net/sonic: Prevent tx watchdog timeout
[platform/kernel/linux-rpi.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>  /* for try_to_release_page(),
32                                         buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65         /* How many pages shrink_list() should reclaim */
66         unsigned long nr_to_reclaim;
67
68         /*
69          * Nodemask of nodes allowed by the caller. If NULL, all nodes
70          * are scanned.
71          */
72         nodemask_t      *nodemask;
73
74         /*
75          * The memory cgroup that hit its limit and as a result is the
76          * primary target of this reclaim invocation.
77          */
78         struct mem_cgroup *target_mem_cgroup;
79
80         /* Writepage batching in laptop mode; RECLAIM_WRITE */
81         unsigned int may_writepage:1;
82
83         /* Can mapped pages be reclaimed? */
84         unsigned int may_unmap:1;
85
86         /* Can pages be swapped as part of reclaim? */
87         unsigned int may_swap:1;
88
89         /*
90          * Cgroups are not reclaimed below their configured memory.low,
91          * unless we threaten to OOM. If any cgroups are skipped due to
92          * memory.low and nothing was reclaimed, go back for memory.low.
93          */
94         unsigned int memcg_low_reclaim:1;
95         unsigned int memcg_low_skipped:1;
96
97         unsigned int hibernation_mode:1;
98
99         /* One of the zones is ready for compaction */
100         unsigned int compaction_ready:1;
101
102         /* Allocation order */
103         s8 order;
104
105         /* Scan (total_size >> priority) pages at once */
106         s8 priority;
107
108         /* The highest zone to isolate pages for reclaim from */
109         s8 reclaim_idx;
110
111         /* This context's GFP mask */
112         gfp_t gfp_mask;
113
114         /* Incremented by the number of inactive pages that were scanned */
115         unsigned long nr_scanned;
116
117         /* Number of pages freed so far during a call to shrink_zones() */
118         unsigned long nr_reclaimed;
119
120         struct {
121                 unsigned int dirty;
122                 unsigned int unqueued_dirty;
123                 unsigned int congested;
124                 unsigned int writeback;
125                 unsigned int immediate;
126                 unsigned int file_taken;
127                 unsigned int taken;
128         } nr;
129 };
130
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)                    \
133         do {                                                            \
134                 if ((_page)->lru.prev != _base) {                       \
135                         struct page *prev;                              \
136                                                                         \
137                         prev = lru_to_page(&(_page->lru));              \
138                         prefetch(&prev->_field);                        \
139                 }                                                       \
140         } while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
147         do {                                                            \
148                 if ((_page)->lru.prev != _base) {                       \
149                         struct page *prev;                              \
150                                                                         \
151                         prev = lru_to_page(&(_page->lru));              \
152                         prefetchw(&prev->_field);                       \
153                 }                                                       \
154         } while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171
172 #ifdef CONFIG_MEMCG_KMEM
173
174 /*
175  * We allow subsystems to populate their shrinker-related
176  * LRU lists before register_shrinker_prepared() is called
177  * for the shrinker, since we don't want to impose
178  * restrictions on their internal registration order.
179  * In this case shrink_slab_memcg() may find corresponding
180  * bit is set in the shrinkers map.
181  *
182  * This value is used by the function to detect registering
183  * shrinkers and to skip do_shrink_slab() calls for them.
184  */
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
189
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191 {
192         int id, ret = -ENOMEM;
193
194         down_write(&shrinker_rwsem);
195         /* This may call shrinker, so it must use down_read_trylock() */
196         id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197         if (id < 0)
198                 goto unlock;
199
200         if (id >= shrinker_nr_max) {
201                 if (memcg_expand_shrinker_maps(id)) {
202                         idr_remove(&shrinker_idr, id);
203                         goto unlock;
204                 }
205
206                 shrinker_nr_max = id + 1;
207         }
208         shrinker->id = id;
209         ret = 0;
210 unlock:
211         up_write(&shrinker_rwsem);
212         return ret;
213 }
214
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
216 {
217         int id = shrinker->id;
218
219         BUG_ON(id < 0);
220
221         down_write(&shrinker_rwsem);
222         idr_remove(&shrinker_idr, id);
223         up_write(&shrinker_rwsem);
224 }
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227 {
228         return 0;
229 }
230
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 }
234 #endif /* CONFIG_MEMCG_KMEM */
235
236 #ifdef CONFIG_MEMCG
237 static bool global_reclaim(struct scan_control *sc)
238 {
239         return !sc->target_mem_cgroup;
240 }
241
242 /**
243  * sane_reclaim - is the usual dirty throttling mechanism operational?
244  * @sc: scan_control in question
245  *
246  * The normal page dirty throttling mechanism in balance_dirty_pages() is
247  * completely broken with the legacy memcg and direct stalling in
248  * shrink_page_list() is used for throttling instead, which lacks all the
249  * niceties such as fairness, adaptive pausing, bandwidth proportional
250  * allocation and configurability.
251  *
252  * This function tests whether the vmscan currently in progress can assume
253  * that the normal dirty throttling mechanism is operational.
254  */
255 static bool sane_reclaim(struct scan_control *sc)
256 {
257         struct mem_cgroup *memcg = sc->target_mem_cgroup;
258
259         if (!memcg)
260                 return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263                 return true;
264 #endif
265         return false;
266 }
267
268 static void set_memcg_congestion(pg_data_t *pgdat,
269                                 struct mem_cgroup *memcg,
270                                 bool congested)
271 {
272         struct mem_cgroup_per_node *mn;
273
274         if (!memcg)
275                 return;
276
277         mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278         WRITE_ONCE(mn->congested, congested);
279 }
280
281 static bool memcg_congested(pg_data_t *pgdat,
282                         struct mem_cgroup *memcg)
283 {
284         struct mem_cgroup_per_node *mn;
285
286         mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287         return READ_ONCE(mn->congested);
288
289 }
290 #else
291 static bool global_reclaim(struct scan_control *sc)
292 {
293         return true;
294 }
295
296 static bool sane_reclaim(struct scan_control *sc)
297 {
298         return true;
299 }
300
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302                                 struct mem_cgroup *memcg, bool congested)
303 {
304 }
305
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307                         struct mem_cgroup *memcg)
308 {
309         return false;
310
311 }
312 #endif
313
314 /*
315  * This misses isolated pages which are not accounted for to save counters.
316  * As the data only determines if reclaim or compaction continues, it is
317  * not expected that isolated pages will be a dominating factor.
318  */
319 unsigned long zone_reclaimable_pages(struct zone *zone)
320 {
321         unsigned long nr;
322
323         nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324                 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325         if (get_nr_swap_pages() > 0)
326                 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327                         zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328
329         return nr;
330 }
331
332 /**
333  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
334  * @lruvec: lru vector
335  * @lru: lru to use
336  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337  */
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339 {
340         unsigned long lru_size;
341         int zid;
342
343         if (!mem_cgroup_disabled())
344                 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345         else
346                 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347
348         for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349                 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350                 unsigned long size;
351
352                 if (!managed_zone(zone))
353                         continue;
354
355                 if (!mem_cgroup_disabled())
356                         size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357                 else
358                         size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359                                        NR_ZONE_LRU_BASE + lru);
360                 lru_size -= min(size, lru_size);
361         }
362
363         return lru_size;
364
365 }
366
367 /*
368  * Add a shrinker callback to be called from the vm.
369  */
370 int prealloc_shrinker(struct shrinker *shrinker)
371 {
372         size_t size = sizeof(*shrinker->nr_deferred);
373
374         if (shrinker->flags & SHRINKER_NUMA_AWARE)
375                 size *= nr_node_ids;
376
377         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378         if (!shrinker->nr_deferred)
379                 return -ENOMEM;
380
381         if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382                 if (prealloc_memcg_shrinker(shrinker))
383                         goto free_deferred;
384         }
385
386         return 0;
387
388 free_deferred:
389         kfree(shrinker->nr_deferred);
390         shrinker->nr_deferred = NULL;
391         return -ENOMEM;
392 }
393
394 void free_prealloced_shrinker(struct shrinker *shrinker)
395 {
396         if (!shrinker->nr_deferred)
397                 return;
398
399         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400                 unregister_memcg_shrinker(shrinker);
401
402         kfree(shrinker->nr_deferred);
403         shrinker->nr_deferred = NULL;
404 }
405
406 void register_shrinker_prepared(struct shrinker *shrinker)
407 {
408         down_write(&shrinker_rwsem);
409         list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412                 idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 #endif
414         up_write(&shrinker_rwsem);
415 }
416
417 int register_shrinker(struct shrinker *shrinker)
418 {
419         int err = prealloc_shrinker(shrinker);
420
421         if (err)
422                 return err;
423         register_shrinker_prepared(shrinker);
424         return 0;
425 }
426 EXPORT_SYMBOL(register_shrinker);
427
428 /*
429  * Remove one
430  */
431 void unregister_shrinker(struct shrinker *shrinker)
432 {
433         if (!shrinker->nr_deferred)
434                 return;
435         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436                 unregister_memcg_shrinker(shrinker);
437         down_write(&shrinker_rwsem);
438         list_del(&shrinker->list);
439         up_write(&shrinker_rwsem);
440         kfree(shrinker->nr_deferred);
441         shrinker->nr_deferred = NULL;
442 }
443 EXPORT_SYMBOL(unregister_shrinker);
444
445 #define SHRINK_BATCH 128
446
447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448                                     struct shrinker *shrinker, int priority)
449 {
450         unsigned long freed = 0;
451         unsigned long long delta;
452         long total_scan;
453         long freeable;
454         long nr;
455         long new_nr;
456         int nid = shrinkctl->nid;
457         long batch_size = shrinker->batch ? shrinker->batch
458                                           : SHRINK_BATCH;
459         long scanned = 0, next_deferred;
460
461         if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462                 nid = 0;
463
464         freeable = shrinker->count_objects(shrinker, shrinkctl);
465         if (freeable == 0 || freeable == SHRINK_EMPTY)
466                 return freeable;
467
468         /*
469          * copy the current shrinker scan count into a local variable
470          * and zero it so that other concurrent shrinker invocations
471          * don't also do this scanning work.
472          */
473         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474
475         total_scan = nr;
476         delta = freeable >> priority;
477         delta *= 4;
478         do_div(delta, shrinker->seeks);
479
480         total_scan += delta;
481         if (total_scan < 0) {
482                 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
483                        shrinker->scan_objects, total_scan);
484                 total_scan = freeable;
485                 next_deferred = nr;
486         } else
487                 next_deferred = total_scan;
488
489         /*
490          * We need to avoid excessive windup on filesystem shrinkers
491          * due to large numbers of GFP_NOFS allocations causing the
492          * shrinkers to return -1 all the time. This results in a large
493          * nr being built up so when a shrink that can do some work
494          * comes along it empties the entire cache due to nr >>>
495          * freeable. This is bad for sustaining a working set in
496          * memory.
497          *
498          * Hence only allow the shrinker to scan the entire cache when
499          * a large delta change is calculated directly.
500          */
501         if (delta < freeable / 4)
502                 total_scan = min(total_scan, freeable / 2);
503
504         /*
505          * Avoid risking looping forever due to too large nr value:
506          * never try to free more than twice the estimate number of
507          * freeable entries.
508          */
509         if (total_scan > freeable * 2)
510                 total_scan = freeable * 2;
511
512         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
513                                    freeable, delta, total_scan, priority);
514
515         /*
516          * Normally, we should not scan less than batch_size objects in one
517          * pass to avoid too frequent shrinker calls, but if the slab has less
518          * than batch_size objects in total and we are really tight on memory,
519          * we will try to reclaim all available objects, otherwise we can end
520          * up failing allocations although there are plenty of reclaimable
521          * objects spread over several slabs with usage less than the
522          * batch_size.
523          *
524          * We detect the "tight on memory" situations by looking at the total
525          * number of objects we want to scan (total_scan). If it is greater
526          * than the total number of objects on slab (freeable), we must be
527          * scanning at high prio and therefore should try to reclaim as much as
528          * possible.
529          */
530         while (total_scan >= batch_size ||
531                total_scan >= freeable) {
532                 unsigned long ret;
533                 unsigned long nr_to_scan = min(batch_size, total_scan);
534
535                 shrinkctl->nr_to_scan = nr_to_scan;
536                 shrinkctl->nr_scanned = nr_to_scan;
537                 ret = shrinker->scan_objects(shrinker, shrinkctl);
538                 if (ret == SHRINK_STOP)
539                         break;
540                 freed += ret;
541
542                 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
543                 total_scan -= shrinkctl->nr_scanned;
544                 scanned += shrinkctl->nr_scanned;
545
546                 cond_resched();
547         }
548
549         if (next_deferred >= scanned)
550                 next_deferred -= scanned;
551         else
552                 next_deferred = 0;
553         /*
554          * move the unused scan count back into the shrinker in a
555          * manner that handles concurrent updates. If we exhausted the
556          * scan, there is no need to do an update.
557          */
558         if (next_deferred > 0)
559                 new_nr = atomic_long_add_return(next_deferred,
560                                                 &shrinker->nr_deferred[nid]);
561         else
562                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
563
564         trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
565         return freed;
566 }
567
568 #ifdef CONFIG_MEMCG_KMEM
569 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
570                         struct mem_cgroup *memcg, int priority)
571 {
572         struct memcg_shrinker_map *map;
573         unsigned long ret, freed = 0;
574         int i;
575
576         if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
577                 return 0;
578
579         if (!down_read_trylock(&shrinker_rwsem))
580                 return 0;
581
582         map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
583                                         true);
584         if (unlikely(!map))
585                 goto unlock;
586
587         for_each_set_bit(i, map->map, shrinker_nr_max) {
588                 struct shrink_control sc = {
589                         .gfp_mask = gfp_mask,
590                         .nid = nid,
591                         .memcg = memcg,
592                 };
593                 struct shrinker *shrinker;
594
595                 shrinker = idr_find(&shrinker_idr, i);
596                 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
597                         if (!shrinker)
598                                 clear_bit(i, map->map);
599                         continue;
600                 }
601
602                 ret = do_shrink_slab(&sc, shrinker, priority);
603                 if (ret == SHRINK_EMPTY) {
604                         clear_bit(i, map->map);
605                         /*
606                          * After the shrinker reported that it had no objects to
607                          * free, but before we cleared the corresponding bit in
608                          * the memcg shrinker map, a new object might have been
609                          * added. To make sure, we have the bit set in this
610                          * case, we invoke the shrinker one more time and reset
611                          * the bit if it reports that it is not empty anymore.
612                          * The memory barrier here pairs with the barrier in
613                          * memcg_set_shrinker_bit():
614                          *
615                          * list_lru_add()     shrink_slab_memcg()
616                          *   list_add_tail()    clear_bit()
617                          *   <MB>               <MB>
618                          *   set_bit()          do_shrink_slab()
619                          */
620                         smp_mb__after_atomic();
621                         ret = do_shrink_slab(&sc, shrinker, priority);
622                         if (ret == SHRINK_EMPTY)
623                                 ret = 0;
624                         else
625                                 memcg_set_shrinker_bit(memcg, nid, i);
626                 }
627                 freed += ret;
628
629                 if (rwsem_is_contended(&shrinker_rwsem)) {
630                         freed = freed ? : 1;
631                         break;
632                 }
633         }
634 unlock:
635         up_read(&shrinker_rwsem);
636         return freed;
637 }
638 #else /* CONFIG_MEMCG_KMEM */
639 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
640                         struct mem_cgroup *memcg, int priority)
641 {
642         return 0;
643 }
644 #endif /* CONFIG_MEMCG_KMEM */
645
646 /**
647  * shrink_slab - shrink slab caches
648  * @gfp_mask: allocation context
649  * @nid: node whose slab caches to target
650  * @memcg: memory cgroup whose slab caches to target
651  * @priority: the reclaim priority
652  *
653  * Call the shrink functions to age shrinkable caches.
654  *
655  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
656  * unaware shrinkers will receive a node id of 0 instead.
657  *
658  * @memcg specifies the memory cgroup to target. Unaware shrinkers
659  * are called only if it is the root cgroup.
660  *
661  * @priority is sc->priority, we take the number of objects and >> by priority
662  * in order to get the scan target.
663  *
664  * Returns the number of reclaimed slab objects.
665  */
666 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
667                                  struct mem_cgroup *memcg,
668                                  int priority)
669 {
670         unsigned long ret, freed = 0;
671         struct shrinker *shrinker;
672
673         /*
674          * The root memcg might be allocated even though memcg is disabled
675          * via "cgroup_disable=memory" boot parameter.  This could make
676          * mem_cgroup_is_root() return false, then just run memcg slab
677          * shrink, but skip global shrink.  This may result in premature
678          * oom.
679          */
680         if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
681                 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
682
683         if (!down_read_trylock(&shrinker_rwsem))
684                 goto out;
685
686         list_for_each_entry(shrinker, &shrinker_list, list) {
687                 struct shrink_control sc = {
688                         .gfp_mask = gfp_mask,
689                         .nid = nid,
690                         .memcg = memcg,
691                 };
692
693                 ret = do_shrink_slab(&sc, shrinker, priority);
694                 if (ret == SHRINK_EMPTY)
695                         ret = 0;
696                 freed += ret;
697                 /*
698                  * Bail out if someone want to register a new shrinker to
699                  * prevent the regsitration from being stalled for long periods
700                  * by parallel ongoing shrinking.
701                  */
702                 if (rwsem_is_contended(&shrinker_rwsem)) {
703                         freed = freed ? : 1;
704                         break;
705                 }
706         }
707
708         up_read(&shrinker_rwsem);
709 out:
710         cond_resched();
711         return freed;
712 }
713
714 void drop_slab_node(int nid)
715 {
716         unsigned long freed;
717
718         do {
719                 struct mem_cgroup *memcg = NULL;
720
721                 freed = 0;
722                 memcg = mem_cgroup_iter(NULL, NULL, NULL);
723                 do {
724                         freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
725                 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
726         } while (freed > 10);
727 }
728
729 void drop_slab(void)
730 {
731         int nid;
732
733         for_each_online_node(nid)
734                 drop_slab_node(nid);
735 }
736
737 static inline int is_page_cache_freeable(struct page *page)
738 {
739         /*
740          * A freeable page cache page is referenced only by the caller
741          * that isolated the page, the page cache radix tree and
742          * optional buffer heads at page->private.
743          */
744         int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
745                 HPAGE_PMD_NR : 1;
746         return page_count(page) - page_has_private(page) == 1 + radix_pins;
747 }
748
749 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
750 {
751         if (current->flags & PF_SWAPWRITE)
752                 return 1;
753         if (!inode_write_congested(inode))
754                 return 1;
755         if (inode_to_bdi(inode) == current->backing_dev_info)
756                 return 1;
757         return 0;
758 }
759
760 /*
761  * We detected a synchronous write error writing a page out.  Probably
762  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
763  * fsync(), msync() or close().
764  *
765  * The tricky part is that after writepage we cannot touch the mapping: nothing
766  * prevents it from being freed up.  But we have a ref on the page and once
767  * that page is locked, the mapping is pinned.
768  *
769  * We're allowed to run sleeping lock_page() here because we know the caller has
770  * __GFP_FS.
771  */
772 static void handle_write_error(struct address_space *mapping,
773                                 struct page *page, int error)
774 {
775         lock_page(page);
776         if (page_mapping(page) == mapping)
777                 mapping_set_error(mapping, error);
778         unlock_page(page);
779 }
780
781 /* possible outcome of pageout() */
782 typedef enum {
783         /* failed to write page out, page is locked */
784         PAGE_KEEP,
785         /* move page to the active list, page is locked */
786         PAGE_ACTIVATE,
787         /* page has been sent to the disk successfully, page is unlocked */
788         PAGE_SUCCESS,
789         /* page is clean and locked */
790         PAGE_CLEAN,
791 } pageout_t;
792
793 /*
794  * pageout is called by shrink_page_list() for each dirty page.
795  * Calls ->writepage().
796  */
797 static pageout_t pageout(struct page *page, struct address_space *mapping,
798                          struct scan_control *sc)
799 {
800         /*
801          * If the page is dirty, only perform writeback if that write
802          * will be non-blocking.  To prevent this allocation from being
803          * stalled by pagecache activity.  But note that there may be
804          * stalls if we need to run get_block().  We could test
805          * PagePrivate for that.
806          *
807          * If this process is currently in __generic_file_write_iter() against
808          * this page's queue, we can perform writeback even if that
809          * will block.
810          *
811          * If the page is swapcache, write it back even if that would
812          * block, for some throttling. This happens by accident, because
813          * swap_backing_dev_info is bust: it doesn't reflect the
814          * congestion state of the swapdevs.  Easy to fix, if needed.
815          */
816         if (!is_page_cache_freeable(page))
817                 return PAGE_KEEP;
818         if (!mapping) {
819                 /*
820                  * Some data journaling orphaned pages can have
821                  * page->mapping == NULL while being dirty with clean buffers.
822                  */
823                 if (page_has_private(page)) {
824                         if (try_to_free_buffers(page)) {
825                                 ClearPageDirty(page);
826                                 pr_info("%s: orphaned page\n", __func__);
827                                 return PAGE_CLEAN;
828                         }
829                 }
830                 return PAGE_KEEP;
831         }
832         if (mapping->a_ops->writepage == NULL)
833                 return PAGE_ACTIVATE;
834         if (!may_write_to_inode(mapping->host, sc))
835                 return PAGE_KEEP;
836
837         if (clear_page_dirty_for_io(page)) {
838                 int res;
839                 struct writeback_control wbc = {
840                         .sync_mode = WB_SYNC_NONE,
841                         .nr_to_write = SWAP_CLUSTER_MAX,
842                         .range_start = 0,
843                         .range_end = LLONG_MAX,
844                         .for_reclaim = 1,
845                 };
846
847                 SetPageReclaim(page);
848                 res = mapping->a_ops->writepage(page, &wbc);
849                 if (res < 0)
850                         handle_write_error(mapping, page, res);
851                 if (res == AOP_WRITEPAGE_ACTIVATE) {
852                         ClearPageReclaim(page);
853                         return PAGE_ACTIVATE;
854                 }
855
856                 if (!PageWriteback(page)) {
857                         /* synchronous write or broken a_ops? */
858                         ClearPageReclaim(page);
859                 }
860                 trace_mm_vmscan_writepage(page);
861                 inc_node_page_state(page, NR_VMSCAN_WRITE);
862                 return PAGE_SUCCESS;
863         }
864
865         return PAGE_CLEAN;
866 }
867
868 /*
869  * Same as remove_mapping, but if the page is removed from the mapping, it
870  * gets returned with a refcount of 0.
871  */
872 static int __remove_mapping(struct address_space *mapping, struct page *page,
873                             bool reclaimed)
874 {
875         unsigned long flags;
876         int refcount;
877
878         BUG_ON(!PageLocked(page));
879         BUG_ON(mapping != page_mapping(page));
880
881         xa_lock_irqsave(&mapping->i_pages, flags);
882         /*
883          * The non racy check for a busy page.
884          *
885          * Must be careful with the order of the tests. When someone has
886          * a ref to the page, it may be possible that they dirty it then
887          * drop the reference. So if PageDirty is tested before page_count
888          * here, then the following race may occur:
889          *
890          * get_user_pages(&page);
891          * [user mapping goes away]
892          * write_to(page);
893          *                              !PageDirty(page)    [good]
894          * SetPageDirty(page);
895          * put_page(page);
896          *                              !page_count(page)   [good, discard it]
897          *
898          * [oops, our write_to data is lost]
899          *
900          * Reversing the order of the tests ensures such a situation cannot
901          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
902          * load is not satisfied before that of page->_refcount.
903          *
904          * Note that if SetPageDirty is always performed via set_page_dirty,
905          * and thus under the i_pages lock, then this ordering is not required.
906          */
907         if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
908                 refcount = 1 + HPAGE_PMD_NR;
909         else
910                 refcount = 2;
911         if (!page_ref_freeze(page, refcount))
912                 goto cannot_free;
913         /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
914         if (unlikely(PageDirty(page))) {
915                 page_ref_unfreeze(page, refcount);
916                 goto cannot_free;
917         }
918
919         if (PageSwapCache(page)) {
920                 swp_entry_t swap = { .val = page_private(page) };
921                 mem_cgroup_swapout(page, swap);
922                 __delete_from_swap_cache(page);
923                 xa_unlock_irqrestore(&mapping->i_pages, flags);
924                 put_swap_page(page, swap);
925         } else {
926                 void (*freepage)(struct page *);
927                 void *shadow = NULL;
928
929                 freepage = mapping->a_ops->freepage;
930                 /*
931                  * Remember a shadow entry for reclaimed file cache in
932                  * order to detect refaults, thus thrashing, later on.
933                  *
934                  * But don't store shadows in an address space that is
935                  * already exiting.  This is not just an optizimation,
936                  * inode reclaim needs to empty out the radix tree or
937                  * the nodes are lost.  Don't plant shadows behind its
938                  * back.
939                  *
940                  * We also don't store shadows for DAX mappings because the
941                  * only page cache pages found in these are zero pages
942                  * covering holes, and because we don't want to mix DAX
943                  * exceptional entries and shadow exceptional entries in the
944                  * same address_space.
945                  */
946                 if (reclaimed && page_is_file_cache(page) &&
947                     !mapping_exiting(mapping) && !dax_mapping(mapping))
948                         shadow = workingset_eviction(mapping, page);
949                 __delete_from_page_cache(page, shadow);
950                 xa_unlock_irqrestore(&mapping->i_pages, flags);
951
952                 if (freepage != NULL)
953                         freepage(page);
954         }
955
956         return 1;
957
958 cannot_free:
959         xa_unlock_irqrestore(&mapping->i_pages, flags);
960         return 0;
961 }
962
963 /*
964  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
965  * someone else has a ref on the page, abort and return 0.  If it was
966  * successfully detached, return 1.  Assumes the caller has a single ref on
967  * this page.
968  */
969 int remove_mapping(struct address_space *mapping, struct page *page)
970 {
971         if (__remove_mapping(mapping, page, false)) {
972                 /*
973                  * Unfreezing the refcount with 1 rather than 2 effectively
974                  * drops the pagecache ref for us without requiring another
975                  * atomic operation.
976                  */
977                 page_ref_unfreeze(page, 1);
978                 return 1;
979         }
980         return 0;
981 }
982
983 /**
984  * putback_lru_page - put previously isolated page onto appropriate LRU list
985  * @page: page to be put back to appropriate lru list
986  *
987  * Add previously isolated @page to appropriate LRU list.
988  * Page may still be unevictable for other reasons.
989  *
990  * lru_lock must not be held, interrupts must be enabled.
991  */
992 void putback_lru_page(struct page *page)
993 {
994         lru_cache_add(page);
995         put_page(page);         /* drop ref from isolate */
996 }
997
998 enum page_references {
999         PAGEREF_RECLAIM,
1000         PAGEREF_RECLAIM_CLEAN,
1001         PAGEREF_KEEP,
1002         PAGEREF_ACTIVATE,
1003 };
1004
1005 static enum page_references page_check_references(struct page *page,
1006                                                   struct scan_control *sc)
1007 {
1008         int referenced_ptes, referenced_page;
1009         unsigned long vm_flags;
1010
1011         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1012                                           &vm_flags);
1013         referenced_page = TestClearPageReferenced(page);
1014
1015         /*
1016          * Mlock lost the isolation race with us.  Let try_to_unmap()
1017          * move the page to the unevictable list.
1018          */
1019         if (vm_flags & VM_LOCKED)
1020                 return PAGEREF_RECLAIM;
1021
1022         if (referenced_ptes) {
1023                 if (PageSwapBacked(page))
1024                         return PAGEREF_ACTIVATE;
1025                 /*
1026                  * All mapped pages start out with page table
1027                  * references from the instantiating fault, so we need
1028                  * to look twice if a mapped file page is used more
1029                  * than once.
1030                  *
1031                  * Mark it and spare it for another trip around the
1032                  * inactive list.  Another page table reference will
1033                  * lead to its activation.
1034                  *
1035                  * Note: the mark is set for activated pages as well
1036                  * so that recently deactivated but used pages are
1037                  * quickly recovered.
1038                  */
1039                 SetPageReferenced(page);
1040
1041                 if (referenced_page || referenced_ptes > 1)
1042                         return PAGEREF_ACTIVATE;
1043
1044                 /*
1045                  * Activate file-backed executable pages after first usage.
1046                  */
1047                 if (vm_flags & VM_EXEC)
1048                         return PAGEREF_ACTIVATE;
1049
1050                 return PAGEREF_KEEP;
1051         }
1052
1053         /* Reclaim if clean, defer dirty pages to writeback */
1054         if (referenced_page && !PageSwapBacked(page))
1055                 return PAGEREF_RECLAIM_CLEAN;
1056
1057         return PAGEREF_RECLAIM;
1058 }
1059
1060 /* Check if a page is dirty or under writeback */
1061 static void page_check_dirty_writeback(struct page *page,
1062                                        bool *dirty, bool *writeback)
1063 {
1064         struct address_space *mapping;
1065
1066         /*
1067          * Anonymous pages are not handled by flushers and must be written
1068          * from reclaim context. Do not stall reclaim based on them
1069          */
1070         if (!page_is_file_cache(page) ||
1071             (PageAnon(page) && !PageSwapBacked(page))) {
1072                 *dirty = false;
1073                 *writeback = false;
1074                 return;
1075         }
1076
1077         /* By default assume that the page flags are accurate */
1078         *dirty = PageDirty(page);
1079         *writeback = PageWriteback(page);
1080
1081         /* Verify dirty/writeback state if the filesystem supports it */
1082         if (!page_has_private(page))
1083                 return;
1084
1085         mapping = page_mapping(page);
1086         if (mapping && mapping->a_ops->is_dirty_writeback)
1087                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1088 }
1089
1090 /*
1091  * shrink_page_list() returns the number of reclaimed pages
1092  */
1093 static unsigned long shrink_page_list(struct list_head *page_list,
1094                                       struct pglist_data *pgdat,
1095                                       struct scan_control *sc,
1096                                       enum ttu_flags ttu_flags,
1097                                       struct reclaim_stat *stat,
1098                                       bool force_reclaim)
1099 {
1100         LIST_HEAD(ret_pages);
1101         LIST_HEAD(free_pages);
1102         int pgactivate = 0;
1103         unsigned nr_unqueued_dirty = 0;
1104         unsigned nr_dirty = 0;
1105         unsigned nr_congested = 0;
1106         unsigned nr_reclaimed = 0;
1107         unsigned nr_writeback = 0;
1108         unsigned nr_immediate = 0;
1109         unsigned nr_ref_keep = 0;
1110         unsigned nr_unmap_fail = 0;
1111
1112         cond_resched();
1113
1114         while (!list_empty(page_list)) {
1115                 struct address_space *mapping;
1116                 struct page *page;
1117                 int may_enter_fs;
1118                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1119                 bool dirty, writeback;
1120
1121                 cond_resched();
1122
1123                 page = lru_to_page(page_list);
1124                 list_del(&page->lru);
1125
1126                 if (!trylock_page(page))
1127                         goto keep;
1128
1129                 VM_BUG_ON_PAGE(PageActive(page), page);
1130
1131                 sc->nr_scanned++;
1132
1133                 if (unlikely(!page_evictable(page)))
1134                         goto activate_locked;
1135
1136                 if (!sc->may_unmap && page_mapped(page))
1137                         goto keep_locked;
1138
1139                 /* Double the slab pressure for mapped and swapcache pages */
1140                 if ((page_mapped(page) || PageSwapCache(page)) &&
1141                     !(PageAnon(page) && !PageSwapBacked(page)))
1142                         sc->nr_scanned++;
1143
1144                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1146
1147                 /*
1148                  * The number of dirty pages determines if a node is marked
1149                  * reclaim_congested which affects wait_iff_congested. kswapd
1150                  * will stall and start writing pages if the tail of the LRU
1151                  * is all dirty unqueued pages.
1152                  */
1153                 page_check_dirty_writeback(page, &dirty, &writeback);
1154                 if (dirty || writeback)
1155                         nr_dirty++;
1156
1157                 if (dirty && !writeback)
1158                         nr_unqueued_dirty++;
1159
1160                 /*
1161                  * Treat this page as congested if the underlying BDI is or if
1162                  * pages are cycling through the LRU so quickly that the
1163                  * pages marked for immediate reclaim are making it to the
1164                  * end of the LRU a second time.
1165                  */
1166                 mapping = page_mapping(page);
1167                 if (((dirty || writeback) && mapping &&
1168                      inode_write_congested(mapping->host)) ||
1169                     (writeback && PageReclaim(page)))
1170                         nr_congested++;
1171
1172                 /*
1173                  * If a page at the tail of the LRU is under writeback, there
1174                  * are three cases to consider.
1175                  *
1176                  * 1) If reclaim is encountering an excessive number of pages
1177                  *    under writeback and this page is both under writeback and
1178                  *    PageReclaim then it indicates that pages are being queued
1179                  *    for IO but are being recycled through the LRU before the
1180                  *    IO can complete. Waiting on the page itself risks an
1181                  *    indefinite stall if it is impossible to writeback the
1182                  *    page due to IO error or disconnected storage so instead
1183                  *    note that the LRU is being scanned too quickly and the
1184                  *    caller can stall after page list has been processed.
1185                  *
1186                  * 2) Global or new memcg reclaim encounters a page that is
1187                  *    not marked for immediate reclaim, or the caller does not
1188                  *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189                  *    not to fs). In this case mark the page for immediate
1190                  *    reclaim and continue scanning.
1191                  *
1192                  *    Require may_enter_fs because we would wait on fs, which
1193                  *    may not have submitted IO yet. And the loop driver might
1194                  *    enter reclaim, and deadlock if it waits on a page for
1195                  *    which it is needed to do the write (loop masks off
1196                  *    __GFP_IO|__GFP_FS for this reason); but more thought
1197                  *    would probably show more reasons.
1198                  *
1199                  * 3) Legacy memcg encounters a page that is already marked
1200                  *    PageReclaim. memcg does not have any dirty pages
1201                  *    throttling so we could easily OOM just because too many
1202                  *    pages are in writeback and there is nothing else to
1203                  *    reclaim. Wait for the writeback to complete.
1204                  *
1205                  * In cases 1) and 2) we activate the pages to get them out of
1206                  * the way while we continue scanning for clean pages on the
1207                  * inactive list and refilling from the active list. The
1208                  * observation here is that waiting for disk writes is more
1209                  * expensive than potentially causing reloads down the line.
1210                  * Since they're marked for immediate reclaim, they won't put
1211                  * memory pressure on the cache working set any longer than it
1212                  * takes to write them to disk.
1213                  */
1214                 if (PageWriteback(page)) {
1215                         /* Case 1 above */
1216                         if (current_is_kswapd() &&
1217                             PageReclaim(page) &&
1218                             test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1219                                 nr_immediate++;
1220                                 goto activate_locked;
1221
1222                         /* Case 2 above */
1223                         } else if (sane_reclaim(sc) ||
1224                             !PageReclaim(page) || !may_enter_fs) {
1225                                 /*
1226                                  * This is slightly racy - end_page_writeback()
1227                                  * might have just cleared PageReclaim, then
1228                                  * setting PageReclaim here end up interpreted
1229                                  * as PageReadahead - but that does not matter
1230                                  * enough to care.  What we do want is for this
1231                                  * page to have PageReclaim set next time memcg
1232                                  * reclaim reaches the tests above, so it will
1233                                  * then wait_on_page_writeback() to avoid OOM;
1234                                  * and it's also appropriate in global reclaim.
1235                                  */
1236                                 SetPageReclaim(page);
1237                                 nr_writeback++;
1238                                 goto activate_locked;
1239
1240                         /* Case 3 above */
1241                         } else {
1242                                 unlock_page(page);
1243                                 wait_on_page_writeback(page);
1244                                 /* then go back and try same page again */
1245                                 list_add_tail(&page->lru, page_list);
1246                                 continue;
1247                         }
1248                 }
1249
1250                 if (!force_reclaim)
1251                         references = page_check_references(page, sc);
1252
1253                 switch (references) {
1254                 case PAGEREF_ACTIVATE:
1255                         goto activate_locked;
1256                 case PAGEREF_KEEP:
1257                         nr_ref_keep++;
1258                         goto keep_locked;
1259                 case PAGEREF_RECLAIM:
1260                 case PAGEREF_RECLAIM_CLEAN:
1261                         ; /* try to reclaim the page below */
1262                 }
1263
1264                 /*
1265                  * Anonymous process memory has backing store?
1266                  * Try to allocate it some swap space here.
1267                  * Lazyfree page could be freed directly
1268                  */
1269                 if (PageAnon(page) && PageSwapBacked(page)) {
1270                         if (!PageSwapCache(page)) {
1271                                 if (!(sc->gfp_mask & __GFP_IO))
1272                                         goto keep_locked;
1273                                 if (PageTransHuge(page)) {
1274                                         /* cannot split THP, skip it */
1275                                         if (!can_split_huge_page(page, NULL))
1276                                                 goto activate_locked;
1277                                         /*
1278                                          * Split pages without a PMD map right
1279                                          * away. Chances are some or all of the
1280                                          * tail pages can be freed without IO.
1281                                          */
1282                                         if (!compound_mapcount(page) &&
1283                                             split_huge_page_to_list(page,
1284                                                                     page_list))
1285                                                 goto activate_locked;
1286                                 }
1287                                 if (!add_to_swap(page)) {
1288                                         if (!PageTransHuge(page))
1289                                                 goto activate_locked;
1290                                         /* Fallback to swap normal pages */
1291                                         if (split_huge_page_to_list(page,
1292                                                                     page_list))
1293                                                 goto activate_locked;
1294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295                                         count_vm_event(THP_SWPOUT_FALLBACK);
1296 #endif
1297                                         if (!add_to_swap(page))
1298                                                 goto activate_locked;
1299                                 }
1300
1301                                 may_enter_fs = 1;
1302
1303                                 /* Adding to swap updated mapping */
1304                                 mapping = page_mapping(page);
1305                         }
1306                 } else if (unlikely(PageTransHuge(page))) {
1307                         /* Split file THP */
1308                         if (split_huge_page_to_list(page, page_list))
1309                                 goto keep_locked;
1310                 }
1311
1312                 /*
1313                  * The page is mapped into the page tables of one or more
1314                  * processes. Try to unmap it here.
1315                  */
1316                 if (page_mapped(page)) {
1317                         enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1318
1319                         if (unlikely(PageTransHuge(page)))
1320                                 flags |= TTU_SPLIT_HUGE_PMD;
1321                         if (!try_to_unmap(page, flags)) {
1322                                 nr_unmap_fail++;
1323                                 goto activate_locked;
1324                         }
1325                 }
1326
1327                 if (PageDirty(page)) {
1328                         /*
1329                          * Only kswapd can writeback filesystem pages
1330                          * to avoid risk of stack overflow. But avoid
1331                          * injecting inefficient single-page IO into
1332                          * flusher writeback as much as possible: only
1333                          * write pages when we've encountered many
1334                          * dirty pages, and when we've already scanned
1335                          * the rest of the LRU for clean pages and see
1336                          * the same dirty pages again (PageReclaim).
1337                          */
1338                         if (page_is_file_cache(page) &&
1339                             (!current_is_kswapd() || !PageReclaim(page) ||
1340                              !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1341                                 /*
1342                                  * Immediately reclaim when written back.
1343                                  * Similar in principal to deactivate_page()
1344                                  * except we already have the page isolated
1345                                  * and know it's dirty
1346                                  */
1347                                 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1348                                 SetPageReclaim(page);
1349
1350                                 goto activate_locked;
1351                         }
1352
1353                         if (references == PAGEREF_RECLAIM_CLEAN)
1354                                 goto keep_locked;
1355                         if (!may_enter_fs)
1356                                 goto keep_locked;
1357                         if (!sc->may_writepage)
1358                                 goto keep_locked;
1359
1360                         /*
1361                          * Page is dirty. Flush the TLB if a writable entry
1362                          * potentially exists to avoid CPU writes after IO
1363                          * starts and then write it out here.
1364                          */
1365                         try_to_unmap_flush_dirty();
1366                         switch (pageout(page, mapping, sc)) {
1367                         case PAGE_KEEP:
1368                                 goto keep_locked;
1369                         case PAGE_ACTIVATE:
1370                                 goto activate_locked;
1371                         case PAGE_SUCCESS:
1372                                 if (PageWriteback(page))
1373                                         goto keep;
1374                                 if (PageDirty(page))
1375                                         goto keep;
1376
1377                                 /*
1378                                  * A synchronous write - probably a ramdisk.  Go
1379                                  * ahead and try to reclaim the page.
1380                                  */
1381                                 if (!trylock_page(page))
1382                                         goto keep;
1383                                 if (PageDirty(page) || PageWriteback(page))
1384                                         goto keep_locked;
1385                                 mapping = page_mapping(page);
1386                         case PAGE_CLEAN:
1387                                 ; /* try to free the page below */
1388                         }
1389                 }
1390
1391                 /*
1392                  * If the page has buffers, try to free the buffer mappings
1393                  * associated with this page. If we succeed we try to free
1394                  * the page as well.
1395                  *
1396                  * We do this even if the page is PageDirty().
1397                  * try_to_release_page() does not perform I/O, but it is
1398                  * possible for a page to have PageDirty set, but it is actually
1399                  * clean (all its buffers are clean).  This happens if the
1400                  * buffers were written out directly, with submit_bh(). ext3
1401                  * will do this, as well as the blockdev mapping.
1402                  * try_to_release_page() will discover that cleanness and will
1403                  * drop the buffers and mark the page clean - it can be freed.
1404                  *
1405                  * Rarely, pages can have buffers and no ->mapping.  These are
1406                  * the pages which were not successfully invalidated in
1407                  * truncate_complete_page().  We try to drop those buffers here
1408                  * and if that worked, and the page is no longer mapped into
1409                  * process address space (page_count == 1) it can be freed.
1410                  * Otherwise, leave the page on the LRU so it is swappable.
1411                  */
1412                 if (page_has_private(page)) {
1413                         if (!try_to_release_page(page, sc->gfp_mask))
1414                                 goto activate_locked;
1415                         if (!mapping && page_count(page) == 1) {
1416                                 unlock_page(page);
1417                                 if (put_page_testzero(page))
1418                                         goto free_it;
1419                                 else {
1420                                         /*
1421                                          * rare race with speculative reference.
1422                                          * the speculative reference will free
1423                                          * this page shortly, so we may
1424                                          * increment nr_reclaimed here (and
1425                                          * leave it off the LRU).
1426                                          */
1427                                         nr_reclaimed++;
1428                                         continue;
1429                                 }
1430                         }
1431                 }
1432
1433                 if (PageAnon(page) && !PageSwapBacked(page)) {
1434                         /* follow __remove_mapping for reference */
1435                         if (!page_ref_freeze(page, 1))
1436                                 goto keep_locked;
1437                         if (PageDirty(page)) {
1438                                 page_ref_unfreeze(page, 1);
1439                                 goto keep_locked;
1440                         }
1441
1442                         count_vm_event(PGLAZYFREED);
1443                         count_memcg_page_event(page, PGLAZYFREED);
1444                 } else if (!mapping || !__remove_mapping(mapping, page, true))
1445                         goto keep_locked;
1446                 /*
1447                  * At this point, we have no other references and there is
1448                  * no way to pick any more up (removed from LRU, removed
1449                  * from pagecache). Can use non-atomic bitops now (and
1450                  * we obviously don't have to worry about waking up a process
1451                  * waiting on the page lock, because there are no references.
1452                  */
1453                 __ClearPageLocked(page);
1454 free_it:
1455                 nr_reclaimed++;
1456
1457                 /*
1458                  * Is there need to periodically free_page_list? It would
1459                  * appear not as the counts should be low
1460                  */
1461                 if (unlikely(PageTransHuge(page))) {
1462                         mem_cgroup_uncharge(page);
1463                         (*get_compound_page_dtor(page))(page);
1464                 } else
1465                         list_add(&page->lru, &free_pages);
1466                 continue;
1467
1468 activate_locked:
1469                 /* Not a candidate for swapping, so reclaim swap space. */
1470                 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1471                                                 PageMlocked(page)))
1472                         try_to_free_swap(page);
1473                 VM_BUG_ON_PAGE(PageActive(page), page);
1474                 if (!PageMlocked(page)) {
1475                         SetPageActive(page);
1476                         pgactivate++;
1477                         count_memcg_page_event(page, PGACTIVATE);
1478                 }
1479 keep_locked:
1480                 unlock_page(page);
1481 keep:
1482                 list_add(&page->lru, &ret_pages);
1483                 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1484         }
1485
1486         mem_cgroup_uncharge_list(&free_pages);
1487         try_to_unmap_flush();
1488         free_unref_page_list(&free_pages);
1489
1490         list_splice(&ret_pages, page_list);
1491         count_vm_events(PGACTIVATE, pgactivate);
1492
1493         if (stat) {
1494                 stat->nr_dirty = nr_dirty;
1495                 stat->nr_congested = nr_congested;
1496                 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1497                 stat->nr_writeback = nr_writeback;
1498                 stat->nr_immediate = nr_immediate;
1499                 stat->nr_activate = pgactivate;
1500                 stat->nr_ref_keep = nr_ref_keep;
1501                 stat->nr_unmap_fail = nr_unmap_fail;
1502         }
1503         return nr_reclaimed;
1504 }
1505
1506 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1507                                             struct list_head *page_list)
1508 {
1509         struct scan_control sc = {
1510                 .gfp_mask = GFP_KERNEL,
1511                 .priority = DEF_PRIORITY,
1512                 .may_unmap = 1,
1513         };
1514         unsigned long ret;
1515         struct page *page, *next;
1516         LIST_HEAD(clean_pages);
1517
1518         list_for_each_entry_safe(page, next, page_list, lru) {
1519                 if (page_is_file_cache(page) && !PageDirty(page) &&
1520                     !__PageMovable(page) && !PageUnevictable(page)) {
1521                         ClearPageActive(page);
1522                         list_move(&page->lru, &clean_pages);
1523                 }
1524         }
1525
1526         ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1527                         TTU_IGNORE_ACCESS, NULL, true);
1528         list_splice(&clean_pages, page_list);
1529         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1530         return ret;
1531 }
1532
1533 /*
1534  * Attempt to remove the specified page from its LRU.  Only take this page
1535  * if it is of the appropriate PageActive status.  Pages which are being
1536  * freed elsewhere are also ignored.
1537  *
1538  * page:        page to consider
1539  * mode:        one of the LRU isolation modes defined above
1540  *
1541  * returns 0 on success, -ve errno on failure.
1542  */
1543 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1544 {
1545         int ret = -EINVAL;
1546
1547         /* Only take pages on the LRU. */
1548         if (!PageLRU(page))
1549                 return ret;
1550
1551         /* Compaction should not handle unevictable pages but CMA can do so */
1552         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1553                 return ret;
1554
1555         ret = -EBUSY;
1556
1557         /*
1558          * To minimise LRU disruption, the caller can indicate that it only
1559          * wants to isolate pages it will be able to operate on without
1560          * blocking - clean pages for the most part.
1561          *
1562          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1563          * that it is possible to migrate without blocking
1564          */
1565         if (mode & ISOLATE_ASYNC_MIGRATE) {
1566                 /* All the caller can do on PageWriteback is block */
1567                 if (PageWriteback(page))
1568                         return ret;
1569
1570                 if (PageDirty(page)) {
1571                         struct address_space *mapping;
1572                         bool migrate_dirty;
1573
1574                         /*
1575                          * Only pages without mappings or that have a
1576                          * ->migratepage callback are possible to migrate
1577                          * without blocking. However, we can be racing with
1578                          * truncation so it's necessary to lock the page
1579                          * to stabilise the mapping as truncation holds
1580                          * the page lock until after the page is removed
1581                          * from the page cache.
1582                          */
1583                         if (!trylock_page(page))
1584                                 return ret;
1585
1586                         mapping = page_mapping(page);
1587                         migrate_dirty = !mapping || mapping->a_ops->migratepage;
1588                         unlock_page(page);
1589                         if (!migrate_dirty)
1590                                 return ret;
1591                 }
1592         }
1593
1594         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1595                 return ret;
1596
1597         if (likely(get_page_unless_zero(page))) {
1598                 /*
1599                  * Be careful not to clear PageLRU until after we're
1600                  * sure the page is not being freed elsewhere -- the
1601                  * page release code relies on it.
1602                  */
1603                 ClearPageLRU(page);
1604                 ret = 0;
1605         }
1606
1607         return ret;
1608 }
1609
1610
1611 /*
1612  * Update LRU sizes after isolating pages. The LRU size updates must
1613  * be complete before mem_cgroup_update_lru_size due to a santity check.
1614  */
1615 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1616                         enum lru_list lru, unsigned long *nr_zone_taken)
1617 {
1618         int zid;
1619
1620         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1621                 if (!nr_zone_taken[zid])
1622                         continue;
1623
1624                 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1625 #ifdef CONFIG_MEMCG
1626                 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1627 #endif
1628         }
1629
1630 }
1631
1632 /*
1633  * zone_lru_lock is heavily contended.  Some of the functions that
1634  * shrink the lists perform better by taking out a batch of pages
1635  * and working on them outside the LRU lock.
1636  *
1637  * For pagecache intensive workloads, this function is the hottest
1638  * spot in the kernel (apart from copy_*_user functions).
1639  *
1640  * Appropriate locks must be held before calling this function.
1641  *
1642  * @nr_to_scan: The number of eligible pages to look through on the list.
1643  * @lruvec:     The LRU vector to pull pages from.
1644  * @dst:        The temp list to put pages on to.
1645  * @nr_scanned: The number of pages that were scanned.
1646  * @sc:         The scan_control struct for this reclaim session
1647  * @mode:       One of the LRU isolation modes
1648  * @lru:        LRU list id for isolating
1649  *
1650  * returns how many pages were moved onto *@dst.
1651  */
1652 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1653                 struct lruvec *lruvec, struct list_head *dst,
1654                 unsigned long *nr_scanned, struct scan_control *sc,
1655                 isolate_mode_t mode, enum lru_list lru)
1656 {
1657         struct list_head *src = &lruvec->lists[lru];
1658         unsigned long nr_taken = 0;
1659         unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1660         unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1661         unsigned long skipped = 0;
1662         unsigned long scan, total_scan, nr_pages;
1663         LIST_HEAD(pages_skipped);
1664
1665         scan = 0;
1666         for (total_scan = 0;
1667              scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1668              total_scan++) {
1669                 struct page *page;
1670
1671                 page = lru_to_page(src);
1672                 prefetchw_prev_lru_page(page, src, flags);
1673
1674                 VM_BUG_ON_PAGE(!PageLRU(page), page);
1675
1676                 if (page_zonenum(page) > sc->reclaim_idx) {
1677                         list_move(&page->lru, &pages_skipped);
1678                         nr_skipped[page_zonenum(page)]++;
1679                         continue;
1680                 }
1681
1682                 /*
1683                  * Do not count skipped pages because that makes the function
1684                  * return with no isolated pages if the LRU mostly contains
1685                  * ineligible pages.  This causes the VM to not reclaim any
1686                  * pages, triggering a premature OOM.
1687                  */
1688                 scan++;
1689                 switch (__isolate_lru_page(page, mode)) {
1690                 case 0:
1691                         nr_pages = hpage_nr_pages(page);
1692                         nr_taken += nr_pages;
1693                         nr_zone_taken[page_zonenum(page)] += nr_pages;
1694                         list_move(&page->lru, dst);
1695                         break;
1696
1697                 case -EBUSY:
1698                         /* else it is being freed elsewhere */
1699                         list_move(&page->lru, src);
1700                         continue;
1701
1702                 default:
1703                         BUG();
1704                 }
1705         }
1706
1707         /*
1708          * Splice any skipped pages to the start of the LRU list. Note that
1709          * this disrupts the LRU order when reclaiming for lower zones but
1710          * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711          * scanning would soon rescan the same pages to skip and put the
1712          * system at risk of premature OOM.
1713          */
1714         if (!list_empty(&pages_skipped)) {
1715                 int zid;
1716
1717                 list_splice(&pages_skipped, src);
1718                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719                         if (!nr_skipped[zid])
1720                                 continue;
1721
1722                         __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723                         skipped += nr_skipped[zid];
1724                 }
1725         }
1726         *nr_scanned = total_scan;
1727         trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728                                     total_scan, skipped, nr_taken, mode, lru);
1729         update_lru_sizes(lruvec, lru, nr_zone_taken);
1730         return nr_taken;
1731 }
1732
1733 /**
1734  * isolate_lru_page - tries to isolate a page from its LRU list
1735  * @page: page to isolate from its LRU list
1736  *
1737  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738  * vmstat statistic corresponding to whatever LRU list the page was on.
1739  *
1740  * Returns 0 if the page was removed from an LRU list.
1741  * Returns -EBUSY if the page was not on an LRU list.
1742  *
1743  * The returned page will have PageLRU() cleared.  If it was found on
1744  * the active list, it will have PageActive set.  If it was found on
1745  * the unevictable list, it will have the PageUnevictable bit set. That flag
1746  * may need to be cleared by the caller before letting the page go.
1747  *
1748  * The vmstat statistic corresponding to the list on which the page was
1749  * found will be decremented.
1750  *
1751  * Restrictions:
1752  *
1753  * (1) Must be called with an elevated refcount on the page. This is a
1754  *     fundamentnal difference from isolate_lru_pages (which is called
1755  *     without a stable reference).
1756  * (2) the lru_lock must not be held.
1757  * (3) interrupts must be enabled.
1758  */
1759 int isolate_lru_page(struct page *page)
1760 {
1761         int ret = -EBUSY;
1762
1763         VM_BUG_ON_PAGE(!page_count(page), page);
1764         WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765
1766         if (PageLRU(page)) {
1767                 struct zone *zone = page_zone(page);
1768                 struct lruvec *lruvec;
1769
1770                 spin_lock_irq(zone_lru_lock(zone));
1771                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1772                 if (PageLRU(page)) {
1773                         int lru = page_lru(page);
1774                         get_page(page);
1775                         ClearPageLRU(page);
1776                         del_page_from_lru_list(page, lruvec, lru);
1777                         ret = 0;
1778                 }
1779                 spin_unlock_irq(zone_lru_lock(zone));
1780         }
1781         return ret;
1782 }
1783
1784 /*
1785  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786  * then get resheduled. When there are massive number of tasks doing page
1787  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788  * the LRU list will go small and be scanned faster than necessary, leading to
1789  * unnecessary swapping, thrashing and OOM.
1790  */
1791 static int too_many_isolated(struct pglist_data *pgdat, int file,
1792                 struct scan_control *sc)
1793 {
1794         unsigned long inactive, isolated;
1795
1796         if (current_is_kswapd())
1797                 return 0;
1798
1799         if (!sane_reclaim(sc))
1800                 return 0;
1801
1802         if (file) {
1803                 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804                 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805         } else {
1806                 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807                 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808         }
1809
1810         /*
1811          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812          * won't get blocked by normal direct-reclaimers, forming a circular
1813          * deadlock.
1814          */
1815         if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816                 inactive >>= 3;
1817
1818         return isolated > inactive;
1819 }
1820
1821 static noinline_for_stack void
1822 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1823 {
1824         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1825         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1826         LIST_HEAD(pages_to_free);
1827
1828         /*
1829          * Put back any unfreeable pages.
1830          */
1831         while (!list_empty(page_list)) {
1832                 struct page *page = lru_to_page(page_list);
1833                 int lru;
1834
1835                 VM_BUG_ON_PAGE(PageLRU(page), page);
1836                 list_del(&page->lru);
1837                 if (unlikely(!page_evictable(page))) {
1838                         spin_unlock_irq(&pgdat->lru_lock);
1839                         putback_lru_page(page);
1840                         spin_lock_irq(&pgdat->lru_lock);
1841                         continue;
1842                 }
1843
1844                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1845
1846                 SetPageLRU(page);
1847                 lru = page_lru(page);
1848                 add_page_to_lru_list(page, lruvec, lru);
1849
1850                 if (is_active_lru(lru)) {
1851                         int file = is_file_lru(lru);
1852                         int numpages = hpage_nr_pages(page);
1853                         reclaim_stat->recent_rotated[file] += numpages;
1854                 }
1855                 if (put_page_testzero(page)) {
1856                         __ClearPageLRU(page);
1857                         __ClearPageActive(page);
1858                         del_page_from_lru_list(page, lruvec, lru);
1859
1860                         if (unlikely(PageCompound(page))) {
1861                                 spin_unlock_irq(&pgdat->lru_lock);
1862                                 mem_cgroup_uncharge(page);
1863                                 (*get_compound_page_dtor(page))(page);
1864                                 spin_lock_irq(&pgdat->lru_lock);
1865                         } else
1866                                 list_add(&page->lru, &pages_to_free);
1867                 }
1868         }
1869
1870         /*
1871          * To save our caller's stack, now use input list for pages to free.
1872          */
1873         list_splice(&pages_to_free, page_list);
1874 }
1875
1876 /*
1877  * If a kernel thread (such as nfsd for loop-back mounts) services
1878  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1879  * In that case we should only throttle if the backing device it is
1880  * writing to is congested.  In other cases it is safe to throttle.
1881  */
1882 static int current_may_throttle(void)
1883 {
1884         return !(current->flags & PF_LESS_THROTTLE) ||
1885                 current->backing_dev_info == NULL ||
1886                 bdi_write_congested(current->backing_dev_info);
1887 }
1888
1889 /*
1890  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1891  * of reclaimed pages
1892  */
1893 static noinline_for_stack unsigned long
1894 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1895                      struct scan_control *sc, enum lru_list lru)
1896 {
1897         LIST_HEAD(page_list);
1898         unsigned long nr_scanned;
1899         unsigned long nr_reclaimed = 0;
1900         unsigned long nr_taken;
1901         struct reclaim_stat stat = {};
1902         isolate_mode_t isolate_mode = 0;
1903         int file = is_file_lru(lru);
1904         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1905         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1906         bool stalled = false;
1907
1908         while (unlikely(too_many_isolated(pgdat, file, sc))) {
1909                 if (stalled)
1910                         return 0;
1911
1912                 /* wait a bit for the reclaimer. */
1913                 msleep(100);
1914                 stalled = true;
1915
1916                 /* We are about to die and free our memory. Return now. */
1917                 if (fatal_signal_pending(current))
1918                         return SWAP_CLUSTER_MAX;
1919         }
1920
1921         lru_add_drain();
1922
1923         if (!sc->may_unmap)
1924                 isolate_mode |= ISOLATE_UNMAPPED;
1925
1926         spin_lock_irq(&pgdat->lru_lock);
1927
1928         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1929                                      &nr_scanned, sc, isolate_mode, lru);
1930
1931         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1932         reclaim_stat->recent_scanned[file] += nr_taken;
1933
1934         if (current_is_kswapd()) {
1935                 if (global_reclaim(sc))
1936                         __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1937                 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1938                                    nr_scanned);
1939         } else {
1940                 if (global_reclaim(sc))
1941                         __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1942                 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1943                                    nr_scanned);
1944         }
1945         spin_unlock_irq(&pgdat->lru_lock);
1946
1947         if (nr_taken == 0)
1948                 return 0;
1949
1950         nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1951                                 &stat, false);
1952
1953         spin_lock_irq(&pgdat->lru_lock);
1954
1955         if (current_is_kswapd()) {
1956                 if (global_reclaim(sc))
1957                         __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1958                 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1959                                    nr_reclaimed);
1960         } else {
1961                 if (global_reclaim(sc))
1962                         __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1963                 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1964                                    nr_reclaimed);
1965         }
1966
1967         putback_inactive_pages(lruvec, &page_list);
1968
1969         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1970
1971         spin_unlock_irq(&pgdat->lru_lock);
1972
1973         mem_cgroup_uncharge_list(&page_list);
1974         free_unref_page_list(&page_list);
1975
1976         /*
1977          * If dirty pages are scanned that are not queued for IO, it
1978          * implies that flushers are not doing their job. This can
1979          * happen when memory pressure pushes dirty pages to the end of
1980          * the LRU before the dirty limits are breached and the dirty
1981          * data has expired. It can also happen when the proportion of
1982          * dirty pages grows not through writes but through memory
1983          * pressure reclaiming all the clean cache. And in some cases,
1984          * the flushers simply cannot keep up with the allocation
1985          * rate. Nudge the flusher threads in case they are asleep.
1986          */
1987         if (stat.nr_unqueued_dirty == nr_taken)
1988                 wakeup_flusher_threads(WB_REASON_VMSCAN);
1989
1990         sc->nr.dirty += stat.nr_dirty;
1991         sc->nr.congested += stat.nr_congested;
1992         sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1993         sc->nr.writeback += stat.nr_writeback;
1994         sc->nr.immediate += stat.nr_immediate;
1995         sc->nr.taken += nr_taken;
1996         if (file)
1997                 sc->nr.file_taken += nr_taken;
1998
1999         trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2000                         nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2001         return nr_reclaimed;
2002 }
2003
2004 /*
2005  * This moves pages from the active list to the inactive list.
2006  *
2007  * We move them the other way if the page is referenced by one or more
2008  * processes, from rmap.
2009  *
2010  * If the pages are mostly unmapped, the processing is fast and it is
2011  * appropriate to hold zone_lru_lock across the whole operation.  But if
2012  * the pages are mapped, the processing is slow (page_referenced()) so we
2013  * should drop zone_lru_lock around each page.  It's impossible to balance
2014  * this, so instead we remove the pages from the LRU while processing them.
2015  * It is safe to rely on PG_active against the non-LRU pages in here because
2016  * nobody will play with that bit on a non-LRU page.
2017  *
2018  * The downside is that we have to touch page->_refcount against each page.
2019  * But we had to alter page->flags anyway.
2020  *
2021  * Returns the number of pages moved to the given lru.
2022  */
2023
2024 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2025                                      struct list_head *list,
2026                                      struct list_head *pages_to_free,
2027                                      enum lru_list lru)
2028 {
2029         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2030         struct page *page;
2031         int nr_pages;
2032         int nr_moved = 0;
2033
2034         while (!list_empty(list)) {
2035                 page = lru_to_page(list);
2036                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2037
2038                 VM_BUG_ON_PAGE(PageLRU(page), page);
2039                 SetPageLRU(page);
2040
2041                 nr_pages = hpage_nr_pages(page);
2042                 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2043                 list_move(&page->lru, &lruvec->lists[lru]);
2044
2045                 if (put_page_testzero(page)) {
2046                         __ClearPageLRU(page);
2047                         __ClearPageActive(page);
2048                         del_page_from_lru_list(page, lruvec, lru);
2049
2050                         if (unlikely(PageCompound(page))) {
2051                                 spin_unlock_irq(&pgdat->lru_lock);
2052                                 mem_cgroup_uncharge(page);
2053                                 (*get_compound_page_dtor(page))(page);
2054                                 spin_lock_irq(&pgdat->lru_lock);
2055                         } else
2056                                 list_add(&page->lru, pages_to_free);
2057                 } else {
2058                         nr_moved += nr_pages;
2059                 }
2060         }
2061
2062         if (!is_active_lru(lru)) {
2063                 __count_vm_events(PGDEACTIVATE, nr_moved);
2064                 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2065                                    nr_moved);
2066         }
2067
2068         return nr_moved;
2069 }
2070
2071 static void shrink_active_list(unsigned long nr_to_scan,
2072                                struct lruvec *lruvec,
2073                                struct scan_control *sc,
2074                                enum lru_list lru)
2075 {
2076         unsigned long nr_taken;
2077         unsigned long nr_scanned;
2078         unsigned long vm_flags;
2079         LIST_HEAD(l_hold);      /* The pages which were snipped off */
2080         LIST_HEAD(l_active);
2081         LIST_HEAD(l_inactive);
2082         struct page *page;
2083         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2084         unsigned nr_deactivate, nr_activate;
2085         unsigned nr_rotated = 0;
2086         isolate_mode_t isolate_mode = 0;
2087         int file = is_file_lru(lru);
2088         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2089
2090         lru_add_drain();
2091
2092         if (!sc->may_unmap)
2093                 isolate_mode |= ISOLATE_UNMAPPED;
2094
2095         spin_lock_irq(&pgdat->lru_lock);
2096
2097         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2098                                      &nr_scanned, sc, isolate_mode, lru);
2099
2100         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2101         reclaim_stat->recent_scanned[file] += nr_taken;
2102
2103         __count_vm_events(PGREFILL, nr_scanned);
2104         count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2105
2106         spin_unlock_irq(&pgdat->lru_lock);
2107
2108         while (!list_empty(&l_hold)) {
2109                 cond_resched();
2110                 page = lru_to_page(&l_hold);
2111                 list_del(&page->lru);
2112
2113                 if (unlikely(!page_evictable(page))) {
2114                         putback_lru_page(page);
2115                         continue;
2116                 }
2117
2118                 if (unlikely(buffer_heads_over_limit)) {
2119                         if (page_has_private(page) && trylock_page(page)) {
2120                                 if (page_has_private(page))
2121                                         try_to_release_page(page, 0);
2122                                 unlock_page(page);
2123                         }
2124                 }
2125
2126                 if (page_referenced(page, 0, sc->target_mem_cgroup,
2127                                     &vm_flags)) {
2128                         nr_rotated += hpage_nr_pages(page);
2129                         /*
2130                          * Identify referenced, file-backed active pages and
2131                          * give them one more trip around the active list. So
2132                          * that executable code get better chances to stay in
2133                          * memory under moderate memory pressure.  Anon pages
2134                          * are not likely to be evicted by use-once streaming
2135                          * IO, plus JVM can create lots of anon VM_EXEC pages,
2136                          * so we ignore them here.
2137                          */
2138                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2139                                 list_add(&page->lru, &l_active);
2140                                 continue;
2141                         }
2142                 }
2143
2144                 ClearPageActive(page);  /* we are de-activating */
2145                 list_add(&page->lru, &l_inactive);
2146         }
2147
2148         /*
2149          * Move pages back to the lru list.
2150          */
2151         spin_lock_irq(&pgdat->lru_lock);
2152         /*
2153          * Count referenced pages from currently used mappings as rotated,
2154          * even though only some of them are actually re-activated.  This
2155          * helps balance scan pressure between file and anonymous pages in
2156          * get_scan_count.
2157          */
2158         reclaim_stat->recent_rotated[file] += nr_rotated;
2159
2160         nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2161         nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2162         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2163         spin_unlock_irq(&pgdat->lru_lock);
2164
2165         mem_cgroup_uncharge_list(&l_hold);
2166         free_unref_page_list(&l_hold);
2167         trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2168                         nr_deactivate, nr_rotated, sc->priority, file);
2169 }
2170
2171 /*
2172  * The inactive anon list should be small enough that the VM never has
2173  * to do too much work.
2174  *
2175  * The inactive file list should be small enough to leave most memory
2176  * to the established workingset on the scan-resistant active list,
2177  * but large enough to avoid thrashing the aggregate readahead window.
2178  *
2179  * Both inactive lists should also be large enough that each inactive
2180  * page has a chance to be referenced again before it is reclaimed.
2181  *
2182  * If that fails and refaulting is observed, the inactive list grows.
2183  *
2184  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185  * on this LRU, maintained by the pageout code. An inactive_ratio
2186  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2187  *
2188  * total     target    max
2189  * memory    ratio     inactive
2190  * -------------------------------------
2191  *   10MB       1         5MB
2192  *  100MB       1        50MB
2193  *    1GB       3       250MB
2194  *   10GB      10       0.9GB
2195  *  100GB      31         3GB
2196  *    1TB     101        10GB
2197  *   10TB     320        32GB
2198  */
2199 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2200                                  struct scan_control *sc, bool trace)
2201 {
2202         enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2203         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2204         enum lru_list inactive_lru = file * LRU_FILE;
2205         unsigned long inactive, active;
2206         unsigned long inactive_ratio;
2207         unsigned long refaults;
2208         unsigned long gb;
2209
2210         /*
2211          * If we don't have swap space, anonymous page deactivation
2212          * is pointless.
2213          */
2214         if (!file && !total_swap_pages)
2215                 return false;
2216
2217         inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2218         active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2219
2220         /*
2221          * When refaults are being observed, it means a new workingset
2222          * is being established. Disable active list protection to get
2223          * rid of the stale workingset quickly.
2224          */
2225         refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2226         if (file && lruvec->refaults != refaults) {
2227                 inactive_ratio = 0;
2228         } else {
2229                 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2230                 if (gb)
2231                         inactive_ratio = int_sqrt(10 * gb);
2232                 else
2233                         inactive_ratio = 1;
2234         }
2235
2236         if (trace)
2237                 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2238                         lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2239                         lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2240                         inactive_ratio, file);
2241
2242         return inactive * inactive_ratio < active;
2243 }
2244
2245 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2246                                  struct lruvec *lruvec, struct scan_control *sc)
2247 {
2248         if (is_active_lru(lru)) {
2249                 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2250                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
2251                 return 0;
2252         }
2253
2254         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2255 }
2256
2257 enum scan_balance {
2258         SCAN_EQUAL,
2259         SCAN_FRACT,
2260         SCAN_ANON,
2261         SCAN_FILE,
2262 };
2263
2264 /*
2265  * Determine how aggressively the anon and file LRU lists should be
2266  * scanned.  The relative value of each set of LRU lists is determined
2267  * by looking at the fraction of the pages scanned we did rotate back
2268  * onto the active list instead of evict.
2269  *
2270  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2271  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2272  */
2273 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2274                            struct scan_control *sc, unsigned long *nr,
2275                            unsigned long *lru_pages)
2276 {
2277         int swappiness = mem_cgroup_swappiness(memcg);
2278         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2279         u64 fraction[2];
2280         u64 denominator = 0;    /* gcc */
2281         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2282         unsigned long anon_prio, file_prio;
2283         enum scan_balance scan_balance;
2284         unsigned long anon, file;
2285         unsigned long ap, fp;
2286         enum lru_list lru;
2287
2288         /* If we have no swap space, do not bother scanning anon pages. */
2289         if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2290                 scan_balance = SCAN_FILE;
2291                 goto out;
2292         }
2293
2294         /*
2295          * Global reclaim will swap to prevent OOM even with no
2296          * swappiness, but memcg users want to use this knob to
2297          * disable swapping for individual groups completely when
2298          * using the memory controller's swap limit feature would be
2299          * too expensive.
2300          */
2301         if (!global_reclaim(sc) && !swappiness) {
2302                 scan_balance = SCAN_FILE;
2303                 goto out;
2304         }
2305
2306         /*
2307          * Do not apply any pressure balancing cleverness when the
2308          * system is close to OOM, scan both anon and file equally
2309          * (unless the swappiness setting disagrees with swapping).
2310          */
2311         if (!sc->priority && swappiness) {
2312                 scan_balance = SCAN_EQUAL;
2313                 goto out;
2314         }
2315
2316         /*
2317          * Prevent the reclaimer from falling into the cache trap: as
2318          * cache pages start out inactive, every cache fault will tip
2319          * the scan balance towards the file LRU.  And as the file LRU
2320          * shrinks, so does the window for rotation from references.
2321          * This means we have a runaway feedback loop where a tiny
2322          * thrashing file LRU becomes infinitely more attractive than
2323          * anon pages.  Try to detect this based on file LRU size.
2324          */
2325         if (global_reclaim(sc)) {
2326                 unsigned long pgdatfile;
2327                 unsigned long pgdatfree;
2328                 int z;
2329                 unsigned long total_high_wmark = 0;
2330
2331                 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2332                 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2333                            node_page_state(pgdat, NR_INACTIVE_FILE);
2334
2335                 for (z = 0; z < MAX_NR_ZONES; z++) {
2336                         struct zone *zone = &pgdat->node_zones[z];
2337                         if (!managed_zone(zone))
2338                                 continue;
2339
2340                         total_high_wmark += high_wmark_pages(zone);
2341                 }
2342
2343                 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2344                         /*
2345                          * Force SCAN_ANON if there are enough inactive
2346                          * anonymous pages on the LRU in eligible zones.
2347                          * Otherwise, the small LRU gets thrashed.
2348                          */
2349                         if (!inactive_list_is_low(lruvec, false, sc, false) &&
2350                             lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2351                                         >> sc->priority) {
2352                                 scan_balance = SCAN_ANON;
2353                                 goto out;
2354                         }
2355                 }
2356         }
2357
2358         /*
2359          * If there is enough inactive page cache, i.e. if the size of the
2360          * inactive list is greater than that of the active list *and* the
2361          * inactive list actually has some pages to scan on this priority, we
2362          * do not reclaim anything from the anonymous working set right now.
2363          * Without the second condition we could end up never scanning an
2364          * lruvec even if it has plenty of old anonymous pages unless the
2365          * system is under heavy pressure.
2366          */
2367         if (!inactive_list_is_low(lruvec, true, sc, false) &&
2368             lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2369                 scan_balance = SCAN_FILE;
2370                 goto out;
2371         }
2372
2373         scan_balance = SCAN_FRACT;
2374
2375         /*
2376          * With swappiness at 100, anonymous and file have the same priority.
2377          * This scanning priority is essentially the inverse of IO cost.
2378          */
2379         anon_prio = swappiness;
2380         file_prio = 200 - anon_prio;
2381
2382         /*
2383          * OK, so we have swap space and a fair amount of page cache
2384          * pages.  We use the recently rotated / recently scanned
2385          * ratios to determine how valuable each cache is.
2386          *
2387          * Because workloads change over time (and to avoid overflow)
2388          * we keep these statistics as a floating average, which ends
2389          * up weighing recent references more than old ones.
2390          *
2391          * anon in [0], file in [1]
2392          */
2393
2394         anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2395                 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2396         file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2397                 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2398
2399         spin_lock_irq(&pgdat->lru_lock);
2400         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2401                 reclaim_stat->recent_scanned[0] /= 2;
2402                 reclaim_stat->recent_rotated[0] /= 2;
2403         }
2404
2405         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2406                 reclaim_stat->recent_scanned[1] /= 2;
2407                 reclaim_stat->recent_rotated[1] /= 2;
2408         }
2409
2410         /*
2411          * The amount of pressure on anon vs file pages is inversely
2412          * proportional to the fraction of recently scanned pages on
2413          * each list that were recently referenced and in active use.
2414          */
2415         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2416         ap /= reclaim_stat->recent_rotated[0] + 1;
2417
2418         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2419         fp /= reclaim_stat->recent_rotated[1] + 1;
2420         spin_unlock_irq(&pgdat->lru_lock);
2421
2422         fraction[0] = ap;
2423         fraction[1] = fp;
2424         denominator = ap + fp + 1;
2425 out:
2426         *lru_pages = 0;
2427         for_each_evictable_lru(lru) {
2428                 int file = is_file_lru(lru);
2429                 unsigned long size;
2430                 unsigned long scan;
2431
2432                 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2433                 scan = size >> sc->priority;
2434                 /*
2435                  * If the cgroup's already been deleted, make sure to
2436                  * scrape out the remaining cache.
2437                  */
2438                 if (!scan && !mem_cgroup_online(memcg))
2439                         scan = min(size, SWAP_CLUSTER_MAX);
2440
2441                 switch (scan_balance) {
2442                 case SCAN_EQUAL:
2443                         /* Scan lists relative to size */
2444                         break;
2445                 case SCAN_FRACT:
2446                         /*
2447                          * Scan types proportional to swappiness and
2448                          * their relative recent reclaim efficiency.
2449                          * Make sure we don't miss the last page
2450                          * because of a round-off error.
2451                          */
2452                         scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2453                                                   denominator);
2454                         break;
2455                 case SCAN_FILE:
2456                 case SCAN_ANON:
2457                         /* Scan one type exclusively */
2458                         if ((scan_balance == SCAN_FILE) != file) {
2459                                 size = 0;
2460                                 scan = 0;
2461                         }
2462                         break;
2463                 default:
2464                         /* Look ma, no brain */
2465                         BUG();
2466                 }
2467
2468                 *lru_pages += size;
2469                 nr[lru] = scan;
2470         }
2471 }
2472
2473 /*
2474  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2475  */
2476 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2477                               struct scan_control *sc, unsigned long *lru_pages)
2478 {
2479         struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2480         unsigned long nr[NR_LRU_LISTS];
2481         unsigned long targets[NR_LRU_LISTS];
2482         unsigned long nr_to_scan;
2483         enum lru_list lru;
2484         unsigned long nr_reclaimed = 0;
2485         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2486         struct blk_plug plug;
2487         bool scan_adjusted;
2488
2489         get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2490
2491         /* Record the original scan target for proportional adjustments later */
2492         memcpy(targets, nr, sizeof(nr));
2493
2494         /*
2495          * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2496          * event that can occur when there is little memory pressure e.g.
2497          * multiple streaming readers/writers. Hence, we do not abort scanning
2498          * when the requested number of pages are reclaimed when scanning at
2499          * DEF_PRIORITY on the assumption that the fact we are direct
2500          * reclaiming implies that kswapd is not keeping up and it is best to
2501          * do a batch of work at once. For memcg reclaim one check is made to
2502          * abort proportional reclaim if either the file or anon lru has already
2503          * dropped to zero at the first pass.
2504          */
2505         scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2506                          sc->priority == DEF_PRIORITY);
2507
2508         blk_start_plug(&plug);
2509         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2510                                         nr[LRU_INACTIVE_FILE]) {
2511                 unsigned long nr_anon, nr_file, percentage;
2512                 unsigned long nr_scanned;
2513
2514                 for_each_evictable_lru(lru) {
2515                         if (nr[lru]) {
2516                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2517                                 nr[lru] -= nr_to_scan;
2518
2519                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2520                                                             lruvec, sc);
2521                         }
2522                 }
2523
2524                 cond_resched();
2525
2526                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2527                         continue;
2528
2529                 /*
2530                  * For kswapd and memcg, reclaim at least the number of pages
2531                  * requested. Ensure that the anon and file LRUs are scanned
2532                  * proportionally what was requested by get_scan_count(). We
2533                  * stop reclaiming one LRU and reduce the amount scanning
2534                  * proportional to the original scan target.
2535                  */
2536                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2537                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2538
2539                 /*
2540                  * It's just vindictive to attack the larger once the smaller
2541                  * has gone to zero.  And given the way we stop scanning the
2542                  * smaller below, this makes sure that we only make one nudge
2543                  * towards proportionality once we've got nr_to_reclaim.
2544                  */
2545                 if (!nr_file || !nr_anon)
2546                         break;
2547
2548                 if (nr_file > nr_anon) {
2549                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2550                                                 targets[LRU_ACTIVE_ANON] + 1;
2551                         lru = LRU_BASE;
2552                         percentage = nr_anon * 100 / scan_target;
2553                 } else {
2554                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2555                                                 targets[LRU_ACTIVE_FILE] + 1;
2556                         lru = LRU_FILE;
2557                         percentage = nr_file * 100 / scan_target;
2558                 }
2559
2560                 /* Stop scanning the smaller of the LRU */
2561                 nr[lru] = 0;
2562                 nr[lru + LRU_ACTIVE] = 0;
2563
2564                 /*
2565                  * Recalculate the other LRU scan count based on its original
2566                  * scan target and the percentage scanning already complete
2567                  */
2568                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2569                 nr_scanned = targets[lru] - nr[lru];
2570                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2571                 nr[lru] -= min(nr[lru], nr_scanned);
2572
2573                 lru += LRU_ACTIVE;
2574                 nr_scanned = targets[lru] - nr[lru];
2575                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2576                 nr[lru] -= min(nr[lru], nr_scanned);
2577
2578                 scan_adjusted = true;
2579         }
2580         blk_finish_plug(&plug);
2581         sc->nr_reclaimed += nr_reclaimed;
2582
2583         /*
2584          * Even if we did not try to evict anon pages at all, we want to
2585          * rebalance the anon lru active/inactive ratio.
2586          */
2587         if (inactive_list_is_low(lruvec, false, sc, true))
2588                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2589                                    sc, LRU_ACTIVE_ANON);
2590 }
2591
2592 /* Use reclaim/compaction for costly allocs or under memory pressure */
2593 static bool in_reclaim_compaction(struct scan_control *sc)
2594 {
2595         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2596                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2597                          sc->priority < DEF_PRIORITY - 2))
2598                 return true;
2599
2600         return false;
2601 }
2602
2603 /*
2604  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2605  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2606  * true if more pages should be reclaimed such that when the page allocator
2607  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2608  * It will give up earlier than that if there is difficulty reclaiming pages.
2609  */
2610 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2611                                         unsigned long nr_reclaimed,
2612                                         unsigned long nr_scanned,
2613                                         struct scan_control *sc)
2614 {
2615         unsigned long pages_for_compaction;
2616         unsigned long inactive_lru_pages;
2617         int z;
2618
2619         /* If not in reclaim/compaction mode, stop */
2620         if (!in_reclaim_compaction(sc))
2621                 return false;
2622
2623         /* Consider stopping depending on scan and reclaim activity */
2624         if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2625                 /*
2626                  * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2627                  * full LRU list has been scanned and we are still failing
2628                  * to reclaim pages. This full LRU scan is potentially
2629                  * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2630                  */
2631                 if (!nr_reclaimed && !nr_scanned)
2632                         return false;
2633         } else {
2634                 /*
2635                  * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2636                  * fail without consequence, stop if we failed to reclaim
2637                  * any pages from the last SWAP_CLUSTER_MAX number of
2638                  * pages that were scanned. This will return to the
2639                  * caller faster at the risk reclaim/compaction and
2640                  * the resulting allocation attempt fails
2641                  */
2642                 if (!nr_reclaimed)
2643                         return false;
2644         }
2645
2646         /*
2647          * If we have not reclaimed enough pages for compaction and the
2648          * inactive lists are large enough, continue reclaiming
2649          */
2650         pages_for_compaction = compact_gap(sc->order);
2651         inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2652         if (get_nr_swap_pages() > 0)
2653                 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2654         if (sc->nr_reclaimed < pages_for_compaction &&
2655                         inactive_lru_pages > pages_for_compaction)
2656                 return true;
2657
2658         /* If compaction would go ahead or the allocation would succeed, stop */
2659         for (z = 0; z <= sc->reclaim_idx; z++) {
2660                 struct zone *zone = &pgdat->node_zones[z];
2661                 if (!managed_zone(zone))
2662                         continue;
2663
2664                 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2665                 case COMPACT_SUCCESS:
2666                 case COMPACT_CONTINUE:
2667                         return false;
2668                 default:
2669                         /* check next zone */
2670                         ;
2671                 }
2672         }
2673         return true;
2674 }
2675
2676 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2677 {
2678         return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2679                 (memcg && memcg_congested(pgdat, memcg));
2680 }
2681
2682 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2683 {
2684         struct reclaim_state *reclaim_state = current->reclaim_state;
2685         unsigned long nr_reclaimed, nr_scanned;
2686         bool reclaimable = false;
2687
2688         do {
2689                 struct mem_cgroup *root = sc->target_mem_cgroup;
2690                 struct mem_cgroup_reclaim_cookie reclaim = {
2691                         .pgdat = pgdat,
2692                         .priority = sc->priority,
2693                 };
2694                 unsigned long node_lru_pages = 0;
2695                 struct mem_cgroup *memcg;
2696
2697                 memset(&sc->nr, 0, sizeof(sc->nr));
2698
2699                 nr_reclaimed = sc->nr_reclaimed;
2700                 nr_scanned = sc->nr_scanned;
2701
2702                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2703                 do {
2704                         unsigned long lru_pages;
2705                         unsigned long reclaimed;
2706                         unsigned long scanned;
2707
2708                         switch (mem_cgroup_protected(root, memcg)) {
2709                         case MEMCG_PROT_MIN:
2710                                 /*
2711                                  * Hard protection.
2712                                  * If there is no reclaimable memory, OOM.
2713                                  */
2714                                 continue;
2715                         case MEMCG_PROT_LOW:
2716                                 /*
2717                                  * Soft protection.
2718                                  * Respect the protection only as long as
2719                                  * there is an unprotected supply
2720                                  * of reclaimable memory from other cgroups.
2721                                  */
2722                                 if (!sc->memcg_low_reclaim) {
2723                                         sc->memcg_low_skipped = 1;
2724                                         continue;
2725                                 }
2726                                 memcg_memory_event(memcg, MEMCG_LOW);
2727                                 break;
2728                         case MEMCG_PROT_NONE:
2729                                 break;
2730                         }
2731
2732                         reclaimed = sc->nr_reclaimed;
2733                         scanned = sc->nr_scanned;
2734                         shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2735                         node_lru_pages += lru_pages;
2736
2737                         shrink_slab(sc->gfp_mask, pgdat->node_id,
2738                                     memcg, sc->priority);
2739
2740                         /* Record the group's reclaim efficiency */
2741                         vmpressure(sc->gfp_mask, memcg, false,
2742                                    sc->nr_scanned - scanned,
2743                                    sc->nr_reclaimed - reclaimed);
2744
2745                         /*
2746                          * Direct reclaim and kswapd have to scan all memory
2747                          * cgroups to fulfill the overall scan target for the
2748                          * node.
2749                          *
2750                          * Limit reclaim, on the other hand, only cares about
2751                          * nr_to_reclaim pages to be reclaimed and it will
2752                          * retry with decreasing priority if one round over the
2753                          * whole hierarchy is not sufficient.
2754                          */
2755                         if (!global_reclaim(sc) &&
2756                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2757                                 mem_cgroup_iter_break(root, memcg);
2758                                 break;
2759                         }
2760                 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2761
2762                 if (reclaim_state) {
2763                         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2764                         reclaim_state->reclaimed_slab = 0;
2765                 }
2766
2767                 /* Record the subtree's reclaim efficiency */
2768                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2769                            sc->nr_scanned - nr_scanned,
2770                            sc->nr_reclaimed - nr_reclaimed);
2771
2772                 if (sc->nr_reclaimed - nr_reclaimed)
2773                         reclaimable = true;
2774
2775                 if (current_is_kswapd()) {
2776                         /*
2777                          * If reclaim is isolating dirty pages under writeback,
2778                          * it implies that the long-lived page allocation rate
2779                          * is exceeding the page laundering rate. Either the
2780                          * global limits are not being effective at throttling
2781                          * processes due to the page distribution throughout
2782                          * zones or there is heavy usage of a slow backing
2783                          * device. The only option is to throttle from reclaim
2784                          * context which is not ideal as there is no guarantee
2785                          * the dirtying process is throttled in the same way
2786                          * balance_dirty_pages() manages.
2787                          *
2788                          * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2789                          * count the number of pages under pages flagged for
2790                          * immediate reclaim and stall if any are encountered
2791                          * in the nr_immediate check below.
2792                          */
2793                         if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2794                                 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2795
2796                         /*
2797                          * Tag a node as congested if all the dirty pages
2798                          * scanned were backed by a congested BDI and
2799                          * wait_iff_congested will stall.
2800                          */
2801                         if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2802                                 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2803
2804                         /* Allow kswapd to start writing pages during reclaim.*/
2805                         if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2806                                 set_bit(PGDAT_DIRTY, &pgdat->flags);
2807
2808                         /*
2809                          * If kswapd scans pages marked marked for immediate
2810                          * reclaim and under writeback (nr_immediate), it
2811                          * implies that pages are cycling through the LRU
2812                          * faster than they are written so also forcibly stall.
2813                          */
2814                         if (sc->nr.immediate)
2815                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2816                 }
2817
2818                 /*
2819                  * Legacy memcg will stall in page writeback so avoid forcibly
2820                  * stalling in wait_iff_congested().
2821                  */
2822                 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2823                     sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2824                         set_memcg_congestion(pgdat, root, true);
2825
2826                 /*
2827                  * Stall direct reclaim for IO completions if underlying BDIs
2828                  * and node is congested. Allow kswapd to continue until it
2829                  * starts encountering unqueued dirty pages or cycling through
2830                  * the LRU too quickly.
2831                  */
2832                 if (!sc->hibernation_mode && !current_is_kswapd() &&
2833                    current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2834                         wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2835
2836         } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2837                                          sc->nr_scanned - nr_scanned, sc));
2838
2839         /*
2840          * Kswapd gives up on balancing particular nodes after too
2841          * many failures to reclaim anything from them and goes to
2842          * sleep. On reclaim progress, reset the failure counter. A
2843          * successful direct reclaim run will revive a dormant kswapd.
2844          */
2845         if (reclaimable)
2846                 pgdat->kswapd_failures = 0;
2847
2848         return reclaimable;
2849 }
2850
2851 /*
2852  * Returns true if compaction should go ahead for a costly-order request, or
2853  * the allocation would already succeed without compaction. Return false if we
2854  * should reclaim first.
2855  */
2856 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2857 {
2858         unsigned long watermark;
2859         enum compact_result suitable;
2860
2861         suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2862         if (suitable == COMPACT_SUCCESS)
2863                 /* Allocation should succeed already. Don't reclaim. */
2864                 return true;
2865         if (suitable == COMPACT_SKIPPED)
2866                 /* Compaction cannot yet proceed. Do reclaim. */
2867                 return false;
2868
2869         /*
2870          * Compaction is already possible, but it takes time to run and there
2871          * are potentially other callers using the pages just freed. So proceed
2872          * with reclaim to make a buffer of free pages available to give
2873          * compaction a reasonable chance of completing and allocating the page.
2874          * Note that we won't actually reclaim the whole buffer in one attempt
2875          * as the target watermark in should_continue_reclaim() is lower. But if
2876          * we are already above the high+gap watermark, don't reclaim at all.
2877          */
2878         watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2879
2880         return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2881 }
2882
2883 /*
2884  * This is the direct reclaim path, for page-allocating processes.  We only
2885  * try to reclaim pages from zones which will satisfy the caller's allocation
2886  * request.
2887  *
2888  * If a zone is deemed to be full of pinned pages then just give it a light
2889  * scan then give up on it.
2890  */
2891 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2892 {
2893         struct zoneref *z;
2894         struct zone *zone;
2895         unsigned long nr_soft_reclaimed;
2896         unsigned long nr_soft_scanned;
2897         gfp_t orig_mask;
2898         pg_data_t *last_pgdat = NULL;
2899
2900         /*
2901          * If the number of buffer_heads in the machine exceeds the maximum
2902          * allowed level, force direct reclaim to scan the highmem zone as
2903          * highmem pages could be pinning lowmem pages storing buffer_heads
2904          */
2905         orig_mask = sc->gfp_mask;
2906         if (buffer_heads_over_limit) {
2907                 sc->gfp_mask |= __GFP_HIGHMEM;
2908                 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2909         }
2910
2911         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2912                                         sc->reclaim_idx, sc->nodemask) {
2913                 /*
2914                  * Take care memory controller reclaiming has small influence
2915                  * to global LRU.
2916                  */
2917                 if (global_reclaim(sc)) {
2918                         if (!cpuset_zone_allowed(zone,
2919                                                  GFP_KERNEL | __GFP_HARDWALL))
2920                                 continue;
2921
2922                         /*
2923                          * If we already have plenty of memory free for
2924                          * compaction in this zone, don't free any more.
2925                          * Even though compaction is invoked for any
2926                          * non-zero order, only frequent costly order
2927                          * reclamation is disruptive enough to become a
2928                          * noticeable problem, like transparent huge
2929                          * page allocations.
2930                          */
2931                         if (IS_ENABLED(CONFIG_COMPACTION) &&
2932                             sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2933                             compaction_ready(zone, sc)) {
2934                                 sc->compaction_ready = true;
2935                                 continue;
2936                         }
2937
2938                         /*
2939                          * Shrink each node in the zonelist once. If the
2940                          * zonelist is ordered by zone (not the default) then a
2941                          * node may be shrunk multiple times but in that case
2942                          * the user prefers lower zones being preserved.
2943                          */
2944                         if (zone->zone_pgdat == last_pgdat)
2945                                 continue;
2946
2947                         /*
2948                          * This steals pages from memory cgroups over softlimit
2949                          * and returns the number of reclaimed pages and
2950                          * scanned pages. This works for global memory pressure
2951                          * and balancing, not for a memcg's limit.
2952                          */
2953                         nr_soft_scanned = 0;
2954                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2955                                                 sc->order, sc->gfp_mask,
2956                                                 &nr_soft_scanned);
2957                         sc->nr_reclaimed += nr_soft_reclaimed;
2958                         sc->nr_scanned += nr_soft_scanned;
2959                         /* need some check for avoid more shrink_zone() */
2960                 }
2961
2962                 /* See comment about same check for global reclaim above */
2963                 if (zone->zone_pgdat == last_pgdat)
2964                         continue;
2965                 last_pgdat = zone->zone_pgdat;
2966                 shrink_node(zone->zone_pgdat, sc);
2967         }
2968
2969         /*
2970          * Restore to original mask to avoid the impact on the caller if we
2971          * promoted it to __GFP_HIGHMEM.
2972          */
2973         sc->gfp_mask = orig_mask;
2974 }
2975
2976 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2977 {
2978         struct mem_cgroup *memcg;
2979
2980         memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2981         do {
2982                 unsigned long refaults;
2983                 struct lruvec *lruvec;
2984
2985                 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2986                 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2987                 lruvec->refaults = refaults;
2988         } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2989 }
2990
2991 /*
2992  * This is the main entry point to direct page reclaim.
2993  *
2994  * If a full scan of the inactive list fails to free enough memory then we
2995  * are "out of memory" and something needs to be killed.
2996  *
2997  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2998  * high - the zone may be full of dirty or under-writeback pages, which this
2999  * caller can't do much about.  We kick the writeback threads and take explicit
3000  * naps in the hope that some of these pages can be written.  But if the
3001  * allocating task holds filesystem locks which prevent writeout this might not
3002  * work, and the allocation attempt will fail.
3003  *
3004  * returns:     0, if no pages reclaimed
3005  *              else, the number of pages reclaimed
3006  */
3007 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3008                                           struct scan_control *sc)
3009 {
3010         int initial_priority = sc->priority;
3011         pg_data_t *last_pgdat;
3012         struct zoneref *z;
3013         struct zone *zone;
3014 retry:
3015         delayacct_freepages_start();
3016
3017         if (global_reclaim(sc))
3018                 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3019
3020         do {
3021                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3022                                 sc->priority);
3023                 sc->nr_scanned = 0;
3024                 shrink_zones(zonelist, sc);
3025
3026                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3027                         break;
3028
3029                 if (sc->compaction_ready)
3030                         break;
3031
3032                 /*
3033                  * If we're getting trouble reclaiming, start doing
3034                  * writepage even in laptop mode.
3035                  */
3036                 if (sc->priority < DEF_PRIORITY - 2)
3037                         sc->may_writepage = 1;
3038         } while (--sc->priority >= 0);
3039
3040         last_pgdat = NULL;
3041         for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3042                                         sc->nodemask) {
3043                 if (zone->zone_pgdat == last_pgdat)
3044                         continue;
3045                 last_pgdat = zone->zone_pgdat;
3046                 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3047                 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3048         }
3049
3050         delayacct_freepages_end();
3051
3052         if (sc->nr_reclaimed)
3053                 return sc->nr_reclaimed;
3054
3055         /* Aborted reclaim to try compaction? don't OOM, then */
3056         if (sc->compaction_ready)
3057                 return 1;
3058
3059         /* Untapped cgroup reserves?  Don't OOM, retry. */
3060         if (sc->memcg_low_skipped) {
3061                 sc->priority = initial_priority;
3062                 sc->memcg_low_reclaim = 1;
3063                 sc->memcg_low_skipped = 0;
3064                 goto retry;
3065         }
3066
3067         return 0;
3068 }
3069
3070 static bool allow_direct_reclaim(pg_data_t *pgdat)
3071 {
3072         struct zone *zone;
3073         unsigned long pfmemalloc_reserve = 0;
3074         unsigned long free_pages = 0;
3075         int i;
3076         bool wmark_ok;
3077
3078         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3079                 return true;
3080
3081         for (i = 0; i <= ZONE_NORMAL; i++) {
3082                 zone = &pgdat->node_zones[i];
3083                 if (!managed_zone(zone))
3084                         continue;
3085
3086                 if (!zone_reclaimable_pages(zone))
3087                         continue;
3088
3089                 pfmemalloc_reserve += min_wmark_pages(zone);
3090                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3091         }
3092
3093         /* If there are no reserves (unexpected config) then do not throttle */
3094         if (!pfmemalloc_reserve)
3095                 return true;
3096
3097         wmark_ok = free_pages > pfmemalloc_reserve / 2;
3098
3099         /* kswapd must be awake if processes are being throttled */
3100         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3101                 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3102                                                 (enum zone_type)ZONE_NORMAL);
3103                 wake_up_interruptible(&pgdat->kswapd_wait);
3104         }
3105
3106         return wmark_ok;
3107 }
3108
3109 /*
3110  * Throttle direct reclaimers if backing storage is backed by the network
3111  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3112  * depleted. kswapd will continue to make progress and wake the processes
3113  * when the low watermark is reached.
3114  *
3115  * Returns true if a fatal signal was delivered during throttling. If this
3116  * happens, the page allocator should not consider triggering the OOM killer.
3117  */
3118 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3119                                         nodemask_t *nodemask)
3120 {
3121         struct zoneref *z;
3122         struct zone *zone;
3123         pg_data_t *pgdat = NULL;
3124
3125         /*
3126          * Kernel threads should not be throttled as they may be indirectly
3127          * responsible for cleaning pages necessary for reclaim to make forward
3128          * progress. kjournald for example may enter direct reclaim while
3129          * committing a transaction where throttling it could forcing other
3130          * processes to block on log_wait_commit().
3131          */
3132         if (current->flags & PF_KTHREAD)
3133                 goto out;
3134
3135         /*
3136          * If a fatal signal is pending, this process should not throttle.
3137          * It should return quickly so it can exit and free its memory
3138          */
3139         if (fatal_signal_pending(current))
3140                 goto out;
3141
3142         /*
3143          * Check if the pfmemalloc reserves are ok by finding the first node
3144          * with a usable ZONE_NORMAL or lower zone. The expectation is that
3145          * GFP_KERNEL will be required for allocating network buffers when
3146          * swapping over the network so ZONE_HIGHMEM is unusable.
3147          *
3148          * Throttling is based on the first usable node and throttled processes
3149          * wait on a queue until kswapd makes progress and wakes them. There
3150          * is an affinity then between processes waking up and where reclaim
3151          * progress has been made assuming the process wakes on the same node.
3152          * More importantly, processes running on remote nodes will not compete
3153          * for remote pfmemalloc reserves and processes on different nodes
3154          * should make reasonable progress.
3155          */
3156         for_each_zone_zonelist_nodemask(zone, z, zonelist,
3157                                         gfp_zone(gfp_mask), nodemask) {
3158                 if (zone_idx(zone) > ZONE_NORMAL)
3159                         continue;
3160
3161                 /* Throttle based on the first usable node */
3162                 pgdat = zone->zone_pgdat;
3163                 if (allow_direct_reclaim(pgdat))
3164                         goto out;
3165                 break;
3166         }
3167
3168         /* If no zone was usable by the allocation flags then do not throttle */
3169         if (!pgdat)
3170                 goto out;
3171
3172         /* Account for the throttling */
3173         count_vm_event(PGSCAN_DIRECT_THROTTLE);
3174
3175         /*
3176          * If the caller cannot enter the filesystem, it's possible that it
3177          * is due to the caller holding an FS lock or performing a journal
3178          * transaction in the case of a filesystem like ext[3|4]. In this case,
3179          * it is not safe to block on pfmemalloc_wait as kswapd could be
3180          * blocked waiting on the same lock. Instead, throttle for up to a
3181          * second before continuing.
3182          */
3183         if (!(gfp_mask & __GFP_FS)) {
3184                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3185                         allow_direct_reclaim(pgdat), HZ);
3186
3187                 goto check_pending;
3188         }
3189
3190         /* Throttle until kswapd wakes the process */
3191         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3192                 allow_direct_reclaim(pgdat));
3193
3194 check_pending:
3195         if (fatal_signal_pending(current))
3196                 return true;
3197
3198 out:
3199         return false;
3200 }
3201
3202 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3203                                 gfp_t gfp_mask, nodemask_t *nodemask)
3204 {
3205         unsigned long nr_reclaimed;
3206         struct scan_control sc = {
3207                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3208                 .gfp_mask = current_gfp_context(gfp_mask),
3209                 .reclaim_idx = gfp_zone(gfp_mask),
3210                 .order = order,
3211                 .nodemask = nodemask,
3212                 .priority = DEF_PRIORITY,
3213                 .may_writepage = !laptop_mode,
3214                 .may_unmap = 1,
3215                 .may_swap = 1,
3216         };
3217
3218         /*
3219          * scan_control uses s8 fields for order, priority, and reclaim_idx.
3220          * Confirm they are large enough for max values.
3221          */
3222         BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3223         BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3224         BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3225
3226         /*
3227          * Do not enter reclaim if fatal signal was delivered while throttled.
3228          * 1 is returned so that the page allocator does not OOM kill at this
3229          * point.
3230          */
3231         if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3232                 return 1;
3233
3234         trace_mm_vmscan_direct_reclaim_begin(order,
3235                                 sc.may_writepage,
3236                                 sc.gfp_mask,
3237                                 sc.reclaim_idx);
3238
3239         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3240
3241         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3242
3243         return nr_reclaimed;
3244 }
3245
3246 #ifdef CONFIG_MEMCG
3247
3248 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3249                                                 gfp_t gfp_mask, bool noswap,
3250                                                 pg_data_t *pgdat,
3251                                                 unsigned long *nr_scanned)
3252 {
3253         struct scan_control sc = {
3254                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3255                 .target_mem_cgroup = memcg,
3256                 .may_writepage = !laptop_mode,
3257                 .may_unmap = 1,
3258                 .reclaim_idx = MAX_NR_ZONES - 1,
3259                 .may_swap = !noswap,
3260         };
3261         unsigned long lru_pages;
3262
3263         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3264                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3265
3266         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3267                                                       sc.may_writepage,
3268                                                       sc.gfp_mask,
3269                                                       sc.reclaim_idx);
3270
3271         /*
3272          * NOTE: Although we can get the priority field, using it
3273          * here is not a good idea, since it limits the pages we can scan.
3274          * if we don't reclaim here, the shrink_node from balance_pgdat
3275          * will pick up pages from other mem cgroup's as well. We hack
3276          * the priority and make it zero.
3277          */
3278         shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3279
3280         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3281
3282         *nr_scanned = sc.nr_scanned;
3283         return sc.nr_reclaimed;
3284 }
3285
3286 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3287                                            unsigned long nr_pages,
3288                                            gfp_t gfp_mask,
3289                                            bool may_swap)
3290 {
3291         struct zonelist *zonelist;
3292         unsigned long nr_reclaimed;
3293         int nid;
3294         unsigned int noreclaim_flag;
3295         struct scan_control sc = {
3296                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3297                 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3298                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3299                 .reclaim_idx = MAX_NR_ZONES - 1,
3300                 .target_mem_cgroup = memcg,
3301                 .priority = DEF_PRIORITY,
3302                 .may_writepage = !laptop_mode,
3303                 .may_unmap = 1,
3304                 .may_swap = may_swap,
3305         };
3306
3307         /*
3308          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3309          * take care of from where we get pages. So the node where we start the
3310          * scan does not need to be the current node.
3311          */
3312         nid = mem_cgroup_select_victim_node(memcg);
3313
3314         zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3315
3316         trace_mm_vmscan_memcg_reclaim_begin(0,
3317                                             sc.may_writepage,
3318                                             sc.gfp_mask,
3319                                             sc.reclaim_idx);
3320
3321         noreclaim_flag = memalloc_noreclaim_save();
3322         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3323         memalloc_noreclaim_restore(noreclaim_flag);
3324
3325         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3326
3327         return nr_reclaimed;
3328 }
3329 #endif
3330
3331 static void age_active_anon(struct pglist_data *pgdat,
3332                                 struct scan_control *sc)
3333 {
3334         struct mem_cgroup *memcg;
3335
3336         if (!total_swap_pages)
3337                 return;
3338
3339         memcg = mem_cgroup_iter(NULL, NULL, NULL);
3340         do {
3341                 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3342
3343                 if (inactive_list_is_low(lruvec, false, sc, true))
3344                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3345                                            sc, LRU_ACTIVE_ANON);
3346
3347                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3348         } while (memcg);
3349 }
3350
3351 /*
3352  * Returns true if there is an eligible zone balanced for the request order
3353  * and classzone_idx
3354  */
3355 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3356 {
3357         int i;
3358         unsigned long mark = -1;
3359         struct zone *zone;
3360
3361         for (i = 0; i <= classzone_idx; i++) {
3362                 zone = pgdat->node_zones + i;
3363
3364                 if (!managed_zone(zone))
3365                         continue;
3366
3367                 mark = high_wmark_pages(zone);
3368                 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3369                         return true;
3370         }
3371
3372         /*
3373          * If a node has no populated zone within classzone_idx, it does not
3374          * need balancing by definition. This can happen if a zone-restricted
3375          * allocation tries to wake a remote kswapd.
3376          */
3377         if (mark == -1)
3378                 return true;
3379
3380         return false;
3381 }
3382
3383 /* Clear pgdat state for congested, dirty or under writeback. */
3384 static void clear_pgdat_congested(pg_data_t *pgdat)
3385 {
3386         clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3387         clear_bit(PGDAT_DIRTY, &pgdat->flags);
3388         clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3389 }
3390
3391 /*
3392  * Prepare kswapd for sleeping. This verifies that there are no processes
3393  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3394  *
3395  * Returns true if kswapd is ready to sleep
3396  */
3397 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3398 {
3399         /*
3400          * The throttled processes are normally woken up in balance_pgdat() as
3401          * soon as allow_direct_reclaim() is true. But there is a potential
3402          * race between when kswapd checks the watermarks and a process gets
3403          * throttled. There is also a potential race if processes get
3404          * throttled, kswapd wakes, a large process exits thereby balancing the
3405          * zones, which causes kswapd to exit balance_pgdat() before reaching
3406          * the wake up checks. If kswapd is going to sleep, no process should
3407          * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3408          * the wake up is premature, processes will wake kswapd and get
3409          * throttled again. The difference from wake ups in balance_pgdat() is
3410          * that here we are under prepare_to_wait().
3411          */
3412         if (waitqueue_active(&pgdat->pfmemalloc_wait))
3413                 wake_up_all(&pgdat->pfmemalloc_wait);
3414
3415         /* Hopeless node, leave it to direct reclaim */
3416         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3417                 return true;
3418
3419         if (pgdat_balanced(pgdat, order, classzone_idx)) {
3420                 clear_pgdat_congested(pgdat);
3421                 return true;
3422         }
3423
3424         return false;
3425 }
3426
3427 /*
3428  * kswapd shrinks a node of pages that are at or below the highest usable
3429  * zone that is currently unbalanced.
3430  *
3431  * Returns true if kswapd scanned at least the requested number of pages to
3432  * reclaim or if the lack of progress was due to pages under writeback.
3433  * This is used to determine if the scanning priority needs to be raised.
3434  */
3435 static bool kswapd_shrink_node(pg_data_t *pgdat,
3436                                struct scan_control *sc)
3437 {
3438         struct zone *zone;
3439         int z;
3440
3441         /* Reclaim a number of pages proportional to the number of zones */
3442         sc->nr_to_reclaim = 0;
3443         for (z = 0; z <= sc->reclaim_idx; z++) {
3444                 zone = pgdat->node_zones + z;
3445                 if (!managed_zone(zone))
3446                         continue;
3447
3448                 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3449         }
3450
3451         /*
3452          * Historically care was taken to put equal pressure on all zones but
3453          * now pressure is applied based on node LRU order.
3454          */
3455         shrink_node(pgdat, sc);
3456
3457         /*
3458          * Fragmentation may mean that the system cannot be rebalanced for
3459          * high-order allocations. If twice the allocation size has been
3460          * reclaimed then recheck watermarks only at order-0 to prevent
3461          * excessive reclaim. Assume that a process requested a high-order
3462          * can direct reclaim/compact.
3463          */
3464         if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3465                 sc->order = 0;
3466
3467         return sc->nr_scanned >= sc->nr_to_reclaim;
3468 }
3469
3470 /*
3471  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3472  * that are eligible for use by the caller until at least one zone is
3473  * balanced.
3474  *
3475  * Returns the order kswapd finished reclaiming at.
3476  *
3477  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3478  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3479  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3480  * or lower is eligible for reclaim until at least one usable zone is
3481  * balanced.
3482  */
3483 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3484 {
3485         int i;
3486         unsigned long nr_soft_reclaimed;
3487         unsigned long nr_soft_scanned;
3488         struct zone *zone;
3489         struct scan_control sc = {
3490                 .gfp_mask = GFP_KERNEL,
3491                 .order = order,
3492                 .priority = DEF_PRIORITY,
3493                 .may_writepage = !laptop_mode,
3494                 .may_unmap = 1,
3495                 .may_swap = 1,
3496         };
3497
3498         __fs_reclaim_acquire();
3499
3500         count_vm_event(PAGEOUTRUN);
3501
3502         do {
3503                 unsigned long nr_reclaimed = sc.nr_reclaimed;
3504                 bool raise_priority = true;
3505                 bool ret;
3506
3507                 sc.reclaim_idx = classzone_idx;
3508
3509                 /*
3510                  * If the number of buffer_heads exceeds the maximum allowed
3511                  * then consider reclaiming from all zones. This has a dual
3512                  * purpose -- on 64-bit systems it is expected that
3513                  * buffer_heads are stripped during active rotation. On 32-bit
3514                  * systems, highmem pages can pin lowmem memory and shrinking
3515                  * buffers can relieve lowmem pressure. Reclaim may still not
3516                  * go ahead if all eligible zones for the original allocation
3517                  * request are balanced to avoid excessive reclaim from kswapd.
3518                  */
3519                 if (buffer_heads_over_limit) {
3520                         for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3521                                 zone = pgdat->node_zones + i;
3522                                 if (!managed_zone(zone))
3523                                         continue;
3524
3525                                 sc.reclaim_idx = i;
3526                                 break;
3527                         }
3528                 }
3529
3530                 /*
3531                  * Only reclaim if there are no eligible zones. Note that
3532                  * sc.reclaim_idx is not used as buffer_heads_over_limit may
3533                  * have adjusted it.
3534                  */
3535                 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3536                         goto out;
3537
3538                 /*
3539                  * Do some background aging of the anon list, to give
3540                  * pages a chance to be referenced before reclaiming. All
3541                  * pages are rotated regardless of classzone as this is
3542                  * about consistent aging.
3543                  */
3544                 age_active_anon(pgdat, &sc);
3545
3546                 /*
3547                  * If we're getting trouble reclaiming, start doing writepage
3548                  * even in laptop mode.
3549                  */
3550                 if (sc.priority < DEF_PRIORITY - 2)
3551                         sc.may_writepage = 1;
3552
3553                 /* Call soft limit reclaim before calling shrink_node. */
3554                 sc.nr_scanned = 0;
3555                 nr_soft_scanned = 0;
3556                 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3557                                                 sc.gfp_mask, &nr_soft_scanned);
3558                 sc.nr_reclaimed += nr_soft_reclaimed;
3559
3560                 /*
3561                  * There should be no need to raise the scanning priority if
3562                  * enough pages are already being scanned that that high
3563                  * watermark would be met at 100% efficiency.
3564                  */
3565                 if (kswapd_shrink_node(pgdat, &sc))
3566                         raise_priority = false;
3567
3568                 /*
3569                  * If the low watermark is met there is no need for processes
3570                  * to be throttled on pfmemalloc_wait as they should not be
3571                  * able to safely make forward progress. Wake them
3572                  */
3573                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3574                                 allow_direct_reclaim(pgdat))
3575                         wake_up_all(&pgdat->pfmemalloc_wait);
3576
3577                 /* Check if kswapd should be suspending */
3578                 __fs_reclaim_release();
3579                 ret = try_to_freeze();
3580                 __fs_reclaim_acquire();
3581                 if (ret || kthread_should_stop())
3582                         break;
3583
3584                 /*
3585                  * Raise priority if scanning rate is too low or there was no
3586                  * progress in reclaiming pages
3587                  */
3588                 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3589                 if (raise_priority || !nr_reclaimed)
3590                         sc.priority--;
3591         } while (sc.priority >= 1);
3592
3593         if (!sc.nr_reclaimed)
3594                 pgdat->kswapd_failures++;
3595
3596 out:
3597         snapshot_refaults(NULL, pgdat);
3598         __fs_reclaim_release();
3599         /*
3600          * Return the order kswapd stopped reclaiming at as
3601          * prepare_kswapd_sleep() takes it into account. If another caller
3602          * entered the allocator slow path while kswapd was awake, order will
3603          * remain at the higher level.
3604          */
3605         return sc.order;
3606 }
3607
3608 /*
3609  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3610  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3611  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3612  * after previous reclaim attempt (node is still unbalanced). In that case
3613  * return the zone index of the previous kswapd reclaim cycle.
3614  */
3615 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3616                                            enum zone_type prev_classzone_idx)
3617 {
3618         if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3619                 return prev_classzone_idx;
3620         return pgdat->kswapd_classzone_idx;
3621 }
3622
3623 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3624                                 unsigned int classzone_idx)
3625 {
3626         long remaining = 0;
3627         DEFINE_WAIT(wait);
3628
3629         if (freezing(current) || kthread_should_stop())
3630                 return;
3631
3632         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3633
3634         /*
3635          * Try to sleep for a short interval. Note that kcompactd will only be
3636          * woken if it is possible to sleep for a short interval. This is
3637          * deliberate on the assumption that if reclaim cannot keep an
3638          * eligible zone balanced that it's also unlikely that compaction will
3639          * succeed.
3640          */
3641         if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3642                 /*
3643                  * Compaction records what page blocks it recently failed to
3644                  * isolate pages from and skips them in the future scanning.
3645                  * When kswapd is going to sleep, it is reasonable to assume
3646                  * that pages and compaction may succeed so reset the cache.
3647                  */
3648                 reset_isolation_suitable(pgdat);
3649
3650                 /*
3651                  * We have freed the memory, now we should compact it to make
3652                  * allocation of the requested order possible.
3653                  */
3654                 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3655
3656                 remaining = schedule_timeout(HZ/10);
3657
3658                 /*
3659                  * If woken prematurely then reset kswapd_classzone_idx and
3660                  * order. The values will either be from a wakeup request or
3661                  * the previous request that slept prematurely.
3662                  */
3663                 if (remaining) {
3664                         pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3665                         pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3666                 }
3667
3668                 finish_wait(&pgdat->kswapd_wait, &wait);
3669                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3670         }
3671
3672         /*
3673          * After a short sleep, check if it was a premature sleep. If not, then
3674          * go fully to sleep until explicitly woken up.
3675          */
3676         if (!remaining &&
3677             prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3678                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3679
3680                 /*
3681                  * vmstat counters are not perfectly accurate and the estimated
3682                  * value for counters such as NR_FREE_PAGES can deviate from the
3683                  * true value by nr_online_cpus * threshold. To avoid the zone
3684                  * watermarks being breached while under pressure, we reduce the
3685                  * per-cpu vmstat threshold while kswapd is awake and restore
3686                  * them before going back to sleep.
3687                  */
3688                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3689
3690                 if (!kthread_should_stop())
3691                         schedule();
3692
3693                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3694         } else {
3695                 if (remaining)
3696                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3697                 else
3698                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3699         }
3700         finish_wait(&pgdat->kswapd_wait, &wait);
3701 }
3702
3703 /*
3704  * The background pageout daemon, started as a kernel thread
3705  * from the init process.
3706  *
3707  * This basically trickles out pages so that we have _some_
3708  * free memory available even if there is no other activity
3709  * that frees anything up. This is needed for things like routing
3710  * etc, where we otherwise might have all activity going on in
3711  * asynchronous contexts that cannot page things out.
3712  *
3713  * If there are applications that are active memory-allocators
3714  * (most normal use), this basically shouldn't matter.
3715  */
3716 static int kswapd(void *p)
3717 {
3718         unsigned int alloc_order, reclaim_order;
3719         unsigned int classzone_idx = MAX_NR_ZONES - 1;
3720         pg_data_t *pgdat = (pg_data_t*)p;
3721         struct task_struct *tsk = current;
3722
3723         struct reclaim_state reclaim_state = {
3724                 .reclaimed_slab = 0,
3725         };
3726         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3727
3728         if (!cpumask_empty(cpumask))
3729                 set_cpus_allowed_ptr(tsk, cpumask);
3730         current->reclaim_state = &reclaim_state;
3731
3732         /*
3733          * Tell the memory management that we're a "memory allocator",
3734          * and that if we need more memory we should get access to it
3735          * regardless (see "__alloc_pages()"). "kswapd" should
3736          * never get caught in the normal page freeing logic.
3737          *
3738          * (Kswapd normally doesn't need memory anyway, but sometimes
3739          * you need a small amount of memory in order to be able to
3740          * page out something else, and this flag essentially protects
3741          * us from recursively trying to free more memory as we're
3742          * trying to free the first piece of memory in the first place).
3743          */
3744         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3745         set_freezable();
3746
3747         pgdat->kswapd_order = 0;
3748         pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3749         for ( ; ; ) {
3750                 bool ret;
3751
3752                 alloc_order = reclaim_order = pgdat->kswapd_order;
3753                 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3754
3755 kswapd_try_sleep:
3756                 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3757                                         classzone_idx);
3758
3759                 /* Read the new order and classzone_idx */
3760                 alloc_order = reclaim_order = pgdat->kswapd_order;
3761                 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3762                 pgdat->kswapd_order = 0;
3763                 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3764
3765                 ret = try_to_freeze();
3766                 if (kthread_should_stop())
3767                         break;
3768
3769                 /*
3770                  * We can speed up thawing tasks if we don't call balance_pgdat
3771                  * after returning from the refrigerator
3772                  */
3773                 if (ret)
3774                         continue;
3775
3776                 /*
3777                  * Reclaim begins at the requested order but if a high-order
3778                  * reclaim fails then kswapd falls back to reclaiming for
3779                  * order-0. If that happens, kswapd will consider sleeping
3780                  * for the order it finished reclaiming at (reclaim_order)
3781                  * but kcompactd is woken to compact for the original
3782                  * request (alloc_order).
3783                  */
3784                 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3785                                                 alloc_order);
3786                 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3787                 if (reclaim_order < alloc_order)
3788                         goto kswapd_try_sleep;
3789         }
3790
3791         tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3792         current->reclaim_state = NULL;
3793
3794         return 0;
3795 }
3796
3797 /*
3798  * A zone is low on free memory or too fragmented for high-order memory.  If
3799  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3800  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3801  * has failed or is not needed, still wake up kcompactd if only compaction is
3802  * needed.
3803  */
3804 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3805                    enum zone_type classzone_idx)
3806 {
3807         pg_data_t *pgdat;
3808
3809         if (!managed_zone(zone))
3810                 return;
3811
3812         if (!cpuset_zone_allowed(zone, gfp_flags))
3813                 return;
3814         pgdat = zone->zone_pgdat;
3815
3816         if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3817                 pgdat->kswapd_classzone_idx = classzone_idx;
3818         else
3819                 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3820                                                   classzone_idx);
3821         pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3822         if (!waitqueue_active(&pgdat->kswapd_wait))
3823                 return;
3824
3825         /* Hopeless node, leave it to direct reclaim if possible */
3826         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3827             pgdat_balanced(pgdat, order, classzone_idx)) {
3828                 /*
3829                  * There may be plenty of free memory available, but it's too
3830                  * fragmented for high-order allocations.  Wake up kcompactd
3831                  * and rely on compaction_suitable() to determine if it's
3832                  * needed.  If it fails, it will defer subsequent attempts to
3833                  * ratelimit its work.
3834                  */
3835                 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3836                         wakeup_kcompactd(pgdat, order, classzone_idx);
3837                 return;
3838         }
3839
3840         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3841                                       gfp_flags);
3842         wake_up_interruptible(&pgdat->kswapd_wait);
3843 }
3844
3845 #ifdef CONFIG_HIBERNATION
3846 /*
3847  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3848  * freed pages.
3849  *
3850  * Rather than trying to age LRUs the aim is to preserve the overall
3851  * LRU order by reclaiming preferentially
3852  * inactive > active > active referenced > active mapped
3853  */
3854 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3855 {
3856         struct reclaim_state reclaim_state;
3857         struct scan_control sc = {
3858                 .nr_to_reclaim = nr_to_reclaim,
3859                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3860                 .reclaim_idx = MAX_NR_ZONES - 1,
3861                 .priority = DEF_PRIORITY,
3862                 .may_writepage = 1,
3863                 .may_unmap = 1,
3864                 .may_swap = 1,
3865                 .hibernation_mode = 1,
3866         };
3867         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3868         struct task_struct *p = current;
3869         unsigned long nr_reclaimed;
3870         unsigned int noreclaim_flag;
3871
3872         fs_reclaim_acquire(sc.gfp_mask);
3873         noreclaim_flag = memalloc_noreclaim_save();
3874         reclaim_state.reclaimed_slab = 0;
3875         p->reclaim_state = &reclaim_state;
3876
3877         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3878
3879         p->reclaim_state = NULL;
3880         memalloc_noreclaim_restore(noreclaim_flag);
3881         fs_reclaim_release(sc.gfp_mask);
3882
3883         return nr_reclaimed;
3884 }
3885 #endif /* CONFIG_HIBERNATION */
3886
3887 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3888    not required for correctness.  So if the last cpu in a node goes
3889    away, we get changed to run anywhere: as the first one comes back,
3890    restore their cpu bindings. */
3891 static int kswapd_cpu_online(unsigned int cpu)
3892 {
3893         int nid;
3894
3895         for_each_node_state(nid, N_MEMORY) {
3896                 pg_data_t *pgdat = NODE_DATA(nid);
3897                 const struct cpumask *mask;
3898
3899                 mask = cpumask_of_node(pgdat->node_id);
3900
3901                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3902                         /* One of our CPUs online: restore mask */
3903                         set_cpus_allowed_ptr(pgdat->kswapd, mask);
3904         }
3905         return 0;
3906 }
3907
3908 /*
3909  * This kswapd start function will be called by init and node-hot-add.
3910  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3911  */
3912 int kswapd_run(int nid)
3913 {
3914         pg_data_t *pgdat = NODE_DATA(nid);
3915         int ret = 0;
3916
3917         if (pgdat->kswapd)
3918                 return 0;
3919
3920         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3921         if (IS_ERR(pgdat->kswapd)) {
3922                 /* failure at boot is fatal */
3923                 BUG_ON(system_state < SYSTEM_RUNNING);
3924                 pr_err("Failed to start kswapd on node %d\n", nid);
3925                 ret = PTR_ERR(pgdat->kswapd);
3926                 pgdat->kswapd = NULL;
3927         }
3928         return ret;
3929 }
3930
3931 /*
3932  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3933  * hold mem_hotplug_begin/end().
3934  */
3935 void kswapd_stop(int nid)
3936 {
3937         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3938
3939         if (kswapd) {
3940                 kthread_stop(kswapd);
3941                 NODE_DATA(nid)->kswapd = NULL;
3942         }
3943 }
3944
3945 static int __init kswapd_init(void)
3946 {
3947         int nid, ret;
3948
3949         swap_setup();
3950         for_each_node_state(nid, N_MEMORY)
3951                 kswapd_run(nid);
3952         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3953                                         "mm/vmscan:online", kswapd_cpu_online,
3954                                         NULL);
3955         WARN_ON(ret < 0);
3956         return 0;
3957 }
3958
3959 module_init(kswapd_init)
3960
3961 #ifdef CONFIG_NUMA
3962 /*
3963  * Node reclaim mode
3964  *
3965  * If non-zero call node_reclaim when the number of free pages falls below
3966  * the watermarks.
3967  */
3968 int node_reclaim_mode __read_mostly;
3969
3970 #define RECLAIM_OFF 0
3971 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3972 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3973 #define RECLAIM_UNMAP (1<<2)    /* Unmap pages during reclaim */
3974
3975 /*
3976  * Priority for NODE_RECLAIM. This determines the fraction of pages
3977  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3978  * a zone.
3979  */
3980 #define NODE_RECLAIM_PRIORITY 4
3981
3982 /*
3983  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3984  * occur.
3985  */
3986 int sysctl_min_unmapped_ratio = 1;
3987
3988 /*
3989  * If the number of slab pages in a zone grows beyond this percentage then
3990  * slab reclaim needs to occur.
3991  */
3992 int sysctl_min_slab_ratio = 5;
3993
3994 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3995 {
3996         unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3997         unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3998                 node_page_state(pgdat, NR_ACTIVE_FILE);
3999
4000         /*
4001          * It's possible for there to be more file mapped pages than
4002          * accounted for by the pages on the file LRU lists because
4003          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4004          */
4005         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4006 }
4007
4008 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4009 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4010 {
4011         unsigned long nr_pagecache_reclaimable;
4012         unsigned long delta = 0;
4013
4014         /*
4015          * If RECLAIM_UNMAP is set, then all file pages are considered
4016          * potentially reclaimable. Otherwise, we have to worry about
4017          * pages like swapcache and node_unmapped_file_pages() provides
4018          * a better estimate
4019          */
4020         if (node_reclaim_mode & RECLAIM_UNMAP)
4021                 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4022         else
4023                 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4024
4025         /* If we can't clean pages, remove dirty pages from consideration */
4026         if (!(node_reclaim_mode & RECLAIM_WRITE))
4027                 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4028
4029         /* Watch for any possible underflows due to delta */
4030         if (unlikely(delta > nr_pagecache_reclaimable))
4031                 delta = nr_pagecache_reclaimable;
4032
4033         return nr_pagecache_reclaimable - delta;
4034 }
4035
4036 /*
4037  * Try to free up some pages from this node through reclaim.
4038  */
4039 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4040 {
4041         /* Minimum pages needed in order to stay on node */
4042         const unsigned long nr_pages = 1 << order;
4043         struct task_struct *p = current;
4044         struct reclaim_state reclaim_state;
4045         unsigned int noreclaim_flag;
4046         struct scan_control sc = {
4047                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4048                 .gfp_mask = current_gfp_context(gfp_mask),
4049                 .order = order,
4050                 .priority = NODE_RECLAIM_PRIORITY,
4051                 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4052                 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4053                 .may_swap = 1,
4054                 .reclaim_idx = gfp_zone(gfp_mask),
4055         };
4056
4057         cond_resched();
4058         fs_reclaim_acquire(sc.gfp_mask);
4059         /*
4060          * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4061          * and we also need to be able to write out pages for RECLAIM_WRITE
4062          * and RECLAIM_UNMAP.
4063          */
4064         noreclaim_flag = memalloc_noreclaim_save();
4065         p->flags |= PF_SWAPWRITE;
4066         reclaim_state.reclaimed_slab = 0;
4067         p->reclaim_state = &reclaim_state;
4068
4069         if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4070                 /*
4071                  * Free memory by calling shrink node with increasing
4072                  * priorities until we have enough memory freed.
4073                  */
4074                 do {
4075                         shrink_node(pgdat, &sc);
4076                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4077         }
4078
4079         p->reclaim_state = NULL;
4080         current->flags &= ~PF_SWAPWRITE;
4081         memalloc_noreclaim_restore(noreclaim_flag);
4082         fs_reclaim_release(sc.gfp_mask);
4083         return sc.nr_reclaimed >= nr_pages;
4084 }
4085
4086 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4087 {
4088         int ret;
4089
4090         /*
4091          * Node reclaim reclaims unmapped file backed pages and
4092          * slab pages if we are over the defined limits.
4093          *
4094          * A small portion of unmapped file backed pages is needed for
4095          * file I/O otherwise pages read by file I/O will be immediately
4096          * thrown out if the node is overallocated. So we do not reclaim
4097          * if less than a specified percentage of the node is used by
4098          * unmapped file backed pages.
4099          */
4100         if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4101             node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4102                 return NODE_RECLAIM_FULL;
4103
4104         /*
4105          * Do not scan if the allocation should not be delayed.
4106          */
4107         if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4108                 return NODE_RECLAIM_NOSCAN;
4109
4110         /*
4111          * Only run node reclaim on the local node or on nodes that do not
4112          * have associated processors. This will favor the local processor
4113          * over remote processors and spread off node memory allocations
4114          * as wide as possible.
4115          */
4116         if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4117                 return NODE_RECLAIM_NOSCAN;
4118
4119         if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4120                 return NODE_RECLAIM_NOSCAN;
4121
4122         ret = __node_reclaim(pgdat, gfp_mask, order);
4123         clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4124
4125         if (!ret)
4126                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4127
4128         return ret;
4129 }
4130 #endif
4131
4132 /*
4133  * page_evictable - test whether a page is evictable
4134  * @page: the page to test
4135  *
4136  * Test whether page is evictable--i.e., should be placed on active/inactive
4137  * lists vs unevictable list.
4138  *
4139  * Reasons page might not be evictable:
4140  * (1) page's mapping marked unevictable
4141  * (2) page is part of an mlocked VMA
4142  *
4143  */
4144 int page_evictable(struct page *page)
4145 {
4146         int ret;
4147
4148         /* Prevent address_space of inode and swap cache from being freed */
4149         rcu_read_lock();
4150         ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4151         rcu_read_unlock();
4152         return ret;
4153 }
4154
4155 #ifdef CONFIG_SHMEM
4156 /**
4157  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4158  * @pages:      array of pages to check
4159  * @nr_pages:   number of pages to check
4160  *
4161  * Checks pages for evictability and moves them to the appropriate lru list.
4162  *
4163  * This function is only used for SysV IPC SHM_UNLOCK.
4164  */
4165 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4166 {
4167         struct lruvec *lruvec;
4168         struct pglist_data *pgdat = NULL;
4169         int pgscanned = 0;
4170         int pgrescued = 0;
4171         int i;
4172
4173         for (i = 0; i < nr_pages; i++) {
4174                 struct page *page = pages[i];
4175                 struct pglist_data *pagepgdat = page_pgdat(page);
4176
4177                 pgscanned++;
4178                 if (pagepgdat != pgdat) {
4179                         if (pgdat)
4180                                 spin_unlock_irq(&pgdat->lru_lock);
4181                         pgdat = pagepgdat;
4182                         spin_lock_irq(&pgdat->lru_lock);
4183                 }
4184                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4185
4186                 if (!PageLRU(page) || !PageUnevictable(page))
4187                         continue;
4188
4189                 if (page_evictable(page)) {
4190                         enum lru_list lru = page_lru_base_type(page);
4191
4192                         VM_BUG_ON_PAGE(PageActive(page), page);
4193                         ClearPageUnevictable(page);
4194                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4195                         add_page_to_lru_list(page, lruvec, lru);
4196                         pgrescued++;
4197                 }
4198         }
4199
4200         if (pgdat) {
4201                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4202                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4203                 spin_unlock_irq(&pgdat->lru_lock);
4204         }
4205 }
4206 #endif /* CONFIG_SHMEM */