ******************************************************************************/
3239 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3241 #define DEFINE_MAX_SEQ(lruvec) \
3242 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3244 #define DEFINE_MIN_SEQ(lruvec) \
3245 unsigned long min_seq[ANON_AND_FILE] = { \
3246 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3247 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3250 #define for_each_gen_type_zone(gen, type, zone) \
3251 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3252 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3253 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3255 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3256 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3258 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3260 struct pglist_data *pgdat = NODE_DATA(nid);
3264 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3266 /* see the comment in mem_cgroup_lruvec() */
3268 lruvec->pgdat = pgdat;
3273 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3275 return &pgdat->__lruvec;
3278 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3280 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3281 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3286 if (!can_demote(pgdat->node_id, sc) &&
3287 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3290 return mem_cgroup_swappiness(memcg);
3293 static int get_nr_gens(struct lruvec *lruvec, int type)
3295 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3298 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3300 /* see the comment on lru_gen_folio */
3301 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3302 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3303 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3306 /******************************************************************************
3308 ******************************************************************************/
3311 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3312 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3313 * bits in a bitmap, k is the number of hash functions and n is the number of
3316 * Page table walkers use one of the two filters to reduce their search space.
3317 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3318 * aging uses the double-buffering technique to flip to the other filter each
3319 * time it produces a new generation. For non-leaf entries that have enough
3320 * leaf entries, the aging carries them over to the next generation in
3321 * walk_pmd_range(); the eviction also report them when walking the rmap
3322 * in lru_gen_look_around().
3324 * For future optimizations:
3325 * 1. It's not necessary to keep both filters all the time. The spare one can be
3326 * freed after the RCU grace period and reallocated if needed again.
3327 * 2. And when reallocating, it's worth scaling its size according to the number
3328 * of inserted entries in the other filter, to reduce the memory overhead on
3329 * small systems and false positives on large systems.
3330 * 3. Jenkins' hash function is an alternative to Knuth's.
3332 #define BLOOM_FILTER_SHIFT 15
3334 static inline int filter_gen_from_seq(unsigned long seq)
3336 return seq % NR_BLOOM_FILTERS;
3339 static void get_item_key(void *item, int *key)
3341 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3343 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3345 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3346 key[1] = hash >> BLOOM_FILTER_SHIFT;
3349 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3352 unsigned long *filter;
3353 int gen = filter_gen_from_seq(seq);
3355 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3359 get_item_key(item, key);
3361 return test_bit(key[0], filter) && test_bit(key[1], filter);
3364 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3367 unsigned long *filter;
3368 int gen = filter_gen_from_seq(seq);
3370 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3374 get_item_key(item, key);
3376 if (!test_bit(key[0], filter))
3377 set_bit(key[0], filter);
3378 if (!test_bit(key[1], filter))
3379 set_bit(key[1], filter);
3382 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3384 unsigned long *filter;
3385 int gen = filter_gen_from_seq(seq);
3387 filter = lruvec->mm_state.filters[gen];
3389 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3393 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3394 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3395 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3398 /******************************************************************************
3400 ******************************************************************************/
3402 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3404 static struct lru_gen_mm_list mm_list = {
3405 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3406 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3411 return &memcg->mm_list;
3413 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3418 void lru_gen_add_mm(struct mm_struct *mm)
3421 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3422 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3424 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3426 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3427 mm->lru_gen.memcg = memcg;
3429 spin_lock(&mm_list->lock);
3431 for_each_node_state(nid, N_MEMORY) {
3432 struct lruvec *lruvec = get_lruvec(memcg, nid);
3434 /* the first addition since the last iteration */
3435 if (lruvec->mm_state.tail == &mm_list->fifo)
3436 lruvec->mm_state.tail = &mm->lru_gen.list;
3439 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3441 spin_unlock(&mm_list->lock);
3444 void lru_gen_del_mm(struct mm_struct *mm)
3447 struct lru_gen_mm_list *mm_list;
3448 struct mem_cgroup *memcg = NULL;
3450 if (list_empty(&mm->lru_gen.list))
3454 memcg = mm->lru_gen.memcg;
3456 mm_list = get_mm_list(memcg);
3458 spin_lock(&mm_list->lock);
3460 for_each_node(nid) {
3461 struct lruvec *lruvec = get_lruvec(memcg, nid);
3463 /* where the current iteration continues after */
3464 if (lruvec->mm_state.head == &mm->lru_gen.list)
3465 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3467 /* where the last iteration ended before */
3468 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3469 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3472 list_del_init(&mm->lru_gen.list);
3474 spin_unlock(&mm_list->lock);
3477 mem_cgroup_put(mm->lru_gen.memcg);
3478 mm->lru_gen.memcg = NULL;
3483 void lru_gen_migrate_mm(struct mm_struct *mm)
3485 struct mem_cgroup *memcg;
3486 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3488 VM_WARN_ON_ONCE(task->mm != mm);
3489 lockdep_assert_held(&task->alloc_lock);
3491 /* for mm_update_next_owner() */
3492 if (mem_cgroup_disabled())
3495 /* migration can happen before addition */
3496 if (!mm->lru_gen.memcg)
3500 memcg = mem_cgroup_from_task(task);
3502 if (memcg == mm->lru_gen.memcg)
3505 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3512 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3517 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3520 hist = lru_hist_from_seq(walk->max_seq);
3522 for (i = 0; i < NR_MM_STATS; i++) {
3523 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3524 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3525 walk->mm_stats[i] = 0;
3529 if (NR_HIST_GENS > 1 && last) {
3530 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3532 for (i = 0; i < NR_MM_STATS; i++)
3533 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3537 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3540 unsigned long size = 0;
3541 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3542 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3544 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3547 clear_bit(key, &mm->lru_gen.bitmap);
3549 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3550 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3551 get_mm_counter(mm, MM_ANONPAGES) +
3552 get_mm_counter(mm, MM_SHMEMPAGES);
3555 if (size < MIN_LRU_BATCH)
3558 return !mmget_not_zero(mm);
3561 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3562 struct mm_struct **iter)
3566 struct mm_struct *mm = NULL;
3567 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3568 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3569 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3572 * mm_state->seq is incremented after each iteration of mm_list. There
3573 * are three interesting cases for this page table walker:
3574 * 1. It tries to start a new iteration with a stale max_seq: there is
3575 * nothing left to do.
3576 * 2. It started the next iteration: it needs to reset the Bloom filter
3577 * so that a fresh set of PTE tables can be recorded.
3578 * 3. It ended the current iteration: it needs to reset the mm stats
3579 * counters and tell its caller to increment max_seq.
3581 spin_lock(&mm_list->lock);
3583 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3585 if (walk->max_seq <= mm_state->seq)
3588 if (!mm_state->head)
3589 mm_state->head = &mm_list->fifo;
3591 if (mm_state->head == &mm_list->fifo)
3595 mm_state->head = mm_state->head->next;
3596 if (mm_state->head == &mm_list->fifo) {
3597 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3602 /* force scan for those added after the last iteration */
3603 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3604 mm_state->tail = mm_state->head->next;
3605 walk->force_scan = true;
3608 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3609 if (should_skip_mm(mm, walk))
3614 reset_mm_stats(lruvec, walk, last);
3616 spin_unlock(&mm_list->lock);
3619 reset_bloom_filter(lruvec, walk->max_seq + 1);
3629 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3631 bool success = false;
3632 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3633 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3634 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3636 spin_lock(&mm_list->lock);
3638 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3640 if (max_seq > mm_state->seq) {
3641 mm_state->head = NULL;
3642 mm_state->tail = NULL;
3643 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3644 reset_mm_stats(lruvec, NULL, true);
3648 spin_unlock(&mm_list->lock);
3653 /******************************************************************************
3655 ******************************************************************************/
3658 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3660 * The P term is refaulted/(evicted+protected) from a tier in the generation
3661 * currently being evicted; the I term is the exponential moving average of the
3662 * P term over the generations previously evicted, using the smoothing factor
3663 * 1/2; the D term isn't supported.
3665 * The setpoint (SP) is always the first tier of one type; the process variable
3666 * (PV) is either any tier of the other type or any other tier of the same
3669 * The error is the difference between the SP and the PV; the correction is to
3670 * turn off protection when SP>PV or turn on protection when SP<PV.
3672 * For future optimizations:
3673 * 1. The D term may discount the other two terms over time so that long-lived
3674 * generations can resist stale information.
3677 unsigned long refaulted;
3678 unsigned long total;
3682 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3683 struct ctrl_pos *pos)
3685 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3686 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3688 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3689 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3690 pos->total = lrugen->avg_total[type][tier] +
3691 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3693 pos->total += lrugen->protected[hist][type][tier - 1];
3697 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3700 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3701 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3702 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3704 lockdep_assert_held(&lruvec->lru_lock);
3706 if (!carryover && !clear)
3709 hist = lru_hist_from_seq(seq);
3711 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3715 sum = lrugen->avg_refaulted[type][tier] +
3716 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3717 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3719 sum = lrugen->avg_total[type][tier] +
3720 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3722 sum += lrugen->protected[hist][type][tier - 1];
3723 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3727 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3728 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3730 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3735 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3738 * Return true if the PV has a limited number of refaults or a lower
3739 * refaulted/total than the SP.
3741 return pv->refaulted < MIN_LRU_BATCH ||
3742 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3743 (sp->refaulted + 1) * pv->total * pv->gain;
3746 /******************************************************************************
3748 ******************************************************************************/
3750 /* promote pages accessed through page tables */
3751 static int folio_update_gen(struct folio *folio, int gen)
3753 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3755 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3756 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3759 /* lru_gen_del_folio() has isolated this page? */
3760 if (!(old_flags & LRU_GEN_MASK)) {
3761 /* for shrink_folio_list() */
3762 new_flags = old_flags | BIT(PG_referenced);
3766 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3767 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3768 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3770 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3773 /* protect pages accessed multiple times through file descriptors */
3774 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3776 int type = folio_is_file_lru(folio);
3777 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3778 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3779 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3781 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3784 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3785 /* folio_update_gen() has promoted this page? */
3786 if (new_gen >= 0 && new_gen != old_gen)
3789 new_gen = (old_gen + 1) % MAX_NR_GENS;
3791 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3792 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3793 /* for folio_end_writeback() */
3795 new_flags |= BIT(PG_reclaim);
3796 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3798 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3803 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3804 int old_gen, int new_gen)
3806 int type = folio_is_file_lru(folio);
3807 int zone = folio_zonenum(folio);
3808 int delta = folio_nr_pages(folio);
3810 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3811 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3815 walk->nr_pages[old_gen][type][zone] -= delta;
3816 walk->nr_pages[new_gen][type][zone] += delta;
3819 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3821 int gen, type, zone;
3822 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3826 for_each_gen_type_zone(gen, type, zone) {
3827 enum lru_list lru = type * LRU_INACTIVE_FILE;
3828 int delta = walk->nr_pages[gen][type][zone];
3833 walk->nr_pages[gen][type][zone] = 0;
3834 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3835 lrugen->nr_pages[gen][type][zone] + delta);
3837 if (lru_gen_is_active(lruvec, gen))
3839 __update_lru_size(lruvec, lru, zone, delta);
3843 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3845 struct address_space *mapping;
3846 struct vm_area_struct *vma = args->vma;
3847 struct lru_gen_mm_walk *walk = args->private;
3849 if (!vma_is_accessible(vma))
3852 if (is_vm_hugetlb_page(vma))
3855 if (!vma_has_recency(vma))
3858 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3861 if (vma == get_gate_vma(vma->vm_mm))
3864 if (vma_is_anonymous(vma))
3865 return !walk->can_swap;
3867 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3870 mapping = vma->vm_file->f_mapping;
3871 if (mapping_unevictable(mapping))
3874 if (shmem_mapping(mapping))
3875 return !walk->can_swap;
3877 /* to exclude special mappings like dax, etc. */
3878 return !mapping->a_ops->read_folio;
3882 * Some userspace memory allocators map many single-page VMAs. Instead of
3883 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3884 * table to reduce zigzags and improve cache performance.
3886 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3887 unsigned long *vm_start, unsigned long *vm_end)
3889 unsigned long start = round_up(*vm_end, size);
3890 unsigned long end = (start | ~mask) + 1;
3891 VMA_ITERATOR(vmi, args->mm, start);
3893 VM_WARN_ON_ONCE(mask & size);
3894 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3896 for_each_vma(vmi, args->vma) {
3897 if (end && end <= args->vma->vm_start)
3900 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3903 *vm_start = max(start, args->vma->vm_start);
3904 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3912 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3914 unsigned long pfn = pte_pfn(pte);
3916 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3918 if (!pte_present(pte) || is_zero_pfn(pfn))
3921 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3924 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3930 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3931 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3933 unsigned long pfn = pmd_pfn(pmd);
3935 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3937 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3940 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3943 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3950 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3951 struct pglist_data *pgdat, bool can_swap)
3953 struct folio *folio;
3955 /* try to avoid unnecessary memory loads */
3956 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3959 folio = pfn_folio(pfn);
3960 if (folio_nid(folio) != pgdat->node_id)
3963 if (folio_memcg_rcu(folio) != memcg)
3966 /* file VMAs can contain anon pages from COW */
3967 if (!folio_is_file_lru(folio) && !can_swap)
3973 static bool suitable_to_scan(int total, int young)
3975 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3977 /* suitable if the average number of young PTEs per cacheline is >=1 */
3978 return young * n >= total;
3981 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3982 struct mm_walk *args)
3990 struct lru_gen_mm_walk *walk = args->private;
3991 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3992 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3993 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3995 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3997 ptl = pte_lockptr(args->mm, pmd);
3998 if (!spin_trylock(ptl))
4001 arch_enter_lazy_mmu_mode();
4003 pte = pte_offset_map(pmd, start & PMD_MASK);
4005 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4007 struct folio *folio;
4010 walk->mm_stats[MM_LEAF_TOTAL]++;
4012 pfn = get_pte_pfn(pte[i], args->vma, addr);
4016 if (!pte_young(pte[i])) {
4017 walk->mm_stats[MM_LEAF_OLD]++;
4021 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4025 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4026 VM_WARN_ON_ONCE(true);
4029 walk->mm_stats[MM_LEAF_YOUNG]++;
4031 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4032 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4033 !folio_test_swapcache(folio)))
4034 folio_mark_dirty(folio);
4036 old_gen = folio_update_gen(folio, new_gen);
4037 if (old_gen >= 0 && old_gen != new_gen)
4038 update_batch_size(walk, folio, old_gen, new_gen);
4041 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4046 arch_leave_lazy_mmu_mode();
4049 return suitable_to_scan(total, young);
4052 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4053 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4054 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4059 struct lru_gen_mm_walk *walk = args->private;
4060 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4061 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4062 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4064 VM_WARN_ON_ONCE(pud_leaf(*pud));
4066 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4069 bitmap_zero(bitmap, MIN_LRU_BATCH);
4073 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4074 if (i && i <= MIN_LRU_BATCH) {
4075 __set_bit(i - 1, bitmap);
4079 pmd = pmd_offset(pud, *first);
4081 ptl = pmd_lockptr(args->mm, pmd);
4082 if (!spin_trylock(ptl))
4085 arch_enter_lazy_mmu_mode();
4089 struct folio *folio;
4091 /* don't round down the first address */
4092 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4094 pfn = get_pmd_pfn(pmd[i], vma, addr);
4098 if (!pmd_trans_huge(pmd[i])) {
4099 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4100 pmdp_test_and_clear_young(vma, addr, pmd + i);
4104 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4108 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4111 walk->mm_stats[MM_LEAF_YOUNG]++;
4113 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4114 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4115 !folio_test_swapcache(folio)))
4116 folio_mark_dirty(folio);
4118 old_gen = folio_update_gen(folio, new_gen);
4119 if (old_gen >= 0 && old_gen != new_gen)
4120 update_batch_size(walk, folio, old_gen, new_gen);
4122 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4123 } while (i <= MIN_LRU_BATCH);
4125 arch_leave_lazy_mmu_mode();
4131 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4132 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4137 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4138 struct mm_walk *args)
4144 struct vm_area_struct *vma;
4145 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4146 unsigned long first = -1;
4147 struct lru_gen_mm_walk *walk = args->private;
4149 VM_WARN_ON_ONCE(pud_leaf(*pud));
4152 * Finish an entire PMD in two passes: the first only reaches to PTE
4153 * tables to avoid taking the PMD lock; the second, if necessary, takes
4154 * the PMD lock to clear the accessed bit in PMD entries.
4156 pmd = pmd_offset(pud, start & PUD_MASK);
4158 /* walk_pte_range() may call get_next_vma() */
4160 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4161 pmd_t val = pmdp_get_lockless(pmd + i);
4163 next = pmd_addr_end(addr, end);
4165 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4166 walk->mm_stats[MM_LEAF_TOTAL]++;
4170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4171 if (pmd_trans_huge(val)) {
4172 unsigned long pfn = pmd_pfn(val);
4173 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4175 walk->mm_stats[MM_LEAF_TOTAL]++;
4177 if (!pmd_young(val)) {
4178 walk->mm_stats[MM_LEAF_OLD]++;
4182 /* try to avoid unnecessary memory loads */
4183 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4186 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4190 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4192 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4193 if (!pmd_young(val))
4196 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4199 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4202 walk->mm_stats[MM_NONLEAF_FOUND]++;
4204 if (!walk_pte_range(&val, addr, next, args))
4207 walk->mm_stats[MM_NONLEAF_ADDED]++;
4209 /* carry over to the next generation */
4210 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4213 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4215 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4219 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4220 struct mm_walk *args)
4226 struct lru_gen_mm_walk *walk = args->private;
4228 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4230 pud = pud_offset(p4d, start & P4D_MASK);
4232 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4233 pud_t val = READ_ONCE(pud[i]);
4235 next = pud_addr_end(addr, end);
4237 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4240 walk_pmd_range(&val, addr, next, args);
4242 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4243 end = (addr | ~PUD_MASK) + 1;
4248 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4251 end = round_up(end, P4D_SIZE);
4253 if (!end || !args->vma)
4256 walk->next_addr = max(end, args->vma->vm_start);
4261 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4263 static const struct mm_walk_ops mm_walk_ops = {
4264 .test_walk = should_skip_vma,
4265 .p4d_entry = walk_pud_range,
4269 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4271 walk->next_addr = FIRST_USER_ADDRESS;
4274 DEFINE_MAX_SEQ(lruvec);
4278 /* another thread might have called inc_max_seq() */
4279 if (walk->max_seq != max_seq)
4282 /* folio_update_gen() requires stable folio_memcg() */
4283 if (!mem_cgroup_trylock_pages(memcg))
4286 /* the caller might be holding the lock for write */
4287 if (mmap_read_trylock(mm)) {
4288 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4290 mmap_read_unlock(mm);
4293 mem_cgroup_unlock_pages();
4295 if (walk->batched) {
4296 spin_lock_irq(&lruvec->lru_lock);
4297 reset_batch_size(lruvec, walk);
4298 spin_unlock_irq(&lruvec->lru_lock);
4302 } while (err == -EAGAIN);
4305 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4307 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4309 if (pgdat && current_is_kswapd()) {
4310 VM_WARN_ON_ONCE(walk);
4312 walk = &pgdat->mm_walk;
4313 } else if (!walk && force_alloc) {
4314 VM_WARN_ON_ONCE(current_is_kswapd());
4316 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4319 current->reclaim_state->mm_walk = walk;
4324 static void clear_mm_walk(void)
4326 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4328 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4329 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4331 current->reclaim_state->mm_walk = NULL;
4333 if (!current_is_kswapd())
4337 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4340 int remaining = MAX_LRU_BATCH;
4341 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4342 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4344 if (type == LRU_GEN_ANON && !can_swap)
4347 /* prevent cold/hot inversion if force_scan is true */
4348 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4349 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4351 while (!list_empty(head)) {
4352 struct folio *folio = lru_to_folio(head);
4354 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4355 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4356 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4357 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4359 new_gen = folio_inc_gen(lruvec, folio, false);
4360 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4367 reset_ctrl_pos(lruvec, type, true);
4368 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4373 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4375 int gen, type, zone;
4376 bool success = false;
4377 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4378 DEFINE_MIN_SEQ(lruvec);
4380 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4382 /* find the oldest populated generation */
4383 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4384 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4385 gen = lru_gen_from_seq(min_seq[type]);
4387 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4388 if (!list_empty(&lrugen->folios[gen][type][zone]))
4398 /* see the comment on lru_gen_folio */
4400 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4401 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4404 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4405 if (min_seq[type] == lrugen->min_seq[type])
4408 reset_ctrl_pos(lruvec, type, true);
4409 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4416 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4420 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4422 spin_lock_irq(&lruvec->lru_lock);
4424 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4426 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4427 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4430 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4432 while (!inc_min_seq(lruvec, type, can_swap)) {
4433 spin_unlock_irq(&lruvec->lru_lock);
4435 spin_lock_irq(&lruvec->lru_lock);
4440 * Update the active/inactive LRU sizes for compatibility. Both sides of
4441 * the current max_seq need to be covered, since max_seq+1 can overlap
4442 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4443 * overlap, cold/hot inversion happens.
4445 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4446 next = lru_gen_from_seq(lrugen->max_seq + 1);
4448 for (type = 0; type < ANON_AND_FILE; type++) {
4449 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4450 enum lru_list lru = type * LRU_INACTIVE_FILE;
4451 long delta = lrugen->nr_pages[prev][type][zone] -
4452 lrugen->nr_pages[next][type][zone];
4457 __update_lru_size(lruvec, lru, zone, delta);
4458 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4462 for (type = 0; type < ANON_AND_FILE; type++)
4463 reset_ctrl_pos(lruvec, type, false);
4465 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4466 /* make sure preceding modifications appear */
4467 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4469 spin_unlock_irq(&lruvec->lru_lock);
4472 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4473 struct scan_control *sc, bool can_swap, bool force_scan)
4476 struct lru_gen_mm_walk *walk;
4477 struct mm_struct *mm = NULL;
4478 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4480 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4482 /* see the comment in iterate_mm_list() */
4483 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4489 * If the hardware doesn't automatically set the accessed bit, fallback
4490 * to lru_gen_look_around(), which only clears the accessed bit in a
4491 * handful of PTEs. Spreading the work out over a period of time usually
4492 * is less efficient, but it avoids bursty page faults.
4494 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4495 success = iterate_mm_list_nowalk(lruvec, max_seq);
4499 walk = set_mm_walk(NULL, true);
4501 success = iterate_mm_list_nowalk(lruvec, max_seq);
4505 walk->lruvec = lruvec;
4506 walk->max_seq = max_seq;
4507 walk->can_swap = can_swap;
4508 walk->force_scan = force_scan;
4511 success = iterate_mm_list(lruvec, walk, &mm);
4513 walk_mm(lruvec, mm, walk);
4517 inc_max_seq(lruvec, can_swap, force_scan);
4522 /******************************************************************************
4523 * working set protection
4524 ******************************************************************************/
4526 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4528 int gen, type, zone;
4529 unsigned long total = 0;
4530 bool can_swap = get_swappiness(lruvec, sc);
4531 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4532 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4533 DEFINE_MAX_SEQ(lruvec);
4534 DEFINE_MIN_SEQ(lruvec);
4536 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4539 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4540 gen = lru_gen_from_seq(seq);
4542 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4543 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4547 /* whether the size is big enough to be helpful */
4548 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4551 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4552 unsigned long min_ttl)
4555 unsigned long birth;
4556 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4557 DEFINE_MIN_SEQ(lruvec);
4559 /* see the comment on lru_gen_folio */
4560 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4561 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4563 if (time_is_after_jiffies(birth + min_ttl))
4566 if (!lruvec_is_sizable(lruvec, sc))
4569 mem_cgroup_calculate_protection(NULL, memcg);
4571 return !mem_cgroup_below_min(NULL, memcg);
4574 /* to protect the working set of the last N jiffies */
4575 static unsigned long lru_gen_min_ttl __read_mostly;
4577 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4579 struct mem_cgroup *memcg;
4580 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4582 VM_WARN_ON_ONCE(!current_is_kswapd());
4584 /* check the order to exclude compaction-induced reclaim */
4585 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4588 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4590 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4592 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4593 mem_cgroup_iter_break(NULL, memcg);
4598 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4601 * The main goal is to OOM kill if every generation from all memcgs is
4602 * younger than min_ttl. However, another possibility is all memcgs are
4603 * either too small or below min.
4605 if (mutex_trylock(&oom_lock)) {
4606 struct oom_control oc = {
4607 .gfp_mask = sc->gfp_mask,
4612 mutex_unlock(&oom_lock);
4616 /******************************************************************************
4617 * rmap/PT walk feedback
4618 ******************************************************************************/
4621 * This function exploits spatial locality when shrink_folio_list() walks the
4622 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4623 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4624 * the PTE table to the Bloom filter. This forms a feedback loop between the
4625 * eviction and the aging.
4627 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4630 unsigned long start;
4632 struct lru_gen_mm_walk *walk;
4634 pte_t *pte = pvmw->pte;
4635 unsigned long addr = pvmw->address;
4636 struct folio *folio = pfn_folio(pvmw->pfn);
4637 struct mem_cgroup *memcg = folio_memcg(folio);
4638 struct pglist_data *pgdat = folio_pgdat(folio);
4639 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4640 DEFINE_MAX_SEQ(lruvec);
4641 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4643 lockdep_assert_held(pvmw->ptl);
4644 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4646 if (spin_is_contended(pvmw->ptl))
4649 /* avoid taking the LRU lock under the PTL when possible */
4650 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4652 start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4653 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4655 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4656 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4657 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4658 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4659 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4661 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4662 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4666 /* folio_update_gen() requires stable folio_memcg() */
4667 if (!mem_cgroup_trylock_pages(memcg))
4670 arch_enter_lazy_mmu_mode();
4672 pte -= (addr - start) / PAGE_SIZE;
4674 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4677 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4681 if (!pte_young(pte[i]))
4684 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4688 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4689 VM_WARN_ON_ONCE(true);
4693 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4694 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4695 !folio_test_swapcache(folio)))
4696 folio_mark_dirty(folio);
4699 old_gen = folio_update_gen(folio, new_gen);
4700 if (old_gen >= 0 && old_gen != new_gen)
4701 update_batch_size(walk, folio, old_gen, new_gen);
4706 old_gen = folio_lru_gen(folio);
4708 folio_set_referenced(folio);
4709 else if (old_gen != new_gen)
4710 folio_activate(folio);
4713 arch_leave_lazy_mmu_mode();
4714 mem_cgroup_unlock_pages();
4716 /* feedback from rmap walkers to page table walkers */
4717 if (suitable_to_scan(i, young))
4718 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4721 /******************************************************************************
4723 ******************************************************************************/
4725 /* see the comment on MEMCG_NR_GENS */
4736 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4738 return READ_ONCE(lruvec->lrugen.seg);
4741 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4745 int bin = get_random_u32_below(MEMCG_NR_BINS);
4746 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4748 spin_lock(&pgdat->memcg_lru.lock);
4750 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4753 new = old = lruvec->lrugen.gen;
4755 /* see the comment on MEMCG_NR_GENS */
4756 if (op == MEMCG_LRU_HEAD)
4757 seg = MEMCG_LRU_HEAD;
4758 else if (op == MEMCG_LRU_TAIL)
4759 seg = MEMCG_LRU_TAIL;
4760 else if (op == MEMCG_LRU_OLD)
4761 new = get_memcg_gen(pgdat->memcg_lru.seq);
4762 else if (op == MEMCG_LRU_YOUNG)
4763 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4765 VM_WARN_ON_ONCE(true);
4767 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4769 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4770 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4772 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4774 pgdat->memcg_lru.nr_memcgs[old]--;
4775 pgdat->memcg_lru.nr_memcgs[new]++;
4777 lruvec->lrugen.gen = new;
4778 WRITE_ONCE(lruvec->lrugen.seg, seg);
4780 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4781 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4783 spin_unlock(&pgdat->memcg_lru.lock);
4786 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4790 int bin = get_random_u32_below(MEMCG_NR_BINS);
4792 for_each_node(nid) {
4793 struct pglist_data *pgdat = NODE_DATA(nid);
4794 struct lruvec *lruvec = get_lruvec(memcg, nid);
4796 spin_lock(&pgdat->memcg_lru.lock);
4798 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4800 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4802 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4803 pgdat->memcg_lru.nr_memcgs[gen]++;
4805 lruvec->lrugen.gen = gen;
4807 spin_unlock(&pgdat->memcg_lru.lock);
4811 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4815 for_each_node(nid) {
4816 struct lruvec *lruvec = get_lruvec(memcg, nid);
4818 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4822 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4827 for_each_node(nid) {
4828 struct pglist_data *pgdat = NODE_DATA(nid);
4829 struct lruvec *lruvec = get_lruvec(memcg, nid);
4831 spin_lock(&pgdat->memcg_lru.lock);
4833 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4835 gen = lruvec->lrugen.gen;
4837 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4838 pgdat->memcg_lru.nr_memcgs[gen]--;
4840 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4841 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4843 spin_unlock(&pgdat->memcg_lru.lock);
4847 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4849 /* see the comment on MEMCG_NR_GENS */
4850 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4851 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4854 #else /* !CONFIG_MEMCG */
4856 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4863 /******************************************************************************
4865 ******************************************************************************/
4867 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4870 int gen = folio_lru_gen(folio);
4871 int type = folio_is_file_lru(folio);
4872 int zone = folio_zonenum(folio);
4873 int delta = folio_nr_pages(folio);
4874 int refs = folio_lru_refs(folio);
4875 int tier = lru_tier_from_refs(refs);
4876 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4878 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4881 if (!folio_evictable(folio)) {
4882 success = lru_gen_del_folio(lruvec, folio, true);
4883 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4884 folio_set_unevictable(folio);
4885 lruvec_add_folio(lruvec, folio);
4886 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4890 /* dirty lazyfree */
4891 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4892 success = lru_gen_del_folio(lruvec, folio, true);
4893 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4894 folio_set_swapbacked(folio);
4895 lruvec_add_folio_tail(lruvec, folio);
4900 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4901 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4906 if (tier > tier_idx) {
4907 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4909 gen = folio_inc_gen(lruvec, folio, false);
4910 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4912 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4913 lrugen->protected[hist][type][tier - 1] + delta);
4914 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4918 /* waiting for writeback */
4919 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4920 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4921 gen = folio_inc_gen(lruvec, folio, true);
4922 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4929 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4933 /* swapping inhibited */
4934 if (!(sc->gfp_mask & __GFP_IO) &&
4935 (folio_test_dirty(folio) ||
4936 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4939 /* raced with release_pages() */
4940 if (!folio_try_get(folio))
4943 /* raced with another isolation */
4944 if (!folio_test_clear_lru(folio)) {
4949 /* see the comment on MAX_NR_TIERS */
4950 if (!folio_test_referenced(folio))
4951 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4953 /* for shrink_folio_list() */
4954 folio_clear_reclaim(folio);
4955 folio_clear_referenced(folio);
4957 success = lru_gen_del_folio(lruvec, folio, true);
4958 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4963 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4964 int type, int tier, struct list_head *list)
4967 enum vm_event_item item;
4971 int remaining = MAX_LRU_BATCH;
4972 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4973 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4975 VM_WARN_ON_ONCE(!list_empty(list));
4977 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4980 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4982 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4985 struct list_head *head = &lrugen->folios[gen][type][zone];
4987 while (!list_empty(head)) {
4988 struct folio *folio = lru_to_folio(head);
4989 int delta = folio_nr_pages(folio);
4991 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4992 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4993 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4994 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4998 if (sort_folio(lruvec, folio, tier))
5000 else if (isolate_folio(lruvec, folio, sc)) {
5001 list_add(&folio->lru, list);
5004 list_move(&folio->lru, &moved);
5008 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5013 list_splice(&moved, head);
5014 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5017 if (!remaining || isolated >= MIN_LRU_BATCH)
5021 item = PGSCAN_KSWAPD + reclaimer_offset();
5022 if (!cgroup_reclaim(sc)) {
5023 __count_vm_events(item, isolated);
5024 __count_vm_events(PGREFILL, sorted);
5026 __count_memcg_events(memcg, item, isolated);
5027 __count_memcg_events(memcg, PGREFILL, sorted);
5028 __count_vm_events(PGSCAN_ANON + type, isolated);
5031 * There might not be eligible folios due to reclaim_idx. Check the
5032 * remaining to prevent livelock if it's not making progress.
5034 return isolated || !remaining ? scanned : 0;
5037 static int get_tier_idx(struct lruvec *lruvec, int type)
5040 struct ctrl_pos sp, pv;
5043 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5044 * This value is chosen because any other tier would have at least twice
5045 * as many refaults as the first tier.
5047 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5048 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5049 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5050 if (!positive_ctrl_err(&sp, &pv))
5057 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5060 struct ctrl_pos sp, pv;
5061 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5064 * Compare the first tier of anon with that of file to determine which
5065 * type to scan. Also need to compare other tiers of the selected type
5066 * with the first tier of the other type to determine the last tier (of
5067 * the selected type) to evict.
5069 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5070 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5071 type = positive_ctrl_err(&sp, &pv);
5073 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5074 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5075 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5076 if (!positive_ctrl_err(&sp, &pv))
5080 *tier_idx = tier - 1;
5085 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5086 int *type_scanned, struct list_head *list)
5092 DEFINE_MIN_SEQ(lruvec);
5095 * Try to make the obvious choice first. When anon and file are both
5096 * available from the same generation, interpret swappiness 1 as file
5097 * first and 200 as anon first.
5100 type = LRU_GEN_FILE;
5101 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5102 type = LRU_GEN_ANON;
5103 else if (swappiness == 1)
5104 type = LRU_GEN_FILE;
5105 else if (swappiness == 200)
5106 type = LRU_GEN_ANON;
5108 type = get_type_to_scan(lruvec, swappiness, &tier);
5110 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5112 tier = get_tier_idx(lruvec, type);
5114 scanned = scan_folios(lruvec, sc, type, tier, list);
5122 *type_scanned = type;
5127 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5134 struct folio *folio;
5136 enum vm_event_item item;
5137 struct reclaim_stat stat;
5138 struct lru_gen_mm_walk *walk;
5139 bool skip_retry = false;
5140 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5141 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5143 spin_lock_irq(&lruvec->lru_lock);
5145 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5147 scanned += try_to_inc_min_seq(lruvec, swappiness);
5149 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5152 spin_unlock_irq(&lruvec->lru_lock);
5154 if (list_empty(&list))
5157 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5158 sc->nr_reclaimed += reclaimed;
5160 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5161 if (!folio_evictable(folio)) {
5162 list_del(&folio->lru);
5163 folio_putback_lru(folio);
5167 if (folio_test_reclaim(folio) &&
5168 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5169 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5170 if (folio_test_workingset(folio))
5171 folio_set_referenced(folio);
5175 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5176 folio_mapped(folio) || folio_test_locked(folio) ||
5177 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5178 /* don't add rejected folios to the oldest generation */
5179 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5184 /* retry folios that may have missed folio_rotate_reclaimable() */
5185 list_move(&folio->lru, &clean);
5186 sc->nr_scanned -= folio_nr_pages(folio);
5189 spin_lock_irq(&lruvec->lru_lock);
5191 move_folios_to_lru(lruvec, &list);
5193 walk = current->reclaim_state->mm_walk;
5194 if (walk && walk->batched)
5195 reset_batch_size(lruvec, walk);
5197 item = PGSTEAL_KSWAPD + reclaimer_offset();
5198 if (!cgroup_reclaim(sc))
5199 __count_vm_events(item, reclaimed);
5200 __count_memcg_events(memcg, item, reclaimed);
5201 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5203 spin_unlock_irq(&lruvec->lru_lock);
5205 mem_cgroup_uncharge_list(&list);
5206 free_unref_page_list(&list);
5208 INIT_LIST_HEAD(&list);
5209 list_splice_init(&clean, &list);
5211 if (!list_empty(&list)) {
5219 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5220 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5222 int gen, type, zone;
5223 unsigned long old = 0;
5224 unsigned long young = 0;
5225 unsigned long total = 0;
5226 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5227 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5228 DEFINE_MIN_SEQ(lruvec);
5230 /* whether this lruvec is completely out of cold folios */
5231 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5236 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5239 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5240 unsigned long size = 0;
5242 gen = lru_gen_from_seq(seq);
5244 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5245 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5250 else if (seq + MIN_NR_GENS == max_seq)
5255 /* try to scrape all its memory if this memcg was deleted */
5256 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5259 * The aging tries to be lazy to reduce the overhead, while the eviction
5260 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5261 * ideal number of generations is MIN_NR_GENS+1.
5263 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5267 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5268 * of the total number of pages for each generation. A reasonable range
5269 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5270 * aging cares about the upper bound of hot pages, while the eviction
5271 * cares about the lower bound of cold pages.
5273 if (young * MIN_NR_GENS > total)
5275 if (old * (MIN_NR_GENS + 2) < total)
5282 * For future optimizations:
5283 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5286 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5288 unsigned long nr_to_scan;
5289 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5290 DEFINE_MAX_SEQ(lruvec);
5292 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5295 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5298 /* skip the aging path at the default priority */
5299 if (sc->priority == DEF_PRIORITY)
5302 /* skip this lruvec as it's low on cold folios */
5303 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5306 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5308 /* don't abort memcg reclaim to ensure fairness */
5309 if (!global_reclaim(sc))
5312 return max(sc->nr_to_reclaim, compact_gap(sc->order));
5315 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5318 unsigned long scanned = 0;
5319 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5320 int swappiness = get_swappiness(lruvec, sc);
5322 /* clean file folios are more likely to exist */
5323 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5329 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5330 if (nr_to_scan <= 0)
5333 delta = evict_folios(lruvec, sc, swappiness);
5338 if (scanned >= nr_to_scan)
5341 if (sc->nr_reclaimed >= nr_to_reclaim)
5347 /* whether try_to_inc_max_seq() was successful */
5348 return nr_to_scan < 0;
5351 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5354 unsigned long scanned = sc->nr_scanned;
5355 unsigned long reclaimed = sc->nr_reclaimed;
5356 int seg = lru_gen_memcg_seg(lruvec);
5357 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5358 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5360 /* see the comment on MEMCG_NR_GENS */
5361 if (!lruvec_is_sizable(lruvec, sc))
5362 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5364 mem_cgroup_calculate_protection(NULL, memcg);
5366 if (mem_cgroup_below_min(NULL, memcg))
5367 return MEMCG_LRU_YOUNG;
5369 if (mem_cgroup_below_low(NULL, memcg)) {
5370 /* see the comment on MEMCG_NR_GENS */
5371 if (seg != MEMCG_LRU_TAIL)
5372 return MEMCG_LRU_TAIL;
5374 memcg_memory_event(memcg, MEMCG_LOW);
5377 success = try_to_shrink_lruvec(lruvec, sc);
5379 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5382 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5383 sc->nr_reclaimed - reclaimed);
5385 flush_reclaim_state(sc);
5387 return success ? MEMCG_LRU_YOUNG : 0;
5392 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5398 struct lruvec *lruvec;
5399 struct lru_gen_folio *lrugen;
5400 struct mem_cgroup *memcg;
5401 const struct hlist_nulls_node *pos;
5402 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5404 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5408 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5412 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5414 lru_gen_rotate_memcg(lruvec, op);
5416 mem_cgroup_put(memcg);
5418 lruvec = container_of(lrugen, struct lruvec, lrugen);
5419 memcg = lruvec_memcg(lruvec);
5421 if (!mem_cgroup_tryget(memcg)) {
5429 op = shrink_one(lruvec, sc);
5433 if (sc->nr_reclaimed >= nr_to_reclaim)
5440 lru_gen_rotate_memcg(lruvec, op);
5442 mem_cgroup_put(memcg);
5444 if (sc->nr_reclaimed >= nr_to_reclaim)
5447 /* restart if raced with lru_gen_rotate_memcg() */
5448 if (gen != get_nulls_value(pos))
5451 /* try the rest of the bins of the current generation */
5452 bin = get_memcg_bin(bin + 1);
5453 if (bin != first_bin)
5457 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5459 struct blk_plug plug;
5461 VM_WARN_ON_ONCE(global_reclaim(sc));
5462 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5466 blk_start_plug(&plug);
5468 set_mm_walk(NULL, sc->proactive);
5470 if (try_to_shrink_lruvec(lruvec, sc))
5471 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5475 blk_finish_plug(&plug);
5478 #else /* !CONFIG_MEMCG */
5480 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5485 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5492 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5495 unsigned long reclaimable;
5496 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5498 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5501 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5502 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5503 * estimated reclaimed_to_scanned_ratio = inactive / total.
5505 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5506 if (get_swappiness(lruvec, sc))
5507 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5509 reclaimable /= MEMCG_NR_GENS;
5511 /* round down reclaimable and round up sc->nr_to_reclaim */
5512 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5514 sc->priority = clamp(priority, 0, DEF_PRIORITY);
5517 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5519 struct blk_plug plug;
5520 unsigned long reclaimed = sc->nr_reclaimed;
5522 VM_WARN_ON_ONCE(!global_reclaim(sc));
5525 * Unmapped clean folios are already prioritized. Scanning for more of
5526 * them is likely futile and can cause high reclaim latency when there
5527 * is a large number of memcgs.
5529 if (!sc->may_writepage || !sc->may_unmap)
5534 blk_start_plug(&plug);
5536 set_mm_walk(pgdat, sc->proactive);
5538 set_initial_priority(pgdat, sc);
5540 if (current_is_kswapd())
5541 sc->nr_reclaimed = 0;
5543 if (mem_cgroup_disabled())
5544 shrink_one(&pgdat->__lruvec, sc);
5546 shrink_many(pgdat, sc);
5548 if (current_is_kswapd())
5549 sc->nr_reclaimed += reclaimed;
5553 blk_finish_plug(&plug);
5555 /* kswapd should never fail */
5556 pgdat->kswapd_failures = 0;
5559 /******************************************************************************
5561 ******************************************************************************/
5563 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5565 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5567 if (lrugen->enabled) {
5570 for_each_evictable_lru(lru) {
5571 if (!list_empty(&lruvec->lists[lru]))
5575 int gen, type, zone;
5577 for_each_gen_type_zone(gen, type, zone) {
5578 if (!list_empty(&lrugen->folios[gen][type][zone]))
5586 static bool fill_evictable(struct lruvec *lruvec)
5589 int remaining = MAX_LRU_BATCH;
5591 for_each_evictable_lru(lru) {
5592 int type = is_file_lru(lru);
5593 bool active = is_active_lru(lru);
5594 struct list_head *head = &lruvec->lists[lru];
5596 while (!list_empty(head)) {
5598 struct folio *folio = lru_to_folio(head);
5600 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5601 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5602 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5603 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5605 lruvec_del_folio(lruvec, folio);
5606 success = lru_gen_add_folio(lruvec, folio, false);
5607 VM_WARN_ON_ONCE(!success);
5617 static bool drain_evictable(struct lruvec *lruvec)
5619 int gen, type, zone;
5620 int remaining = MAX_LRU_BATCH;
5622 for_each_gen_type_zone(gen, type, zone) {
5623 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5625 while (!list_empty(head)) {
5627 struct folio *folio = lru_to_folio(head);
5629 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5630 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5631 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5632 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5634 success = lru_gen_del_folio(lruvec, folio, false);
5635 VM_WARN_ON_ONCE(!success);
5636 lruvec_add_folio(lruvec, folio);
5646 static void lru_gen_change_state(bool enabled)
5648 static DEFINE_MUTEX(state_mutex);
5650 struct mem_cgroup *memcg;
5655 mutex_lock(&state_mutex);
5657 if (enabled == lru_gen_enabled())
5661 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5663 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5665 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5669 for_each_node(nid) {
5670 struct lruvec *lruvec = get_lruvec(memcg, nid);
5672 spin_lock_irq(&lruvec->lru_lock);
5674 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5675 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5677 lruvec->lrugen.enabled = enabled;
5679 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5680 spin_unlock_irq(&lruvec->lru_lock);
5682 spin_lock_irq(&lruvec->lru_lock);
5685 spin_unlock_irq(&lruvec->lru_lock);
5689 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5691 mutex_unlock(&state_mutex);
5697 /******************************************************************************
5699 ******************************************************************************/
5701 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5703 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5706 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5707 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5708 const char *buf, size_t len)
5712 if (kstrtouint(buf, 0, &msecs))
5715 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5720 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5722 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5724 unsigned int caps = 0;
5726 if (get_cap(LRU_GEN_CORE))
5727 caps |= BIT(LRU_GEN_CORE);
5729 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5730 caps |= BIT(LRU_GEN_MM_WALK);
5732 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5733 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5735 return sysfs_emit(buf, "0x%04x\n", caps);
5738 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5739 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5740 const char *buf, size_t len)
5745 if (tolower(*buf) == 'n')
5747 else if (tolower(*buf) == 'y')
5749 else if (kstrtouint(buf, 0, &caps))
5752 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5753 bool enabled = caps & BIT(i);
5755 if (i == LRU_GEN_CORE)
5756 lru_gen_change_state(enabled);
5758 static_branch_enable(&lru_gen_caps[i]);
5760 static_branch_disable(&lru_gen_caps[i]);
5766 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5768 static struct attribute *lru_gen_attrs[] = {
5769 &lru_gen_min_ttl_attr.attr,
5770 &lru_gen_enabled_attr.attr,
5774 static const struct attribute_group lru_gen_attr_group = {
5776 .attrs = lru_gen_attrs,
5779 /******************************************************************************
5781 ******************************************************************************/
5783 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5785 struct mem_cgroup *memcg;
5786 loff_t nr_to_skip = *pos;
5788 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5790 return ERR_PTR(-ENOMEM);
5792 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5796 for_each_node_state(nid, N_MEMORY) {
5798 return get_lruvec(memcg, nid);
5800 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5805 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5807 if (!IS_ERR_OR_NULL(v))
5808 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5814 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5816 int nid = lruvec_pgdat(v)->node_id;
5817 struct mem_cgroup *memcg = lruvec_memcg(v);
5821 nid = next_memory_node(nid);
5822 if (nid == MAX_NUMNODES) {
5823 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5827 nid = first_memory_node;
5830 return get_lruvec(memcg, nid);
5833 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5834 unsigned long max_seq, unsigned long *min_seq,
5839 int hist = lru_hist_from_seq(seq);
5840 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5842 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5843 seq_printf(m, " %10d", tier);
5844 for (type = 0; type < ANON_AND_FILE; type++) {
5845 const char *s = " ";
5846 unsigned long n[3] = {};
5848 if (seq == max_seq) {
5850 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5851 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5852 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5854 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5855 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5857 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5860 for (i = 0; i < 3; i++)
5861 seq_printf(m, " %10lu%c", n[i], s[i]);
5867 for (i = 0; i < NR_MM_STATS; i++) {
5868 const char *s = " ";
5869 unsigned long n = 0;
5871 if (seq == max_seq && NR_HIST_GENS == 1) {
5873 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5874 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5876 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5879 seq_printf(m, " %10lu%c", n, s[i]);
5884 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5885 static int lru_gen_seq_show(struct seq_file *m, void *v)
5888 bool full = !debugfs_real_fops(m->file)->write;
5889 struct lruvec *lruvec = v;
5890 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5891 int nid = lruvec_pgdat(lruvec)->node_id;
5892 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5893 DEFINE_MAX_SEQ(lruvec);
5894 DEFINE_MIN_SEQ(lruvec);
5896 if (nid == first_memory_node) {
5897 const char *path = memcg ? m->private : "";
5901 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5903 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5906 seq_printf(m, " node %5d\n", nid);
5909 seq = min_seq[LRU_GEN_ANON];
5910 else if (max_seq >= MAX_NR_GENS)
5911 seq = max_seq - MAX_NR_GENS + 1;
5915 for (; seq <= max_seq; seq++) {
5917 int gen = lru_gen_from_seq(seq);
5918 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5920 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5922 for (type = 0; type < ANON_AND_FILE; type++) {
5923 unsigned long size = 0;
5924 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5926 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5927 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5929 seq_printf(m, " %10lu%c", size, mark);
5935 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5941 static const struct seq_operations lru_gen_seq_ops = {
5942 .start = lru_gen_seq_start,
5943 .stop = lru_gen_seq_stop,
5944 .next = lru_gen_seq_next,
5945 .show = lru_gen_seq_show,
5948 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5949 bool can_swap, bool force_scan)
5951 DEFINE_MAX_SEQ(lruvec);
5952 DEFINE_MIN_SEQ(lruvec);
5960 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5963 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5968 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5969 int swappiness, unsigned long nr_to_reclaim)
5971 DEFINE_MAX_SEQ(lruvec);
5973 if (seq + MIN_NR_GENS > max_seq)
5976 sc->nr_reclaimed = 0;
5978 while (!signal_pending(current)) {
5979 DEFINE_MIN_SEQ(lruvec);
5981 if (seq < min_seq[!swappiness])
5984 if (sc->nr_reclaimed >= nr_to_reclaim)
5987 if (!evict_folios(lruvec, sc, swappiness))
5996 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5997 struct scan_control *sc, int swappiness, unsigned long opt)
5999 struct lruvec *lruvec;
6001 struct mem_cgroup *memcg = NULL;
6003 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6006 if (!mem_cgroup_disabled()) {
6009 memcg = mem_cgroup_from_id(memcg_id);
6010 if (!mem_cgroup_tryget(memcg))
6019 if (memcg_id != mem_cgroup_id(memcg))
6022 lruvec = get_lruvec(memcg, nid);
6025 swappiness = get_swappiness(lruvec, sc);
6026 else if (swappiness > 200)
6031 err = run_aging(lruvec, seq, sc, swappiness, opt);
6034 err = run_eviction(lruvec, seq, sc, swappiness, opt);
6038 mem_cgroup_put(memcg);
6043 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6044 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6045 size_t len, loff_t *pos)
6050 struct blk_plug plug;
6052 struct scan_control sc = {
6053 .may_writepage = true,
6056 .reclaim_idx = MAX_NR_ZONES - 1,
6057 .gfp_mask = GFP_KERNEL,
6060 buf = kvmalloc(len + 1, GFP_KERNEL);
6064 if (copy_from_user(buf, src, len)) {
6069 set_task_reclaim_state(current, &sc.reclaim_state);
6070 flags = memalloc_noreclaim_save();
6071 blk_start_plug(&plug);
6072 if (!set_mm_walk(NULL, true)) {
6080 while ((cur = strsep(&next, ",;\n"))) {
6084 unsigned int memcg_id;
6087 unsigned int swappiness = -1;
6088 unsigned long opt = -1;
6090 cur = skip_spaces(cur);
6094 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6095 &seq, &end, &swappiness, &end, &opt, &end);
6096 if (n < 4 || cur[end]) {
6101 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6107 blk_finish_plug(&plug);
6108 memalloc_noreclaim_restore(flags);
6109 set_task_reclaim_state(current, NULL);
6116 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6118 return seq_open(file, &lru_gen_seq_ops);
6121 static const struct file_operations lru_gen_rw_fops = {
6122 .open = lru_gen_seq_open,
6124 .write = lru_gen_seq_write,
6125 .llseek = seq_lseek,
6126 .release = seq_release,
6129 static const struct file_operations lru_gen_ro_fops = {
6130 .open = lru_gen_seq_open,
6132 .llseek = seq_lseek,
6133 .release = seq_release,
6136 /******************************************************************************
6138 ******************************************************************************/
6140 void lru_gen_init_lruvec(struct lruvec *lruvec)
6143 int gen, type, zone;
6144 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6146 lrugen->max_seq = MIN_NR_GENS + 1;
6147 lrugen->enabled = lru_gen_enabled();
6149 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6150 lrugen->timestamps[i] = jiffies;
6152 for_each_gen_type_zone(gen, type, zone)
6153 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6155 lruvec->mm_state.seq = MIN_NR_GENS;
6160 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6164 spin_lock_init(&pgdat->memcg_lru.lock);
6166 for (i = 0; i < MEMCG_NR_GENS; i++) {
6167 for (j = 0; j < MEMCG_NR_BINS; j++)
6168 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6172 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6174 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6175 spin_lock_init(&memcg->mm_list.lock);
6178 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6183 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6185 for_each_node(nid) {
6186 struct lruvec *lruvec = get_lruvec(memcg, nid);
6188 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6189 sizeof(lruvec->lrugen.nr_pages)));
6191 lruvec->lrugen.list.next = LIST_POISON1;
6193 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6194 bitmap_free(lruvec->mm_state.filters[i]);
6195 lruvec->mm_state.filters[i] = NULL;
6200 #endif /* CONFIG_MEMCG */
6202 static int __init init_lru_gen(void)
6204 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6205 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6207 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6208 pr_err("lru_gen: failed to create sysfs group\n");
6210 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6211 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6215 late_initcall(init_lru_gen);
6217 #else /* !CONFIG_LRU_GEN */
6219 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6223 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6227 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6231 #endif /* CONFIG_LRU_GEN */
6233 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6235 unsigned long nr[NR_LRU_LISTS];
6236 unsigned long targets[NR_LRU_LISTS];
6237 unsigned long nr_to_scan;
6239 unsigned long nr_reclaimed = 0;
6240 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6241 bool proportional_reclaim;
6242 struct blk_plug plug;
6244 if (lru_gen_enabled() && !global_reclaim(sc)) {
6245 lru_gen_shrink_lruvec(lruvec, sc);
6249 get_scan_count(lruvec, sc, nr);
6251 /* Record the original scan target for proportional adjustments later */
6252 memcpy(targets, nr, sizeof(nr));
6255 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6256 * event that can occur when there is little memory pressure e.g.
6257 * multiple streaming readers/writers. Hence, we do not abort scanning
6258 * when the requested number of pages are reclaimed when scanning at
6259 * DEF_PRIORITY on the assumption that the fact we are direct
6260 * reclaiming implies that kswapd is not keeping up and it is best to
6261 * do a batch of work at once. For memcg reclaim one check is made to
6262 * abort proportional reclaim if either the file or anon lru has already
6263 * dropped to zero at the first pass.
6265 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6266 sc->priority == DEF_PRIORITY);
6268 blk_start_plug(&plug);
6269 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6270 nr[LRU_INACTIVE_FILE]) {
6271 unsigned long nr_anon, nr_file, percentage;
6272 unsigned long nr_scanned;
6274 for_each_evictable_lru(lru) {
6276 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6277 nr[lru] -= nr_to_scan;
6279 nr_reclaimed += shrink_list(lru, nr_to_scan,
6286 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6290 * For kswapd and memcg, reclaim at least the number of pages
6291 * requested. Ensure that the anon and file LRUs are scanned
6292 * proportionally what was requested by get_scan_count(). We
6293 * stop reclaiming one LRU and reduce the amount scanning
6294 * proportional to the original scan target.
6296 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6297 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6300 * It's just vindictive to attack the larger once the smaller
6301 * has gone to zero. And given the way we stop scanning the
6302 * smaller below, this makes sure that we only make one nudge
6303 * towards proportionality once we've got nr_to_reclaim.
6305 if (!nr_file || !nr_anon)
6308 if (nr_file > nr_anon) {
6309 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6310 targets[LRU_ACTIVE_ANON] + 1;
6312 percentage = nr_anon * 100 / scan_target;
6314 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6315 targets[LRU_ACTIVE_FILE] + 1;
6317 percentage = nr_file * 100 / scan_target;
6320 /* Stop scanning the smaller of the LRU */
6322 nr[lru + LRU_ACTIVE] = 0;
6325 * Recalculate the other LRU scan count based on its original
6326 * scan target and the percentage scanning already complete
6328 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6329 nr_scanned = targets[lru] - nr[lru];
6330 nr[lru] = targets[lru] * (100 - percentage) / 100;
6331 nr[lru] -= min(nr[lru], nr_scanned);
6334 nr_scanned = targets[lru] - nr[lru];
6335 nr[lru] = targets[lru] * (100 - percentage) / 100;
6336 nr[lru] -= min(nr[lru], nr_scanned);
6338 blk_finish_plug(&plug);
6339 sc->nr_reclaimed += nr_reclaimed;
6342 * Even if we did not try to evict anon pages at all, we want to
6343 * rebalance the anon lru active/inactive ratio.
6345 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6346 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6347 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6348 sc, LRU_ACTIVE_ANON);
6351 /* Use reclaim/compaction for costly allocs or under memory pressure */
6352 static bool in_reclaim_compaction(struct scan_control *sc)
6354 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6355 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6356 sc->priority < DEF_PRIORITY - 2))
6363 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6364 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6365 * true if more pages should be reclaimed such that when the page allocator
6366 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6367 * It will give up earlier than that if there is difficulty reclaiming pages.
6369 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6370 unsigned long nr_reclaimed,
6371 struct scan_control *sc)
6373 unsigned long pages_for_compaction;
6374 unsigned long inactive_lru_pages;
6377 /* If not in reclaim/compaction mode, stop */
6378 if (!in_reclaim_compaction(sc))
6382 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6383 * number of pages that were scanned. This will return to the caller
6384 * with the risk reclaim/compaction and the resulting allocation attempt
6385 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6386 * allocations through requiring that the full LRU list has been scanned
6387 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6388 * scan, but that approximation was wrong, and there were corner cases
6389 * where always a non-zero amount of pages were scanned.
6394 /* If compaction would go ahead or the allocation would succeed, stop */
6395 for (z = 0; z <= sc->reclaim_idx; z++) {
6396 struct zone *zone = &pgdat->node_zones[z];
6397 if (!managed_zone(zone))
6400 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6401 case COMPACT_SUCCESS:
6402 case COMPACT_CONTINUE:
6405 /* check next zone */
6411 * If we have not reclaimed enough pages for compaction and the
6412 * inactive lists are large enough, continue reclaiming
6414 pages_for_compaction = compact_gap(sc->order);
6415 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6416 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6417 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6419 return inactive_lru_pages > pages_for_compaction;
6422 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6424 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6425 struct mem_cgroup *memcg;
6427 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6429 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6430 unsigned long reclaimed;
6431 unsigned long scanned;
6434 * This loop can become CPU-bound when target memcgs
6435 * aren't eligible for reclaim - either because they
6436 * don't have any reclaimable pages, or because their
6437 * memory is explicitly protected. Avoid soft lockups.
6441 mem_cgroup_calculate_protection(target_memcg, memcg);
6443 if (mem_cgroup_below_min(target_memcg, memcg)) {
6446 * If there is no reclaimable memory, OOM.
6449 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6452 * Respect the protection only as long as
6453 * there is an unprotected supply
6454 * of reclaimable memory from other cgroups.
6456 if (!sc->memcg_low_reclaim) {
6457 sc->memcg_low_skipped = 1;
6460 memcg_memory_event(memcg, MEMCG_LOW);
6463 reclaimed = sc->nr_reclaimed;
6464 scanned = sc->nr_scanned;
6466 shrink_lruvec(lruvec, sc);
6468 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6471 /* Record the group's reclaim efficiency */
6473 vmpressure(sc->gfp_mask, memcg, false,
6474 sc->nr_scanned - scanned,
6475 sc->nr_reclaimed - reclaimed);
6477 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6480 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6482 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6483 struct lruvec *target_lruvec;
6484 bool reclaimable = false;
6486 if (lru_gen_enabled() && global_reclaim(sc)) {
6487 lru_gen_shrink_node(pgdat, sc);
6491 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6494 memset(&sc->nr, 0, sizeof(sc->nr));
6496 nr_reclaimed = sc->nr_reclaimed;
6497 nr_scanned = sc->nr_scanned;
6499 prepare_scan_count(pgdat, sc);
6501 shrink_node_memcgs(pgdat, sc);
6503 flush_reclaim_state(sc);
6505 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6507 /* Record the subtree's reclaim efficiency */
6509 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6510 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6512 if (nr_node_reclaimed)
6515 if (current_is_kswapd()) {
6517 * If reclaim is isolating dirty pages under writeback,
6518 * it implies that the long-lived page allocation rate
6519 * is exceeding the page laundering rate. Either the
6520 * global limits are not being effective at throttling
6521 * processes due to the page distribution throughout
6522 * zones or there is heavy usage of a slow backing
6523 * device. The only option is to throttle from reclaim
6524 * context which is not ideal as there is no guarantee
6525 * the dirtying process is throttled in the same way
6526 * balance_dirty_pages() manages.
6528 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6529 * count the number of pages under pages flagged for
6530 * immediate reclaim and stall if any are encountered
6531 * in the nr_immediate check below.
6533 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6534 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6536 /* Allow kswapd to start writing pages during reclaim.*/
6537 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6538 set_bit(PGDAT_DIRTY, &pgdat->flags);
6541 * If kswapd scans pages marked for immediate
6542 * reclaim and under writeback (nr_immediate), it
6543 * implies that pages are cycling through the LRU
6544 * faster than they are written so forcibly stall
6545 * until some pages complete writeback.
6547 if (sc->nr.immediate)
6548 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6552 * Tag a node/memcg as congested if all the dirty pages were marked
6553 * for writeback and immediate reclaim (counted in nr.congested).
6555 * Legacy memcg will stall in page writeback so avoid forcibly
6556 * stalling in reclaim_throttle().
6558 if ((current_is_kswapd() ||
6559 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6560 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6561 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6564 * Stall direct reclaim for IO completions if the lruvec is
6565 * node is congested. Allow kswapd to continue until it
6566 * starts encountering unqueued dirty pages or cycling through
6567 * the LRU too quickly.
6569 if (!current_is_kswapd() && current_may_throttle() &&
6570 !sc->hibernation_mode &&
6571 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6572 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6574 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6578 * Kswapd gives up on balancing particular nodes after too
6579 * many failures to reclaim anything from them and goes to
6580 * sleep. On reclaim progress, reset the failure counter. A
6581 * successful direct reclaim run will revive a dormant kswapd.
6584 pgdat->kswapd_failures = 0;
6588 * Returns true if compaction should go ahead for a costly-order request, or
6589 * the allocation would already succeed without compaction. Return false if we
6590 * should reclaim first.
6592 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6594 unsigned long watermark;
6595 enum compact_result suitable;
6597 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6598 if (suitable == COMPACT_SUCCESS)
6599 /* Allocation should succeed already. Don't reclaim. */
6601 if (suitable == COMPACT_SKIPPED)
6602 /* Compaction cannot yet proceed. Do reclaim. */
6606 * Compaction is already possible, but it takes time to run and there
6607 * are potentially other callers using the pages just freed. So proceed
6608 * with reclaim to make a buffer of free pages available to give
6609 * compaction a reasonable chance of completing and allocating the page.
6610 * Note that we won't actually reclaim the whole buffer in one attempt
6611 * as the target watermark in should_continue_reclaim() is lower. But if
6612 * we are already above the high+gap watermark, don't reclaim at all.
6614 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6616 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6619 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6622 * If reclaim is making progress greater than 12% efficiency then
6623 * wake all the NOPROGRESS throttled tasks.
6625 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6626 wait_queue_head_t *wqh;
6628 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6629 if (waitqueue_active(wqh))
6636 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6637 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6638 * under writeback and marked for immediate reclaim at the tail of the
6641 if (current_is_kswapd() || cgroup_reclaim(sc))
6644 /* Throttle if making no progress at high prioities. */
6645 if (sc->priority == 1 && !sc->nr_reclaimed)
6646 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6650 * This is the direct reclaim path, for page-allocating processes. We only
6651 * try to reclaim pages from zones which will satisfy the caller's allocation
6654 * If a zone is deemed to be full of pinned pages then just give it a light
6655 * scan then give up on it.
6657 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6661 unsigned long nr_soft_reclaimed;
6662 unsigned long nr_soft_scanned;
6664 pg_data_t *last_pgdat = NULL;
6665 pg_data_t *first_pgdat = NULL;
6668 * If the number of buffer_heads in the machine exceeds the maximum
6669 * allowed level, force direct reclaim to scan the highmem zone as
6670 * highmem pages could be pinning lowmem pages storing buffer_heads
6672 orig_mask = sc->gfp_mask;
6673 if (buffer_heads_over_limit) {
6674 sc->gfp_mask |= __GFP_HIGHMEM;
6675 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6678 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6679 sc->reclaim_idx, sc->nodemask) {
6681 * Take care memory controller reclaiming has small influence
6684 if (!cgroup_reclaim(sc)) {
6685 if (!cpuset_zone_allowed(zone,
6686 GFP_KERNEL | __GFP_HARDWALL))
6690 * If we already have plenty of memory free for
6691 * compaction in this zone, don't free any more.
6692 * Even though compaction is invoked for any
6693 * non-zero order, only frequent costly order
6694 * reclamation is disruptive enough to become a
6695 * noticeable problem, like transparent huge
6698 if (IS_ENABLED(CONFIG_COMPACTION) &&
6699 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6700 compaction_ready(zone, sc)) {
6701 sc->compaction_ready = true;
6706 * Shrink each node in the zonelist once. If the
6707 * zonelist is ordered by zone (not the default) then a
6708 * node may be shrunk multiple times but in that case
6709 * the user prefers lower zones being preserved.
6711 if (zone->zone_pgdat == last_pgdat)
6715 * This steals pages from memory cgroups over softlimit
6716 * and returns the number of reclaimed pages and
6717 * scanned pages. This works for global memory pressure
6718 * and balancing, not for a memcg's limit.
6720 nr_soft_scanned = 0;
6721 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6722 sc->order, sc->gfp_mask,
6724 sc->nr_reclaimed += nr_soft_reclaimed;
6725 sc->nr_scanned += nr_soft_scanned;
6726 /* need some check for avoid more shrink_zone() */
6730 first_pgdat = zone->zone_pgdat;
6732 /* See comment about same check for global reclaim above */
6733 if (zone->zone_pgdat == last_pgdat)
6735 last_pgdat = zone->zone_pgdat;
6736 shrink_node(zone->zone_pgdat, sc);
6740 consider_reclaim_throttle(first_pgdat, sc);
6743 * Restore to original mask to avoid the impact on the caller if we
6744 * promoted it to __GFP_HIGHMEM.
6746 sc->gfp_mask = orig_mask;
6749 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6751 struct lruvec *target_lruvec;
6752 unsigned long refaults;
6754 if (lru_gen_enabled())
6757 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6758 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6759 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6760 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6761 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6765 * This is the main entry point to direct page reclaim.
6767 * If a full scan of the inactive list fails to free enough memory then we
6768 * are "out of memory" and something needs to be killed.
6770 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6771 * high - the zone may be full of dirty or under-writeback pages, which this
6772 * caller can't do much about. We kick the writeback threads and take explicit
6773 * naps in the hope that some of these pages can be written. But if the
6774 * allocating task holds filesystem locks which prevent writeout this might not
6775 * work, and the allocation attempt will fail.
6777 * returns: 0, if no pages reclaimed
6778 * else, the number of pages reclaimed
6780 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6781 struct scan_control *sc)
6783 int initial_priority = sc->priority;
6784 pg_data_t *last_pgdat;
6788 delayacct_freepages_start();
6790 if (!cgroup_reclaim(sc))
6791 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6795 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6798 shrink_zones(zonelist, sc);
6800 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6803 if (sc->compaction_ready)
6807 * If we're getting trouble reclaiming, start doing
6808 * writepage even in laptop mode.
6810 if (sc->priority < DEF_PRIORITY - 2)
6811 sc->may_writepage = 1;
6812 } while (--sc->priority >= 0);
6815 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6817 if (zone->zone_pgdat == last_pgdat)
6819 last_pgdat = zone->zone_pgdat;
6821 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6823 if (cgroup_reclaim(sc)) {
6824 struct lruvec *lruvec;
6826 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6828 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6832 delayacct_freepages_end();
6834 if (sc->nr_reclaimed)
6835 return sc->nr_reclaimed;
6837 /* Aborted reclaim to try compaction? don't OOM, then */
6838 if (sc->compaction_ready)
6842 * We make inactive:active ratio decisions based on the node's
6843 * composition of memory, but a restrictive reclaim_idx or a
6844 * memory.low cgroup setting can exempt large amounts of
6845 * memory from reclaim. Neither of which are very common, so
6846 * instead of doing costly eligibility calculations of the
6847 * entire cgroup subtree up front, we assume the estimates are
6848 * good, and retry with forcible deactivation if that fails.
6850 if (sc->skipped_deactivate) {
6851 sc->priority = initial_priority;
6852 sc->force_deactivate = 1;
6853 sc->skipped_deactivate = 0;
6857 /* Untapped cgroup reserves? Don't OOM, retry. */
6858 if (sc->memcg_low_skipped) {
6859 sc->priority = initial_priority;
6860 sc->force_deactivate = 0;
6861 sc->memcg_low_reclaim = 1;
6862 sc->memcg_low_skipped = 0;
6869 static bool allow_direct_reclaim(pg_data_t *pgdat)
6872 unsigned long pfmemalloc_reserve = 0;
6873 unsigned long free_pages = 0;
6877 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6880 for (i = 0; i <= ZONE_NORMAL; i++) {
6881 zone = &pgdat->node_zones[i];
6882 if (!managed_zone(zone))
6885 if (!zone_reclaimable_pages(zone))
6888 pfmemalloc_reserve += min_wmark_pages(zone);
6889 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6892 /* If there are no reserves (unexpected config) then do not throttle */
6893 if (!pfmemalloc_reserve)
6896 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6898 /* kswapd must be awake if processes are being throttled */
6899 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6900 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6901 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6903 wake_up_interruptible(&pgdat->kswapd_wait);
6910 * Throttle direct reclaimers if backing storage is backed by the network
6911 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6912 * depleted. kswapd will continue to make progress and wake the processes
6913 * when the low watermark is reached.
6915 * Returns true if a fatal signal was delivered during throttling. If this
6916 * happens, the page allocator should not consider triggering the OOM killer.
6918 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6919 nodemask_t *nodemask)
6923 pg_data_t *pgdat = NULL;
6926 * Kernel threads should not be throttled as they may be indirectly
6927 * responsible for cleaning pages necessary for reclaim to make forward
6928 * progress. kjournald for example may enter direct reclaim while
6929 * committing a transaction where throttling it could forcing other
6930 * processes to block on log_wait_commit().
6932 if (current->flags & PF_KTHREAD)
6936 * If a fatal signal is pending, this process should not throttle.
6937 * It should return quickly so it can exit and free its memory
6939 if (fatal_signal_pending(current))
6943 * Check if the pfmemalloc reserves are ok by finding the first node
6944 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6945 * GFP_KERNEL will be required for allocating network buffers when
6946 * swapping over the network so ZONE_HIGHMEM is unusable.
6948 * Throttling is based on the first usable node and throttled processes
6949 * wait on a queue until kswapd makes progress and wakes them. There
6950 * is an affinity then between processes waking up and where reclaim
6951 * progress has been made assuming the process wakes on the same node.
6952 * More importantly, processes running on remote nodes will not compete
6953 * for remote pfmemalloc reserves and processes on different nodes
6954 * should make reasonable progress.
6956 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6957 gfp_zone(gfp_mask), nodemask) {
6958 if (zone_idx(zone) > ZONE_NORMAL)
6961 /* Throttle based on the first usable node */
6962 pgdat = zone->zone_pgdat;
6963 if (allow_direct_reclaim(pgdat))
6968 /* If no zone was usable by the allocation flags then do not throttle */
6972 /* Account for the throttling */
6973 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6976 * If the caller cannot enter the filesystem, it's possible that it
6977 * is due to the caller holding an FS lock or performing a journal
6978 * transaction in the case of a filesystem like ext[3|4]. In this case,
6979 * it is not safe to block on pfmemalloc_wait as kswapd could be
6980 * blocked waiting on the same lock. Instead, throttle for up to a
6981 * second before continuing.
6983 if (!(gfp_mask & __GFP_FS))
6984 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6985 allow_direct_reclaim(pgdat), HZ);
6987 /* Throttle until kswapd wakes the process */
6988 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6989 allow_direct_reclaim(pgdat));
6991 if (fatal_signal_pending(current))
6998 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6999 gfp_t gfp_mask, nodemask_t *nodemask)
7001 unsigned long nr_reclaimed;
7002 struct scan_control sc = {
7003 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7004 .gfp_mask = current_gfp_context(gfp_mask),
7005 .reclaim_idx = gfp_zone(gfp_mask),
7007 .nodemask = nodemask,
7008 .priority = DEF_PRIORITY,
7009 .may_writepage = !laptop_mode,
7015 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7016 * Confirm they are large enough for max values.
7018 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7019 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7020 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7023 * Do not enter reclaim if fatal signal was delivered while throttled.
7024 * 1 is returned so that the page allocator does not OOM kill at this
7027 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7030 set_task_reclaim_state(current, &sc.reclaim_state);
7031 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7033 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7035 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7036 set_task_reclaim_state(current, NULL);
7038 return nr_reclaimed;
7043 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7044 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7045 gfp_t gfp_mask, bool noswap,
7047 unsigned long *nr_scanned)
7049 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7050 struct scan_control sc = {
7051 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7052 .target_mem_cgroup = memcg,
7053 .may_writepage = !laptop_mode,
7055 .reclaim_idx = MAX_NR_ZONES - 1,
7056 .may_swap = !noswap,
7059 WARN_ON_ONCE(!current->reclaim_state);
7061 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7062 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7064 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7068 * NOTE: Although we can get the priority field, using it
7069 * here is not a good idea, since it limits the pages we can scan.
7070 * if we don't reclaim here, the shrink_node from balance_pgdat
7071 * will pick up pages from other mem cgroup's as well. We hack
7072 * the priority and make it zero.
7074 shrink_lruvec(lruvec, &sc);
7076 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7078 *nr_scanned = sc.nr_scanned;
7080 return sc.nr_reclaimed;
7083 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7084 unsigned long nr_pages,
7086 unsigned int reclaim_options)
7088 unsigned long nr_reclaimed;
7089 unsigned int noreclaim_flag;
7090 struct scan_control sc = {
7091 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7092 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7093 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7094 .reclaim_idx = MAX_NR_ZONES - 1,
7095 .target_mem_cgroup = memcg,
7096 .priority = DEF_PRIORITY,
7097 .may_writepage = !laptop_mode,
7099 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7100 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7103 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7104 * equal pressure on all the nodes. This is based on the assumption that
7105 * the reclaim does not bail out early.
7107 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7109 set_task_reclaim_state(current, &sc.reclaim_state);
7110 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7111 noreclaim_flag = memalloc_noreclaim_save();
7113 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7115 memalloc_noreclaim_restore(noreclaim_flag);
7116 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7117 set_task_reclaim_state(current, NULL);
7119 return nr_reclaimed;
7123 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7125 struct mem_cgroup *memcg;
7126 struct lruvec *lruvec;
7128 if (lru_gen_enabled()) {
7129 lru_gen_age_node(pgdat, sc);
7133 if (!can_age_anon_pages(pgdat, sc))
7136 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7137 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7140 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7142 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7143 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7144 sc, LRU_ACTIVE_ANON);
7145 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7149 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7155 * Check for watermark boosts top-down as the higher zones
7156 * are more likely to be boosted. Both watermarks and boosts
7157 * should not be checked at the same time as reclaim would
7158 * start prematurely when there is no boosting and a lower
7161 for (i = highest_zoneidx; i >= 0; i--) {
7162 zone = pgdat->node_zones + i;
7163 if (!managed_zone(zone))
7166 if (zone->watermark_boost)
7174 * Returns true if there is an eligible zone balanced for the request order
7175 * and highest_zoneidx
7177 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7180 unsigned long mark = -1;
7184 * Check watermarks bottom-up as lower zones are more likely to
7187 for (i = 0; i <= highest_zoneidx; i++) {
7188 zone = pgdat->node_zones + i;
7190 if (!managed_zone(zone))
7193 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7194 mark = wmark_pages(zone, WMARK_PROMO);
7196 mark = high_wmark_pages(zone);
7197 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7202 * If a node has no managed zone within highest_zoneidx, it does not
7203 * need balancing by definition. This can happen if a zone-restricted
7204 * allocation tries to wake a remote kswapd.
7212 /* Clear pgdat state for congested, dirty or under writeback. */
7213 static void clear_pgdat_congested(pg_data_t *pgdat)
7215 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7217 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7218 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7219 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7223 * Prepare kswapd for sleeping. This verifies that there are no processes
7224 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7226 * Returns true if kswapd is ready to sleep
7228 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7229 int highest_zoneidx)
7232 * The throttled processes are normally woken up in balance_pgdat() as
7233 * soon as allow_direct_reclaim() is true. But there is a potential
7234 * race between when kswapd checks the watermarks and a process gets
7235 * throttled. There is also a potential race if processes get
7236 * throttled, kswapd wakes, a large process exits thereby balancing the
7237 * zones, which causes kswapd to exit balance_pgdat() before reaching
7238 * the wake up checks. If kswapd is going to sleep, no process should
7239 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7240 * the wake up is premature, processes will wake kswapd and get
7241 * throttled again. The difference from wake ups in balance_pgdat() is
7242 * that here we are under prepare_to_wait().
7244 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7245 wake_up_all(&pgdat->pfmemalloc_wait);
7247 /* Hopeless node, leave it to direct reclaim */
7248 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7251 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7252 clear_pgdat_congested(pgdat);
7260 * kswapd shrinks a node of pages that are at or below the highest usable
7261 * zone that is currently unbalanced.
7263 * Returns true if kswapd scanned at least the requested number of pages to
7264 * reclaim or if the lack of progress was due to pages under writeback.
7265 * This is used to determine if the scanning priority needs to be raised.
7267 static bool kswapd_shrink_node(pg_data_t *pgdat,
7268 struct scan_control *sc)
7273 /* Reclaim a number of pages proportional to the number of zones */
7274 sc->nr_to_reclaim = 0;
7275 for (z = 0; z <= sc->reclaim_idx; z++) {
7276 zone = pgdat->node_zones + z;
7277 if (!managed_zone(zone))
7280 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7284 * Historically care was taken to put equal pressure on all zones but
7285 * now pressure is applied based on node LRU order.
7287 shrink_node(pgdat, sc);
7290 * Fragmentation may mean that the system cannot be rebalanced for
7291 * high-order allocations. If twice the allocation size has been
7292 * reclaimed then recheck watermarks only at order-0 to prevent
7293 * excessive reclaim. Assume that a process requested a high-order
7294 * can direct reclaim/compact.
7296 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7299 return sc->nr_scanned >= sc->nr_to_reclaim;
7302 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7304 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7309 for (i = 0; i <= highest_zoneidx; i++) {
7310 zone = pgdat->node_zones + i;
7312 if (!managed_zone(zone))
7316 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7318 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7323 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7325 update_reclaim_active(pgdat, highest_zoneidx, true);
7329 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7331 update_reclaim_active(pgdat, highest_zoneidx, false);
7335 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7336 * that are eligible for use by the caller until at least one zone is
7339 * Returns the order kswapd finished reclaiming at.
7341 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7342 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7343 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7344 * or lower is eligible for reclaim until at least one usable zone is
7347 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7350 unsigned long nr_soft_reclaimed;
7351 unsigned long nr_soft_scanned;
7352 unsigned long pflags;
7353 unsigned long nr_boost_reclaim;
7354 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7357 struct scan_control sc = {
7358 .gfp_mask = GFP_KERNEL,
7363 set_task_reclaim_state(current, &sc.reclaim_state);
7364 psi_memstall_enter(&pflags);
7365 __fs_reclaim_acquire(_THIS_IP_);
7367 count_vm_event(PAGEOUTRUN);
7370 * Account for the reclaim boost. Note that the zone boost is left in
7371 * place so that parallel allocations that are near the watermark will
7372 * stall or direct reclaim until kswapd is finished.
7374 nr_boost_reclaim = 0;
7375 for (i = 0; i <= highest_zoneidx; i++) {
7376 zone = pgdat->node_zones + i;
7377 if (!managed_zone(zone))
7380 nr_boost_reclaim += zone->watermark_boost;
7381 zone_boosts[i] = zone->watermark_boost;
7383 boosted = nr_boost_reclaim;
7386 set_reclaim_active(pgdat, highest_zoneidx);
7387 sc.priority = DEF_PRIORITY;
7389 unsigned long nr_reclaimed = sc.nr_reclaimed;
7390 bool raise_priority = true;
7394 sc.reclaim_idx = highest_zoneidx;
7397 * If the number of buffer_heads exceeds the maximum allowed
7398 * then consider reclaiming from all zones. This has a dual
7399 * purpose -- on 64-bit systems it is expected that
7400 * buffer_heads are stripped during active rotation. On 32-bit
7401 * systems, highmem pages can pin lowmem memory and shrinking
7402 * buffers can relieve lowmem pressure. Reclaim may still not
7403 * go ahead if all eligible zones for the original allocation
7404 * request are balanced to avoid excessive reclaim from kswapd.
7406 if (buffer_heads_over_limit) {
7407 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7408 zone = pgdat->node_zones + i;
7409 if (!managed_zone(zone))
7418 * If the pgdat is imbalanced then ignore boosting and preserve
7419 * the watermarks for a later time and restart. Note that the
7420 * zone watermarks will be still reset at the end of balancing
7421 * on the grounds that the normal reclaim should be enough to
7422 * re-evaluate if boosting is required when kswapd next wakes.
7424 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7425 if (!balanced && nr_boost_reclaim) {
7426 nr_boost_reclaim = 0;
7431 * If boosting is not active then only reclaim if there are no
7432 * eligible zones. Note that sc.reclaim_idx is not used as
7433 * buffer_heads_over_limit may have adjusted it.
7435 if (!nr_boost_reclaim && balanced)
7438 /* Limit the priority of boosting to avoid reclaim writeback */
7439 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7440 raise_priority = false;
7443 * Do not writeback or swap pages for boosted reclaim. The
7444 * intent is to relieve pressure not issue sub-optimal IO
7445 * from reclaim context. If no pages are reclaimed, the
7446 * reclaim will be aborted.
7448 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7449 sc.may_swap = !nr_boost_reclaim;
7452 * Do some background aging, to give pages a chance to be
7453 * referenced before reclaiming. All pages are rotated
7454 * regardless of classzone as this is about consistent aging.
7456 kswapd_age_node(pgdat, &sc);
7459 * If we're getting trouble reclaiming, start doing writepage
7460 * even in laptop mode.
7462 if (sc.priority < DEF_PRIORITY - 2)
7463 sc.may_writepage = 1;
7465 /* Call soft limit reclaim before calling shrink_node. */
7467 nr_soft_scanned = 0;
7468 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7469 sc.gfp_mask, &nr_soft_scanned);
7470 sc.nr_reclaimed += nr_soft_reclaimed;
7473 * There should be no need to raise the scanning priority if
7474 * enough pages are already being scanned that that high
7475 * watermark would be met at 100% efficiency.
7477 if (kswapd_shrink_node(pgdat, &sc))
7478 raise_priority = false;
7481 * If the low watermark is met there is no need for processes
7482 * to be throttled on pfmemalloc_wait as they should not be
7483 * able to safely make forward progress. Wake them
7485 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7486 allow_direct_reclaim(pgdat))
7487 wake_up_all(&pgdat->pfmemalloc_wait);
7489 /* Check if kswapd should be suspending */
7490 __fs_reclaim_release(_THIS_IP_);
7491 ret = try_to_freeze();
7492 __fs_reclaim_acquire(_THIS_IP_);
7493 if (ret || kthread_should_stop())
7497 * Raise priority if scanning rate is too low or there was no
7498 * progress in reclaiming pages
7500 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7501 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7504 * If reclaim made no progress for a boost, stop reclaim as
7505 * IO cannot be queued and it could be an infinite loop in
7506 * extreme circumstances.
7508 if (nr_boost_reclaim && !nr_reclaimed)
7511 if (raise_priority || !nr_reclaimed)
7513 } while (sc.priority >= 1);
7515 if (!sc.nr_reclaimed)
7516 pgdat->kswapd_failures++;
7519 clear_reclaim_active(pgdat, highest_zoneidx);
7521 /* If reclaim was boosted, account for the reclaim done in this pass */
7523 unsigned long flags;
7525 for (i = 0; i <= highest_zoneidx; i++) {
7526 if (!zone_boosts[i])
7529 /* Increments are under the zone lock */
7530 zone = pgdat->node_zones + i;
7531 spin_lock_irqsave(&zone->lock, flags);
7532 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7533 spin_unlock_irqrestore(&zone->lock, flags);
7537 * As there is now likely space, wakeup kcompact to defragment
7540 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7543 snapshot_refaults(NULL, pgdat);
7544 __fs_reclaim_release(_THIS_IP_);
7545 psi_memstall_leave(&pflags);
7546 set_task_reclaim_state(current, NULL);
7549 * Return the order kswapd stopped reclaiming at as
7550 * prepare_kswapd_sleep() takes it into account. If another caller
7551 * entered the allocator slow path while kswapd was awake, order will
7552 * remain at the higher level.
7558 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7559 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7560 * not a valid index then either kswapd runs for first time or kswapd couldn't
7561 * sleep after previous reclaim attempt (node is still unbalanced). In that
7562 * case return the zone index of the previous kswapd reclaim cycle.
7564 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7565 enum zone_type prev_highest_zoneidx)
7567 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7569 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7572 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7573 unsigned int highest_zoneidx)
7578 if (freezing(current) || kthread_should_stop())
7581 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7584 * Try to sleep for a short interval. Note that kcompactd will only be
7585 * woken if it is possible to sleep for a short interval. This is
7586 * deliberate on the assumption that if reclaim cannot keep an
7587 * eligible zone balanced that it's also unlikely that compaction will
7590 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7592 * Compaction records what page blocks it recently failed to
7593 * isolate pages from and skips them in the future scanning.
7594 * When kswapd is going to sleep, it is reasonable to assume
7595 * that pages and compaction may succeed so reset the cache.
7597 reset_isolation_suitable(pgdat);
7600 * We have freed the memory, now we should compact it to make
7601 * allocation of the requested order possible.
7603 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7605 remaining = schedule_timeout(HZ/10);
7608 * If woken prematurely then reset kswapd_highest_zoneidx and
7609 * order. The values will either be from a wakeup request or
7610 * the previous request that slept prematurely.
7613 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7614 kswapd_highest_zoneidx(pgdat,
7617 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7618 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7621 finish_wait(&pgdat->kswapd_wait, &wait);
7622 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7626 * After a short sleep, check if it was a premature sleep. If not, then
7627 * go fully to sleep until explicitly woken up.
7630 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7631 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7634 * vmstat counters are not perfectly accurate and the estimated
7635 * value for counters such as NR_FREE_PAGES can deviate from the
7636 * true value by nr_online_cpus * threshold. To avoid the zone
7637 * watermarks being breached while under pressure, we reduce the
7638 * per-cpu vmstat threshold while kswapd is awake and restore
7639 * them before going back to sleep.
7641 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7643 if (!kthread_should_stop())
7646 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7649 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7651 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7653 finish_wait(&pgdat->kswapd_wait, &wait);
7657 * The background pageout daemon, started as a kernel thread
7658 * from the init process.
7660 * This basically trickles out pages so that we have _some_
7661 * free memory available even if there is no other activity
7662 * that frees anything up. This is needed for things like routing
7663 * etc, where we otherwise might have all activity going on in
7664 * asynchronous contexts that cannot page things out.
7666 * If there are applications that are active memory-allocators
7667 * (most normal use), this basically shouldn't matter.
7669 static int kswapd(void *p)
7671 unsigned int alloc_order, reclaim_order;
7672 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7673 pg_data_t *pgdat = (pg_data_t *)p;
7674 struct task_struct *tsk = current;
7675 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7677 if (!cpumask_empty(cpumask))
7678 set_cpus_allowed_ptr(tsk, cpumask);
7681 * Tell the memory management that we're a "memory allocator",
7682 * and that if we need more memory we should get access to it
7683 * regardless (see "__alloc_pages()"). "kswapd" should
7684 * never get caught in the normal page freeing logic.
7686 * (Kswapd normally doesn't need memory anyway, but sometimes
7687 * you need a small amount of memory in order to be able to
7688 * page out something else, and this flag essentially protects
7689 * us from recursively trying to free more memory as we're
7690 * trying to free the first piece of memory in the first place).
7692 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7695 WRITE_ONCE(pgdat->kswapd_order, 0);
7696 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7697 atomic_set(&pgdat->nr_writeback_throttled, 0);
7701 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7702 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7706 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7709 /* Read the new order and highest_zoneidx */
7710 alloc_order = READ_ONCE(pgdat->kswapd_order);
7711 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7713 WRITE_ONCE(pgdat->kswapd_order, 0);
7714 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7716 ret = try_to_freeze();
7717 if (kthread_should_stop())
7721 * We can speed up thawing tasks if we don't call balance_pgdat
7722 * after returning from the refrigerator
7728 * Reclaim begins at the requested order but if a high-order
7729 * reclaim fails then kswapd falls back to reclaiming for
7730 * order-0. If that happens, kswapd will consider sleeping
7731 * for the order it finished reclaiming at (reclaim_order)
7732 * but kcompactd is woken to compact for the original
7733 * request (alloc_order).
7735 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7737 reclaim_order = balance_pgdat(pgdat, alloc_order,
7739 if (reclaim_order < alloc_order)
7740 goto kswapd_try_sleep;
7743 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7749 * A zone is low on free memory or too fragmented for high-order memory. If
7750 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7751 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7752 * has failed or is not needed, still wake up kcompactd if only compaction is
7755 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7756 enum zone_type highest_zoneidx)
7759 enum zone_type curr_idx;
7761 if (!managed_zone(zone))
7764 if (!cpuset_zone_allowed(zone, gfp_flags))
7767 pgdat = zone->zone_pgdat;
7768 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7770 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7771 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7773 if (READ_ONCE(pgdat->kswapd_order) < order)
7774 WRITE_ONCE(pgdat->kswapd_order, order);
7776 if (!waitqueue_active(&pgdat->kswapd_wait))
7779 /* Hopeless node, leave it to direct reclaim if possible */
7780 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7781 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7782 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7784 * There may be plenty of free memory available, but it's too
7785 * fragmented for high-order allocations. Wake up kcompactd
7786 * and rely on compaction_suitable() to determine if it's
7787 * needed. If it fails, it will defer subsequent attempts to
7788 * ratelimit its work.
7790 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7791 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7795 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7797 wake_up_interruptible(&pgdat->kswapd_wait);
7800 #ifdef CONFIG_HIBERNATION
7802 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7805 * Rather than trying to age LRUs the aim is to preserve the overall
7806 * LRU order by reclaiming preferentially
7807 * inactive > active > active referenced > active mapped
7809 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7811 struct scan_control sc = {
7812 .nr_to_reclaim = nr_to_reclaim,
7813 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7814 .reclaim_idx = MAX_NR_ZONES - 1,
7815 .priority = DEF_PRIORITY,
7819 .hibernation_mode = 1,
7821 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7822 unsigned long nr_reclaimed;
7823 unsigned int noreclaim_flag;
7825 fs_reclaim_acquire(sc.gfp_mask);
7826 noreclaim_flag = memalloc_noreclaim_save();
7827 set_task_reclaim_state(current, &sc.reclaim_state);
7829 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7831 set_task_reclaim_state(current, NULL);
7832 memalloc_noreclaim_restore(noreclaim_flag);
7833 fs_reclaim_release(sc.gfp_mask);
7835 return nr_reclaimed;
7837 #endif /* CONFIG_HIBERNATION */
7840 * This kswapd start function will be called by init and node-hot-add.
7842 void kswapd_run(int nid)
7844 pg_data_t *pgdat = NODE_DATA(nid);
7846 pgdat_kswapd_lock(pgdat);
7847 if (!pgdat->kswapd) {
7848 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7849 if (IS_ERR(pgdat->kswapd)) {
7850 /* failure at boot is fatal */
7851 BUG_ON(system_state < SYSTEM_RUNNING);
7852 pr_err("Failed to start kswapd on node %d\n", nid);
7853 pgdat->kswapd = NULL;
7856 pgdat_kswapd_unlock(pgdat);
7860 * Called by memory hotplug when all memory in a node is offlined. Caller must
7861 * be holding mem_hotplug_begin/done().
7863 void kswapd_stop(int nid)
7865 pg_data_t *pgdat = NODE_DATA(nid);
7866 struct task_struct *kswapd;
7868 pgdat_kswapd_lock(pgdat);
7869 kswapd = pgdat->kswapd;
7871 kthread_stop(kswapd);
7872 pgdat->kswapd = NULL;
7874 pgdat_kswapd_unlock(pgdat);
7877 static int __init kswapd_init(void)
7882 for_each_node_state(nid, N_MEMORY)
7887 module_init(kswapd_init)
7893 * If non-zero call node_reclaim when the number of free pages falls below
7896 int node_reclaim_mode __read_mostly;
7899 * Priority for NODE_RECLAIM. This determines the fraction of pages
7900 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7903 #define NODE_RECLAIM_PRIORITY 4
7906 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7909 int sysctl_min_unmapped_ratio = 1;
7912 * If the number of slab pages in a zone grows beyond this percentage then
7913 * slab reclaim needs to occur.
7915 int sysctl_min_slab_ratio = 5;
7917 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7919 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7920 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7921 node_page_state(pgdat, NR_ACTIVE_FILE);
7924 * It's possible for there to be more file mapped pages than
7925 * accounted for by the pages on the file LRU lists because
7926 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7928 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7931 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7932 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7934 unsigned long nr_pagecache_reclaimable;
7935 unsigned long delta = 0;
7938 * If RECLAIM_UNMAP is set, then all file pages are considered
7939 * potentially reclaimable. Otherwise, we have to worry about
7940 * pages like swapcache and node_unmapped_file_pages() provides
7943 if (node_reclaim_mode & RECLAIM_UNMAP)
7944 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7946 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7948 /* If we can't clean pages, remove dirty pages from consideration */
7949 if (!(node_reclaim_mode & RECLAIM_WRITE))
7950 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7952 /* Watch for any possible underflows due to delta */
7953 if (unlikely(delta > nr_pagecache_reclaimable))
7954 delta = nr_pagecache_reclaimable;
7956 return nr_pagecache_reclaimable - delta;
7960 * Try to free up some pages from this node through reclaim.
7962 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7964 /* Minimum pages needed in order to stay on node */
7965 const unsigned long nr_pages = 1 << order;
7966 struct task_struct *p = current;
7967 unsigned int noreclaim_flag;
7968 struct scan_control sc = {
7969 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7970 .gfp_mask = current_gfp_context(gfp_mask),
7972 .priority = NODE_RECLAIM_PRIORITY,
7973 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7974 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7976 .reclaim_idx = gfp_zone(gfp_mask),
7978 unsigned long pflags;
7980 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7984 psi_memstall_enter(&pflags);
7985 fs_reclaim_acquire(sc.gfp_mask);
7987 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7989 noreclaim_flag = memalloc_noreclaim_save();
7990 set_task_reclaim_state(p, &sc.reclaim_state);
7992 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7993 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7995 * Free memory by calling shrink node with increasing
7996 * priorities until we have enough memory freed.
7999 shrink_node(pgdat, &sc);
8000 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8003 set_task_reclaim_state(p, NULL);
8004 memalloc_noreclaim_restore(noreclaim_flag);
8005 fs_reclaim_release(sc.gfp_mask);
8006 psi_memstall_leave(&pflags);
8008 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8010 return sc.nr_reclaimed >= nr_pages;
8013 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8018 * Node reclaim reclaims unmapped file backed pages and
8019 * slab pages if we are over the defined limits.
8021 * A small portion of unmapped file backed pages is needed for
8022 * file I/O otherwise pages read by file I/O will be immediately
8023 * thrown out if the node is overallocated. So we do not reclaim
8024 * if less than a specified percentage of the node is used by
8025 * unmapped file backed pages.
8027 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8028 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8029 pgdat->min_slab_pages)
8030 return NODE_RECLAIM_FULL;
8033 * Do not scan if the allocation should not be delayed.
8035 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8036 return NODE_RECLAIM_NOSCAN;
8039 * Only run node reclaim on the local node or on nodes that do not
8040 * have associated processors. This will favor the local processor
8041 * over remote processors and spread off node memory allocations
8042 * as wide as possible.
8044 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8045 return NODE_RECLAIM_NOSCAN;
8047 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8048 return NODE_RECLAIM_NOSCAN;
8050 ret = __node_reclaim(pgdat, gfp_mask, order);
8051 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8054 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8060 void check_move_unevictable_pages(struct pagevec *pvec)
8062 struct folio_batch fbatch;
8065 folio_batch_init(&fbatch);
8066 for (i = 0; i < pvec->nr; i++) {
8067 struct page *page = pvec->pages[i];
8069 if (PageTransTail(page))
8071 folio_batch_add(&fbatch, page_folio(page));
8073 check_move_unevictable_folios(&fbatch);
8075 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8078 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8080 * @fbatch: Batch of lru folios to check.
8082 * Checks folios for evictability, if an evictable folio is in the unevictable
8083 * lru list, moves it to the appropriate evictable lru list. This function
8084 * should be only used for lru folios.
8086 void check_move_unevictable_folios(struct folio_batch *fbatch)
8088 struct lruvec *lruvec = NULL;
8093 for (i = 0; i < fbatch->nr; i++) {
8094 struct folio *folio = fbatch->folios[i];
8095 int nr_pages = folio_nr_pages(folio);
8097 pgscanned += nr_pages;
8099 /* block memcg migration while the folio moves between lrus */
8100 if (!folio_test_clear_lru(folio))
8103 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8104 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8105 lruvec_del_folio(lruvec, folio);
8106 folio_clear_unevictable(folio);
8107 lruvec_add_folio(lruvec, folio);
8108 pgrescued += nr_pages;
8110 folio_set_lru(folio);
8114 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8115 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8116 unlock_page_lruvec_irq(lruvec);
8117 } else if (pgscanned) {
8118 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8121 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);