1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64 #include <linux/sched/sysctl.h>
69 #define CREATE_TRACE_POINTS
70 #include <trace/events/vmscan.h>
73 /* How many pages shrink_list() should reclaim */
74 unsigned long nr_to_reclaim;
77 * Nodemask of nodes allowed by the caller. If NULL, all nodes
83 * The memory cgroup that hit its limit and as a result is the
84 * primary target of this reclaim invocation.
86 struct mem_cgroup *target_mem_cgroup;
89 * Scan pressure balancing between anon and file LRUs
91 unsigned long anon_cost;
92 unsigned long file_cost;
94 /* Can active folios be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 unsigned int may_deactivate:2;
98 unsigned int force_deactivate:1;
99 unsigned int skipped_deactivate:1;
101 /* Writepage batching in laptop mode; RECLAIM_WRITE */
102 unsigned int may_writepage:1;
104 /* Can mapped folios be reclaimed? */
105 unsigned int may_unmap:1;
107 /* Can folios be swapped as part of reclaim? */
108 unsigned int may_swap:1;
110 /* Proactive reclaim invoked by userspace through memory.reclaim */
111 unsigned int proactive:1;
114 * Cgroup memory below memory.low is protected as long as we
115 * don't threaten to OOM. If any cgroup is reclaimed at
116 * reduced force or passed over entirely due to its memory.low
117 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 * result, then go back for one more cycle that reclaims the protected
119 * memory (memcg_low_reclaim) to avert OOM.
121 unsigned int memcg_low_reclaim:1;
122 unsigned int memcg_low_skipped:1;
124 unsigned int hibernation_mode:1;
126 /* One of the zones is ready for compaction */
127 unsigned int compaction_ready:1;
129 /* There is easily reclaimable cold cache in the current node */
130 unsigned int cache_trim_mode:1;
132 /* The file folios on the current node are dangerously low */
133 unsigned int file_is_tiny:1;
135 /* Always discard instead of demoting to lower tier memory */
136 unsigned int no_demotion:1;
138 #ifdef CONFIG_LRU_GEN
139 /* help kswapd make better choices among multiple memcgs */
140 unsigned int memcgs_need_aging:1;
141 unsigned long last_reclaimed;
144 /* Allocation order */
147 /* Scan (total_size >> priority) pages at once */
150 /* The highest zone to isolate folios for reclaim from */
153 /* This context's GFP mask */
156 /* Incremented by the number of inactive pages that were scanned */
157 unsigned long nr_scanned;
159 /* Number of pages freed so far during a call to shrink_zones() */
160 unsigned long nr_reclaimed;
164 unsigned int unqueued_dirty;
165 unsigned int congested;
166 unsigned int writeback;
167 unsigned int immediate;
168 unsigned int file_taken;
172 /* for recording the reclaimed slab by now */
173 struct reclaim_state reclaim_state;
176 #ifdef ARCH_HAS_PREFETCHW
177 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
179 if ((_folio)->lru.prev != _base) { \
180 struct folio *prev; \
182 prev = lru_to_folio(&(_folio->lru)); \
183 prefetchw(&prev->_field); \
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
191 * From 0 .. 200. Higher means more swappy.
193 int vm_swappiness = 60;
195 static void set_task_reclaim_state(struct task_struct *task,
196 struct reclaim_state *rs)
198 /* Check for an overwrite */
199 WARN_ON_ONCE(rs && task->reclaim_state);
201 /* Check for the nulling of an already-nulled member */
202 WARN_ON_ONCE(!rs && !task->reclaim_state);
204 task->reclaim_state = rs;
207 LIST_HEAD(shrinker_list);
208 DECLARE_RWSEM(shrinker_rwsem);
211 static int shrinker_nr_max;
213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
214 static inline int shrinker_map_size(int nr_items)
216 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
219 static inline int shrinker_defer_size(int nr_items)
221 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
227 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 lockdep_is_held(&shrinker_rwsem));
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size)
235 struct shrinker_info *new, *old;
236 struct mem_cgroup_per_node *pn;
238 int size = map_size + defer_size;
241 pn = memcg->nodeinfo[nid];
242 old = shrinker_info_protected(memcg, nid);
243 /* Not yet online memcg */
247 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
251 new->nr_deferred = (atomic_long_t *)(new + 1);
252 new->map = (void *)new->nr_deferred + defer_size;
254 /* map: set all old bits, clear all new bits */
255 memset(new->map, (int)0xff, old_map_size);
256 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 /* nr_deferred: copy old values, clear all new values */
258 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 memset((void *)new->nr_deferred + old_defer_size, 0,
260 defer_size - old_defer_size);
262 rcu_assign_pointer(pn->shrinker_info, new);
263 kvfree_rcu(old, rcu);
269 void free_shrinker_info(struct mem_cgroup *memcg)
271 struct mem_cgroup_per_node *pn;
272 struct shrinker_info *info;
276 pn = memcg->nodeinfo[nid];
277 info = rcu_dereference_protected(pn->shrinker_info, true);
279 rcu_assign_pointer(pn->shrinker_info, NULL);
283 int alloc_shrinker_info(struct mem_cgroup *memcg)
285 struct shrinker_info *info;
286 int nid, size, ret = 0;
287 int map_size, defer_size = 0;
289 down_write(&shrinker_rwsem);
290 map_size = shrinker_map_size(shrinker_nr_max);
291 defer_size = shrinker_defer_size(shrinker_nr_max);
292 size = map_size + defer_size;
294 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
296 free_shrinker_info(memcg);
300 info->nr_deferred = (atomic_long_t *)(info + 1);
301 info->map = (void *)info->nr_deferred + defer_size;
302 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
304 up_write(&shrinker_rwsem);
309 static inline bool need_expand(int nr_max)
311 return round_up(nr_max, BITS_PER_LONG) >
312 round_up(shrinker_nr_max, BITS_PER_LONG);
315 static int expand_shrinker_info(int new_id)
318 int new_nr_max = new_id + 1;
319 int map_size, defer_size = 0;
320 int old_map_size, old_defer_size = 0;
321 struct mem_cgroup *memcg;
323 if (!need_expand(new_nr_max))
326 if (!root_mem_cgroup)
329 lockdep_assert_held(&shrinker_rwsem);
331 map_size = shrinker_map_size(new_nr_max);
332 defer_size = shrinker_defer_size(new_nr_max);
333 old_map_size = shrinker_map_size(shrinker_nr_max);
334 old_defer_size = shrinker_defer_size(shrinker_nr_max);
336 memcg = mem_cgroup_iter(NULL, NULL, NULL);
338 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 old_map_size, old_defer_size);
341 mem_cgroup_iter_break(NULL, memcg);
344 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
347 shrinker_nr_max = new_nr_max;
352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
354 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
355 struct shrinker_info *info;
358 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
359 /* Pairs with smp mb in shrink_slab() */
360 smp_mb__before_atomic();
361 set_bit(shrinker_id, info->map);
366 static DEFINE_IDR(shrinker_idr);
368 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
370 int id, ret = -ENOMEM;
372 if (mem_cgroup_disabled())
375 down_write(&shrinker_rwsem);
376 /* This may call shrinker, so it must use down_read_trylock() */
377 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
381 if (id >= shrinker_nr_max) {
382 if (expand_shrinker_info(id)) {
383 idr_remove(&shrinker_idr, id);
390 up_write(&shrinker_rwsem);
394 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 int id = shrinker->id;
400 lockdep_assert_held(&shrinker_rwsem);
402 idr_remove(&shrinker_idr, id);
405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 struct mem_cgroup *memcg)
408 struct shrinker_info *info;
410 info = shrinker_info_protected(memcg, nid);
411 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 struct mem_cgroup *memcg)
417 struct shrinker_info *info;
419 info = shrinker_info_protected(memcg, nid);
420 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
423 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
427 struct mem_cgroup *parent;
428 struct shrinker_info *child_info, *parent_info;
430 parent = parent_mem_cgroup(memcg);
432 parent = root_mem_cgroup;
434 /* Prevent from concurrent shrinker_info expand */
435 down_read(&shrinker_rwsem);
437 child_info = shrinker_info_protected(memcg, nid);
438 parent_info = shrinker_info_protected(parent, nid);
439 for (i = 0; i < shrinker_nr_max; i++) {
440 nr = atomic_long_read(&child_info->nr_deferred[i]);
441 atomic_long_add(nr, &parent_info->nr_deferred[i]);
444 up_read(&shrinker_rwsem);
447 static bool cgroup_reclaim(struct scan_control *sc)
449 return sc->target_mem_cgroup;
453 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
454 * @sc: scan_control in question
456 * The normal page dirty throttling mechanism in balance_dirty_pages() is
457 * completely broken with the legacy memcg and direct stalling in
458 * shrink_folio_list() is used for throttling instead, which lacks all the
459 * niceties such as fairness, adaptive pausing, bandwidth proportional
460 * allocation and configurability.
462 * This function tests whether the vmscan currently in progress can assume
463 * that the normal dirty throttling mechanism is operational.
465 static bool writeback_throttling_sane(struct scan_control *sc)
467 if (!cgroup_reclaim(sc))
469 #ifdef CONFIG_CGROUP_WRITEBACK
470 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
476 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
481 static void unregister_memcg_shrinker(struct shrinker *shrinker)
485 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
486 struct mem_cgroup *memcg)
491 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
492 struct mem_cgroup *memcg)
497 static bool cgroup_reclaim(struct scan_control *sc)
502 static bool writeback_throttling_sane(struct scan_control *sc)
508 static long xchg_nr_deferred(struct shrinker *shrinker,
509 struct shrink_control *sc)
513 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 (shrinker->flags & SHRINKER_MEMCG_AWARE))
518 return xchg_nr_deferred_memcg(nid, shrinker,
521 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
525 static long add_nr_deferred(long nr, struct shrinker *shrinker,
526 struct shrink_control *sc)
530 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
534 (shrinker->flags & SHRINKER_MEMCG_AWARE))
535 return add_nr_deferred_memcg(nr, nid, shrinker,
538 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
541 static bool can_demote(int nid, struct scan_control *sc)
543 if (!numa_demotion_enabled)
545 if (sc && sc->no_demotion)
547 if (next_demotion_node(nid) == NUMA_NO_NODE)
553 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
555 struct scan_control *sc)
559 * For non-memcg reclaim, is there
560 * space in any swap device?
562 if (get_nr_swap_pages() > 0)
565 /* Is the memcg below its swap limit? */
566 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
571 * The page can not be swapped.
573 * Can it be reclaimed from this node via demotion?
575 return can_demote(nid, sc);
579 * This misses isolated folios which are not accounted for to save counters.
580 * As the data only determines if reclaim or compaction continues, it is
581 * not expected that isolated folios will be a dominating factor.
583 unsigned long zone_reclaimable_pages(struct zone *zone)
587 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
588 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
589 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
590 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
591 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
597 * lruvec_lru_size - Returns the number of pages on the given LRU list.
598 * @lruvec: lru vector
600 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
602 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
605 unsigned long size = 0;
608 for (zid = 0; zid <= zone_idx; zid++) {
609 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
611 if (!managed_zone(zone))
614 if (!mem_cgroup_disabled())
615 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
617 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
623 * Add a shrinker callback to be called from the vm.
625 static int __prealloc_shrinker(struct shrinker *shrinker)
630 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
631 err = prealloc_memcg_shrinker(shrinker);
635 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
638 size = sizeof(*shrinker->nr_deferred);
639 if (shrinker->flags & SHRINKER_NUMA_AWARE)
642 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
643 if (!shrinker->nr_deferred)
649 #ifdef CONFIG_SHRINKER_DEBUG
650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
656 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
661 err = __prealloc_shrinker(shrinker);
663 kfree_const(shrinker->name);
664 shrinker->name = NULL;
670 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
672 return __prealloc_shrinker(shrinker);
676 void free_prealloced_shrinker(struct shrinker *shrinker)
678 #ifdef CONFIG_SHRINKER_DEBUG
679 kfree_const(shrinker->name);
680 shrinker->name = NULL;
682 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
683 down_write(&shrinker_rwsem);
684 unregister_memcg_shrinker(shrinker);
685 up_write(&shrinker_rwsem);
689 kfree(shrinker->nr_deferred);
690 shrinker->nr_deferred = NULL;
693 void register_shrinker_prepared(struct shrinker *shrinker)
695 down_write(&shrinker_rwsem);
696 list_add_tail(&shrinker->list, &shrinker_list);
697 shrinker->flags |= SHRINKER_REGISTERED;
698 shrinker_debugfs_add(shrinker);
699 up_write(&shrinker_rwsem);
702 static int __register_shrinker(struct shrinker *shrinker)
704 int err = __prealloc_shrinker(shrinker);
708 register_shrinker_prepared(shrinker);
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
724 err = __register_shrinker(shrinker);
726 kfree_const(shrinker->name);
727 shrinker->name = NULL;
732 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 return __register_shrinker(shrinker);
737 EXPORT_SYMBOL(register_shrinker);
742 void unregister_shrinker(struct shrinker *shrinker)
744 if (!(shrinker->flags & SHRINKER_REGISTERED))
747 down_write(&shrinker_rwsem);
748 list_del(&shrinker->list);
749 shrinker->flags &= ~SHRINKER_REGISTERED;
750 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
751 unregister_memcg_shrinker(shrinker);
752 shrinker_debugfs_remove(shrinker);
753 up_write(&shrinker_rwsem);
755 kfree(shrinker->nr_deferred);
756 shrinker->nr_deferred = NULL;
758 EXPORT_SYMBOL(unregister_shrinker);
761 * synchronize_shrinkers - Wait for all running shrinkers to complete.
763 * This is equivalent to calling unregister_shrink() and register_shrinker(),
764 * but atomically and with less overhead. This is useful to guarantee that all
765 * shrinker invocations have seen an update, before freeing memory, similar to
768 void synchronize_shrinkers(void)
770 down_write(&shrinker_rwsem);
771 up_write(&shrinker_rwsem);
773 EXPORT_SYMBOL(synchronize_shrinkers);
775 #define SHRINK_BATCH 128
777 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
778 struct shrinker *shrinker, int priority)
780 unsigned long freed = 0;
781 unsigned long long delta;
786 long batch_size = shrinker->batch ? shrinker->batch
788 long scanned = 0, next_deferred;
790 freeable = shrinker->count_objects(shrinker, shrinkctl);
791 if (freeable == 0 || freeable == SHRINK_EMPTY)
795 * copy the current shrinker scan count into a local variable
796 * and zero it so that other concurrent shrinker invocations
797 * don't also do this scanning work.
799 nr = xchg_nr_deferred(shrinker, shrinkctl);
801 if (shrinker->seeks) {
802 delta = freeable >> priority;
804 do_div(delta, shrinker->seeks);
807 * These objects don't require any IO to create. Trim
808 * them aggressively under memory pressure to keep
809 * them from causing refetches in the IO caches.
811 delta = freeable / 2;
814 total_scan = nr >> priority;
816 total_scan = min(total_scan, (2 * freeable));
818 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
819 freeable, delta, total_scan, priority);
822 * Normally, we should not scan less than batch_size objects in one
823 * pass to avoid too frequent shrinker calls, but if the slab has less
824 * than batch_size objects in total and we are really tight on memory,
825 * we will try to reclaim all available objects, otherwise we can end
826 * up failing allocations although there are plenty of reclaimable
827 * objects spread over several slabs with usage less than the
830 * We detect the "tight on memory" situations by looking at the total
831 * number of objects we want to scan (total_scan). If it is greater
832 * than the total number of objects on slab (freeable), we must be
833 * scanning at high prio and therefore should try to reclaim as much as
836 while (total_scan >= batch_size ||
837 total_scan >= freeable) {
839 unsigned long nr_to_scan = min(batch_size, total_scan);
841 shrinkctl->nr_to_scan = nr_to_scan;
842 shrinkctl->nr_scanned = nr_to_scan;
843 ret = shrinker->scan_objects(shrinker, shrinkctl);
844 if (ret == SHRINK_STOP)
848 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
849 total_scan -= shrinkctl->nr_scanned;
850 scanned += shrinkctl->nr_scanned;
856 * The deferred work is increased by any new work (delta) that wasn't
857 * done, decreased by old deferred work that was done now.
859 * And it is capped to two times of the freeable items.
861 next_deferred = max_t(long, (nr + delta - scanned), 0);
862 next_deferred = min(next_deferred, (2 * freeable));
865 * move the unused scan count back into the shrinker in a
866 * manner that handles concurrent updates.
868 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
870 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
875 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
876 struct mem_cgroup *memcg, int priority)
878 struct shrinker_info *info;
879 unsigned long ret, freed = 0;
882 if (!mem_cgroup_online(memcg))
885 if (!down_read_trylock(&shrinker_rwsem))
888 info = shrinker_info_protected(memcg, nid);
892 for_each_set_bit(i, info->map, shrinker_nr_max) {
893 struct shrink_control sc = {
894 .gfp_mask = gfp_mask,
898 struct shrinker *shrinker;
900 shrinker = idr_find(&shrinker_idr, i);
901 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
903 clear_bit(i, info->map);
907 /* Call non-slab shrinkers even though kmem is disabled */
908 if (!memcg_kmem_enabled() &&
909 !(shrinker->flags & SHRINKER_NONSLAB))
912 ret = do_shrink_slab(&sc, shrinker, priority);
913 if (ret == SHRINK_EMPTY) {
914 clear_bit(i, info->map);
916 * After the shrinker reported that it had no objects to
917 * free, but before we cleared the corresponding bit in
918 * the memcg shrinker map, a new object might have been
919 * added. To make sure, we have the bit set in this
920 * case, we invoke the shrinker one more time and reset
921 * the bit if it reports that it is not empty anymore.
922 * The memory barrier here pairs with the barrier in
923 * set_shrinker_bit():
925 * list_lru_add() shrink_slab_memcg()
926 * list_add_tail() clear_bit()
928 * set_bit() do_shrink_slab()
930 smp_mb__after_atomic();
931 ret = do_shrink_slab(&sc, shrinker, priority);
932 if (ret == SHRINK_EMPTY)
935 set_shrinker_bit(memcg, nid, i);
939 if (rwsem_is_contended(&shrinker_rwsem)) {
945 up_read(&shrinker_rwsem);
948 #else /* CONFIG_MEMCG */
949 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
950 struct mem_cgroup *memcg, int priority)
954 #endif /* CONFIG_MEMCG */
957 * shrink_slab - shrink slab caches
958 * @gfp_mask: allocation context
959 * @nid: node whose slab caches to target
960 * @memcg: memory cgroup whose slab caches to target
961 * @priority: the reclaim priority
963 * Call the shrink functions to age shrinkable caches.
965 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
966 * unaware shrinkers will receive a node id of 0 instead.
968 * @memcg specifies the memory cgroup to target. Unaware shrinkers
969 * are called only if it is the root cgroup.
971 * @priority is sc->priority, we take the number of objects and >> by priority
972 * in order to get the scan target.
974 * Returns the number of reclaimed slab objects.
976 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
977 struct mem_cgroup *memcg,
980 unsigned long ret, freed = 0;
981 struct shrinker *shrinker;
984 * The root memcg might be allocated even though memcg is disabled
985 * via "cgroup_disable=memory" boot parameter. This could make
986 * mem_cgroup_is_root() return false, then just run memcg slab
987 * shrink, but skip global shrink. This may result in premature
990 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
991 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
993 if (!down_read_trylock(&shrinker_rwsem))
996 list_for_each_entry(shrinker, &shrinker_list, list) {
997 struct shrink_control sc = {
998 .gfp_mask = gfp_mask,
1003 ret = do_shrink_slab(&sc, shrinker, priority);
1004 if (ret == SHRINK_EMPTY)
1008 * Bail out if someone want to register a new shrinker to
1009 * prevent the registration from being stalled for long periods
1010 * by parallel ongoing shrinking.
1012 if (rwsem_is_contended(&shrinker_rwsem)) {
1013 freed = freed ? : 1;
1018 up_read(&shrinker_rwsem);
1024 static unsigned long drop_slab_node(int nid)
1026 unsigned long freed = 0;
1027 struct mem_cgroup *memcg = NULL;
1029 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1031 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1032 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1037 void drop_slab(void)
1041 unsigned long freed;
1045 for_each_online_node(nid) {
1046 if (fatal_signal_pending(current))
1049 freed += drop_slab_node(nid);
1051 } while ((freed >> shift++) > 1);
1054 static int reclaimer_offset(void)
1056 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1057 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1058 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1059 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1060 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1061 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1062 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1063 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1065 if (current_is_kswapd())
1067 if (current_is_khugepaged())
1068 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1069 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1072 static inline int is_page_cache_freeable(struct folio *folio)
1075 * A freeable page cache folio is referenced only by the caller
1076 * that isolated the folio, the page cache and optional filesystem
1077 * private data at folio->private.
1079 return folio_ref_count(folio) - folio_test_private(folio) ==
1080 1 + folio_nr_pages(folio);
1084 * We detected a synchronous write error writing a folio out. Probably
1085 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1086 * fsync(), msync() or close().
1088 * The tricky part is that after writepage we cannot touch the mapping: nothing
1089 * prevents it from being freed up. But we have a ref on the folio and once
1090 * that folio is locked, the mapping is pinned.
1092 * We're allowed to run sleeping folio_lock() here because we know the caller has
1095 static void handle_write_error(struct address_space *mapping,
1096 struct folio *folio, int error)
1099 if (folio_mapping(folio) == mapping)
1100 mapping_set_error(mapping, error);
1101 folio_unlock(folio);
1104 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1106 int reclaimable = 0, write_pending = 0;
1110 * If kswapd is disabled, reschedule if necessary but do not
1111 * throttle as the system is likely near OOM.
1113 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1117 * If there are a lot of dirty/writeback folios then do not
1118 * throttle as throttling will occur when the folios cycle
1119 * towards the end of the LRU if still under writeback.
1121 for (i = 0; i < MAX_NR_ZONES; i++) {
1122 struct zone *zone = pgdat->node_zones + i;
1124 if (!managed_zone(zone))
1127 reclaimable += zone_reclaimable_pages(zone);
1128 write_pending += zone_page_state_snapshot(zone,
1129 NR_ZONE_WRITE_PENDING);
1131 if (2 * write_pending <= reclaimable)
1137 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1139 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1144 * Do not throttle IO workers, kthreads other than kswapd or
1145 * workqueues. They may be required for reclaim to make
1146 * forward progress (e.g. journalling workqueues or kthreads).
1148 if (!current_is_kswapd() &&
1149 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1155 * These figures are pulled out of thin air.
1156 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1157 * parallel reclaimers which is a short-lived event so the timeout is
1158 * short. Failing to make progress or waiting on writeback are
1159 * potentially long-lived events so use a longer timeout. This is shaky
1160 * logic as a failure to make progress could be due to anything from
1161 * writeback to a slow device to excessive referenced folios at the tail
1162 * of the inactive LRU.
1165 case VMSCAN_THROTTLE_WRITEBACK:
1168 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1169 WRITE_ONCE(pgdat->nr_reclaim_start,
1170 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1174 case VMSCAN_THROTTLE_CONGESTED:
1176 case VMSCAN_THROTTLE_NOPROGRESS:
1177 if (skip_throttle_noprogress(pgdat)) {
1185 case VMSCAN_THROTTLE_ISOLATED:
1194 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1195 ret = schedule_timeout(timeout);
1196 finish_wait(wqh, &wait);
1198 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1199 atomic_dec(&pgdat->nr_writeback_throttled);
1201 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1202 jiffies_to_usecs(timeout - ret),
1207 * Account for folios written if tasks are throttled waiting on dirty
1208 * folios to clean. If enough folios have been cleaned since throttling
1209 * started then wakeup the throttled tasks.
1211 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1214 unsigned long nr_written;
1216 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1219 * This is an inaccurate read as the per-cpu deltas may not
1220 * be synchronised. However, given that the system is
1221 * writeback throttled, it is not worth taking the penalty
1222 * of getting an accurate count. At worst, the throttle
1223 * timeout guarantees forward progress.
1225 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1226 READ_ONCE(pgdat->nr_reclaim_start);
1228 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1229 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1232 /* possible outcome of pageout() */
1234 /* failed to write folio out, folio is locked */
1236 /* move folio to the active list, folio is locked */
1238 /* folio has been sent to the disk successfully, folio is unlocked */
1240 /* folio is clean and locked */
1245 * pageout is called by shrink_folio_list() for each dirty folio.
1246 * Calls ->writepage().
1248 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1249 struct swap_iocb **plug)
1252 * If the folio is dirty, only perform writeback if that write
1253 * will be non-blocking. To prevent this allocation from being
1254 * stalled by pagecache activity. But note that there may be
1255 * stalls if we need to run get_block(). We could test
1256 * PagePrivate for that.
1258 * If this process is currently in __generic_file_write_iter() against
1259 * this folio's queue, we can perform writeback even if that
1262 * If the folio is swapcache, write it back even if that would
1263 * block, for some throttling. This happens by accident, because
1264 * swap_backing_dev_info is bust: it doesn't reflect the
1265 * congestion state of the swapdevs. Easy to fix, if needed.
1267 if (!is_page_cache_freeable(folio))
1271 * Some data journaling orphaned folios can have
1272 * folio->mapping == NULL while being dirty with clean buffers.
1274 if (folio_test_private(folio)) {
1275 if (try_to_free_buffers(folio)) {
1276 folio_clear_dirty(folio);
1277 pr_info("%s: orphaned folio\n", __func__);
1283 if (mapping->a_ops->writepage == NULL)
1284 return PAGE_ACTIVATE;
1286 if (folio_clear_dirty_for_io(folio)) {
1288 struct writeback_control wbc = {
1289 .sync_mode = WB_SYNC_NONE,
1290 .nr_to_write = SWAP_CLUSTER_MAX,
1292 .range_end = LLONG_MAX,
1297 folio_set_reclaim(folio);
1298 res = mapping->a_ops->writepage(&folio->page, &wbc);
1300 handle_write_error(mapping, folio, res);
1301 if (res == AOP_WRITEPAGE_ACTIVATE) {
1302 folio_clear_reclaim(folio);
1303 return PAGE_ACTIVATE;
1306 if (!folio_test_writeback(folio)) {
1307 /* synchronous write or broken a_ops? */
1308 folio_clear_reclaim(folio);
1310 trace_mm_vmscan_write_folio(folio);
1311 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1312 return PAGE_SUCCESS;
1319 * Same as remove_mapping, but if the folio is removed from the mapping, it
1320 * gets returned with a refcount of 0.
1322 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1323 bool reclaimed, struct mem_cgroup *target_memcg)
1326 void *shadow = NULL;
1328 BUG_ON(!folio_test_locked(folio));
1329 BUG_ON(mapping != folio_mapping(folio));
1331 if (!folio_test_swapcache(folio))
1332 spin_lock(&mapping->host->i_lock);
1333 xa_lock_irq(&mapping->i_pages);
1335 * The non racy check for a busy folio.
1337 * Must be careful with the order of the tests. When someone has
1338 * a ref to the folio, it may be possible that they dirty it then
1339 * drop the reference. So if the dirty flag is tested before the
1340 * refcount here, then the following race may occur:
1342 * get_user_pages(&page);
1343 * [user mapping goes away]
1345 * !folio_test_dirty(folio) [good]
1346 * folio_set_dirty(folio);
1348 * !refcount(folio) [good, discard it]
1350 * [oops, our write_to data is lost]
1352 * Reversing the order of the tests ensures such a situation cannot
1353 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1354 * load is not satisfied before that of folio->_refcount.
1356 * Note that if the dirty flag is always set via folio_mark_dirty,
1357 * and thus under the i_pages lock, then this ordering is not required.
1359 refcount = 1 + folio_nr_pages(folio);
1360 if (!folio_ref_freeze(folio, refcount))
1362 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1363 if (unlikely(folio_test_dirty(folio))) {
1364 folio_ref_unfreeze(folio, refcount);
1368 if (folio_test_swapcache(folio)) {
1369 swp_entry_t swap = folio_swap_entry(folio);
1371 if (reclaimed && !mapping_exiting(mapping))
1372 shadow = workingset_eviction(folio, target_memcg);
1373 __delete_from_swap_cache(folio, swap, shadow);
1374 mem_cgroup_swapout(folio, swap);
1375 xa_unlock_irq(&mapping->i_pages);
1376 put_swap_folio(folio, swap);
1378 void (*free_folio)(struct folio *);
1380 free_folio = mapping->a_ops->free_folio;
1382 * Remember a shadow entry for reclaimed file cache in
1383 * order to detect refaults, thus thrashing, later on.
1385 * But don't store shadows in an address space that is
1386 * already exiting. This is not just an optimization,
1387 * inode reclaim needs to empty out the radix tree or
1388 * the nodes are lost. Don't plant shadows behind its
1391 * We also don't store shadows for DAX mappings because the
1392 * only page cache folios found in these are zero pages
1393 * covering holes, and because we don't want to mix DAX
1394 * exceptional entries and shadow exceptional entries in the
1395 * same address_space.
1397 if (reclaimed && folio_is_file_lru(folio) &&
1398 !mapping_exiting(mapping) && !dax_mapping(mapping))
1399 shadow = workingset_eviction(folio, target_memcg);
1400 __filemap_remove_folio(folio, shadow);
1401 xa_unlock_irq(&mapping->i_pages);
1402 if (mapping_shrinkable(mapping))
1403 inode_add_lru(mapping->host);
1404 spin_unlock(&mapping->host->i_lock);
1413 xa_unlock_irq(&mapping->i_pages);
1414 if (!folio_test_swapcache(folio))
1415 spin_unlock(&mapping->host->i_lock);
1420 * remove_mapping() - Attempt to remove a folio from its mapping.
1421 * @mapping: The address space.
1422 * @folio: The folio to remove.
1424 * If the folio is dirty, under writeback or if someone else has a ref
1425 * on it, removal will fail.
1426 * Return: The number of pages removed from the mapping. 0 if the folio
1427 * could not be removed.
1428 * Context: The caller should have a single refcount on the folio and
1431 long remove_mapping(struct address_space *mapping, struct folio *folio)
1433 if (__remove_mapping(mapping, folio, false, NULL)) {
1435 * Unfreezing the refcount with 1 effectively
1436 * drops the pagecache ref for us without requiring another
1439 folio_ref_unfreeze(folio, 1);
1440 return folio_nr_pages(folio);
1446 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1447 * @folio: Folio to be returned to an LRU list.
1449 * Add previously isolated @folio to appropriate LRU list.
1450 * The folio may still be unevictable for other reasons.
1452 * Context: lru_lock must not be held, interrupts must be enabled.
1454 void folio_putback_lru(struct folio *folio)
1456 folio_add_lru(folio);
1457 folio_put(folio); /* drop ref from isolate */
1460 enum folio_references {
1462 FOLIOREF_RECLAIM_CLEAN,
1467 static enum folio_references folio_check_references(struct folio *folio,
1468 struct scan_control *sc)
1470 int referenced_ptes, referenced_folio;
1471 unsigned long vm_flags;
1473 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1475 referenced_folio = folio_test_clear_referenced(folio);
1478 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1479 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1481 if (vm_flags & VM_LOCKED)
1482 return FOLIOREF_ACTIVATE;
1484 /* rmap lock contention: rotate */
1485 if (referenced_ptes == -1)
1486 return FOLIOREF_KEEP;
1488 if (referenced_ptes) {
1490 * All mapped folios start out with page table
1491 * references from the instantiating fault, so we need
1492 * to look twice if a mapped file/anon folio is used more
1495 * Mark it and spare it for another trip around the
1496 * inactive list. Another page table reference will
1497 * lead to its activation.
1499 * Note: the mark is set for activated folios as well
1500 * so that recently deactivated but used folios are
1501 * quickly recovered.
1503 folio_set_referenced(folio);
1505 if (referenced_folio || referenced_ptes > 1)
1506 return FOLIOREF_ACTIVATE;
1509 * Activate file-backed executable folios after first usage.
1511 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1512 return FOLIOREF_ACTIVATE;
1514 return FOLIOREF_KEEP;
1517 /* Reclaim if clean, defer dirty folios to writeback */
1518 if (referenced_folio && folio_is_file_lru(folio))
1519 return FOLIOREF_RECLAIM_CLEAN;
1521 return FOLIOREF_RECLAIM;
1524 /* Check if a folio is dirty or under writeback */
1525 static void folio_check_dirty_writeback(struct folio *folio,
1526 bool *dirty, bool *writeback)
1528 struct address_space *mapping;
1531 * Anonymous folios are not handled by flushers and must be written
1532 * from reclaim context. Do not stall reclaim based on them.
1533 * MADV_FREE anonymous folios are put into inactive file list too.
1534 * They could be mistakenly treated as file lru. So further anon
1537 if (!folio_is_file_lru(folio) ||
1538 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1544 /* By default assume that the folio flags are accurate */
1545 *dirty = folio_test_dirty(folio);
1546 *writeback = folio_test_writeback(folio);
1548 /* Verify dirty/writeback state if the filesystem supports it */
1549 if (!folio_test_private(folio))
1552 mapping = folio_mapping(folio);
1553 if (mapping && mapping->a_ops->is_dirty_writeback)
1554 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1557 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1559 struct page *target_page;
1560 nodemask_t *allowed_mask;
1561 struct migration_target_control *mtc;
1563 mtc = (struct migration_target_control *)private;
1565 allowed_mask = mtc->nmask;
1567 * make sure we allocate from the target node first also trying to
1568 * demote or reclaim pages from the target node via kswapd if we are
1569 * low on free memory on target node. If we don't do this and if
1570 * we have free memory on the slower(lower) memtier, we would start
1571 * allocating pages from slower(lower) memory tiers without even forcing
1572 * a demotion of cold pages from the target memtier. This can result
1573 * in the kernel placing hot pages in slower(lower) memory tiers.
1576 mtc->gfp_mask |= __GFP_THISNODE;
1577 target_page = alloc_migration_target(page, (unsigned long)mtc);
1581 mtc->gfp_mask &= ~__GFP_THISNODE;
1582 mtc->nmask = allowed_mask;
1584 return alloc_migration_target(page, (unsigned long)mtc);
1588 * Take folios on @demote_folios and attempt to demote them to another node.
1589 * Folios which are not demoted are left on @demote_folios.
1591 static unsigned int demote_folio_list(struct list_head *demote_folios,
1592 struct pglist_data *pgdat)
1594 int target_nid = next_demotion_node(pgdat->node_id);
1595 unsigned int nr_succeeded;
1596 nodemask_t allowed_mask;
1598 struct migration_target_control mtc = {
1600 * Allocate from 'node', or fail quickly and quietly.
1601 * When this happens, 'page' will likely just be discarded
1602 * instead of migrated.
1604 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1605 __GFP_NOMEMALLOC | GFP_NOWAIT,
1607 .nmask = &allowed_mask
1610 if (list_empty(demote_folios))
1613 if (target_nid == NUMA_NO_NODE)
1616 node_get_allowed_targets(pgdat, &allowed_mask);
1618 /* Demotion ignores all cpuset and mempolicy settings */
1619 migrate_pages(demote_folios, alloc_demote_page, NULL,
1620 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1623 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1625 return nr_succeeded;
1628 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1630 if (gfp_mask & __GFP_FS)
1632 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1635 * We can "enter_fs" for swap-cache with only __GFP_IO
1636 * providing this isn't SWP_FS_OPS.
1637 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1638 * but that will never affect SWP_FS_OPS, so the data_race
1641 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1645 * shrink_folio_list() returns the number of reclaimed pages
1647 static unsigned int shrink_folio_list(struct list_head *folio_list,
1648 struct pglist_data *pgdat, struct scan_control *sc,
1649 struct reclaim_stat *stat, bool ignore_references)
1651 LIST_HEAD(ret_folios);
1652 LIST_HEAD(free_folios);
1653 LIST_HEAD(demote_folios);
1654 unsigned int nr_reclaimed = 0;
1655 unsigned int pgactivate = 0;
1656 bool do_demote_pass;
1657 struct swap_iocb *plug = NULL;
1659 memset(stat, 0, sizeof(*stat));
1661 do_demote_pass = can_demote(pgdat->node_id, sc);
1664 while (!list_empty(folio_list)) {
1665 struct address_space *mapping;
1666 struct folio *folio;
1667 enum folio_references references = FOLIOREF_RECLAIM;
1668 bool dirty, writeback;
1669 unsigned int nr_pages;
1673 folio = lru_to_folio(folio_list);
1674 list_del(&folio->lru);
1676 if (!folio_trylock(folio))
1679 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1681 nr_pages = folio_nr_pages(folio);
1683 /* Account the number of base pages */
1684 sc->nr_scanned += nr_pages;
1686 if (unlikely(!folio_evictable(folio)))
1687 goto activate_locked;
1689 if (!sc->may_unmap && folio_mapped(folio))
1692 /* folio_update_gen() tried to promote this page? */
1693 if (lru_gen_enabled() && !ignore_references &&
1694 folio_mapped(folio) && folio_test_referenced(folio))
1698 * The number of dirty pages determines if a node is marked
1699 * reclaim_congested. kswapd will stall and start writing
1700 * folios if the tail of the LRU is all dirty unqueued folios.
1702 folio_check_dirty_writeback(folio, &dirty, &writeback);
1703 if (dirty || writeback)
1704 stat->nr_dirty += nr_pages;
1706 if (dirty && !writeback)
1707 stat->nr_unqueued_dirty += nr_pages;
1710 * Treat this folio as congested if folios are cycling
1711 * through the LRU so quickly that the folios marked
1712 * for immediate reclaim are making it to the end of
1713 * the LRU a second time.
1715 if (writeback && folio_test_reclaim(folio))
1716 stat->nr_congested += nr_pages;
1719 * If a folio at the tail of the LRU is under writeback, there
1720 * are three cases to consider.
1722 * 1) If reclaim is encountering an excessive number
1723 * of folios under writeback and this folio has both
1724 * the writeback and reclaim flags set, then it
1725 * indicates that folios are being queued for I/O but
1726 * are being recycled through the LRU before the I/O
1727 * can complete. Waiting on the folio itself risks an
1728 * indefinite stall if it is impossible to writeback
1729 * the folio due to I/O error or disconnected storage
1730 * so instead note that the LRU is being scanned too
1731 * quickly and the caller can stall after the folio
1732 * list has been processed.
1734 * 2) Global or new memcg reclaim encounters a folio that is
1735 * not marked for immediate reclaim, or the caller does not
1736 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1737 * not to fs). In this case mark the folio for immediate
1738 * reclaim and continue scanning.
1740 * Require may_enter_fs() because we would wait on fs, which
1741 * may not have submitted I/O yet. And the loop driver might
1742 * enter reclaim, and deadlock if it waits on a folio for
1743 * which it is needed to do the write (loop masks off
1744 * __GFP_IO|__GFP_FS for this reason); but more thought
1745 * would probably show more reasons.
1747 * 3) Legacy memcg encounters a folio that already has the
1748 * reclaim flag set. memcg does not have any dirty folio
1749 * throttling so we could easily OOM just because too many
1750 * folios are in writeback and there is nothing else to
1751 * reclaim. Wait for the writeback to complete.
1753 * In cases 1) and 2) we activate the folios to get them out of
1754 * the way while we continue scanning for clean folios on the
1755 * inactive list and refilling from the active list. The
1756 * observation here is that waiting for disk writes is more
1757 * expensive than potentially causing reloads down the line.
1758 * Since they're marked for immediate reclaim, they won't put
1759 * memory pressure on the cache working set any longer than it
1760 * takes to write them to disk.
1762 if (folio_test_writeback(folio)) {
1764 if (current_is_kswapd() &&
1765 folio_test_reclaim(folio) &&
1766 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1767 stat->nr_immediate += nr_pages;
1768 goto activate_locked;
1771 } else if (writeback_throttling_sane(sc) ||
1772 !folio_test_reclaim(folio) ||
1773 !may_enter_fs(folio, sc->gfp_mask)) {
1775 * This is slightly racy -
1776 * folio_end_writeback() might have
1777 * just cleared the reclaim flag, then
1778 * setting the reclaim flag here ends up
1779 * interpreted as the readahead flag - but
1780 * that does not matter enough to care.
1781 * What we do want is for this folio to
1782 * have the reclaim flag set next time
1783 * memcg reclaim reaches the tests above,
1784 * so it will then wait for writeback to
1785 * avoid OOM; and it's also appropriate
1786 * in global reclaim.
1788 folio_set_reclaim(folio);
1789 stat->nr_writeback += nr_pages;
1790 goto activate_locked;
1794 folio_unlock(folio);
1795 folio_wait_writeback(folio);
1796 /* then go back and try same folio again */
1797 list_add_tail(&folio->lru, folio_list);
1802 if (!ignore_references)
1803 references = folio_check_references(folio, sc);
1805 switch (references) {
1806 case FOLIOREF_ACTIVATE:
1807 goto activate_locked;
1809 stat->nr_ref_keep += nr_pages;
1811 case FOLIOREF_RECLAIM:
1812 case FOLIOREF_RECLAIM_CLEAN:
1813 ; /* try to reclaim the folio below */
1817 * Before reclaiming the folio, try to relocate
1818 * its contents to another node.
1820 if (do_demote_pass &&
1821 (thp_migration_supported() || !folio_test_large(folio))) {
1822 list_add(&folio->lru, &demote_folios);
1823 folio_unlock(folio);
1828 * Anonymous process memory has backing store?
1829 * Try to allocate it some swap space here.
1830 * Lazyfree folio could be freed directly
1832 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1833 if (!folio_test_swapcache(folio)) {
1834 if (!(sc->gfp_mask & __GFP_IO))
1836 if (folio_maybe_dma_pinned(folio))
1838 if (folio_test_large(folio)) {
1839 /* cannot split folio, skip it */
1840 if (!can_split_folio(folio, NULL))
1841 goto activate_locked;
1843 * Split folios without a PMD map right
1844 * away. Chances are some or all of the
1845 * tail pages can be freed without IO.
1847 if (!folio_entire_mapcount(folio) &&
1848 split_folio_to_list(folio,
1850 goto activate_locked;
1852 if (!add_to_swap(folio)) {
1853 if (!folio_test_large(folio))
1854 goto activate_locked_split;
1855 /* Fallback to swap normal pages */
1856 if (split_folio_to_list(folio,
1858 goto activate_locked;
1859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1860 count_vm_event(THP_SWPOUT_FALLBACK);
1862 if (!add_to_swap(folio))
1863 goto activate_locked_split;
1866 } else if (folio_test_swapbacked(folio) &&
1867 folio_test_large(folio)) {
1868 /* Split shmem folio */
1869 if (split_folio_to_list(folio, folio_list))
1874 * If the folio was split above, the tail pages will make
1875 * their own pass through this function and be accounted
1878 if ((nr_pages > 1) && !folio_test_large(folio)) {
1879 sc->nr_scanned -= (nr_pages - 1);
1884 * The folio is mapped into the page tables of one or more
1885 * processes. Try to unmap it here.
1887 if (folio_mapped(folio)) {
1888 enum ttu_flags flags = TTU_BATCH_FLUSH;
1889 bool was_swapbacked = folio_test_swapbacked(folio);
1891 if (folio_test_pmd_mappable(folio))
1892 flags |= TTU_SPLIT_HUGE_PMD;
1894 try_to_unmap(folio, flags);
1895 if (folio_mapped(folio)) {
1896 stat->nr_unmap_fail += nr_pages;
1897 if (!was_swapbacked &&
1898 folio_test_swapbacked(folio))
1899 stat->nr_lazyfree_fail += nr_pages;
1900 goto activate_locked;
1904 mapping = folio_mapping(folio);
1905 if (folio_test_dirty(folio)) {
1907 * Only kswapd can writeback filesystem folios
1908 * to avoid risk of stack overflow. But avoid
1909 * injecting inefficient single-folio I/O into
1910 * flusher writeback as much as possible: only
1911 * write folios when we've encountered many
1912 * dirty folios, and when we've already scanned
1913 * the rest of the LRU for clean folios and see
1914 * the same dirty folios again (with the reclaim
1917 if (folio_is_file_lru(folio) &&
1918 (!current_is_kswapd() ||
1919 !folio_test_reclaim(folio) ||
1920 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1922 * Immediately reclaim when written back.
1923 * Similar in principle to deactivate_page()
1924 * except we already have the folio isolated
1925 * and know it's dirty
1927 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1929 folio_set_reclaim(folio);
1931 goto activate_locked;
1934 if (references == FOLIOREF_RECLAIM_CLEAN)
1936 if (!may_enter_fs(folio, sc->gfp_mask))
1938 if (!sc->may_writepage)
1942 * Folio is dirty. Flush the TLB if a writable entry
1943 * potentially exists to avoid CPU writes after I/O
1944 * starts and then write it out here.
1946 try_to_unmap_flush_dirty();
1947 switch (pageout(folio, mapping, &plug)) {
1951 goto activate_locked;
1953 stat->nr_pageout += nr_pages;
1955 if (folio_test_writeback(folio))
1957 if (folio_test_dirty(folio))
1961 * A synchronous write - probably a ramdisk. Go
1962 * ahead and try to reclaim the folio.
1964 if (!folio_trylock(folio))
1966 if (folio_test_dirty(folio) ||
1967 folio_test_writeback(folio))
1969 mapping = folio_mapping(folio);
1972 ; /* try to free the folio below */
1977 * If the folio has buffers, try to free the buffer
1978 * mappings associated with this folio. If we succeed
1979 * we try to free the folio as well.
1981 * We do this even if the folio is dirty.
1982 * filemap_release_folio() does not perform I/O, but it
1983 * is possible for a folio to have the dirty flag set,
1984 * but it is actually clean (all its buffers are clean).
1985 * This happens if the buffers were written out directly,
1986 * with submit_bh(). ext3 will do this, as well as
1987 * the blockdev mapping. filemap_release_folio() will
1988 * discover that cleanness and will drop the buffers
1989 * and mark the folio clean - it can be freed.
1991 * Rarely, folios can have buffers and no ->mapping.
1992 * These are the folios which were not successfully
1993 * invalidated in truncate_cleanup_folio(). We try to
1994 * drop those buffers here and if that worked, and the
1995 * folio is no longer mapped into process address space
1996 * (refcount == 1) it can be freed. Otherwise, leave
1997 * the folio on the LRU so it is swappable.
1999 if (folio_has_private(folio)) {
2000 if (!filemap_release_folio(folio, sc->gfp_mask))
2001 goto activate_locked;
2002 if (!mapping && folio_ref_count(folio) == 1) {
2003 folio_unlock(folio);
2004 if (folio_put_testzero(folio))
2008 * rare race with speculative reference.
2009 * the speculative reference will free
2010 * this folio shortly, so we may
2011 * increment nr_reclaimed here (and
2012 * leave it off the LRU).
2014 nr_reclaimed += nr_pages;
2020 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2021 /* follow __remove_mapping for reference */
2022 if (!folio_ref_freeze(folio, 1))
2025 * The folio has only one reference left, which is
2026 * from the isolation. After the caller puts the
2027 * folio back on the lru and drops the reference, the
2028 * folio will be freed anyway. It doesn't matter
2029 * which lru it goes on. So we don't bother checking
2030 * the dirty flag here.
2032 count_vm_events(PGLAZYFREED, nr_pages);
2033 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2034 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2035 sc->target_mem_cgroup))
2038 folio_unlock(folio);
2041 * Folio may get swapped out as a whole, need to account
2044 nr_reclaimed += nr_pages;
2047 * Is there need to periodically free_folio_list? It would
2048 * appear not as the counts should be low
2050 if (unlikely(folio_test_large(folio)))
2051 destroy_large_folio(folio);
2053 list_add(&folio->lru, &free_folios);
2056 activate_locked_split:
2058 * The tail pages that are failed to add into swap cache
2059 * reach here. Fixup nr_scanned and nr_pages.
2062 sc->nr_scanned -= (nr_pages - 1);
2066 /* Not a candidate for swapping, so reclaim swap space. */
2067 if (folio_test_swapcache(folio) &&
2068 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2069 folio_free_swap(folio);
2070 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2071 if (!folio_test_mlocked(folio)) {
2072 int type = folio_is_file_lru(folio);
2073 folio_set_active(folio);
2074 stat->nr_activate[type] += nr_pages;
2075 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2078 folio_unlock(folio);
2080 list_add(&folio->lru, &ret_folios);
2081 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2082 folio_test_unevictable(folio), folio);
2084 /* 'folio_list' is always empty here */
2086 /* Migrate folios selected for demotion */
2087 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2088 /* Folios that could not be demoted are still in @demote_folios */
2089 if (!list_empty(&demote_folios)) {
2090 /* Folios which weren't demoted go back on @folio_list */
2091 list_splice_init(&demote_folios, folio_list);
2094 * goto retry to reclaim the undemoted folios in folio_list if
2097 * Reclaiming directly from top tier nodes is not often desired
2098 * due to it breaking the LRU ordering: in general memory
2099 * should be reclaimed from lower tier nodes and demoted from
2102 * However, disabling reclaim from top tier nodes entirely
2103 * would cause ooms in edge scenarios where lower tier memory
2104 * is unreclaimable for whatever reason, eg memory being
2105 * mlocked or too hot to reclaim. We can disable reclaim
2106 * from top tier nodes in proactive reclaim though as that is
2107 * not real memory pressure.
2109 if (!sc->proactive) {
2110 do_demote_pass = false;
2115 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2117 mem_cgroup_uncharge_list(&free_folios);
2118 try_to_unmap_flush();
2119 free_unref_page_list(&free_folios);
2121 list_splice(&ret_folios, folio_list);
2122 count_vm_events(PGACTIVATE, pgactivate);
2125 swap_write_unplug(plug);
2126 return nr_reclaimed;
2129 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2130 struct list_head *folio_list)
2132 struct scan_control sc = {
2133 .gfp_mask = GFP_KERNEL,
2136 struct reclaim_stat stat;
2137 unsigned int nr_reclaimed;
2138 struct folio *folio, *next;
2139 LIST_HEAD(clean_folios);
2140 unsigned int noreclaim_flag;
2142 list_for_each_entry_safe(folio, next, folio_list, lru) {
2143 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2144 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2145 !folio_test_unevictable(folio)) {
2146 folio_clear_active(folio);
2147 list_move(&folio->lru, &clean_folios);
2152 * We should be safe here since we are only dealing with file pages and
2153 * we are not kswapd and therefore cannot write dirty file pages. But
2154 * call memalloc_noreclaim_save() anyway, just in case these conditions
2155 * change in the future.
2157 noreclaim_flag = memalloc_noreclaim_save();
2158 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2160 memalloc_noreclaim_restore(noreclaim_flag);
2162 list_splice(&clean_folios, folio_list);
2163 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2164 -(long)nr_reclaimed);
2166 * Since lazyfree pages are isolated from file LRU from the beginning,
2167 * they will rotate back to anonymous LRU in the end if it failed to
2168 * discard so isolated count will be mismatched.
2169 * Compensate the isolated count for both LRU lists.
2171 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2172 stat.nr_lazyfree_fail);
2173 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2174 -(long)stat.nr_lazyfree_fail);
2175 return nr_reclaimed;
2179 * Update LRU sizes after isolating pages. The LRU size updates must
2180 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2182 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2183 enum lru_list lru, unsigned long *nr_zone_taken)
2187 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2188 if (!nr_zone_taken[zid])
2191 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2197 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2199 * lruvec->lru_lock is heavily contended. Some of the functions that
2200 * shrink the lists perform better by taking out a batch of pages
2201 * and working on them outside the LRU lock.
2203 * For pagecache intensive workloads, this function is the hottest
2204 * spot in the kernel (apart from copy_*_user functions).
2206 * Lru_lock must be held before calling this function.
2208 * @nr_to_scan: The number of eligible pages to look through on the list.
2209 * @lruvec: The LRU vector to pull pages from.
2210 * @dst: The temp list to put pages on to.
2211 * @nr_scanned: The number of pages that were scanned.
2212 * @sc: The scan_control struct for this reclaim session
2213 * @lru: LRU list id for isolating
2215 * returns how many pages were moved onto *@dst.
2217 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2218 struct lruvec *lruvec, struct list_head *dst,
2219 unsigned long *nr_scanned, struct scan_control *sc,
2222 struct list_head *src = &lruvec->lists[lru];
2223 unsigned long nr_taken = 0;
2224 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2225 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2226 unsigned long skipped = 0;
2227 unsigned long scan, total_scan, nr_pages;
2228 LIST_HEAD(folios_skipped);
2232 while (scan < nr_to_scan && !list_empty(src)) {
2233 struct list_head *move_to = src;
2234 struct folio *folio;
2236 folio = lru_to_folio(src);
2237 prefetchw_prev_lru_folio(folio, src, flags);
2239 nr_pages = folio_nr_pages(folio);
2240 total_scan += nr_pages;
2242 if (folio_zonenum(folio) > sc->reclaim_idx) {
2243 nr_skipped[folio_zonenum(folio)] += nr_pages;
2244 move_to = &folios_skipped;
2249 * Do not count skipped folios because that makes the function
2250 * return with no isolated folios if the LRU mostly contains
2251 * ineligible folios. This causes the VM to not reclaim any
2252 * folios, triggering a premature OOM.
2253 * Account all pages in a folio.
2257 if (!folio_test_lru(folio))
2259 if (!sc->may_unmap && folio_mapped(folio))
2263 * Be careful not to clear the lru flag until after we're
2264 * sure the folio is not being freed elsewhere -- the
2265 * folio release code relies on it.
2267 if (unlikely(!folio_try_get(folio)))
2270 if (!folio_test_clear_lru(folio)) {
2271 /* Another thread is already isolating this folio */
2276 nr_taken += nr_pages;
2277 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2280 list_move(&folio->lru, move_to);
2284 * Splice any skipped folios to the start of the LRU list. Note that
2285 * this disrupts the LRU order when reclaiming for lower zones but
2286 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2287 * scanning would soon rescan the same folios to skip and waste lots
2290 if (!list_empty(&folios_skipped)) {
2293 list_splice(&folios_skipped, src);
2294 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2295 if (!nr_skipped[zid])
2298 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2299 skipped += nr_skipped[zid];
2302 *nr_scanned = total_scan;
2303 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2304 total_scan, skipped, nr_taken,
2305 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2306 update_lru_sizes(lruvec, lru, nr_zone_taken);
2311 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2312 * @folio: Folio to isolate from its LRU list.
2314 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2315 * corresponding to whatever LRU list the folio was on.
2317 * The folio will have its LRU flag cleared. If it was found on the
2318 * active list, it will have the Active flag set. If it was found on the
2319 * unevictable list, it will have the Unevictable flag set. These flags
2320 * may need to be cleared by the caller before letting the page go.
2324 * (1) Must be called with an elevated refcount on the folio. This is a
2325 * fundamental difference from isolate_lru_folios() (which is called
2326 * without a stable reference).
2327 * (2) The lru_lock must not be held.
2328 * (3) Interrupts must be enabled.
2330 * Return: 0 if the folio was removed from an LRU list.
2331 * -EBUSY if the folio was not on an LRU list.
2333 int folio_isolate_lru(struct folio *folio)
2337 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2339 if (folio_test_clear_lru(folio)) {
2340 struct lruvec *lruvec;
2343 lruvec = folio_lruvec_lock_irq(folio);
2344 lruvec_del_folio(lruvec, folio);
2345 unlock_page_lruvec_irq(lruvec);
2353 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2354 * then get rescheduled. When there are massive number of tasks doing page
2355 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2356 * the LRU list will go small and be scanned faster than necessary, leading to
2357 * unnecessary swapping, thrashing and OOM.
2359 static int too_many_isolated(struct pglist_data *pgdat, int file,
2360 struct scan_control *sc)
2362 unsigned long inactive, isolated;
2365 if (current_is_kswapd())
2368 if (!writeback_throttling_sane(sc))
2372 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2373 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2375 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2376 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2380 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2381 * won't get blocked by normal direct-reclaimers, forming a circular
2384 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2387 too_many = isolated > inactive;
2389 /* Wake up tasks throttled due to too_many_isolated. */
2391 wake_throttle_isolated(pgdat);
2397 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2398 * On return, @list is reused as a list of folios to be freed by the caller.
2400 * Returns the number of pages moved to the given lruvec.
2402 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2403 struct list_head *list)
2405 int nr_pages, nr_moved = 0;
2406 LIST_HEAD(folios_to_free);
2408 while (!list_empty(list)) {
2409 struct folio *folio = lru_to_folio(list);
2411 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2412 list_del(&folio->lru);
2413 if (unlikely(!folio_evictable(folio))) {
2414 spin_unlock_irq(&lruvec->lru_lock);
2415 folio_putback_lru(folio);
2416 spin_lock_irq(&lruvec->lru_lock);
2421 * The folio_set_lru needs to be kept here for list integrity.
2423 * #0 move_folios_to_lru #1 release_pages
2424 * if (!folio_put_testzero())
2425 * if (folio_put_testzero())
2426 * !lru //skip lru_lock
2428 * list_add(&folio->lru,)
2429 * list_add(&folio->lru,)
2431 folio_set_lru(folio);
2433 if (unlikely(folio_put_testzero(folio))) {
2434 __folio_clear_lru_flags(folio);
2436 if (unlikely(folio_test_large(folio))) {
2437 spin_unlock_irq(&lruvec->lru_lock);
2438 destroy_large_folio(folio);
2439 spin_lock_irq(&lruvec->lru_lock);
2441 list_add(&folio->lru, &folios_to_free);
2447 * All pages were isolated from the same lruvec (and isolation
2448 * inhibits memcg migration).
2450 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2451 lruvec_add_folio(lruvec, folio);
2452 nr_pages = folio_nr_pages(folio);
2453 nr_moved += nr_pages;
2454 if (folio_test_active(folio))
2455 workingset_age_nonresident(lruvec, nr_pages);
2459 * To save our caller's stack, now use input list for pages to free.
2461 list_splice(&folios_to_free, list);
2467 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2468 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2469 * we should not throttle. Otherwise it is safe to do so.
2471 static int current_may_throttle(void)
2473 return !(current->flags & PF_LOCAL_THROTTLE);
2477 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2478 * of reclaimed pages
2480 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2481 struct lruvec *lruvec, struct scan_control *sc,
2484 LIST_HEAD(folio_list);
2485 unsigned long nr_scanned;
2486 unsigned int nr_reclaimed = 0;
2487 unsigned long nr_taken;
2488 struct reclaim_stat stat;
2489 bool file = is_file_lru(lru);
2490 enum vm_event_item item;
2491 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2492 bool stalled = false;
2494 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2498 /* wait a bit for the reclaimer. */
2500 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2502 /* We are about to die and free our memory. Return now. */
2503 if (fatal_signal_pending(current))
2504 return SWAP_CLUSTER_MAX;
2509 spin_lock_irq(&lruvec->lru_lock);
2511 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2512 &nr_scanned, sc, lru);
2514 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2515 item = PGSCAN_KSWAPD + reclaimer_offset();
2516 if (!cgroup_reclaim(sc))
2517 __count_vm_events(item, nr_scanned);
2518 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2519 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2521 spin_unlock_irq(&lruvec->lru_lock);
2526 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2528 spin_lock_irq(&lruvec->lru_lock);
2529 move_folios_to_lru(lruvec, &folio_list);
2531 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2532 item = PGSTEAL_KSWAPD + reclaimer_offset();
2533 if (!cgroup_reclaim(sc))
2534 __count_vm_events(item, nr_reclaimed);
2535 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2536 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2537 spin_unlock_irq(&lruvec->lru_lock);
2539 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2540 mem_cgroup_uncharge_list(&folio_list);
2541 free_unref_page_list(&folio_list);
2544 * If dirty folios are scanned that are not queued for IO, it
2545 * implies that flushers are not doing their job. This can
2546 * happen when memory pressure pushes dirty folios to the end of
2547 * the LRU before the dirty limits are breached and the dirty
2548 * data has expired. It can also happen when the proportion of
2549 * dirty folios grows not through writes but through memory
2550 * pressure reclaiming all the clean cache. And in some cases,
2551 * the flushers simply cannot keep up with the allocation
2552 * rate. Nudge the flusher threads in case they are asleep.
2554 if (stat.nr_unqueued_dirty == nr_taken) {
2555 wakeup_flusher_threads(WB_REASON_VMSCAN);
2557 * For cgroupv1 dirty throttling is achieved by waking up
2558 * the kernel flusher here and later waiting on folios
2559 * which are in writeback to finish (see shrink_folio_list()).
2561 * Flusher may not be able to issue writeback quickly
2562 * enough for cgroupv1 writeback throttling to work
2563 * on a large system.
2565 if (!writeback_throttling_sane(sc))
2566 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2569 sc->nr.dirty += stat.nr_dirty;
2570 sc->nr.congested += stat.nr_congested;
2571 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2572 sc->nr.writeback += stat.nr_writeback;
2573 sc->nr.immediate += stat.nr_immediate;
2574 sc->nr.taken += nr_taken;
2576 sc->nr.file_taken += nr_taken;
2578 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2579 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2580 return nr_reclaimed;
2584 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2586 * We move them the other way if the folio is referenced by one or more
2589 * If the folios are mostly unmapped, the processing is fast and it is
2590 * appropriate to hold lru_lock across the whole operation. But if
2591 * the folios are mapped, the processing is slow (folio_referenced()), so
2592 * we should drop lru_lock around each folio. It's impossible to balance
2593 * this, so instead we remove the folios from the LRU while processing them.
2594 * It is safe to rely on the active flag against the non-LRU folios in here
2595 * because nobody will play with that bit on a non-LRU folio.
2597 * The downside is that we have to touch folio->_refcount against each folio.
2598 * But we had to alter folio->flags anyway.
2600 static void shrink_active_list(unsigned long nr_to_scan,
2601 struct lruvec *lruvec,
2602 struct scan_control *sc,
2605 unsigned long nr_taken;
2606 unsigned long nr_scanned;
2607 unsigned long vm_flags;
2608 LIST_HEAD(l_hold); /* The folios which were snipped off */
2609 LIST_HEAD(l_active);
2610 LIST_HEAD(l_inactive);
2611 unsigned nr_deactivate, nr_activate;
2612 unsigned nr_rotated = 0;
2613 int file = is_file_lru(lru);
2614 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2618 spin_lock_irq(&lruvec->lru_lock);
2620 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2621 &nr_scanned, sc, lru);
2623 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2625 if (!cgroup_reclaim(sc))
2626 __count_vm_events(PGREFILL, nr_scanned);
2627 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2629 spin_unlock_irq(&lruvec->lru_lock);
2631 while (!list_empty(&l_hold)) {
2632 struct folio *folio;
2635 folio = lru_to_folio(&l_hold);
2636 list_del(&folio->lru);
2638 if (unlikely(!folio_evictable(folio))) {
2639 folio_putback_lru(folio);
2643 if (unlikely(buffer_heads_over_limit)) {
2644 if (folio_test_private(folio) && folio_trylock(folio)) {
2645 if (folio_test_private(folio))
2646 filemap_release_folio(folio, 0);
2647 folio_unlock(folio);
2651 /* Referenced or rmap lock contention: rotate */
2652 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2655 * Identify referenced, file-backed active folios and
2656 * give them one more trip around the active list. So
2657 * that executable code get better chances to stay in
2658 * memory under moderate memory pressure. Anon folios
2659 * are not likely to be evicted by use-once streaming
2660 * IO, plus JVM can create lots of anon VM_EXEC folios,
2661 * so we ignore them here.
2663 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2664 nr_rotated += folio_nr_pages(folio);
2665 list_add(&folio->lru, &l_active);
2670 folio_clear_active(folio); /* we are de-activating */
2671 folio_set_workingset(folio);
2672 list_add(&folio->lru, &l_inactive);
2676 * Move folios back to the lru list.
2678 spin_lock_irq(&lruvec->lru_lock);
2680 nr_activate = move_folios_to_lru(lruvec, &l_active);
2681 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2682 /* Keep all free folios in l_active list */
2683 list_splice(&l_inactive, &l_active);
2685 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2686 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2688 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2689 spin_unlock_irq(&lruvec->lru_lock);
2692 lru_note_cost(lruvec, file, 0, nr_rotated);
2693 mem_cgroup_uncharge_list(&l_active);
2694 free_unref_page_list(&l_active);
2695 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2696 nr_deactivate, nr_rotated, sc->priority, file);
2699 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2700 struct pglist_data *pgdat)
2702 struct reclaim_stat dummy_stat;
2703 unsigned int nr_reclaimed;
2704 struct folio *folio;
2705 struct scan_control sc = {
2706 .gfp_mask = GFP_KERNEL,
2713 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2714 while (!list_empty(folio_list)) {
2715 folio = lru_to_folio(folio_list);
2716 list_del(&folio->lru);
2717 folio_putback_lru(folio);
2720 return nr_reclaimed;
2723 unsigned long reclaim_pages(struct list_head *folio_list)
2726 unsigned int nr_reclaimed = 0;
2727 LIST_HEAD(node_folio_list);
2728 unsigned int noreclaim_flag;
2730 if (list_empty(folio_list))
2731 return nr_reclaimed;
2733 noreclaim_flag = memalloc_noreclaim_save();
2735 nid = folio_nid(lru_to_folio(folio_list));
2737 struct folio *folio = lru_to_folio(folio_list);
2739 if (nid == folio_nid(folio)) {
2740 folio_clear_active(folio);
2741 list_move(&folio->lru, &node_folio_list);
2745 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2746 nid = folio_nid(lru_to_folio(folio_list));
2747 } while (!list_empty(folio_list));
2749 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2751 memalloc_noreclaim_restore(noreclaim_flag);
2753 return nr_reclaimed;
2756 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2757 struct lruvec *lruvec, struct scan_control *sc)
2759 if (is_active_lru(lru)) {
2760 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2761 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2763 sc->skipped_deactivate = 1;
2767 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2771 * The inactive anon list should be small enough that the VM never has
2772 * to do too much work.
2774 * The inactive file list should be small enough to leave most memory
2775 * to the established workingset on the scan-resistant active list,
2776 * but large enough to avoid thrashing the aggregate readahead window.
2778 * Both inactive lists should also be large enough that each inactive
2779 * folio has a chance to be referenced again before it is reclaimed.
2781 * If that fails and refaulting is observed, the inactive list grows.
2783 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2784 * on this LRU, maintained by the pageout code. An inactive_ratio
2785 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2788 * memory ratio inactive
2789 * -------------------------------------
2798 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2800 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2801 unsigned long inactive, active;
2802 unsigned long inactive_ratio;
2805 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2806 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2808 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2810 inactive_ratio = int_sqrt(10 * gb);
2814 return inactive * inactive_ratio < active;
2824 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2827 struct lruvec *target_lruvec;
2829 if (lru_gen_enabled())
2832 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2835 * Flush the memory cgroup stats, so that we read accurate per-memcg
2836 * lruvec stats for heuristics.
2838 mem_cgroup_flush_stats();
2841 * Determine the scan balance between anon and file LRUs.
2843 spin_lock_irq(&target_lruvec->lru_lock);
2844 sc->anon_cost = target_lruvec->anon_cost;
2845 sc->file_cost = target_lruvec->file_cost;
2846 spin_unlock_irq(&target_lruvec->lru_lock);
2849 * Target desirable inactive:active list ratios for the anon
2850 * and file LRU lists.
2852 if (!sc->force_deactivate) {
2853 unsigned long refaults;
2856 * When refaults are being observed, it means a new
2857 * workingset is being established. Deactivate to get
2858 * rid of any stale active pages quickly.
2860 refaults = lruvec_page_state(target_lruvec,
2861 WORKINGSET_ACTIVATE_ANON);
2862 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2863 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2864 sc->may_deactivate |= DEACTIVATE_ANON;
2866 sc->may_deactivate &= ~DEACTIVATE_ANON;
2868 refaults = lruvec_page_state(target_lruvec,
2869 WORKINGSET_ACTIVATE_FILE);
2870 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2871 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2872 sc->may_deactivate |= DEACTIVATE_FILE;
2874 sc->may_deactivate &= ~DEACTIVATE_FILE;
2876 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2879 * If we have plenty of inactive file pages that aren't
2880 * thrashing, try to reclaim those first before touching
2883 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2884 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2885 sc->cache_trim_mode = 1;
2887 sc->cache_trim_mode = 0;
2890 * Prevent the reclaimer from falling into the cache trap: as
2891 * cache pages start out inactive, every cache fault will tip
2892 * the scan balance towards the file LRU. And as the file LRU
2893 * shrinks, so does the window for rotation from references.
2894 * This means we have a runaway feedback loop where a tiny
2895 * thrashing file LRU becomes infinitely more attractive than
2896 * anon pages. Try to detect this based on file LRU size.
2898 if (!cgroup_reclaim(sc)) {
2899 unsigned long total_high_wmark = 0;
2900 unsigned long free, anon;
2903 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2904 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2905 node_page_state(pgdat, NR_INACTIVE_FILE);
2907 for (z = 0; z < MAX_NR_ZONES; z++) {
2908 struct zone *zone = &pgdat->node_zones[z];
2910 if (!managed_zone(zone))
2913 total_high_wmark += high_wmark_pages(zone);
2917 * Consider anon: if that's low too, this isn't a
2918 * runaway file reclaim problem, but rather just
2919 * extreme pressure. Reclaim as per usual then.
2921 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2924 file + free <= total_high_wmark &&
2925 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2926 anon >> sc->priority;
2931 * Determine how aggressively the anon and file LRU lists should be
2934 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2935 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2937 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2940 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2941 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2942 unsigned long anon_cost, file_cost, total_cost;
2943 int swappiness = mem_cgroup_swappiness(memcg);
2944 u64 fraction[ANON_AND_FILE];
2945 u64 denominator = 0; /* gcc */
2946 enum scan_balance scan_balance;
2947 unsigned long ap, fp;
2950 /* If we have no swap space, do not bother scanning anon folios. */
2951 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2952 scan_balance = SCAN_FILE;
2957 * Global reclaim will swap to prevent OOM even with no
2958 * swappiness, but memcg users want to use this knob to
2959 * disable swapping for individual groups completely when
2960 * using the memory controller's swap limit feature would be
2963 if (cgroup_reclaim(sc) && !swappiness) {
2964 scan_balance = SCAN_FILE;
2969 * Do not apply any pressure balancing cleverness when the
2970 * system is close to OOM, scan both anon and file equally
2971 * (unless the swappiness setting disagrees with swapping).
2973 if (!sc->priority && swappiness) {
2974 scan_balance = SCAN_EQUAL;
2979 * If the system is almost out of file pages, force-scan anon.
2981 if (sc->file_is_tiny) {
2982 scan_balance = SCAN_ANON;
2987 * If there is enough inactive page cache, we do not reclaim
2988 * anything from the anonymous working right now.
2990 if (sc->cache_trim_mode) {
2991 scan_balance = SCAN_FILE;
2995 scan_balance = SCAN_FRACT;
2997 * Calculate the pressure balance between anon and file pages.
2999 * The amount of pressure we put on each LRU is inversely
3000 * proportional to the cost of reclaiming each list, as
3001 * determined by the share of pages that are refaulting, times
3002 * the relative IO cost of bringing back a swapped out
3003 * anonymous page vs reloading a filesystem page (swappiness).
3005 * Although we limit that influence to ensure no list gets
3006 * left behind completely: at least a third of the pressure is
3007 * applied, before swappiness.
3009 * With swappiness at 100, anon and file have equal IO cost.
3011 total_cost = sc->anon_cost + sc->file_cost;
3012 anon_cost = total_cost + sc->anon_cost;
3013 file_cost = total_cost + sc->file_cost;
3014 total_cost = anon_cost + file_cost;
3016 ap = swappiness * (total_cost + 1);
3017 ap /= anon_cost + 1;
3019 fp = (200 - swappiness) * (total_cost + 1);
3020 fp /= file_cost + 1;
3024 denominator = ap + fp;
3026 for_each_evictable_lru(lru) {
3027 int file = is_file_lru(lru);
3028 unsigned long lruvec_size;
3029 unsigned long low, min;
3032 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3033 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3038 * Scale a cgroup's reclaim pressure by proportioning
3039 * its current usage to its memory.low or memory.min
3042 * This is important, as otherwise scanning aggression
3043 * becomes extremely binary -- from nothing as we
3044 * approach the memory protection threshold, to totally
3045 * nominal as we exceed it. This results in requiring
3046 * setting extremely liberal protection thresholds. It
3047 * also means we simply get no protection at all if we
3048 * set it too low, which is not ideal.
3050 * If there is any protection in place, we reduce scan
3051 * pressure by how much of the total memory used is
3052 * within protection thresholds.
3054 * There is one special case: in the first reclaim pass,
3055 * we skip over all groups that are within their low
3056 * protection. If that fails to reclaim enough pages to
3057 * satisfy the reclaim goal, we come back and override
3058 * the best-effort low protection. However, we still
3059 * ideally want to honor how well-behaved groups are in
3060 * that case instead of simply punishing them all
3061 * equally. As such, we reclaim them based on how much
3062 * memory they are using, reducing the scan pressure
3063 * again by how much of the total memory used is under
3066 unsigned long cgroup_size = mem_cgroup_size(memcg);
3067 unsigned long protection;
3069 /* memory.low scaling, make sure we retry before OOM */
3070 if (!sc->memcg_low_reclaim && low > min) {
3072 sc->memcg_low_skipped = 1;
3077 /* Avoid TOCTOU with earlier protection check */
3078 cgroup_size = max(cgroup_size, protection);
3080 scan = lruvec_size - lruvec_size * protection /
3084 * Minimally target SWAP_CLUSTER_MAX pages to keep
3085 * reclaim moving forwards, avoiding decrementing
3086 * sc->priority further than desirable.
3088 scan = max(scan, SWAP_CLUSTER_MAX);
3093 scan >>= sc->priority;
3096 * If the cgroup's already been deleted, make sure to
3097 * scrape out the remaining cache.
3099 if (!scan && !mem_cgroup_online(memcg))
3100 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3102 switch (scan_balance) {
3104 /* Scan lists relative to size */
3108 * Scan types proportional to swappiness and
3109 * their relative recent reclaim efficiency.
3110 * Make sure we don't miss the last page on
3111 * the offlined memory cgroups because of a
3114 scan = mem_cgroup_online(memcg) ?
3115 div64_u64(scan * fraction[file], denominator) :
3116 DIV64_U64_ROUND_UP(scan * fraction[file],
3121 /* Scan one type exclusively */
3122 if ((scan_balance == SCAN_FILE) != file)
3126 /* Look ma, no brain */
3135 * Anonymous LRU management is a waste if there is
3136 * ultimately no way to reclaim the memory.
3138 static bool can_age_anon_pages(struct pglist_data *pgdat,
3139 struct scan_control *sc)
3141 /* Aging the anon LRU is valuable if swap is present: */
3142 if (total_swap_pages > 0)
3145 /* Also valuable if anon pages can be demoted: */
3146 return can_demote(pgdat->node_id, sc);
3149 #ifdef CONFIG_LRU_GEN
3151 #ifdef CONFIG_LRU_GEN_ENABLED
3152 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3153 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3155 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3156 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3159 /******************************************************************************
3161 ******************************************************************************/
3163 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3165 #define DEFINE_MAX_SEQ(lruvec) \
3166 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3168 #define DEFINE_MIN_SEQ(lruvec) \
3169 unsigned long min_seq[ANON_AND_FILE] = { \
3170 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3171 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3174 #define for_each_gen_type_zone(gen, type, zone) \
3175 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3176 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3177 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3179 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3181 struct pglist_data *pgdat = NODE_DATA(nid);
3185 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3187 /* see the comment in mem_cgroup_lruvec() */
3189 lruvec->pgdat = pgdat;
3194 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3196 return &pgdat->__lruvec;
3199 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3201 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3202 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3204 if (!can_demote(pgdat->node_id, sc) &&
3205 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3208 return mem_cgroup_swappiness(memcg);
3211 static int get_nr_gens(struct lruvec *lruvec, int type)
3213 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3216 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3218 /* see the comment on lru_gen_struct */
3219 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3220 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3221 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3224 /******************************************************************************
3226 ******************************************************************************/
3228 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3230 static struct lru_gen_mm_list mm_list = {
3231 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3232 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3237 return &memcg->mm_list;
3239 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3244 void lru_gen_add_mm(struct mm_struct *mm)
3247 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3248 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3250 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3252 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3253 mm->lru_gen.memcg = memcg;
3255 spin_lock(&mm_list->lock);
3257 for_each_node_state(nid, N_MEMORY) {
3258 struct lruvec *lruvec = get_lruvec(memcg, nid);
3260 /* the first addition since the last iteration */
3261 if (lruvec->mm_state.tail == &mm_list->fifo)
3262 lruvec->mm_state.tail = &mm->lru_gen.list;
3265 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3267 spin_unlock(&mm_list->lock);
3270 void lru_gen_del_mm(struct mm_struct *mm)
3273 struct lru_gen_mm_list *mm_list;
3274 struct mem_cgroup *memcg = NULL;
3276 if (list_empty(&mm->lru_gen.list))
3280 memcg = mm->lru_gen.memcg;
3282 mm_list = get_mm_list(memcg);
3284 spin_lock(&mm_list->lock);
3286 for_each_node(nid) {
3287 struct lruvec *lruvec = get_lruvec(memcg, nid);
3289 /* where the last iteration ended (exclusive) */
3290 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3291 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3293 /* where the current iteration continues (inclusive) */
3294 if (lruvec->mm_state.head != &mm->lru_gen.list)
3297 lruvec->mm_state.head = lruvec->mm_state.head->next;
3298 /* the deletion ends the current iteration */
3299 if (lruvec->mm_state.head == &mm_list->fifo)
3300 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3303 list_del_init(&mm->lru_gen.list);
3305 spin_unlock(&mm_list->lock);
3308 mem_cgroup_put(mm->lru_gen.memcg);
3309 mm->lru_gen.memcg = NULL;
3314 void lru_gen_migrate_mm(struct mm_struct *mm)
3316 struct mem_cgroup *memcg;
3317 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3319 VM_WARN_ON_ONCE(task->mm != mm);
3320 lockdep_assert_held(&task->alloc_lock);
3322 /* for mm_update_next_owner() */
3323 if (mem_cgroup_disabled())
3327 memcg = mem_cgroup_from_task(task);
3329 if (memcg == mm->lru_gen.memcg)
3332 VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3333 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3341 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3342 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3343 * bits in a bitmap, k is the number of hash functions and n is the number of
3346 * Page table walkers use one of the two filters to reduce their search space.
3347 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3348 * aging uses the double-buffering technique to flip to the other filter each
3349 * time it produces a new generation. For non-leaf entries that have enough
3350 * leaf entries, the aging carries them over to the next generation in
3351 * walk_pmd_range(); the eviction also report them when walking the rmap
3352 * in lru_gen_look_around().
3354 * For future optimizations:
3355 * 1. It's not necessary to keep both filters all the time. The spare one can be
3356 * freed after the RCU grace period and reallocated if needed again.
3357 * 2. And when reallocating, it's worth scaling its size according to the number
3358 * of inserted entries in the other filter, to reduce the memory overhead on
3359 * small systems and false positives on large systems.
3360 * 3. Jenkins' hash function is an alternative to Knuth's.
3362 #define BLOOM_FILTER_SHIFT 15
3364 static inline int filter_gen_from_seq(unsigned long seq)
3366 return seq % NR_BLOOM_FILTERS;
3369 static void get_item_key(void *item, int *key)
3371 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3373 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3375 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3376 key[1] = hash >> BLOOM_FILTER_SHIFT;
3379 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3381 unsigned long *filter;
3382 int gen = filter_gen_from_seq(seq);
3384 filter = lruvec->mm_state.filters[gen];
3386 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3390 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3391 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3392 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3395 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3398 unsigned long *filter;
3399 int gen = filter_gen_from_seq(seq);
3401 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3405 get_item_key(item, key);
3407 if (!test_bit(key[0], filter))
3408 set_bit(key[0], filter);
3409 if (!test_bit(key[1], filter))
3410 set_bit(key[1], filter);
3413 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3416 unsigned long *filter;
3417 int gen = filter_gen_from_seq(seq);
3419 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3423 get_item_key(item, key);
3425 return test_bit(key[0], filter) && test_bit(key[1], filter);
3428 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3433 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3436 hist = lru_hist_from_seq(walk->max_seq);
3438 for (i = 0; i < NR_MM_STATS; i++) {
3439 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3440 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3441 walk->mm_stats[i] = 0;
3445 if (NR_HIST_GENS > 1 && last) {
3446 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3448 for (i = 0; i < NR_MM_STATS; i++)
3449 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3453 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3456 unsigned long size = 0;
3457 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3458 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3460 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3463 clear_bit(key, &mm->lru_gen.bitmap);
3465 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3466 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3467 get_mm_counter(mm, MM_ANONPAGES) +
3468 get_mm_counter(mm, MM_SHMEMPAGES);
3471 if (size < MIN_LRU_BATCH)
3474 return !mmget_not_zero(mm);
3477 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3478 struct mm_struct **iter)
3482 struct mm_struct *mm = NULL;
3483 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3484 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3485 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3488 * There are four interesting cases for this page table walker:
3489 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3490 * there is nothing left to do.
3491 * 2. It's the first of the current generation, and it needs to reset
3492 * the Bloom filter for the next generation.
3493 * 3. It reaches the end of mm_list, and it needs to increment
3494 * mm_state->seq; the iteration is done.
3495 * 4. It's the last of the current generation, and it needs to reset the
3496 * mm stats counters for the next generation.
3498 spin_lock(&mm_list->lock);
3500 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3501 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3502 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3504 if (walk->max_seq <= mm_state->seq) {
3510 if (!mm_state->nr_walkers) {
3511 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3513 mm_state->head = mm_list->fifo.next;
3517 while (!mm && mm_state->head != &mm_list->fifo) {
3518 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3520 mm_state->head = mm_state->head->next;
3522 /* force scan for those added after the last iteration */
3523 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3524 mm_state->tail = mm_state->head;
3525 walk->force_scan = true;
3528 if (should_skip_mm(mm, walk))
3532 if (mm_state->head == &mm_list->fifo)
3533 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3536 mm_state->nr_walkers--;
3538 mm_state->nr_walkers++;
3540 if (mm_state->nr_walkers)
3544 reset_mm_stats(lruvec, walk, last);
3546 spin_unlock(&mm_list->lock);
3549 reset_bloom_filter(lruvec, walk->max_seq + 1);
3559 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3561 bool success = false;
3562 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3563 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3564 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3566 spin_lock(&mm_list->lock);
3568 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3570 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3571 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3573 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3574 reset_mm_stats(lruvec, NULL, true);
3578 spin_unlock(&mm_list->lock);
3583 /******************************************************************************
3584 * refault feedback loop
3585 ******************************************************************************/
3588 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3590 * The P term is refaulted/(evicted+protected) from a tier in the generation
3591 * currently being evicted; the I term is the exponential moving average of the
3592 * P term over the generations previously evicted, using the smoothing factor
3593 * 1/2; the D term isn't supported.
3595 * The setpoint (SP) is always the first tier of one type; the process variable
3596 * (PV) is either any tier of the other type or any other tier of the same
3599 * The error is the difference between the SP and the PV; the correction is to
3600 * turn off protection when SP>PV or turn on protection when SP<PV.
3602 * For future optimizations:
3603 * 1. The D term may discount the other two terms over time so that long-lived
3604 * generations can resist stale information.
3607 unsigned long refaulted;
3608 unsigned long total;
3612 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3613 struct ctrl_pos *pos)
3615 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3616 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3618 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3619 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3620 pos->total = lrugen->avg_total[type][tier] +
3621 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3623 pos->total += lrugen->protected[hist][type][tier - 1];
3627 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3630 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3631 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3632 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3634 lockdep_assert_held(&lruvec->lru_lock);
3636 if (!carryover && !clear)
3639 hist = lru_hist_from_seq(seq);
3641 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3645 sum = lrugen->avg_refaulted[type][tier] +
3646 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3647 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3649 sum = lrugen->avg_total[type][tier] +
3650 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3652 sum += lrugen->protected[hist][type][tier - 1];
3653 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3657 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3658 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3660 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3665 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3668 * Return true if the PV has a limited number of refaults or a lower
3669 * refaulted/total than the SP.
3671 return pv->refaulted < MIN_LRU_BATCH ||
3672 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3673 (sp->refaulted + 1) * pv->total * pv->gain;
3676 /******************************************************************************
3678 ******************************************************************************/
3680 /* promote pages accessed through page tables */
3681 static int folio_update_gen(struct folio *folio, int gen)
3683 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3685 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3686 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3689 /* lru_gen_del_folio() has isolated this page? */
3690 if (!(old_flags & LRU_GEN_MASK)) {
3691 /* for shrink_folio_list() */
3692 new_flags = old_flags | BIT(PG_referenced);
3696 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3697 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3698 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3700 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3703 /* protect pages accessed multiple times through file descriptors */
3704 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3706 int type = folio_is_file_lru(folio);
3707 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3708 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3709 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3711 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3714 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3715 /* folio_update_gen() has promoted this page? */
3716 if (new_gen >= 0 && new_gen != old_gen)
3719 new_gen = (old_gen + 1) % MAX_NR_GENS;
3721 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3722 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3723 /* for folio_end_writeback() */
3725 new_flags |= BIT(PG_reclaim);
3726 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3728 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3733 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3734 int old_gen, int new_gen)
3736 int type = folio_is_file_lru(folio);
3737 int zone = folio_zonenum(folio);
3738 int delta = folio_nr_pages(folio);
3740 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3741 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3745 walk->nr_pages[old_gen][type][zone] -= delta;
3746 walk->nr_pages[new_gen][type][zone] += delta;
3749 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3751 int gen, type, zone;
3752 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3756 for_each_gen_type_zone(gen, type, zone) {
3757 enum lru_list lru = type * LRU_INACTIVE_FILE;
3758 int delta = walk->nr_pages[gen][type][zone];
3763 walk->nr_pages[gen][type][zone] = 0;
3764 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3765 lrugen->nr_pages[gen][type][zone] + delta);
3767 if (lru_gen_is_active(lruvec, gen))
3769 __update_lru_size(lruvec, lru, zone, delta);
3773 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3775 struct address_space *mapping;
3776 struct vm_area_struct *vma = args->vma;
3777 struct lru_gen_mm_walk *walk = args->private;
3779 if (!vma_is_accessible(vma))
3782 if (is_vm_hugetlb_page(vma))
3785 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3788 if (vma == get_gate_vma(vma->vm_mm))
3791 if (vma_is_anonymous(vma))
3792 return !walk->can_swap;
3794 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3797 mapping = vma->vm_file->f_mapping;
3798 if (mapping_unevictable(mapping))
3801 if (shmem_mapping(mapping))
3802 return !walk->can_swap;
3804 /* to exclude special mappings like dax, etc. */
3805 return !mapping->a_ops->read_folio;
3809 * Some userspace memory allocators map many single-page VMAs. Instead of
3810 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3811 * table to reduce zigzags and improve cache performance.
3813 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3814 unsigned long *vm_start, unsigned long *vm_end)
3816 unsigned long start = round_up(*vm_end, size);
3817 unsigned long end = (start | ~mask) + 1;
3818 VMA_ITERATOR(vmi, args->mm, start);
3820 VM_WARN_ON_ONCE(mask & size);
3821 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3823 for_each_vma(vmi, args->vma) {
3824 if (end && end <= args->vma->vm_start)
3827 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3830 *vm_start = max(start, args->vma->vm_start);
3831 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3839 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3841 unsigned long pfn = pte_pfn(pte);
3843 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3845 if (!pte_present(pte) || is_zero_pfn(pfn))
3848 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3851 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3857 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3858 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3860 unsigned long pfn = pmd_pfn(pmd);
3862 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3864 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3867 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3870 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3877 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3878 struct pglist_data *pgdat, bool can_swap)
3880 struct folio *folio;
3882 /* try to avoid unnecessary memory loads */
3883 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3886 folio = pfn_folio(pfn);
3887 if (folio_nid(folio) != pgdat->node_id)
3890 if (folio_memcg_rcu(folio) != memcg)
3893 /* file VMAs can contain anon pages from COW */
3894 if (!folio_is_file_lru(folio) && !can_swap)
3900 static bool suitable_to_scan(int total, int young)
3902 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3904 /* suitable if the average number of young PTEs per cacheline is >=1 */
3905 return young * n >= total;
3908 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3909 struct mm_walk *args)
3917 struct lru_gen_mm_walk *walk = args->private;
3918 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3919 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3920 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3922 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3924 ptl = pte_lockptr(args->mm, pmd);
3925 if (!spin_trylock(ptl))
3928 arch_enter_lazy_mmu_mode();
3930 pte = pte_offset_map(pmd, start & PMD_MASK);
3932 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3934 struct folio *folio;
3937 walk->mm_stats[MM_LEAF_TOTAL]++;
3939 pfn = get_pte_pfn(pte[i], args->vma, addr);
3943 if (!pte_young(pte[i])) {
3944 walk->mm_stats[MM_LEAF_OLD]++;
3948 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3952 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3953 VM_WARN_ON_ONCE(true);
3956 walk->mm_stats[MM_LEAF_YOUNG]++;
3958 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3959 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3960 !folio_test_swapcache(folio)))
3961 folio_mark_dirty(folio);
3963 old_gen = folio_update_gen(folio, new_gen);
3964 if (old_gen >= 0 && old_gen != new_gen)
3965 update_batch_size(walk, folio, old_gen, new_gen);
3968 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3973 arch_leave_lazy_mmu_mode();
3976 return suitable_to_scan(total, young);
3979 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3980 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3981 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3986 struct lru_gen_mm_walk *walk = args->private;
3987 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3988 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3989 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3991 VM_WARN_ON_ONCE(pud_leaf(*pud));
3993 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3999 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4000 if (i && i <= MIN_LRU_BATCH) {
4001 __set_bit(i - 1, bitmap);
4005 pmd = pmd_offset(pud, *start);
4007 ptl = pmd_lockptr(args->mm, pmd);
4008 if (!spin_trylock(ptl))
4011 arch_enter_lazy_mmu_mode();
4015 struct folio *folio;
4016 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4018 pfn = get_pmd_pfn(pmd[i], vma, addr);
4022 if (!pmd_trans_huge(pmd[i])) {
4023 if (arch_has_hw_nonleaf_pmd_young() &&
4024 get_cap(LRU_GEN_NONLEAF_YOUNG))
4025 pmdp_test_and_clear_young(vma, addr, pmd + i);
4029 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4033 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4036 walk->mm_stats[MM_LEAF_YOUNG]++;
4038 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4039 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4040 !folio_test_swapcache(folio)))
4041 folio_mark_dirty(folio);
4043 old_gen = folio_update_gen(folio, new_gen);
4044 if (old_gen >= 0 && old_gen != new_gen)
4045 update_batch_size(walk, folio, old_gen, new_gen);
4047 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4048 } while (i <= MIN_LRU_BATCH);
4050 arch_leave_lazy_mmu_mode();
4054 bitmap_zero(bitmap, MIN_LRU_BATCH);
4057 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4058 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4063 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4064 struct mm_walk *args)
4070 struct vm_area_struct *vma;
4071 unsigned long pos = -1;
4072 struct lru_gen_mm_walk *walk = args->private;
4073 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4075 VM_WARN_ON_ONCE(pud_leaf(*pud));
4078 * Finish an entire PMD in two passes: the first only reaches to PTE
4079 * tables to avoid taking the PMD lock; the second, if necessary, takes
4080 * the PMD lock to clear the accessed bit in PMD entries.
4082 pmd = pmd_offset(pud, start & PUD_MASK);
4084 /* walk_pte_range() may call get_next_vma() */
4086 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4087 pmd_t val = pmdp_get_lockless(pmd + i);
4089 next = pmd_addr_end(addr, end);
4091 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4092 walk->mm_stats[MM_LEAF_TOTAL]++;
4096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4097 if (pmd_trans_huge(val)) {
4098 unsigned long pfn = pmd_pfn(val);
4099 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4101 walk->mm_stats[MM_LEAF_TOTAL]++;
4103 if (!pmd_young(val)) {
4104 walk->mm_stats[MM_LEAF_OLD]++;
4108 /* try to avoid unnecessary memory loads */
4109 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4112 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4116 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4118 if (arch_has_hw_nonleaf_pmd_young() &&
4119 get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4120 if (!pmd_young(val))
4123 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4126 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4129 walk->mm_stats[MM_NONLEAF_FOUND]++;
4131 if (!walk_pte_range(&val, addr, next, args))
4134 walk->mm_stats[MM_NONLEAF_ADDED]++;
4136 /* carry over to the next generation */
4137 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4140 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4142 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4146 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4147 struct mm_walk *args)
4153 struct lru_gen_mm_walk *walk = args->private;
4155 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4157 pud = pud_offset(p4d, start & P4D_MASK);
4159 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4160 pud_t val = READ_ONCE(pud[i]);
4162 next = pud_addr_end(addr, end);
4164 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4167 walk_pmd_range(&val, addr, next, args);
4169 /* a racy check to curtail the waiting time */
4170 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4173 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4174 end = (addr | ~PUD_MASK) + 1;
4179 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4182 end = round_up(end, P4D_SIZE);
4184 if (!end || !args->vma)
4187 walk->next_addr = max(end, args->vma->vm_start);
4192 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4194 static const struct mm_walk_ops mm_walk_ops = {
4195 .test_walk = should_skip_vma,
4196 .p4d_entry = walk_pud_range,
4200 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4202 walk->next_addr = FIRST_USER_ADDRESS;
4207 /* folio_update_gen() requires stable folio_memcg() */
4208 if (!mem_cgroup_trylock_pages(memcg))
4211 /* the caller might be holding the lock for write */
4212 if (mmap_read_trylock(mm)) {
4213 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4215 mmap_read_unlock(mm);
4218 mem_cgroup_unlock_pages();
4220 if (walk->batched) {
4221 spin_lock_irq(&lruvec->lru_lock);
4222 reset_batch_size(lruvec, walk);
4223 spin_unlock_irq(&lruvec->lru_lock);
4227 } while (err == -EAGAIN);
4230 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4232 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4234 if (pgdat && current_is_kswapd()) {
4235 VM_WARN_ON_ONCE(walk);
4237 walk = &pgdat->mm_walk;
4238 } else if (!pgdat && !walk) {
4239 VM_WARN_ON_ONCE(current_is_kswapd());
4241 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4244 current->reclaim_state->mm_walk = walk;
4249 static void clear_mm_walk(void)
4251 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4253 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4254 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4256 current->reclaim_state->mm_walk = NULL;
4258 if (!current_is_kswapd())
4262 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4265 int remaining = MAX_LRU_BATCH;
4266 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4267 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4269 if (type == LRU_GEN_ANON && !can_swap)
4272 /* prevent cold/hot inversion if force_scan is true */
4273 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4274 struct list_head *head = &lrugen->lists[old_gen][type][zone];
4276 while (!list_empty(head)) {
4277 struct folio *folio = lru_to_folio(head);
4279 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4280 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4281 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4282 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4284 new_gen = folio_inc_gen(lruvec, folio, false);
4285 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4292 reset_ctrl_pos(lruvec, type, true);
4293 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4298 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4300 int gen, type, zone;
4301 bool success = false;
4302 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4303 DEFINE_MIN_SEQ(lruvec);
4305 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4307 /* find the oldest populated generation */
4308 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4309 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4310 gen = lru_gen_from_seq(min_seq[type]);
4312 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4313 if (!list_empty(&lrugen->lists[gen][type][zone]))
4323 /* see the comment on lru_gen_struct */
4325 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4326 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4329 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4330 if (min_seq[type] == lrugen->min_seq[type])
4333 reset_ctrl_pos(lruvec, type, true);
4334 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4341 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4345 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4347 spin_lock_irq(&lruvec->lru_lock);
4349 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4351 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4352 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4355 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4357 while (!inc_min_seq(lruvec, type, can_swap)) {
4358 spin_unlock_irq(&lruvec->lru_lock);
4360 spin_lock_irq(&lruvec->lru_lock);
4365 * Update the active/inactive LRU sizes for compatibility. Both sides of
4366 * the current max_seq need to be covered, since max_seq+1 can overlap
4367 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4368 * overlap, cold/hot inversion happens.
4370 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4371 next = lru_gen_from_seq(lrugen->max_seq + 1);
4373 for (type = 0; type < ANON_AND_FILE; type++) {
4374 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4375 enum lru_list lru = type * LRU_INACTIVE_FILE;
4376 long delta = lrugen->nr_pages[prev][type][zone] -
4377 lrugen->nr_pages[next][type][zone];
4382 __update_lru_size(lruvec, lru, zone, delta);
4383 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4387 for (type = 0; type < ANON_AND_FILE; type++)
4388 reset_ctrl_pos(lruvec, type, false);
4390 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4391 /* make sure preceding modifications appear */
4392 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4394 spin_unlock_irq(&lruvec->lru_lock);
4397 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4398 struct scan_control *sc, bool can_swap, bool force_scan)
4401 struct lru_gen_mm_walk *walk;
4402 struct mm_struct *mm = NULL;
4403 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4405 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4407 /* see the comment in iterate_mm_list() */
4408 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4414 * If the hardware doesn't automatically set the accessed bit, fallback
4415 * to lru_gen_look_around(), which only clears the accessed bit in a
4416 * handful of PTEs. Spreading the work out over a period of time usually
4417 * is less efficient, but it avoids bursty page faults.
4419 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4420 success = iterate_mm_list_nowalk(lruvec, max_seq);
4424 walk = set_mm_walk(NULL);
4426 success = iterate_mm_list_nowalk(lruvec, max_seq);
4430 walk->lruvec = lruvec;
4431 walk->max_seq = max_seq;
4432 walk->can_swap = can_swap;
4433 walk->force_scan = force_scan;
4436 success = iterate_mm_list(lruvec, walk, &mm);
4438 walk_mm(lruvec, mm, walk);
4444 if (sc->priority <= DEF_PRIORITY - 2)
4445 wait_event_killable(lruvec->mm_state.wait,
4446 max_seq < READ_ONCE(lrugen->max_seq));
4448 return max_seq < READ_ONCE(lrugen->max_seq);
4451 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4453 inc_max_seq(lruvec, can_swap, force_scan);
4454 /* either this sees any waiters or they will see updated max_seq */
4455 if (wq_has_sleeper(&lruvec->mm_state.wait))
4456 wake_up_all(&lruvec->mm_state.wait);
4461 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4462 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4464 int gen, type, zone;
4465 unsigned long old = 0;
4466 unsigned long young = 0;
4467 unsigned long total = 0;
4468 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4469 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4471 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4474 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4475 unsigned long size = 0;
4477 gen = lru_gen_from_seq(seq);
4479 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4480 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4485 else if (seq + MIN_NR_GENS == max_seq)
4490 /* try to scrape all its memory if this memcg was deleted */
4491 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4494 * The aging tries to be lazy to reduce the overhead, while the eviction
4495 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4496 * ideal number of generations is MIN_NR_GENS+1.
4498 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4500 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4504 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4505 * of the total number of pages for each generation. A reasonable range
4506 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4507 * aging cares about the upper bound of hot pages, while the eviction
4508 * cares about the lower bound of cold pages.
4510 if (young * MIN_NR_GENS > total)
4512 if (old * (MIN_NR_GENS + 2) < total)
4518 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4521 unsigned long nr_to_scan;
4522 int swappiness = get_swappiness(lruvec, sc);
4523 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4524 DEFINE_MAX_SEQ(lruvec);
4525 DEFINE_MIN_SEQ(lruvec);
4527 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4529 mem_cgroup_calculate_protection(NULL, memcg);
4531 if (mem_cgroup_below_min(NULL, memcg))
4534 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4537 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4538 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4540 if (time_is_after_jiffies(birth + min_ttl))
4543 /* the size is likely too small to be helpful */
4544 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4549 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4554 /* to protect the working set of the last N jiffies */
4555 static unsigned long lru_gen_min_ttl __read_mostly;
4557 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4559 struct mem_cgroup *memcg;
4560 bool success = false;
4561 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4563 VM_WARN_ON_ONCE(!current_is_kswapd());
4565 sc->last_reclaimed = sc->nr_reclaimed;
4568 * To reduce the chance of going into the aging path, which can be
4569 * costly, optimistically skip it if the flag below was cleared in the
4570 * eviction path. This improves the overall performance when multiple
4571 * memcgs are available.
4573 if (!sc->memcgs_need_aging) {
4574 sc->memcgs_need_aging = true;
4580 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4582 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4584 if (age_lruvec(lruvec, sc, min_ttl))
4588 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4592 /* check the order to exclude compaction-induced reclaim */
4593 if (success || !min_ttl || sc->order)
4597 * The main goal is to OOM kill if every generation from all memcgs is
4598 * younger than min_ttl. However, another possibility is all memcgs are
4599 * either below min or empty.
4601 if (mutex_trylock(&oom_lock)) {
4602 struct oom_control oc = {
4603 .gfp_mask = sc->gfp_mask,
4608 mutex_unlock(&oom_lock);
4613 * This function exploits spatial locality when shrink_folio_list() walks the
4614 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4615 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4616 * the PTE table to the Bloom filter. This forms a feedback loop between the
4617 * eviction and the aging.
4619 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4623 unsigned long start;
4626 struct lru_gen_mm_walk *walk;
4628 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4629 struct folio *folio = pfn_folio(pvmw->pfn);
4630 struct mem_cgroup *memcg = folio_memcg(folio);
4631 struct pglist_data *pgdat = folio_pgdat(folio);
4632 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4633 DEFINE_MAX_SEQ(lruvec);
4634 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4636 lockdep_assert_held(pvmw->ptl);
4637 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4639 if (spin_is_contended(pvmw->ptl))
4642 /* avoid taking the LRU lock under the PTL when possible */
4643 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4645 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4646 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4648 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4649 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4650 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4651 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4652 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4654 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4655 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4659 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4662 arch_enter_lazy_mmu_mode();
4664 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4667 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4671 if (!pte_young(pte[i]))
4674 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4678 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4679 VM_WARN_ON_ONCE(true);
4683 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4684 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4685 !folio_test_swapcache(folio)))
4686 folio_mark_dirty(folio);
4688 old_gen = folio_lru_gen(folio);
4690 folio_set_referenced(folio);
4691 else if (old_gen != new_gen)
4692 __set_bit(i, bitmap);
4695 arch_leave_lazy_mmu_mode();
4698 /* feedback from rmap walkers to page table walkers */
4699 if (suitable_to_scan(i, young))
4700 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4702 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4703 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4704 folio = pfn_folio(pte_pfn(pte[i]));
4705 folio_activate(folio);
4710 /* folio_update_gen() requires stable folio_memcg() */
4711 if (!mem_cgroup_trylock_pages(memcg))
4715 spin_lock_irq(&lruvec->lru_lock);
4716 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4719 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4720 folio = pfn_folio(pte_pfn(pte[i]));
4721 if (folio_memcg_rcu(folio) != memcg)
4724 old_gen = folio_update_gen(folio, new_gen);
4725 if (old_gen < 0 || old_gen == new_gen)
4729 update_batch_size(walk, folio, old_gen, new_gen);
4731 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4735 spin_unlock_irq(&lruvec->lru_lock);
4737 mem_cgroup_unlock_pages();
4740 /******************************************************************************
4742 ******************************************************************************/
4744 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4747 int gen = folio_lru_gen(folio);
4748 int type = folio_is_file_lru(folio);
4749 int zone = folio_zonenum(folio);
4750 int delta = folio_nr_pages(folio);
4751 int refs = folio_lru_refs(folio);
4752 int tier = lru_tier_from_refs(refs);
4753 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4755 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4758 if (!folio_evictable(folio)) {
4759 success = lru_gen_del_folio(lruvec, folio, true);
4760 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4761 folio_set_unevictable(folio);
4762 lruvec_add_folio(lruvec, folio);
4763 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4767 /* dirty lazyfree */
4768 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4769 success = lru_gen_del_folio(lruvec, folio, true);
4770 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4771 folio_set_swapbacked(folio);
4772 lruvec_add_folio_tail(lruvec, folio);
4777 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4778 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4783 if (tier > tier_idx) {
4784 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4786 gen = folio_inc_gen(lruvec, folio, false);
4787 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4789 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4790 lrugen->protected[hist][type][tier - 1] + delta);
4791 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4795 /* waiting for writeback */
4796 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4797 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4798 gen = folio_inc_gen(lruvec, folio, true);
4799 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4806 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4810 /* unmapping inhibited */
4811 if (!sc->may_unmap && folio_mapped(folio))
4814 /* swapping inhibited */
4815 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4816 (folio_test_dirty(folio) ||
4817 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4820 /* raced with release_pages() */
4821 if (!folio_try_get(folio))
4824 /* raced with another isolation */
4825 if (!folio_test_clear_lru(folio)) {
4830 /* see the comment on MAX_NR_TIERS */
4831 if (!folio_test_referenced(folio))
4832 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4834 /* for shrink_folio_list() */
4835 folio_clear_reclaim(folio);
4836 folio_clear_referenced(folio);
4838 success = lru_gen_del_folio(lruvec, folio, true);
4839 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4844 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4845 int type, int tier, struct list_head *list)
4848 enum vm_event_item item;
4852 int remaining = MAX_LRU_BATCH;
4853 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4854 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4856 VM_WARN_ON_ONCE(!list_empty(list));
4858 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4861 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4863 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4866 struct list_head *head = &lrugen->lists[gen][type][zone];
4868 while (!list_empty(head)) {
4869 struct folio *folio = lru_to_folio(head);
4870 int delta = folio_nr_pages(folio);
4872 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4873 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4874 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4875 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4879 if (sort_folio(lruvec, folio, tier))
4881 else if (isolate_folio(lruvec, folio, sc)) {
4882 list_add(&folio->lru, list);
4885 list_move(&folio->lru, &moved);
4889 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4894 list_splice(&moved, head);
4895 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4898 if (!remaining || isolated >= MIN_LRU_BATCH)
4902 item = PGSCAN_KSWAPD + reclaimer_offset();
4903 if (!cgroup_reclaim(sc)) {
4904 __count_vm_events(item, isolated);
4905 __count_vm_events(PGREFILL, sorted);
4907 __count_memcg_events(memcg, item, isolated);
4908 __count_memcg_events(memcg, PGREFILL, sorted);
4909 __count_vm_events(PGSCAN_ANON + type, isolated);
4912 * There might not be eligible pages due to reclaim_idx, may_unmap and
4913 * may_writepage. Check the remaining to prevent livelock if it's not
4916 return isolated || !remaining ? scanned : 0;
4919 static int get_tier_idx(struct lruvec *lruvec, int type)
4922 struct ctrl_pos sp, pv;
4925 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4926 * This value is chosen because any other tier would have at least twice
4927 * as many refaults as the first tier.
4929 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4930 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4931 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4932 if (!positive_ctrl_err(&sp, &pv))
4939 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4942 struct ctrl_pos sp, pv;
4943 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4946 * Compare the first tier of anon with that of file to determine which
4947 * type to scan. Also need to compare other tiers of the selected type
4948 * with the first tier of the other type to determine the last tier (of
4949 * the selected type) to evict.
4951 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4952 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4953 type = positive_ctrl_err(&sp, &pv);
4955 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4956 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4957 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4958 if (!positive_ctrl_err(&sp, &pv))
4962 *tier_idx = tier - 1;
4967 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4968 int *type_scanned, struct list_head *list)
4974 DEFINE_MIN_SEQ(lruvec);
4977 * Try to make the obvious choice first. When anon and file are both
4978 * available from the same generation, interpret swappiness 1 as file
4979 * first and 200 as anon first.
4982 type = LRU_GEN_FILE;
4983 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4984 type = LRU_GEN_ANON;
4985 else if (swappiness == 1)
4986 type = LRU_GEN_FILE;
4987 else if (swappiness == 200)
4988 type = LRU_GEN_ANON;
4990 type = get_type_to_scan(lruvec, swappiness, &tier);
4992 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4994 tier = get_tier_idx(lruvec, type);
4996 scanned = scan_folios(lruvec, sc, type, tier, list);
5004 *type_scanned = type;
5009 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5010 bool *need_swapping)
5017 struct folio *folio;
5019 enum vm_event_item item;
5020 struct reclaim_stat stat;
5021 struct lru_gen_mm_walk *walk;
5022 bool skip_retry = false;
5023 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5024 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5026 spin_lock_irq(&lruvec->lru_lock);
5028 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5030 scanned += try_to_inc_min_seq(lruvec, swappiness);
5032 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5035 spin_unlock_irq(&lruvec->lru_lock);
5037 if (list_empty(&list))
5040 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5041 sc->nr_reclaimed += reclaimed;
5043 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5044 if (!folio_evictable(folio)) {
5045 list_del(&folio->lru);
5046 folio_putback_lru(folio);
5050 if (folio_test_reclaim(folio) &&
5051 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5052 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5053 if (folio_test_workingset(folio))
5054 folio_set_referenced(folio);
5058 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5059 folio_mapped(folio) || folio_test_locked(folio) ||
5060 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5061 /* don't add rejected folios to the oldest generation */
5062 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5067 /* retry folios that may have missed folio_rotate_reclaimable() */
5068 list_move(&folio->lru, &clean);
5069 sc->nr_scanned -= folio_nr_pages(folio);
5072 spin_lock_irq(&lruvec->lru_lock);
5074 move_folios_to_lru(lruvec, &list);
5076 walk = current->reclaim_state->mm_walk;
5077 if (walk && walk->batched)
5078 reset_batch_size(lruvec, walk);
5080 item = PGSTEAL_KSWAPD + reclaimer_offset();
5081 if (!cgroup_reclaim(sc))
5082 __count_vm_events(item, reclaimed);
5083 __count_memcg_events(memcg, item, reclaimed);
5084 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5086 spin_unlock_irq(&lruvec->lru_lock);
5088 mem_cgroup_uncharge_list(&list);
5089 free_unref_page_list(&list);
5091 INIT_LIST_HEAD(&list);
5092 list_splice_init(&clean, &list);
5094 if (!list_empty(&list)) {
5099 if (need_swapping && type == LRU_GEN_ANON)
5100 *need_swapping = true;
5106 * For future optimizations:
5107 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5110 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5111 bool can_swap, bool *need_aging)
5113 unsigned long nr_to_scan;
5114 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5115 DEFINE_MAX_SEQ(lruvec);
5116 DEFINE_MIN_SEQ(lruvec);
5118 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) ||
5119 (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) &&
5120 !sc->memcg_low_reclaim))
5123 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5127 /* skip the aging path at the default priority */
5128 if (sc->priority == DEF_PRIORITY)
5131 /* leave the work to lru_gen_age_node() */
5132 if (current_is_kswapd())
5135 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5138 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5141 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5142 struct scan_control *sc, bool need_swapping)
5145 DEFINE_MAX_SEQ(lruvec);
5147 if (!current_is_kswapd()) {
5148 /* age each memcg at most once to ensure fairness */
5149 if (max_seq - seq > 1)
5152 /* over-swapping can increase allocation latency */
5153 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5156 /* give this thread a chance to exit and free its memory */
5157 if (fatal_signal_pending(current)) {
5158 sc->nr_reclaimed += MIN_LRU_BATCH;
5162 if (cgroup_reclaim(sc))
5164 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5167 /* keep scanning at low priorities to ensure fairness */
5168 if (sc->priority > DEF_PRIORITY - 2)
5172 * A minimum amount of work was done under global memory pressure. For
5173 * kswapd, it may be overshooting. For direct reclaim, the allocation
5174 * may succeed if all suitable zones are somewhat safe. In either case,
5175 * it's better to stop now, and restart later if necessary.
5177 for (i = 0; i <= sc->reclaim_idx; i++) {
5178 unsigned long wmark;
5179 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5181 if (!managed_zone(zone))
5184 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5185 if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5189 sc->nr_reclaimed += MIN_LRU_BATCH;
5194 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5196 struct blk_plug plug;
5197 bool need_aging = false;
5198 bool need_swapping = false;
5199 unsigned long scanned = 0;
5200 unsigned long reclaimed = sc->nr_reclaimed;
5201 DEFINE_MAX_SEQ(lruvec);
5205 blk_start_plug(&plug);
5207 set_mm_walk(lruvec_pgdat(lruvec));
5212 unsigned long nr_to_scan;
5215 swappiness = get_swappiness(lruvec, sc);
5216 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5221 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5225 delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
5230 if (scanned >= nr_to_scan)
5233 if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5239 /* see the comment in lru_gen_age_node() */
5240 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5241 sc->memcgs_need_aging = false;
5245 blk_finish_plug(&plug);
5248 /******************************************************************************
5250 ******************************************************************************/
5252 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5254 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5256 if (lrugen->enabled) {
5259 for_each_evictable_lru(lru) {
5260 if (!list_empty(&lruvec->lists[lru]))
5264 int gen, type, zone;
5266 for_each_gen_type_zone(gen, type, zone) {
5267 if (!list_empty(&lrugen->lists[gen][type][zone]))
5275 static bool fill_evictable(struct lruvec *lruvec)
5278 int remaining = MAX_LRU_BATCH;
5280 for_each_evictable_lru(lru) {
5281 int type = is_file_lru(lru);
5282 bool active = is_active_lru(lru);
5283 struct list_head *head = &lruvec->lists[lru];
5285 while (!list_empty(head)) {
5287 struct folio *folio = lru_to_folio(head);
5289 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5290 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5291 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5292 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5294 lruvec_del_folio(lruvec, folio);
5295 success = lru_gen_add_folio(lruvec, folio, false);
5296 VM_WARN_ON_ONCE(!success);
5306 static bool drain_evictable(struct lruvec *lruvec)
5308 int gen, type, zone;
5309 int remaining = MAX_LRU_BATCH;
5311 for_each_gen_type_zone(gen, type, zone) {
5312 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5314 while (!list_empty(head)) {
5316 struct folio *folio = lru_to_folio(head);
5318 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5319 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5320 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5321 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5323 success = lru_gen_del_folio(lruvec, folio, false);
5324 VM_WARN_ON_ONCE(!success);
5325 lruvec_add_folio(lruvec, folio);
5335 static void lru_gen_change_state(bool enabled)
5337 static DEFINE_MUTEX(state_mutex);
5339 struct mem_cgroup *memcg;
5344 mutex_lock(&state_mutex);
5346 if (enabled == lru_gen_enabled())
5350 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5352 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5354 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5358 for_each_node(nid) {
5359 struct lruvec *lruvec = get_lruvec(memcg, nid);
5361 spin_lock_irq(&lruvec->lru_lock);
5363 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5364 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5366 lruvec->lrugen.enabled = enabled;
5368 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5369 spin_unlock_irq(&lruvec->lru_lock);
5371 spin_lock_irq(&lruvec->lru_lock);
5374 spin_unlock_irq(&lruvec->lru_lock);
5378 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5380 mutex_unlock(&state_mutex);
5386 /******************************************************************************
5388 ******************************************************************************/
5390 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5392 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5395 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5396 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5397 const char *buf, size_t len)
5401 if (kstrtouint(buf, 0, &msecs))
5404 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5409 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5410 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5413 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5415 unsigned int caps = 0;
5417 if (get_cap(LRU_GEN_CORE))
5418 caps |= BIT(LRU_GEN_CORE);
5420 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5421 caps |= BIT(LRU_GEN_MM_WALK);
5423 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5424 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5426 return sysfs_emit(buf, "0x%04x\n", caps);
5429 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5430 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5431 const char *buf, size_t len)
5436 if (tolower(*buf) == 'n')
5438 else if (tolower(*buf) == 'y')
5440 else if (kstrtouint(buf, 0, &caps))
5443 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5444 bool enabled = caps & BIT(i);
5446 if (i == LRU_GEN_CORE)
5447 lru_gen_change_state(enabled);
5449 static_branch_enable(&lru_gen_caps[i]);
5451 static_branch_disable(&lru_gen_caps[i]);
5457 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5458 enabled, 0644, show_enabled, store_enabled
5461 static struct attribute *lru_gen_attrs[] = {
5462 &lru_gen_min_ttl_attr.attr,
5463 &lru_gen_enabled_attr.attr,
5467 static struct attribute_group lru_gen_attr_group = {
5469 .attrs = lru_gen_attrs,
5472 /******************************************************************************
5474 ******************************************************************************/
5476 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5478 struct mem_cgroup *memcg;
5479 loff_t nr_to_skip = *pos;
5481 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5483 return ERR_PTR(-ENOMEM);
5485 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5489 for_each_node_state(nid, N_MEMORY) {
5491 return get_lruvec(memcg, nid);
5493 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5498 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5500 if (!IS_ERR_OR_NULL(v))
5501 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5507 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5509 int nid = lruvec_pgdat(v)->node_id;
5510 struct mem_cgroup *memcg = lruvec_memcg(v);
5514 nid = next_memory_node(nid);
5515 if (nid == MAX_NUMNODES) {
5516 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5520 nid = first_memory_node;
5523 return get_lruvec(memcg, nid);
5526 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5527 unsigned long max_seq, unsigned long *min_seq,
5532 int hist = lru_hist_from_seq(seq);
5533 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5535 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5536 seq_printf(m, " %10d", tier);
5537 for (type = 0; type < ANON_AND_FILE; type++) {
5538 const char *s = " ";
5539 unsigned long n[3] = {};
5541 if (seq == max_seq) {
5543 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5544 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5545 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5547 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5548 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5550 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5553 for (i = 0; i < 3; i++)
5554 seq_printf(m, " %10lu%c", n[i], s[i]);
5560 for (i = 0; i < NR_MM_STATS; i++) {
5561 const char *s = " ";
5562 unsigned long n = 0;
5564 if (seq == max_seq && NR_HIST_GENS == 1) {
5566 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5567 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5569 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5572 seq_printf(m, " %10lu%c", n, s[i]);
5577 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5578 static int lru_gen_seq_show(struct seq_file *m, void *v)
5581 bool full = !debugfs_real_fops(m->file)->write;
5582 struct lruvec *lruvec = v;
5583 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5584 int nid = lruvec_pgdat(lruvec)->node_id;
5585 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5586 DEFINE_MAX_SEQ(lruvec);
5587 DEFINE_MIN_SEQ(lruvec);
5589 if (nid == first_memory_node) {
5590 const char *path = memcg ? m->private : "";
5594 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5596 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5599 seq_printf(m, " node %5d\n", nid);
5602 seq = min_seq[LRU_GEN_ANON];
5603 else if (max_seq >= MAX_NR_GENS)
5604 seq = max_seq - MAX_NR_GENS + 1;
5608 for (; seq <= max_seq; seq++) {
5610 int gen = lru_gen_from_seq(seq);
5611 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5613 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5615 for (type = 0; type < ANON_AND_FILE; type++) {
5616 unsigned long size = 0;
5617 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5619 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5620 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5622 seq_printf(m, " %10lu%c", size, mark);
5628 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5634 static const struct seq_operations lru_gen_seq_ops = {
5635 .start = lru_gen_seq_start,
5636 .stop = lru_gen_seq_stop,
5637 .next = lru_gen_seq_next,
5638 .show = lru_gen_seq_show,
5641 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5642 bool can_swap, bool force_scan)
5644 DEFINE_MAX_SEQ(lruvec);
5645 DEFINE_MIN_SEQ(lruvec);
5653 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5656 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5661 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5662 int swappiness, unsigned long nr_to_reclaim)
5664 DEFINE_MAX_SEQ(lruvec);
5666 if (seq + MIN_NR_GENS > max_seq)
5669 sc->nr_reclaimed = 0;
5671 while (!signal_pending(current)) {
5672 DEFINE_MIN_SEQ(lruvec);
5674 if (seq < min_seq[!swappiness])
5677 if (sc->nr_reclaimed >= nr_to_reclaim)
5680 if (!evict_folios(lruvec, sc, swappiness, NULL))
5689 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5690 struct scan_control *sc, int swappiness, unsigned long opt)
5692 struct lruvec *lruvec;
5694 struct mem_cgroup *memcg = NULL;
5696 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5699 if (!mem_cgroup_disabled()) {
5701 memcg = mem_cgroup_from_id(memcg_id);
5703 if (memcg && !css_tryget(&memcg->css))
5712 if (memcg_id != mem_cgroup_id(memcg))
5715 lruvec = get_lruvec(memcg, nid);
5718 swappiness = get_swappiness(lruvec, sc);
5719 else if (swappiness > 200)
5724 err = run_aging(lruvec, seq, sc, swappiness, opt);
5727 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5731 mem_cgroup_put(memcg);
5736 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5737 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5738 size_t len, loff_t *pos)
5743 struct blk_plug plug;
5745 struct scan_control sc = {
5746 .may_writepage = true,
5749 .reclaim_idx = MAX_NR_ZONES - 1,
5750 .gfp_mask = GFP_KERNEL,
5753 buf = kvmalloc(len + 1, GFP_KERNEL);
5757 if (copy_from_user(buf, src, len)) {
5762 set_task_reclaim_state(current, &sc.reclaim_state);
5763 flags = memalloc_noreclaim_save();
5764 blk_start_plug(&plug);
5765 if (!set_mm_walk(NULL)) {
5773 while ((cur = strsep(&next, ",;\n"))) {
5777 unsigned int memcg_id;
5780 unsigned int swappiness = -1;
5781 unsigned long opt = -1;
5783 cur = skip_spaces(cur);
5787 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5788 &seq, &end, &swappiness, &end, &opt, &end);
5789 if (n < 4 || cur[end]) {
5794 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5800 blk_finish_plug(&plug);
5801 memalloc_noreclaim_restore(flags);
5802 set_task_reclaim_state(current, NULL);
5809 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5811 return seq_open(file, &lru_gen_seq_ops);
5814 static const struct file_operations lru_gen_rw_fops = {
5815 .open = lru_gen_seq_open,
5817 .write = lru_gen_seq_write,
5818 .llseek = seq_lseek,
5819 .release = seq_release,
5822 static const struct file_operations lru_gen_ro_fops = {
5823 .open = lru_gen_seq_open,
5825 .llseek = seq_lseek,
5826 .release = seq_release,
5829 /******************************************************************************
5831 ******************************************************************************/
5833 void lru_gen_init_lruvec(struct lruvec *lruvec)
5836 int gen, type, zone;
5837 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5839 lrugen->max_seq = MIN_NR_GENS + 1;
5840 lrugen->enabled = lru_gen_enabled();
5842 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5843 lrugen->timestamps[i] = jiffies;
5845 for_each_gen_type_zone(gen, type, zone)
5846 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5848 lruvec->mm_state.seq = MIN_NR_GENS;
5849 init_waitqueue_head(&lruvec->mm_state.wait);
5853 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5855 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5856 spin_lock_init(&memcg->mm_list.lock);
5859 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5864 for_each_node(nid) {
5865 struct lruvec *lruvec = get_lruvec(memcg, nid);
5867 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5868 sizeof(lruvec->lrugen.nr_pages)));
5870 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5871 bitmap_free(lruvec->mm_state.filters[i]);
5872 lruvec->mm_state.filters[i] = NULL;
5878 static int __init init_lru_gen(void)
5880 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5881 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5883 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5884 pr_err("lru_gen: failed to create sysfs group\n");
5886 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5887 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5891 late_initcall(init_lru_gen);
5893 #else /* !CONFIG_LRU_GEN */
5895 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5899 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5903 #endif /* CONFIG_LRU_GEN */
5905 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5907 unsigned long nr[NR_LRU_LISTS];
5908 unsigned long targets[NR_LRU_LISTS];
5909 unsigned long nr_to_scan;
5911 unsigned long nr_reclaimed = 0;
5912 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5913 bool proportional_reclaim;
5914 struct blk_plug plug;
5916 if (lru_gen_enabled()) {
5917 lru_gen_shrink_lruvec(lruvec, sc);
5921 get_scan_count(lruvec, sc, nr);
5923 /* Record the original scan target for proportional adjustments later */
5924 memcpy(targets, nr, sizeof(nr));
5927 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5928 * event that can occur when there is little memory pressure e.g.
5929 * multiple streaming readers/writers. Hence, we do not abort scanning
5930 * when the requested number of pages are reclaimed when scanning at
5931 * DEF_PRIORITY on the assumption that the fact we are direct
5932 * reclaiming implies that kswapd is not keeping up and it is best to
5933 * do a batch of work at once. For memcg reclaim one check is made to
5934 * abort proportional reclaim if either the file or anon lru has already
5935 * dropped to zero at the first pass.
5937 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5938 sc->priority == DEF_PRIORITY);
5940 blk_start_plug(&plug);
5941 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5942 nr[LRU_INACTIVE_FILE]) {
5943 unsigned long nr_anon, nr_file, percentage;
5944 unsigned long nr_scanned;
5946 for_each_evictable_lru(lru) {
5948 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5949 nr[lru] -= nr_to_scan;
5951 nr_reclaimed += shrink_list(lru, nr_to_scan,
5958 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5962 * For kswapd and memcg, reclaim at least the number of pages
5963 * requested. Ensure that the anon and file LRUs are scanned
5964 * proportionally what was requested by get_scan_count(). We
5965 * stop reclaiming one LRU and reduce the amount scanning
5966 * proportional to the original scan target.
5968 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5969 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5972 * It's just vindictive to attack the larger once the smaller
5973 * has gone to zero. And given the way we stop scanning the
5974 * smaller below, this makes sure that we only make one nudge
5975 * towards proportionality once we've got nr_to_reclaim.
5977 if (!nr_file || !nr_anon)
5980 if (nr_file > nr_anon) {
5981 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5982 targets[LRU_ACTIVE_ANON] + 1;
5984 percentage = nr_anon * 100 / scan_target;
5986 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5987 targets[LRU_ACTIVE_FILE] + 1;
5989 percentage = nr_file * 100 / scan_target;
5992 /* Stop scanning the smaller of the LRU */
5994 nr[lru + LRU_ACTIVE] = 0;
5997 * Recalculate the other LRU scan count based on its original
5998 * scan target and the percentage scanning already complete
6000 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6001 nr_scanned = targets[lru] - nr[lru];
6002 nr[lru] = targets[lru] * (100 - percentage) / 100;
6003 nr[lru] -= min(nr[lru], nr_scanned);
6006 nr_scanned = targets[lru] - nr[lru];
6007 nr[lru] = targets[lru] * (100 - percentage) / 100;
6008 nr[lru] -= min(nr[lru], nr_scanned);
6010 blk_finish_plug(&plug);
6011 sc->nr_reclaimed += nr_reclaimed;
6014 * Even if we did not try to evict anon pages at all, we want to
6015 * rebalance the anon lru active/inactive ratio.
6017 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6018 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6019 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6020 sc, LRU_ACTIVE_ANON);
6023 /* Use reclaim/compaction for costly allocs or under memory pressure */
6024 static bool in_reclaim_compaction(struct scan_control *sc)
6026 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6027 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6028 sc->priority < DEF_PRIORITY - 2))
6035 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6036 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6037 * true if more pages should be reclaimed such that when the page allocator
6038 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6039 * It will give up earlier than that if there is difficulty reclaiming pages.
6041 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6042 unsigned long nr_reclaimed,
6043 struct scan_control *sc)
6045 unsigned long pages_for_compaction;
6046 unsigned long inactive_lru_pages;
6049 /* If not in reclaim/compaction mode, stop */
6050 if (!in_reclaim_compaction(sc))
6054 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6055 * number of pages that were scanned. This will return to the caller
6056 * with the risk reclaim/compaction and the resulting allocation attempt
6057 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6058 * allocations through requiring that the full LRU list has been scanned
6059 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6060 * scan, but that approximation was wrong, and there were corner cases
6061 * where always a non-zero amount of pages were scanned.
6066 /* If compaction would go ahead or the allocation would succeed, stop */
6067 for (z = 0; z <= sc->reclaim_idx; z++) {
6068 struct zone *zone = &pgdat->node_zones[z];
6069 if (!managed_zone(zone))
6072 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6073 case COMPACT_SUCCESS:
6074 case COMPACT_CONTINUE:
6077 /* check next zone */
6083 * If we have not reclaimed enough pages for compaction and the
6084 * inactive lists are large enough, continue reclaiming
6086 pages_for_compaction = compact_gap(sc->order);
6087 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6088 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6089 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6091 return inactive_lru_pages > pages_for_compaction;
6094 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6096 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6097 struct mem_cgroup *memcg;
6099 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6101 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6102 unsigned long reclaimed;
6103 unsigned long scanned;
6106 * This loop can become CPU-bound when target memcgs
6107 * aren't eligible for reclaim - either because they
6108 * don't have any reclaimable pages, or because their
6109 * memory is explicitly protected. Avoid soft lockups.
6113 mem_cgroup_calculate_protection(target_memcg, memcg);
6115 if (mem_cgroup_below_min(target_memcg, memcg)) {
6118 * If there is no reclaimable memory, OOM.
6121 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6124 * Respect the protection only as long as
6125 * there is an unprotected supply
6126 * of reclaimable memory from other cgroups.
6128 if (!sc->memcg_low_reclaim) {
6129 sc->memcg_low_skipped = 1;
6132 memcg_memory_event(memcg, MEMCG_LOW);
6135 reclaimed = sc->nr_reclaimed;
6136 scanned = sc->nr_scanned;
6138 shrink_lruvec(lruvec, sc);
6140 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6143 /* Record the group's reclaim efficiency */
6145 vmpressure(sc->gfp_mask, memcg, false,
6146 sc->nr_scanned - scanned,
6147 sc->nr_reclaimed - reclaimed);
6149 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6152 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6154 struct reclaim_state *reclaim_state = current->reclaim_state;
6155 unsigned long nr_reclaimed, nr_scanned;
6156 struct lruvec *target_lruvec;
6157 bool reclaimable = false;
6159 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6162 memset(&sc->nr, 0, sizeof(sc->nr));
6164 nr_reclaimed = sc->nr_reclaimed;
6165 nr_scanned = sc->nr_scanned;
6167 prepare_scan_count(pgdat, sc);
6169 shrink_node_memcgs(pgdat, sc);
6171 if (reclaim_state) {
6172 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6173 reclaim_state->reclaimed_slab = 0;
6176 /* Record the subtree's reclaim efficiency */
6178 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6179 sc->nr_scanned - nr_scanned,
6180 sc->nr_reclaimed - nr_reclaimed);
6182 if (sc->nr_reclaimed - nr_reclaimed)
6185 if (current_is_kswapd()) {
6187 * If reclaim is isolating dirty pages under writeback,
6188 * it implies that the long-lived page allocation rate
6189 * is exceeding the page laundering rate. Either the
6190 * global limits are not being effective at throttling
6191 * processes due to the page distribution throughout
6192 * zones or there is heavy usage of a slow backing
6193 * device. The only option is to throttle from reclaim
6194 * context which is not ideal as there is no guarantee
6195 * the dirtying process is throttled in the same way
6196 * balance_dirty_pages() manages.
6198 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6199 * count the number of pages under pages flagged for
6200 * immediate reclaim and stall if any are encountered
6201 * in the nr_immediate check below.
6203 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6204 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6206 /* Allow kswapd to start writing pages during reclaim.*/
6207 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6208 set_bit(PGDAT_DIRTY, &pgdat->flags);
6211 * If kswapd scans pages marked for immediate
6212 * reclaim and under writeback (nr_immediate), it
6213 * implies that pages are cycling through the LRU
6214 * faster than they are written so forcibly stall
6215 * until some pages complete writeback.
6217 if (sc->nr.immediate)
6218 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6222 * Tag a node/memcg as congested if all the dirty pages were marked
6223 * for writeback and immediate reclaim (counted in nr.congested).
6225 * Legacy memcg will stall in page writeback so avoid forcibly
6226 * stalling in reclaim_throttle().
6228 if ((current_is_kswapd() ||
6229 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6230 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6231 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6234 * Stall direct reclaim for IO completions if the lruvec is
6235 * node is congested. Allow kswapd to continue until it
6236 * starts encountering unqueued dirty pages or cycling through
6237 * the LRU too quickly.
6239 if (!current_is_kswapd() && current_may_throttle() &&
6240 !sc->hibernation_mode &&
6241 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6242 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6244 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6249 * Kswapd gives up on balancing particular nodes after too
6250 * many failures to reclaim anything from them and goes to
6251 * sleep. On reclaim progress, reset the failure counter. A
6252 * successful direct reclaim run will revive a dormant kswapd.
6255 pgdat->kswapd_failures = 0;
6259 * Returns true if compaction should go ahead for a costly-order request, or
6260 * the allocation would already succeed without compaction. Return false if we
6261 * should reclaim first.
6263 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6265 unsigned long watermark;
6266 enum compact_result suitable;
6268 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6269 if (suitable == COMPACT_SUCCESS)
6270 /* Allocation should succeed already. Don't reclaim. */
6272 if (suitable == COMPACT_SKIPPED)
6273 /* Compaction cannot yet proceed. Do reclaim. */
6277 * Compaction is already possible, but it takes time to run and there
6278 * are potentially other callers using the pages just freed. So proceed
6279 * with reclaim to make a buffer of free pages available to give
6280 * compaction a reasonable chance of completing and allocating the page.
6281 * Note that we won't actually reclaim the whole buffer in one attempt
6282 * as the target watermark in should_continue_reclaim() is lower. But if
6283 * we are already above the high+gap watermark, don't reclaim at all.
6285 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6287 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6290 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6293 * If reclaim is making progress greater than 12% efficiency then
6294 * wake all the NOPROGRESS throttled tasks.
6296 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6297 wait_queue_head_t *wqh;
6299 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6300 if (waitqueue_active(wqh))
6307 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6308 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6309 * under writeback and marked for immediate reclaim at the tail of the
6312 if (current_is_kswapd() || cgroup_reclaim(sc))
6315 /* Throttle if making no progress at high prioities. */
6316 if (sc->priority == 1 && !sc->nr_reclaimed)
6317 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6321 * This is the direct reclaim path, for page-allocating processes. We only
6322 * try to reclaim pages from zones which will satisfy the caller's allocation
6325 * If a zone is deemed to be full of pinned pages then just give it a light
6326 * scan then give up on it.
6328 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6332 unsigned long nr_soft_reclaimed;
6333 unsigned long nr_soft_scanned;
6335 pg_data_t *last_pgdat = NULL;
6336 pg_data_t *first_pgdat = NULL;
6339 * If the number of buffer_heads in the machine exceeds the maximum
6340 * allowed level, force direct reclaim to scan the highmem zone as
6341 * highmem pages could be pinning lowmem pages storing buffer_heads
6343 orig_mask = sc->gfp_mask;
6344 if (buffer_heads_over_limit) {
6345 sc->gfp_mask |= __GFP_HIGHMEM;
6346 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6349 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6350 sc->reclaim_idx, sc->nodemask) {
6352 * Take care memory controller reclaiming has small influence
6355 if (!cgroup_reclaim(sc)) {
6356 if (!cpuset_zone_allowed(zone,
6357 GFP_KERNEL | __GFP_HARDWALL))
6361 * If we already have plenty of memory free for
6362 * compaction in this zone, don't free any more.
6363 * Even though compaction is invoked for any
6364 * non-zero order, only frequent costly order
6365 * reclamation is disruptive enough to become a
6366 * noticeable problem, like transparent huge
6369 if (IS_ENABLED(CONFIG_COMPACTION) &&
6370 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6371 compaction_ready(zone, sc)) {
6372 sc->compaction_ready = true;
6377 * Shrink each node in the zonelist once. If the
6378 * zonelist is ordered by zone (not the default) then a
6379 * node may be shrunk multiple times but in that case
6380 * the user prefers lower zones being preserved.
6382 if (zone->zone_pgdat == last_pgdat)
6386 * This steals pages from memory cgroups over softlimit
6387 * and returns the number of reclaimed pages and
6388 * scanned pages. This works for global memory pressure
6389 * and balancing, not for a memcg's limit.
6391 nr_soft_scanned = 0;
6392 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6393 sc->order, sc->gfp_mask,
6395 sc->nr_reclaimed += nr_soft_reclaimed;
6396 sc->nr_scanned += nr_soft_scanned;
6397 /* need some check for avoid more shrink_zone() */
6401 first_pgdat = zone->zone_pgdat;
6403 /* See comment about same check for global reclaim above */
6404 if (zone->zone_pgdat == last_pgdat)
6406 last_pgdat = zone->zone_pgdat;
6407 shrink_node(zone->zone_pgdat, sc);
6411 consider_reclaim_throttle(first_pgdat, sc);
6414 * Restore to original mask to avoid the impact on the caller if we
6415 * promoted it to __GFP_HIGHMEM.
6417 sc->gfp_mask = orig_mask;
6420 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6422 struct lruvec *target_lruvec;
6423 unsigned long refaults;
6425 if (lru_gen_enabled())
6428 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6429 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6430 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6431 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6432 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6436 * This is the main entry point to direct page reclaim.
6438 * If a full scan of the inactive list fails to free enough memory then we
6439 * are "out of memory" and something needs to be killed.
6441 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6442 * high - the zone may be full of dirty or under-writeback pages, which this
6443 * caller can't do much about. We kick the writeback threads and take explicit
6444 * naps in the hope that some of these pages can be written. But if the
6445 * allocating task holds filesystem locks which prevent writeout this might not
6446 * work, and the allocation attempt will fail.
6448 * returns: 0, if no pages reclaimed
6449 * else, the number of pages reclaimed
6451 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6452 struct scan_control *sc)
6454 int initial_priority = sc->priority;
6455 pg_data_t *last_pgdat;
6459 delayacct_freepages_start();
6461 if (!cgroup_reclaim(sc))
6462 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6466 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6469 shrink_zones(zonelist, sc);
6471 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6474 if (sc->compaction_ready)
6478 * If we're getting trouble reclaiming, start doing
6479 * writepage even in laptop mode.
6481 if (sc->priority < DEF_PRIORITY - 2)
6482 sc->may_writepage = 1;
6483 } while (--sc->priority >= 0);
6486 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6488 if (zone->zone_pgdat == last_pgdat)
6490 last_pgdat = zone->zone_pgdat;
6492 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6494 if (cgroup_reclaim(sc)) {
6495 struct lruvec *lruvec;
6497 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6499 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6503 delayacct_freepages_end();
6505 if (sc->nr_reclaimed)
6506 return sc->nr_reclaimed;
6508 /* Aborted reclaim to try compaction? don't OOM, then */
6509 if (sc->compaction_ready)
6513 * We make inactive:active ratio decisions based on the node's
6514 * composition of memory, but a restrictive reclaim_idx or a
6515 * memory.low cgroup setting can exempt large amounts of
6516 * memory from reclaim. Neither of which are very common, so
6517 * instead of doing costly eligibility calculations of the
6518 * entire cgroup subtree up front, we assume the estimates are
6519 * good, and retry with forcible deactivation if that fails.
6521 if (sc->skipped_deactivate) {
6522 sc->priority = initial_priority;
6523 sc->force_deactivate = 1;
6524 sc->skipped_deactivate = 0;
6528 /* Untapped cgroup reserves? Don't OOM, retry. */
6529 if (sc->memcg_low_skipped) {
6530 sc->priority = initial_priority;
6531 sc->force_deactivate = 0;
6532 sc->memcg_low_reclaim = 1;
6533 sc->memcg_low_skipped = 0;
6540 static bool allow_direct_reclaim(pg_data_t *pgdat)
6543 unsigned long pfmemalloc_reserve = 0;
6544 unsigned long free_pages = 0;
6548 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6551 for (i = 0; i <= ZONE_NORMAL; i++) {
6552 zone = &pgdat->node_zones[i];
6553 if (!managed_zone(zone))
6556 if (!zone_reclaimable_pages(zone))
6559 pfmemalloc_reserve += min_wmark_pages(zone);
6560 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6563 /* If there are no reserves (unexpected config) then do not throttle */
6564 if (!pfmemalloc_reserve)
6567 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6569 /* kswapd must be awake if processes are being throttled */
6570 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6571 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6572 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6574 wake_up_interruptible(&pgdat->kswapd_wait);
6581 * Throttle direct reclaimers if backing storage is backed by the network
6582 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6583 * depleted. kswapd will continue to make progress and wake the processes
6584 * when the low watermark is reached.
6586 * Returns true if a fatal signal was delivered during throttling. If this
6587 * happens, the page allocator should not consider triggering the OOM killer.
6589 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6590 nodemask_t *nodemask)
6594 pg_data_t *pgdat = NULL;
6597 * Kernel threads should not be throttled as they may be indirectly
6598 * responsible for cleaning pages necessary for reclaim to make forward
6599 * progress. kjournald for example may enter direct reclaim while
6600 * committing a transaction where throttling it could forcing other
6601 * processes to block on log_wait_commit().
6603 if (current->flags & PF_KTHREAD)
6607 * If a fatal signal is pending, this process should not throttle.
6608 * It should return quickly so it can exit and free its memory
6610 if (fatal_signal_pending(current))
6614 * Check if the pfmemalloc reserves are ok by finding the first node
6615 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6616 * GFP_KERNEL will be required for allocating network buffers when
6617 * swapping over the network so ZONE_HIGHMEM is unusable.
6619 * Throttling is based on the first usable node and throttled processes
6620 * wait on a queue until kswapd makes progress and wakes them. There
6621 * is an affinity then between processes waking up and where reclaim
6622 * progress has been made assuming the process wakes on the same node.
6623 * More importantly, processes running on remote nodes will not compete
6624 * for remote pfmemalloc reserves and processes on different nodes
6625 * should make reasonable progress.
6627 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6628 gfp_zone(gfp_mask), nodemask) {
6629 if (zone_idx(zone) > ZONE_NORMAL)
6632 /* Throttle based on the first usable node */
6633 pgdat = zone->zone_pgdat;
6634 if (allow_direct_reclaim(pgdat))
6639 /* If no zone was usable by the allocation flags then do not throttle */
6643 /* Account for the throttling */
6644 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6647 * If the caller cannot enter the filesystem, it's possible that it
6648 * is due to the caller holding an FS lock or performing a journal
6649 * transaction in the case of a filesystem like ext[3|4]. In this case,
6650 * it is not safe to block on pfmemalloc_wait as kswapd could be
6651 * blocked waiting on the same lock. Instead, throttle for up to a
6652 * second before continuing.
6654 if (!(gfp_mask & __GFP_FS))
6655 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6656 allow_direct_reclaim(pgdat), HZ);
6658 /* Throttle until kswapd wakes the process */
6659 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6660 allow_direct_reclaim(pgdat));
6662 if (fatal_signal_pending(current))
6669 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6670 gfp_t gfp_mask, nodemask_t *nodemask)
6672 unsigned long nr_reclaimed;
6673 struct scan_control sc = {
6674 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6675 .gfp_mask = current_gfp_context(gfp_mask),
6676 .reclaim_idx = gfp_zone(gfp_mask),
6678 .nodemask = nodemask,
6679 .priority = DEF_PRIORITY,
6680 .may_writepage = !laptop_mode,
6686 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6687 * Confirm they are large enough for max values.
6689 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6690 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6691 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6694 * Do not enter reclaim if fatal signal was delivered while throttled.
6695 * 1 is returned so that the page allocator does not OOM kill at this
6698 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6701 set_task_reclaim_state(current, &sc.reclaim_state);
6702 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6704 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6706 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6707 set_task_reclaim_state(current, NULL);
6709 return nr_reclaimed;
6714 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6715 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6716 gfp_t gfp_mask, bool noswap,
6718 unsigned long *nr_scanned)
6720 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6721 struct scan_control sc = {
6722 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6723 .target_mem_cgroup = memcg,
6724 .may_writepage = !laptop_mode,
6726 .reclaim_idx = MAX_NR_ZONES - 1,
6727 .may_swap = !noswap,
6730 WARN_ON_ONCE(!current->reclaim_state);
6732 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6733 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6735 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6739 * NOTE: Although we can get the priority field, using it
6740 * here is not a good idea, since it limits the pages we can scan.
6741 * if we don't reclaim here, the shrink_node from balance_pgdat
6742 * will pick up pages from other mem cgroup's as well. We hack
6743 * the priority and make it zero.
6745 shrink_lruvec(lruvec, &sc);
6747 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6749 *nr_scanned = sc.nr_scanned;
6751 return sc.nr_reclaimed;
6754 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6755 unsigned long nr_pages,
6757 unsigned int reclaim_options,
6758 nodemask_t *nodemask)
6760 unsigned long nr_reclaimed;
6761 unsigned int noreclaim_flag;
6762 struct scan_control sc = {
6763 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6764 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6765 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6766 .reclaim_idx = MAX_NR_ZONES - 1,
6767 .target_mem_cgroup = memcg,
6768 .priority = DEF_PRIORITY,
6769 .may_writepage = !laptop_mode,
6771 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6772 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6773 .nodemask = nodemask,
6776 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6777 * equal pressure on all the nodes. This is based on the assumption that
6778 * the reclaim does not bail out early.
6780 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6782 set_task_reclaim_state(current, &sc.reclaim_state);
6783 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6784 noreclaim_flag = memalloc_noreclaim_save();
6786 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6788 memalloc_noreclaim_restore(noreclaim_flag);
6789 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6790 set_task_reclaim_state(current, NULL);
6792 return nr_reclaimed;
6796 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6798 struct mem_cgroup *memcg;
6799 struct lruvec *lruvec;
6801 if (lru_gen_enabled()) {
6802 lru_gen_age_node(pgdat, sc);
6806 if (!can_age_anon_pages(pgdat, sc))
6809 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6810 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6813 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6815 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6816 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6817 sc, LRU_ACTIVE_ANON);
6818 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6822 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6828 * Check for watermark boosts top-down as the higher zones
6829 * are more likely to be boosted. Both watermarks and boosts
6830 * should not be checked at the same time as reclaim would
6831 * start prematurely when there is no boosting and a lower
6834 for (i = highest_zoneidx; i >= 0; i--) {
6835 zone = pgdat->node_zones + i;
6836 if (!managed_zone(zone))
6839 if (zone->watermark_boost)
6847 * Returns true if there is an eligible zone balanced for the request order
6848 * and highest_zoneidx
6850 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6853 unsigned long mark = -1;
6857 * Check watermarks bottom-up as lower zones are more likely to
6860 for (i = 0; i <= highest_zoneidx; i++) {
6861 zone = pgdat->node_zones + i;
6863 if (!managed_zone(zone))
6866 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6867 mark = wmark_pages(zone, WMARK_PROMO);
6869 mark = high_wmark_pages(zone);
6870 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6875 * If a node has no managed zone within highest_zoneidx, it does not
6876 * need balancing by definition. This can happen if a zone-restricted
6877 * allocation tries to wake a remote kswapd.
6885 /* Clear pgdat state for congested, dirty or under writeback. */
6886 static void clear_pgdat_congested(pg_data_t *pgdat)
6888 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6890 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6891 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6892 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6896 * Prepare kswapd for sleeping. This verifies that there are no processes
6897 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6899 * Returns true if kswapd is ready to sleep
6901 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6902 int highest_zoneidx)
6905 * The throttled processes are normally woken up in balance_pgdat() as
6906 * soon as allow_direct_reclaim() is true. But there is a potential
6907 * race between when kswapd checks the watermarks and a process gets
6908 * throttled. There is also a potential race if processes get
6909 * throttled, kswapd wakes, a large process exits thereby balancing the
6910 * zones, which causes kswapd to exit balance_pgdat() before reaching
6911 * the wake up checks. If kswapd is going to sleep, no process should
6912 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6913 * the wake up is premature, processes will wake kswapd and get
6914 * throttled again. The difference from wake ups in balance_pgdat() is
6915 * that here we are under prepare_to_wait().
6917 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6918 wake_up_all(&pgdat->pfmemalloc_wait);
6920 /* Hopeless node, leave it to direct reclaim */
6921 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6924 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6925 clear_pgdat_congested(pgdat);
6933 * kswapd shrinks a node of pages that are at or below the highest usable
6934 * zone that is currently unbalanced.
6936 * Returns true if kswapd scanned at least the requested number of pages to
6937 * reclaim or if the lack of progress was due to pages under writeback.
6938 * This is used to determine if the scanning priority needs to be raised.
6940 static bool kswapd_shrink_node(pg_data_t *pgdat,
6941 struct scan_control *sc)
6946 /* Reclaim a number of pages proportional to the number of zones */
6947 sc->nr_to_reclaim = 0;
6948 for (z = 0; z <= sc->reclaim_idx; z++) {
6949 zone = pgdat->node_zones + z;
6950 if (!managed_zone(zone))
6953 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6957 * Historically care was taken to put equal pressure on all zones but
6958 * now pressure is applied based on node LRU order.
6960 shrink_node(pgdat, sc);
6963 * Fragmentation may mean that the system cannot be rebalanced for
6964 * high-order allocations. If twice the allocation size has been
6965 * reclaimed then recheck watermarks only at order-0 to prevent
6966 * excessive reclaim. Assume that a process requested a high-order
6967 * can direct reclaim/compact.
6969 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6972 return sc->nr_scanned >= sc->nr_to_reclaim;
6975 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6977 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6982 for (i = 0; i <= highest_zoneidx; i++) {
6983 zone = pgdat->node_zones + i;
6985 if (!managed_zone(zone))
6989 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6991 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6996 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6998 update_reclaim_active(pgdat, highest_zoneidx, true);
7002 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7004 update_reclaim_active(pgdat, highest_zoneidx, false);
7008 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7009 * that are eligible for use by the caller until at least one zone is
7012 * Returns the order kswapd finished reclaiming at.
7014 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7015 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7016 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7017 * or lower is eligible for reclaim until at least one usable zone is
7020 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7023 unsigned long nr_soft_reclaimed;
7024 unsigned long nr_soft_scanned;
7025 unsigned long pflags;
7026 unsigned long nr_boost_reclaim;
7027 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7030 struct scan_control sc = {
7031 .gfp_mask = GFP_KERNEL,
7036 set_task_reclaim_state(current, &sc.reclaim_state);
7037 psi_memstall_enter(&pflags);
7038 __fs_reclaim_acquire(_THIS_IP_);
7040 count_vm_event(PAGEOUTRUN);
7043 * Account for the reclaim boost. Note that the zone boost is left in
7044 * place so that parallel allocations that are near the watermark will
7045 * stall or direct reclaim until kswapd is finished.
7047 nr_boost_reclaim = 0;
7048 for (i = 0; i <= highest_zoneidx; i++) {
7049 zone = pgdat->node_zones + i;
7050 if (!managed_zone(zone))
7053 nr_boost_reclaim += zone->watermark_boost;
7054 zone_boosts[i] = zone->watermark_boost;
7056 boosted = nr_boost_reclaim;
7059 set_reclaim_active(pgdat, highest_zoneidx);
7060 sc.priority = DEF_PRIORITY;
7062 unsigned long nr_reclaimed = sc.nr_reclaimed;
7063 bool raise_priority = true;
7067 sc.reclaim_idx = highest_zoneidx;
7070 * If the number of buffer_heads exceeds the maximum allowed
7071 * then consider reclaiming from all zones. This has a dual
7072 * purpose -- on 64-bit systems it is expected that
7073 * buffer_heads are stripped during active rotation. On 32-bit
7074 * systems, highmem pages can pin lowmem memory and shrinking
7075 * buffers can relieve lowmem pressure. Reclaim may still not
7076 * go ahead if all eligible zones for the original allocation
7077 * request are balanced to avoid excessive reclaim from kswapd.
7079 if (buffer_heads_over_limit) {
7080 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7081 zone = pgdat->node_zones + i;
7082 if (!managed_zone(zone))
7091 * If the pgdat is imbalanced then ignore boosting and preserve
7092 * the watermarks for a later time and restart. Note that the
7093 * zone watermarks will be still reset at the end of balancing
7094 * on the grounds that the normal reclaim should be enough to
7095 * re-evaluate if boosting is required when kswapd next wakes.
7097 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7098 if (!balanced && nr_boost_reclaim) {
7099 nr_boost_reclaim = 0;
7104 * If boosting is not active then only reclaim if there are no
7105 * eligible zones. Note that sc.reclaim_idx is not used as
7106 * buffer_heads_over_limit may have adjusted it.
7108 if (!nr_boost_reclaim && balanced)
7111 /* Limit the priority of boosting to avoid reclaim writeback */
7112 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7113 raise_priority = false;
7116 * Do not writeback or swap pages for boosted reclaim. The
7117 * intent is to relieve pressure not issue sub-optimal IO
7118 * from reclaim context. If no pages are reclaimed, the
7119 * reclaim will be aborted.
7121 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7122 sc.may_swap = !nr_boost_reclaim;
7125 * Do some background aging, to give pages a chance to be
7126 * referenced before reclaiming. All pages are rotated
7127 * regardless of classzone as this is about consistent aging.
7129 kswapd_age_node(pgdat, &sc);
7132 * If we're getting trouble reclaiming, start doing writepage
7133 * even in laptop mode.
7135 if (sc.priority < DEF_PRIORITY - 2)
7136 sc.may_writepage = 1;
7138 /* Call soft limit reclaim before calling shrink_node. */
7140 nr_soft_scanned = 0;
7141 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7142 sc.gfp_mask, &nr_soft_scanned);
7143 sc.nr_reclaimed += nr_soft_reclaimed;
7146 * There should be no need to raise the scanning priority if
7147 * enough pages are already being scanned that that high
7148 * watermark would be met at 100% efficiency.
7150 if (kswapd_shrink_node(pgdat, &sc))
7151 raise_priority = false;
7154 * If the low watermark is met there is no need for processes
7155 * to be throttled on pfmemalloc_wait as they should not be
7156 * able to safely make forward progress. Wake them
7158 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7159 allow_direct_reclaim(pgdat))
7160 wake_up_all(&pgdat->pfmemalloc_wait);
7162 /* Check if kswapd should be suspending */
7163 __fs_reclaim_release(_THIS_IP_);
7164 ret = try_to_freeze();
7165 __fs_reclaim_acquire(_THIS_IP_);
7166 if (ret || kthread_should_stop())
7170 * Raise priority if scanning rate is too low or there was no
7171 * progress in reclaiming pages
7173 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7174 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7177 * If reclaim made no progress for a boost, stop reclaim as
7178 * IO cannot be queued and it could be an infinite loop in
7179 * extreme circumstances.
7181 if (nr_boost_reclaim && !nr_reclaimed)
7184 if (raise_priority || !nr_reclaimed)
7186 } while (sc.priority >= 1);
7188 if (!sc.nr_reclaimed)
7189 pgdat->kswapd_failures++;
7192 clear_reclaim_active(pgdat, highest_zoneidx);
7194 /* If reclaim was boosted, account for the reclaim done in this pass */
7196 unsigned long flags;
7198 for (i = 0; i <= highest_zoneidx; i++) {
7199 if (!zone_boosts[i])
7202 /* Increments are under the zone lock */
7203 zone = pgdat->node_zones + i;
7204 spin_lock_irqsave(&zone->lock, flags);
7205 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7206 spin_unlock_irqrestore(&zone->lock, flags);
7210 * As there is now likely space, wakeup kcompact to defragment
7213 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7216 snapshot_refaults(NULL, pgdat);
7217 __fs_reclaim_release(_THIS_IP_);
7218 psi_memstall_leave(&pflags);
7219 set_task_reclaim_state(current, NULL);
7222 * Return the order kswapd stopped reclaiming at as
7223 * prepare_kswapd_sleep() takes it into account. If another caller
7224 * entered the allocator slow path while kswapd was awake, order will
7225 * remain at the higher level.
7231 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7232 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7233 * not a valid index then either kswapd runs for first time or kswapd couldn't
7234 * sleep after previous reclaim attempt (node is still unbalanced). In that
7235 * case return the zone index of the previous kswapd reclaim cycle.
7237 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7238 enum zone_type prev_highest_zoneidx)
7240 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7242 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7245 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7246 unsigned int highest_zoneidx)
7251 if (freezing(current) || kthread_should_stop())
7254 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7257 * Try to sleep for a short interval. Note that kcompactd will only be
7258 * woken if it is possible to sleep for a short interval. This is
7259 * deliberate on the assumption that if reclaim cannot keep an
7260 * eligible zone balanced that it's also unlikely that compaction will
7263 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7265 * Compaction records what page blocks it recently failed to
7266 * isolate pages from and skips them in the future scanning.
7267 * When kswapd is going to sleep, it is reasonable to assume
7268 * that pages and compaction may succeed so reset the cache.
7270 reset_isolation_suitable(pgdat);
7273 * We have freed the memory, now we should compact it to make
7274 * allocation of the requested order possible.
7276 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7278 remaining = schedule_timeout(HZ/10);
7281 * If woken prematurely then reset kswapd_highest_zoneidx and
7282 * order. The values will either be from a wakeup request or
7283 * the previous request that slept prematurely.
7286 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7287 kswapd_highest_zoneidx(pgdat,
7290 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7291 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7294 finish_wait(&pgdat->kswapd_wait, &wait);
7295 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7299 * After a short sleep, check if it was a premature sleep. If not, then
7300 * go fully to sleep until explicitly woken up.
7303 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7304 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7307 * vmstat counters are not perfectly accurate and the estimated
7308 * value for counters such as NR_FREE_PAGES can deviate from the
7309 * true value by nr_online_cpus * threshold. To avoid the zone
7310 * watermarks being breached while under pressure, we reduce the
7311 * per-cpu vmstat threshold while kswapd is awake and restore
7312 * them before going back to sleep.
7314 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7316 if (!kthread_should_stop())
7319 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7322 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7324 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7326 finish_wait(&pgdat->kswapd_wait, &wait);
7330 * The background pageout daemon, started as a kernel thread
7331 * from the init process.
7333 * This basically trickles out pages so that we have _some_
7334 * free memory available even if there is no other activity
7335 * that frees anything up. This is needed for things like routing
7336 * etc, where we otherwise might have all activity going on in
7337 * asynchronous contexts that cannot page things out.
7339 * If there are applications that are active memory-allocators
7340 * (most normal use), this basically shouldn't matter.
7342 static int kswapd(void *p)
7344 unsigned int alloc_order, reclaim_order;
7345 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7346 pg_data_t *pgdat = (pg_data_t *)p;
7347 struct task_struct *tsk = current;
7348 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7350 if (!cpumask_empty(cpumask))
7351 set_cpus_allowed_ptr(tsk, cpumask);
7354 * Tell the memory management that we're a "memory allocator",
7355 * and that if we need more memory we should get access to it
7356 * regardless (see "__alloc_pages()"). "kswapd" should
7357 * never get caught in the normal page freeing logic.
7359 * (Kswapd normally doesn't need memory anyway, but sometimes
7360 * you need a small amount of memory in order to be able to
7361 * page out something else, and this flag essentially protects
7362 * us from recursively trying to free more memory as we're
7363 * trying to free the first piece of memory in the first place).
7365 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7368 WRITE_ONCE(pgdat->kswapd_order, 0);
7369 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7370 atomic_set(&pgdat->nr_writeback_throttled, 0);
7374 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7375 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7379 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7382 /* Read the new order and highest_zoneidx */
7383 alloc_order = READ_ONCE(pgdat->kswapd_order);
7384 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7386 WRITE_ONCE(pgdat->kswapd_order, 0);
7387 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7389 ret = try_to_freeze();
7390 if (kthread_should_stop())
7394 * We can speed up thawing tasks if we don't call balance_pgdat
7395 * after returning from the refrigerator
7401 * Reclaim begins at the requested order but if a high-order
7402 * reclaim fails then kswapd falls back to reclaiming for
7403 * order-0. If that happens, kswapd will consider sleeping
7404 * for the order it finished reclaiming at (reclaim_order)
7405 * but kcompactd is woken to compact for the original
7406 * request (alloc_order).
7408 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7410 reclaim_order = balance_pgdat(pgdat, alloc_order,
7412 if (reclaim_order < alloc_order)
7413 goto kswapd_try_sleep;
7416 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7422 * A zone is low on free memory or too fragmented for high-order memory. If
7423 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7424 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7425 * has failed or is not needed, still wake up kcompactd if only compaction is
7428 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7429 enum zone_type highest_zoneidx)
7432 enum zone_type curr_idx;
7434 if (!managed_zone(zone))
7437 if (!cpuset_zone_allowed(zone, gfp_flags))
7440 pgdat = zone->zone_pgdat;
7441 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7443 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7444 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7446 if (READ_ONCE(pgdat->kswapd_order) < order)
7447 WRITE_ONCE(pgdat->kswapd_order, order);
7449 if (!waitqueue_active(&pgdat->kswapd_wait))
7452 /* Hopeless node, leave it to direct reclaim if possible */
7453 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7454 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7455 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7457 * There may be plenty of free memory available, but it's too
7458 * fragmented for high-order allocations. Wake up kcompactd
7459 * and rely on compaction_suitable() to determine if it's
7460 * needed. If it fails, it will defer subsequent attempts to
7461 * ratelimit its work.
7463 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7464 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7468 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7470 wake_up_interruptible(&pgdat->kswapd_wait);
7473 #ifdef CONFIG_HIBERNATION
7475 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7478 * Rather than trying to age LRUs the aim is to preserve the overall
7479 * LRU order by reclaiming preferentially
7480 * inactive > active > active referenced > active mapped
7482 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7484 struct scan_control sc = {
7485 .nr_to_reclaim = nr_to_reclaim,
7486 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7487 .reclaim_idx = MAX_NR_ZONES - 1,
7488 .priority = DEF_PRIORITY,
7492 .hibernation_mode = 1,
7494 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7495 unsigned long nr_reclaimed;
7496 unsigned int noreclaim_flag;
7498 fs_reclaim_acquire(sc.gfp_mask);
7499 noreclaim_flag = memalloc_noreclaim_save();
7500 set_task_reclaim_state(current, &sc.reclaim_state);
7502 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7504 set_task_reclaim_state(current, NULL);
7505 memalloc_noreclaim_restore(noreclaim_flag);
7506 fs_reclaim_release(sc.gfp_mask);
7508 return nr_reclaimed;
7510 #endif /* CONFIG_HIBERNATION */
7513 * This kswapd start function will be called by init and node-hot-add.
7515 void kswapd_run(int nid)
7517 pg_data_t *pgdat = NODE_DATA(nid);
7519 pgdat_kswapd_lock(pgdat);
7520 if (!pgdat->kswapd) {
7521 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7522 if (IS_ERR(pgdat->kswapd)) {
7523 /* failure at boot is fatal */
7524 BUG_ON(system_state < SYSTEM_RUNNING);
7525 pr_err("Failed to start kswapd on node %d\n", nid);
7526 pgdat->kswapd = NULL;
7529 pgdat_kswapd_unlock(pgdat);
7533 * Called by memory hotplug when all memory in a node is offlined. Caller must
7534 * be holding mem_hotplug_begin/done().
7536 void kswapd_stop(int nid)
7538 pg_data_t *pgdat = NODE_DATA(nid);
7539 struct task_struct *kswapd;
7541 pgdat_kswapd_lock(pgdat);
7542 kswapd = pgdat->kswapd;
7544 kthread_stop(kswapd);
7545 pgdat->kswapd = NULL;
7547 pgdat_kswapd_unlock(pgdat);
7550 static int __init kswapd_init(void)
7555 for_each_node_state(nid, N_MEMORY)
7560 module_init(kswapd_init)
7566 * If non-zero call node_reclaim when the number of free pages falls below
7569 int node_reclaim_mode __read_mostly;
7572 * Priority for NODE_RECLAIM. This determines the fraction of pages
7573 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7576 #define NODE_RECLAIM_PRIORITY 4
7579 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7582 int sysctl_min_unmapped_ratio = 1;
7585 * If the number of slab pages in a zone grows beyond this percentage then
7586 * slab reclaim needs to occur.
7588 int sysctl_min_slab_ratio = 5;
7590 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7592 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7593 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7594 node_page_state(pgdat, NR_ACTIVE_FILE);
7597 * It's possible for there to be more file mapped pages than
7598 * accounted for by the pages on the file LRU lists because
7599 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7601 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7604 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7605 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7607 unsigned long nr_pagecache_reclaimable;
7608 unsigned long delta = 0;
7611 * If RECLAIM_UNMAP is set, then all file pages are considered
7612 * potentially reclaimable. Otherwise, we have to worry about
7613 * pages like swapcache and node_unmapped_file_pages() provides
7616 if (node_reclaim_mode & RECLAIM_UNMAP)
7617 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7619 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7621 /* If we can't clean pages, remove dirty pages from consideration */
7622 if (!(node_reclaim_mode & RECLAIM_WRITE))
7623 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7625 /* Watch for any possible underflows due to delta */
7626 if (unlikely(delta > nr_pagecache_reclaimable))
7627 delta = nr_pagecache_reclaimable;
7629 return nr_pagecache_reclaimable - delta;
7633 * Try to free up some pages from this node through reclaim.
7635 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7637 /* Minimum pages needed in order to stay on node */
7638 const unsigned long nr_pages = 1 << order;
7639 struct task_struct *p = current;
7640 unsigned int noreclaim_flag;
7641 struct scan_control sc = {
7642 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7643 .gfp_mask = current_gfp_context(gfp_mask),
7645 .priority = NODE_RECLAIM_PRIORITY,
7646 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7647 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7649 .reclaim_idx = gfp_zone(gfp_mask),
7651 unsigned long pflags;
7653 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7657 psi_memstall_enter(&pflags);
7658 fs_reclaim_acquire(sc.gfp_mask);
7660 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7662 noreclaim_flag = memalloc_noreclaim_save();
7663 set_task_reclaim_state(p, &sc.reclaim_state);
7665 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7666 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7668 * Free memory by calling shrink node with increasing
7669 * priorities until we have enough memory freed.
7672 shrink_node(pgdat, &sc);
7673 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7676 set_task_reclaim_state(p, NULL);
7677 memalloc_noreclaim_restore(noreclaim_flag);
7678 fs_reclaim_release(sc.gfp_mask);
7679 psi_memstall_leave(&pflags);
7681 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7683 return sc.nr_reclaimed >= nr_pages;
7686 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7691 * Node reclaim reclaims unmapped file backed pages and
7692 * slab pages if we are over the defined limits.
7694 * A small portion of unmapped file backed pages is needed for
7695 * file I/O otherwise pages read by file I/O will be immediately
7696 * thrown out if the node is overallocated. So we do not reclaim
7697 * if less than a specified percentage of the node is used by
7698 * unmapped file backed pages.
7700 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7701 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7702 pgdat->min_slab_pages)
7703 return NODE_RECLAIM_FULL;
7706 * Do not scan if the allocation should not be delayed.
7708 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7709 return NODE_RECLAIM_NOSCAN;
7712 * Only run node reclaim on the local node or on nodes that do not
7713 * have associated processors. This will favor the local processor
7714 * over remote processors and spread off node memory allocations
7715 * as wide as possible.
7717 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7718 return NODE_RECLAIM_NOSCAN;
7720 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7721 return NODE_RECLAIM_NOSCAN;
7723 ret = __node_reclaim(pgdat, gfp_mask, order);
7724 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7727 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7733 void check_move_unevictable_pages(struct pagevec *pvec)
7735 struct folio_batch fbatch;
7738 folio_batch_init(&fbatch);
7739 for (i = 0; i < pvec->nr; i++) {
7740 struct page *page = pvec->pages[i];
7742 if (PageTransTail(page))
7744 folio_batch_add(&fbatch, page_folio(page));
7746 check_move_unevictable_folios(&fbatch);
7748 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7751 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7753 * @fbatch: Batch of lru folios to check.
7755 * Checks folios for evictability, if an evictable folio is in the unevictable
7756 * lru list, moves it to the appropriate evictable lru list. This function
7757 * should be only used for lru folios.
7759 void check_move_unevictable_folios(struct folio_batch *fbatch)
7761 struct lruvec *lruvec = NULL;
7766 for (i = 0; i < fbatch->nr; i++) {
7767 struct folio *folio = fbatch->folios[i];
7768 int nr_pages = folio_nr_pages(folio);
7770 pgscanned += nr_pages;
7772 /* block memcg migration while the folio moves between lrus */
7773 if (!folio_test_clear_lru(folio))
7776 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7777 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7778 lruvec_del_folio(lruvec, folio);
7779 folio_clear_unevictable(folio);
7780 lruvec_add_folio(lruvec, folio);
7781 pgrescued += nr_pages;
7783 folio_set_lru(folio);
7787 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7788 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7789 unlock_page_lruvec_irq(lruvec);
7790 } else if (pgscanned) {
7791 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7794 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);