mm: vmscan: treat pages marked for immediate reclaim as zone congestion
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /* Check if a page is dirty or under writeback */
673 static void page_check_dirty_writeback(struct page *page,
674                                        bool *dirty, bool *writeback)
675 {
676         /*
677          * Anonymous pages are not handled by flushers and must be written
678          * from reclaim context. Do not stall reclaim based on them
679          */
680         if (!page_is_file_cache(page)) {
681                 *dirty = false;
682                 *writeback = false;
683                 return;
684         }
685
686         /* By default assume that the page flags are accurate */
687         *dirty = PageDirty(page);
688         *writeback = PageWriteback(page);
689 }
690
691 /*
692  * shrink_page_list() returns the number of reclaimed pages
693  */
694 static unsigned long shrink_page_list(struct list_head *page_list,
695                                       struct zone *zone,
696                                       struct scan_control *sc,
697                                       enum ttu_flags ttu_flags,
698                                       unsigned long *ret_nr_dirty,
699                                       unsigned long *ret_nr_unqueued_dirty,
700                                       unsigned long *ret_nr_congested,
701                                       unsigned long *ret_nr_writeback,
702                                       unsigned long *ret_nr_immediate,
703                                       bool force_reclaim)
704 {
705         LIST_HEAD(ret_pages);
706         LIST_HEAD(free_pages);
707         int pgactivate = 0;
708         unsigned long nr_unqueued_dirty = 0;
709         unsigned long nr_dirty = 0;
710         unsigned long nr_congested = 0;
711         unsigned long nr_reclaimed = 0;
712         unsigned long nr_writeback = 0;
713         unsigned long nr_immediate = 0;
714
715         cond_resched();
716
717         mem_cgroup_uncharge_start();
718         while (!list_empty(page_list)) {
719                 struct address_space *mapping;
720                 struct page *page;
721                 int may_enter_fs;
722                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
723                 bool dirty, writeback;
724
725                 cond_resched();
726
727                 page = lru_to_page(page_list);
728                 list_del(&page->lru);
729
730                 if (!trylock_page(page))
731                         goto keep;
732
733                 VM_BUG_ON(PageActive(page));
734                 VM_BUG_ON(page_zone(page) != zone);
735
736                 sc->nr_scanned++;
737
738                 if (unlikely(!page_evictable(page)))
739                         goto cull_mlocked;
740
741                 if (!sc->may_unmap && page_mapped(page))
742                         goto keep_locked;
743
744                 /* Double the slab pressure for mapped and swapcache pages */
745                 if (page_mapped(page) || PageSwapCache(page))
746                         sc->nr_scanned++;
747
748                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
749                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
750
751                 /*
752                  * The number of dirty pages determines if a zone is marked
753                  * reclaim_congested which affects wait_iff_congested. kswapd
754                  * will stall and start writing pages if the tail of the LRU
755                  * is all dirty unqueued pages.
756                  */
757                 page_check_dirty_writeback(page, &dirty, &writeback);
758                 if (dirty || writeback)
759                         nr_dirty++;
760
761                 if (dirty && !writeback)
762                         nr_unqueued_dirty++;
763
764                 /*
765                  * Treat this page as congested if the underlying BDI is or if
766                  * pages are cycling through the LRU so quickly that the
767                  * pages marked for immediate reclaim are making it to the
768                  * end of the LRU a second time.
769                  */
770                 mapping = page_mapping(page);
771                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
772                     (writeback && PageReclaim(page)))
773                         nr_congested++;
774
775                 /*
776                  * If a page at the tail of the LRU is under writeback, there
777                  * are three cases to consider.
778                  *
779                  * 1) If reclaim is encountering an excessive number of pages
780                  *    under writeback and this page is both under writeback and
781                  *    PageReclaim then it indicates that pages are being queued
782                  *    for IO but are being recycled through the LRU before the
783                  *    IO can complete. Waiting on the page itself risks an
784                  *    indefinite stall if it is impossible to writeback the
785                  *    page due to IO error or disconnected storage so instead
786                  *    note that the LRU is being scanned too quickly and the
787                  *    caller can stall after page list has been processed.
788                  *
789                  * 2) Global reclaim encounters a page, memcg encounters a
790                  *    page that is not marked for immediate reclaim or
791                  *    the caller does not have __GFP_IO. In this case mark
792                  *    the page for immediate reclaim and continue scanning.
793                  *
794                  *    __GFP_IO is checked  because a loop driver thread might
795                  *    enter reclaim, and deadlock if it waits on a page for
796                  *    which it is needed to do the write (loop masks off
797                  *    __GFP_IO|__GFP_FS for this reason); but more thought
798                  *    would probably show more reasons.
799                  *
800                  *    Don't require __GFP_FS, since we're not going into the
801                  *    FS, just waiting on its writeback completion. Worryingly,
802                  *    ext4 gfs2 and xfs allocate pages with
803                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
804                  *    may_enter_fs here is liable to OOM on them.
805                  *
806                  * 3) memcg encounters a page that is not already marked
807                  *    PageReclaim. memcg does not have any dirty pages
808                  *    throttling so we could easily OOM just because too many
809                  *    pages are in writeback and there is nothing else to
810                  *    reclaim. Wait for the writeback to complete.
811                  */
812                 if (PageWriteback(page)) {
813                         /* Case 1 above */
814                         if (current_is_kswapd() &&
815                             PageReclaim(page) &&
816                             zone_is_reclaim_writeback(zone)) {
817                                 nr_immediate++;
818                                 goto keep_locked;
819
820                         /* Case 2 above */
821                         } else if (global_reclaim(sc) ||
822                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
823                                 /*
824                                  * This is slightly racy - end_page_writeback()
825                                  * might have just cleared PageReclaim, then
826                                  * setting PageReclaim here end up interpreted
827                                  * as PageReadahead - but that does not matter
828                                  * enough to care.  What we do want is for this
829                                  * page to have PageReclaim set next time memcg
830                                  * reclaim reaches the tests above, so it will
831                                  * then wait_on_page_writeback() to avoid OOM;
832                                  * and it's also appropriate in global reclaim.
833                                  */
834                                 SetPageReclaim(page);
835                                 nr_writeback++;
836
837                                 goto keep_locked;
838
839                         /* Case 3 above */
840                         } else {
841                                 wait_on_page_writeback(page);
842                         }
843                 }
844
845                 if (!force_reclaim)
846                         references = page_check_references(page, sc);
847
848                 switch (references) {
849                 case PAGEREF_ACTIVATE:
850                         goto activate_locked;
851                 case PAGEREF_KEEP:
852                         goto keep_locked;
853                 case PAGEREF_RECLAIM:
854                 case PAGEREF_RECLAIM_CLEAN:
855                         ; /* try to reclaim the page below */
856                 }
857
858                 /*
859                  * Anonymous process memory has backing store?
860                  * Try to allocate it some swap space here.
861                  */
862                 if (PageAnon(page) && !PageSwapCache(page)) {
863                         if (!(sc->gfp_mask & __GFP_IO))
864                                 goto keep_locked;
865                         if (!add_to_swap(page, page_list))
866                                 goto activate_locked;
867                         may_enter_fs = 1;
868
869                         /* Adding to swap updated mapping */
870                         mapping = page_mapping(page);
871                 }
872
873                 /*
874                  * The page is mapped into the page tables of one or more
875                  * processes. Try to unmap it here.
876                  */
877                 if (page_mapped(page) && mapping) {
878                         switch (try_to_unmap(page, ttu_flags)) {
879                         case SWAP_FAIL:
880                                 goto activate_locked;
881                         case SWAP_AGAIN:
882                                 goto keep_locked;
883                         case SWAP_MLOCK:
884                                 goto cull_mlocked;
885                         case SWAP_SUCCESS:
886                                 ; /* try to free the page below */
887                         }
888                 }
889
890                 if (PageDirty(page)) {
891                         /*
892                          * Only kswapd can writeback filesystem pages to
893                          * avoid risk of stack overflow but only writeback
894                          * if many dirty pages have been encountered.
895                          */
896                         if (page_is_file_cache(page) &&
897                                         (!current_is_kswapd() ||
898                                          !zone_is_reclaim_dirty(zone))) {
899                                 /*
900                                  * Immediately reclaim when written back.
901                                  * Similar in principal to deactivate_page()
902                                  * except we already have the page isolated
903                                  * and know it's dirty
904                                  */
905                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
906                                 SetPageReclaim(page);
907
908                                 goto keep_locked;
909                         }
910
911                         if (references == PAGEREF_RECLAIM_CLEAN)
912                                 goto keep_locked;
913                         if (!may_enter_fs)
914                                 goto keep_locked;
915                         if (!sc->may_writepage)
916                                 goto keep_locked;
917
918                         /* Page is dirty, try to write it out here */
919                         switch (pageout(page, mapping, sc)) {
920                         case PAGE_KEEP:
921                                 goto keep_locked;
922                         case PAGE_ACTIVATE:
923                                 goto activate_locked;
924                         case PAGE_SUCCESS:
925                                 if (PageWriteback(page))
926                                         goto keep;
927                                 if (PageDirty(page))
928                                         goto keep;
929
930                                 /*
931                                  * A synchronous write - probably a ramdisk.  Go
932                                  * ahead and try to reclaim the page.
933                                  */
934                                 if (!trylock_page(page))
935                                         goto keep;
936                                 if (PageDirty(page) || PageWriteback(page))
937                                         goto keep_locked;
938                                 mapping = page_mapping(page);
939                         case PAGE_CLEAN:
940                                 ; /* try to free the page below */
941                         }
942                 }
943
944                 /*
945                  * If the page has buffers, try to free the buffer mappings
946                  * associated with this page. If we succeed we try to free
947                  * the page as well.
948                  *
949                  * We do this even if the page is PageDirty().
950                  * try_to_release_page() does not perform I/O, but it is
951                  * possible for a page to have PageDirty set, but it is actually
952                  * clean (all its buffers are clean).  This happens if the
953                  * buffers were written out directly, with submit_bh(). ext3
954                  * will do this, as well as the blockdev mapping.
955                  * try_to_release_page() will discover that cleanness and will
956                  * drop the buffers and mark the page clean - it can be freed.
957                  *
958                  * Rarely, pages can have buffers and no ->mapping.  These are
959                  * the pages which were not successfully invalidated in
960                  * truncate_complete_page().  We try to drop those buffers here
961                  * and if that worked, and the page is no longer mapped into
962                  * process address space (page_count == 1) it can be freed.
963                  * Otherwise, leave the page on the LRU so it is swappable.
964                  */
965                 if (page_has_private(page)) {
966                         if (!try_to_release_page(page, sc->gfp_mask))
967                                 goto activate_locked;
968                         if (!mapping && page_count(page) == 1) {
969                                 unlock_page(page);
970                                 if (put_page_testzero(page))
971                                         goto free_it;
972                                 else {
973                                         /*
974                                          * rare race with speculative reference.
975                                          * the speculative reference will free
976                                          * this page shortly, so we may
977                                          * increment nr_reclaimed here (and
978                                          * leave it off the LRU).
979                                          */
980                                         nr_reclaimed++;
981                                         continue;
982                                 }
983                         }
984                 }
985
986                 if (!mapping || !__remove_mapping(mapping, page))
987                         goto keep_locked;
988
989                 /*
990                  * At this point, we have no other references and there is
991                  * no way to pick any more up (removed from LRU, removed
992                  * from pagecache). Can use non-atomic bitops now (and
993                  * we obviously don't have to worry about waking up a process
994                  * waiting on the page lock, because there are no references.
995                  */
996                 __clear_page_locked(page);
997 free_it:
998                 nr_reclaimed++;
999
1000                 /*
1001                  * Is there need to periodically free_page_list? It would
1002                  * appear not as the counts should be low
1003                  */
1004                 list_add(&page->lru, &free_pages);
1005                 continue;
1006
1007 cull_mlocked:
1008                 if (PageSwapCache(page))
1009                         try_to_free_swap(page);
1010                 unlock_page(page);
1011                 putback_lru_page(page);
1012                 continue;
1013
1014 activate_locked:
1015                 /* Not a candidate for swapping, so reclaim swap space. */
1016                 if (PageSwapCache(page) && vm_swap_full())
1017                         try_to_free_swap(page);
1018                 VM_BUG_ON(PageActive(page));
1019                 SetPageActive(page);
1020                 pgactivate++;
1021 keep_locked:
1022                 unlock_page(page);
1023 keep:
1024                 list_add(&page->lru, &ret_pages);
1025                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1026         }
1027
1028         free_hot_cold_page_list(&free_pages, 1);
1029
1030         list_splice(&ret_pages, page_list);
1031         count_vm_events(PGACTIVATE, pgactivate);
1032         mem_cgroup_uncharge_end();
1033         *ret_nr_dirty += nr_dirty;
1034         *ret_nr_congested += nr_congested;
1035         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1036         *ret_nr_writeback += nr_writeback;
1037         *ret_nr_immediate += nr_immediate;
1038         return nr_reclaimed;
1039 }
1040
1041 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1042                                             struct list_head *page_list)
1043 {
1044         struct scan_control sc = {
1045                 .gfp_mask = GFP_KERNEL,
1046                 .priority = DEF_PRIORITY,
1047                 .may_unmap = 1,
1048         };
1049         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1050         struct page *page, *next;
1051         LIST_HEAD(clean_pages);
1052
1053         list_for_each_entry_safe(page, next, page_list, lru) {
1054                 if (page_is_file_cache(page) && !PageDirty(page)) {
1055                         ClearPageActive(page);
1056                         list_move(&page->lru, &clean_pages);
1057                 }
1058         }
1059
1060         ret = shrink_page_list(&clean_pages, zone, &sc,
1061                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1062                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1063         list_splice(&clean_pages, page_list);
1064         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1065         return ret;
1066 }
1067
1068 /*
1069  * Attempt to remove the specified page from its LRU.  Only take this page
1070  * if it is of the appropriate PageActive status.  Pages which are being
1071  * freed elsewhere are also ignored.
1072  *
1073  * page:        page to consider
1074  * mode:        one of the LRU isolation modes defined above
1075  *
1076  * returns 0 on success, -ve errno on failure.
1077  */
1078 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1079 {
1080         int ret = -EINVAL;
1081
1082         /* Only take pages on the LRU. */
1083         if (!PageLRU(page))
1084                 return ret;
1085
1086         /* Compaction should not handle unevictable pages but CMA can do so */
1087         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1088                 return ret;
1089
1090         ret = -EBUSY;
1091
1092         /*
1093          * To minimise LRU disruption, the caller can indicate that it only
1094          * wants to isolate pages it will be able to operate on without
1095          * blocking - clean pages for the most part.
1096          *
1097          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1098          * is used by reclaim when it is cannot write to backing storage
1099          *
1100          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1101          * that it is possible to migrate without blocking
1102          */
1103         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1104                 /* All the caller can do on PageWriteback is block */
1105                 if (PageWriteback(page))
1106                         return ret;
1107
1108                 if (PageDirty(page)) {
1109                         struct address_space *mapping;
1110
1111                         /* ISOLATE_CLEAN means only clean pages */
1112                         if (mode & ISOLATE_CLEAN)
1113                                 return ret;
1114
1115                         /*
1116                          * Only pages without mappings or that have a
1117                          * ->migratepage callback are possible to migrate
1118                          * without blocking
1119                          */
1120                         mapping = page_mapping(page);
1121                         if (mapping && !mapping->a_ops->migratepage)
1122                                 return ret;
1123                 }
1124         }
1125
1126         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1127                 return ret;
1128
1129         if (likely(get_page_unless_zero(page))) {
1130                 /*
1131                  * Be careful not to clear PageLRU until after we're
1132                  * sure the page is not being freed elsewhere -- the
1133                  * page release code relies on it.
1134                  */
1135                 ClearPageLRU(page);
1136                 ret = 0;
1137         }
1138
1139         return ret;
1140 }
1141
1142 /*
1143  * zone->lru_lock is heavily contended.  Some of the functions that
1144  * shrink the lists perform better by taking out a batch of pages
1145  * and working on them outside the LRU lock.
1146  *
1147  * For pagecache intensive workloads, this function is the hottest
1148  * spot in the kernel (apart from copy_*_user functions).
1149  *
1150  * Appropriate locks must be held before calling this function.
1151  *
1152  * @nr_to_scan: The number of pages to look through on the list.
1153  * @lruvec:     The LRU vector to pull pages from.
1154  * @dst:        The temp list to put pages on to.
1155  * @nr_scanned: The number of pages that were scanned.
1156  * @sc:         The scan_control struct for this reclaim session
1157  * @mode:       One of the LRU isolation modes
1158  * @lru:        LRU list id for isolating
1159  *
1160  * returns how many pages were moved onto *@dst.
1161  */
1162 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1163                 struct lruvec *lruvec, struct list_head *dst,
1164                 unsigned long *nr_scanned, struct scan_control *sc,
1165                 isolate_mode_t mode, enum lru_list lru)
1166 {
1167         struct list_head *src = &lruvec->lists[lru];
1168         unsigned long nr_taken = 0;
1169         unsigned long scan;
1170
1171         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1172                 struct page *page;
1173                 int nr_pages;
1174
1175                 page = lru_to_page(src);
1176                 prefetchw_prev_lru_page(page, src, flags);
1177
1178                 VM_BUG_ON(!PageLRU(page));
1179
1180                 switch (__isolate_lru_page(page, mode)) {
1181                 case 0:
1182                         nr_pages = hpage_nr_pages(page);
1183                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1184                         list_move(&page->lru, dst);
1185                         nr_taken += nr_pages;
1186                         break;
1187
1188                 case -EBUSY:
1189                         /* else it is being freed elsewhere */
1190                         list_move(&page->lru, src);
1191                         continue;
1192
1193                 default:
1194                         BUG();
1195                 }
1196         }
1197
1198         *nr_scanned = scan;
1199         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1200                                     nr_taken, mode, is_file_lru(lru));
1201         return nr_taken;
1202 }
1203
1204 /**
1205  * isolate_lru_page - tries to isolate a page from its LRU list
1206  * @page: page to isolate from its LRU list
1207  *
1208  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1209  * vmstat statistic corresponding to whatever LRU list the page was on.
1210  *
1211  * Returns 0 if the page was removed from an LRU list.
1212  * Returns -EBUSY if the page was not on an LRU list.
1213  *
1214  * The returned page will have PageLRU() cleared.  If it was found on
1215  * the active list, it will have PageActive set.  If it was found on
1216  * the unevictable list, it will have the PageUnevictable bit set. That flag
1217  * may need to be cleared by the caller before letting the page go.
1218  *
1219  * The vmstat statistic corresponding to the list on which the page was
1220  * found will be decremented.
1221  *
1222  * Restrictions:
1223  * (1) Must be called with an elevated refcount on the page. This is a
1224  *     fundamentnal difference from isolate_lru_pages (which is called
1225  *     without a stable reference).
1226  * (2) the lru_lock must not be held.
1227  * (3) interrupts must be enabled.
1228  */
1229 int isolate_lru_page(struct page *page)
1230 {
1231         int ret = -EBUSY;
1232
1233         VM_BUG_ON(!page_count(page));
1234
1235         if (PageLRU(page)) {
1236                 struct zone *zone = page_zone(page);
1237                 struct lruvec *lruvec;
1238
1239                 spin_lock_irq(&zone->lru_lock);
1240                 lruvec = mem_cgroup_page_lruvec(page, zone);
1241                 if (PageLRU(page)) {
1242                         int lru = page_lru(page);
1243                         get_page(page);
1244                         ClearPageLRU(page);
1245                         del_page_from_lru_list(page, lruvec, lru);
1246                         ret = 0;
1247                 }
1248                 spin_unlock_irq(&zone->lru_lock);
1249         }
1250         return ret;
1251 }
1252
1253 /*
1254  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1255  * then get resheduled. When there are massive number of tasks doing page
1256  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1257  * the LRU list will go small and be scanned faster than necessary, leading to
1258  * unnecessary swapping, thrashing and OOM.
1259  */
1260 static int too_many_isolated(struct zone *zone, int file,
1261                 struct scan_control *sc)
1262 {
1263         unsigned long inactive, isolated;
1264
1265         if (current_is_kswapd())
1266                 return 0;
1267
1268         if (!global_reclaim(sc))
1269                 return 0;
1270
1271         if (file) {
1272                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1273                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1274         } else {
1275                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1276                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1277         }
1278
1279         /*
1280          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1281          * won't get blocked by normal direct-reclaimers, forming a circular
1282          * deadlock.
1283          */
1284         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1285                 inactive >>= 3;
1286
1287         return isolated > inactive;
1288 }
1289
1290 static noinline_for_stack void
1291 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1292 {
1293         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1294         struct zone *zone = lruvec_zone(lruvec);
1295         LIST_HEAD(pages_to_free);
1296
1297         /*
1298          * Put back any unfreeable pages.
1299          */
1300         while (!list_empty(page_list)) {
1301                 struct page *page = lru_to_page(page_list);
1302                 int lru;
1303
1304                 VM_BUG_ON(PageLRU(page));
1305                 list_del(&page->lru);
1306                 if (unlikely(!page_evictable(page))) {
1307                         spin_unlock_irq(&zone->lru_lock);
1308                         putback_lru_page(page);
1309                         spin_lock_irq(&zone->lru_lock);
1310                         continue;
1311                 }
1312
1313                 lruvec = mem_cgroup_page_lruvec(page, zone);
1314
1315                 SetPageLRU(page);
1316                 lru = page_lru(page);
1317                 add_page_to_lru_list(page, lruvec, lru);
1318
1319                 if (is_active_lru(lru)) {
1320                         int file = is_file_lru(lru);
1321                         int numpages = hpage_nr_pages(page);
1322                         reclaim_stat->recent_rotated[file] += numpages;
1323                 }
1324                 if (put_page_testzero(page)) {
1325                         __ClearPageLRU(page);
1326                         __ClearPageActive(page);
1327                         del_page_from_lru_list(page, lruvec, lru);
1328
1329                         if (unlikely(PageCompound(page))) {
1330                                 spin_unlock_irq(&zone->lru_lock);
1331                                 (*get_compound_page_dtor(page))(page);
1332                                 spin_lock_irq(&zone->lru_lock);
1333                         } else
1334                                 list_add(&page->lru, &pages_to_free);
1335                 }
1336         }
1337
1338         /*
1339          * To save our caller's stack, now use input list for pages to free.
1340          */
1341         list_splice(&pages_to_free, page_list);
1342 }
1343
1344 /*
1345  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1346  * of reclaimed pages
1347  */
1348 static noinline_for_stack unsigned long
1349 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1350                      struct scan_control *sc, enum lru_list lru)
1351 {
1352         LIST_HEAD(page_list);
1353         unsigned long nr_scanned;
1354         unsigned long nr_reclaimed = 0;
1355         unsigned long nr_taken;
1356         unsigned long nr_dirty = 0;
1357         unsigned long nr_congested = 0;
1358         unsigned long nr_unqueued_dirty = 0;
1359         unsigned long nr_writeback = 0;
1360         unsigned long nr_immediate = 0;
1361         isolate_mode_t isolate_mode = 0;
1362         int file = is_file_lru(lru);
1363         struct zone *zone = lruvec_zone(lruvec);
1364         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1365
1366         while (unlikely(too_many_isolated(zone, file, sc))) {
1367                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1368
1369                 /* We are about to die and free our memory. Return now. */
1370                 if (fatal_signal_pending(current))
1371                         return SWAP_CLUSTER_MAX;
1372         }
1373
1374         lru_add_drain();
1375
1376         if (!sc->may_unmap)
1377                 isolate_mode |= ISOLATE_UNMAPPED;
1378         if (!sc->may_writepage)
1379                 isolate_mode |= ISOLATE_CLEAN;
1380
1381         spin_lock_irq(&zone->lru_lock);
1382
1383         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1384                                      &nr_scanned, sc, isolate_mode, lru);
1385
1386         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1387         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1388
1389         if (global_reclaim(sc)) {
1390                 zone->pages_scanned += nr_scanned;
1391                 if (current_is_kswapd())
1392                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1393                 else
1394                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1395         }
1396         spin_unlock_irq(&zone->lru_lock);
1397
1398         if (nr_taken == 0)
1399                 return 0;
1400
1401         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1402                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1403                                 &nr_writeback, &nr_immediate,
1404                                 false);
1405
1406         spin_lock_irq(&zone->lru_lock);
1407
1408         reclaim_stat->recent_scanned[file] += nr_taken;
1409
1410         if (global_reclaim(sc)) {
1411                 if (current_is_kswapd())
1412                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1413                                                nr_reclaimed);
1414                 else
1415                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1416                                                nr_reclaimed);
1417         }
1418
1419         putback_inactive_pages(lruvec, &page_list);
1420
1421         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1422
1423         spin_unlock_irq(&zone->lru_lock);
1424
1425         free_hot_cold_page_list(&page_list, 1);
1426
1427         /*
1428          * If reclaim is isolating dirty pages under writeback, it implies
1429          * that the long-lived page allocation rate is exceeding the page
1430          * laundering rate. Either the global limits are not being effective
1431          * at throttling processes due to the page distribution throughout
1432          * zones or there is heavy usage of a slow backing device. The
1433          * only option is to throttle from reclaim context which is not ideal
1434          * as there is no guarantee the dirtying process is throttled in the
1435          * same way balance_dirty_pages() manages.
1436          *
1437          * This scales the number of dirty pages that must be under writeback
1438          * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1439          * function that has the most effect in the range DEF_PRIORITY to
1440          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1441          * in trouble and reclaim is considered to be in trouble.
1442          *
1443          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1444          * DEF_PRIORITY-1  50% must be PageWriteback
1445          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1446          * ...
1447          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1448          *                     isolated page is PageWriteback
1449          *
1450          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1451          * of pages under pages flagged for immediate reclaim and stall if any
1452          * are encountered in the nr_immediate check below.
1453          */
1454         if (nr_writeback && nr_writeback >=
1455                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1456                 zone_set_flag(zone, ZONE_WRITEBACK);
1457
1458         /*
1459          * memcg will stall in page writeback so only consider forcibly
1460          * stalling for global reclaim
1461          */
1462         if (global_reclaim(sc)) {
1463                 /*
1464                  * Tag a zone as congested if all the dirty pages scanned were
1465                  * backed by a congested BDI and wait_iff_congested will stall.
1466                  */
1467                 if (nr_dirty && nr_dirty == nr_congested)
1468                         zone_set_flag(zone, ZONE_CONGESTED);
1469
1470                 /*
1471                  * If dirty pages are scanned that are not queued for IO, it
1472                  * implies that flushers are not keeping up. In this case, flag
1473                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1474                  * pages from reclaim context. It will forcibly stall in the
1475                  * next check.
1476                  */
1477                 if (nr_unqueued_dirty == nr_taken)
1478                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1479
1480                 /*
1481                  * In addition, if kswapd scans pages marked marked for
1482                  * immediate reclaim and under writeback (nr_immediate), it
1483                  * implies that pages are cycling through the LRU faster than
1484                  * they are written so also forcibly stall.
1485                  */
1486                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1487                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1488         }
1489
1490         /*
1491          * Stall direct reclaim for IO completions if underlying BDIs or zone
1492          * is congested. Allow kswapd to continue until it starts encountering
1493          * unqueued dirty pages or cycling through the LRU too quickly.
1494          */
1495         if (!sc->hibernation_mode && !current_is_kswapd())
1496                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1497
1498         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1499                 zone_idx(zone),
1500                 nr_scanned, nr_reclaimed,
1501                 sc->priority,
1502                 trace_shrink_flags(file));
1503         return nr_reclaimed;
1504 }
1505
1506 /*
1507  * This moves pages from the active list to the inactive list.
1508  *
1509  * We move them the other way if the page is referenced by one or more
1510  * processes, from rmap.
1511  *
1512  * If the pages are mostly unmapped, the processing is fast and it is
1513  * appropriate to hold zone->lru_lock across the whole operation.  But if
1514  * the pages are mapped, the processing is slow (page_referenced()) so we
1515  * should drop zone->lru_lock around each page.  It's impossible to balance
1516  * this, so instead we remove the pages from the LRU while processing them.
1517  * It is safe to rely on PG_active against the non-LRU pages in here because
1518  * nobody will play with that bit on a non-LRU page.
1519  *
1520  * The downside is that we have to touch page->_count against each page.
1521  * But we had to alter page->flags anyway.
1522  */
1523
1524 static void move_active_pages_to_lru(struct lruvec *lruvec,
1525                                      struct list_head *list,
1526                                      struct list_head *pages_to_free,
1527                                      enum lru_list lru)
1528 {
1529         struct zone *zone = lruvec_zone(lruvec);
1530         unsigned long pgmoved = 0;
1531         struct page *page;
1532         int nr_pages;
1533
1534         while (!list_empty(list)) {
1535                 page = lru_to_page(list);
1536                 lruvec = mem_cgroup_page_lruvec(page, zone);
1537
1538                 VM_BUG_ON(PageLRU(page));
1539                 SetPageLRU(page);
1540
1541                 nr_pages = hpage_nr_pages(page);
1542                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1543                 list_move(&page->lru, &lruvec->lists[lru]);
1544                 pgmoved += nr_pages;
1545
1546                 if (put_page_testzero(page)) {
1547                         __ClearPageLRU(page);
1548                         __ClearPageActive(page);
1549                         del_page_from_lru_list(page, lruvec, lru);
1550
1551                         if (unlikely(PageCompound(page))) {
1552                                 spin_unlock_irq(&zone->lru_lock);
1553                                 (*get_compound_page_dtor(page))(page);
1554                                 spin_lock_irq(&zone->lru_lock);
1555                         } else
1556                                 list_add(&page->lru, pages_to_free);
1557                 }
1558         }
1559         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1560         if (!is_active_lru(lru))
1561                 __count_vm_events(PGDEACTIVATE, pgmoved);
1562 }
1563
1564 static void shrink_active_list(unsigned long nr_to_scan,
1565                                struct lruvec *lruvec,
1566                                struct scan_control *sc,
1567                                enum lru_list lru)
1568 {
1569         unsigned long nr_taken;
1570         unsigned long nr_scanned;
1571         unsigned long vm_flags;
1572         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1573         LIST_HEAD(l_active);
1574         LIST_HEAD(l_inactive);
1575         struct page *page;
1576         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1577         unsigned long nr_rotated = 0;
1578         isolate_mode_t isolate_mode = 0;
1579         int file = is_file_lru(lru);
1580         struct zone *zone = lruvec_zone(lruvec);
1581
1582         lru_add_drain();
1583
1584         if (!sc->may_unmap)
1585                 isolate_mode |= ISOLATE_UNMAPPED;
1586         if (!sc->may_writepage)
1587                 isolate_mode |= ISOLATE_CLEAN;
1588
1589         spin_lock_irq(&zone->lru_lock);
1590
1591         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1592                                      &nr_scanned, sc, isolate_mode, lru);
1593         if (global_reclaim(sc))
1594                 zone->pages_scanned += nr_scanned;
1595
1596         reclaim_stat->recent_scanned[file] += nr_taken;
1597
1598         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1599         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1600         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1601         spin_unlock_irq(&zone->lru_lock);
1602
1603         while (!list_empty(&l_hold)) {
1604                 cond_resched();
1605                 page = lru_to_page(&l_hold);
1606                 list_del(&page->lru);
1607
1608                 if (unlikely(!page_evictable(page))) {
1609                         putback_lru_page(page);
1610                         continue;
1611                 }
1612
1613                 if (unlikely(buffer_heads_over_limit)) {
1614                         if (page_has_private(page) && trylock_page(page)) {
1615                                 if (page_has_private(page))
1616                                         try_to_release_page(page, 0);
1617                                 unlock_page(page);
1618                         }
1619                 }
1620
1621                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1622                                     &vm_flags)) {
1623                         nr_rotated += hpage_nr_pages(page);
1624                         /*
1625                          * Identify referenced, file-backed active pages and
1626                          * give them one more trip around the active list. So
1627                          * that executable code get better chances to stay in
1628                          * memory under moderate memory pressure.  Anon pages
1629                          * are not likely to be evicted by use-once streaming
1630                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1631                          * so we ignore them here.
1632                          */
1633                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1634                                 list_add(&page->lru, &l_active);
1635                                 continue;
1636                         }
1637                 }
1638
1639                 ClearPageActive(page);  /* we are de-activating */
1640                 list_add(&page->lru, &l_inactive);
1641         }
1642
1643         /*
1644          * Move pages back to the lru list.
1645          */
1646         spin_lock_irq(&zone->lru_lock);
1647         /*
1648          * Count referenced pages from currently used mappings as rotated,
1649          * even though only some of them are actually re-activated.  This
1650          * helps balance scan pressure between file and anonymous pages in
1651          * get_scan_ratio.
1652          */
1653         reclaim_stat->recent_rotated[file] += nr_rotated;
1654
1655         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1656         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1657         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1658         spin_unlock_irq(&zone->lru_lock);
1659
1660         free_hot_cold_page_list(&l_hold, 1);
1661 }
1662
1663 #ifdef CONFIG_SWAP
1664 static int inactive_anon_is_low_global(struct zone *zone)
1665 {
1666         unsigned long active, inactive;
1667
1668         active = zone_page_state(zone, NR_ACTIVE_ANON);
1669         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1670
1671         if (inactive * zone->inactive_ratio < active)
1672                 return 1;
1673
1674         return 0;
1675 }
1676
1677 /**
1678  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1679  * @lruvec: LRU vector to check
1680  *
1681  * Returns true if the zone does not have enough inactive anon pages,
1682  * meaning some active anon pages need to be deactivated.
1683  */
1684 static int inactive_anon_is_low(struct lruvec *lruvec)
1685 {
1686         /*
1687          * If we don't have swap space, anonymous page deactivation
1688          * is pointless.
1689          */
1690         if (!total_swap_pages)
1691                 return 0;
1692
1693         if (!mem_cgroup_disabled())
1694                 return mem_cgroup_inactive_anon_is_low(lruvec);
1695
1696         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1697 }
1698 #else
1699 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1700 {
1701         return 0;
1702 }
1703 #endif
1704
1705 /**
1706  * inactive_file_is_low - check if file pages need to be deactivated
1707  * @lruvec: LRU vector to check
1708  *
1709  * When the system is doing streaming IO, memory pressure here
1710  * ensures that active file pages get deactivated, until more
1711  * than half of the file pages are on the inactive list.
1712  *
1713  * Once we get to that situation, protect the system's working
1714  * set from being evicted by disabling active file page aging.
1715  *
1716  * This uses a different ratio than the anonymous pages, because
1717  * the page cache uses a use-once replacement algorithm.
1718  */
1719 static int inactive_file_is_low(struct lruvec *lruvec)
1720 {
1721         unsigned long inactive;
1722         unsigned long active;
1723
1724         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1725         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1726
1727         return active > inactive;
1728 }
1729
1730 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1731 {
1732         if (is_file_lru(lru))
1733                 return inactive_file_is_low(lruvec);
1734         else
1735                 return inactive_anon_is_low(lruvec);
1736 }
1737
1738 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1739                                  struct lruvec *lruvec, struct scan_control *sc)
1740 {
1741         if (is_active_lru(lru)) {
1742                 if (inactive_list_is_low(lruvec, lru))
1743                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1744                 return 0;
1745         }
1746
1747         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1748 }
1749
1750 static int vmscan_swappiness(struct scan_control *sc)
1751 {
1752         if (global_reclaim(sc))
1753                 return vm_swappiness;
1754         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1755 }
1756
1757 enum scan_balance {
1758         SCAN_EQUAL,
1759         SCAN_FRACT,
1760         SCAN_ANON,
1761         SCAN_FILE,
1762 };
1763
1764 /*
1765  * Determine how aggressively the anon and file LRU lists should be
1766  * scanned.  The relative value of each set of LRU lists is determined
1767  * by looking at the fraction of the pages scanned we did rotate back
1768  * onto the active list instead of evict.
1769  *
1770  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1771  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1772  */
1773 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1774                            unsigned long *nr)
1775 {
1776         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1777         u64 fraction[2];
1778         u64 denominator = 0;    /* gcc */
1779         struct zone *zone = lruvec_zone(lruvec);
1780         unsigned long anon_prio, file_prio;
1781         enum scan_balance scan_balance;
1782         unsigned long anon, file, free;
1783         bool force_scan = false;
1784         unsigned long ap, fp;
1785         enum lru_list lru;
1786
1787         /*
1788          * If the zone or memcg is small, nr[l] can be 0.  This
1789          * results in no scanning on this priority and a potential
1790          * priority drop.  Global direct reclaim can go to the next
1791          * zone and tends to have no problems. Global kswapd is for
1792          * zone balancing and it needs to scan a minimum amount. When
1793          * reclaiming for a memcg, a priority drop can cause high
1794          * latencies, so it's better to scan a minimum amount there as
1795          * well.
1796          */
1797         if (current_is_kswapd() && zone->all_unreclaimable)
1798                 force_scan = true;
1799         if (!global_reclaim(sc))
1800                 force_scan = true;
1801
1802         /* If we have no swap space, do not bother scanning anon pages. */
1803         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1804                 scan_balance = SCAN_FILE;
1805                 goto out;
1806         }
1807
1808         /*
1809          * Global reclaim will swap to prevent OOM even with no
1810          * swappiness, but memcg users want to use this knob to
1811          * disable swapping for individual groups completely when
1812          * using the memory controller's swap limit feature would be
1813          * too expensive.
1814          */
1815         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1816                 scan_balance = SCAN_FILE;
1817                 goto out;
1818         }
1819
1820         /*
1821          * Do not apply any pressure balancing cleverness when the
1822          * system is close to OOM, scan both anon and file equally
1823          * (unless the swappiness setting disagrees with swapping).
1824          */
1825         if (!sc->priority && vmscan_swappiness(sc)) {
1826                 scan_balance = SCAN_EQUAL;
1827                 goto out;
1828         }
1829
1830         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1831                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1832         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1833                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1834
1835         /*
1836          * If it's foreseeable that reclaiming the file cache won't be
1837          * enough to get the zone back into a desirable shape, we have
1838          * to swap.  Better start now and leave the - probably heavily
1839          * thrashing - remaining file pages alone.
1840          */
1841         if (global_reclaim(sc)) {
1842                 free = zone_page_state(zone, NR_FREE_PAGES);
1843                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1844                         scan_balance = SCAN_ANON;
1845                         goto out;
1846                 }
1847         }
1848
1849         /*
1850          * There is enough inactive page cache, do not reclaim
1851          * anything from the anonymous working set right now.
1852          */
1853         if (!inactive_file_is_low(lruvec)) {
1854                 scan_balance = SCAN_FILE;
1855                 goto out;
1856         }
1857
1858         scan_balance = SCAN_FRACT;
1859
1860         /*
1861          * With swappiness at 100, anonymous and file have the same priority.
1862          * This scanning priority is essentially the inverse of IO cost.
1863          */
1864         anon_prio = vmscan_swappiness(sc);
1865         file_prio = 200 - anon_prio;
1866
1867         /*
1868          * OK, so we have swap space and a fair amount of page cache
1869          * pages.  We use the recently rotated / recently scanned
1870          * ratios to determine how valuable each cache is.
1871          *
1872          * Because workloads change over time (and to avoid overflow)
1873          * we keep these statistics as a floating average, which ends
1874          * up weighing recent references more than old ones.
1875          *
1876          * anon in [0], file in [1]
1877          */
1878         spin_lock_irq(&zone->lru_lock);
1879         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1880                 reclaim_stat->recent_scanned[0] /= 2;
1881                 reclaim_stat->recent_rotated[0] /= 2;
1882         }
1883
1884         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1885                 reclaim_stat->recent_scanned[1] /= 2;
1886                 reclaim_stat->recent_rotated[1] /= 2;
1887         }
1888
1889         /*
1890          * The amount of pressure on anon vs file pages is inversely
1891          * proportional to the fraction of recently scanned pages on
1892          * each list that were recently referenced and in active use.
1893          */
1894         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1895         ap /= reclaim_stat->recent_rotated[0] + 1;
1896
1897         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1898         fp /= reclaim_stat->recent_rotated[1] + 1;
1899         spin_unlock_irq(&zone->lru_lock);
1900
1901         fraction[0] = ap;
1902         fraction[1] = fp;
1903         denominator = ap + fp + 1;
1904 out:
1905         for_each_evictable_lru(lru) {
1906                 int file = is_file_lru(lru);
1907                 unsigned long size;
1908                 unsigned long scan;
1909
1910                 size = get_lru_size(lruvec, lru);
1911                 scan = size >> sc->priority;
1912
1913                 if (!scan && force_scan)
1914                         scan = min(size, SWAP_CLUSTER_MAX);
1915
1916                 switch (scan_balance) {
1917                 case SCAN_EQUAL:
1918                         /* Scan lists relative to size */
1919                         break;
1920                 case SCAN_FRACT:
1921                         /*
1922                          * Scan types proportional to swappiness and
1923                          * their relative recent reclaim efficiency.
1924                          */
1925                         scan = div64_u64(scan * fraction[file], denominator);
1926                         break;
1927                 case SCAN_FILE:
1928                 case SCAN_ANON:
1929                         /* Scan one type exclusively */
1930                         if ((scan_balance == SCAN_FILE) != file)
1931                                 scan = 0;
1932                         break;
1933                 default:
1934                         /* Look ma, no brain */
1935                         BUG();
1936                 }
1937                 nr[lru] = scan;
1938         }
1939 }
1940
1941 /*
1942  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1943  */
1944 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1945 {
1946         unsigned long nr[NR_LRU_LISTS];
1947         unsigned long targets[NR_LRU_LISTS];
1948         unsigned long nr_to_scan;
1949         enum lru_list lru;
1950         unsigned long nr_reclaimed = 0;
1951         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1952         struct blk_plug plug;
1953         bool scan_adjusted = false;
1954
1955         get_scan_count(lruvec, sc, nr);
1956
1957         /* Record the original scan target for proportional adjustments later */
1958         memcpy(targets, nr, sizeof(nr));
1959
1960         blk_start_plug(&plug);
1961         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1962                                         nr[LRU_INACTIVE_FILE]) {
1963                 unsigned long nr_anon, nr_file, percentage;
1964                 unsigned long nr_scanned;
1965
1966                 for_each_evictable_lru(lru) {
1967                         if (nr[lru]) {
1968                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1969                                 nr[lru] -= nr_to_scan;
1970
1971                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1972                                                             lruvec, sc);
1973                         }
1974                 }
1975
1976                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1977                         continue;
1978
1979                 /*
1980                  * For global direct reclaim, reclaim only the number of pages
1981                  * requested. Less care is taken to scan proportionally as it
1982                  * is more important to minimise direct reclaim stall latency
1983                  * than it is to properly age the LRU lists.
1984                  */
1985                 if (global_reclaim(sc) && !current_is_kswapd())
1986                         break;
1987
1988                 /*
1989                  * For kswapd and memcg, reclaim at least the number of pages
1990                  * requested. Ensure that the anon and file LRUs shrink
1991                  * proportionally what was requested by get_scan_count(). We
1992                  * stop reclaiming one LRU and reduce the amount scanning
1993                  * proportional to the original scan target.
1994                  */
1995                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1996                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1997
1998                 if (nr_file > nr_anon) {
1999                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2000                                                 targets[LRU_ACTIVE_ANON] + 1;
2001                         lru = LRU_BASE;
2002                         percentage = nr_anon * 100 / scan_target;
2003                 } else {
2004                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2005                                                 targets[LRU_ACTIVE_FILE] + 1;
2006                         lru = LRU_FILE;
2007                         percentage = nr_file * 100 / scan_target;
2008                 }
2009
2010                 /* Stop scanning the smaller of the LRU */
2011                 nr[lru] = 0;
2012                 nr[lru + LRU_ACTIVE] = 0;
2013
2014                 /*
2015                  * Recalculate the other LRU scan count based on its original
2016                  * scan target and the percentage scanning already complete
2017                  */
2018                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2019                 nr_scanned = targets[lru] - nr[lru];
2020                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2021                 nr[lru] -= min(nr[lru], nr_scanned);
2022
2023                 lru += LRU_ACTIVE;
2024                 nr_scanned = targets[lru] - nr[lru];
2025                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2026                 nr[lru] -= min(nr[lru], nr_scanned);
2027
2028                 scan_adjusted = true;
2029         }
2030         blk_finish_plug(&plug);
2031         sc->nr_reclaimed += nr_reclaimed;
2032
2033         /*
2034          * Even if we did not try to evict anon pages at all, we want to
2035          * rebalance the anon lru active/inactive ratio.
2036          */
2037         if (inactive_anon_is_low(lruvec))
2038                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2039                                    sc, LRU_ACTIVE_ANON);
2040
2041         throttle_vm_writeout(sc->gfp_mask);
2042 }
2043
2044 /* Use reclaim/compaction for costly allocs or under memory pressure */
2045 static bool in_reclaim_compaction(struct scan_control *sc)
2046 {
2047         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2048                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2049                          sc->priority < DEF_PRIORITY - 2))
2050                 return true;
2051
2052         return false;
2053 }
2054
2055 /*
2056  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2057  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2058  * true if more pages should be reclaimed such that when the page allocator
2059  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2060  * It will give up earlier than that if there is difficulty reclaiming pages.
2061  */
2062 static inline bool should_continue_reclaim(struct zone *zone,
2063                                         unsigned long nr_reclaimed,
2064                                         unsigned long nr_scanned,
2065                                         struct scan_control *sc)
2066 {
2067         unsigned long pages_for_compaction;
2068         unsigned long inactive_lru_pages;
2069
2070         /* If not in reclaim/compaction mode, stop */
2071         if (!in_reclaim_compaction(sc))
2072                 return false;
2073
2074         /* Consider stopping depending on scan and reclaim activity */
2075         if (sc->gfp_mask & __GFP_REPEAT) {
2076                 /*
2077                  * For __GFP_REPEAT allocations, stop reclaiming if the
2078                  * full LRU list has been scanned and we are still failing
2079                  * to reclaim pages. This full LRU scan is potentially
2080                  * expensive but a __GFP_REPEAT caller really wants to succeed
2081                  */
2082                 if (!nr_reclaimed && !nr_scanned)
2083                         return false;
2084         } else {
2085                 /*
2086                  * For non-__GFP_REPEAT allocations which can presumably
2087                  * fail without consequence, stop if we failed to reclaim
2088                  * any pages from the last SWAP_CLUSTER_MAX number of
2089                  * pages that were scanned. This will return to the
2090                  * caller faster at the risk reclaim/compaction and
2091                  * the resulting allocation attempt fails
2092                  */
2093                 if (!nr_reclaimed)
2094                         return false;
2095         }
2096
2097         /*
2098          * If we have not reclaimed enough pages for compaction and the
2099          * inactive lists are large enough, continue reclaiming
2100          */
2101         pages_for_compaction = (2UL << sc->order);
2102         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2103         if (get_nr_swap_pages() > 0)
2104                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2105         if (sc->nr_reclaimed < pages_for_compaction &&
2106                         inactive_lru_pages > pages_for_compaction)
2107                 return true;
2108
2109         /* If compaction would go ahead or the allocation would succeed, stop */
2110         switch (compaction_suitable(zone, sc->order)) {
2111         case COMPACT_PARTIAL:
2112         case COMPACT_CONTINUE:
2113                 return false;
2114         default:
2115                 return true;
2116         }
2117 }
2118
2119 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2120 {
2121         unsigned long nr_reclaimed, nr_scanned;
2122
2123         do {
2124                 struct mem_cgroup *root = sc->target_mem_cgroup;
2125                 struct mem_cgroup_reclaim_cookie reclaim = {
2126                         .zone = zone,
2127                         .priority = sc->priority,
2128                 };
2129                 struct mem_cgroup *memcg;
2130
2131                 nr_reclaimed = sc->nr_reclaimed;
2132                 nr_scanned = sc->nr_scanned;
2133
2134                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2135                 do {
2136                         struct lruvec *lruvec;
2137
2138                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2139
2140                         shrink_lruvec(lruvec, sc);
2141
2142                         /*
2143                          * Direct reclaim and kswapd have to scan all memory
2144                          * cgroups to fulfill the overall scan target for the
2145                          * zone.
2146                          *
2147                          * Limit reclaim, on the other hand, only cares about
2148                          * nr_to_reclaim pages to be reclaimed and it will
2149                          * retry with decreasing priority if one round over the
2150                          * whole hierarchy is not sufficient.
2151                          */
2152                         if (!global_reclaim(sc) &&
2153                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2154                                 mem_cgroup_iter_break(root, memcg);
2155                                 break;
2156                         }
2157                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2158                 } while (memcg);
2159
2160                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2161                            sc->nr_scanned - nr_scanned,
2162                            sc->nr_reclaimed - nr_reclaimed);
2163
2164         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2165                                          sc->nr_scanned - nr_scanned, sc));
2166 }
2167
2168 /* Returns true if compaction should go ahead for a high-order request */
2169 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2170 {
2171         unsigned long balance_gap, watermark;
2172         bool watermark_ok;
2173
2174         /* Do not consider compaction for orders reclaim is meant to satisfy */
2175         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2176                 return false;
2177
2178         /*
2179          * Compaction takes time to run and there are potentially other
2180          * callers using the pages just freed. Continue reclaiming until
2181          * there is a buffer of free pages available to give compaction
2182          * a reasonable chance of completing and allocating the page
2183          */
2184         balance_gap = min(low_wmark_pages(zone),
2185                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2186                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2187         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2188         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2189
2190         /*
2191          * If compaction is deferred, reclaim up to a point where
2192          * compaction will have a chance of success when re-enabled
2193          */
2194         if (compaction_deferred(zone, sc->order))
2195                 return watermark_ok;
2196
2197         /* If compaction is not ready to start, keep reclaiming */
2198         if (!compaction_suitable(zone, sc->order))
2199                 return false;
2200
2201         return watermark_ok;
2202 }
2203
2204 /*
2205  * This is the direct reclaim path, for page-allocating processes.  We only
2206  * try to reclaim pages from zones which will satisfy the caller's allocation
2207  * request.
2208  *
2209  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2210  * Because:
2211  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2212  *    allocation or
2213  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2214  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2215  *    zone defense algorithm.
2216  *
2217  * If a zone is deemed to be full of pinned pages then just give it a light
2218  * scan then give up on it.
2219  *
2220  * This function returns true if a zone is being reclaimed for a costly
2221  * high-order allocation and compaction is ready to begin. This indicates to
2222  * the caller that it should consider retrying the allocation instead of
2223  * further reclaim.
2224  */
2225 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2226 {
2227         struct zoneref *z;
2228         struct zone *zone;
2229         unsigned long nr_soft_reclaimed;
2230         unsigned long nr_soft_scanned;
2231         bool aborted_reclaim = false;
2232
2233         /*
2234          * If the number of buffer_heads in the machine exceeds the maximum
2235          * allowed level, force direct reclaim to scan the highmem zone as
2236          * highmem pages could be pinning lowmem pages storing buffer_heads
2237          */
2238         if (buffer_heads_over_limit)
2239                 sc->gfp_mask |= __GFP_HIGHMEM;
2240
2241         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2242                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2243                 if (!populated_zone(zone))
2244                         continue;
2245                 /*
2246                  * Take care memory controller reclaiming has small influence
2247                  * to global LRU.
2248                  */
2249                 if (global_reclaim(sc)) {
2250                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2251                                 continue;
2252                         if (zone->all_unreclaimable &&
2253                                         sc->priority != DEF_PRIORITY)
2254                                 continue;       /* Let kswapd poll it */
2255                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2256                                 /*
2257                                  * If we already have plenty of memory free for
2258                                  * compaction in this zone, don't free any more.
2259                                  * Even though compaction is invoked for any
2260                                  * non-zero order, only frequent costly order
2261                                  * reclamation is disruptive enough to become a
2262                                  * noticeable problem, like transparent huge
2263                                  * page allocations.
2264                                  */
2265                                 if (compaction_ready(zone, sc)) {
2266                                         aborted_reclaim = true;
2267                                         continue;
2268                                 }
2269                         }
2270                         /*
2271                          * This steals pages from memory cgroups over softlimit
2272                          * and returns the number of reclaimed pages and
2273                          * scanned pages. This works for global memory pressure
2274                          * and balancing, not for a memcg's limit.
2275                          */
2276                         nr_soft_scanned = 0;
2277                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2278                                                 sc->order, sc->gfp_mask,
2279                                                 &nr_soft_scanned);
2280                         sc->nr_reclaimed += nr_soft_reclaimed;
2281                         sc->nr_scanned += nr_soft_scanned;
2282                         /* need some check for avoid more shrink_zone() */
2283                 }
2284
2285                 shrink_zone(zone, sc);
2286         }
2287
2288         return aborted_reclaim;
2289 }
2290
2291 static bool zone_reclaimable(struct zone *zone)
2292 {
2293         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2294 }
2295
2296 /* All zones in zonelist are unreclaimable? */
2297 static bool all_unreclaimable(struct zonelist *zonelist,
2298                 struct scan_control *sc)
2299 {
2300         struct zoneref *z;
2301         struct zone *zone;
2302
2303         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2304                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2305                 if (!populated_zone(zone))
2306                         continue;
2307                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2308                         continue;
2309                 if (!zone->all_unreclaimable)
2310                         return false;
2311         }
2312
2313         return true;
2314 }
2315
2316 /*
2317  * This is the main entry point to direct page reclaim.
2318  *
2319  * If a full scan of the inactive list fails to free enough memory then we
2320  * are "out of memory" and something needs to be killed.
2321  *
2322  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2323  * high - the zone may be full of dirty or under-writeback pages, which this
2324  * caller can't do much about.  We kick the writeback threads and take explicit
2325  * naps in the hope that some of these pages can be written.  But if the
2326  * allocating task holds filesystem locks which prevent writeout this might not
2327  * work, and the allocation attempt will fail.
2328  *
2329  * returns:     0, if no pages reclaimed
2330  *              else, the number of pages reclaimed
2331  */
2332 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2333                                         struct scan_control *sc,
2334                                         struct shrink_control *shrink)
2335 {
2336         unsigned long total_scanned = 0;
2337         struct reclaim_state *reclaim_state = current->reclaim_state;
2338         struct zoneref *z;
2339         struct zone *zone;
2340         unsigned long writeback_threshold;
2341         bool aborted_reclaim;
2342
2343         delayacct_freepages_start();
2344
2345         if (global_reclaim(sc))
2346                 count_vm_event(ALLOCSTALL);
2347
2348         do {
2349                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2350                                 sc->priority);
2351                 sc->nr_scanned = 0;
2352                 aborted_reclaim = shrink_zones(zonelist, sc);
2353
2354                 /*
2355                  * Don't shrink slabs when reclaiming memory from
2356                  * over limit cgroups
2357                  */
2358                 if (global_reclaim(sc)) {
2359                         unsigned long lru_pages = 0;
2360                         for_each_zone_zonelist(zone, z, zonelist,
2361                                         gfp_zone(sc->gfp_mask)) {
2362                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2363                                         continue;
2364
2365                                 lru_pages += zone_reclaimable_pages(zone);
2366                         }
2367
2368                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2369                         if (reclaim_state) {
2370                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2371                                 reclaim_state->reclaimed_slab = 0;
2372                         }
2373                 }
2374                 total_scanned += sc->nr_scanned;
2375                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2376                         goto out;
2377
2378                 /*
2379                  * If we're getting trouble reclaiming, start doing
2380                  * writepage even in laptop mode.
2381                  */
2382                 if (sc->priority < DEF_PRIORITY - 2)
2383                         sc->may_writepage = 1;
2384
2385                 /*
2386                  * Try to write back as many pages as we just scanned.  This
2387                  * tends to cause slow streaming writers to write data to the
2388                  * disk smoothly, at the dirtying rate, which is nice.   But
2389                  * that's undesirable in laptop mode, where we *want* lumpy
2390                  * writeout.  So in laptop mode, write out the whole world.
2391                  */
2392                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2393                 if (total_scanned > writeback_threshold) {
2394                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2395                                                 WB_REASON_TRY_TO_FREE_PAGES);
2396                         sc->may_writepage = 1;
2397                 }
2398         } while (--sc->priority >= 0);
2399
2400 out:
2401         delayacct_freepages_end();
2402
2403         if (sc->nr_reclaimed)
2404                 return sc->nr_reclaimed;
2405
2406         /*
2407          * As hibernation is going on, kswapd is freezed so that it can't mark
2408          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2409          * check.
2410          */
2411         if (oom_killer_disabled)
2412                 return 0;
2413
2414         /* Aborted reclaim to try compaction? don't OOM, then */
2415         if (aborted_reclaim)
2416                 return 1;
2417
2418         /* top priority shrink_zones still had more to do? don't OOM, then */
2419         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2420                 return 1;
2421
2422         return 0;
2423 }
2424
2425 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2426 {
2427         struct zone *zone;
2428         unsigned long pfmemalloc_reserve = 0;
2429         unsigned long free_pages = 0;
2430         int i;
2431         bool wmark_ok;
2432
2433         for (i = 0; i <= ZONE_NORMAL; i++) {
2434                 zone = &pgdat->node_zones[i];
2435                 pfmemalloc_reserve += min_wmark_pages(zone);
2436                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2437         }
2438
2439         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2440
2441         /* kswapd must be awake if processes are being throttled */
2442         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2443                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2444                                                 (enum zone_type)ZONE_NORMAL);
2445                 wake_up_interruptible(&pgdat->kswapd_wait);
2446         }
2447
2448         return wmark_ok;
2449 }
2450
2451 /*
2452  * Throttle direct reclaimers if backing storage is backed by the network
2453  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2454  * depleted. kswapd will continue to make progress and wake the processes
2455  * when the low watermark is reached.
2456  *
2457  * Returns true if a fatal signal was delivered during throttling. If this
2458  * happens, the page allocator should not consider triggering the OOM killer.
2459  */
2460 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2461                                         nodemask_t *nodemask)
2462 {
2463         struct zone *zone;
2464         int high_zoneidx = gfp_zone(gfp_mask);
2465         pg_data_t *pgdat;
2466
2467         /*
2468          * Kernel threads should not be throttled as they may be indirectly
2469          * responsible for cleaning pages necessary for reclaim to make forward
2470          * progress. kjournald for example may enter direct reclaim while
2471          * committing a transaction where throttling it could forcing other
2472          * processes to block on log_wait_commit().
2473          */
2474         if (current->flags & PF_KTHREAD)
2475                 goto out;
2476
2477         /*
2478          * If a fatal signal is pending, this process should not throttle.
2479          * It should return quickly so it can exit and free its memory
2480          */
2481         if (fatal_signal_pending(current))
2482                 goto out;
2483
2484         /* Check if the pfmemalloc reserves are ok */
2485         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2486         pgdat = zone->zone_pgdat;
2487         if (pfmemalloc_watermark_ok(pgdat))
2488                 goto out;
2489
2490         /* Account for the throttling */
2491         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2492
2493         /*
2494          * If the caller cannot enter the filesystem, it's possible that it
2495          * is due to the caller holding an FS lock or performing a journal
2496          * transaction in the case of a filesystem like ext[3|4]. In this case,
2497          * it is not safe to block on pfmemalloc_wait as kswapd could be
2498          * blocked waiting on the same lock. Instead, throttle for up to a
2499          * second before continuing.
2500          */
2501         if (!(gfp_mask & __GFP_FS)) {
2502                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2503                         pfmemalloc_watermark_ok(pgdat), HZ);
2504
2505                 goto check_pending;
2506         }
2507
2508         /* Throttle until kswapd wakes the process */
2509         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2510                 pfmemalloc_watermark_ok(pgdat));
2511
2512 check_pending:
2513         if (fatal_signal_pending(current))
2514                 return true;
2515
2516 out:
2517         return false;
2518 }
2519
2520 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2521                                 gfp_t gfp_mask, nodemask_t *nodemask)
2522 {
2523         unsigned long nr_reclaimed;
2524         struct scan_control sc = {
2525                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2526                 .may_writepage = !laptop_mode,
2527                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2528                 .may_unmap = 1,
2529                 .may_swap = 1,
2530                 .order = order,
2531                 .priority = DEF_PRIORITY,
2532                 .target_mem_cgroup = NULL,
2533                 .nodemask = nodemask,
2534         };
2535         struct shrink_control shrink = {
2536                 .gfp_mask = sc.gfp_mask,
2537         };
2538
2539         /*
2540          * Do not enter reclaim if fatal signal was delivered while throttled.
2541          * 1 is returned so that the page allocator does not OOM kill at this
2542          * point.
2543          */
2544         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2545                 return 1;
2546
2547         trace_mm_vmscan_direct_reclaim_begin(order,
2548                                 sc.may_writepage,
2549                                 gfp_mask);
2550
2551         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2552
2553         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2554
2555         return nr_reclaimed;
2556 }
2557
2558 #ifdef CONFIG_MEMCG
2559
2560 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2561                                                 gfp_t gfp_mask, bool noswap,
2562                                                 struct zone *zone,
2563                                                 unsigned long *nr_scanned)
2564 {
2565         struct scan_control sc = {
2566                 .nr_scanned = 0,
2567                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2568                 .may_writepage = !laptop_mode,
2569                 .may_unmap = 1,
2570                 .may_swap = !noswap,
2571                 .order = 0,
2572                 .priority = 0,
2573                 .target_mem_cgroup = memcg,
2574         };
2575         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2576
2577         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2578                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2579
2580         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2581                                                       sc.may_writepage,
2582                                                       sc.gfp_mask);
2583
2584         /*
2585          * NOTE: Although we can get the priority field, using it
2586          * here is not a good idea, since it limits the pages we can scan.
2587          * if we don't reclaim here, the shrink_zone from balance_pgdat
2588          * will pick up pages from other mem cgroup's as well. We hack
2589          * the priority and make it zero.
2590          */
2591         shrink_lruvec(lruvec, &sc);
2592
2593         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2594
2595         *nr_scanned = sc.nr_scanned;
2596         return sc.nr_reclaimed;
2597 }
2598
2599 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2600                                            gfp_t gfp_mask,
2601                                            bool noswap)
2602 {
2603         struct zonelist *zonelist;
2604         unsigned long nr_reclaimed;
2605         int nid;
2606         struct scan_control sc = {
2607                 .may_writepage = !laptop_mode,
2608                 .may_unmap = 1,
2609                 .may_swap = !noswap,
2610                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2611                 .order = 0,
2612                 .priority = DEF_PRIORITY,
2613                 .target_mem_cgroup = memcg,
2614                 .nodemask = NULL, /* we don't care the placement */
2615                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2616                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2617         };
2618         struct shrink_control shrink = {
2619                 .gfp_mask = sc.gfp_mask,
2620         };
2621
2622         /*
2623          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2624          * take care of from where we get pages. So the node where we start the
2625          * scan does not need to be the current node.
2626          */
2627         nid = mem_cgroup_select_victim_node(memcg);
2628
2629         zonelist = NODE_DATA(nid)->node_zonelists;
2630
2631         trace_mm_vmscan_memcg_reclaim_begin(0,
2632                                             sc.may_writepage,
2633                                             sc.gfp_mask);
2634
2635         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2636
2637         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2638
2639         return nr_reclaimed;
2640 }
2641 #endif
2642
2643 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2644 {
2645         struct mem_cgroup *memcg;
2646
2647         if (!total_swap_pages)
2648                 return;
2649
2650         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2651         do {
2652                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2653
2654                 if (inactive_anon_is_low(lruvec))
2655                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2656                                            sc, LRU_ACTIVE_ANON);
2657
2658                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2659         } while (memcg);
2660 }
2661
2662 static bool zone_balanced(struct zone *zone, int order,
2663                           unsigned long balance_gap, int classzone_idx)
2664 {
2665         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2666                                     balance_gap, classzone_idx, 0))
2667                 return false;
2668
2669         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2670             !compaction_suitable(zone, order))
2671                 return false;
2672
2673         return true;
2674 }
2675
2676 /*
2677  * pgdat_balanced() is used when checking if a node is balanced.
2678  *
2679  * For order-0, all zones must be balanced!
2680  *
2681  * For high-order allocations only zones that meet watermarks and are in a
2682  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2683  * total of balanced pages must be at least 25% of the zones allowed by
2684  * classzone_idx for the node to be considered balanced. Forcing all zones to
2685  * be balanced for high orders can cause excessive reclaim when there are
2686  * imbalanced zones.
2687  * The choice of 25% is due to
2688  *   o a 16M DMA zone that is balanced will not balance a zone on any
2689  *     reasonable sized machine
2690  *   o On all other machines, the top zone must be at least a reasonable
2691  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2692  *     would need to be at least 256M for it to be balance a whole node.
2693  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2694  *     to balance a node on its own. These seemed like reasonable ratios.
2695  */
2696 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2697 {
2698         unsigned long managed_pages = 0;
2699         unsigned long balanced_pages = 0;
2700         int i;
2701
2702         /* Check the watermark levels */
2703         for (i = 0; i <= classzone_idx; i++) {
2704                 struct zone *zone = pgdat->node_zones + i;
2705
2706                 if (!populated_zone(zone))
2707                         continue;
2708
2709                 managed_pages += zone->managed_pages;
2710
2711                 /*
2712                  * A special case here:
2713                  *
2714                  * balance_pgdat() skips over all_unreclaimable after
2715                  * DEF_PRIORITY. Effectively, it considers them balanced so
2716                  * they must be considered balanced here as well!
2717                  */
2718                 if (zone->all_unreclaimable) {
2719                         balanced_pages += zone->managed_pages;
2720                         continue;
2721                 }
2722
2723                 if (zone_balanced(zone, order, 0, i))
2724                         balanced_pages += zone->managed_pages;
2725                 else if (!order)
2726                         return false;
2727         }
2728
2729         if (order)
2730                 return balanced_pages >= (managed_pages >> 2);
2731         else
2732                 return true;
2733 }
2734
2735 /*
2736  * Prepare kswapd for sleeping. This verifies that there are no processes
2737  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2738  *
2739  * Returns true if kswapd is ready to sleep
2740  */
2741 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2742                                         int classzone_idx)
2743 {
2744         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2745         if (remaining)
2746                 return false;
2747
2748         /*
2749          * There is a potential race between when kswapd checks its watermarks
2750          * and a process gets throttled. There is also a potential race if
2751          * processes get throttled, kswapd wakes, a large process exits therby
2752          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2753          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2754          * so wake them now if necessary. If necessary, processes will wake
2755          * kswapd and get throttled again
2756          */
2757         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2758                 wake_up(&pgdat->pfmemalloc_wait);
2759                 return false;
2760         }
2761
2762         return pgdat_balanced(pgdat, order, classzone_idx);
2763 }
2764
2765 /*
2766  * kswapd shrinks the zone by the number of pages required to reach
2767  * the high watermark.
2768  *
2769  * Returns true if kswapd scanned at least the requested number of pages to
2770  * reclaim or if the lack of progress was due to pages under writeback.
2771  * This is used to determine if the scanning priority needs to be raised.
2772  */
2773 static bool kswapd_shrink_zone(struct zone *zone,
2774                                int classzone_idx,
2775                                struct scan_control *sc,
2776                                unsigned long lru_pages,
2777                                unsigned long *nr_attempted)
2778 {
2779         unsigned long nr_slab;
2780         int testorder = sc->order;
2781         unsigned long balance_gap;
2782         struct reclaim_state *reclaim_state = current->reclaim_state;
2783         struct shrink_control shrink = {
2784                 .gfp_mask = sc->gfp_mask,
2785         };
2786         bool lowmem_pressure;
2787
2788         /* Reclaim above the high watermark. */
2789         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2790
2791         /*
2792          * Kswapd reclaims only single pages with compaction enabled. Trying
2793          * too hard to reclaim until contiguous free pages have become
2794          * available can hurt performance by evicting too much useful data
2795          * from memory. Do not reclaim more than needed for compaction.
2796          */
2797         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2798                         compaction_suitable(zone, sc->order) !=
2799                                 COMPACT_SKIPPED)
2800                 testorder = 0;
2801
2802         /*
2803          * We put equal pressure on every zone, unless one zone has way too
2804          * many pages free already. The "too many pages" is defined as the
2805          * high wmark plus a "gap" where the gap is either the low
2806          * watermark or 1% of the zone, whichever is smaller.
2807          */
2808         balance_gap = min(low_wmark_pages(zone),
2809                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2810                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2811
2812         /*
2813          * If there is no low memory pressure or the zone is balanced then no
2814          * reclaim is necessary
2815          */
2816         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2817         if (!lowmem_pressure && zone_balanced(zone, testorder,
2818                                                 balance_gap, classzone_idx))
2819                 return true;
2820
2821         shrink_zone(zone, sc);
2822
2823         reclaim_state->reclaimed_slab = 0;
2824         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2825         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2826
2827         /* Account for the number of pages attempted to reclaim */
2828         *nr_attempted += sc->nr_to_reclaim;
2829
2830         if (nr_slab == 0 && !zone_reclaimable(zone))
2831                 zone->all_unreclaimable = 1;
2832
2833         zone_clear_flag(zone, ZONE_WRITEBACK);
2834
2835         /*
2836          * If a zone reaches its high watermark, consider it to be no longer
2837          * congested. It's possible there are dirty pages backed by congested
2838          * BDIs but as pressure is relieved, speculatively avoid congestion
2839          * waits.
2840          */
2841         if (!zone->all_unreclaimable &&
2842             zone_balanced(zone, testorder, 0, classzone_idx)) {
2843                 zone_clear_flag(zone, ZONE_CONGESTED);
2844                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2845         }
2846
2847         return sc->nr_scanned >= sc->nr_to_reclaim;
2848 }
2849
2850 /*
2851  * For kswapd, balance_pgdat() will work across all this node's zones until
2852  * they are all at high_wmark_pages(zone).
2853  *
2854  * Returns the final order kswapd was reclaiming at
2855  *
2856  * There is special handling here for zones which are full of pinned pages.
2857  * This can happen if the pages are all mlocked, or if they are all used by
2858  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2859  * What we do is to detect the case where all pages in the zone have been
2860  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2861  * dead and from now on, only perform a short scan.  Basically we're polling
2862  * the zone for when the problem goes away.
2863  *
2864  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2865  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2866  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2867  * lower zones regardless of the number of free pages in the lower zones. This
2868  * interoperates with the page allocator fallback scheme to ensure that aging
2869  * of pages is balanced across the zones.
2870  */
2871 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2872                                                         int *classzone_idx)
2873 {
2874         int i;
2875         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2876         unsigned long nr_soft_reclaimed;
2877         unsigned long nr_soft_scanned;
2878         struct scan_control sc = {
2879                 .gfp_mask = GFP_KERNEL,
2880                 .priority = DEF_PRIORITY,
2881                 .may_unmap = 1,
2882                 .may_swap = 1,
2883                 .may_writepage = !laptop_mode,
2884                 .order = order,
2885                 .target_mem_cgroup = NULL,
2886         };
2887         count_vm_event(PAGEOUTRUN);
2888
2889         do {
2890                 unsigned long lru_pages = 0;
2891                 unsigned long nr_attempted = 0;
2892                 bool raise_priority = true;
2893                 bool pgdat_needs_compaction = (order > 0);
2894
2895                 sc.nr_reclaimed = 0;
2896
2897                 /*
2898                  * Scan in the highmem->dma direction for the highest
2899                  * zone which needs scanning
2900                  */
2901                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2902                         struct zone *zone = pgdat->node_zones + i;
2903
2904                         if (!populated_zone(zone))
2905                                 continue;
2906
2907                         if (zone->all_unreclaimable &&
2908                             sc.priority != DEF_PRIORITY)
2909                                 continue;
2910
2911                         /*
2912                          * Do some background aging of the anon list, to give
2913                          * pages a chance to be referenced before reclaiming.
2914                          */
2915                         age_active_anon(zone, &sc);
2916
2917                         /*
2918                          * If the number of buffer_heads in the machine
2919                          * exceeds the maximum allowed level and this node
2920                          * has a highmem zone, force kswapd to reclaim from
2921                          * it to relieve lowmem pressure.
2922                          */
2923                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2924                                 end_zone = i;
2925                                 break;
2926                         }
2927
2928                         if (!zone_balanced(zone, order, 0, 0)) {
2929                                 end_zone = i;
2930                                 break;
2931                         } else {
2932                                 /*
2933                                  * If balanced, clear the dirty and congested
2934                                  * flags
2935                                  */
2936                                 zone_clear_flag(zone, ZONE_CONGESTED);
2937                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2938                         }
2939                 }
2940
2941                 if (i < 0)
2942                         goto out;
2943
2944                 for (i = 0; i <= end_zone; i++) {
2945                         struct zone *zone = pgdat->node_zones + i;
2946
2947                         if (!populated_zone(zone))
2948                                 continue;
2949
2950                         lru_pages += zone_reclaimable_pages(zone);
2951
2952                         /*
2953                          * If any zone is currently balanced then kswapd will
2954                          * not call compaction as it is expected that the
2955                          * necessary pages are already available.
2956                          */
2957                         if (pgdat_needs_compaction &&
2958                                         zone_watermark_ok(zone, order,
2959                                                 low_wmark_pages(zone),
2960                                                 *classzone_idx, 0))
2961                                 pgdat_needs_compaction = false;
2962                 }
2963
2964                 /*
2965                  * If we're getting trouble reclaiming, start doing writepage
2966                  * even in laptop mode.
2967                  */
2968                 if (sc.priority < DEF_PRIORITY - 2)
2969                         sc.may_writepage = 1;
2970
2971                 /*
2972                  * Now scan the zone in the dma->highmem direction, stopping
2973                  * at the last zone which needs scanning.
2974                  *
2975                  * We do this because the page allocator works in the opposite
2976                  * direction.  This prevents the page allocator from allocating
2977                  * pages behind kswapd's direction of progress, which would
2978                  * cause too much scanning of the lower zones.
2979                  */
2980                 for (i = 0; i <= end_zone; i++) {
2981                         struct zone *zone = pgdat->node_zones + i;
2982
2983                         if (!populated_zone(zone))
2984                                 continue;
2985
2986                         if (zone->all_unreclaimable &&
2987                             sc.priority != DEF_PRIORITY)
2988                                 continue;
2989
2990                         sc.nr_scanned = 0;
2991
2992                         nr_soft_scanned = 0;
2993                         /*
2994                          * Call soft limit reclaim before calling shrink_zone.
2995                          */
2996                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2997                                                         order, sc.gfp_mask,
2998                                                         &nr_soft_scanned);
2999                         sc.nr_reclaimed += nr_soft_reclaimed;
3000
3001                         /*
3002                          * There should be no need to raise the scanning
3003                          * priority if enough pages are already being scanned
3004                          * that that high watermark would be met at 100%
3005                          * efficiency.
3006                          */
3007                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3008                                         lru_pages, &nr_attempted))
3009                                 raise_priority = false;
3010                 }
3011
3012                 /*
3013                  * If the low watermark is met there is no need for processes
3014                  * to be throttled on pfmemalloc_wait as they should not be
3015                  * able to safely make forward progress. Wake them
3016                  */
3017                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3018                                 pfmemalloc_watermark_ok(pgdat))
3019                         wake_up(&pgdat->pfmemalloc_wait);
3020
3021                 /*
3022                  * Fragmentation may mean that the system cannot be rebalanced
3023                  * for high-order allocations in all zones. If twice the
3024                  * allocation size has been reclaimed and the zones are still
3025                  * not balanced then recheck the watermarks at order-0 to
3026                  * prevent kswapd reclaiming excessively. Assume that a
3027                  * process requested a high-order can direct reclaim/compact.
3028                  */
3029                 if (order && sc.nr_reclaimed >= 2UL << order)
3030                         order = sc.order = 0;
3031
3032                 /* Check if kswapd should be suspending */
3033                 if (try_to_freeze() || kthread_should_stop())
3034                         break;
3035
3036                 /*
3037                  * Compact if necessary and kswapd is reclaiming at least the
3038                  * high watermark number of pages as requsted
3039                  */
3040                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3041                         compact_pgdat(pgdat, order);
3042
3043                 /*
3044                  * Raise priority if scanning rate is too low or there was no
3045                  * progress in reclaiming pages
3046                  */
3047                 if (raise_priority || !sc.nr_reclaimed)
3048                         sc.priority--;
3049         } while (sc.priority >= 1 &&
3050                  !pgdat_balanced(pgdat, order, *classzone_idx));
3051
3052 out:
3053         /*
3054          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3055          * makes a decision on the order we were last reclaiming at. However,
3056          * if another caller entered the allocator slow path while kswapd
3057          * was awake, order will remain at the higher level
3058          */
3059         *classzone_idx = end_zone;
3060         return order;
3061 }
3062
3063 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3064 {
3065         long remaining = 0;
3066         DEFINE_WAIT(wait);
3067
3068         if (freezing(current) || kthread_should_stop())
3069                 return;
3070
3071         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3072
3073         /* Try to sleep for a short interval */
3074         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3075                 remaining = schedule_timeout(HZ/10);
3076                 finish_wait(&pgdat->kswapd_wait, &wait);
3077                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3078         }
3079
3080         /*
3081          * After a short sleep, check if it was a premature sleep. If not, then
3082          * go fully to sleep until explicitly woken up.
3083          */
3084         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3085                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3086
3087                 /*
3088                  * vmstat counters are not perfectly accurate and the estimated
3089                  * value for counters such as NR_FREE_PAGES can deviate from the
3090                  * true value by nr_online_cpus * threshold. To avoid the zone
3091                  * watermarks being breached while under pressure, we reduce the
3092                  * per-cpu vmstat threshold while kswapd is awake and restore
3093                  * them before going back to sleep.
3094                  */
3095                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3096
3097                 /*
3098                  * Compaction records what page blocks it recently failed to
3099                  * isolate pages from and skips them in the future scanning.
3100                  * When kswapd is going to sleep, it is reasonable to assume
3101                  * that pages and compaction may succeed so reset the cache.
3102                  */
3103                 reset_isolation_suitable(pgdat);
3104
3105                 if (!kthread_should_stop())
3106                         schedule();
3107
3108                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3109         } else {
3110                 if (remaining)
3111                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3112                 else
3113                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3114         }
3115         finish_wait(&pgdat->kswapd_wait, &wait);
3116 }
3117
3118 /*
3119  * The background pageout daemon, started as a kernel thread
3120  * from the init process.
3121  *
3122  * This basically trickles out pages so that we have _some_
3123  * free memory available even if there is no other activity
3124  * that frees anything up. This is needed for things like routing
3125  * etc, where we otherwise might have all activity going on in
3126  * asynchronous contexts that cannot page things out.
3127  *
3128  * If there are applications that are active memory-allocators
3129  * (most normal use), this basically shouldn't matter.
3130  */
3131 static int kswapd(void *p)
3132 {
3133         unsigned long order, new_order;
3134         unsigned balanced_order;
3135         int classzone_idx, new_classzone_idx;
3136         int balanced_classzone_idx;
3137         pg_data_t *pgdat = (pg_data_t*)p;
3138         struct task_struct *tsk = current;
3139
3140         struct reclaim_state reclaim_state = {
3141                 .reclaimed_slab = 0,
3142         };
3143         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3144
3145         lockdep_set_current_reclaim_state(GFP_KERNEL);
3146
3147         if (!cpumask_empty(cpumask))
3148                 set_cpus_allowed_ptr(tsk, cpumask);
3149         current->reclaim_state = &reclaim_state;
3150
3151         /*
3152          * Tell the memory management that we're a "memory allocator",
3153          * and that if we need more memory we should get access to it
3154          * regardless (see "__alloc_pages()"). "kswapd" should
3155          * never get caught in the normal page freeing logic.
3156          *
3157          * (Kswapd normally doesn't need memory anyway, but sometimes
3158          * you need a small amount of memory in order to be able to
3159          * page out something else, and this flag essentially protects
3160          * us from recursively trying to free more memory as we're
3161          * trying to free the first piece of memory in the first place).
3162          */
3163         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3164         set_freezable();
3165
3166         order = new_order = 0;
3167         balanced_order = 0;
3168         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3169         balanced_classzone_idx = classzone_idx;
3170         for ( ; ; ) {
3171                 bool ret;
3172
3173                 /*
3174                  * If the last balance_pgdat was unsuccessful it's unlikely a
3175                  * new request of a similar or harder type will succeed soon
3176                  * so consider going to sleep on the basis we reclaimed at
3177                  */
3178                 if (balanced_classzone_idx >= new_classzone_idx &&
3179                                         balanced_order == new_order) {
3180                         new_order = pgdat->kswapd_max_order;
3181                         new_classzone_idx = pgdat->classzone_idx;
3182                         pgdat->kswapd_max_order =  0;
3183                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3184                 }
3185
3186                 if (order < new_order || classzone_idx > new_classzone_idx) {
3187                         /*
3188                          * Don't sleep if someone wants a larger 'order'
3189                          * allocation or has tigher zone constraints
3190                          */
3191                         order = new_order;
3192                         classzone_idx = new_classzone_idx;
3193                 } else {
3194                         kswapd_try_to_sleep(pgdat, balanced_order,
3195                                                 balanced_classzone_idx);
3196                         order = pgdat->kswapd_max_order;
3197                         classzone_idx = pgdat->classzone_idx;
3198                         new_order = order;
3199                         new_classzone_idx = classzone_idx;
3200                         pgdat->kswapd_max_order = 0;
3201                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3202                 }
3203
3204                 ret = try_to_freeze();
3205                 if (kthread_should_stop())
3206                         break;
3207
3208                 /*
3209                  * We can speed up thawing tasks if we don't call balance_pgdat
3210                  * after returning from the refrigerator
3211                  */
3212                 if (!ret) {
3213                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3214                         balanced_classzone_idx = classzone_idx;
3215                         balanced_order = balance_pgdat(pgdat, order,
3216                                                 &balanced_classzone_idx);
3217                 }
3218         }
3219
3220         current->reclaim_state = NULL;
3221         return 0;
3222 }
3223
3224 /*
3225  * A zone is low on free memory, so wake its kswapd task to service it.
3226  */
3227 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3228 {
3229         pg_data_t *pgdat;
3230
3231         if (!populated_zone(zone))
3232                 return;
3233
3234         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3235                 return;
3236         pgdat = zone->zone_pgdat;
3237         if (pgdat->kswapd_max_order < order) {
3238                 pgdat->kswapd_max_order = order;
3239                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3240         }
3241         if (!waitqueue_active(&pgdat->kswapd_wait))
3242                 return;
3243         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3244                 return;
3245
3246         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3247         wake_up_interruptible(&pgdat->kswapd_wait);
3248 }
3249
3250 /*
3251  * The reclaimable count would be mostly accurate.
3252  * The less reclaimable pages may be
3253  * - mlocked pages, which will be moved to unevictable list when encountered
3254  * - mapped pages, which may require several travels to be reclaimed
3255  * - dirty pages, which is not "instantly" reclaimable
3256  */
3257 unsigned long global_reclaimable_pages(void)
3258 {
3259         int nr;
3260
3261         nr = global_page_state(NR_ACTIVE_FILE) +
3262              global_page_state(NR_INACTIVE_FILE);
3263
3264         if (get_nr_swap_pages() > 0)
3265                 nr += global_page_state(NR_ACTIVE_ANON) +
3266                       global_page_state(NR_INACTIVE_ANON);
3267
3268         return nr;
3269 }
3270
3271 unsigned long zone_reclaimable_pages(struct zone *zone)
3272 {
3273         int nr;
3274
3275         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3276              zone_page_state(zone, NR_INACTIVE_FILE);
3277
3278         if (get_nr_swap_pages() > 0)
3279                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3280                       zone_page_state(zone, NR_INACTIVE_ANON);
3281
3282         return nr;
3283 }
3284
3285 #ifdef CONFIG_HIBERNATION
3286 /*
3287  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3288  * freed pages.
3289  *
3290  * Rather than trying to age LRUs the aim is to preserve the overall
3291  * LRU order by reclaiming preferentially
3292  * inactive > active > active referenced > active mapped
3293  */
3294 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3295 {
3296         struct reclaim_state reclaim_state;
3297         struct scan_control sc = {
3298                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3299                 .may_swap = 1,
3300                 .may_unmap = 1,
3301                 .may_writepage = 1,
3302                 .nr_to_reclaim = nr_to_reclaim,
3303                 .hibernation_mode = 1,
3304                 .order = 0,
3305                 .priority = DEF_PRIORITY,
3306         };
3307         struct shrink_control shrink = {
3308                 .gfp_mask = sc.gfp_mask,
3309         };
3310         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3311         struct task_struct *p = current;
3312         unsigned long nr_reclaimed;
3313
3314         p->flags |= PF_MEMALLOC;
3315         lockdep_set_current_reclaim_state(sc.gfp_mask);
3316         reclaim_state.reclaimed_slab = 0;
3317         p->reclaim_state = &reclaim_state;
3318
3319         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3320
3321         p->reclaim_state = NULL;
3322         lockdep_clear_current_reclaim_state();
3323         p->flags &= ~PF_MEMALLOC;
3324
3325         return nr_reclaimed;
3326 }
3327 #endif /* CONFIG_HIBERNATION */
3328
3329 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3330    not required for correctness.  So if the last cpu in a node goes
3331    away, we get changed to run anywhere: as the first one comes back,
3332    restore their cpu bindings. */
3333 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3334                         void *hcpu)
3335 {
3336         int nid;
3337
3338         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3339                 for_each_node_state(nid, N_MEMORY) {
3340                         pg_data_t *pgdat = NODE_DATA(nid);
3341                         const struct cpumask *mask;
3342
3343                         mask = cpumask_of_node(pgdat->node_id);
3344
3345                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3346                                 /* One of our CPUs online: restore mask */
3347                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3348                 }
3349         }
3350         return NOTIFY_OK;
3351 }
3352
3353 /*
3354  * This kswapd start function will be called by init and node-hot-add.
3355  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3356  */
3357 int kswapd_run(int nid)
3358 {
3359         pg_data_t *pgdat = NODE_DATA(nid);
3360         int ret = 0;
3361
3362         if (pgdat->kswapd)
3363                 return 0;
3364
3365         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3366         if (IS_ERR(pgdat->kswapd)) {
3367                 /* failure at boot is fatal */
3368                 BUG_ON(system_state == SYSTEM_BOOTING);
3369                 pr_err("Failed to start kswapd on node %d\n", nid);
3370                 ret = PTR_ERR(pgdat->kswapd);
3371                 pgdat->kswapd = NULL;
3372         }
3373         return ret;
3374 }
3375
3376 /*
3377  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3378  * hold lock_memory_hotplug().
3379  */
3380 void kswapd_stop(int nid)
3381 {
3382         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3383
3384         if (kswapd) {
3385                 kthread_stop(kswapd);
3386                 NODE_DATA(nid)->kswapd = NULL;
3387         }
3388 }
3389
3390 static int __init kswapd_init(void)
3391 {
3392         int nid;
3393
3394         swap_setup();
3395         for_each_node_state(nid, N_MEMORY)
3396                 kswapd_run(nid);
3397         hotcpu_notifier(cpu_callback, 0);
3398         return 0;
3399 }
3400
3401 module_init(kswapd_init)
3402
3403 #ifdef CONFIG_NUMA
3404 /*
3405  * Zone reclaim mode
3406  *
3407  * If non-zero call zone_reclaim when the number of free pages falls below
3408  * the watermarks.
3409  */
3410 int zone_reclaim_mode __read_mostly;
3411
3412 #define RECLAIM_OFF 0
3413 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3414 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3415 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3416
3417 /*
3418  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3419  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3420  * a zone.
3421  */
3422 #define ZONE_RECLAIM_PRIORITY 4
3423
3424 /*
3425  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3426  * occur.
3427  */
3428 int sysctl_min_unmapped_ratio = 1;
3429
3430 /*
3431  * If the number of slab pages in a zone grows beyond this percentage then
3432  * slab reclaim needs to occur.
3433  */
3434 int sysctl_min_slab_ratio = 5;
3435
3436 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3437 {
3438         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3439         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3440                 zone_page_state(zone, NR_ACTIVE_FILE);
3441
3442         /*
3443          * It's possible for there to be more file mapped pages than
3444          * accounted for by the pages on the file LRU lists because
3445          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3446          */
3447         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3448 }
3449
3450 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3451 static long zone_pagecache_reclaimable(struct zone *zone)
3452 {
3453         long nr_pagecache_reclaimable;
3454         long delta = 0;
3455
3456         /*
3457          * If RECLAIM_SWAP is set, then all file pages are considered
3458          * potentially reclaimable. Otherwise, we have to worry about
3459          * pages like swapcache and zone_unmapped_file_pages() provides
3460          * a better estimate
3461          */
3462         if (zone_reclaim_mode & RECLAIM_SWAP)
3463                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3464         else
3465                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3466
3467         /* If we can't clean pages, remove dirty pages from consideration */
3468         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3469                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3470
3471         /* Watch for any possible underflows due to delta */
3472         if (unlikely(delta > nr_pagecache_reclaimable))
3473                 delta = nr_pagecache_reclaimable;
3474
3475         return nr_pagecache_reclaimable - delta;
3476 }
3477
3478 /*
3479  * Try to free up some pages from this zone through reclaim.
3480  */
3481 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3482 {
3483         /* Minimum pages needed in order to stay on node */
3484         const unsigned long nr_pages = 1 << order;
3485         struct task_struct *p = current;
3486         struct reclaim_state reclaim_state;
3487         struct scan_control sc = {
3488                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3489                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3490                 .may_swap = 1,
3491                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3492                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3493                 .order = order,
3494                 .priority = ZONE_RECLAIM_PRIORITY,
3495         };
3496         struct shrink_control shrink = {
3497                 .gfp_mask = sc.gfp_mask,
3498         };
3499         unsigned long nr_slab_pages0, nr_slab_pages1;
3500
3501         cond_resched();
3502         /*
3503          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3504          * and we also need to be able to write out pages for RECLAIM_WRITE
3505          * and RECLAIM_SWAP.
3506          */
3507         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3508         lockdep_set_current_reclaim_state(gfp_mask);
3509         reclaim_state.reclaimed_slab = 0;
3510         p->reclaim_state = &reclaim_state;
3511
3512         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3513                 /*
3514                  * Free memory by calling shrink zone with increasing
3515                  * priorities until we have enough memory freed.
3516                  */
3517                 do {
3518                         shrink_zone(zone, &sc);
3519                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3520         }
3521
3522         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3523         if (nr_slab_pages0 > zone->min_slab_pages) {
3524                 /*
3525                  * shrink_slab() does not currently allow us to determine how
3526                  * many pages were freed in this zone. So we take the current
3527                  * number of slab pages and shake the slab until it is reduced
3528                  * by the same nr_pages that we used for reclaiming unmapped
3529                  * pages.
3530                  *
3531                  * Note that shrink_slab will free memory on all zones and may
3532                  * take a long time.
3533                  */
3534                 for (;;) {
3535                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3536
3537                         /* No reclaimable slab or very low memory pressure */
3538                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3539                                 break;
3540
3541                         /* Freed enough memory */
3542                         nr_slab_pages1 = zone_page_state(zone,
3543                                                         NR_SLAB_RECLAIMABLE);
3544                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3545                                 break;
3546                 }
3547
3548                 /*
3549                  * Update nr_reclaimed by the number of slab pages we
3550                  * reclaimed from this zone.
3551                  */
3552                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3553                 if (nr_slab_pages1 < nr_slab_pages0)
3554                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3555         }
3556
3557         p->reclaim_state = NULL;
3558         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3559         lockdep_clear_current_reclaim_state();
3560         return sc.nr_reclaimed >= nr_pages;
3561 }
3562
3563 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3564 {
3565         int node_id;
3566         int ret;
3567
3568         /*
3569          * Zone reclaim reclaims unmapped file backed pages and
3570          * slab pages if we are over the defined limits.
3571          *
3572          * A small portion of unmapped file backed pages is needed for
3573          * file I/O otherwise pages read by file I/O will be immediately
3574          * thrown out if the zone is overallocated. So we do not reclaim
3575          * if less than a specified percentage of the zone is used by
3576          * unmapped file backed pages.
3577          */
3578         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3579             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3580                 return ZONE_RECLAIM_FULL;
3581
3582         if (zone->all_unreclaimable)
3583                 return ZONE_RECLAIM_FULL;
3584
3585         /*
3586          * Do not scan if the allocation should not be delayed.
3587          */
3588         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3589                 return ZONE_RECLAIM_NOSCAN;
3590
3591         /*
3592          * Only run zone reclaim on the local zone or on zones that do not
3593          * have associated processors. This will favor the local processor
3594          * over remote processors and spread off node memory allocations
3595          * as wide as possible.
3596          */
3597         node_id = zone_to_nid(zone);
3598         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3599                 return ZONE_RECLAIM_NOSCAN;
3600
3601         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3602                 return ZONE_RECLAIM_NOSCAN;
3603
3604         ret = __zone_reclaim(zone, gfp_mask, order);
3605         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3606
3607         if (!ret)
3608                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3609
3610         return ret;
3611 }
3612 #endif
3613
3614 /*
3615  * page_evictable - test whether a page is evictable
3616  * @page: the page to test
3617  *
3618  * Test whether page is evictable--i.e., should be placed on active/inactive
3619  * lists vs unevictable list.
3620  *
3621  * Reasons page might not be evictable:
3622  * (1) page's mapping marked unevictable
3623  * (2) page is part of an mlocked VMA
3624  *
3625  */
3626 int page_evictable(struct page *page)
3627 {
3628         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3629 }
3630
3631 #ifdef CONFIG_SHMEM
3632 /**
3633  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3634  * @pages:      array of pages to check
3635  * @nr_pages:   number of pages to check
3636  *
3637  * Checks pages for evictability and moves them to the appropriate lru list.
3638  *
3639  * This function is only used for SysV IPC SHM_UNLOCK.
3640  */
3641 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3642 {
3643         struct lruvec *lruvec;
3644         struct zone *zone = NULL;
3645         int pgscanned = 0;
3646         int pgrescued = 0;
3647         int i;
3648
3649         for (i = 0; i < nr_pages; i++) {
3650                 struct page *page = pages[i];
3651                 struct zone *pagezone;
3652
3653                 pgscanned++;
3654                 pagezone = page_zone(page);
3655                 if (pagezone != zone) {
3656                         if (zone)
3657                                 spin_unlock_irq(&zone->lru_lock);
3658                         zone = pagezone;
3659                         spin_lock_irq(&zone->lru_lock);
3660                 }
3661                 lruvec = mem_cgroup_page_lruvec(page, zone);
3662
3663                 if (!PageLRU(page) || !PageUnevictable(page))
3664                         continue;
3665
3666                 if (page_evictable(page)) {
3667                         enum lru_list lru = page_lru_base_type(page);
3668
3669                         VM_BUG_ON(PageActive(page));
3670                         ClearPageUnevictable(page);
3671                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3672                         add_page_to_lru_list(page, lruvec, lru);
3673                         pgrescued++;
3674                 }
3675         }
3676
3677         if (zone) {
3678                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3679                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3680                 spin_unlock_irq(&zone->lru_lock);
3681         }
3682 }
3683 #endif /* CONFIG_SHMEM */
3684
3685 static void warn_scan_unevictable_pages(void)
3686 {
3687         printk_once(KERN_WARNING
3688                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3689                     "disabled for lack of a legitimate use case.  If you have "
3690                     "one, please send an email to linux-mm@kvack.org.\n",
3691                     current->comm);
3692 }
3693
3694 /*
3695  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3696  * all nodes' unevictable lists for evictable pages
3697  */
3698 unsigned long scan_unevictable_pages;
3699
3700 int scan_unevictable_handler(struct ctl_table *table, int write,
3701                            void __user *buffer,
3702                            size_t *length, loff_t *ppos)
3703 {
3704         warn_scan_unevictable_pages();
3705         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3706         scan_unevictable_pages = 0;
3707         return 0;
3708 }
3709
3710 #ifdef CONFIG_NUMA
3711 /*
3712  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3713  * a specified node's per zone unevictable lists for evictable pages.
3714  */
3715
3716 static ssize_t read_scan_unevictable_node(struct device *dev,
3717                                           struct device_attribute *attr,
3718                                           char *buf)
3719 {
3720         warn_scan_unevictable_pages();
3721         return sprintf(buf, "0\n");     /* always zero; should fit... */
3722 }
3723
3724 static ssize_t write_scan_unevictable_node(struct device *dev,
3725                                            struct device_attribute *attr,
3726                                         const char *buf, size_t count)
3727 {
3728         warn_scan_unevictable_pages();
3729         return 1;
3730 }
3731
3732
3733 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3734                         read_scan_unevictable_node,
3735                         write_scan_unevictable_node);
3736
3737 int scan_unevictable_register_node(struct node *node)
3738 {
3739         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3740 }
3741
3742 void scan_unevictable_unregister_node(struct node *node)
3743 {
3744         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3745 }
3746 #endif