memcg: prevent OOM with too many dirty pages
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /* Scan (total_size >> priority) pages at once */
82         int priority;
83
84         /*
85          * The memory cgroup that hit its limit and as a result is the
86          * primary target of this reclaim invocation.
87          */
88         struct mem_cgroup *target_mem_cgroup;
89
90         /*
91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
92          * are scanned.
93          */
94         nodemask_t      *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)                    \
101         do {                                                            \
102                 if ((_page)->lru.prev != _base) {                       \
103                         struct page *prev;                              \
104                                                                         \
105                         prev = lru_to_page(&(_page->lru));              \
106                         prefetch(&prev->_field);                        \
107                 }                                                       \
108         } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
115         do {                                                            \
116                 if ((_page)->lru.prev != _base) {                       \
117                         struct page *prev;                              \
118                                                                         \
119                         prev = lru_to_page(&(_page->lru));              \
120                         prefetchw(&prev->_field);                       \
121                 }                                                       \
122         } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;    /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139         return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144         return true;
145 }
146 #endif
147
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150         if (!mem_cgroup_disabled())
151                 return mem_cgroup_get_lru_size(lruvec, lru);
152
153         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155
156 /*
157  * Add a shrinker callback to be called from the vm
158  */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161         atomic_long_set(&shrinker->nr_in_batch, 0);
162         down_write(&shrinker_rwsem);
163         list_add_tail(&shrinker->list, &shrinker_list);
164         up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167
168 /*
169  * Remove one
170  */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173         down_write(&shrinker_rwsem);
174         list_del(&shrinker->list);
175         up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180                                      struct shrink_control *sc,
181                                      unsigned long nr_to_scan)
182 {
183         sc->nr_to_scan = nr_to_scan;
184         return (*shrinker->shrink)(shrinker, sc);
185 }
186
187 #define SHRINK_BATCH 128
188 /*
189  * Call the shrink functions to age shrinkable caches
190  *
191  * Here we assume it costs one seek to replace a lru page and that it also
192  * takes a seek to recreate a cache object.  With this in mind we age equal
193  * percentages of the lru and ageable caches.  This should balance the seeks
194  * generated by these structures.
195  *
196  * If the vm encountered mapped pages on the LRU it increase the pressure on
197  * slab to avoid swapping.
198  *
199  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200  *
201  * `lru_pages' represents the number of on-LRU pages in all the zones which
202  * are eligible for the caller's allocation attempt.  It is used for balancing
203  * slab reclaim versus page reclaim.
204  *
205  * Returns the number of slab objects which we shrunk.
206  */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208                           unsigned long nr_pages_scanned,
209                           unsigned long lru_pages)
210 {
211         struct shrinker *shrinker;
212         unsigned long ret = 0;
213
214         if (nr_pages_scanned == 0)
215                 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217         if (!down_read_trylock(&shrinker_rwsem)) {
218                 /* Assume we'll be able to shrink next time */
219                 ret = 1;
220                 goto out;
221         }
222
223         list_for_each_entry(shrinker, &shrinker_list, list) {
224                 unsigned long long delta;
225                 long total_scan;
226                 long max_pass;
227                 int shrink_ret = 0;
228                 long nr;
229                 long new_nr;
230                 long batch_size = shrinker->batch ? shrinker->batch
231                                                   : SHRINK_BATCH;
232
233                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234                 if (max_pass <= 0)
235                         continue;
236
237                 /*
238                  * copy the current shrinker scan count into a local variable
239                  * and zero it so that other concurrent shrinker invocations
240                  * don't also do this scanning work.
241                  */
242                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244                 total_scan = nr;
245                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246                 delta *= max_pass;
247                 do_div(delta, lru_pages + 1);
248                 total_scan += delta;
249                 if (total_scan < 0) {
250                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
251                                "delete nr=%ld\n",
252                                shrinker->shrink, total_scan);
253                         total_scan = max_pass;
254                 }
255
256                 /*
257                  * We need to avoid excessive windup on filesystem shrinkers
258                  * due to large numbers of GFP_NOFS allocations causing the
259                  * shrinkers to return -1 all the time. This results in a large
260                  * nr being built up so when a shrink that can do some work
261                  * comes along it empties the entire cache due to nr >>>
262                  * max_pass.  This is bad for sustaining a working set in
263                  * memory.
264                  *
265                  * Hence only allow the shrinker to scan the entire cache when
266                  * a large delta change is calculated directly.
267                  */
268                 if (delta < max_pass / 4)
269                         total_scan = min(total_scan, max_pass / 2);
270
271                 /*
272                  * Avoid risking looping forever due to too large nr value:
273                  * never try to free more than twice the estimate number of
274                  * freeable entries.
275                  */
276                 if (total_scan > max_pass * 2)
277                         total_scan = max_pass * 2;
278
279                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280                                         nr_pages_scanned, lru_pages,
281                                         max_pass, delta, total_scan);
282
283                 while (total_scan >= batch_size) {
284                         int nr_before;
285
286                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
288                                                         batch_size);
289                         if (shrink_ret == -1)
290                                 break;
291                         if (shrink_ret < nr_before)
292                                 ret += nr_before - shrink_ret;
293                         count_vm_events(SLABS_SCANNED, batch_size);
294                         total_scan -= batch_size;
295
296                         cond_resched();
297                 }
298
299                 /*
300                  * move the unused scan count back into the shrinker in a
301                  * manner that handles concurrent updates. If we exhausted the
302                  * scan, there is no need to do an update.
303                  */
304                 if (total_scan > 0)
305                         new_nr = atomic_long_add_return(total_scan,
306                                         &shrinker->nr_in_batch);
307                 else
308                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311         }
312         up_read(&shrinker_rwsem);
313 out:
314         cond_resched();
315         return ret;
316 }
317
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320         /*
321          * A freeable page cache page is referenced only by the caller
322          * that isolated the page, the page cache radix tree and
323          * optional buffer heads at page->private.
324          */
325         return page_count(page) - page_has_private(page) == 2;
326 }
327
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329                               struct scan_control *sc)
330 {
331         if (current->flags & PF_SWAPWRITE)
332                 return 1;
333         if (!bdi_write_congested(bdi))
334                 return 1;
335         if (bdi == current->backing_dev_info)
336                 return 1;
337         return 0;
338 }
339
340 /*
341  * We detected a synchronous write error writing a page out.  Probably
342  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
343  * fsync(), msync() or close().
344  *
345  * The tricky part is that after writepage we cannot touch the mapping: nothing
346  * prevents it from being freed up.  But we have a ref on the page and once
347  * that page is locked, the mapping is pinned.
348  *
349  * We're allowed to run sleeping lock_page() here because we know the caller has
350  * __GFP_FS.
351  */
352 static void handle_write_error(struct address_space *mapping,
353                                 struct page *page, int error)
354 {
355         lock_page(page);
356         if (page_mapping(page) == mapping)
357                 mapping_set_error(mapping, error);
358         unlock_page(page);
359 }
360
361 /* possible outcome of pageout() */
362 typedef enum {
363         /* failed to write page out, page is locked */
364         PAGE_KEEP,
365         /* move page to the active list, page is locked */
366         PAGE_ACTIVATE,
367         /* page has been sent to the disk successfully, page is unlocked */
368         PAGE_SUCCESS,
369         /* page is clean and locked */
370         PAGE_CLEAN,
371 } pageout_t;
372
373 /*
374  * pageout is called by shrink_page_list() for each dirty page.
375  * Calls ->writepage().
376  */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378                          struct scan_control *sc)
379 {
380         /*
381          * If the page is dirty, only perform writeback if that write
382          * will be non-blocking.  To prevent this allocation from being
383          * stalled by pagecache activity.  But note that there may be
384          * stalls if we need to run get_block().  We could test
385          * PagePrivate for that.
386          *
387          * If this process is currently in __generic_file_aio_write() against
388          * this page's queue, we can perform writeback even if that
389          * will block.
390          *
391          * If the page is swapcache, write it back even if that would
392          * block, for some throttling. This happens by accident, because
393          * swap_backing_dev_info is bust: it doesn't reflect the
394          * congestion state of the swapdevs.  Easy to fix, if needed.
395          */
396         if (!is_page_cache_freeable(page))
397                 return PAGE_KEEP;
398         if (!mapping) {
399                 /*
400                  * Some data journaling orphaned pages can have
401                  * page->mapping == NULL while being dirty with clean buffers.
402                  */
403                 if (page_has_private(page)) {
404                         if (try_to_free_buffers(page)) {
405                                 ClearPageDirty(page);
406                                 printk("%s: orphaned page\n", __func__);
407                                 return PAGE_CLEAN;
408                         }
409                 }
410                 return PAGE_KEEP;
411         }
412         if (mapping->a_ops->writepage == NULL)
413                 return PAGE_ACTIVATE;
414         if (!may_write_to_queue(mapping->backing_dev_info, sc))
415                 return PAGE_KEEP;
416
417         if (clear_page_dirty_for_io(page)) {
418                 int res;
419                 struct writeback_control wbc = {
420                         .sync_mode = WB_SYNC_NONE,
421                         .nr_to_write = SWAP_CLUSTER_MAX,
422                         .range_start = 0,
423                         .range_end = LLONG_MAX,
424                         .for_reclaim = 1,
425                 };
426
427                 SetPageReclaim(page);
428                 res = mapping->a_ops->writepage(page, &wbc);
429                 if (res < 0)
430                         handle_write_error(mapping, page, res);
431                 if (res == AOP_WRITEPAGE_ACTIVATE) {
432                         ClearPageReclaim(page);
433                         return PAGE_ACTIVATE;
434                 }
435
436                 if (!PageWriteback(page)) {
437                         /* synchronous write or broken a_ops? */
438                         ClearPageReclaim(page);
439                 }
440                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442                 return PAGE_SUCCESS;
443         }
444
445         return PAGE_CLEAN;
446 }
447
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454         BUG_ON(!PageLocked(page));
455         BUG_ON(mapping != page_mapping(page));
456
457         spin_lock_irq(&mapping->tree_lock);
458         /*
459          * The non racy check for a busy page.
460          *
461          * Must be careful with the order of the tests. When someone has
462          * a ref to the page, it may be possible that they dirty it then
463          * drop the reference. So if PageDirty is tested before page_count
464          * here, then the following race may occur:
465          *
466          * get_user_pages(&page);
467          * [user mapping goes away]
468          * write_to(page);
469          *                              !PageDirty(page)    [good]
470          * SetPageDirty(page);
471          * put_page(page);
472          *                              !page_count(page)   [good, discard it]
473          *
474          * [oops, our write_to data is lost]
475          *
476          * Reversing the order of the tests ensures such a situation cannot
477          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478          * load is not satisfied before that of page->_count.
479          *
480          * Note that if SetPageDirty is always performed via set_page_dirty,
481          * and thus under tree_lock, then this ordering is not required.
482          */
483         if (!page_freeze_refs(page, 2))
484                 goto cannot_free;
485         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486         if (unlikely(PageDirty(page))) {
487                 page_unfreeze_refs(page, 2);
488                 goto cannot_free;
489         }
490
491         if (PageSwapCache(page)) {
492                 swp_entry_t swap = { .val = page_private(page) };
493                 __delete_from_swap_cache(page);
494                 spin_unlock_irq(&mapping->tree_lock);
495                 swapcache_free(swap, page);
496         } else {
497                 void (*freepage)(struct page *);
498
499                 freepage = mapping->a_ops->freepage;
500
501                 __delete_from_page_cache(page);
502                 spin_unlock_irq(&mapping->tree_lock);
503                 mem_cgroup_uncharge_cache_page(page);
504
505                 if (freepage != NULL)
506                         freepage(page);
507         }
508
509         return 1;
510
511 cannot_free:
512         spin_unlock_irq(&mapping->tree_lock);
513         return 0;
514 }
515
516 /*
517  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
518  * someone else has a ref on the page, abort and return 0.  If it was
519  * successfully detached, return 1.  Assumes the caller has a single ref on
520  * this page.
521  */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524         if (__remove_mapping(mapping, page)) {
525                 /*
526                  * Unfreezing the refcount with 1 rather than 2 effectively
527                  * drops the pagecache ref for us without requiring another
528                  * atomic operation.
529                  */
530                 page_unfreeze_refs(page, 1);
531                 return 1;
532         }
533         return 0;
534 }
535
536 /**
537  * putback_lru_page - put previously isolated page onto appropriate LRU list
538  * @page: page to be put back to appropriate lru list
539  *
540  * Add previously isolated @page to appropriate LRU list.
541  * Page may still be unevictable for other reasons.
542  *
543  * lru_lock must not be held, interrupts must be enabled.
544  */
545 void putback_lru_page(struct page *page)
546 {
547         int lru;
548         int active = !!TestClearPageActive(page);
549         int was_unevictable = PageUnevictable(page);
550
551         VM_BUG_ON(PageLRU(page));
552
553 redo:
554         ClearPageUnevictable(page);
555
556         if (page_evictable(page, NULL)) {
557                 /*
558                  * For evictable pages, we can use the cache.
559                  * In event of a race, worst case is we end up with an
560                  * unevictable page on [in]active list.
561                  * We know how to handle that.
562                  */
563                 lru = active + page_lru_base_type(page);
564                 lru_cache_add_lru(page, lru);
565         } else {
566                 /*
567                  * Put unevictable pages directly on zone's unevictable
568                  * list.
569                  */
570                 lru = LRU_UNEVICTABLE;
571                 add_page_to_unevictable_list(page);
572                 /*
573                  * When racing with an mlock or AS_UNEVICTABLE clearing
574                  * (page is unlocked) make sure that if the other thread
575                  * does not observe our setting of PG_lru and fails
576                  * isolation/check_move_unevictable_pages,
577                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578                  * the page back to the evictable list.
579                  *
580                  * The other side is TestClearPageMlocked() or shmem_lock().
581                  */
582                 smp_mb();
583         }
584
585         /*
586          * page's status can change while we move it among lru. If an evictable
587          * page is on unevictable list, it never be freed. To avoid that,
588          * check after we added it to the list, again.
589          */
590         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591                 if (!isolate_lru_page(page)) {
592                         put_page(page);
593                         goto redo;
594                 }
595                 /* This means someone else dropped this page from LRU
596                  * So, it will be freed or putback to LRU again. There is
597                  * nothing to do here.
598                  */
599         }
600
601         if (was_unevictable && lru != LRU_UNEVICTABLE)
602                 count_vm_event(UNEVICTABLE_PGRESCUED);
603         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604                 count_vm_event(UNEVICTABLE_PGCULLED);
605
606         put_page(page);         /* drop ref from isolate */
607 }
608
609 enum page_references {
610         PAGEREF_RECLAIM,
611         PAGEREF_RECLAIM_CLEAN,
612         PAGEREF_KEEP,
613         PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617                                                   struct scan_control *sc)
618 {
619         int referenced_ptes, referenced_page;
620         unsigned long vm_flags;
621
622         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623                                           &vm_flags);
624         referenced_page = TestClearPageReferenced(page);
625
626         /*
627          * Mlock lost the isolation race with us.  Let try_to_unmap()
628          * move the page to the unevictable list.
629          */
630         if (vm_flags & VM_LOCKED)
631                 return PAGEREF_RECLAIM;
632
633         if (referenced_ptes) {
634                 if (PageSwapBacked(page))
635                         return PAGEREF_ACTIVATE;
636                 /*
637                  * All mapped pages start out with page table
638                  * references from the instantiating fault, so we need
639                  * to look twice if a mapped file page is used more
640                  * than once.
641                  *
642                  * Mark it and spare it for another trip around the
643                  * inactive list.  Another page table reference will
644                  * lead to its activation.
645                  *
646                  * Note: the mark is set for activated pages as well
647                  * so that recently deactivated but used pages are
648                  * quickly recovered.
649                  */
650                 SetPageReferenced(page);
651
652                 if (referenced_page || referenced_ptes > 1)
653                         return PAGEREF_ACTIVATE;
654
655                 /*
656                  * Activate file-backed executable pages after first usage.
657                  */
658                 if (vm_flags & VM_EXEC)
659                         return PAGEREF_ACTIVATE;
660
661                 return PAGEREF_KEEP;
662         }
663
664         /* Reclaim if clean, defer dirty pages to writeback */
665         if (referenced_page && !PageSwapBacked(page))
666                 return PAGEREF_RECLAIM_CLEAN;
667
668         return PAGEREF_RECLAIM;
669 }
670
671 /*
672  * shrink_page_list() returns the number of reclaimed pages
673  */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675                                       struct zone *zone,
676                                       struct scan_control *sc,
677                                       unsigned long *ret_nr_dirty,
678                                       unsigned long *ret_nr_writeback)
679 {
680         LIST_HEAD(ret_pages);
681         LIST_HEAD(free_pages);
682         int pgactivate = 0;
683         unsigned long nr_dirty = 0;
684         unsigned long nr_congested = 0;
685         unsigned long nr_reclaimed = 0;
686         unsigned long nr_writeback = 0;
687
688         cond_resched();
689
690         while (!list_empty(page_list)) {
691                 enum page_references references;
692                 struct address_space *mapping;
693                 struct page *page;
694                 int may_enter_fs;
695
696                 cond_resched();
697
698                 page = lru_to_page(page_list);
699                 list_del(&page->lru);
700
701                 if (!trylock_page(page))
702                         goto keep;
703
704                 VM_BUG_ON(PageActive(page));
705                 VM_BUG_ON(page_zone(page) != zone);
706
707                 sc->nr_scanned++;
708
709                 if (unlikely(!page_evictable(page, NULL)))
710                         goto cull_mlocked;
711
712                 if (!sc->may_unmap && page_mapped(page))
713                         goto keep_locked;
714
715                 /* Double the slab pressure for mapped and swapcache pages */
716                 if (page_mapped(page) || PageSwapCache(page))
717                         sc->nr_scanned++;
718
719                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721
722                 if (PageWriteback(page)) {
723                         /*
724                          * memcg doesn't have any dirty pages throttling so we
725                          * could easily OOM just because too many pages are in
726                          * writeback from reclaim and there is nothing else to
727                          * reclaim.
728                          *
729                          * Check may_enter_fs, certainly because a loop driver
730                          * thread might enter reclaim, and deadlock if it waits
731                          * on a page for which it is needed to do the write
732                          * (loop masks off __GFP_IO|__GFP_FS for this reason);
733                          * but more thought would probably show more reasons.
734                          */
735                         if (!global_reclaim(sc) && PageReclaim(page) &&
736                                         may_enter_fs)
737                                 wait_on_page_writeback(page);
738                         else {
739                                 nr_writeback++;
740                                 unlock_page(page);
741                                 goto keep;
742                         }
743                 }
744
745                 references = page_check_references(page, sc);
746                 switch (references) {
747                 case PAGEREF_ACTIVATE:
748                         goto activate_locked;
749                 case PAGEREF_KEEP:
750                         goto keep_locked;
751                 case PAGEREF_RECLAIM:
752                 case PAGEREF_RECLAIM_CLEAN:
753                         ; /* try to reclaim the page below */
754                 }
755
756                 /*
757                  * Anonymous process memory has backing store?
758                  * Try to allocate it some swap space here.
759                  */
760                 if (PageAnon(page) && !PageSwapCache(page)) {
761                         if (!(sc->gfp_mask & __GFP_IO))
762                                 goto keep_locked;
763                         if (!add_to_swap(page))
764                                 goto activate_locked;
765                         may_enter_fs = 1;
766                 }
767
768                 mapping = page_mapping(page);
769
770                 /*
771                  * The page is mapped into the page tables of one or more
772                  * processes. Try to unmap it here.
773                  */
774                 if (page_mapped(page) && mapping) {
775                         switch (try_to_unmap(page, TTU_UNMAP)) {
776                         case SWAP_FAIL:
777                                 goto activate_locked;
778                         case SWAP_AGAIN:
779                                 goto keep_locked;
780                         case SWAP_MLOCK:
781                                 goto cull_mlocked;
782                         case SWAP_SUCCESS:
783                                 ; /* try to free the page below */
784                         }
785                 }
786
787                 if (PageDirty(page)) {
788                         nr_dirty++;
789
790                         /*
791                          * Only kswapd can writeback filesystem pages to
792                          * avoid risk of stack overflow but do not writeback
793                          * unless under significant pressure.
794                          */
795                         if (page_is_file_cache(page) &&
796                                         (!current_is_kswapd() ||
797                                          sc->priority >= DEF_PRIORITY - 2)) {
798                                 /*
799                                  * Immediately reclaim when written back.
800                                  * Similar in principal to deactivate_page()
801                                  * except we already have the page isolated
802                                  * and know it's dirty
803                                  */
804                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
805                                 SetPageReclaim(page);
806
807                                 goto keep_locked;
808                         }
809
810                         if (references == PAGEREF_RECLAIM_CLEAN)
811                                 goto keep_locked;
812                         if (!may_enter_fs)
813                                 goto keep_locked;
814                         if (!sc->may_writepage)
815                                 goto keep_locked;
816
817                         /* Page is dirty, try to write it out here */
818                         switch (pageout(page, mapping, sc)) {
819                         case PAGE_KEEP:
820                                 nr_congested++;
821                                 goto keep_locked;
822                         case PAGE_ACTIVATE:
823                                 goto activate_locked;
824                         case PAGE_SUCCESS:
825                                 if (PageWriteback(page))
826                                         goto keep;
827                                 if (PageDirty(page))
828                                         goto keep;
829
830                                 /*
831                                  * A synchronous write - probably a ramdisk.  Go
832                                  * ahead and try to reclaim the page.
833                                  */
834                                 if (!trylock_page(page))
835                                         goto keep;
836                                 if (PageDirty(page) || PageWriteback(page))
837                                         goto keep_locked;
838                                 mapping = page_mapping(page);
839                         case PAGE_CLEAN:
840                                 ; /* try to free the page below */
841                         }
842                 }
843
844                 /*
845                  * If the page has buffers, try to free the buffer mappings
846                  * associated with this page. If we succeed we try to free
847                  * the page as well.
848                  *
849                  * We do this even if the page is PageDirty().
850                  * try_to_release_page() does not perform I/O, but it is
851                  * possible for a page to have PageDirty set, but it is actually
852                  * clean (all its buffers are clean).  This happens if the
853                  * buffers were written out directly, with submit_bh(). ext3
854                  * will do this, as well as the blockdev mapping.
855                  * try_to_release_page() will discover that cleanness and will
856                  * drop the buffers and mark the page clean - it can be freed.
857                  *
858                  * Rarely, pages can have buffers and no ->mapping.  These are
859                  * the pages which were not successfully invalidated in
860                  * truncate_complete_page().  We try to drop those buffers here
861                  * and if that worked, and the page is no longer mapped into
862                  * process address space (page_count == 1) it can be freed.
863                  * Otherwise, leave the page on the LRU so it is swappable.
864                  */
865                 if (page_has_private(page)) {
866                         if (!try_to_release_page(page, sc->gfp_mask))
867                                 goto activate_locked;
868                         if (!mapping && page_count(page) == 1) {
869                                 unlock_page(page);
870                                 if (put_page_testzero(page))
871                                         goto free_it;
872                                 else {
873                                         /*
874                                          * rare race with speculative reference.
875                                          * the speculative reference will free
876                                          * this page shortly, so we may
877                                          * increment nr_reclaimed here (and
878                                          * leave it off the LRU).
879                                          */
880                                         nr_reclaimed++;
881                                         continue;
882                                 }
883                         }
884                 }
885
886                 if (!mapping || !__remove_mapping(mapping, page))
887                         goto keep_locked;
888
889                 /*
890                  * At this point, we have no other references and there is
891                  * no way to pick any more up (removed from LRU, removed
892                  * from pagecache). Can use non-atomic bitops now (and
893                  * we obviously don't have to worry about waking up a process
894                  * waiting on the page lock, because there are no references.
895                  */
896                 __clear_page_locked(page);
897 free_it:
898                 nr_reclaimed++;
899
900                 /*
901                  * Is there need to periodically free_page_list? It would
902                  * appear not as the counts should be low
903                  */
904                 list_add(&page->lru, &free_pages);
905                 continue;
906
907 cull_mlocked:
908                 if (PageSwapCache(page))
909                         try_to_free_swap(page);
910                 unlock_page(page);
911                 putback_lru_page(page);
912                 continue;
913
914 activate_locked:
915                 /* Not a candidate for swapping, so reclaim swap space. */
916                 if (PageSwapCache(page) && vm_swap_full())
917                         try_to_free_swap(page);
918                 VM_BUG_ON(PageActive(page));
919                 SetPageActive(page);
920                 pgactivate++;
921 keep_locked:
922                 unlock_page(page);
923 keep:
924                 list_add(&page->lru, &ret_pages);
925                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
926         }
927
928         /*
929          * Tag a zone as congested if all the dirty pages encountered were
930          * backed by a congested BDI. In this case, reclaimers should just
931          * back off and wait for congestion to clear because further reclaim
932          * will encounter the same problem
933          */
934         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
935                 zone_set_flag(zone, ZONE_CONGESTED);
936
937         free_hot_cold_page_list(&free_pages, 1);
938
939         list_splice(&ret_pages, page_list);
940         count_vm_events(PGACTIVATE, pgactivate);
941         *ret_nr_dirty += nr_dirty;
942         *ret_nr_writeback += nr_writeback;
943         return nr_reclaimed;
944 }
945
946 /*
947  * Attempt to remove the specified page from its LRU.  Only take this page
948  * if it is of the appropriate PageActive status.  Pages which are being
949  * freed elsewhere are also ignored.
950  *
951  * page:        page to consider
952  * mode:        one of the LRU isolation modes defined above
953  *
954  * returns 0 on success, -ve errno on failure.
955  */
956 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
957 {
958         int ret = -EINVAL;
959
960         /* Only take pages on the LRU. */
961         if (!PageLRU(page))
962                 return ret;
963
964         /* Do not give back unevictable pages for compaction */
965         if (PageUnevictable(page))
966                 return ret;
967
968         ret = -EBUSY;
969
970         /*
971          * To minimise LRU disruption, the caller can indicate that it only
972          * wants to isolate pages it will be able to operate on without
973          * blocking - clean pages for the most part.
974          *
975          * ISOLATE_CLEAN means that only clean pages should be isolated. This
976          * is used by reclaim when it is cannot write to backing storage
977          *
978          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
979          * that it is possible to migrate without blocking
980          */
981         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
982                 /* All the caller can do on PageWriteback is block */
983                 if (PageWriteback(page))
984                         return ret;
985
986                 if (PageDirty(page)) {
987                         struct address_space *mapping;
988
989                         /* ISOLATE_CLEAN means only clean pages */
990                         if (mode & ISOLATE_CLEAN)
991                                 return ret;
992
993                         /*
994                          * Only pages without mappings or that have a
995                          * ->migratepage callback are possible to migrate
996                          * without blocking
997                          */
998                         mapping = page_mapping(page);
999                         if (mapping && !mapping->a_ops->migratepage)
1000                                 return ret;
1001                 }
1002         }
1003
1004         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1005                 return ret;
1006
1007         if (likely(get_page_unless_zero(page))) {
1008                 /*
1009                  * Be careful not to clear PageLRU until after we're
1010                  * sure the page is not being freed elsewhere -- the
1011                  * page release code relies on it.
1012                  */
1013                 ClearPageLRU(page);
1014                 ret = 0;
1015         }
1016
1017         return ret;
1018 }
1019
1020 /*
1021  * zone->lru_lock is heavily contended.  Some of the functions that
1022  * shrink the lists perform better by taking out a batch of pages
1023  * and working on them outside the LRU lock.
1024  *
1025  * For pagecache intensive workloads, this function is the hottest
1026  * spot in the kernel (apart from copy_*_user functions).
1027  *
1028  * Appropriate locks must be held before calling this function.
1029  *
1030  * @nr_to_scan: The number of pages to look through on the list.
1031  * @lruvec:     The LRU vector to pull pages from.
1032  * @dst:        The temp list to put pages on to.
1033  * @nr_scanned: The number of pages that were scanned.
1034  * @sc:         The scan_control struct for this reclaim session
1035  * @mode:       One of the LRU isolation modes
1036  * @lru:        LRU list id for isolating
1037  *
1038  * returns how many pages were moved onto *@dst.
1039  */
1040 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1041                 struct lruvec *lruvec, struct list_head *dst,
1042                 unsigned long *nr_scanned, struct scan_control *sc,
1043                 isolate_mode_t mode, enum lru_list lru)
1044 {
1045         struct list_head *src = &lruvec->lists[lru];
1046         unsigned long nr_taken = 0;
1047         unsigned long scan;
1048
1049         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1050                 struct page *page;
1051                 int nr_pages;
1052
1053                 page = lru_to_page(src);
1054                 prefetchw_prev_lru_page(page, src, flags);
1055
1056                 VM_BUG_ON(!PageLRU(page));
1057
1058                 switch (__isolate_lru_page(page, mode)) {
1059                 case 0:
1060                         nr_pages = hpage_nr_pages(page);
1061                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1062                         list_move(&page->lru, dst);
1063                         nr_taken += nr_pages;
1064                         break;
1065
1066                 case -EBUSY:
1067                         /* else it is being freed elsewhere */
1068                         list_move(&page->lru, src);
1069                         continue;
1070
1071                 default:
1072                         BUG();
1073                 }
1074         }
1075
1076         *nr_scanned = scan;
1077         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1078                                     nr_taken, mode, is_file_lru(lru));
1079         return nr_taken;
1080 }
1081
1082 /**
1083  * isolate_lru_page - tries to isolate a page from its LRU list
1084  * @page: page to isolate from its LRU list
1085  *
1086  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1087  * vmstat statistic corresponding to whatever LRU list the page was on.
1088  *
1089  * Returns 0 if the page was removed from an LRU list.
1090  * Returns -EBUSY if the page was not on an LRU list.
1091  *
1092  * The returned page will have PageLRU() cleared.  If it was found on
1093  * the active list, it will have PageActive set.  If it was found on
1094  * the unevictable list, it will have the PageUnevictable bit set. That flag
1095  * may need to be cleared by the caller before letting the page go.
1096  *
1097  * The vmstat statistic corresponding to the list on which the page was
1098  * found will be decremented.
1099  *
1100  * Restrictions:
1101  * (1) Must be called with an elevated refcount on the page. This is a
1102  *     fundamentnal difference from isolate_lru_pages (which is called
1103  *     without a stable reference).
1104  * (2) the lru_lock must not be held.
1105  * (3) interrupts must be enabled.
1106  */
1107 int isolate_lru_page(struct page *page)
1108 {
1109         int ret = -EBUSY;
1110
1111         VM_BUG_ON(!page_count(page));
1112
1113         if (PageLRU(page)) {
1114                 struct zone *zone = page_zone(page);
1115                 struct lruvec *lruvec;
1116
1117                 spin_lock_irq(&zone->lru_lock);
1118                 lruvec = mem_cgroup_page_lruvec(page, zone);
1119                 if (PageLRU(page)) {
1120                         int lru = page_lru(page);
1121                         get_page(page);
1122                         ClearPageLRU(page);
1123                         del_page_from_lru_list(page, lruvec, lru);
1124                         ret = 0;
1125                 }
1126                 spin_unlock_irq(&zone->lru_lock);
1127         }
1128         return ret;
1129 }
1130
1131 /*
1132  * Are there way too many processes in the direct reclaim path already?
1133  */
1134 static int too_many_isolated(struct zone *zone, int file,
1135                 struct scan_control *sc)
1136 {
1137         unsigned long inactive, isolated;
1138
1139         if (current_is_kswapd())
1140                 return 0;
1141
1142         if (!global_reclaim(sc))
1143                 return 0;
1144
1145         if (file) {
1146                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1147                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1148         } else {
1149                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1150                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1151         }
1152
1153         return isolated > inactive;
1154 }
1155
1156 static noinline_for_stack void
1157 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1158 {
1159         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1160         struct zone *zone = lruvec_zone(lruvec);
1161         LIST_HEAD(pages_to_free);
1162
1163         /*
1164          * Put back any unfreeable pages.
1165          */
1166         while (!list_empty(page_list)) {
1167                 struct page *page = lru_to_page(page_list);
1168                 int lru;
1169
1170                 VM_BUG_ON(PageLRU(page));
1171                 list_del(&page->lru);
1172                 if (unlikely(!page_evictable(page, NULL))) {
1173                         spin_unlock_irq(&zone->lru_lock);
1174                         putback_lru_page(page);
1175                         spin_lock_irq(&zone->lru_lock);
1176                         continue;
1177                 }
1178
1179                 lruvec = mem_cgroup_page_lruvec(page, zone);
1180
1181                 SetPageLRU(page);
1182                 lru = page_lru(page);
1183                 add_page_to_lru_list(page, lruvec, lru);
1184
1185                 if (is_active_lru(lru)) {
1186                         int file = is_file_lru(lru);
1187                         int numpages = hpage_nr_pages(page);
1188                         reclaim_stat->recent_rotated[file] += numpages;
1189                 }
1190                 if (put_page_testzero(page)) {
1191                         __ClearPageLRU(page);
1192                         __ClearPageActive(page);
1193                         del_page_from_lru_list(page, lruvec, lru);
1194
1195                         if (unlikely(PageCompound(page))) {
1196                                 spin_unlock_irq(&zone->lru_lock);
1197                                 (*get_compound_page_dtor(page))(page);
1198                                 spin_lock_irq(&zone->lru_lock);
1199                         } else
1200                                 list_add(&page->lru, &pages_to_free);
1201                 }
1202         }
1203
1204         /*
1205          * To save our caller's stack, now use input list for pages to free.
1206          */
1207         list_splice(&pages_to_free, page_list);
1208 }
1209
1210 /*
1211  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1212  * of reclaimed pages
1213  */
1214 static noinline_for_stack unsigned long
1215 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1216                      struct scan_control *sc, enum lru_list lru)
1217 {
1218         LIST_HEAD(page_list);
1219         unsigned long nr_scanned;
1220         unsigned long nr_reclaimed = 0;
1221         unsigned long nr_taken;
1222         unsigned long nr_dirty = 0;
1223         unsigned long nr_writeback = 0;
1224         isolate_mode_t isolate_mode = 0;
1225         int file = is_file_lru(lru);
1226         struct zone *zone = lruvec_zone(lruvec);
1227         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1228
1229         while (unlikely(too_many_isolated(zone, file, sc))) {
1230                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1231
1232                 /* We are about to die and free our memory. Return now. */
1233                 if (fatal_signal_pending(current))
1234                         return SWAP_CLUSTER_MAX;
1235         }
1236
1237         lru_add_drain();
1238
1239         if (!sc->may_unmap)
1240                 isolate_mode |= ISOLATE_UNMAPPED;
1241         if (!sc->may_writepage)
1242                 isolate_mode |= ISOLATE_CLEAN;
1243
1244         spin_lock_irq(&zone->lru_lock);
1245
1246         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1247                                      &nr_scanned, sc, isolate_mode, lru);
1248
1249         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1250         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1251
1252         if (global_reclaim(sc)) {
1253                 zone->pages_scanned += nr_scanned;
1254                 if (current_is_kswapd())
1255                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1256                 else
1257                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1258         }
1259         spin_unlock_irq(&zone->lru_lock);
1260
1261         if (nr_taken == 0)
1262                 return 0;
1263
1264         nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1265                                                 &nr_dirty, &nr_writeback);
1266
1267         spin_lock_irq(&zone->lru_lock);
1268
1269         reclaim_stat->recent_scanned[file] += nr_taken;
1270
1271         if (global_reclaim(sc)) {
1272                 if (current_is_kswapd())
1273                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1274                                                nr_reclaimed);
1275                 else
1276                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1277                                                nr_reclaimed);
1278         }
1279
1280         putback_inactive_pages(lruvec, &page_list);
1281
1282         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1283
1284         spin_unlock_irq(&zone->lru_lock);
1285
1286         free_hot_cold_page_list(&page_list, 1);
1287
1288         /*
1289          * If reclaim is isolating dirty pages under writeback, it implies
1290          * that the long-lived page allocation rate is exceeding the page
1291          * laundering rate. Either the global limits are not being effective
1292          * at throttling processes due to the page distribution throughout
1293          * zones or there is heavy usage of a slow backing device. The
1294          * only option is to throttle from reclaim context which is not ideal
1295          * as there is no guarantee the dirtying process is throttled in the
1296          * same way balance_dirty_pages() manages.
1297          *
1298          * This scales the number of dirty pages that must be under writeback
1299          * before throttling depending on priority. It is a simple backoff
1300          * function that has the most effect in the range DEF_PRIORITY to
1301          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1302          * in trouble and reclaim is considered to be in trouble.
1303          *
1304          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1305          * DEF_PRIORITY-1  50% must be PageWriteback
1306          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1307          * ...
1308          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1309          *                     isolated page is PageWriteback
1310          */
1311         if (nr_writeback && nr_writeback >=
1312                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1313                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1314
1315         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1316                 zone_idx(zone),
1317                 nr_scanned, nr_reclaimed,
1318                 sc->priority,
1319                 trace_shrink_flags(file));
1320         return nr_reclaimed;
1321 }
1322
1323 /*
1324  * This moves pages from the active list to the inactive list.
1325  *
1326  * We move them the other way if the page is referenced by one or more
1327  * processes, from rmap.
1328  *
1329  * If the pages are mostly unmapped, the processing is fast and it is
1330  * appropriate to hold zone->lru_lock across the whole operation.  But if
1331  * the pages are mapped, the processing is slow (page_referenced()) so we
1332  * should drop zone->lru_lock around each page.  It's impossible to balance
1333  * this, so instead we remove the pages from the LRU while processing them.
1334  * It is safe to rely on PG_active against the non-LRU pages in here because
1335  * nobody will play with that bit on a non-LRU page.
1336  *
1337  * The downside is that we have to touch page->_count against each page.
1338  * But we had to alter page->flags anyway.
1339  */
1340
1341 static void move_active_pages_to_lru(struct lruvec *lruvec,
1342                                      struct list_head *list,
1343                                      struct list_head *pages_to_free,
1344                                      enum lru_list lru)
1345 {
1346         struct zone *zone = lruvec_zone(lruvec);
1347         unsigned long pgmoved = 0;
1348         struct page *page;
1349         int nr_pages;
1350
1351         while (!list_empty(list)) {
1352                 page = lru_to_page(list);
1353                 lruvec = mem_cgroup_page_lruvec(page, zone);
1354
1355                 VM_BUG_ON(PageLRU(page));
1356                 SetPageLRU(page);
1357
1358                 nr_pages = hpage_nr_pages(page);
1359                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1360                 list_move(&page->lru, &lruvec->lists[lru]);
1361                 pgmoved += nr_pages;
1362
1363                 if (put_page_testzero(page)) {
1364                         __ClearPageLRU(page);
1365                         __ClearPageActive(page);
1366                         del_page_from_lru_list(page, lruvec, lru);
1367
1368                         if (unlikely(PageCompound(page))) {
1369                                 spin_unlock_irq(&zone->lru_lock);
1370                                 (*get_compound_page_dtor(page))(page);
1371                                 spin_lock_irq(&zone->lru_lock);
1372                         } else
1373                                 list_add(&page->lru, pages_to_free);
1374                 }
1375         }
1376         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1377         if (!is_active_lru(lru))
1378                 __count_vm_events(PGDEACTIVATE, pgmoved);
1379 }
1380
1381 static void shrink_active_list(unsigned long nr_to_scan,
1382                                struct lruvec *lruvec,
1383                                struct scan_control *sc,
1384                                enum lru_list lru)
1385 {
1386         unsigned long nr_taken;
1387         unsigned long nr_scanned;
1388         unsigned long vm_flags;
1389         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1390         LIST_HEAD(l_active);
1391         LIST_HEAD(l_inactive);
1392         struct page *page;
1393         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1394         unsigned long nr_rotated = 0;
1395         isolate_mode_t isolate_mode = 0;
1396         int file = is_file_lru(lru);
1397         struct zone *zone = lruvec_zone(lruvec);
1398
1399         lru_add_drain();
1400
1401         if (!sc->may_unmap)
1402                 isolate_mode |= ISOLATE_UNMAPPED;
1403         if (!sc->may_writepage)
1404                 isolate_mode |= ISOLATE_CLEAN;
1405
1406         spin_lock_irq(&zone->lru_lock);
1407
1408         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1409                                      &nr_scanned, sc, isolate_mode, lru);
1410         if (global_reclaim(sc))
1411                 zone->pages_scanned += nr_scanned;
1412
1413         reclaim_stat->recent_scanned[file] += nr_taken;
1414
1415         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1416         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1417         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1418         spin_unlock_irq(&zone->lru_lock);
1419
1420         while (!list_empty(&l_hold)) {
1421                 cond_resched();
1422                 page = lru_to_page(&l_hold);
1423                 list_del(&page->lru);
1424
1425                 if (unlikely(!page_evictable(page, NULL))) {
1426                         putback_lru_page(page);
1427                         continue;
1428                 }
1429
1430                 if (unlikely(buffer_heads_over_limit)) {
1431                         if (page_has_private(page) && trylock_page(page)) {
1432                                 if (page_has_private(page))
1433                                         try_to_release_page(page, 0);
1434                                 unlock_page(page);
1435                         }
1436                 }
1437
1438                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1439                                     &vm_flags)) {
1440                         nr_rotated += hpage_nr_pages(page);
1441                         /*
1442                          * Identify referenced, file-backed active pages and
1443                          * give them one more trip around the active list. So
1444                          * that executable code get better chances to stay in
1445                          * memory under moderate memory pressure.  Anon pages
1446                          * are not likely to be evicted by use-once streaming
1447                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1448                          * so we ignore them here.
1449                          */
1450                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1451                                 list_add(&page->lru, &l_active);
1452                                 continue;
1453                         }
1454                 }
1455
1456                 ClearPageActive(page);  /* we are de-activating */
1457                 list_add(&page->lru, &l_inactive);
1458         }
1459
1460         /*
1461          * Move pages back to the lru list.
1462          */
1463         spin_lock_irq(&zone->lru_lock);
1464         /*
1465          * Count referenced pages from currently used mappings as rotated,
1466          * even though only some of them are actually re-activated.  This
1467          * helps balance scan pressure between file and anonymous pages in
1468          * get_scan_ratio.
1469          */
1470         reclaim_stat->recent_rotated[file] += nr_rotated;
1471
1472         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1473         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1474         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1475         spin_unlock_irq(&zone->lru_lock);
1476
1477         free_hot_cold_page_list(&l_hold, 1);
1478 }
1479
1480 #ifdef CONFIG_SWAP
1481 static int inactive_anon_is_low_global(struct zone *zone)
1482 {
1483         unsigned long active, inactive;
1484
1485         active = zone_page_state(zone, NR_ACTIVE_ANON);
1486         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1487
1488         if (inactive * zone->inactive_ratio < active)
1489                 return 1;
1490
1491         return 0;
1492 }
1493
1494 /**
1495  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1496  * @lruvec: LRU vector to check
1497  *
1498  * Returns true if the zone does not have enough inactive anon pages,
1499  * meaning some active anon pages need to be deactivated.
1500  */
1501 static int inactive_anon_is_low(struct lruvec *lruvec)
1502 {
1503         /*
1504          * If we don't have swap space, anonymous page deactivation
1505          * is pointless.
1506          */
1507         if (!total_swap_pages)
1508                 return 0;
1509
1510         if (!mem_cgroup_disabled())
1511                 return mem_cgroup_inactive_anon_is_low(lruvec);
1512
1513         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1514 }
1515 #else
1516 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1517 {
1518         return 0;
1519 }
1520 #endif
1521
1522 static int inactive_file_is_low_global(struct zone *zone)
1523 {
1524         unsigned long active, inactive;
1525
1526         active = zone_page_state(zone, NR_ACTIVE_FILE);
1527         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1528
1529         return (active > inactive);
1530 }
1531
1532 /**
1533  * inactive_file_is_low - check if file pages need to be deactivated
1534  * @lruvec: LRU vector to check
1535  *
1536  * When the system is doing streaming IO, memory pressure here
1537  * ensures that active file pages get deactivated, until more
1538  * than half of the file pages are on the inactive list.
1539  *
1540  * Once we get to that situation, protect the system's working
1541  * set from being evicted by disabling active file page aging.
1542  *
1543  * This uses a different ratio than the anonymous pages, because
1544  * the page cache uses a use-once replacement algorithm.
1545  */
1546 static int inactive_file_is_low(struct lruvec *lruvec)
1547 {
1548         if (!mem_cgroup_disabled())
1549                 return mem_cgroup_inactive_file_is_low(lruvec);
1550
1551         return inactive_file_is_low_global(lruvec_zone(lruvec));
1552 }
1553
1554 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1555 {
1556         if (is_file_lru(lru))
1557                 return inactive_file_is_low(lruvec);
1558         else
1559                 return inactive_anon_is_low(lruvec);
1560 }
1561
1562 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1563                                  struct lruvec *lruvec, struct scan_control *sc)
1564 {
1565         if (is_active_lru(lru)) {
1566                 if (inactive_list_is_low(lruvec, lru))
1567                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1568                 return 0;
1569         }
1570
1571         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1572 }
1573
1574 static int vmscan_swappiness(struct scan_control *sc)
1575 {
1576         if (global_reclaim(sc))
1577                 return vm_swappiness;
1578         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1579 }
1580
1581 /*
1582  * Determine how aggressively the anon and file LRU lists should be
1583  * scanned.  The relative value of each set of LRU lists is determined
1584  * by looking at the fraction of the pages scanned we did rotate back
1585  * onto the active list instead of evict.
1586  *
1587  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1588  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1589  */
1590 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1591                            unsigned long *nr)
1592 {
1593         unsigned long anon, file, free;
1594         unsigned long anon_prio, file_prio;
1595         unsigned long ap, fp;
1596         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1597         u64 fraction[2], denominator;
1598         enum lru_list lru;
1599         int noswap = 0;
1600         bool force_scan = false;
1601         struct zone *zone = lruvec_zone(lruvec);
1602
1603         /*
1604          * If the zone or memcg is small, nr[l] can be 0.  This
1605          * results in no scanning on this priority and a potential
1606          * priority drop.  Global direct reclaim can go to the next
1607          * zone and tends to have no problems. Global kswapd is for
1608          * zone balancing and it needs to scan a minimum amount. When
1609          * reclaiming for a memcg, a priority drop can cause high
1610          * latencies, so it's better to scan a minimum amount there as
1611          * well.
1612          */
1613         if (current_is_kswapd() && zone->all_unreclaimable)
1614                 force_scan = true;
1615         if (!global_reclaim(sc))
1616                 force_scan = true;
1617
1618         /* If we have no swap space, do not bother scanning anon pages. */
1619         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1620                 noswap = 1;
1621                 fraction[0] = 0;
1622                 fraction[1] = 1;
1623                 denominator = 1;
1624                 goto out;
1625         }
1626
1627         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1628                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1629         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1630                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1631
1632         if (global_reclaim(sc)) {
1633                 free  = zone_page_state(zone, NR_FREE_PAGES);
1634                 /* If we have very few page cache pages,
1635                    force-scan anon pages. */
1636                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1637                         fraction[0] = 1;
1638                         fraction[1] = 0;
1639                         denominator = 1;
1640                         goto out;
1641                 }
1642         }
1643
1644         /*
1645          * With swappiness at 100, anonymous and file have the same priority.
1646          * This scanning priority is essentially the inverse of IO cost.
1647          */
1648         anon_prio = vmscan_swappiness(sc);
1649         file_prio = 200 - anon_prio;
1650
1651         /*
1652          * OK, so we have swap space and a fair amount of page cache
1653          * pages.  We use the recently rotated / recently scanned
1654          * ratios to determine how valuable each cache is.
1655          *
1656          * Because workloads change over time (and to avoid overflow)
1657          * we keep these statistics as a floating average, which ends
1658          * up weighing recent references more than old ones.
1659          *
1660          * anon in [0], file in [1]
1661          */
1662         spin_lock_irq(&zone->lru_lock);
1663         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1664                 reclaim_stat->recent_scanned[0] /= 2;
1665                 reclaim_stat->recent_rotated[0] /= 2;
1666         }
1667
1668         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1669                 reclaim_stat->recent_scanned[1] /= 2;
1670                 reclaim_stat->recent_rotated[1] /= 2;
1671         }
1672
1673         /*
1674          * The amount of pressure on anon vs file pages is inversely
1675          * proportional to the fraction of recently scanned pages on
1676          * each list that were recently referenced and in active use.
1677          */
1678         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1679         ap /= reclaim_stat->recent_rotated[0] + 1;
1680
1681         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1682         fp /= reclaim_stat->recent_rotated[1] + 1;
1683         spin_unlock_irq(&zone->lru_lock);
1684
1685         fraction[0] = ap;
1686         fraction[1] = fp;
1687         denominator = ap + fp + 1;
1688 out:
1689         for_each_evictable_lru(lru) {
1690                 int file = is_file_lru(lru);
1691                 unsigned long scan;
1692
1693                 scan = get_lru_size(lruvec, lru);
1694                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1695                         scan >>= sc->priority;
1696                         if (!scan && force_scan)
1697                                 scan = SWAP_CLUSTER_MAX;
1698                         scan = div64_u64(scan * fraction[file], denominator);
1699                 }
1700                 nr[lru] = scan;
1701         }
1702 }
1703
1704 /* Use reclaim/compaction for costly allocs or under memory pressure */
1705 static bool in_reclaim_compaction(struct scan_control *sc)
1706 {
1707         if (COMPACTION_BUILD && sc->order &&
1708                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1709                          sc->priority < DEF_PRIORITY - 2))
1710                 return true;
1711
1712         return false;
1713 }
1714
1715 /*
1716  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1717  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1718  * true if more pages should be reclaimed such that when the page allocator
1719  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1720  * It will give up earlier than that if there is difficulty reclaiming pages.
1721  */
1722 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1723                                         unsigned long nr_reclaimed,
1724                                         unsigned long nr_scanned,
1725                                         struct scan_control *sc)
1726 {
1727         unsigned long pages_for_compaction;
1728         unsigned long inactive_lru_pages;
1729
1730         /* If not in reclaim/compaction mode, stop */
1731         if (!in_reclaim_compaction(sc))
1732                 return false;
1733
1734         /* Consider stopping depending on scan and reclaim activity */
1735         if (sc->gfp_mask & __GFP_REPEAT) {
1736                 /*
1737                  * For __GFP_REPEAT allocations, stop reclaiming if the
1738                  * full LRU list has been scanned and we are still failing
1739                  * to reclaim pages. This full LRU scan is potentially
1740                  * expensive but a __GFP_REPEAT caller really wants to succeed
1741                  */
1742                 if (!nr_reclaimed && !nr_scanned)
1743                         return false;
1744         } else {
1745                 /*
1746                  * For non-__GFP_REPEAT allocations which can presumably
1747                  * fail without consequence, stop if we failed to reclaim
1748                  * any pages from the last SWAP_CLUSTER_MAX number of
1749                  * pages that were scanned. This will return to the
1750                  * caller faster at the risk reclaim/compaction and
1751                  * the resulting allocation attempt fails
1752                  */
1753                 if (!nr_reclaimed)
1754                         return false;
1755         }
1756
1757         /*
1758          * If we have not reclaimed enough pages for compaction and the
1759          * inactive lists are large enough, continue reclaiming
1760          */
1761         pages_for_compaction = (2UL << sc->order);
1762         inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1763         if (nr_swap_pages > 0)
1764                 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1765         if (sc->nr_reclaimed < pages_for_compaction &&
1766                         inactive_lru_pages > pages_for_compaction)
1767                 return true;
1768
1769         /* If compaction would go ahead or the allocation would succeed, stop */
1770         switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1771         case COMPACT_PARTIAL:
1772         case COMPACT_CONTINUE:
1773                 return false;
1774         default:
1775                 return true;
1776         }
1777 }
1778
1779 /*
1780  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1781  */
1782 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1783 {
1784         unsigned long nr[NR_LRU_LISTS];
1785         unsigned long nr_to_scan;
1786         enum lru_list lru;
1787         unsigned long nr_reclaimed, nr_scanned;
1788         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1789         struct blk_plug plug;
1790
1791 restart:
1792         nr_reclaimed = 0;
1793         nr_scanned = sc->nr_scanned;
1794         get_scan_count(lruvec, sc, nr);
1795
1796         blk_start_plug(&plug);
1797         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1798                                         nr[LRU_INACTIVE_FILE]) {
1799                 for_each_evictable_lru(lru) {
1800                         if (nr[lru]) {
1801                                 nr_to_scan = min_t(unsigned long,
1802                                                    nr[lru], SWAP_CLUSTER_MAX);
1803                                 nr[lru] -= nr_to_scan;
1804
1805                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1806                                                             lruvec, sc);
1807                         }
1808                 }
1809                 /*
1810                  * On large memory systems, scan >> priority can become
1811                  * really large. This is fine for the starting priority;
1812                  * we want to put equal scanning pressure on each zone.
1813                  * However, if the VM has a harder time of freeing pages,
1814                  * with multiple processes reclaiming pages, the total
1815                  * freeing target can get unreasonably large.
1816                  */
1817                 if (nr_reclaimed >= nr_to_reclaim &&
1818                     sc->priority < DEF_PRIORITY)
1819                         break;
1820         }
1821         blk_finish_plug(&plug);
1822         sc->nr_reclaimed += nr_reclaimed;
1823
1824         /*
1825          * Even if we did not try to evict anon pages at all, we want to
1826          * rebalance the anon lru active/inactive ratio.
1827          */
1828         if (inactive_anon_is_low(lruvec))
1829                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1830                                    sc, LRU_ACTIVE_ANON);
1831
1832         /* reclaim/compaction might need reclaim to continue */
1833         if (should_continue_reclaim(lruvec, nr_reclaimed,
1834                                     sc->nr_scanned - nr_scanned, sc))
1835                 goto restart;
1836
1837         throttle_vm_writeout(sc->gfp_mask);
1838 }
1839
1840 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1841 {
1842         struct mem_cgroup *root = sc->target_mem_cgroup;
1843         struct mem_cgroup_reclaim_cookie reclaim = {
1844                 .zone = zone,
1845                 .priority = sc->priority,
1846         };
1847         struct mem_cgroup *memcg;
1848
1849         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1850         do {
1851                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1852
1853                 shrink_lruvec(lruvec, sc);
1854
1855                 /*
1856                  * Limit reclaim has historically picked one memcg and
1857                  * scanned it with decreasing priority levels until
1858                  * nr_to_reclaim had been reclaimed.  This priority
1859                  * cycle is thus over after a single memcg.
1860                  *
1861                  * Direct reclaim and kswapd, on the other hand, have
1862                  * to scan all memory cgroups to fulfill the overall
1863                  * scan target for the zone.
1864                  */
1865                 if (!global_reclaim(sc)) {
1866                         mem_cgroup_iter_break(root, memcg);
1867                         break;
1868                 }
1869                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1870         } while (memcg);
1871 }
1872
1873 /* Returns true if compaction should go ahead for a high-order request */
1874 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1875 {
1876         unsigned long balance_gap, watermark;
1877         bool watermark_ok;
1878
1879         /* Do not consider compaction for orders reclaim is meant to satisfy */
1880         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1881                 return false;
1882
1883         /*
1884          * Compaction takes time to run and there are potentially other
1885          * callers using the pages just freed. Continue reclaiming until
1886          * there is a buffer of free pages available to give compaction
1887          * a reasonable chance of completing and allocating the page
1888          */
1889         balance_gap = min(low_wmark_pages(zone),
1890                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1891                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1892         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1893         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1894
1895         /*
1896          * If compaction is deferred, reclaim up to a point where
1897          * compaction will have a chance of success when re-enabled
1898          */
1899         if (compaction_deferred(zone, sc->order))
1900                 return watermark_ok;
1901
1902         /* If compaction is not ready to start, keep reclaiming */
1903         if (!compaction_suitable(zone, sc->order))
1904                 return false;
1905
1906         return watermark_ok;
1907 }
1908
1909 /*
1910  * This is the direct reclaim path, for page-allocating processes.  We only
1911  * try to reclaim pages from zones which will satisfy the caller's allocation
1912  * request.
1913  *
1914  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1915  * Because:
1916  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1917  *    allocation or
1918  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1919  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1920  *    zone defense algorithm.
1921  *
1922  * If a zone is deemed to be full of pinned pages then just give it a light
1923  * scan then give up on it.
1924  *
1925  * This function returns true if a zone is being reclaimed for a costly
1926  * high-order allocation and compaction is ready to begin. This indicates to
1927  * the caller that it should consider retrying the allocation instead of
1928  * further reclaim.
1929  */
1930 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1931 {
1932         struct zoneref *z;
1933         struct zone *zone;
1934         unsigned long nr_soft_reclaimed;
1935         unsigned long nr_soft_scanned;
1936         bool aborted_reclaim = false;
1937
1938         /*
1939          * If the number of buffer_heads in the machine exceeds the maximum
1940          * allowed level, force direct reclaim to scan the highmem zone as
1941          * highmem pages could be pinning lowmem pages storing buffer_heads
1942          */
1943         if (buffer_heads_over_limit)
1944                 sc->gfp_mask |= __GFP_HIGHMEM;
1945
1946         for_each_zone_zonelist_nodemask(zone, z, zonelist,
1947                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
1948                 if (!populated_zone(zone))
1949                         continue;
1950                 /*
1951                  * Take care memory controller reclaiming has small influence
1952                  * to global LRU.
1953                  */
1954                 if (global_reclaim(sc)) {
1955                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1956                                 continue;
1957                         if (zone->all_unreclaimable &&
1958                                         sc->priority != DEF_PRIORITY)
1959                                 continue;       /* Let kswapd poll it */
1960                         if (COMPACTION_BUILD) {
1961                                 /*
1962                                  * If we already have plenty of memory free for
1963                                  * compaction in this zone, don't free any more.
1964                                  * Even though compaction is invoked for any
1965                                  * non-zero order, only frequent costly order
1966                                  * reclamation is disruptive enough to become a
1967                                  * noticeable problem, like transparent huge
1968                                  * page allocations.
1969                                  */
1970                                 if (compaction_ready(zone, sc)) {
1971                                         aborted_reclaim = true;
1972                                         continue;
1973                                 }
1974                         }
1975                         /*
1976                          * This steals pages from memory cgroups over softlimit
1977                          * and returns the number of reclaimed pages and
1978                          * scanned pages. This works for global memory pressure
1979                          * and balancing, not for a memcg's limit.
1980                          */
1981                         nr_soft_scanned = 0;
1982                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1983                                                 sc->order, sc->gfp_mask,
1984                                                 &nr_soft_scanned);
1985                         sc->nr_reclaimed += nr_soft_reclaimed;
1986                         sc->nr_scanned += nr_soft_scanned;
1987                         /* need some check for avoid more shrink_zone() */
1988                 }
1989
1990                 shrink_zone(zone, sc);
1991         }
1992
1993         return aborted_reclaim;
1994 }
1995
1996 static bool zone_reclaimable(struct zone *zone)
1997 {
1998         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1999 }
2000
2001 /* All zones in zonelist are unreclaimable? */
2002 static bool all_unreclaimable(struct zonelist *zonelist,
2003                 struct scan_control *sc)
2004 {
2005         struct zoneref *z;
2006         struct zone *zone;
2007
2008         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2009                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2010                 if (!populated_zone(zone))
2011                         continue;
2012                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2013                         continue;
2014                 if (!zone->all_unreclaimable)
2015                         return false;
2016         }
2017
2018         return true;
2019 }
2020
2021 /*
2022  * This is the main entry point to direct page reclaim.
2023  *
2024  * If a full scan of the inactive list fails to free enough memory then we
2025  * are "out of memory" and something needs to be killed.
2026  *
2027  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2028  * high - the zone may be full of dirty or under-writeback pages, which this
2029  * caller can't do much about.  We kick the writeback threads and take explicit
2030  * naps in the hope that some of these pages can be written.  But if the
2031  * allocating task holds filesystem locks which prevent writeout this might not
2032  * work, and the allocation attempt will fail.
2033  *
2034  * returns:     0, if no pages reclaimed
2035  *              else, the number of pages reclaimed
2036  */
2037 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2038                                         struct scan_control *sc,
2039                                         struct shrink_control *shrink)
2040 {
2041         unsigned long total_scanned = 0;
2042         struct reclaim_state *reclaim_state = current->reclaim_state;
2043         struct zoneref *z;
2044         struct zone *zone;
2045         unsigned long writeback_threshold;
2046         bool aborted_reclaim;
2047
2048         delayacct_freepages_start();
2049
2050         if (global_reclaim(sc))
2051                 count_vm_event(ALLOCSTALL);
2052
2053         do {
2054                 sc->nr_scanned = 0;
2055                 aborted_reclaim = shrink_zones(zonelist, sc);
2056
2057                 /*
2058                  * Don't shrink slabs when reclaiming memory from
2059                  * over limit cgroups
2060                  */
2061                 if (global_reclaim(sc)) {
2062                         unsigned long lru_pages = 0;
2063                         for_each_zone_zonelist(zone, z, zonelist,
2064                                         gfp_zone(sc->gfp_mask)) {
2065                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2066                                         continue;
2067
2068                                 lru_pages += zone_reclaimable_pages(zone);
2069                         }
2070
2071                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2072                         if (reclaim_state) {
2073                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2074                                 reclaim_state->reclaimed_slab = 0;
2075                         }
2076                 }
2077                 total_scanned += sc->nr_scanned;
2078                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2079                         goto out;
2080
2081                 /*
2082                  * Try to write back as many pages as we just scanned.  This
2083                  * tends to cause slow streaming writers to write data to the
2084                  * disk smoothly, at the dirtying rate, which is nice.   But
2085                  * that's undesirable in laptop mode, where we *want* lumpy
2086                  * writeout.  So in laptop mode, write out the whole world.
2087                  */
2088                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2089                 if (total_scanned > writeback_threshold) {
2090                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2091                                                 WB_REASON_TRY_TO_FREE_PAGES);
2092                         sc->may_writepage = 1;
2093                 }
2094
2095                 /* Take a nap, wait for some writeback to complete */
2096                 if (!sc->hibernation_mode && sc->nr_scanned &&
2097                     sc->priority < DEF_PRIORITY - 2) {
2098                         struct zone *preferred_zone;
2099
2100                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2101                                                 &cpuset_current_mems_allowed,
2102                                                 &preferred_zone);
2103                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2104                 }
2105         } while (--sc->priority >= 0);
2106
2107 out:
2108         delayacct_freepages_end();
2109
2110         if (sc->nr_reclaimed)
2111                 return sc->nr_reclaimed;
2112
2113         /*
2114          * As hibernation is going on, kswapd is freezed so that it can't mark
2115          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2116          * check.
2117          */
2118         if (oom_killer_disabled)
2119                 return 0;
2120
2121         /* Aborted reclaim to try compaction? don't OOM, then */
2122         if (aborted_reclaim)
2123                 return 1;
2124
2125         /* top priority shrink_zones still had more to do? don't OOM, then */
2126         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2127                 return 1;
2128
2129         return 0;
2130 }
2131
2132 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2133 {
2134         struct zone *zone;
2135         unsigned long pfmemalloc_reserve = 0;
2136         unsigned long free_pages = 0;
2137         int i;
2138         bool wmark_ok;
2139
2140         for (i = 0; i <= ZONE_NORMAL; i++) {
2141                 zone = &pgdat->node_zones[i];
2142                 pfmemalloc_reserve += min_wmark_pages(zone);
2143                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2144         }
2145
2146         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2147
2148         /* kswapd must be awake if processes are being throttled */
2149         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2150                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2151                                                 (enum zone_type)ZONE_NORMAL);
2152                 wake_up_interruptible(&pgdat->kswapd_wait);
2153         }
2154
2155         return wmark_ok;
2156 }
2157
2158 /*
2159  * Throttle direct reclaimers if backing storage is backed by the network
2160  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2161  * depleted. kswapd will continue to make progress and wake the processes
2162  * when the low watermark is reached
2163  */
2164 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2165                                         nodemask_t *nodemask)
2166 {
2167         struct zone *zone;
2168         int high_zoneidx = gfp_zone(gfp_mask);
2169         pg_data_t *pgdat;
2170
2171         /*
2172          * Kernel threads should not be throttled as they may be indirectly
2173          * responsible for cleaning pages necessary for reclaim to make forward
2174          * progress. kjournald for example may enter direct reclaim while
2175          * committing a transaction where throttling it could forcing other
2176          * processes to block on log_wait_commit().
2177          */
2178         if (current->flags & PF_KTHREAD)
2179                 return;
2180
2181         /* Check if the pfmemalloc reserves are ok */
2182         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2183         pgdat = zone->zone_pgdat;
2184         if (pfmemalloc_watermark_ok(pgdat))
2185                 return;
2186
2187         /* Account for the throttling */
2188         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2189
2190         /*
2191          * If the caller cannot enter the filesystem, it's possible that it
2192          * is due to the caller holding an FS lock or performing a journal
2193          * transaction in the case of a filesystem like ext[3|4]. In this case,
2194          * it is not safe to block on pfmemalloc_wait as kswapd could be
2195          * blocked waiting on the same lock. Instead, throttle for up to a
2196          * second before continuing.
2197          */
2198         if (!(gfp_mask & __GFP_FS)) {
2199                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2200                         pfmemalloc_watermark_ok(pgdat), HZ);
2201                 return;
2202         }
2203
2204         /* Throttle until kswapd wakes the process */
2205         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2206                 pfmemalloc_watermark_ok(pgdat));
2207 }
2208
2209 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2210                                 gfp_t gfp_mask, nodemask_t *nodemask)
2211 {
2212         unsigned long nr_reclaimed;
2213         struct scan_control sc = {
2214                 .gfp_mask = gfp_mask,
2215                 .may_writepage = !laptop_mode,
2216                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2217                 .may_unmap = 1,
2218                 .may_swap = 1,
2219                 .order = order,
2220                 .priority = DEF_PRIORITY,
2221                 .target_mem_cgroup = NULL,
2222                 .nodemask = nodemask,
2223         };
2224         struct shrink_control shrink = {
2225                 .gfp_mask = sc.gfp_mask,
2226         };
2227
2228         throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2229
2230         /*
2231          * Do not enter reclaim if fatal signal is pending. 1 is returned so
2232          * that the page allocator does not consider triggering OOM
2233          */
2234         if (fatal_signal_pending(current))
2235                 return 1;
2236
2237         trace_mm_vmscan_direct_reclaim_begin(order,
2238                                 sc.may_writepage,
2239                                 gfp_mask);
2240
2241         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2242
2243         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2244
2245         return nr_reclaimed;
2246 }
2247
2248 #ifdef CONFIG_MEMCG
2249
2250 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2251                                                 gfp_t gfp_mask, bool noswap,
2252                                                 struct zone *zone,
2253                                                 unsigned long *nr_scanned)
2254 {
2255         struct scan_control sc = {
2256                 .nr_scanned = 0,
2257                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2258                 .may_writepage = !laptop_mode,
2259                 .may_unmap = 1,
2260                 .may_swap = !noswap,
2261                 .order = 0,
2262                 .priority = 0,
2263                 .target_mem_cgroup = memcg,
2264         };
2265         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2266
2267         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2268                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2269
2270         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2271                                                       sc.may_writepage,
2272                                                       sc.gfp_mask);
2273
2274         /*
2275          * NOTE: Although we can get the priority field, using it
2276          * here is not a good idea, since it limits the pages we can scan.
2277          * if we don't reclaim here, the shrink_zone from balance_pgdat
2278          * will pick up pages from other mem cgroup's as well. We hack
2279          * the priority and make it zero.
2280          */
2281         shrink_lruvec(lruvec, &sc);
2282
2283         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2284
2285         *nr_scanned = sc.nr_scanned;
2286         return sc.nr_reclaimed;
2287 }
2288
2289 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2290                                            gfp_t gfp_mask,
2291                                            bool noswap)
2292 {
2293         struct zonelist *zonelist;
2294         unsigned long nr_reclaimed;
2295         int nid;
2296         struct scan_control sc = {
2297                 .may_writepage = !laptop_mode,
2298                 .may_unmap = 1,
2299                 .may_swap = !noswap,
2300                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2301                 .order = 0,
2302                 .priority = DEF_PRIORITY,
2303                 .target_mem_cgroup = memcg,
2304                 .nodemask = NULL, /* we don't care the placement */
2305                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2306                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2307         };
2308         struct shrink_control shrink = {
2309                 .gfp_mask = sc.gfp_mask,
2310         };
2311
2312         /*
2313          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314          * take care of from where we get pages. So the node where we start the
2315          * scan does not need to be the current node.
2316          */
2317         nid = mem_cgroup_select_victim_node(memcg);
2318
2319         zonelist = NODE_DATA(nid)->node_zonelists;
2320
2321         trace_mm_vmscan_memcg_reclaim_begin(0,
2322                                             sc.may_writepage,
2323                                             sc.gfp_mask);
2324
2325         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2326
2327         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2328
2329         return nr_reclaimed;
2330 }
2331 #endif
2332
2333 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2334 {
2335         struct mem_cgroup *memcg;
2336
2337         if (!total_swap_pages)
2338                 return;
2339
2340         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2341         do {
2342                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2343
2344                 if (inactive_anon_is_low(lruvec))
2345                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2346                                            sc, LRU_ACTIVE_ANON);
2347
2348                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2349         } while (memcg);
2350 }
2351
2352 /*
2353  * pgdat_balanced is used when checking if a node is balanced for high-order
2354  * allocations. Only zones that meet watermarks and are in a zone allowed
2355  * by the callers classzone_idx are added to balanced_pages. The total of
2356  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2357  * for the node to be considered balanced. Forcing all zones to be balanced
2358  * for high orders can cause excessive reclaim when there are imbalanced zones.
2359  * The choice of 25% is due to
2360  *   o a 16M DMA zone that is balanced will not balance a zone on any
2361  *     reasonable sized machine
2362  *   o On all other machines, the top zone must be at least a reasonable
2363  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2364  *     would need to be at least 256M for it to be balance a whole node.
2365  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2366  *     to balance a node on its own. These seemed like reasonable ratios.
2367  */
2368 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2369                                                 int classzone_idx)
2370 {
2371         unsigned long present_pages = 0;
2372         int i;
2373
2374         for (i = 0; i <= classzone_idx; i++)
2375                 present_pages += pgdat->node_zones[i].present_pages;
2376
2377         /* A special case here: if zone has no page, we think it's balanced */
2378         return balanced_pages >= (present_pages >> 2);
2379 }
2380
2381 /*
2382  * Prepare kswapd for sleeping. This verifies that there are no processes
2383  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2384  *
2385  * Returns true if kswapd is ready to sleep
2386  */
2387 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2388                                         int classzone_idx)
2389 {
2390         int i;
2391         unsigned long balanced = 0;
2392         bool all_zones_ok = true;
2393
2394         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2395         if (remaining)
2396                 return false;
2397
2398         /*
2399          * There is a potential race between when kswapd checks its watermarks
2400          * and a process gets throttled. There is also a potential race if
2401          * processes get throttled, kswapd wakes, a large process exits therby
2402          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2403          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2404          * so wake them now if necessary. If necessary, processes will wake
2405          * kswapd and get throttled again
2406          */
2407         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2408                 wake_up(&pgdat->pfmemalloc_wait);
2409                 return false;
2410         }
2411
2412         /* Check the watermark levels */
2413         for (i = 0; i <= classzone_idx; i++) {
2414                 struct zone *zone = pgdat->node_zones + i;
2415
2416                 if (!populated_zone(zone))
2417                         continue;
2418
2419                 /*
2420                  * balance_pgdat() skips over all_unreclaimable after
2421                  * DEF_PRIORITY. Effectively, it considers them balanced so
2422                  * they must be considered balanced here as well if kswapd
2423                  * is to sleep
2424                  */
2425                 if (zone->all_unreclaimable) {
2426                         balanced += zone->present_pages;
2427                         continue;
2428                 }
2429
2430                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2431                                                         i, 0))
2432                         all_zones_ok = false;
2433                 else
2434                         balanced += zone->present_pages;
2435         }
2436
2437         /*
2438          * For high-order requests, the balanced zones must contain at least
2439          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2440          * must be balanced
2441          */
2442         if (order)
2443                 return pgdat_balanced(pgdat, balanced, classzone_idx);
2444         else
2445                 return all_zones_ok;
2446 }
2447
2448 /*
2449  * For kswapd, balance_pgdat() will work across all this node's zones until
2450  * they are all at high_wmark_pages(zone).
2451  *
2452  * Returns the final order kswapd was reclaiming at
2453  *
2454  * There is special handling here for zones which are full of pinned pages.
2455  * This can happen if the pages are all mlocked, or if they are all used by
2456  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2457  * What we do is to detect the case where all pages in the zone have been
2458  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2459  * dead and from now on, only perform a short scan.  Basically we're polling
2460  * the zone for when the problem goes away.
2461  *
2462  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2463  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2464  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2465  * lower zones regardless of the number of free pages in the lower zones. This
2466  * interoperates with the page allocator fallback scheme to ensure that aging
2467  * of pages is balanced across the zones.
2468  */
2469 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2470                                                         int *classzone_idx)
2471 {
2472         int all_zones_ok;
2473         unsigned long balanced;
2474         int i;
2475         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2476         unsigned long total_scanned;
2477         struct reclaim_state *reclaim_state = current->reclaim_state;
2478         unsigned long nr_soft_reclaimed;
2479         unsigned long nr_soft_scanned;
2480         struct scan_control sc = {
2481                 .gfp_mask = GFP_KERNEL,
2482                 .may_unmap = 1,
2483                 .may_swap = 1,
2484                 /*
2485                  * kswapd doesn't want to be bailed out while reclaim. because
2486                  * we want to put equal scanning pressure on each zone.
2487                  */
2488                 .nr_to_reclaim = ULONG_MAX,
2489                 .order = order,
2490                 .target_mem_cgroup = NULL,
2491         };
2492         struct shrink_control shrink = {
2493                 .gfp_mask = sc.gfp_mask,
2494         };
2495 loop_again:
2496         total_scanned = 0;
2497         sc.priority = DEF_PRIORITY;
2498         sc.nr_reclaimed = 0;
2499         sc.may_writepage = !laptop_mode;
2500         count_vm_event(PAGEOUTRUN);
2501
2502         do {
2503                 unsigned long lru_pages = 0;
2504                 int has_under_min_watermark_zone = 0;
2505
2506                 all_zones_ok = 1;
2507                 balanced = 0;
2508
2509                 /*
2510                  * Scan in the highmem->dma direction for the highest
2511                  * zone which needs scanning
2512                  */
2513                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2514                         struct zone *zone = pgdat->node_zones + i;
2515
2516                         if (!populated_zone(zone))
2517                                 continue;
2518
2519                         if (zone->all_unreclaimable &&
2520                             sc.priority != DEF_PRIORITY)
2521                                 continue;
2522
2523                         /*
2524                          * Do some background aging of the anon list, to give
2525                          * pages a chance to be referenced before reclaiming.
2526                          */
2527                         age_active_anon(zone, &sc);
2528
2529                         /*
2530                          * If the number of buffer_heads in the machine
2531                          * exceeds the maximum allowed level and this node
2532                          * has a highmem zone, force kswapd to reclaim from
2533                          * it to relieve lowmem pressure.
2534                          */
2535                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2536                                 end_zone = i;
2537                                 break;
2538                         }
2539
2540                         if (!zone_watermark_ok_safe(zone, order,
2541                                         high_wmark_pages(zone), 0, 0)) {
2542                                 end_zone = i;
2543                                 break;
2544                         } else {
2545                                 /* If balanced, clear the congested flag */
2546                                 zone_clear_flag(zone, ZONE_CONGESTED);
2547                         }
2548                 }
2549                 if (i < 0)
2550                         goto out;
2551
2552                 for (i = 0; i <= end_zone; i++) {
2553                         struct zone *zone = pgdat->node_zones + i;
2554
2555                         lru_pages += zone_reclaimable_pages(zone);
2556                 }
2557
2558                 /*
2559                  * Now scan the zone in the dma->highmem direction, stopping
2560                  * at the last zone which needs scanning.
2561                  *
2562                  * We do this because the page allocator works in the opposite
2563                  * direction.  This prevents the page allocator from allocating
2564                  * pages behind kswapd's direction of progress, which would
2565                  * cause too much scanning of the lower zones.
2566                  */
2567                 for (i = 0; i <= end_zone; i++) {
2568                         struct zone *zone = pgdat->node_zones + i;
2569                         int nr_slab, testorder;
2570                         unsigned long balance_gap;
2571
2572                         if (!populated_zone(zone))
2573                                 continue;
2574
2575                         if (zone->all_unreclaimable &&
2576                             sc.priority != DEF_PRIORITY)
2577                                 continue;
2578
2579                         sc.nr_scanned = 0;
2580
2581                         nr_soft_scanned = 0;
2582                         /*
2583                          * Call soft limit reclaim before calling shrink_zone.
2584                          */
2585                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2586                                                         order, sc.gfp_mask,
2587                                                         &nr_soft_scanned);
2588                         sc.nr_reclaimed += nr_soft_reclaimed;
2589                         total_scanned += nr_soft_scanned;
2590
2591                         /*
2592                          * We put equal pressure on every zone, unless
2593                          * one zone has way too many pages free
2594                          * already. The "too many pages" is defined
2595                          * as the high wmark plus a "gap" where the
2596                          * gap is either the low watermark or 1%
2597                          * of the zone, whichever is smaller.
2598                          */
2599                         balance_gap = min(low_wmark_pages(zone),
2600                                 (zone->present_pages +
2601                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2602                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2603                         /*
2604                          * Kswapd reclaims only single pages with compaction
2605                          * enabled. Trying too hard to reclaim until contiguous
2606                          * free pages have become available can hurt performance
2607                          * by evicting too much useful data from memory.
2608                          * Do not reclaim more than needed for compaction.
2609                          */
2610                         testorder = order;
2611                         if (COMPACTION_BUILD && order &&
2612                                         compaction_suitable(zone, order) !=
2613                                                 COMPACT_SKIPPED)
2614                                 testorder = 0;
2615
2616                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2617                                     !zone_watermark_ok_safe(zone, testorder,
2618                                         high_wmark_pages(zone) + balance_gap,
2619                                         end_zone, 0)) {
2620                                 shrink_zone(zone, &sc);
2621
2622                                 reclaim_state->reclaimed_slab = 0;
2623                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2624                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2625                                 total_scanned += sc.nr_scanned;
2626
2627                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2628                                         zone->all_unreclaimable = 1;
2629                         }
2630
2631                         /*
2632                          * If we've done a decent amount of scanning and
2633                          * the reclaim ratio is low, start doing writepage
2634                          * even in laptop mode
2635                          */
2636                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2637                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2638                                 sc.may_writepage = 1;
2639
2640                         if (zone->all_unreclaimable) {
2641                                 if (end_zone && end_zone == i)
2642                                         end_zone--;
2643                                 continue;
2644                         }
2645
2646                         if (!zone_watermark_ok_safe(zone, testorder,
2647                                         high_wmark_pages(zone), end_zone, 0)) {
2648                                 all_zones_ok = 0;
2649                                 /*
2650                                  * We are still under min water mark.  This
2651                                  * means that we have a GFP_ATOMIC allocation
2652                                  * failure risk. Hurry up!
2653                                  */
2654                                 if (!zone_watermark_ok_safe(zone, order,
2655                                             min_wmark_pages(zone), end_zone, 0))
2656                                         has_under_min_watermark_zone = 1;
2657                         } else {
2658                                 /*
2659                                  * If a zone reaches its high watermark,
2660                                  * consider it to be no longer congested. It's
2661                                  * possible there are dirty pages backed by
2662                                  * congested BDIs but as pressure is relieved,
2663                                  * speculatively avoid congestion waits
2664                                  */
2665                                 zone_clear_flag(zone, ZONE_CONGESTED);
2666                                 if (i <= *classzone_idx)
2667                                         balanced += zone->present_pages;
2668                         }
2669
2670                 }
2671
2672                 /*
2673                  * If the low watermark is met there is no need for processes
2674                  * to be throttled on pfmemalloc_wait as they should not be
2675                  * able to safely make forward progress. Wake them
2676                  */
2677                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2678                                 pfmemalloc_watermark_ok(pgdat))
2679                         wake_up(&pgdat->pfmemalloc_wait);
2680
2681                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2682                         break;          /* kswapd: all done */
2683                 /*
2684                  * OK, kswapd is getting into trouble.  Take a nap, then take
2685                  * another pass across the zones.
2686                  */
2687                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2688                         if (has_under_min_watermark_zone)
2689                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2690                         else
2691                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2692                 }
2693
2694                 /*
2695                  * We do this so kswapd doesn't build up large priorities for
2696                  * example when it is freeing in parallel with allocators. It
2697                  * matches the direct reclaim path behaviour in terms of impact
2698                  * on zone->*_priority.
2699                  */
2700                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2701                         break;
2702         } while (--sc.priority >= 0);
2703 out:
2704
2705         /*
2706          * order-0: All zones must meet high watermark for a balanced node
2707          * high-order: Balanced zones must make up at least 25% of the node
2708          *             for the node to be balanced
2709          */
2710         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2711                 cond_resched();
2712
2713                 try_to_freeze();
2714
2715                 /*
2716                  * Fragmentation may mean that the system cannot be
2717                  * rebalanced for high-order allocations in all zones.
2718                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2719                  * it means the zones have been fully scanned and are still
2720                  * not balanced. For high-order allocations, there is
2721                  * little point trying all over again as kswapd may
2722                  * infinite loop.
2723                  *
2724                  * Instead, recheck all watermarks at order-0 as they
2725                  * are the most important. If watermarks are ok, kswapd will go
2726                  * back to sleep. High-order users can still perform direct
2727                  * reclaim if they wish.
2728                  */
2729                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2730                         order = sc.order = 0;
2731
2732                 goto loop_again;
2733         }
2734
2735         /*
2736          * If kswapd was reclaiming at a higher order, it has the option of
2737          * sleeping without all zones being balanced. Before it does, it must
2738          * ensure that the watermarks for order-0 on *all* zones are met and
2739          * that the congestion flags are cleared. The congestion flag must
2740          * be cleared as kswapd is the only mechanism that clears the flag
2741          * and it is potentially going to sleep here.
2742          */
2743         if (order) {
2744                 int zones_need_compaction = 1;
2745
2746                 for (i = 0; i <= end_zone; i++) {
2747                         struct zone *zone = pgdat->node_zones + i;
2748
2749                         if (!populated_zone(zone))
2750                                 continue;
2751
2752                         if (zone->all_unreclaimable &&
2753                             sc.priority != DEF_PRIORITY)
2754                                 continue;
2755
2756                         /* Would compaction fail due to lack of free memory? */
2757                         if (COMPACTION_BUILD &&
2758                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2759                                 goto loop_again;
2760
2761                         /* Confirm the zone is balanced for order-0 */
2762                         if (!zone_watermark_ok(zone, 0,
2763                                         high_wmark_pages(zone), 0, 0)) {
2764                                 order = sc.order = 0;
2765                                 goto loop_again;
2766                         }
2767
2768                         /* Check if the memory needs to be defragmented. */
2769                         if (zone_watermark_ok(zone, order,
2770                                     low_wmark_pages(zone), *classzone_idx, 0))
2771                                 zones_need_compaction = 0;
2772
2773                         /* If balanced, clear the congested flag */
2774                         zone_clear_flag(zone, ZONE_CONGESTED);
2775                 }
2776
2777                 if (zones_need_compaction)
2778                         compact_pgdat(pgdat, order);
2779         }
2780
2781         /*
2782          * Return the order we were reclaiming at so prepare_kswapd_sleep()
2783          * makes a decision on the order we were last reclaiming at. However,
2784          * if another caller entered the allocator slow path while kswapd
2785          * was awake, order will remain at the higher level
2786          */
2787         *classzone_idx = end_zone;
2788         return order;
2789 }
2790
2791 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2792 {
2793         long remaining = 0;
2794         DEFINE_WAIT(wait);
2795
2796         if (freezing(current) || kthread_should_stop())
2797                 return;
2798
2799         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2800
2801         /* Try to sleep for a short interval */
2802         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2803                 remaining = schedule_timeout(HZ/10);
2804                 finish_wait(&pgdat->kswapd_wait, &wait);
2805                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2806         }
2807
2808         /*
2809          * After a short sleep, check if it was a premature sleep. If not, then
2810          * go fully to sleep until explicitly woken up.
2811          */
2812         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2813                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2814
2815                 /*
2816                  * vmstat counters are not perfectly accurate and the estimated
2817                  * value for counters such as NR_FREE_PAGES can deviate from the
2818                  * true value by nr_online_cpus * threshold. To avoid the zone
2819                  * watermarks being breached while under pressure, we reduce the
2820                  * per-cpu vmstat threshold while kswapd is awake and restore
2821                  * them before going back to sleep.
2822                  */
2823                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2824
2825                 if (!kthread_should_stop())
2826                         schedule();
2827
2828                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2829         } else {
2830                 if (remaining)
2831                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2832                 else
2833                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2834         }
2835         finish_wait(&pgdat->kswapd_wait, &wait);
2836 }
2837
2838 /*
2839  * The background pageout daemon, started as a kernel thread
2840  * from the init process.
2841  *
2842  * This basically trickles out pages so that we have _some_
2843  * free memory available even if there is no other activity
2844  * that frees anything up. This is needed for things like routing
2845  * etc, where we otherwise might have all activity going on in
2846  * asynchronous contexts that cannot page things out.
2847  *
2848  * If there are applications that are active memory-allocators
2849  * (most normal use), this basically shouldn't matter.
2850  */
2851 static int kswapd(void *p)
2852 {
2853         unsigned long order, new_order;
2854         unsigned balanced_order;
2855         int classzone_idx, new_classzone_idx;
2856         int balanced_classzone_idx;
2857         pg_data_t *pgdat = (pg_data_t*)p;
2858         struct task_struct *tsk = current;
2859
2860         struct reclaim_state reclaim_state = {
2861                 .reclaimed_slab = 0,
2862         };
2863         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2864
2865         lockdep_set_current_reclaim_state(GFP_KERNEL);
2866
2867         if (!cpumask_empty(cpumask))
2868                 set_cpus_allowed_ptr(tsk, cpumask);
2869         current->reclaim_state = &reclaim_state;
2870
2871         /*
2872          * Tell the memory management that we're a "memory allocator",
2873          * and that if we need more memory we should get access to it
2874          * regardless (see "__alloc_pages()"). "kswapd" should
2875          * never get caught in the normal page freeing logic.
2876          *
2877          * (Kswapd normally doesn't need memory anyway, but sometimes
2878          * you need a small amount of memory in order to be able to
2879          * page out something else, and this flag essentially protects
2880          * us from recursively trying to free more memory as we're
2881          * trying to free the first piece of memory in the first place).
2882          */
2883         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2884         set_freezable();
2885
2886         order = new_order = 0;
2887         balanced_order = 0;
2888         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2889         balanced_classzone_idx = classzone_idx;
2890         for ( ; ; ) {
2891                 int ret;
2892
2893                 /*
2894                  * If the last balance_pgdat was unsuccessful it's unlikely a
2895                  * new request of a similar or harder type will succeed soon
2896                  * so consider going to sleep on the basis we reclaimed at
2897                  */
2898                 if (balanced_classzone_idx >= new_classzone_idx &&
2899                                         balanced_order == new_order) {
2900                         new_order = pgdat->kswapd_max_order;
2901                         new_classzone_idx = pgdat->classzone_idx;
2902                         pgdat->kswapd_max_order =  0;
2903                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2904                 }
2905
2906                 if (order < new_order || classzone_idx > new_classzone_idx) {
2907                         /*
2908                          * Don't sleep if someone wants a larger 'order'
2909                          * allocation or has tigher zone constraints
2910                          */
2911                         order = new_order;
2912                         classzone_idx = new_classzone_idx;
2913                 } else {
2914                         kswapd_try_to_sleep(pgdat, balanced_order,
2915                                                 balanced_classzone_idx);
2916                         order = pgdat->kswapd_max_order;
2917                         classzone_idx = pgdat->classzone_idx;
2918                         new_order = order;
2919                         new_classzone_idx = classzone_idx;
2920                         pgdat->kswapd_max_order = 0;
2921                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2922                 }
2923
2924                 ret = try_to_freeze();
2925                 if (kthread_should_stop())
2926                         break;
2927
2928                 /*
2929                  * We can speed up thawing tasks if we don't call balance_pgdat
2930                  * after returning from the refrigerator
2931                  */
2932                 if (!ret) {
2933                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2934                         balanced_classzone_idx = classzone_idx;
2935                         balanced_order = balance_pgdat(pgdat, order,
2936                                                 &balanced_classzone_idx);
2937                 }
2938         }
2939         return 0;
2940 }
2941
2942 /*
2943  * A zone is low on free memory, so wake its kswapd task to service it.
2944  */
2945 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2946 {
2947         pg_data_t *pgdat;
2948
2949         if (!populated_zone(zone))
2950                 return;
2951
2952         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2953                 return;
2954         pgdat = zone->zone_pgdat;
2955         if (pgdat->kswapd_max_order < order) {
2956                 pgdat->kswapd_max_order = order;
2957                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2958         }
2959         if (!waitqueue_active(&pgdat->kswapd_wait))
2960                 return;
2961         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2962                 return;
2963
2964         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2965         wake_up_interruptible(&pgdat->kswapd_wait);
2966 }
2967
2968 /*
2969  * The reclaimable count would be mostly accurate.
2970  * The less reclaimable pages may be
2971  * - mlocked pages, which will be moved to unevictable list when encountered
2972  * - mapped pages, which may require several travels to be reclaimed
2973  * - dirty pages, which is not "instantly" reclaimable
2974  */
2975 unsigned long global_reclaimable_pages(void)
2976 {
2977         int nr;
2978
2979         nr = global_page_state(NR_ACTIVE_FILE) +
2980              global_page_state(NR_INACTIVE_FILE);
2981
2982         if (nr_swap_pages > 0)
2983                 nr += global_page_state(NR_ACTIVE_ANON) +
2984                       global_page_state(NR_INACTIVE_ANON);
2985
2986         return nr;
2987 }
2988
2989 unsigned long zone_reclaimable_pages(struct zone *zone)
2990 {
2991         int nr;
2992
2993         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2994              zone_page_state(zone, NR_INACTIVE_FILE);
2995
2996         if (nr_swap_pages > 0)
2997                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2998                       zone_page_state(zone, NR_INACTIVE_ANON);
2999
3000         return nr;
3001 }
3002
3003 #ifdef CONFIG_HIBERNATION
3004 /*
3005  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3006  * freed pages.
3007  *
3008  * Rather than trying to age LRUs the aim is to preserve the overall
3009  * LRU order by reclaiming preferentially
3010  * inactive > active > active referenced > active mapped
3011  */
3012 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3013 {
3014         struct reclaim_state reclaim_state;
3015         struct scan_control sc = {
3016                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3017                 .may_swap = 1,
3018                 .may_unmap = 1,
3019                 .may_writepage = 1,
3020                 .nr_to_reclaim = nr_to_reclaim,
3021                 .hibernation_mode = 1,
3022                 .order = 0,
3023                 .priority = DEF_PRIORITY,
3024         };
3025         struct shrink_control shrink = {
3026                 .gfp_mask = sc.gfp_mask,
3027         };
3028         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3029         struct task_struct *p = current;
3030         unsigned long nr_reclaimed;
3031
3032         p->flags |= PF_MEMALLOC;
3033         lockdep_set_current_reclaim_state(sc.gfp_mask);
3034         reclaim_state.reclaimed_slab = 0;
3035         p->reclaim_state = &reclaim_state;
3036
3037         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3038
3039         p->reclaim_state = NULL;
3040         lockdep_clear_current_reclaim_state();
3041         p->flags &= ~PF_MEMALLOC;
3042
3043         return nr_reclaimed;
3044 }
3045 #endif /* CONFIG_HIBERNATION */
3046
3047 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3048    not required for correctness.  So if the last cpu in a node goes
3049    away, we get changed to run anywhere: as the first one comes back,
3050    restore their cpu bindings. */
3051 static int __devinit cpu_callback(struct notifier_block *nfb,
3052                                   unsigned long action, void *hcpu)
3053 {
3054         int nid;
3055
3056         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3057                 for_each_node_state(nid, N_HIGH_MEMORY) {
3058                         pg_data_t *pgdat = NODE_DATA(nid);
3059                         const struct cpumask *mask;
3060
3061                         mask = cpumask_of_node(pgdat->node_id);
3062
3063                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3064                                 /* One of our CPUs online: restore mask */
3065                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3066                 }
3067         }
3068         return NOTIFY_OK;
3069 }
3070
3071 /*
3072  * This kswapd start function will be called by init and node-hot-add.
3073  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3074  */
3075 int kswapd_run(int nid)
3076 {
3077         pg_data_t *pgdat = NODE_DATA(nid);
3078         int ret = 0;
3079
3080         if (pgdat->kswapd)
3081                 return 0;
3082
3083         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3084         if (IS_ERR(pgdat->kswapd)) {
3085                 /* failure at boot is fatal */
3086                 BUG_ON(system_state == SYSTEM_BOOTING);
3087                 printk("Failed to start kswapd on node %d\n",nid);
3088                 ret = -1;
3089         }
3090         return ret;
3091 }
3092
3093 /*
3094  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3095  * hold lock_memory_hotplug().
3096  */
3097 void kswapd_stop(int nid)
3098 {
3099         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3100
3101         if (kswapd) {
3102                 kthread_stop(kswapd);
3103                 NODE_DATA(nid)->kswapd = NULL;
3104         }
3105 }
3106
3107 static int __init kswapd_init(void)
3108 {
3109         int nid;
3110
3111         swap_setup();
3112         for_each_node_state(nid, N_HIGH_MEMORY)
3113                 kswapd_run(nid);
3114         hotcpu_notifier(cpu_callback, 0);
3115         return 0;
3116 }
3117
3118 module_init(kswapd_init)
3119
3120 #ifdef CONFIG_NUMA
3121 /*
3122  * Zone reclaim mode
3123  *
3124  * If non-zero call zone_reclaim when the number of free pages falls below
3125  * the watermarks.
3126  */
3127 int zone_reclaim_mode __read_mostly;
3128
3129 #define RECLAIM_OFF 0
3130 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3131 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3132 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3133
3134 /*
3135  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3136  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3137  * a zone.
3138  */
3139 #define ZONE_RECLAIM_PRIORITY 4
3140
3141 /*
3142  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3143  * occur.
3144  */
3145 int sysctl_min_unmapped_ratio = 1;
3146
3147 /*
3148  * If the number of slab pages in a zone grows beyond this percentage then
3149  * slab reclaim needs to occur.
3150  */
3151 int sysctl_min_slab_ratio = 5;
3152
3153 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3154 {
3155         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3156         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3157                 zone_page_state(zone, NR_ACTIVE_FILE);
3158
3159         /*
3160          * It's possible for there to be more file mapped pages than
3161          * accounted for by the pages on the file LRU lists because
3162          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3163          */
3164         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3165 }
3166
3167 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3168 static long zone_pagecache_reclaimable(struct zone *zone)
3169 {
3170         long nr_pagecache_reclaimable;
3171         long delta = 0;
3172
3173         /*
3174          * If RECLAIM_SWAP is set, then all file pages are considered
3175          * potentially reclaimable. Otherwise, we have to worry about
3176          * pages like swapcache and zone_unmapped_file_pages() provides
3177          * a better estimate
3178          */
3179         if (zone_reclaim_mode & RECLAIM_SWAP)
3180                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3181         else
3182                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3183
3184         /* If we can't clean pages, remove dirty pages from consideration */
3185         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3186                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3187
3188         /* Watch for any possible underflows due to delta */
3189         if (unlikely(delta > nr_pagecache_reclaimable))
3190                 delta = nr_pagecache_reclaimable;
3191
3192         return nr_pagecache_reclaimable - delta;
3193 }
3194
3195 /*
3196  * Try to free up some pages from this zone through reclaim.
3197  */
3198 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3199 {
3200         /* Minimum pages needed in order to stay on node */
3201         const unsigned long nr_pages = 1 << order;
3202         struct task_struct *p = current;
3203         struct reclaim_state reclaim_state;
3204         struct scan_control sc = {
3205                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3206                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3207                 .may_swap = 1,
3208                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3209                                        SWAP_CLUSTER_MAX),
3210                 .gfp_mask = gfp_mask,
3211                 .order = order,
3212                 .priority = ZONE_RECLAIM_PRIORITY,
3213         };
3214         struct shrink_control shrink = {
3215                 .gfp_mask = sc.gfp_mask,
3216         };
3217         unsigned long nr_slab_pages0, nr_slab_pages1;
3218
3219         cond_resched();
3220         /*
3221          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3222          * and we also need to be able to write out pages for RECLAIM_WRITE
3223          * and RECLAIM_SWAP.
3224          */
3225         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3226         lockdep_set_current_reclaim_state(gfp_mask);
3227         reclaim_state.reclaimed_slab = 0;
3228         p->reclaim_state = &reclaim_state;
3229
3230         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3231                 /*
3232                  * Free memory by calling shrink zone with increasing
3233                  * priorities until we have enough memory freed.
3234                  */
3235                 do {
3236                         shrink_zone(zone, &sc);
3237                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3238         }
3239
3240         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3241         if (nr_slab_pages0 > zone->min_slab_pages) {
3242                 /*
3243                  * shrink_slab() does not currently allow us to determine how
3244                  * many pages were freed in this zone. So we take the current
3245                  * number of slab pages and shake the slab until it is reduced
3246                  * by the same nr_pages that we used for reclaiming unmapped
3247                  * pages.
3248                  *
3249                  * Note that shrink_slab will free memory on all zones and may
3250                  * take a long time.
3251                  */
3252                 for (;;) {
3253                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3254
3255                         /* No reclaimable slab or very low memory pressure */
3256                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3257                                 break;
3258
3259                         /* Freed enough memory */
3260                         nr_slab_pages1 = zone_page_state(zone,
3261                                                         NR_SLAB_RECLAIMABLE);
3262                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3263                                 break;
3264                 }
3265
3266                 /*
3267                  * Update nr_reclaimed by the number of slab pages we
3268                  * reclaimed from this zone.
3269                  */
3270                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3271                 if (nr_slab_pages1 < nr_slab_pages0)
3272                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3273         }
3274
3275         p->reclaim_state = NULL;
3276         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3277         lockdep_clear_current_reclaim_state();
3278         return sc.nr_reclaimed >= nr_pages;
3279 }
3280
3281 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3282 {
3283         int node_id;
3284         int ret;
3285
3286         /*
3287          * Zone reclaim reclaims unmapped file backed pages and
3288          * slab pages if we are over the defined limits.
3289          *
3290          * A small portion of unmapped file backed pages is needed for
3291          * file I/O otherwise pages read by file I/O will be immediately
3292          * thrown out if the zone is overallocated. So we do not reclaim
3293          * if less than a specified percentage of the zone is used by
3294          * unmapped file backed pages.
3295          */
3296         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3297             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3298                 return ZONE_RECLAIM_FULL;
3299
3300         if (zone->all_unreclaimable)
3301                 return ZONE_RECLAIM_FULL;
3302
3303         /*
3304          * Do not scan if the allocation should not be delayed.
3305          */
3306         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3307                 return ZONE_RECLAIM_NOSCAN;
3308
3309         /*
3310          * Only run zone reclaim on the local zone or on zones that do not
3311          * have associated processors. This will favor the local processor
3312          * over remote processors and spread off node memory allocations
3313          * as wide as possible.
3314          */
3315         node_id = zone_to_nid(zone);
3316         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3317                 return ZONE_RECLAIM_NOSCAN;
3318
3319         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3320                 return ZONE_RECLAIM_NOSCAN;
3321
3322         ret = __zone_reclaim(zone, gfp_mask, order);
3323         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3324
3325         if (!ret)
3326                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3327
3328         return ret;
3329 }
3330 #endif
3331
3332 /*
3333  * page_evictable - test whether a page is evictable
3334  * @page: the page to test
3335  * @vma: the VMA in which the page is or will be mapped, may be NULL
3336  *
3337  * Test whether page is evictable--i.e., should be placed on active/inactive
3338  * lists vs unevictable list.  The vma argument is !NULL when called from the
3339  * fault path to determine how to instantate a new page.
3340  *
3341  * Reasons page might not be evictable:
3342  * (1) page's mapping marked unevictable
3343  * (2) page is part of an mlocked VMA
3344  *
3345  */
3346 int page_evictable(struct page *page, struct vm_area_struct *vma)
3347 {
3348
3349         if (mapping_unevictable(page_mapping(page)))
3350                 return 0;
3351
3352         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3353                 return 0;
3354
3355         return 1;
3356 }
3357
3358 #ifdef CONFIG_SHMEM
3359 /**
3360  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3361  * @pages:      array of pages to check
3362  * @nr_pages:   number of pages to check
3363  *
3364  * Checks pages for evictability and moves them to the appropriate lru list.
3365  *
3366  * This function is only used for SysV IPC SHM_UNLOCK.
3367  */
3368 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3369 {
3370         struct lruvec *lruvec;
3371         struct zone *zone = NULL;
3372         int pgscanned = 0;
3373         int pgrescued = 0;
3374         int i;
3375
3376         for (i = 0; i < nr_pages; i++) {
3377                 struct page *page = pages[i];
3378                 struct zone *pagezone;
3379
3380                 pgscanned++;
3381                 pagezone = page_zone(page);
3382                 if (pagezone != zone) {
3383                         if (zone)
3384                                 spin_unlock_irq(&zone->lru_lock);
3385                         zone = pagezone;
3386                         spin_lock_irq(&zone->lru_lock);
3387                 }
3388                 lruvec = mem_cgroup_page_lruvec(page, zone);
3389
3390                 if (!PageLRU(page) || !PageUnevictable(page))
3391                         continue;
3392
3393                 if (page_evictable(page, NULL)) {
3394                         enum lru_list lru = page_lru_base_type(page);
3395
3396                         VM_BUG_ON(PageActive(page));
3397                         ClearPageUnevictable(page);
3398                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3399                         add_page_to_lru_list(page, lruvec, lru);
3400                         pgrescued++;
3401                 }
3402         }
3403
3404         if (zone) {
3405                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3406                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3407                 spin_unlock_irq(&zone->lru_lock);
3408         }
3409 }
3410 #endif /* CONFIG_SHMEM */
3411
3412 static void warn_scan_unevictable_pages(void)
3413 {
3414         printk_once(KERN_WARNING
3415                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3416                     "disabled for lack of a legitimate use case.  If you have "
3417                     "one, please send an email to linux-mm@kvack.org.\n",
3418                     current->comm);
3419 }
3420
3421 /*
3422  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3423  * all nodes' unevictable lists for evictable pages
3424  */
3425 unsigned long scan_unevictable_pages;
3426
3427 int scan_unevictable_handler(struct ctl_table *table, int write,
3428                            void __user *buffer,
3429                            size_t *length, loff_t *ppos)
3430 {
3431         warn_scan_unevictable_pages();
3432         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3433         scan_unevictable_pages = 0;
3434         return 0;
3435 }
3436
3437 #ifdef CONFIG_NUMA
3438 /*
3439  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3440  * a specified node's per zone unevictable lists for evictable pages.
3441  */
3442
3443 static ssize_t read_scan_unevictable_node(struct device *dev,
3444                                           struct device_attribute *attr,
3445                                           char *buf)
3446 {
3447         warn_scan_unevictable_pages();
3448         return sprintf(buf, "0\n");     /* always zero; should fit... */
3449 }
3450
3451 static ssize_t write_scan_unevictable_node(struct device *dev,
3452                                            struct device_attribute *attr,
3453                                         const char *buf, size_t count)
3454 {
3455         warn_scan_unevictable_pages();
3456         return 1;
3457 }
3458
3459
3460 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3461                         read_scan_unevictable_node,
3462                         write_scan_unevictable_node);
3463
3464 int scan_unevictable_register_node(struct node *node)
3465 {
3466         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3467 }
3468
3469 void scan_unevictable_unregister_node(struct node *node)
3470 {
3471         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3472 }
3473 #endif