mm: vmscan: take page buffers dirty and locked state into account
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /* Check if a page is dirty or under writeback */
673 static void page_check_dirty_writeback(struct page *page,
674                                        bool *dirty, bool *writeback)
675 {
676         struct address_space *mapping;
677
678         /*
679          * Anonymous pages are not handled by flushers and must be written
680          * from reclaim context. Do not stall reclaim based on them
681          */
682         if (!page_is_file_cache(page)) {
683                 *dirty = false;
684                 *writeback = false;
685                 return;
686         }
687
688         /* By default assume that the page flags are accurate */
689         *dirty = PageDirty(page);
690         *writeback = PageWriteback(page);
691
692         /* Verify dirty/writeback state if the filesystem supports it */
693         if (!page_has_private(page))
694                 return;
695
696         mapping = page_mapping(page);
697         if (mapping && mapping->a_ops->is_dirty_writeback)
698                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
699 }
700
701 /*
702  * shrink_page_list() returns the number of reclaimed pages
703  */
704 static unsigned long shrink_page_list(struct list_head *page_list,
705                                       struct zone *zone,
706                                       struct scan_control *sc,
707                                       enum ttu_flags ttu_flags,
708                                       unsigned long *ret_nr_dirty,
709                                       unsigned long *ret_nr_unqueued_dirty,
710                                       unsigned long *ret_nr_congested,
711                                       unsigned long *ret_nr_writeback,
712                                       unsigned long *ret_nr_immediate,
713                                       bool force_reclaim)
714 {
715         LIST_HEAD(ret_pages);
716         LIST_HEAD(free_pages);
717         int pgactivate = 0;
718         unsigned long nr_unqueued_dirty = 0;
719         unsigned long nr_dirty = 0;
720         unsigned long nr_congested = 0;
721         unsigned long nr_reclaimed = 0;
722         unsigned long nr_writeback = 0;
723         unsigned long nr_immediate = 0;
724
725         cond_resched();
726
727         mem_cgroup_uncharge_start();
728         while (!list_empty(page_list)) {
729                 struct address_space *mapping;
730                 struct page *page;
731                 int may_enter_fs;
732                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
733                 bool dirty, writeback;
734
735                 cond_resched();
736
737                 page = lru_to_page(page_list);
738                 list_del(&page->lru);
739
740                 if (!trylock_page(page))
741                         goto keep;
742
743                 VM_BUG_ON(PageActive(page));
744                 VM_BUG_ON(page_zone(page) != zone);
745
746                 sc->nr_scanned++;
747
748                 if (unlikely(!page_evictable(page)))
749                         goto cull_mlocked;
750
751                 if (!sc->may_unmap && page_mapped(page))
752                         goto keep_locked;
753
754                 /* Double the slab pressure for mapped and swapcache pages */
755                 if (page_mapped(page) || PageSwapCache(page))
756                         sc->nr_scanned++;
757
758                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
759                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
760
761                 /*
762                  * The number of dirty pages determines if a zone is marked
763                  * reclaim_congested which affects wait_iff_congested. kswapd
764                  * will stall and start writing pages if the tail of the LRU
765                  * is all dirty unqueued pages.
766                  */
767                 page_check_dirty_writeback(page, &dirty, &writeback);
768                 if (dirty || writeback)
769                         nr_dirty++;
770
771                 if (dirty && !writeback)
772                         nr_unqueued_dirty++;
773
774                 /*
775                  * Treat this page as congested if the underlying BDI is or if
776                  * pages are cycling through the LRU so quickly that the
777                  * pages marked for immediate reclaim are making it to the
778                  * end of the LRU a second time.
779                  */
780                 mapping = page_mapping(page);
781                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
782                     (writeback && PageReclaim(page)))
783                         nr_congested++;
784
785                 /*
786                  * If a page at the tail of the LRU is under writeback, there
787                  * are three cases to consider.
788                  *
789                  * 1) If reclaim is encountering an excessive number of pages
790                  *    under writeback and this page is both under writeback and
791                  *    PageReclaim then it indicates that pages are being queued
792                  *    for IO but are being recycled through the LRU before the
793                  *    IO can complete. Waiting on the page itself risks an
794                  *    indefinite stall if it is impossible to writeback the
795                  *    page due to IO error or disconnected storage so instead
796                  *    note that the LRU is being scanned too quickly and the
797                  *    caller can stall after page list has been processed.
798                  *
799                  * 2) Global reclaim encounters a page, memcg encounters a
800                  *    page that is not marked for immediate reclaim or
801                  *    the caller does not have __GFP_IO. In this case mark
802                  *    the page for immediate reclaim and continue scanning.
803                  *
804                  *    __GFP_IO is checked  because a loop driver thread might
805                  *    enter reclaim, and deadlock if it waits on a page for
806                  *    which it is needed to do the write (loop masks off
807                  *    __GFP_IO|__GFP_FS for this reason); but more thought
808                  *    would probably show more reasons.
809                  *
810                  *    Don't require __GFP_FS, since we're not going into the
811                  *    FS, just waiting on its writeback completion. Worryingly,
812                  *    ext4 gfs2 and xfs allocate pages with
813                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
814                  *    may_enter_fs here is liable to OOM on them.
815                  *
816                  * 3) memcg encounters a page that is not already marked
817                  *    PageReclaim. memcg does not have any dirty pages
818                  *    throttling so we could easily OOM just because too many
819                  *    pages are in writeback and there is nothing else to
820                  *    reclaim. Wait for the writeback to complete.
821                  */
822                 if (PageWriteback(page)) {
823                         /* Case 1 above */
824                         if (current_is_kswapd() &&
825                             PageReclaim(page) &&
826                             zone_is_reclaim_writeback(zone)) {
827                                 nr_immediate++;
828                                 goto keep_locked;
829
830                         /* Case 2 above */
831                         } else if (global_reclaim(sc) ||
832                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
833                                 /*
834                                  * This is slightly racy - end_page_writeback()
835                                  * might have just cleared PageReclaim, then
836                                  * setting PageReclaim here end up interpreted
837                                  * as PageReadahead - but that does not matter
838                                  * enough to care.  What we do want is for this
839                                  * page to have PageReclaim set next time memcg
840                                  * reclaim reaches the tests above, so it will
841                                  * then wait_on_page_writeback() to avoid OOM;
842                                  * and it's also appropriate in global reclaim.
843                                  */
844                                 SetPageReclaim(page);
845                                 nr_writeback++;
846
847                                 goto keep_locked;
848
849                         /* Case 3 above */
850                         } else {
851                                 wait_on_page_writeback(page);
852                         }
853                 }
854
855                 if (!force_reclaim)
856                         references = page_check_references(page, sc);
857
858                 switch (references) {
859                 case PAGEREF_ACTIVATE:
860                         goto activate_locked;
861                 case PAGEREF_KEEP:
862                         goto keep_locked;
863                 case PAGEREF_RECLAIM:
864                 case PAGEREF_RECLAIM_CLEAN:
865                         ; /* try to reclaim the page below */
866                 }
867
868                 /*
869                  * Anonymous process memory has backing store?
870                  * Try to allocate it some swap space here.
871                  */
872                 if (PageAnon(page) && !PageSwapCache(page)) {
873                         if (!(sc->gfp_mask & __GFP_IO))
874                                 goto keep_locked;
875                         if (!add_to_swap(page, page_list))
876                                 goto activate_locked;
877                         may_enter_fs = 1;
878
879                         /* Adding to swap updated mapping */
880                         mapping = page_mapping(page);
881                 }
882
883                 /*
884                  * The page is mapped into the page tables of one or more
885                  * processes. Try to unmap it here.
886                  */
887                 if (page_mapped(page) && mapping) {
888                         switch (try_to_unmap(page, ttu_flags)) {
889                         case SWAP_FAIL:
890                                 goto activate_locked;
891                         case SWAP_AGAIN:
892                                 goto keep_locked;
893                         case SWAP_MLOCK:
894                                 goto cull_mlocked;
895                         case SWAP_SUCCESS:
896                                 ; /* try to free the page below */
897                         }
898                 }
899
900                 if (PageDirty(page)) {
901                         /*
902                          * Only kswapd can writeback filesystem pages to
903                          * avoid risk of stack overflow but only writeback
904                          * if many dirty pages have been encountered.
905                          */
906                         if (page_is_file_cache(page) &&
907                                         (!current_is_kswapd() ||
908                                          !zone_is_reclaim_dirty(zone))) {
909                                 /*
910                                  * Immediately reclaim when written back.
911                                  * Similar in principal to deactivate_page()
912                                  * except we already have the page isolated
913                                  * and know it's dirty
914                                  */
915                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
916                                 SetPageReclaim(page);
917
918                                 goto keep_locked;
919                         }
920
921                         if (references == PAGEREF_RECLAIM_CLEAN)
922                                 goto keep_locked;
923                         if (!may_enter_fs)
924                                 goto keep_locked;
925                         if (!sc->may_writepage)
926                                 goto keep_locked;
927
928                         /* Page is dirty, try to write it out here */
929                         switch (pageout(page, mapping, sc)) {
930                         case PAGE_KEEP:
931                                 goto keep_locked;
932                         case PAGE_ACTIVATE:
933                                 goto activate_locked;
934                         case PAGE_SUCCESS:
935                                 if (PageWriteback(page))
936                                         goto keep;
937                                 if (PageDirty(page))
938                                         goto keep;
939
940                                 /*
941                                  * A synchronous write - probably a ramdisk.  Go
942                                  * ahead and try to reclaim the page.
943                                  */
944                                 if (!trylock_page(page))
945                                         goto keep;
946                                 if (PageDirty(page) || PageWriteback(page))
947                                         goto keep_locked;
948                                 mapping = page_mapping(page);
949                         case PAGE_CLEAN:
950                                 ; /* try to free the page below */
951                         }
952                 }
953
954                 /*
955                  * If the page has buffers, try to free the buffer mappings
956                  * associated with this page. If we succeed we try to free
957                  * the page as well.
958                  *
959                  * We do this even if the page is PageDirty().
960                  * try_to_release_page() does not perform I/O, but it is
961                  * possible for a page to have PageDirty set, but it is actually
962                  * clean (all its buffers are clean).  This happens if the
963                  * buffers were written out directly, with submit_bh(). ext3
964                  * will do this, as well as the blockdev mapping.
965                  * try_to_release_page() will discover that cleanness and will
966                  * drop the buffers and mark the page clean - it can be freed.
967                  *
968                  * Rarely, pages can have buffers and no ->mapping.  These are
969                  * the pages which were not successfully invalidated in
970                  * truncate_complete_page().  We try to drop those buffers here
971                  * and if that worked, and the page is no longer mapped into
972                  * process address space (page_count == 1) it can be freed.
973                  * Otherwise, leave the page on the LRU so it is swappable.
974                  */
975                 if (page_has_private(page)) {
976                         if (!try_to_release_page(page, sc->gfp_mask))
977                                 goto activate_locked;
978                         if (!mapping && page_count(page) == 1) {
979                                 unlock_page(page);
980                                 if (put_page_testzero(page))
981                                         goto free_it;
982                                 else {
983                                         /*
984                                          * rare race with speculative reference.
985                                          * the speculative reference will free
986                                          * this page shortly, so we may
987                                          * increment nr_reclaimed here (and
988                                          * leave it off the LRU).
989                                          */
990                                         nr_reclaimed++;
991                                         continue;
992                                 }
993                         }
994                 }
995
996                 if (!mapping || !__remove_mapping(mapping, page))
997                         goto keep_locked;
998
999                 /*
1000                  * At this point, we have no other references and there is
1001                  * no way to pick any more up (removed from LRU, removed
1002                  * from pagecache). Can use non-atomic bitops now (and
1003                  * we obviously don't have to worry about waking up a process
1004                  * waiting on the page lock, because there are no references.
1005                  */
1006                 __clear_page_locked(page);
1007 free_it:
1008                 nr_reclaimed++;
1009
1010                 /*
1011                  * Is there need to periodically free_page_list? It would
1012                  * appear not as the counts should be low
1013                  */
1014                 list_add(&page->lru, &free_pages);
1015                 continue;
1016
1017 cull_mlocked:
1018                 if (PageSwapCache(page))
1019                         try_to_free_swap(page);
1020                 unlock_page(page);
1021                 putback_lru_page(page);
1022                 continue;
1023
1024 activate_locked:
1025                 /* Not a candidate for swapping, so reclaim swap space. */
1026                 if (PageSwapCache(page) && vm_swap_full())
1027                         try_to_free_swap(page);
1028                 VM_BUG_ON(PageActive(page));
1029                 SetPageActive(page);
1030                 pgactivate++;
1031 keep_locked:
1032                 unlock_page(page);
1033 keep:
1034                 list_add(&page->lru, &ret_pages);
1035                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1036         }
1037
1038         free_hot_cold_page_list(&free_pages, 1);
1039
1040         list_splice(&ret_pages, page_list);
1041         count_vm_events(PGACTIVATE, pgactivate);
1042         mem_cgroup_uncharge_end();
1043         *ret_nr_dirty += nr_dirty;
1044         *ret_nr_congested += nr_congested;
1045         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1046         *ret_nr_writeback += nr_writeback;
1047         *ret_nr_immediate += nr_immediate;
1048         return nr_reclaimed;
1049 }
1050
1051 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1052                                             struct list_head *page_list)
1053 {
1054         struct scan_control sc = {
1055                 .gfp_mask = GFP_KERNEL,
1056                 .priority = DEF_PRIORITY,
1057                 .may_unmap = 1,
1058         };
1059         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1060         struct page *page, *next;
1061         LIST_HEAD(clean_pages);
1062
1063         list_for_each_entry_safe(page, next, page_list, lru) {
1064                 if (page_is_file_cache(page) && !PageDirty(page)) {
1065                         ClearPageActive(page);
1066                         list_move(&page->lru, &clean_pages);
1067                 }
1068         }
1069
1070         ret = shrink_page_list(&clean_pages, zone, &sc,
1071                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1072                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1073         list_splice(&clean_pages, page_list);
1074         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1075         return ret;
1076 }
1077
1078 /*
1079  * Attempt to remove the specified page from its LRU.  Only take this page
1080  * if it is of the appropriate PageActive status.  Pages which are being
1081  * freed elsewhere are also ignored.
1082  *
1083  * page:        page to consider
1084  * mode:        one of the LRU isolation modes defined above
1085  *
1086  * returns 0 on success, -ve errno on failure.
1087  */
1088 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1089 {
1090         int ret = -EINVAL;
1091
1092         /* Only take pages on the LRU. */
1093         if (!PageLRU(page))
1094                 return ret;
1095
1096         /* Compaction should not handle unevictable pages but CMA can do so */
1097         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1098                 return ret;
1099
1100         ret = -EBUSY;
1101
1102         /*
1103          * To minimise LRU disruption, the caller can indicate that it only
1104          * wants to isolate pages it will be able to operate on without
1105          * blocking - clean pages for the most part.
1106          *
1107          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1108          * is used by reclaim when it is cannot write to backing storage
1109          *
1110          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1111          * that it is possible to migrate without blocking
1112          */
1113         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1114                 /* All the caller can do on PageWriteback is block */
1115                 if (PageWriteback(page))
1116                         return ret;
1117
1118                 if (PageDirty(page)) {
1119                         struct address_space *mapping;
1120
1121                         /* ISOLATE_CLEAN means only clean pages */
1122                         if (mode & ISOLATE_CLEAN)
1123                                 return ret;
1124
1125                         /*
1126                          * Only pages without mappings or that have a
1127                          * ->migratepage callback are possible to migrate
1128                          * without blocking
1129                          */
1130                         mapping = page_mapping(page);
1131                         if (mapping && !mapping->a_ops->migratepage)
1132                                 return ret;
1133                 }
1134         }
1135
1136         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1137                 return ret;
1138
1139         if (likely(get_page_unless_zero(page))) {
1140                 /*
1141                  * Be careful not to clear PageLRU until after we're
1142                  * sure the page is not being freed elsewhere -- the
1143                  * page release code relies on it.
1144                  */
1145                 ClearPageLRU(page);
1146                 ret = 0;
1147         }
1148
1149         return ret;
1150 }
1151
1152 /*
1153  * zone->lru_lock is heavily contended.  Some of the functions that
1154  * shrink the lists perform better by taking out a batch of pages
1155  * and working on them outside the LRU lock.
1156  *
1157  * For pagecache intensive workloads, this function is the hottest
1158  * spot in the kernel (apart from copy_*_user functions).
1159  *
1160  * Appropriate locks must be held before calling this function.
1161  *
1162  * @nr_to_scan: The number of pages to look through on the list.
1163  * @lruvec:     The LRU vector to pull pages from.
1164  * @dst:        The temp list to put pages on to.
1165  * @nr_scanned: The number of pages that were scanned.
1166  * @sc:         The scan_control struct for this reclaim session
1167  * @mode:       One of the LRU isolation modes
1168  * @lru:        LRU list id for isolating
1169  *
1170  * returns how many pages were moved onto *@dst.
1171  */
1172 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1173                 struct lruvec *lruvec, struct list_head *dst,
1174                 unsigned long *nr_scanned, struct scan_control *sc,
1175                 isolate_mode_t mode, enum lru_list lru)
1176 {
1177         struct list_head *src = &lruvec->lists[lru];
1178         unsigned long nr_taken = 0;
1179         unsigned long scan;
1180
1181         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1182                 struct page *page;
1183                 int nr_pages;
1184
1185                 page = lru_to_page(src);
1186                 prefetchw_prev_lru_page(page, src, flags);
1187
1188                 VM_BUG_ON(!PageLRU(page));
1189
1190                 switch (__isolate_lru_page(page, mode)) {
1191                 case 0:
1192                         nr_pages = hpage_nr_pages(page);
1193                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1194                         list_move(&page->lru, dst);
1195                         nr_taken += nr_pages;
1196                         break;
1197
1198                 case -EBUSY:
1199                         /* else it is being freed elsewhere */
1200                         list_move(&page->lru, src);
1201                         continue;
1202
1203                 default:
1204                         BUG();
1205                 }
1206         }
1207
1208         *nr_scanned = scan;
1209         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1210                                     nr_taken, mode, is_file_lru(lru));
1211         return nr_taken;
1212 }
1213
1214 /**
1215  * isolate_lru_page - tries to isolate a page from its LRU list
1216  * @page: page to isolate from its LRU list
1217  *
1218  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1219  * vmstat statistic corresponding to whatever LRU list the page was on.
1220  *
1221  * Returns 0 if the page was removed from an LRU list.
1222  * Returns -EBUSY if the page was not on an LRU list.
1223  *
1224  * The returned page will have PageLRU() cleared.  If it was found on
1225  * the active list, it will have PageActive set.  If it was found on
1226  * the unevictable list, it will have the PageUnevictable bit set. That flag
1227  * may need to be cleared by the caller before letting the page go.
1228  *
1229  * The vmstat statistic corresponding to the list on which the page was
1230  * found will be decremented.
1231  *
1232  * Restrictions:
1233  * (1) Must be called with an elevated refcount on the page. This is a
1234  *     fundamentnal difference from isolate_lru_pages (which is called
1235  *     without a stable reference).
1236  * (2) the lru_lock must not be held.
1237  * (3) interrupts must be enabled.
1238  */
1239 int isolate_lru_page(struct page *page)
1240 {
1241         int ret = -EBUSY;
1242
1243         VM_BUG_ON(!page_count(page));
1244
1245         if (PageLRU(page)) {
1246                 struct zone *zone = page_zone(page);
1247                 struct lruvec *lruvec;
1248
1249                 spin_lock_irq(&zone->lru_lock);
1250                 lruvec = mem_cgroup_page_lruvec(page, zone);
1251                 if (PageLRU(page)) {
1252                         int lru = page_lru(page);
1253                         get_page(page);
1254                         ClearPageLRU(page);
1255                         del_page_from_lru_list(page, lruvec, lru);
1256                         ret = 0;
1257                 }
1258                 spin_unlock_irq(&zone->lru_lock);
1259         }
1260         return ret;
1261 }
1262
1263 /*
1264  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1265  * then get resheduled. When there are massive number of tasks doing page
1266  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1267  * the LRU list will go small and be scanned faster than necessary, leading to
1268  * unnecessary swapping, thrashing and OOM.
1269  */
1270 static int too_many_isolated(struct zone *zone, int file,
1271                 struct scan_control *sc)
1272 {
1273         unsigned long inactive, isolated;
1274
1275         if (current_is_kswapd())
1276                 return 0;
1277
1278         if (!global_reclaim(sc))
1279                 return 0;
1280
1281         if (file) {
1282                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1283                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1284         } else {
1285                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1286                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1287         }
1288
1289         /*
1290          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1291          * won't get blocked by normal direct-reclaimers, forming a circular
1292          * deadlock.
1293          */
1294         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1295                 inactive >>= 3;
1296
1297         return isolated > inactive;
1298 }
1299
1300 static noinline_for_stack void
1301 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1302 {
1303         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1304         struct zone *zone = lruvec_zone(lruvec);
1305         LIST_HEAD(pages_to_free);
1306
1307         /*
1308          * Put back any unfreeable pages.
1309          */
1310         while (!list_empty(page_list)) {
1311                 struct page *page = lru_to_page(page_list);
1312                 int lru;
1313
1314                 VM_BUG_ON(PageLRU(page));
1315                 list_del(&page->lru);
1316                 if (unlikely(!page_evictable(page))) {
1317                         spin_unlock_irq(&zone->lru_lock);
1318                         putback_lru_page(page);
1319                         spin_lock_irq(&zone->lru_lock);
1320                         continue;
1321                 }
1322
1323                 lruvec = mem_cgroup_page_lruvec(page, zone);
1324
1325                 SetPageLRU(page);
1326                 lru = page_lru(page);
1327                 add_page_to_lru_list(page, lruvec, lru);
1328
1329                 if (is_active_lru(lru)) {
1330                         int file = is_file_lru(lru);
1331                         int numpages = hpage_nr_pages(page);
1332                         reclaim_stat->recent_rotated[file] += numpages;
1333                 }
1334                 if (put_page_testzero(page)) {
1335                         __ClearPageLRU(page);
1336                         __ClearPageActive(page);
1337                         del_page_from_lru_list(page, lruvec, lru);
1338
1339                         if (unlikely(PageCompound(page))) {
1340                                 spin_unlock_irq(&zone->lru_lock);
1341                                 (*get_compound_page_dtor(page))(page);
1342                                 spin_lock_irq(&zone->lru_lock);
1343                         } else
1344                                 list_add(&page->lru, &pages_to_free);
1345                 }
1346         }
1347
1348         /*
1349          * To save our caller's stack, now use input list for pages to free.
1350          */
1351         list_splice(&pages_to_free, page_list);
1352 }
1353
1354 /*
1355  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1356  * of reclaimed pages
1357  */
1358 static noinline_for_stack unsigned long
1359 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1360                      struct scan_control *sc, enum lru_list lru)
1361 {
1362         LIST_HEAD(page_list);
1363         unsigned long nr_scanned;
1364         unsigned long nr_reclaimed = 0;
1365         unsigned long nr_taken;
1366         unsigned long nr_dirty = 0;
1367         unsigned long nr_congested = 0;
1368         unsigned long nr_unqueued_dirty = 0;
1369         unsigned long nr_writeback = 0;
1370         unsigned long nr_immediate = 0;
1371         isolate_mode_t isolate_mode = 0;
1372         int file = is_file_lru(lru);
1373         struct zone *zone = lruvec_zone(lruvec);
1374         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1375
1376         while (unlikely(too_many_isolated(zone, file, sc))) {
1377                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1378
1379                 /* We are about to die and free our memory. Return now. */
1380                 if (fatal_signal_pending(current))
1381                         return SWAP_CLUSTER_MAX;
1382         }
1383
1384         lru_add_drain();
1385
1386         if (!sc->may_unmap)
1387                 isolate_mode |= ISOLATE_UNMAPPED;
1388         if (!sc->may_writepage)
1389                 isolate_mode |= ISOLATE_CLEAN;
1390
1391         spin_lock_irq(&zone->lru_lock);
1392
1393         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1394                                      &nr_scanned, sc, isolate_mode, lru);
1395
1396         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1397         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1398
1399         if (global_reclaim(sc)) {
1400                 zone->pages_scanned += nr_scanned;
1401                 if (current_is_kswapd())
1402                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1403                 else
1404                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1405         }
1406         spin_unlock_irq(&zone->lru_lock);
1407
1408         if (nr_taken == 0)
1409                 return 0;
1410
1411         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1412                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1413                                 &nr_writeback, &nr_immediate,
1414                                 false);
1415
1416         spin_lock_irq(&zone->lru_lock);
1417
1418         reclaim_stat->recent_scanned[file] += nr_taken;
1419
1420         if (global_reclaim(sc)) {
1421                 if (current_is_kswapd())
1422                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1423                                                nr_reclaimed);
1424                 else
1425                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1426                                                nr_reclaimed);
1427         }
1428
1429         putback_inactive_pages(lruvec, &page_list);
1430
1431         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1432
1433         spin_unlock_irq(&zone->lru_lock);
1434
1435         free_hot_cold_page_list(&page_list, 1);
1436
1437         /*
1438          * If reclaim is isolating dirty pages under writeback, it implies
1439          * that the long-lived page allocation rate is exceeding the page
1440          * laundering rate. Either the global limits are not being effective
1441          * at throttling processes due to the page distribution throughout
1442          * zones or there is heavy usage of a slow backing device. The
1443          * only option is to throttle from reclaim context which is not ideal
1444          * as there is no guarantee the dirtying process is throttled in the
1445          * same way balance_dirty_pages() manages.
1446          *
1447          * This scales the number of dirty pages that must be under writeback
1448          * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1449          * function that has the most effect in the range DEF_PRIORITY to
1450          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1451          * in trouble and reclaim is considered to be in trouble.
1452          *
1453          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1454          * DEF_PRIORITY-1  50% must be PageWriteback
1455          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1456          * ...
1457          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1458          *                     isolated page is PageWriteback
1459          *
1460          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1461          * of pages under pages flagged for immediate reclaim and stall if any
1462          * are encountered in the nr_immediate check below.
1463          */
1464         if (nr_writeback && nr_writeback >=
1465                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1466                 zone_set_flag(zone, ZONE_WRITEBACK);
1467
1468         /*
1469          * memcg will stall in page writeback so only consider forcibly
1470          * stalling for global reclaim
1471          */
1472         if (global_reclaim(sc)) {
1473                 /*
1474                  * Tag a zone as congested if all the dirty pages scanned were
1475                  * backed by a congested BDI and wait_iff_congested will stall.
1476                  */
1477                 if (nr_dirty && nr_dirty == nr_congested)
1478                         zone_set_flag(zone, ZONE_CONGESTED);
1479
1480                 /*
1481                  * If dirty pages are scanned that are not queued for IO, it
1482                  * implies that flushers are not keeping up. In this case, flag
1483                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1484                  * pages from reclaim context. It will forcibly stall in the
1485                  * next check.
1486                  */
1487                 if (nr_unqueued_dirty == nr_taken)
1488                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1489
1490                 /*
1491                  * In addition, if kswapd scans pages marked marked for
1492                  * immediate reclaim and under writeback (nr_immediate), it
1493                  * implies that pages are cycling through the LRU faster than
1494                  * they are written so also forcibly stall.
1495                  */
1496                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1497                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1498         }
1499
1500         /*
1501          * Stall direct reclaim for IO completions if underlying BDIs or zone
1502          * is congested. Allow kswapd to continue until it starts encountering
1503          * unqueued dirty pages or cycling through the LRU too quickly.
1504          */
1505         if (!sc->hibernation_mode && !current_is_kswapd())
1506                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1507
1508         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1509                 zone_idx(zone),
1510                 nr_scanned, nr_reclaimed,
1511                 sc->priority,
1512                 trace_shrink_flags(file));
1513         return nr_reclaimed;
1514 }
1515
1516 /*
1517  * This moves pages from the active list to the inactive list.
1518  *
1519  * We move them the other way if the page is referenced by one or more
1520  * processes, from rmap.
1521  *
1522  * If the pages are mostly unmapped, the processing is fast and it is
1523  * appropriate to hold zone->lru_lock across the whole operation.  But if
1524  * the pages are mapped, the processing is slow (page_referenced()) so we
1525  * should drop zone->lru_lock around each page.  It's impossible to balance
1526  * this, so instead we remove the pages from the LRU while processing them.
1527  * It is safe to rely on PG_active against the non-LRU pages in here because
1528  * nobody will play with that bit on a non-LRU page.
1529  *
1530  * The downside is that we have to touch page->_count against each page.
1531  * But we had to alter page->flags anyway.
1532  */
1533
1534 static void move_active_pages_to_lru(struct lruvec *lruvec,
1535                                      struct list_head *list,
1536                                      struct list_head *pages_to_free,
1537                                      enum lru_list lru)
1538 {
1539         struct zone *zone = lruvec_zone(lruvec);
1540         unsigned long pgmoved = 0;
1541         struct page *page;
1542         int nr_pages;
1543
1544         while (!list_empty(list)) {
1545                 page = lru_to_page(list);
1546                 lruvec = mem_cgroup_page_lruvec(page, zone);
1547
1548                 VM_BUG_ON(PageLRU(page));
1549                 SetPageLRU(page);
1550
1551                 nr_pages = hpage_nr_pages(page);
1552                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1553                 list_move(&page->lru, &lruvec->lists[lru]);
1554                 pgmoved += nr_pages;
1555
1556                 if (put_page_testzero(page)) {
1557                         __ClearPageLRU(page);
1558                         __ClearPageActive(page);
1559                         del_page_from_lru_list(page, lruvec, lru);
1560
1561                         if (unlikely(PageCompound(page))) {
1562                                 spin_unlock_irq(&zone->lru_lock);
1563                                 (*get_compound_page_dtor(page))(page);
1564                                 spin_lock_irq(&zone->lru_lock);
1565                         } else
1566                                 list_add(&page->lru, pages_to_free);
1567                 }
1568         }
1569         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1570         if (!is_active_lru(lru))
1571                 __count_vm_events(PGDEACTIVATE, pgmoved);
1572 }
1573
1574 static void shrink_active_list(unsigned long nr_to_scan,
1575                                struct lruvec *lruvec,
1576                                struct scan_control *sc,
1577                                enum lru_list lru)
1578 {
1579         unsigned long nr_taken;
1580         unsigned long nr_scanned;
1581         unsigned long vm_flags;
1582         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1583         LIST_HEAD(l_active);
1584         LIST_HEAD(l_inactive);
1585         struct page *page;
1586         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1587         unsigned long nr_rotated = 0;
1588         isolate_mode_t isolate_mode = 0;
1589         int file = is_file_lru(lru);
1590         struct zone *zone = lruvec_zone(lruvec);
1591
1592         lru_add_drain();
1593
1594         if (!sc->may_unmap)
1595                 isolate_mode |= ISOLATE_UNMAPPED;
1596         if (!sc->may_writepage)
1597                 isolate_mode |= ISOLATE_CLEAN;
1598
1599         spin_lock_irq(&zone->lru_lock);
1600
1601         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1602                                      &nr_scanned, sc, isolate_mode, lru);
1603         if (global_reclaim(sc))
1604                 zone->pages_scanned += nr_scanned;
1605
1606         reclaim_stat->recent_scanned[file] += nr_taken;
1607
1608         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1609         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1610         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1611         spin_unlock_irq(&zone->lru_lock);
1612
1613         while (!list_empty(&l_hold)) {
1614                 cond_resched();
1615                 page = lru_to_page(&l_hold);
1616                 list_del(&page->lru);
1617
1618                 if (unlikely(!page_evictable(page))) {
1619                         putback_lru_page(page);
1620                         continue;
1621                 }
1622
1623                 if (unlikely(buffer_heads_over_limit)) {
1624                         if (page_has_private(page) && trylock_page(page)) {
1625                                 if (page_has_private(page))
1626                                         try_to_release_page(page, 0);
1627                                 unlock_page(page);
1628                         }
1629                 }
1630
1631                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1632                                     &vm_flags)) {
1633                         nr_rotated += hpage_nr_pages(page);
1634                         /*
1635                          * Identify referenced, file-backed active pages and
1636                          * give them one more trip around the active list. So
1637                          * that executable code get better chances to stay in
1638                          * memory under moderate memory pressure.  Anon pages
1639                          * are not likely to be evicted by use-once streaming
1640                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1641                          * so we ignore them here.
1642                          */
1643                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1644                                 list_add(&page->lru, &l_active);
1645                                 continue;
1646                         }
1647                 }
1648
1649                 ClearPageActive(page);  /* we are de-activating */
1650                 list_add(&page->lru, &l_inactive);
1651         }
1652
1653         /*
1654          * Move pages back to the lru list.
1655          */
1656         spin_lock_irq(&zone->lru_lock);
1657         /*
1658          * Count referenced pages from currently used mappings as rotated,
1659          * even though only some of them are actually re-activated.  This
1660          * helps balance scan pressure between file and anonymous pages in
1661          * get_scan_ratio.
1662          */
1663         reclaim_stat->recent_rotated[file] += nr_rotated;
1664
1665         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1666         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1667         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1668         spin_unlock_irq(&zone->lru_lock);
1669
1670         free_hot_cold_page_list(&l_hold, 1);
1671 }
1672
1673 #ifdef CONFIG_SWAP
1674 static int inactive_anon_is_low_global(struct zone *zone)
1675 {
1676         unsigned long active, inactive;
1677
1678         active = zone_page_state(zone, NR_ACTIVE_ANON);
1679         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1680
1681         if (inactive * zone->inactive_ratio < active)
1682                 return 1;
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1689  * @lruvec: LRU vector to check
1690  *
1691  * Returns true if the zone does not have enough inactive anon pages,
1692  * meaning some active anon pages need to be deactivated.
1693  */
1694 static int inactive_anon_is_low(struct lruvec *lruvec)
1695 {
1696         /*
1697          * If we don't have swap space, anonymous page deactivation
1698          * is pointless.
1699          */
1700         if (!total_swap_pages)
1701                 return 0;
1702
1703         if (!mem_cgroup_disabled())
1704                 return mem_cgroup_inactive_anon_is_low(lruvec);
1705
1706         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1707 }
1708 #else
1709 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1710 {
1711         return 0;
1712 }
1713 #endif
1714
1715 /**
1716  * inactive_file_is_low - check if file pages need to be deactivated
1717  * @lruvec: LRU vector to check
1718  *
1719  * When the system is doing streaming IO, memory pressure here
1720  * ensures that active file pages get deactivated, until more
1721  * than half of the file pages are on the inactive list.
1722  *
1723  * Once we get to that situation, protect the system's working
1724  * set from being evicted by disabling active file page aging.
1725  *
1726  * This uses a different ratio than the anonymous pages, because
1727  * the page cache uses a use-once replacement algorithm.
1728  */
1729 static int inactive_file_is_low(struct lruvec *lruvec)
1730 {
1731         unsigned long inactive;
1732         unsigned long active;
1733
1734         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1735         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1736
1737         return active > inactive;
1738 }
1739
1740 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1741 {
1742         if (is_file_lru(lru))
1743                 return inactive_file_is_low(lruvec);
1744         else
1745                 return inactive_anon_is_low(lruvec);
1746 }
1747
1748 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1749                                  struct lruvec *lruvec, struct scan_control *sc)
1750 {
1751         if (is_active_lru(lru)) {
1752                 if (inactive_list_is_low(lruvec, lru))
1753                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1754                 return 0;
1755         }
1756
1757         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1758 }
1759
1760 static int vmscan_swappiness(struct scan_control *sc)
1761 {
1762         if (global_reclaim(sc))
1763                 return vm_swappiness;
1764         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1765 }
1766
1767 enum scan_balance {
1768         SCAN_EQUAL,
1769         SCAN_FRACT,
1770         SCAN_ANON,
1771         SCAN_FILE,
1772 };
1773
1774 /*
1775  * Determine how aggressively the anon and file LRU lists should be
1776  * scanned.  The relative value of each set of LRU lists is determined
1777  * by looking at the fraction of the pages scanned we did rotate back
1778  * onto the active list instead of evict.
1779  *
1780  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1781  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1782  */
1783 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1784                            unsigned long *nr)
1785 {
1786         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1787         u64 fraction[2];
1788         u64 denominator = 0;    /* gcc */
1789         struct zone *zone = lruvec_zone(lruvec);
1790         unsigned long anon_prio, file_prio;
1791         enum scan_balance scan_balance;
1792         unsigned long anon, file, free;
1793         bool force_scan = false;
1794         unsigned long ap, fp;
1795         enum lru_list lru;
1796
1797         /*
1798          * If the zone or memcg is small, nr[l] can be 0.  This
1799          * results in no scanning on this priority and a potential
1800          * priority drop.  Global direct reclaim can go to the next
1801          * zone and tends to have no problems. Global kswapd is for
1802          * zone balancing and it needs to scan a minimum amount. When
1803          * reclaiming for a memcg, a priority drop can cause high
1804          * latencies, so it's better to scan a minimum amount there as
1805          * well.
1806          */
1807         if (current_is_kswapd() && zone->all_unreclaimable)
1808                 force_scan = true;
1809         if (!global_reclaim(sc))
1810                 force_scan = true;
1811
1812         /* If we have no swap space, do not bother scanning anon pages. */
1813         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1814                 scan_balance = SCAN_FILE;
1815                 goto out;
1816         }
1817
1818         /*
1819          * Global reclaim will swap to prevent OOM even with no
1820          * swappiness, but memcg users want to use this knob to
1821          * disable swapping for individual groups completely when
1822          * using the memory controller's swap limit feature would be
1823          * too expensive.
1824          */
1825         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1826                 scan_balance = SCAN_FILE;
1827                 goto out;
1828         }
1829
1830         /*
1831          * Do not apply any pressure balancing cleverness when the
1832          * system is close to OOM, scan both anon and file equally
1833          * (unless the swappiness setting disagrees with swapping).
1834          */
1835         if (!sc->priority && vmscan_swappiness(sc)) {
1836                 scan_balance = SCAN_EQUAL;
1837                 goto out;
1838         }
1839
1840         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1841                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1842         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1843                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1844
1845         /*
1846          * If it's foreseeable that reclaiming the file cache won't be
1847          * enough to get the zone back into a desirable shape, we have
1848          * to swap.  Better start now and leave the - probably heavily
1849          * thrashing - remaining file pages alone.
1850          */
1851         if (global_reclaim(sc)) {
1852                 free = zone_page_state(zone, NR_FREE_PAGES);
1853                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1854                         scan_balance = SCAN_ANON;
1855                         goto out;
1856                 }
1857         }
1858
1859         /*
1860          * There is enough inactive page cache, do not reclaim
1861          * anything from the anonymous working set right now.
1862          */
1863         if (!inactive_file_is_low(lruvec)) {
1864                 scan_balance = SCAN_FILE;
1865                 goto out;
1866         }
1867
1868         scan_balance = SCAN_FRACT;
1869
1870         /*
1871          * With swappiness at 100, anonymous and file have the same priority.
1872          * This scanning priority is essentially the inverse of IO cost.
1873          */
1874         anon_prio = vmscan_swappiness(sc);
1875         file_prio = 200 - anon_prio;
1876
1877         /*
1878          * OK, so we have swap space and a fair amount of page cache
1879          * pages.  We use the recently rotated / recently scanned
1880          * ratios to determine how valuable each cache is.
1881          *
1882          * Because workloads change over time (and to avoid overflow)
1883          * we keep these statistics as a floating average, which ends
1884          * up weighing recent references more than old ones.
1885          *
1886          * anon in [0], file in [1]
1887          */
1888         spin_lock_irq(&zone->lru_lock);
1889         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1890                 reclaim_stat->recent_scanned[0] /= 2;
1891                 reclaim_stat->recent_rotated[0] /= 2;
1892         }
1893
1894         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1895                 reclaim_stat->recent_scanned[1] /= 2;
1896                 reclaim_stat->recent_rotated[1] /= 2;
1897         }
1898
1899         /*
1900          * The amount of pressure on anon vs file pages is inversely
1901          * proportional to the fraction of recently scanned pages on
1902          * each list that were recently referenced and in active use.
1903          */
1904         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1905         ap /= reclaim_stat->recent_rotated[0] + 1;
1906
1907         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1908         fp /= reclaim_stat->recent_rotated[1] + 1;
1909         spin_unlock_irq(&zone->lru_lock);
1910
1911         fraction[0] = ap;
1912         fraction[1] = fp;
1913         denominator = ap + fp + 1;
1914 out:
1915         for_each_evictable_lru(lru) {
1916                 int file = is_file_lru(lru);
1917                 unsigned long size;
1918                 unsigned long scan;
1919
1920                 size = get_lru_size(lruvec, lru);
1921                 scan = size >> sc->priority;
1922
1923                 if (!scan && force_scan)
1924                         scan = min(size, SWAP_CLUSTER_MAX);
1925
1926                 switch (scan_balance) {
1927                 case SCAN_EQUAL:
1928                         /* Scan lists relative to size */
1929                         break;
1930                 case SCAN_FRACT:
1931                         /*
1932                          * Scan types proportional to swappiness and
1933                          * their relative recent reclaim efficiency.
1934                          */
1935                         scan = div64_u64(scan * fraction[file], denominator);
1936                         break;
1937                 case SCAN_FILE:
1938                 case SCAN_ANON:
1939                         /* Scan one type exclusively */
1940                         if ((scan_balance == SCAN_FILE) != file)
1941                                 scan = 0;
1942                         break;
1943                 default:
1944                         /* Look ma, no brain */
1945                         BUG();
1946                 }
1947                 nr[lru] = scan;
1948         }
1949 }
1950
1951 /*
1952  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1953  */
1954 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1955 {
1956         unsigned long nr[NR_LRU_LISTS];
1957         unsigned long targets[NR_LRU_LISTS];
1958         unsigned long nr_to_scan;
1959         enum lru_list lru;
1960         unsigned long nr_reclaimed = 0;
1961         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1962         struct blk_plug plug;
1963         bool scan_adjusted = false;
1964
1965         get_scan_count(lruvec, sc, nr);
1966
1967         /* Record the original scan target for proportional adjustments later */
1968         memcpy(targets, nr, sizeof(nr));
1969
1970         blk_start_plug(&plug);
1971         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1972                                         nr[LRU_INACTIVE_FILE]) {
1973                 unsigned long nr_anon, nr_file, percentage;
1974                 unsigned long nr_scanned;
1975
1976                 for_each_evictable_lru(lru) {
1977                         if (nr[lru]) {
1978                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1979                                 nr[lru] -= nr_to_scan;
1980
1981                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1982                                                             lruvec, sc);
1983                         }
1984                 }
1985
1986                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1987                         continue;
1988
1989                 /*
1990                  * For global direct reclaim, reclaim only the number of pages
1991                  * requested. Less care is taken to scan proportionally as it
1992                  * is more important to minimise direct reclaim stall latency
1993                  * than it is to properly age the LRU lists.
1994                  */
1995                 if (global_reclaim(sc) && !current_is_kswapd())
1996                         break;
1997
1998                 /*
1999                  * For kswapd and memcg, reclaim at least the number of pages
2000                  * requested. Ensure that the anon and file LRUs shrink
2001                  * proportionally what was requested by get_scan_count(). We
2002                  * stop reclaiming one LRU and reduce the amount scanning
2003                  * proportional to the original scan target.
2004                  */
2005                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2006                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2007
2008                 if (nr_file > nr_anon) {
2009                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2010                                                 targets[LRU_ACTIVE_ANON] + 1;
2011                         lru = LRU_BASE;
2012                         percentage = nr_anon * 100 / scan_target;
2013                 } else {
2014                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2015                                                 targets[LRU_ACTIVE_FILE] + 1;
2016                         lru = LRU_FILE;
2017                         percentage = nr_file * 100 / scan_target;
2018                 }
2019
2020                 /* Stop scanning the smaller of the LRU */
2021                 nr[lru] = 0;
2022                 nr[lru + LRU_ACTIVE] = 0;
2023
2024                 /*
2025                  * Recalculate the other LRU scan count based on its original
2026                  * scan target and the percentage scanning already complete
2027                  */
2028                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2029                 nr_scanned = targets[lru] - nr[lru];
2030                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2031                 nr[lru] -= min(nr[lru], nr_scanned);
2032
2033                 lru += LRU_ACTIVE;
2034                 nr_scanned = targets[lru] - nr[lru];
2035                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2036                 nr[lru] -= min(nr[lru], nr_scanned);
2037
2038                 scan_adjusted = true;
2039         }
2040         blk_finish_plug(&plug);
2041         sc->nr_reclaimed += nr_reclaimed;
2042
2043         /*
2044          * Even if we did not try to evict anon pages at all, we want to
2045          * rebalance the anon lru active/inactive ratio.
2046          */
2047         if (inactive_anon_is_low(lruvec))
2048                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2049                                    sc, LRU_ACTIVE_ANON);
2050
2051         throttle_vm_writeout(sc->gfp_mask);
2052 }
2053
2054 /* Use reclaim/compaction for costly allocs or under memory pressure */
2055 static bool in_reclaim_compaction(struct scan_control *sc)
2056 {
2057         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2058                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2059                          sc->priority < DEF_PRIORITY - 2))
2060                 return true;
2061
2062         return false;
2063 }
2064
2065 /*
2066  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2067  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2068  * true if more pages should be reclaimed such that when the page allocator
2069  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2070  * It will give up earlier than that if there is difficulty reclaiming pages.
2071  */
2072 static inline bool should_continue_reclaim(struct zone *zone,
2073                                         unsigned long nr_reclaimed,
2074                                         unsigned long nr_scanned,
2075                                         struct scan_control *sc)
2076 {
2077         unsigned long pages_for_compaction;
2078         unsigned long inactive_lru_pages;
2079
2080         /* If not in reclaim/compaction mode, stop */
2081         if (!in_reclaim_compaction(sc))
2082                 return false;
2083
2084         /* Consider stopping depending on scan and reclaim activity */
2085         if (sc->gfp_mask & __GFP_REPEAT) {
2086                 /*
2087                  * For __GFP_REPEAT allocations, stop reclaiming if the
2088                  * full LRU list has been scanned and we are still failing
2089                  * to reclaim pages. This full LRU scan is potentially
2090                  * expensive but a __GFP_REPEAT caller really wants to succeed
2091                  */
2092                 if (!nr_reclaimed && !nr_scanned)
2093                         return false;
2094         } else {
2095                 /*
2096                  * For non-__GFP_REPEAT allocations which can presumably
2097                  * fail without consequence, stop if we failed to reclaim
2098                  * any pages from the last SWAP_CLUSTER_MAX number of
2099                  * pages that were scanned. This will return to the
2100                  * caller faster at the risk reclaim/compaction and
2101                  * the resulting allocation attempt fails
2102                  */
2103                 if (!nr_reclaimed)
2104                         return false;
2105         }
2106
2107         /*
2108          * If we have not reclaimed enough pages for compaction and the
2109          * inactive lists are large enough, continue reclaiming
2110          */
2111         pages_for_compaction = (2UL << sc->order);
2112         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2113         if (get_nr_swap_pages() > 0)
2114                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2115         if (sc->nr_reclaimed < pages_for_compaction &&
2116                         inactive_lru_pages > pages_for_compaction)
2117                 return true;
2118
2119         /* If compaction would go ahead or the allocation would succeed, stop */
2120         switch (compaction_suitable(zone, sc->order)) {
2121         case COMPACT_PARTIAL:
2122         case COMPACT_CONTINUE:
2123                 return false;
2124         default:
2125                 return true;
2126         }
2127 }
2128
2129 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2130 {
2131         unsigned long nr_reclaimed, nr_scanned;
2132
2133         do {
2134                 struct mem_cgroup *root = sc->target_mem_cgroup;
2135                 struct mem_cgroup_reclaim_cookie reclaim = {
2136                         .zone = zone,
2137                         .priority = sc->priority,
2138                 };
2139                 struct mem_cgroup *memcg;
2140
2141                 nr_reclaimed = sc->nr_reclaimed;
2142                 nr_scanned = sc->nr_scanned;
2143
2144                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2145                 do {
2146                         struct lruvec *lruvec;
2147
2148                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2149
2150                         shrink_lruvec(lruvec, sc);
2151
2152                         /*
2153                          * Direct reclaim and kswapd have to scan all memory
2154                          * cgroups to fulfill the overall scan target for the
2155                          * zone.
2156                          *
2157                          * Limit reclaim, on the other hand, only cares about
2158                          * nr_to_reclaim pages to be reclaimed and it will
2159                          * retry with decreasing priority if one round over the
2160                          * whole hierarchy is not sufficient.
2161                          */
2162                         if (!global_reclaim(sc) &&
2163                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2164                                 mem_cgroup_iter_break(root, memcg);
2165                                 break;
2166                         }
2167                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2168                 } while (memcg);
2169
2170                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2171                            sc->nr_scanned - nr_scanned,
2172                            sc->nr_reclaimed - nr_reclaimed);
2173
2174         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2175                                          sc->nr_scanned - nr_scanned, sc));
2176 }
2177
2178 /* Returns true if compaction should go ahead for a high-order request */
2179 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2180 {
2181         unsigned long balance_gap, watermark;
2182         bool watermark_ok;
2183
2184         /* Do not consider compaction for orders reclaim is meant to satisfy */
2185         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2186                 return false;
2187
2188         /*
2189          * Compaction takes time to run and there are potentially other
2190          * callers using the pages just freed. Continue reclaiming until
2191          * there is a buffer of free pages available to give compaction
2192          * a reasonable chance of completing and allocating the page
2193          */
2194         balance_gap = min(low_wmark_pages(zone),
2195                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2196                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2197         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2198         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2199
2200         /*
2201          * If compaction is deferred, reclaim up to a point where
2202          * compaction will have a chance of success when re-enabled
2203          */
2204         if (compaction_deferred(zone, sc->order))
2205                 return watermark_ok;
2206
2207         /* If compaction is not ready to start, keep reclaiming */
2208         if (!compaction_suitable(zone, sc->order))
2209                 return false;
2210
2211         return watermark_ok;
2212 }
2213
2214 /*
2215  * This is the direct reclaim path, for page-allocating processes.  We only
2216  * try to reclaim pages from zones which will satisfy the caller's allocation
2217  * request.
2218  *
2219  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2220  * Because:
2221  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2222  *    allocation or
2223  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2224  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2225  *    zone defense algorithm.
2226  *
2227  * If a zone is deemed to be full of pinned pages then just give it a light
2228  * scan then give up on it.
2229  *
2230  * This function returns true if a zone is being reclaimed for a costly
2231  * high-order allocation and compaction is ready to begin. This indicates to
2232  * the caller that it should consider retrying the allocation instead of
2233  * further reclaim.
2234  */
2235 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2236 {
2237         struct zoneref *z;
2238         struct zone *zone;
2239         unsigned long nr_soft_reclaimed;
2240         unsigned long nr_soft_scanned;
2241         bool aborted_reclaim = false;
2242
2243         /*
2244          * If the number of buffer_heads in the machine exceeds the maximum
2245          * allowed level, force direct reclaim to scan the highmem zone as
2246          * highmem pages could be pinning lowmem pages storing buffer_heads
2247          */
2248         if (buffer_heads_over_limit)
2249                 sc->gfp_mask |= __GFP_HIGHMEM;
2250
2251         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2252                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2253                 if (!populated_zone(zone))
2254                         continue;
2255                 /*
2256                  * Take care memory controller reclaiming has small influence
2257                  * to global LRU.
2258                  */
2259                 if (global_reclaim(sc)) {
2260                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2261                                 continue;
2262                         if (zone->all_unreclaimable &&
2263                                         sc->priority != DEF_PRIORITY)
2264                                 continue;       /* Let kswapd poll it */
2265                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2266                                 /*
2267                                  * If we already have plenty of memory free for
2268                                  * compaction in this zone, don't free any more.
2269                                  * Even though compaction is invoked for any
2270                                  * non-zero order, only frequent costly order
2271                                  * reclamation is disruptive enough to become a
2272                                  * noticeable problem, like transparent huge
2273                                  * page allocations.
2274                                  */
2275                                 if (compaction_ready(zone, sc)) {
2276                                         aborted_reclaim = true;
2277                                         continue;
2278                                 }
2279                         }
2280                         /*
2281                          * This steals pages from memory cgroups over softlimit
2282                          * and returns the number of reclaimed pages and
2283                          * scanned pages. This works for global memory pressure
2284                          * and balancing, not for a memcg's limit.
2285                          */
2286                         nr_soft_scanned = 0;
2287                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2288                                                 sc->order, sc->gfp_mask,
2289                                                 &nr_soft_scanned);
2290                         sc->nr_reclaimed += nr_soft_reclaimed;
2291                         sc->nr_scanned += nr_soft_scanned;
2292                         /* need some check for avoid more shrink_zone() */
2293                 }
2294
2295                 shrink_zone(zone, sc);
2296         }
2297
2298         return aborted_reclaim;
2299 }
2300
2301 static bool zone_reclaimable(struct zone *zone)
2302 {
2303         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2304 }
2305
2306 /* All zones in zonelist are unreclaimable? */
2307 static bool all_unreclaimable(struct zonelist *zonelist,
2308                 struct scan_control *sc)
2309 {
2310         struct zoneref *z;
2311         struct zone *zone;
2312
2313         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2314                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2315                 if (!populated_zone(zone))
2316                         continue;
2317                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2318                         continue;
2319                 if (!zone->all_unreclaimable)
2320                         return false;
2321         }
2322
2323         return true;
2324 }
2325
2326 /*
2327  * This is the main entry point to direct page reclaim.
2328  *
2329  * If a full scan of the inactive list fails to free enough memory then we
2330  * are "out of memory" and something needs to be killed.
2331  *
2332  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2333  * high - the zone may be full of dirty or under-writeback pages, which this
2334  * caller can't do much about.  We kick the writeback threads and take explicit
2335  * naps in the hope that some of these pages can be written.  But if the
2336  * allocating task holds filesystem locks which prevent writeout this might not
2337  * work, and the allocation attempt will fail.
2338  *
2339  * returns:     0, if no pages reclaimed
2340  *              else, the number of pages reclaimed
2341  */
2342 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2343                                         struct scan_control *sc,
2344                                         struct shrink_control *shrink)
2345 {
2346         unsigned long total_scanned = 0;
2347         struct reclaim_state *reclaim_state = current->reclaim_state;
2348         struct zoneref *z;
2349         struct zone *zone;
2350         unsigned long writeback_threshold;
2351         bool aborted_reclaim;
2352
2353         delayacct_freepages_start();
2354
2355         if (global_reclaim(sc))
2356                 count_vm_event(ALLOCSTALL);
2357
2358         do {
2359                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2360                                 sc->priority);
2361                 sc->nr_scanned = 0;
2362                 aborted_reclaim = shrink_zones(zonelist, sc);
2363
2364                 /*
2365                  * Don't shrink slabs when reclaiming memory from
2366                  * over limit cgroups
2367                  */
2368                 if (global_reclaim(sc)) {
2369                         unsigned long lru_pages = 0;
2370                         for_each_zone_zonelist(zone, z, zonelist,
2371                                         gfp_zone(sc->gfp_mask)) {
2372                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2373                                         continue;
2374
2375                                 lru_pages += zone_reclaimable_pages(zone);
2376                         }
2377
2378                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2379                         if (reclaim_state) {
2380                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2381                                 reclaim_state->reclaimed_slab = 0;
2382                         }
2383                 }
2384                 total_scanned += sc->nr_scanned;
2385                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2386                         goto out;
2387
2388                 /*
2389                  * If we're getting trouble reclaiming, start doing
2390                  * writepage even in laptop mode.
2391                  */
2392                 if (sc->priority < DEF_PRIORITY - 2)
2393                         sc->may_writepage = 1;
2394
2395                 /*
2396                  * Try to write back as many pages as we just scanned.  This
2397                  * tends to cause slow streaming writers to write data to the
2398                  * disk smoothly, at the dirtying rate, which is nice.   But
2399                  * that's undesirable in laptop mode, where we *want* lumpy
2400                  * writeout.  So in laptop mode, write out the whole world.
2401                  */
2402                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2403                 if (total_scanned > writeback_threshold) {
2404                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2405                                                 WB_REASON_TRY_TO_FREE_PAGES);
2406                         sc->may_writepage = 1;
2407                 }
2408         } while (--sc->priority >= 0);
2409
2410 out:
2411         delayacct_freepages_end();
2412
2413         if (sc->nr_reclaimed)
2414                 return sc->nr_reclaimed;
2415
2416         /*
2417          * As hibernation is going on, kswapd is freezed so that it can't mark
2418          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2419          * check.
2420          */
2421         if (oom_killer_disabled)
2422                 return 0;
2423
2424         /* Aborted reclaim to try compaction? don't OOM, then */
2425         if (aborted_reclaim)
2426                 return 1;
2427
2428         /* top priority shrink_zones still had more to do? don't OOM, then */
2429         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2430                 return 1;
2431
2432         return 0;
2433 }
2434
2435 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2436 {
2437         struct zone *zone;
2438         unsigned long pfmemalloc_reserve = 0;
2439         unsigned long free_pages = 0;
2440         int i;
2441         bool wmark_ok;
2442
2443         for (i = 0; i <= ZONE_NORMAL; i++) {
2444                 zone = &pgdat->node_zones[i];
2445                 pfmemalloc_reserve += min_wmark_pages(zone);
2446                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2447         }
2448
2449         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2450
2451         /* kswapd must be awake if processes are being throttled */
2452         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2453                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2454                                                 (enum zone_type)ZONE_NORMAL);
2455                 wake_up_interruptible(&pgdat->kswapd_wait);
2456         }
2457
2458         return wmark_ok;
2459 }
2460
2461 /*
2462  * Throttle direct reclaimers if backing storage is backed by the network
2463  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2464  * depleted. kswapd will continue to make progress and wake the processes
2465  * when the low watermark is reached.
2466  *
2467  * Returns true if a fatal signal was delivered during throttling. If this
2468  * happens, the page allocator should not consider triggering the OOM killer.
2469  */
2470 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2471                                         nodemask_t *nodemask)
2472 {
2473         struct zone *zone;
2474         int high_zoneidx = gfp_zone(gfp_mask);
2475         pg_data_t *pgdat;
2476
2477         /*
2478          * Kernel threads should not be throttled as they may be indirectly
2479          * responsible for cleaning pages necessary for reclaim to make forward
2480          * progress. kjournald for example may enter direct reclaim while
2481          * committing a transaction where throttling it could forcing other
2482          * processes to block on log_wait_commit().
2483          */
2484         if (current->flags & PF_KTHREAD)
2485                 goto out;
2486
2487         /*
2488          * If a fatal signal is pending, this process should not throttle.
2489          * It should return quickly so it can exit and free its memory
2490          */
2491         if (fatal_signal_pending(current))
2492                 goto out;
2493
2494         /* Check if the pfmemalloc reserves are ok */
2495         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2496         pgdat = zone->zone_pgdat;
2497         if (pfmemalloc_watermark_ok(pgdat))
2498                 goto out;
2499
2500         /* Account for the throttling */
2501         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2502
2503         /*
2504          * If the caller cannot enter the filesystem, it's possible that it
2505          * is due to the caller holding an FS lock or performing a journal
2506          * transaction in the case of a filesystem like ext[3|4]. In this case,
2507          * it is not safe to block on pfmemalloc_wait as kswapd could be
2508          * blocked waiting on the same lock. Instead, throttle for up to a
2509          * second before continuing.
2510          */
2511         if (!(gfp_mask & __GFP_FS)) {
2512                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2513                         pfmemalloc_watermark_ok(pgdat), HZ);
2514
2515                 goto check_pending;
2516         }
2517
2518         /* Throttle until kswapd wakes the process */
2519         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2520                 pfmemalloc_watermark_ok(pgdat));
2521
2522 check_pending:
2523         if (fatal_signal_pending(current))
2524                 return true;
2525
2526 out:
2527         return false;
2528 }
2529
2530 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2531                                 gfp_t gfp_mask, nodemask_t *nodemask)
2532 {
2533         unsigned long nr_reclaimed;
2534         struct scan_control sc = {
2535                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2536                 .may_writepage = !laptop_mode,
2537                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2538                 .may_unmap = 1,
2539                 .may_swap = 1,
2540                 .order = order,
2541                 .priority = DEF_PRIORITY,
2542                 .target_mem_cgroup = NULL,
2543                 .nodemask = nodemask,
2544         };
2545         struct shrink_control shrink = {
2546                 .gfp_mask = sc.gfp_mask,
2547         };
2548
2549         /*
2550          * Do not enter reclaim if fatal signal was delivered while throttled.
2551          * 1 is returned so that the page allocator does not OOM kill at this
2552          * point.
2553          */
2554         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2555                 return 1;
2556
2557         trace_mm_vmscan_direct_reclaim_begin(order,
2558                                 sc.may_writepage,
2559                                 gfp_mask);
2560
2561         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2562
2563         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2564
2565         return nr_reclaimed;
2566 }
2567
2568 #ifdef CONFIG_MEMCG
2569
2570 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2571                                                 gfp_t gfp_mask, bool noswap,
2572                                                 struct zone *zone,
2573                                                 unsigned long *nr_scanned)
2574 {
2575         struct scan_control sc = {
2576                 .nr_scanned = 0,
2577                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2578                 .may_writepage = !laptop_mode,
2579                 .may_unmap = 1,
2580                 .may_swap = !noswap,
2581                 .order = 0,
2582                 .priority = 0,
2583                 .target_mem_cgroup = memcg,
2584         };
2585         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2586
2587         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2588                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2589
2590         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2591                                                       sc.may_writepage,
2592                                                       sc.gfp_mask);
2593
2594         /*
2595          * NOTE: Although we can get the priority field, using it
2596          * here is not a good idea, since it limits the pages we can scan.
2597          * if we don't reclaim here, the shrink_zone from balance_pgdat
2598          * will pick up pages from other mem cgroup's as well. We hack
2599          * the priority and make it zero.
2600          */
2601         shrink_lruvec(lruvec, &sc);
2602
2603         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2604
2605         *nr_scanned = sc.nr_scanned;
2606         return sc.nr_reclaimed;
2607 }
2608
2609 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2610                                            gfp_t gfp_mask,
2611                                            bool noswap)
2612 {
2613         struct zonelist *zonelist;
2614         unsigned long nr_reclaimed;
2615         int nid;
2616         struct scan_control sc = {
2617                 .may_writepage = !laptop_mode,
2618                 .may_unmap = 1,
2619                 .may_swap = !noswap,
2620                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2621                 .order = 0,
2622                 .priority = DEF_PRIORITY,
2623                 .target_mem_cgroup = memcg,
2624                 .nodemask = NULL, /* we don't care the placement */
2625                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2626                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2627         };
2628         struct shrink_control shrink = {
2629                 .gfp_mask = sc.gfp_mask,
2630         };
2631
2632         /*
2633          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2634          * take care of from where we get pages. So the node where we start the
2635          * scan does not need to be the current node.
2636          */
2637         nid = mem_cgroup_select_victim_node(memcg);
2638
2639         zonelist = NODE_DATA(nid)->node_zonelists;
2640
2641         trace_mm_vmscan_memcg_reclaim_begin(0,
2642                                             sc.may_writepage,
2643                                             sc.gfp_mask);
2644
2645         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2646
2647         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2648
2649         return nr_reclaimed;
2650 }
2651 #endif
2652
2653 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2654 {
2655         struct mem_cgroup *memcg;
2656
2657         if (!total_swap_pages)
2658                 return;
2659
2660         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2661         do {
2662                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2663
2664                 if (inactive_anon_is_low(lruvec))
2665                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2666                                            sc, LRU_ACTIVE_ANON);
2667
2668                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2669         } while (memcg);
2670 }
2671
2672 static bool zone_balanced(struct zone *zone, int order,
2673                           unsigned long balance_gap, int classzone_idx)
2674 {
2675         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2676                                     balance_gap, classzone_idx, 0))
2677                 return false;
2678
2679         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2680             !compaction_suitable(zone, order))
2681                 return false;
2682
2683         return true;
2684 }
2685
2686 /*
2687  * pgdat_balanced() is used when checking if a node is balanced.
2688  *
2689  * For order-0, all zones must be balanced!
2690  *
2691  * For high-order allocations only zones that meet watermarks and are in a
2692  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2693  * total of balanced pages must be at least 25% of the zones allowed by
2694  * classzone_idx for the node to be considered balanced. Forcing all zones to
2695  * be balanced for high orders can cause excessive reclaim when there are
2696  * imbalanced zones.
2697  * The choice of 25% is due to
2698  *   o a 16M DMA zone that is balanced will not balance a zone on any
2699  *     reasonable sized machine
2700  *   o On all other machines, the top zone must be at least a reasonable
2701  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2702  *     would need to be at least 256M for it to be balance a whole node.
2703  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2704  *     to balance a node on its own. These seemed like reasonable ratios.
2705  */
2706 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2707 {
2708         unsigned long managed_pages = 0;
2709         unsigned long balanced_pages = 0;
2710         int i;
2711
2712         /* Check the watermark levels */
2713         for (i = 0; i <= classzone_idx; i++) {
2714                 struct zone *zone = pgdat->node_zones + i;
2715
2716                 if (!populated_zone(zone))
2717                         continue;
2718
2719                 managed_pages += zone->managed_pages;
2720
2721                 /*
2722                  * A special case here:
2723                  *
2724                  * balance_pgdat() skips over all_unreclaimable after
2725                  * DEF_PRIORITY. Effectively, it considers them balanced so
2726                  * they must be considered balanced here as well!
2727                  */
2728                 if (zone->all_unreclaimable) {
2729                         balanced_pages += zone->managed_pages;
2730                         continue;
2731                 }
2732
2733                 if (zone_balanced(zone, order, 0, i))
2734                         balanced_pages += zone->managed_pages;
2735                 else if (!order)
2736                         return false;
2737         }
2738
2739         if (order)
2740                 return balanced_pages >= (managed_pages >> 2);
2741         else
2742                 return true;
2743 }
2744
2745 /*
2746  * Prepare kswapd for sleeping. This verifies that there are no processes
2747  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2748  *
2749  * Returns true if kswapd is ready to sleep
2750  */
2751 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2752                                         int classzone_idx)
2753 {
2754         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2755         if (remaining)
2756                 return false;
2757
2758         /*
2759          * There is a potential race between when kswapd checks its watermarks
2760          * and a process gets throttled. There is also a potential race if
2761          * processes get throttled, kswapd wakes, a large process exits therby
2762          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2763          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2764          * so wake them now if necessary. If necessary, processes will wake
2765          * kswapd and get throttled again
2766          */
2767         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2768                 wake_up(&pgdat->pfmemalloc_wait);
2769                 return false;
2770         }
2771
2772         return pgdat_balanced(pgdat, order, classzone_idx);
2773 }
2774
2775 /*
2776  * kswapd shrinks the zone by the number of pages required to reach
2777  * the high watermark.
2778  *
2779  * Returns true if kswapd scanned at least the requested number of pages to
2780  * reclaim or if the lack of progress was due to pages under writeback.
2781  * This is used to determine if the scanning priority needs to be raised.
2782  */
2783 static bool kswapd_shrink_zone(struct zone *zone,
2784                                int classzone_idx,
2785                                struct scan_control *sc,
2786                                unsigned long lru_pages,
2787                                unsigned long *nr_attempted)
2788 {
2789         unsigned long nr_slab;
2790         int testorder = sc->order;
2791         unsigned long balance_gap;
2792         struct reclaim_state *reclaim_state = current->reclaim_state;
2793         struct shrink_control shrink = {
2794                 .gfp_mask = sc->gfp_mask,
2795         };
2796         bool lowmem_pressure;
2797
2798         /* Reclaim above the high watermark. */
2799         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2800
2801         /*
2802          * Kswapd reclaims only single pages with compaction enabled. Trying
2803          * too hard to reclaim until contiguous free pages have become
2804          * available can hurt performance by evicting too much useful data
2805          * from memory. Do not reclaim more than needed for compaction.
2806          */
2807         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2808                         compaction_suitable(zone, sc->order) !=
2809                                 COMPACT_SKIPPED)
2810                 testorder = 0;
2811
2812         /*
2813          * We put equal pressure on every zone, unless one zone has way too
2814          * many pages free already. The "too many pages" is defined as the
2815          * high wmark plus a "gap" where the gap is either the low
2816          * watermark or 1% of the zone, whichever is smaller.
2817          */
2818         balance_gap = min(low_wmark_pages(zone),
2819                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2820                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2821
2822         /*
2823          * If there is no low memory pressure or the zone is balanced then no
2824          * reclaim is necessary
2825          */
2826         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2827         if (!lowmem_pressure && zone_balanced(zone, testorder,
2828                                                 balance_gap, classzone_idx))
2829                 return true;
2830
2831         shrink_zone(zone, sc);
2832
2833         reclaim_state->reclaimed_slab = 0;
2834         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2835         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2836
2837         /* Account for the number of pages attempted to reclaim */
2838         *nr_attempted += sc->nr_to_reclaim;
2839
2840         if (nr_slab == 0 && !zone_reclaimable(zone))
2841                 zone->all_unreclaimable = 1;
2842
2843         zone_clear_flag(zone, ZONE_WRITEBACK);
2844
2845         /*
2846          * If a zone reaches its high watermark, consider it to be no longer
2847          * congested. It's possible there are dirty pages backed by congested
2848          * BDIs but as pressure is relieved, speculatively avoid congestion
2849          * waits.
2850          */
2851         if (!zone->all_unreclaimable &&
2852             zone_balanced(zone, testorder, 0, classzone_idx)) {
2853                 zone_clear_flag(zone, ZONE_CONGESTED);
2854                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2855         }
2856
2857         return sc->nr_scanned >= sc->nr_to_reclaim;
2858 }
2859
2860 /*
2861  * For kswapd, balance_pgdat() will work across all this node's zones until
2862  * they are all at high_wmark_pages(zone).
2863  *
2864  * Returns the final order kswapd was reclaiming at
2865  *
2866  * There is special handling here for zones which are full of pinned pages.
2867  * This can happen if the pages are all mlocked, or if they are all used by
2868  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2869  * What we do is to detect the case where all pages in the zone have been
2870  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2871  * dead and from now on, only perform a short scan.  Basically we're polling
2872  * the zone for when the problem goes away.
2873  *
2874  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2875  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2876  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2877  * lower zones regardless of the number of free pages in the lower zones. This
2878  * interoperates with the page allocator fallback scheme to ensure that aging
2879  * of pages is balanced across the zones.
2880  */
2881 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2882                                                         int *classzone_idx)
2883 {
2884         int i;
2885         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2886         unsigned long nr_soft_reclaimed;
2887         unsigned long nr_soft_scanned;
2888         struct scan_control sc = {
2889                 .gfp_mask = GFP_KERNEL,
2890                 .priority = DEF_PRIORITY,
2891                 .may_unmap = 1,
2892                 .may_swap = 1,
2893                 .may_writepage = !laptop_mode,
2894                 .order = order,
2895                 .target_mem_cgroup = NULL,
2896         };
2897         count_vm_event(PAGEOUTRUN);
2898
2899         do {
2900                 unsigned long lru_pages = 0;
2901                 unsigned long nr_attempted = 0;
2902                 bool raise_priority = true;
2903                 bool pgdat_needs_compaction = (order > 0);
2904
2905                 sc.nr_reclaimed = 0;
2906
2907                 /*
2908                  * Scan in the highmem->dma direction for the highest
2909                  * zone which needs scanning
2910                  */
2911                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2912                         struct zone *zone = pgdat->node_zones + i;
2913
2914                         if (!populated_zone(zone))
2915                                 continue;
2916
2917                         if (zone->all_unreclaimable &&
2918                             sc.priority != DEF_PRIORITY)
2919                                 continue;
2920
2921                         /*
2922                          * Do some background aging of the anon list, to give
2923                          * pages a chance to be referenced before reclaiming.
2924                          */
2925                         age_active_anon(zone, &sc);
2926
2927                         /*
2928                          * If the number of buffer_heads in the machine
2929                          * exceeds the maximum allowed level and this node
2930                          * has a highmem zone, force kswapd to reclaim from
2931                          * it to relieve lowmem pressure.
2932                          */
2933                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2934                                 end_zone = i;
2935                                 break;
2936                         }
2937
2938                         if (!zone_balanced(zone, order, 0, 0)) {
2939                                 end_zone = i;
2940                                 break;
2941                         } else {
2942                                 /*
2943                                  * If balanced, clear the dirty and congested
2944                                  * flags
2945                                  */
2946                                 zone_clear_flag(zone, ZONE_CONGESTED);
2947                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2948                         }
2949                 }
2950
2951                 if (i < 0)
2952                         goto out;
2953
2954                 for (i = 0; i <= end_zone; i++) {
2955                         struct zone *zone = pgdat->node_zones + i;
2956
2957                         if (!populated_zone(zone))
2958                                 continue;
2959
2960                         lru_pages += zone_reclaimable_pages(zone);
2961
2962                         /*
2963                          * If any zone is currently balanced then kswapd will
2964                          * not call compaction as it is expected that the
2965                          * necessary pages are already available.
2966                          */
2967                         if (pgdat_needs_compaction &&
2968                                         zone_watermark_ok(zone, order,
2969                                                 low_wmark_pages(zone),
2970                                                 *classzone_idx, 0))
2971                                 pgdat_needs_compaction = false;
2972                 }
2973
2974                 /*
2975                  * If we're getting trouble reclaiming, start doing writepage
2976                  * even in laptop mode.
2977                  */
2978                 if (sc.priority < DEF_PRIORITY - 2)
2979                         sc.may_writepage = 1;
2980
2981                 /*
2982                  * Now scan the zone in the dma->highmem direction, stopping
2983                  * at the last zone which needs scanning.
2984                  *
2985                  * We do this because the page allocator works in the opposite
2986                  * direction.  This prevents the page allocator from allocating
2987                  * pages behind kswapd's direction of progress, which would
2988                  * cause too much scanning of the lower zones.
2989                  */
2990                 for (i = 0; i <= end_zone; i++) {
2991                         struct zone *zone = pgdat->node_zones + i;
2992
2993                         if (!populated_zone(zone))
2994                                 continue;
2995
2996                         if (zone->all_unreclaimable &&
2997                             sc.priority != DEF_PRIORITY)
2998                                 continue;
2999
3000                         sc.nr_scanned = 0;
3001
3002                         nr_soft_scanned = 0;
3003                         /*
3004                          * Call soft limit reclaim before calling shrink_zone.
3005                          */
3006                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3007                                                         order, sc.gfp_mask,
3008                                                         &nr_soft_scanned);
3009                         sc.nr_reclaimed += nr_soft_reclaimed;
3010
3011                         /*
3012                          * There should be no need to raise the scanning
3013                          * priority if enough pages are already being scanned
3014                          * that that high watermark would be met at 100%
3015                          * efficiency.
3016                          */
3017                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3018                                         lru_pages, &nr_attempted))
3019                                 raise_priority = false;
3020                 }
3021
3022                 /*
3023                  * If the low watermark is met there is no need for processes
3024                  * to be throttled on pfmemalloc_wait as they should not be
3025                  * able to safely make forward progress. Wake them
3026                  */
3027                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3028                                 pfmemalloc_watermark_ok(pgdat))
3029                         wake_up(&pgdat->pfmemalloc_wait);
3030
3031                 /*
3032                  * Fragmentation may mean that the system cannot be rebalanced
3033                  * for high-order allocations in all zones. If twice the
3034                  * allocation size has been reclaimed and the zones are still
3035                  * not balanced then recheck the watermarks at order-0 to
3036                  * prevent kswapd reclaiming excessively. Assume that a
3037                  * process requested a high-order can direct reclaim/compact.
3038                  */
3039                 if (order && sc.nr_reclaimed >= 2UL << order)
3040                         order = sc.order = 0;
3041
3042                 /* Check if kswapd should be suspending */
3043                 if (try_to_freeze() || kthread_should_stop())
3044                         break;
3045
3046                 /*
3047                  * Compact if necessary and kswapd is reclaiming at least the
3048                  * high watermark number of pages as requsted
3049                  */
3050                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3051                         compact_pgdat(pgdat, order);
3052
3053                 /*
3054                  * Raise priority if scanning rate is too low or there was no
3055                  * progress in reclaiming pages
3056                  */
3057                 if (raise_priority || !sc.nr_reclaimed)
3058                         sc.priority--;
3059         } while (sc.priority >= 1 &&
3060                  !pgdat_balanced(pgdat, order, *classzone_idx));
3061
3062 out:
3063         /*
3064          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3065          * makes a decision on the order we were last reclaiming at. However,
3066          * if another caller entered the allocator slow path while kswapd
3067          * was awake, order will remain at the higher level
3068          */
3069         *classzone_idx = end_zone;
3070         return order;
3071 }
3072
3073 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3074 {
3075         long remaining = 0;
3076         DEFINE_WAIT(wait);
3077
3078         if (freezing(current) || kthread_should_stop())
3079                 return;
3080
3081         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3082
3083         /* Try to sleep for a short interval */
3084         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3085                 remaining = schedule_timeout(HZ/10);
3086                 finish_wait(&pgdat->kswapd_wait, &wait);
3087                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3088         }
3089
3090         /*
3091          * After a short sleep, check if it was a premature sleep. If not, then
3092          * go fully to sleep until explicitly woken up.
3093          */
3094         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3095                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3096
3097                 /*
3098                  * vmstat counters are not perfectly accurate and the estimated
3099                  * value for counters such as NR_FREE_PAGES can deviate from the
3100                  * true value by nr_online_cpus * threshold. To avoid the zone
3101                  * watermarks being breached while under pressure, we reduce the
3102                  * per-cpu vmstat threshold while kswapd is awake and restore
3103                  * them before going back to sleep.
3104                  */
3105                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3106
3107                 /*
3108                  * Compaction records what page blocks it recently failed to
3109                  * isolate pages from and skips them in the future scanning.
3110                  * When kswapd is going to sleep, it is reasonable to assume
3111                  * that pages and compaction may succeed so reset the cache.
3112                  */
3113                 reset_isolation_suitable(pgdat);
3114
3115                 if (!kthread_should_stop())
3116                         schedule();
3117
3118                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3119         } else {
3120                 if (remaining)
3121                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3122                 else
3123                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3124         }
3125         finish_wait(&pgdat->kswapd_wait, &wait);
3126 }
3127
3128 /*
3129  * The background pageout daemon, started as a kernel thread
3130  * from the init process.
3131  *
3132  * This basically trickles out pages so that we have _some_
3133  * free memory available even if there is no other activity
3134  * that frees anything up. This is needed for things like routing
3135  * etc, where we otherwise might have all activity going on in
3136  * asynchronous contexts that cannot page things out.
3137  *
3138  * If there are applications that are active memory-allocators
3139  * (most normal use), this basically shouldn't matter.
3140  */
3141 static int kswapd(void *p)
3142 {
3143         unsigned long order, new_order;
3144         unsigned balanced_order;
3145         int classzone_idx, new_classzone_idx;
3146         int balanced_classzone_idx;
3147         pg_data_t *pgdat = (pg_data_t*)p;
3148         struct task_struct *tsk = current;
3149
3150         struct reclaim_state reclaim_state = {
3151                 .reclaimed_slab = 0,
3152         };
3153         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3154
3155         lockdep_set_current_reclaim_state(GFP_KERNEL);
3156
3157         if (!cpumask_empty(cpumask))
3158                 set_cpus_allowed_ptr(tsk, cpumask);
3159         current->reclaim_state = &reclaim_state;
3160
3161         /*
3162          * Tell the memory management that we're a "memory allocator",
3163          * and that if we need more memory we should get access to it
3164          * regardless (see "__alloc_pages()"). "kswapd" should
3165          * never get caught in the normal page freeing logic.
3166          *
3167          * (Kswapd normally doesn't need memory anyway, but sometimes
3168          * you need a small amount of memory in order to be able to
3169          * page out something else, and this flag essentially protects
3170          * us from recursively trying to free more memory as we're
3171          * trying to free the first piece of memory in the first place).
3172          */
3173         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3174         set_freezable();
3175
3176         order = new_order = 0;
3177         balanced_order = 0;
3178         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3179         balanced_classzone_idx = classzone_idx;
3180         for ( ; ; ) {
3181                 bool ret;
3182
3183                 /*
3184                  * If the last balance_pgdat was unsuccessful it's unlikely a
3185                  * new request of a similar or harder type will succeed soon
3186                  * so consider going to sleep on the basis we reclaimed at
3187                  */
3188                 if (balanced_classzone_idx >= new_classzone_idx &&
3189                                         balanced_order == new_order) {
3190                         new_order = pgdat->kswapd_max_order;
3191                         new_classzone_idx = pgdat->classzone_idx;
3192                         pgdat->kswapd_max_order =  0;
3193                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3194                 }
3195
3196                 if (order < new_order || classzone_idx > new_classzone_idx) {
3197                         /*
3198                          * Don't sleep if someone wants a larger 'order'
3199                          * allocation or has tigher zone constraints
3200                          */
3201                         order = new_order;
3202                         classzone_idx = new_classzone_idx;
3203                 } else {
3204                         kswapd_try_to_sleep(pgdat, balanced_order,
3205                                                 balanced_classzone_idx);
3206                         order = pgdat->kswapd_max_order;
3207                         classzone_idx = pgdat->classzone_idx;
3208                         new_order = order;
3209                         new_classzone_idx = classzone_idx;
3210                         pgdat->kswapd_max_order = 0;
3211                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3212                 }
3213
3214                 ret = try_to_freeze();
3215                 if (kthread_should_stop())
3216                         break;
3217
3218                 /*
3219                  * We can speed up thawing tasks if we don't call balance_pgdat
3220                  * after returning from the refrigerator
3221                  */
3222                 if (!ret) {
3223                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3224                         balanced_classzone_idx = classzone_idx;
3225                         balanced_order = balance_pgdat(pgdat, order,
3226                                                 &balanced_classzone_idx);
3227                 }
3228         }
3229
3230         current->reclaim_state = NULL;
3231         return 0;
3232 }
3233
3234 /*
3235  * A zone is low on free memory, so wake its kswapd task to service it.
3236  */
3237 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3238 {
3239         pg_data_t *pgdat;
3240
3241         if (!populated_zone(zone))
3242                 return;
3243
3244         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3245                 return;
3246         pgdat = zone->zone_pgdat;
3247         if (pgdat->kswapd_max_order < order) {
3248                 pgdat->kswapd_max_order = order;
3249                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3250         }
3251         if (!waitqueue_active(&pgdat->kswapd_wait))
3252                 return;
3253         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3254                 return;
3255
3256         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3257         wake_up_interruptible(&pgdat->kswapd_wait);
3258 }
3259
3260 /*
3261  * The reclaimable count would be mostly accurate.
3262  * The less reclaimable pages may be
3263  * - mlocked pages, which will be moved to unevictable list when encountered
3264  * - mapped pages, which may require several travels to be reclaimed
3265  * - dirty pages, which is not "instantly" reclaimable
3266  */
3267 unsigned long global_reclaimable_pages(void)
3268 {
3269         int nr;
3270
3271         nr = global_page_state(NR_ACTIVE_FILE) +
3272              global_page_state(NR_INACTIVE_FILE);
3273
3274         if (get_nr_swap_pages() > 0)
3275                 nr += global_page_state(NR_ACTIVE_ANON) +
3276                       global_page_state(NR_INACTIVE_ANON);
3277
3278         return nr;
3279 }
3280
3281 unsigned long zone_reclaimable_pages(struct zone *zone)
3282 {
3283         int nr;
3284
3285         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3286              zone_page_state(zone, NR_INACTIVE_FILE);
3287
3288         if (get_nr_swap_pages() > 0)
3289                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3290                       zone_page_state(zone, NR_INACTIVE_ANON);
3291
3292         return nr;
3293 }
3294
3295 #ifdef CONFIG_HIBERNATION
3296 /*
3297  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3298  * freed pages.
3299  *
3300  * Rather than trying to age LRUs the aim is to preserve the overall
3301  * LRU order by reclaiming preferentially
3302  * inactive > active > active referenced > active mapped
3303  */
3304 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3305 {
3306         struct reclaim_state reclaim_state;
3307         struct scan_control sc = {
3308                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3309                 .may_swap = 1,
3310                 .may_unmap = 1,
3311                 .may_writepage = 1,
3312                 .nr_to_reclaim = nr_to_reclaim,
3313                 .hibernation_mode = 1,
3314                 .order = 0,
3315                 .priority = DEF_PRIORITY,
3316         };
3317         struct shrink_control shrink = {
3318                 .gfp_mask = sc.gfp_mask,
3319         };
3320         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3321         struct task_struct *p = current;
3322         unsigned long nr_reclaimed;
3323
3324         p->flags |= PF_MEMALLOC;
3325         lockdep_set_current_reclaim_state(sc.gfp_mask);
3326         reclaim_state.reclaimed_slab = 0;
3327         p->reclaim_state = &reclaim_state;
3328
3329         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3330
3331         p->reclaim_state = NULL;
3332         lockdep_clear_current_reclaim_state();
3333         p->flags &= ~PF_MEMALLOC;
3334
3335         return nr_reclaimed;
3336 }
3337 #endif /* CONFIG_HIBERNATION */
3338
3339 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3340    not required for correctness.  So if the last cpu in a node goes
3341    away, we get changed to run anywhere: as the first one comes back,
3342    restore their cpu bindings. */
3343 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3344                         void *hcpu)
3345 {
3346         int nid;
3347
3348         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3349                 for_each_node_state(nid, N_MEMORY) {
3350                         pg_data_t *pgdat = NODE_DATA(nid);
3351                         const struct cpumask *mask;
3352
3353                         mask = cpumask_of_node(pgdat->node_id);
3354
3355                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3356                                 /* One of our CPUs online: restore mask */
3357                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3358                 }
3359         }
3360         return NOTIFY_OK;
3361 }
3362
3363 /*
3364  * This kswapd start function will be called by init and node-hot-add.
3365  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3366  */
3367 int kswapd_run(int nid)
3368 {
3369         pg_data_t *pgdat = NODE_DATA(nid);
3370         int ret = 0;
3371
3372         if (pgdat->kswapd)
3373                 return 0;
3374
3375         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3376         if (IS_ERR(pgdat->kswapd)) {
3377                 /* failure at boot is fatal */
3378                 BUG_ON(system_state == SYSTEM_BOOTING);
3379                 pr_err("Failed to start kswapd on node %d\n", nid);
3380                 ret = PTR_ERR(pgdat->kswapd);
3381                 pgdat->kswapd = NULL;
3382         }
3383         return ret;
3384 }
3385
3386 /*
3387  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3388  * hold lock_memory_hotplug().
3389  */
3390 void kswapd_stop(int nid)
3391 {
3392         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3393
3394         if (kswapd) {
3395                 kthread_stop(kswapd);
3396                 NODE_DATA(nid)->kswapd = NULL;
3397         }
3398 }
3399
3400 static int __init kswapd_init(void)
3401 {
3402         int nid;
3403
3404         swap_setup();
3405         for_each_node_state(nid, N_MEMORY)
3406                 kswapd_run(nid);
3407         hotcpu_notifier(cpu_callback, 0);
3408         return 0;
3409 }
3410
3411 module_init(kswapd_init)
3412
3413 #ifdef CONFIG_NUMA
3414 /*
3415  * Zone reclaim mode
3416  *
3417  * If non-zero call zone_reclaim when the number of free pages falls below
3418  * the watermarks.
3419  */
3420 int zone_reclaim_mode __read_mostly;
3421
3422 #define RECLAIM_OFF 0
3423 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3424 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3425 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3426
3427 /*
3428  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3429  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3430  * a zone.
3431  */
3432 #define ZONE_RECLAIM_PRIORITY 4
3433
3434 /*
3435  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3436  * occur.
3437  */
3438 int sysctl_min_unmapped_ratio = 1;
3439
3440 /*
3441  * If the number of slab pages in a zone grows beyond this percentage then
3442  * slab reclaim needs to occur.
3443  */
3444 int sysctl_min_slab_ratio = 5;
3445
3446 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3447 {
3448         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3449         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3450                 zone_page_state(zone, NR_ACTIVE_FILE);
3451
3452         /*
3453          * It's possible for there to be more file mapped pages than
3454          * accounted for by the pages on the file LRU lists because
3455          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3456          */
3457         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3458 }
3459
3460 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3461 static long zone_pagecache_reclaimable(struct zone *zone)
3462 {
3463         long nr_pagecache_reclaimable;
3464         long delta = 0;
3465
3466         /*
3467          * If RECLAIM_SWAP is set, then all file pages are considered
3468          * potentially reclaimable. Otherwise, we have to worry about
3469          * pages like swapcache and zone_unmapped_file_pages() provides
3470          * a better estimate
3471          */
3472         if (zone_reclaim_mode & RECLAIM_SWAP)
3473                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3474         else
3475                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3476
3477         /* If we can't clean pages, remove dirty pages from consideration */
3478         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3479                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3480
3481         /* Watch for any possible underflows due to delta */
3482         if (unlikely(delta > nr_pagecache_reclaimable))
3483                 delta = nr_pagecache_reclaimable;
3484
3485         return nr_pagecache_reclaimable - delta;
3486 }
3487
3488 /*
3489  * Try to free up some pages from this zone through reclaim.
3490  */
3491 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3492 {
3493         /* Minimum pages needed in order to stay on node */
3494         const unsigned long nr_pages = 1 << order;
3495         struct task_struct *p = current;
3496         struct reclaim_state reclaim_state;
3497         struct scan_control sc = {
3498                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3499                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3500                 .may_swap = 1,
3501                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3502                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3503                 .order = order,
3504                 .priority = ZONE_RECLAIM_PRIORITY,
3505         };
3506         struct shrink_control shrink = {
3507                 .gfp_mask = sc.gfp_mask,
3508         };
3509         unsigned long nr_slab_pages0, nr_slab_pages1;
3510
3511         cond_resched();
3512         /*
3513          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3514          * and we also need to be able to write out pages for RECLAIM_WRITE
3515          * and RECLAIM_SWAP.
3516          */
3517         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3518         lockdep_set_current_reclaim_state(gfp_mask);
3519         reclaim_state.reclaimed_slab = 0;
3520         p->reclaim_state = &reclaim_state;
3521
3522         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3523                 /*
3524                  * Free memory by calling shrink zone with increasing
3525                  * priorities until we have enough memory freed.
3526                  */
3527                 do {
3528                         shrink_zone(zone, &sc);
3529                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3530         }
3531
3532         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3533         if (nr_slab_pages0 > zone->min_slab_pages) {
3534                 /*
3535                  * shrink_slab() does not currently allow us to determine how
3536                  * many pages were freed in this zone. So we take the current
3537                  * number of slab pages and shake the slab until it is reduced
3538                  * by the same nr_pages that we used for reclaiming unmapped
3539                  * pages.
3540                  *
3541                  * Note that shrink_slab will free memory on all zones and may
3542                  * take a long time.
3543                  */
3544                 for (;;) {
3545                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3546
3547                         /* No reclaimable slab or very low memory pressure */
3548                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3549                                 break;
3550
3551                         /* Freed enough memory */
3552                         nr_slab_pages1 = zone_page_state(zone,
3553                                                         NR_SLAB_RECLAIMABLE);
3554                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3555                                 break;
3556                 }
3557
3558                 /*
3559                  * Update nr_reclaimed by the number of slab pages we
3560                  * reclaimed from this zone.
3561                  */
3562                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3563                 if (nr_slab_pages1 < nr_slab_pages0)
3564                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3565         }
3566
3567         p->reclaim_state = NULL;
3568         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3569         lockdep_clear_current_reclaim_state();
3570         return sc.nr_reclaimed >= nr_pages;
3571 }
3572
3573 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3574 {
3575         int node_id;
3576         int ret;
3577
3578         /*
3579          * Zone reclaim reclaims unmapped file backed pages and
3580          * slab pages if we are over the defined limits.
3581          *
3582          * A small portion of unmapped file backed pages is needed for
3583          * file I/O otherwise pages read by file I/O will be immediately
3584          * thrown out if the zone is overallocated. So we do not reclaim
3585          * if less than a specified percentage of the zone is used by
3586          * unmapped file backed pages.
3587          */
3588         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3589             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3590                 return ZONE_RECLAIM_FULL;
3591
3592         if (zone->all_unreclaimable)
3593                 return ZONE_RECLAIM_FULL;
3594
3595         /*
3596          * Do not scan if the allocation should not be delayed.
3597          */
3598         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3599                 return ZONE_RECLAIM_NOSCAN;
3600
3601         /*
3602          * Only run zone reclaim on the local zone or on zones that do not
3603          * have associated processors. This will favor the local processor
3604          * over remote processors and spread off node memory allocations
3605          * as wide as possible.
3606          */
3607         node_id = zone_to_nid(zone);
3608         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3609                 return ZONE_RECLAIM_NOSCAN;
3610
3611         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3612                 return ZONE_RECLAIM_NOSCAN;
3613
3614         ret = __zone_reclaim(zone, gfp_mask, order);
3615         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3616
3617         if (!ret)
3618                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3619
3620         return ret;
3621 }
3622 #endif
3623
3624 /*
3625  * page_evictable - test whether a page is evictable
3626  * @page: the page to test
3627  *
3628  * Test whether page is evictable--i.e., should be placed on active/inactive
3629  * lists vs unevictable list.
3630  *
3631  * Reasons page might not be evictable:
3632  * (1) page's mapping marked unevictable
3633  * (2) page is part of an mlocked VMA
3634  *
3635  */
3636 int page_evictable(struct page *page)
3637 {
3638         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3639 }
3640
3641 #ifdef CONFIG_SHMEM
3642 /**
3643  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3644  * @pages:      array of pages to check
3645  * @nr_pages:   number of pages to check
3646  *
3647  * Checks pages for evictability and moves them to the appropriate lru list.
3648  *
3649  * This function is only used for SysV IPC SHM_UNLOCK.
3650  */
3651 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3652 {
3653         struct lruvec *lruvec;
3654         struct zone *zone = NULL;
3655         int pgscanned = 0;
3656         int pgrescued = 0;
3657         int i;
3658
3659         for (i = 0; i < nr_pages; i++) {
3660                 struct page *page = pages[i];
3661                 struct zone *pagezone;
3662
3663                 pgscanned++;
3664                 pagezone = page_zone(page);
3665                 if (pagezone != zone) {
3666                         if (zone)
3667                                 spin_unlock_irq(&zone->lru_lock);
3668                         zone = pagezone;
3669                         spin_lock_irq(&zone->lru_lock);
3670                 }
3671                 lruvec = mem_cgroup_page_lruvec(page, zone);
3672
3673                 if (!PageLRU(page) || !PageUnevictable(page))
3674                         continue;
3675
3676                 if (page_evictable(page)) {
3677                         enum lru_list lru = page_lru_base_type(page);
3678
3679                         VM_BUG_ON(PageActive(page));
3680                         ClearPageUnevictable(page);
3681                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3682                         add_page_to_lru_list(page, lruvec, lru);
3683                         pgrescued++;
3684                 }
3685         }
3686
3687         if (zone) {
3688                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3689                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3690                 spin_unlock_irq(&zone->lru_lock);
3691         }
3692 }
3693 #endif /* CONFIG_SHMEM */
3694
3695 static void warn_scan_unevictable_pages(void)
3696 {
3697         printk_once(KERN_WARNING
3698                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3699                     "disabled for lack of a legitimate use case.  If you have "
3700                     "one, please send an email to linux-mm@kvack.org.\n",
3701                     current->comm);
3702 }
3703
3704 /*
3705  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3706  * all nodes' unevictable lists for evictable pages
3707  */
3708 unsigned long scan_unevictable_pages;
3709
3710 int scan_unevictable_handler(struct ctl_table *table, int write,
3711                            void __user *buffer,
3712                            size_t *length, loff_t *ppos)
3713 {
3714         warn_scan_unevictable_pages();
3715         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3716         scan_unevictable_pages = 0;
3717         return 0;
3718 }
3719
3720 #ifdef CONFIG_NUMA
3721 /*
3722  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3723  * a specified node's per zone unevictable lists for evictable pages.
3724  */
3725
3726 static ssize_t read_scan_unevictable_node(struct device *dev,
3727                                           struct device_attribute *attr,
3728                                           char *buf)
3729 {
3730         warn_scan_unevictable_pages();
3731         return sprintf(buf, "0\n");     /* always zero; should fit... */
3732 }
3733
3734 static ssize_t write_scan_unevictable_node(struct device *dev,
3735                                            struct device_attribute *attr,
3736                                         const char *buf, size_t count)
3737 {
3738         warn_scan_unevictable_pages();
3739         return 1;
3740 }
3741
3742
3743 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3744                         read_scan_unevictable_node,
3745                         write_scan_unevictable_node);
3746
3747 int scan_unevictable_register_node(struct node *node)
3748 {
3749         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3750 }
3751
3752 void scan_unevictable_unregister_node(struct node *node)
3753 {
3754         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3755 }
3756 #endif