vmscan: kswapd carefully call compaction
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62  *                      page from the LRU and reclaim all pages within a
63  *                      naturally aligned range
64  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65  *                      order-0 pages and then compact the zone
66  */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
73
74 struct scan_control {
75         /* Incremented by the number of inactive pages that were scanned */
76         unsigned long nr_scanned;
77
78         /* Number of pages freed so far during a call to shrink_zones() */
79         unsigned long nr_reclaimed;
80
81         /* How many pages shrink_list() should reclaim */
82         unsigned long nr_to_reclaim;
83
84         unsigned long hibernation_mode;
85
86         /* This context's GFP mask */
87         gfp_t gfp_mask;
88
89         int may_writepage;
90
91         /* Can mapped pages be reclaimed? */
92         int may_unmap;
93
94         /* Can pages be swapped as part of reclaim? */
95         int may_swap;
96
97         int order;
98
99         /*
100          * Intend to reclaim enough continuous memory rather than reclaim
101          * enough amount of memory. i.e, mode for high order allocation.
102          */
103         reclaim_mode_t reclaim_mode;
104
105         /*
106          * The memory cgroup that hit its limit and as a result is the
107          * primary target of this reclaim invocation.
108          */
109         struct mem_cgroup *target_mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 struct mem_cgroup_zone {
119         struct mem_cgroup *mem_cgroup;
120         struct zone *zone;
121 };
122
123 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
124
125 #ifdef ARCH_HAS_PREFETCH
126 #define prefetch_prev_lru_page(_page, _base, _field)                    \
127         do {                                                            \
128                 if ((_page)->lru.prev != _base) {                       \
129                         struct page *prev;                              \
130                                                                         \
131                         prev = lru_to_page(&(_page->lru));              \
132                         prefetch(&prev->_field);                        \
133                 }                                                       \
134         } while (0)
135 #else
136 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 #ifdef ARCH_HAS_PREFETCHW
140 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
141         do {                                                            \
142                 if ((_page)->lru.prev != _base) {                       \
143                         struct page *prev;                              \
144                                                                         \
145                         prev = lru_to_page(&(_page->lru));              \
146                         prefetchw(&prev->_field);                       \
147                 }                                                       \
148         } while (0)
149 #else
150 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 /*
154  * From 0 .. 100.  Higher means more swappy.
155  */
156 int vm_swappiness = 60;
157 long vm_total_pages;    /* The total number of pages which the VM controls */
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
163 static bool global_reclaim(struct scan_control *sc)
164 {
165         return !sc->target_mem_cgroup;
166 }
167
168 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
169 {
170         return !mz->mem_cgroup;
171 }
172 #else
173 static bool global_reclaim(struct scan_control *sc)
174 {
175         return true;
176 }
177
178 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
179 {
180         return true;
181 }
182 #endif
183
184 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
185 {
186         if (!scanning_global_lru(mz))
187                 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
188
189         return &mz->zone->reclaim_stat;
190 }
191
192 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
193                                        enum lru_list lru)
194 {
195         if (!scanning_global_lru(mz))
196                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
197                                                     zone_to_nid(mz->zone),
198                                                     zone_idx(mz->zone),
199                                                     BIT(lru));
200
201         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
202 }
203
204
205 /*
206  * Add a shrinker callback to be called from the vm
207  */
208 void register_shrinker(struct shrinker *shrinker)
209 {
210         atomic_long_set(&shrinker->nr_in_batch, 0);
211         down_write(&shrinker_rwsem);
212         list_add_tail(&shrinker->list, &shrinker_list);
213         up_write(&shrinker_rwsem);
214 }
215 EXPORT_SYMBOL(register_shrinker);
216
217 /*
218  * Remove one
219  */
220 void unregister_shrinker(struct shrinker *shrinker)
221 {
222         down_write(&shrinker_rwsem);
223         list_del(&shrinker->list);
224         up_write(&shrinker_rwsem);
225 }
226 EXPORT_SYMBOL(unregister_shrinker);
227
228 static inline int do_shrinker_shrink(struct shrinker *shrinker,
229                                      struct shrink_control *sc,
230                                      unsigned long nr_to_scan)
231 {
232         sc->nr_to_scan = nr_to_scan;
233         return (*shrinker->shrink)(shrinker, sc);
234 }
235
236 #define SHRINK_BATCH 128
237 /*
238  * Call the shrink functions to age shrinkable caches
239  *
240  * Here we assume it costs one seek to replace a lru page and that it also
241  * takes a seek to recreate a cache object.  With this in mind we age equal
242  * percentages of the lru and ageable caches.  This should balance the seeks
243  * generated by these structures.
244  *
245  * If the vm encountered mapped pages on the LRU it increase the pressure on
246  * slab to avoid swapping.
247  *
248  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
249  *
250  * `lru_pages' represents the number of on-LRU pages in all the zones which
251  * are eligible for the caller's allocation attempt.  It is used for balancing
252  * slab reclaim versus page reclaim.
253  *
254  * Returns the number of slab objects which we shrunk.
255  */
256 unsigned long shrink_slab(struct shrink_control *shrink,
257                           unsigned long nr_pages_scanned,
258                           unsigned long lru_pages)
259 {
260         struct shrinker *shrinker;
261         unsigned long ret = 0;
262
263         if (nr_pages_scanned == 0)
264                 nr_pages_scanned = SWAP_CLUSTER_MAX;
265
266         if (!down_read_trylock(&shrinker_rwsem)) {
267                 /* Assume we'll be able to shrink next time */
268                 ret = 1;
269                 goto out;
270         }
271
272         list_for_each_entry(shrinker, &shrinker_list, list) {
273                 unsigned long long delta;
274                 long total_scan;
275                 long max_pass;
276                 int shrink_ret = 0;
277                 long nr;
278                 long new_nr;
279                 long batch_size = shrinker->batch ? shrinker->batch
280                                                   : SHRINK_BATCH;
281
282                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
283                 if (max_pass <= 0)
284                         continue;
285
286                 /*
287                  * copy the current shrinker scan count into a local variable
288                  * and zero it so that other concurrent shrinker invocations
289                  * don't also do this scanning work.
290                  */
291                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
292
293                 total_scan = nr;
294                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
295                 delta *= max_pass;
296                 do_div(delta, lru_pages + 1);
297                 total_scan += delta;
298                 if (total_scan < 0) {
299                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
300                                "delete nr=%ld\n",
301                                shrinker->shrink, total_scan);
302                         total_scan = max_pass;
303                 }
304
305                 /*
306                  * We need to avoid excessive windup on filesystem shrinkers
307                  * due to large numbers of GFP_NOFS allocations causing the
308                  * shrinkers to return -1 all the time. This results in a large
309                  * nr being built up so when a shrink that can do some work
310                  * comes along it empties the entire cache due to nr >>>
311                  * max_pass.  This is bad for sustaining a working set in
312                  * memory.
313                  *
314                  * Hence only allow the shrinker to scan the entire cache when
315                  * a large delta change is calculated directly.
316                  */
317                 if (delta < max_pass / 4)
318                         total_scan = min(total_scan, max_pass / 2);
319
320                 /*
321                  * Avoid risking looping forever due to too large nr value:
322                  * never try to free more than twice the estimate number of
323                  * freeable entries.
324                  */
325                 if (total_scan > max_pass * 2)
326                         total_scan = max_pass * 2;
327
328                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
329                                         nr_pages_scanned, lru_pages,
330                                         max_pass, delta, total_scan);
331
332                 while (total_scan >= batch_size) {
333                         int nr_before;
334
335                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
336                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
337                                                         batch_size);
338                         if (shrink_ret == -1)
339                                 break;
340                         if (shrink_ret < nr_before)
341                                 ret += nr_before - shrink_ret;
342                         count_vm_events(SLABS_SCANNED, batch_size);
343                         total_scan -= batch_size;
344
345                         cond_resched();
346                 }
347
348                 /*
349                  * move the unused scan count back into the shrinker in a
350                  * manner that handles concurrent updates. If we exhausted the
351                  * scan, there is no need to do an update.
352                  */
353                 if (total_scan > 0)
354                         new_nr = atomic_long_add_return(total_scan,
355                                         &shrinker->nr_in_batch);
356                 else
357                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
358
359                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
360         }
361         up_read(&shrinker_rwsem);
362 out:
363         cond_resched();
364         return ret;
365 }
366
367 static void set_reclaim_mode(int priority, struct scan_control *sc,
368                                    bool sync)
369 {
370         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
371
372         /*
373          * Initially assume we are entering either lumpy reclaim or
374          * reclaim/compaction.Depending on the order, we will either set the
375          * sync mode or just reclaim order-0 pages later.
376          */
377         if (COMPACTION_BUILD)
378                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
379         else
380                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
381
382         /*
383          * Avoid using lumpy reclaim or reclaim/compaction if possible by
384          * restricting when its set to either costly allocations or when
385          * under memory pressure
386          */
387         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
388                 sc->reclaim_mode |= syncmode;
389         else if (sc->order && priority < DEF_PRIORITY - 2)
390                 sc->reclaim_mode |= syncmode;
391         else
392                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
393 }
394
395 static void reset_reclaim_mode(struct scan_control *sc)
396 {
397         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
398 }
399
400 static inline int is_page_cache_freeable(struct page *page)
401 {
402         /*
403          * A freeable page cache page is referenced only by the caller
404          * that isolated the page, the page cache radix tree and
405          * optional buffer heads at page->private.
406          */
407         return page_count(page) - page_has_private(page) == 2;
408 }
409
410 static int may_write_to_queue(struct backing_dev_info *bdi,
411                               struct scan_control *sc)
412 {
413         if (current->flags & PF_SWAPWRITE)
414                 return 1;
415         if (!bdi_write_congested(bdi))
416                 return 1;
417         if (bdi == current->backing_dev_info)
418                 return 1;
419
420         /* lumpy reclaim for hugepage often need a lot of write */
421         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
422                 return 1;
423         return 0;
424 }
425
426 /*
427  * We detected a synchronous write error writing a page out.  Probably
428  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
429  * fsync(), msync() or close().
430  *
431  * The tricky part is that after writepage we cannot touch the mapping: nothing
432  * prevents it from being freed up.  But we have a ref on the page and once
433  * that page is locked, the mapping is pinned.
434  *
435  * We're allowed to run sleeping lock_page() here because we know the caller has
436  * __GFP_FS.
437  */
438 static void handle_write_error(struct address_space *mapping,
439                                 struct page *page, int error)
440 {
441         lock_page(page);
442         if (page_mapping(page) == mapping)
443                 mapping_set_error(mapping, error);
444         unlock_page(page);
445 }
446
447 /* possible outcome of pageout() */
448 typedef enum {
449         /* failed to write page out, page is locked */
450         PAGE_KEEP,
451         /* move page to the active list, page is locked */
452         PAGE_ACTIVATE,
453         /* page has been sent to the disk successfully, page is unlocked */
454         PAGE_SUCCESS,
455         /* page is clean and locked */
456         PAGE_CLEAN,
457 } pageout_t;
458
459 /*
460  * pageout is called by shrink_page_list() for each dirty page.
461  * Calls ->writepage().
462  */
463 static pageout_t pageout(struct page *page, struct address_space *mapping,
464                          struct scan_control *sc)
465 {
466         /*
467          * If the page is dirty, only perform writeback if that write
468          * will be non-blocking.  To prevent this allocation from being
469          * stalled by pagecache activity.  But note that there may be
470          * stalls if we need to run get_block().  We could test
471          * PagePrivate for that.
472          *
473          * If this process is currently in __generic_file_aio_write() against
474          * this page's queue, we can perform writeback even if that
475          * will block.
476          *
477          * If the page is swapcache, write it back even if that would
478          * block, for some throttling. This happens by accident, because
479          * swap_backing_dev_info is bust: it doesn't reflect the
480          * congestion state of the swapdevs.  Easy to fix, if needed.
481          */
482         if (!is_page_cache_freeable(page))
483                 return PAGE_KEEP;
484         if (!mapping) {
485                 /*
486                  * Some data journaling orphaned pages can have
487                  * page->mapping == NULL while being dirty with clean buffers.
488                  */
489                 if (page_has_private(page)) {
490                         if (try_to_free_buffers(page)) {
491                                 ClearPageDirty(page);
492                                 printk("%s: orphaned page\n", __func__);
493                                 return PAGE_CLEAN;
494                         }
495                 }
496                 return PAGE_KEEP;
497         }
498         if (mapping->a_ops->writepage == NULL)
499                 return PAGE_ACTIVATE;
500         if (!may_write_to_queue(mapping->backing_dev_info, sc))
501                 return PAGE_KEEP;
502
503         if (clear_page_dirty_for_io(page)) {
504                 int res;
505                 struct writeback_control wbc = {
506                         .sync_mode = WB_SYNC_NONE,
507                         .nr_to_write = SWAP_CLUSTER_MAX,
508                         .range_start = 0,
509                         .range_end = LLONG_MAX,
510                         .for_reclaim = 1,
511                 };
512
513                 SetPageReclaim(page);
514                 res = mapping->a_ops->writepage(page, &wbc);
515                 if (res < 0)
516                         handle_write_error(mapping, page, res);
517                 if (res == AOP_WRITEPAGE_ACTIVATE) {
518                         ClearPageReclaim(page);
519                         return PAGE_ACTIVATE;
520                 }
521
522                 if (!PageWriteback(page)) {
523                         /* synchronous write or broken a_ops? */
524                         ClearPageReclaim(page);
525                 }
526                 trace_mm_vmscan_writepage(page,
527                         trace_reclaim_flags(page, sc->reclaim_mode));
528                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
529                 return PAGE_SUCCESS;
530         }
531
532         return PAGE_CLEAN;
533 }
534
535 /*
536  * Same as remove_mapping, but if the page is removed from the mapping, it
537  * gets returned with a refcount of 0.
538  */
539 static int __remove_mapping(struct address_space *mapping, struct page *page)
540 {
541         BUG_ON(!PageLocked(page));
542         BUG_ON(mapping != page_mapping(page));
543
544         spin_lock_irq(&mapping->tree_lock);
545         /*
546          * The non racy check for a busy page.
547          *
548          * Must be careful with the order of the tests. When someone has
549          * a ref to the page, it may be possible that they dirty it then
550          * drop the reference. So if PageDirty is tested before page_count
551          * here, then the following race may occur:
552          *
553          * get_user_pages(&page);
554          * [user mapping goes away]
555          * write_to(page);
556          *                              !PageDirty(page)    [good]
557          * SetPageDirty(page);
558          * put_page(page);
559          *                              !page_count(page)   [good, discard it]
560          *
561          * [oops, our write_to data is lost]
562          *
563          * Reversing the order of the tests ensures such a situation cannot
564          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565          * load is not satisfied before that of page->_count.
566          *
567          * Note that if SetPageDirty is always performed via set_page_dirty,
568          * and thus under tree_lock, then this ordering is not required.
569          */
570         if (!page_freeze_refs(page, 2))
571                 goto cannot_free;
572         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573         if (unlikely(PageDirty(page))) {
574                 page_unfreeze_refs(page, 2);
575                 goto cannot_free;
576         }
577
578         if (PageSwapCache(page)) {
579                 swp_entry_t swap = { .val = page_private(page) };
580                 __delete_from_swap_cache(page);
581                 spin_unlock_irq(&mapping->tree_lock);
582                 swapcache_free(swap, page);
583         } else {
584                 void (*freepage)(struct page *);
585
586                 freepage = mapping->a_ops->freepage;
587
588                 __delete_from_page_cache(page);
589                 spin_unlock_irq(&mapping->tree_lock);
590                 mem_cgroup_uncharge_cache_page(page);
591
592                 if (freepage != NULL)
593                         freepage(page);
594         }
595
596         return 1;
597
598 cannot_free:
599         spin_unlock_irq(&mapping->tree_lock);
600         return 0;
601 }
602
603 /*
604  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
605  * someone else has a ref on the page, abort and return 0.  If it was
606  * successfully detached, return 1.  Assumes the caller has a single ref on
607  * this page.
608  */
609 int remove_mapping(struct address_space *mapping, struct page *page)
610 {
611         if (__remove_mapping(mapping, page)) {
612                 /*
613                  * Unfreezing the refcount with 1 rather than 2 effectively
614                  * drops the pagecache ref for us without requiring another
615                  * atomic operation.
616                  */
617                 page_unfreeze_refs(page, 1);
618                 return 1;
619         }
620         return 0;
621 }
622
623 /**
624  * putback_lru_page - put previously isolated page onto appropriate LRU list
625  * @page: page to be put back to appropriate lru list
626  *
627  * Add previously isolated @page to appropriate LRU list.
628  * Page may still be unevictable for other reasons.
629  *
630  * lru_lock must not be held, interrupts must be enabled.
631  */
632 void putback_lru_page(struct page *page)
633 {
634         int lru;
635         int active = !!TestClearPageActive(page);
636         int was_unevictable = PageUnevictable(page);
637
638         VM_BUG_ON(PageLRU(page));
639
640 redo:
641         ClearPageUnevictable(page);
642
643         if (page_evictable(page, NULL)) {
644                 /*
645                  * For evictable pages, we can use the cache.
646                  * In event of a race, worst case is we end up with an
647                  * unevictable page on [in]active list.
648                  * We know how to handle that.
649                  */
650                 lru = active + page_lru_base_type(page);
651                 lru_cache_add_lru(page, lru);
652         } else {
653                 /*
654                  * Put unevictable pages directly on zone's unevictable
655                  * list.
656                  */
657                 lru = LRU_UNEVICTABLE;
658                 add_page_to_unevictable_list(page);
659                 /*
660                  * When racing with an mlock or AS_UNEVICTABLE clearing
661                  * (page is unlocked) make sure that if the other thread
662                  * does not observe our setting of PG_lru and fails
663                  * isolation/check_move_unevictable_pages,
664                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665                  * the page back to the evictable list.
666                  *
667                  * The other side is TestClearPageMlocked() or shmem_lock().
668                  */
669                 smp_mb();
670         }
671
672         /*
673          * page's status can change while we move it among lru. If an evictable
674          * page is on unevictable list, it never be freed. To avoid that,
675          * check after we added it to the list, again.
676          */
677         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
678                 if (!isolate_lru_page(page)) {
679                         put_page(page);
680                         goto redo;
681                 }
682                 /* This means someone else dropped this page from LRU
683                  * So, it will be freed or putback to LRU again. There is
684                  * nothing to do here.
685                  */
686         }
687
688         if (was_unevictable && lru != LRU_UNEVICTABLE)
689                 count_vm_event(UNEVICTABLE_PGRESCUED);
690         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
691                 count_vm_event(UNEVICTABLE_PGCULLED);
692
693         put_page(page);         /* drop ref from isolate */
694 }
695
696 enum page_references {
697         PAGEREF_RECLAIM,
698         PAGEREF_RECLAIM_CLEAN,
699         PAGEREF_KEEP,
700         PAGEREF_ACTIVATE,
701 };
702
703 static enum page_references page_check_references(struct page *page,
704                                                   struct mem_cgroup_zone *mz,
705                                                   struct scan_control *sc)
706 {
707         int referenced_ptes, referenced_page;
708         unsigned long vm_flags;
709
710         referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
711         referenced_page = TestClearPageReferenced(page);
712
713         /* Lumpy reclaim - ignore references */
714         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
715                 return PAGEREF_RECLAIM;
716
717         /*
718          * Mlock lost the isolation race with us.  Let try_to_unmap()
719          * move the page to the unevictable list.
720          */
721         if (vm_flags & VM_LOCKED)
722                 return PAGEREF_RECLAIM;
723
724         if (referenced_ptes) {
725                 if (PageAnon(page))
726                         return PAGEREF_ACTIVATE;
727                 /*
728                  * All mapped pages start out with page table
729                  * references from the instantiating fault, so we need
730                  * to look twice if a mapped file page is used more
731                  * than once.
732                  *
733                  * Mark it and spare it for another trip around the
734                  * inactive list.  Another page table reference will
735                  * lead to its activation.
736                  *
737                  * Note: the mark is set for activated pages as well
738                  * so that recently deactivated but used pages are
739                  * quickly recovered.
740                  */
741                 SetPageReferenced(page);
742
743                 if (referenced_page || referenced_ptes > 1)
744                         return PAGEREF_ACTIVATE;
745
746                 /*
747                  * Activate file-backed executable pages after first usage.
748                  */
749                 if (vm_flags & VM_EXEC)
750                         return PAGEREF_ACTIVATE;
751
752                 return PAGEREF_KEEP;
753         }
754
755         /* Reclaim if clean, defer dirty pages to writeback */
756         if (referenced_page && !PageSwapBacked(page))
757                 return PAGEREF_RECLAIM_CLEAN;
758
759         return PAGEREF_RECLAIM;
760 }
761
762 /*
763  * shrink_page_list() returns the number of reclaimed pages
764  */
765 static unsigned long shrink_page_list(struct list_head *page_list,
766                                       struct mem_cgroup_zone *mz,
767                                       struct scan_control *sc,
768                                       int priority,
769                                       unsigned long *ret_nr_dirty,
770                                       unsigned long *ret_nr_writeback)
771 {
772         LIST_HEAD(ret_pages);
773         LIST_HEAD(free_pages);
774         int pgactivate = 0;
775         unsigned long nr_dirty = 0;
776         unsigned long nr_congested = 0;
777         unsigned long nr_reclaimed = 0;
778         unsigned long nr_writeback = 0;
779
780         cond_resched();
781
782         while (!list_empty(page_list)) {
783                 enum page_references references;
784                 struct address_space *mapping;
785                 struct page *page;
786                 int may_enter_fs;
787
788                 cond_resched();
789
790                 page = lru_to_page(page_list);
791                 list_del(&page->lru);
792
793                 if (!trylock_page(page))
794                         goto keep;
795
796                 VM_BUG_ON(PageActive(page));
797                 VM_BUG_ON(page_zone(page) != mz->zone);
798
799                 sc->nr_scanned++;
800
801                 if (unlikely(!page_evictable(page, NULL)))
802                         goto cull_mlocked;
803
804                 if (!sc->may_unmap && page_mapped(page))
805                         goto keep_locked;
806
807                 /* Double the slab pressure for mapped and swapcache pages */
808                 if (page_mapped(page) || PageSwapCache(page))
809                         sc->nr_scanned++;
810
811                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813
814                 if (PageWriteback(page)) {
815                         nr_writeback++;
816                         /*
817                          * Synchronous reclaim cannot queue pages for
818                          * writeback due to the possibility of stack overflow
819                          * but if it encounters a page under writeback, wait
820                          * for the IO to complete.
821                          */
822                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
823                             may_enter_fs)
824                                 wait_on_page_writeback(page);
825                         else {
826                                 unlock_page(page);
827                                 goto keep_lumpy;
828                         }
829                 }
830
831                 references = page_check_references(page, mz, sc);
832                 switch (references) {
833                 case PAGEREF_ACTIVATE:
834                         goto activate_locked;
835                 case PAGEREF_KEEP:
836                         goto keep_locked;
837                 case PAGEREF_RECLAIM:
838                 case PAGEREF_RECLAIM_CLEAN:
839                         ; /* try to reclaim the page below */
840                 }
841
842                 /*
843                  * Anonymous process memory has backing store?
844                  * Try to allocate it some swap space here.
845                  */
846                 if (PageAnon(page) && !PageSwapCache(page)) {
847                         if (!(sc->gfp_mask & __GFP_IO))
848                                 goto keep_locked;
849                         if (!add_to_swap(page))
850                                 goto activate_locked;
851                         may_enter_fs = 1;
852                 }
853
854                 mapping = page_mapping(page);
855
856                 /*
857                  * The page is mapped into the page tables of one or more
858                  * processes. Try to unmap it here.
859                  */
860                 if (page_mapped(page) && mapping) {
861                         switch (try_to_unmap(page, TTU_UNMAP)) {
862                         case SWAP_FAIL:
863                                 goto activate_locked;
864                         case SWAP_AGAIN:
865                                 goto keep_locked;
866                         case SWAP_MLOCK:
867                                 goto cull_mlocked;
868                         case SWAP_SUCCESS:
869                                 ; /* try to free the page below */
870                         }
871                 }
872
873                 if (PageDirty(page)) {
874                         nr_dirty++;
875
876                         /*
877                          * Only kswapd can writeback filesystem pages to
878                          * avoid risk of stack overflow but do not writeback
879                          * unless under significant pressure.
880                          */
881                         if (page_is_file_cache(page) &&
882                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
883                                 /*
884                                  * Immediately reclaim when written back.
885                                  * Similar in principal to deactivate_page()
886                                  * except we already have the page isolated
887                                  * and know it's dirty
888                                  */
889                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
890                                 SetPageReclaim(page);
891
892                                 goto keep_locked;
893                         }
894
895                         if (references == PAGEREF_RECLAIM_CLEAN)
896                                 goto keep_locked;
897                         if (!may_enter_fs)
898                                 goto keep_locked;
899                         if (!sc->may_writepage)
900                                 goto keep_locked;
901
902                         /* Page is dirty, try to write it out here */
903                         switch (pageout(page, mapping, sc)) {
904                         case PAGE_KEEP:
905                                 nr_congested++;
906                                 goto keep_locked;
907                         case PAGE_ACTIVATE:
908                                 goto activate_locked;
909                         case PAGE_SUCCESS:
910                                 if (PageWriteback(page))
911                                         goto keep_lumpy;
912                                 if (PageDirty(page))
913                                         goto keep;
914
915                                 /*
916                                  * A synchronous write - probably a ramdisk.  Go
917                                  * ahead and try to reclaim the page.
918                                  */
919                                 if (!trylock_page(page))
920                                         goto keep;
921                                 if (PageDirty(page) || PageWriteback(page))
922                                         goto keep_locked;
923                                 mapping = page_mapping(page);
924                         case PAGE_CLEAN:
925                                 ; /* try to free the page below */
926                         }
927                 }
928
929                 /*
930                  * If the page has buffers, try to free the buffer mappings
931                  * associated with this page. If we succeed we try to free
932                  * the page as well.
933                  *
934                  * We do this even if the page is PageDirty().
935                  * try_to_release_page() does not perform I/O, but it is
936                  * possible for a page to have PageDirty set, but it is actually
937                  * clean (all its buffers are clean).  This happens if the
938                  * buffers were written out directly, with submit_bh(). ext3
939                  * will do this, as well as the blockdev mapping.
940                  * try_to_release_page() will discover that cleanness and will
941                  * drop the buffers and mark the page clean - it can be freed.
942                  *
943                  * Rarely, pages can have buffers and no ->mapping.  These are
944                  * the pages which were not successfully invalidated in
945                  * truncate_complete_page().  We try to drop those buffers here
946                  * and if that worked, and the page is no longer mapped into
947                  * process address space (page_count == 1) it can be freed.
948                  * Otherwise, leave the page on the LRU so it is swappable.
949                  */
950                 if (page_has_private(page)) {
951                         if (!try_to_release_page(page, sc->gfp_mask))
952                                 goto activate_locked;
953                         if (!mapping && page_count(page) == 1) {
954                                 unlock_page(page);
955                                 if (put_page_testzero(page))
956                                         goto free_it;
957                                 else {
958                                         /*
959                                          * rare race with speculative reference.
960                                          * the speculative reference will free
961                                          * this page shortly, so we may
962                                          * increment nr_reclaimed here (and
963                                          * leave it off the LRU).
964                                          */
965                                         nr_reclaimed++;
966                                         continue;
967                                 }
968                         }
969                 }
970
971                 if (!mapping || !__remove_mapping(mapping, page))
972                         goto keep_locked;
973
974                 /*
975                  * At this point, we have no other references and there is
976                  * no way to pick any more up (removed from LRU, removed
977                  * from pagecache). Can use non-atomic bitops now (and
978                  * we obviously don't have to worry about waking up a process
979                  * waiting on the page lock, because there are no references.
980                  */
981                 __clear_page_locked(page);
982 free_it:
983                 nr_reclaimed++;
984
985                 /*
986                  * Is there need to periodically free_page_list? It would
987                  * appear not as the counts should be low
988                  */
989                 list_add(&page->lru, &free_pages);
990                 continue;
991
992 cull_mlocked:
993                 if (PageSwapCache(page))
994                         try_to_free_swap(page);
995                 unlock_page(page);
996                 putback_lru_page(page);
997                 reset_reclaim_mode(sc);
998                 continue;
999
1000 activate_locked:
1001                 /* Not a candidate for swapping, so reclaim swap space. */
1002                 if (PageSwapCache(page) && vm_swap_full())
1003                         try_to_free_swap(page);
1004                 VM_BUG_ON(PageActive(page));
1005                 SetPageActive(page);
1006                 pgactivate++;
1007 keep_locked:
1008                 unlock_page(page);
1009 keep:
1010                 reset_reclaim_mode(sc);
1011 keep_lumpy:
1012                 list_add(&page->lru, &ret_pages);
1013                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1014         }
1015
1016         /*
1017          * Tag a zone as congested if all the dirty pages encountered were
1018          * backed by a congested BDI. In this case, reclaimers should just
1019          * back off and wait for congestion to clear because further reclaim
1020          * will encounter the same problem
1021          */
1022         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1023                 zone_set_flag(mz->zone, ZONE_CONGESTED);
1024
1025         free_hot_cold_page_list(&free_pages, 1);
1026
1027         list_splice(&ret_pages, page_list);
1028         count_vm_events(PGACTIVATE, pgactivate);
1029         *ret_nr_dirty += nr_dirty;
1030         *ret_nr_writeback += nr_writeback;
1031         return nr_reclaimed;
1032 }
1033
1034 /*
1035  * Attempt to remove the specified page from its LRU.  Only take this page
1036  * if it is of the appropriate PageActive status.  Pages which are being
1037  * freed elsewhere are also ignored.
1038  *
1039  * page:        page to consider
1040  * mode:        one of the LRU isolation modes defined above
1041  *
1042  * returns 0 on success, -ve errno on failure.
1043  */
1044 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1045 {
1046         bool all_lru_mode;
1047         int ret = -EINVAL;
1048
1049         /* Only take pages on the LRU. */
1050         if (!PageLRU(page))
1051                 return ret;
1052
1053         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1054                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1055
1056         /*
1057          * When checking the active state, we need to be sure we are
1058          * dealing with comparible boolean values.  Take the logical not
1059          * of each.
1060          */
1061         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1062                 return ret;
1063
1064         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1065                 return ret;
1066
1067         /*
1068          * When this function is being called for lumpy reclaim, we
1069          * initially look into all LRU pages, active, inactive and
1070          * unevictable; only give shrink_page_list evictable pages.
1071          */
1072         if (PageUnevictable(page))
1073                 return ret;
1074
1075         ret = -EBUSY;
1076
1077         /*
1078          * To minimise LRU disruption, the caller can indicate that it only
1079          * wants to isolate pages it will be able to operate on without
1080          * blocking - clean pages for the most part.
1081          *
1082          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1083          * is used by reclaim when it is cannot write to backing storage
1084          *
1085          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1086          * that it is possible to migrate without blocking
1087          */
1088         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1089                 /* All the caller can do on PageWriteback is block */
1090                 if (PageWriteback(page))
1091                         return ret;
1092
1093                 if (PageDirty(page)) {
1094                         struct address_space *mapping;
1095
1096                         /* ISOLATE_CLEAN means only clean pages */
1097                         if (mode & ISOLATE_CLEAN)
1098                                 return ret;
1099
1100                         /*
1101                          * Only pages without mappings or that have a
1102                          * ->migratepage callback are possible to migrate
1103                          * without blocking
1104                          */
1105                         mapping = page_mapping(page);
1106                         if (mapping && !mapping->a_ops->migratepage)
1107                                 return ret;
1108                 }
1109         }
1110
1111         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1112                 return ret;
1113
1114         if (likely(get_page_unless_zero(page))) {
1115                 /*
1116                  * Be careful not to clear PageLRU until after we're
1117                  * sure the page is not being freed elsewhere -- the
1118                  * page release code relies on it.
1119                  */
1120                 ClearPageLRU(page);
1121                 ret = 0;
1122         }
1123
1124         return ret;
1125 }
1126
1127 /*
1128  * zone->lru_lock is heavily contended.  Some of the functions that
1129  * shrink the lists perform better by taking out a batch of pages
1130  * and working on them outside the LRU lock.
1131  *
1132  * For pagecache intensive workloads, this function is the hottest
1133  * spot in the kernel (apart from copy_*_user functions).
1134  *
1135  * Appropriate locks must be held before calling this function.
1136  *
1137  * @nr_to_scan: The number of pages to look through on the list.
1138  * @mz:         The mem_cgroup_zone to pull pages from.
1139  * @dst:        The temp list to put pages on to.
1140  * @nr_scanned: The number of pages that were scanned.
1141  * @sc:         The scan_control struct for this reclaim session
1142  * @mode:       One of the LRU isolation modes
1143  * @active:     True [1] if isolating active pages
1144  * @file:       True [1] if isolating file [!anon] pages
1145  *
1146  * returns how many pages were moved onto *@dst.
1147  */
1148 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149                 struct mem_cgroup_zone *mz, struct list_head *dst,
1150                 unsigned long *nr_scanned, struct scan_control *sc,
1151                 isolate_mode_t mode, int active, int file)
1152 {
1153         struct lruvec *lruvec;
1154         struct list_head *src;
1155         unsigned long nr_taken = 0;
1156         unsigned long nr_lumpy_taken = 0;
1157         unsigned long nr_lumpy_dirty = 0;
1158         unsigned long nr_lumpy_failed = 0;
1159         unsigned long scan;
1160         int lru = LRU_BASE;
1161
1162         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1163         if (active)
1164                 lru += LRU_ACTIVE;
1165         if (file)
1166                 lru += LRU_FILE;
1167         src = &lruvec->lists[lru];
1168
1169         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1170                 struct page *page;
1171                 unsigned long pfn;
1172                 unsigned long end_pfn;
1173                 unsigned long page_pfn;
1174                 int zone_id;
1175
1176                 page = lru_to_page(src);
1177                 prefetchw_prev_lru_page(page, src, flags);
1178
1179                 VM_BUG_ON(!PageLRU(page));
1180
1181                 switch (__isolate_lru_page(page, mode, file)) {
1182                 case 0:
1183                         mem_cgroup_lru_del(page);
1184                         list_move(&page->lru, dst);
1185                         nr_taken += hpage_nr_pages(page);
1186                         break;
1187
1188                 case -EBUSY:
1189                         /* else it is being freed elsewhere */
1190                         list_move(&page->lru, src);
1191                         continue;
1192
1193                 default:
1194                         BUG();
1195                 }
1196
1197                 if (!sc->order || !(sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM))
1198                         continue;
1199
1200                 /*
1201                  * Attempt to take all pages in the order aligned region
1202                  * surrounding the tag page.  Only take those pages of
1203                  * the same active state as that tag page.  We may safely
1204                  * round the target page pfn down to the requested order
1205                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1206                  * where that page is in a different zone we will detect
1207                  * it from its zone id and abort this block scan.
1208                  */
1209                 zone_id = page_zone_id(page);
1210                 page_pfn = page_to_pfn(page);
1211                 pfn = page_pfn & ~((1 << sc->order) - 1);
1212                 end_pfn = pfn + (1 << sc->order);
1213                 for (; pfn < end_pfn; pfn++) {
1214                         struct page *cursor_page;
1215
1216                         /* The target page is in the block, ignore it. */
1217                         if (unlikely(pfn == page_pfn))
1218                                 continue;
1219
1220                         /* Avoid holes within the zone. */
1221                         if (unlikely(!pfn_valid_within(pfn)))
1222                                 break;
1223
1224                         cursor_page = pfn_to_page(pfn);
1225
1226                         /* Check that we have not crossed a zone boundary. */
1227                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1228                                 break;
1229
1230                         /*
1231                          * If we don't have enough swap space, reclaiming of
1232                          * anon page which don't already have a swap slot is
1233                          * pointless.
1234                          */
1235                         if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1236                             !PageSwapCache(cursor_page))
1237                                 break;
1238
1239                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1240                                 unsigned int isolated_pages;
1241
1242                                 mem_cgroup_lru_del(cursor_page);
1243                                 list_move(&cursor_page->lru, dst);
1244                                 isolated_pages = hpage_nr_pages(cursor_page);
1245                                 nr_taken += isolated_pages;
1246                                 nr_lumpy_taken += isolated_pages;
1247                                 if (PageDirty(cursor_page))
1248                                         nr_lumpy_dirty += isolated_pages;
1249                                 scan++;
1250                                 pfn += isolated_pages - 1;
1251                         } else {
1252                                 /*
1253                                  * Check if the page is freed already.
1254                                  *
1255                                  * We can't use page_count() as that
1256                                  * requires compound_head and we don't
1257                                  * have a pin on the page here. If a
1258                                  * page is tail, we may or may not
1259                                  * have isolated the head, so assume
1260                                  * it's not free, it'd be tricky to
1261                                  * track the head status without a
1262                                  * page pin.
1263                                  */
1264                                 if (!PageTail(cursor_page) &&
1265                                     !atomic_read(&cursor_page->_count))
1266                                         continue;
1267                                 break;
1268                         }
1269                 }
1270
1271                 /* If we break out of the loop above, lumpy reclaim failed */
1272                 if (pfn < end_pfn)
1273                         nr_lumpy_failed++;
1274         }
1275
1276         *nr_scanned = scan;
1277
1278         trace_mm_vmscan_lru_isolate(sc->order,
1279                         nr_to_scan, scan,
1280                         nr_taken,
1281                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1282                         mode, file);
1283         return nr_taken;
1284 }
1285
1286 /**
1287  * isolate_lru_page - tries to isolate a page from its LRU list
1288  * @page: page to isolate from its LRU list
1289  *
1290  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1291  * vmstat statistic corresponding to whatever LRU list the page was on.
1292  *
1293  * Returns 0 if the page was removed from an LRU list.
1294  * Returns -EBUSY if the page was not on an LRU list.
1295  *
1296  * The returned page will have PageLRU() cleared.  If it was found on
1297  * the active list, it will have PageActive set.  If it was found on
1298  * the unevictable list, it will have the PageUnevictable bit set. That flag
1299  * may need to be cleared by the caller before letting the page go.
1300  *
1301  * The vmstat statistic corresponding to the list on which the page was
1302  * found will be decremented.
1303  *
1304  * Restrictions:
1305  * (1) Must be called with an elevated refcount on the page. This is a
1306  *     fundamentnal difference from isolate_lru_pages (which is called
1307  *     without a stable reference).
1308  * (2) the lru_lock must not be held.
1309  * (3) interrupts must be enabled.
1310  */
1311 int isolate_lru_page(struct page *page)
1312 {
1313         int ret = -EBUSY;
1314
1315         VM_BUG_ON(!page_count(page));
1316
1317         if (PageLRU(page)) {
1318                 struct zone *zone = page_zone(page);
1319
1320                 spin_lock_irq(&zone->lru_lock);
1321                 if (PageLRU(page)) {
1322                         int lru = page_lru(page);
1323                         ret = 0;
1324                         get_page(page);
1325                         ClearPageLRU(page);
1326
1327                         del_page_from_lru_list(zone, page, lru);
1328                 }
1329                 spin_unlock_irq(&zone->lru_lock);
1330         }
1331         return ret;
1332 }
1333
1334 /*
1335  * Are there way too many processes in the direct reclaim path already?
1336  */
1337 static int too_many_isolated(struct zone *zone, int file,
1338                 struct scan_control *sc)
1339 {
1340         unsigned long inactive, isolated;
1341
1342         if (current_is_kswapd())
1343                 return 0;
1344
1345         if (!global_reclaim(sc))
1346                 return 0;
1347
1348         if (file) {
1349                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1350                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1351         } else {
1352                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1353                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1354         }
1355
1356         return isolated > inactive;
1357 }
1358
1359 static noinline_for_stack void
1360 putback_inactive_pages(struct mem_cgroup_zone *mz,
1361                        struct list_head *page_list)
1362 {
1363         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1364         struct zone *zone = mz->zone;
1365         LIST_HEAD(pages_to_free);
1366
1367         /*
1368          * Put back any unfreeable pages.
1369          */
1370         while (!list_empty(page_list)) {
1371                 struct page *page = lru_to_page(page_list);
1372                 int lru;
1373
1374                 VM_BUG_ON(PageLRU(page));
1375                 list_del(&page->lru);
1376                 if (unlikely(!page_evictable(page, NULL))) {
1377                         spin_unlock_irq(&zone->lru_lock);
1378                         putback_lru_page(page);
1379                         spin_lock_irq(&zone->lru_lock);
1380                         continue;
1381                 }
1382                 SetPageLRU(page);
1383                 lru = page_lru(page);
1384                 add_page_to_lru_list(zone, page, lru);
1385                 if (is_active_lru(lru)) {
1386                         int file = is_file_lru(lru);
1387                         int numpages = hpage_nr_pages(page);
1388                         reclaim_stat->recent_rotated[file] += numpages;
1389                 }
1390                 if (put_page_testzero(page)) {
1391                         __ClearPageLRU(page);
1392                         __ClearPageActive(page);
1393                         del_page_from_lru_list(zone, page, lru);
1394
1395                         if (unlikely(PageCompound(page))) {
1396                                 spin_unlock_irq(&zone->lru_lock);
1397                                 (*get_compound_page_dtor(page))(page);
1398                                 spin_lock_irq(&zone->lru_lock);
1399                         } else
1400                                 list_add(&page->lru, &pages_to_free);
1401                 }
1402         }
1403
1404         /*
1405          * To save our caller's stack, now use input list for pages to free.
1406          */
1407         list_splice(&pages_to_free, page_list);
1408 }
1409
1410 static noinline_for_stack void
1411 update_isolated_counts(struct mem_cgroup_zone *mz,
1412                        struct list_head *page_list,
1413                        unsigned long *nr_anon,
1414                        unsigned long *nr_file)
1415 {
1416         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1417         struct zone *zone = mz->zone;
1418         unsigned int count[NR_LRU_LISTS] = { 0, };
1419         unsigned long nr_active = 0;
1420         struct page *page;
1421         int lru;
1422
1423         /*
1424          * Count pages and clear active flags
1425          */
1426         list_for_each_entry(page, page_list, lru) {
1427                 int numpages = hpage_nr_pages(page);
1428                 lru = page_lru_base_type(page);
1429                 if (PageActive(page)) {
1430                         lru += LRU_ACTIVE;
1431                         ClearPageActive(page);
1432                         nr_active += numpages;
1433                 }
1434                 count[lru] += numpages;
1435         }
1436
1437         __count_vm_events(PGDEACTIVATE, nr_active);
1438
1439         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1440                               -count[LRU_ACTIVE_FILE]);
1441         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1442                               -count[LRU_INACTIVE_FILE]);
1443         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1444                               -count[LRU_ACTIVE_ANON]);
1445         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1446                               -count[LRU_INACTIVE_ANON]);
1447
1448         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1449         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1450
1451         reclaim_stat->recent_scanned[0] += *nr_anon;
1452         reclaim_stat->recent_scanned[1] += *nr_file;
1453 }
1454
1455 /*
1456  * Returns true if a direct reclaim should wait on pages under writeback.
1457  *
1458  * If we are direct reclaiming for contiguous pages and we do not reclaim
1459  * everything in the list, try again and wait for writeback IO to complete.
1460  * This will stall high-order allocations noticeably. Only do that when really
1461  * need to free the pages under high memory pressure.
1462  */
1463 static inline bool should_reclaim_stall(unsigned long nr_taken,
1464                                         unsigned long nr_freed,
1465                                         int priority,
1466                                         struct scan_control *sc)
1467 {
1468         int lumpy_stall_priority;
1469
1470         /* kswapd should not stall on sync IO */
1471         if (current_is_kswapd())
1472                 return false;
1473
1474         /* Only stall on lumpy reclaim */
1475         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1476                 return false;
1477
1478         /* If we have reclaimed everything on the isolated list, no stall */
1479         if (nr_freed == nr_taken)
1480                 return false;
1481
1482         /*
1483          * For high-order allocations, there are two stall thresholds.
1484          * High-cost allocations stall immediately where as lower
1485          * order allocations such as stacks require the scanning
1486          * priority to be much higher before stalling.
1487          */
1488         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1489                 lumpy_stall_priority = DEF_PRIORITY;
1490         else
1491                 lumpy_stall_priority = DEF_PRIORITY / 3;
1492
1493         return priority <= lumpy_stall_priority;
1494 }
1495
1496 /*
1497  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1498  * of reclaimed pages
1499  */
1500 static noinline_for_stack unsigned long
1501 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1502                      struct scan_control *sc, int priority, int file)
1503 {
1504         LIST_HEAD(page_list);
1505         unsigned long nr_scanned;
1506         unsigned long nr_reclaimed = 0;
1507         unsigned long nr_taken;
1508         unsigned long nr_anon;
1509         unsigned long nr_file;
1510         unsigned long nr_dirty = 0;
1511         unsigned long nr_writeback = 0;
1512         isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1513         struct zone *zone = mz->zone;
1514
1515         while (unlikely(too_many_isolated(zone, file, sc))) {
1516                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1517
1518                 /* We are about to die and free our memory. Return now. */
1519                 if (fatal_signal_pending(current))
1520                         return SWAP_CLUSTER_MAX;
1521         }
1522
1523         set_reclaim_mode(priority, sc, false);
1524         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1525                 isolate_mode |= ISOLATE_ACTIVE;
1526
1527         lru_add_drain();
1528
1529         if (!sc->may_unmap)
1530                 isolate_mode |= ISOLATE_UNMAPPED;
1531         if (!sc->may_writepage)
1532                 isolate_mode |= ISOLATE_CLEAN;
1533
1534         spin_lock_irq(&zone->lru_lock);
1535
1536         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1537                                      sc, isolate_mode, 0, file);
1538         if (global_reclaim(sc)) {
1539                 zone->pages_scanned += nr_scanned;
1540                 if (current_is_kswapd())
1541                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1542                                                nr_scanned);
1543                 else
1544                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1545                                                nr_scanned);
1546         }
1547
1548         if (nr_taken == 0) {
1549                 spin_unlock_irq(&zone->lru_lock);
1550                 return 0;
1551         }
1552
1553         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1554
1555         __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1556         __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1557
1558         spin_unlock_irq(&zone->lru_lock);
1559
1560         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1561                                                 &nr_dirty, &nr_writeback);
1562
1563         /* Check if we should syncronously wait for writeback */
1564         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1565                 set_reclaim_mode(priority, sc, true);
1566                 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1567                                         priority, &nr_dirty, &nr_writeback);
1568         }
1569
1570         spin_lock_irq(&zone->lru_lock);
1571
1572         if (current_is_kswapd())
1573                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1574         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1575
1576         putback_inactive_pages(mz, &page_list);
1577
1578         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1579         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1580
1581         spin_unlock_irq(&zone->lru_lock);
1582
1583         free_hot_cold_page_list(&page_list, 1);
1584
1585         /*
1586          * If reclaim is isolating dirty pages under writeback, it implies
1587          * that the long-lived page allocation rate is exceeding the page
1588          * laundering rate. Either the global limits are not being effective
1589          * at throttling processes due to the page distribution throughout
1590          * zones or there is heavy usage of a slow backing device. The
1591          * only option is to throttle from reclaim context which is not ideal
1592          * as there is no guarantee the dirtying process is throttled in the
1593          * same way balance_dirty_pages() manages.
1594          *
1595          * This scales the number of dirty pages that must be under writeback
1596          * before throttling depending on priority. It is a simple backoff
1597          * function that has the most effect in the range DEF_PRIORITY to
1598          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1599          * in trouble and reclaim is considered to be in trouble.
1600          *
1601          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1602          * DEF_PRIORITY-1  50% must be PageWriteback
1603          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1604          * ...
1605          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1606          *                     isolated page is PageWriteback
1607          */
1608         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1609                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1610
1611         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1612                 zone_idx(zone),
1613                 nr_scanned, nr_reclaimed,
1614                 priority,
1615                 trace_shrink_flags(file, sc->reclaim_mode));
1616         return nr_reclaimed;
1617 }
1618
1619 /*
1620  * This moves pages from the active list to the inactive list.
1621  *
1622  * We move them the other way if the page is referenced by one or more
1623  * processes, from rmap.
1624  *
1625  * If the pages are mostly unmapped, the processing is fast and it is
1626  * appropriate to hold zone->lru_lock across the whole operation.  But if
1627  * the pages are mapped, the processing is slow (page_referenced()) so we
1628  * should drop zone->lru_lock around each page.  It's impossible to balance
1629  * this, so instead we remove the pages from the LRU while processing them.
1630  * It is safe to rely on PG_active against the non-LRU pages in here because
1631  * nobody will play with that bit on a non-LRU page.
1632  *
1633  * The downside is that we have to touch page->_count against each page.
1634  * But we had to alter page->flags anyway.
1635  */
1636
1637 static void move_active_pages_to_lru(struct zone *zone,
1638                                      struct list_head *list,
1639                                      struct list_head *pages_to_free,
1640                                      enum lru_list lru)
1641 {
1642         unsigned long pgmoved = 0;
1643         struct page *page;
1644
1645         if (buffer_heads_over_limit) {
1646                 spin_unlock_irq(&zone->lru_lock);
1647                 list_for_each_entry(page, list, lru) {
1648                         if (page_has_private(page) && trylock_page(page)) {
1649                                 if (page_has_private(page))
1650                                         try_to_release_page(page, 0);
1651                                 unlock_page(page);
1652                         }
1653                 }
1654                 spin_lock_irq(&zone->lru_lock);
1655         }
1656
1657         while (!list_empty(list)) {
1658                 struct lruvec *lruvec;
1659
1660                 page = lru_to_page(list);
1661
1662                 VM_BUG_ON(PageLRU(page));
1663                 SetPageLRU(page);
1664
1665                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1666                 list_move(&page->lru, &lruvec->lists[lru]);
1667                 pgmoved += hpage_nr_pages(page);
1668
1669                 if (put_page_testzero(page)) {
1670                         __ClearPageLRU(page);
1671                         __ClearPageActive(page);
1672                         del_page_from_lru_list(zone, page, lru);
1673
1674                         if (unlikely(PageCompound(page))) {
1675                                 spin_unlock_irq(&zone->lru_lock);
1676                                 (*get_compound_page_dtor(page))(page);
1677                                 spin_lock_irq(&zone->lru_lock);
1678                         } else
1679                                 list_add(&page->lru, pages_to_free);
1680                 }
1681         }
1682         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1683         if (!is_active_lru(lru))
1684                 __count_vm_events(PGDEACTIVATE, pgmoved);
1685 }
1686
1687 static void shrink_active_list(unsigned long nr_to_scan,
1688                                struct mem_cgroup_zone *mz,
1689                                struct scan_control *sc,
1690                                int priority, int file)
1691 {
1692         unsigned long nr_taken;
1693         unsigned long nr_scanned;
1694         unsigned long vm_flags;
1695         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1696         LIST_HEAD(l_active);
1697         LIST_HEAD(l_inactive);
1698         struct page *page;
1699         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1700         unsigned long nr_rotated = 0;
1701         isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1702         struct zone *zone = mz->zone;
1703
1704         lru_add_drain();
1705
1706         if (!sc->may_unmap)
1707                 isolate_mode |= ISOLATE_UNMAPPED;
1708         if (!sc->may_writepage)
1709                 isolate_mode |= ISOLATE_CLEAN;
1710
1711         spin_lock_irq(&zone->lru_lock);
1712
1713         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1714                                      isolate_mode, 1, file);
1715         if (global_reclaim(sc))
1716                 zone->pages_scanned += nr_scanned;
1717
1718         reclaim_stat->recent_scanned[file] += nr_taken;
1719
1720         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1721         if (file)
1722                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1723         else
1724                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1725         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1726         spin_unlock_irq(&zone->lru_lock);
1727
1728         while (!list_empty(&l_hold)) {
1729                 cond_resched();
1730                 page = lru_to_page(&l_hold);
1731                 list_del(&page->lru);
1732
1733                 if (unlikely(!page_evictable(page, NULL))) {
1734                         putback_lru_page(page);
1735                         continue;
1736                 }
1737
1738                 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1739                         nr_rotated += hpage_nr_pages(page);
1740                         /*
1741                          * Identify referenced, file-backed active pages and
1742                          * give them one more trip around the active list. So
1743                          * that executable code get better chances to stay in
1744                          * memory under moderate memory pressure.  Anon pages
1745                          * are not likely to be evicted by use-once streaming
1746                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1747                          * so we ignore them here.
1748                          */
1749                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1750                                 list_add(&page->lru, &l_active);
1751                                 continue;
1752                         }
1753                 }
1754
1755                 ClearPageActive(page);  /* we are de-activating */
1756                 list_add(&page->lru, &l_inactive);
1757         }
1758
1759         /*
1760          * Move pages back to the lru list.
1761          */
1762         spin_lock_irq(&zone->lru_lock);
1763         /*
1764          * Count referenced pages from currently used mappings as rotated,
1765          * even though only some of them are actually re-activated.  This
1766          * helps balance scan pressure between file and anonymous pages in
1767          * get_scan_ratio.
1768          */
1769         reclaim_stat->recent_rotated[file] += nr_rotated;
1770
1771         move_active_pages_to_lru(zone, &l_active, &l_hold,
1772                                                 LRU_ACTIVE + file * LRU_FILE);
1773         move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1774                                                 LRU_BASE   + file * LRU_FILE);
1775         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1776         spin_unlock_irq(&zone->lru_lock);
1777
1778         free_hot_cold_page_list(&l_hold, 1);
1779 }
1780
1781 #ifdef CONFIG_SWAP
1782 static int inactive_anon_is_low_global(struct zone *zone)
1783 {
1784         unsigned long active, inactive;
1785
1786         active = zone_page_state(zone, NR_ACTIVE_ANON);
1787         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1788
1789         if (inactive * zone->inactive_ratio < active)
1790                 return 1;
1791
1792         return 0;
1793 }
1794
1795 /**
1796  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1797  * @zone: zone to check
1798  * @sc:   scan control of this context
1799  *
1800  * Returns true if the zone does not have enough inactive anon pages,
1801  * meaning some active anon pages need to be deactivated.
1802  */
1803 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1804 {
1805         /*
1806          * If we don't have swap space, anonymous page deactivation
1807          * is pointless.
1808          */
1809         if (!total_swap_pages)
1810                 return 0;
1811
1812         if (!scanning_global_lru(mz))
1813                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1814                                                        mz->zone);
1815
1816         return inactive_anon_is_low_global(mz->zone);
1817 }
1818 #else
1819 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1820 {
1821         return 0;
1822 }
1823 #endif
1824
1825 static int inactive_file_is_low_global(struct zone *zone)
1826 {
1827         unsigned long active, inactive;
1828
1829         active = zone_page_state(zone, NR_ACTIVE_FILE);
1830         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1831
1832         return (active > inactive);
1833 }
1834
1835 /**
1836  * inactive_file_is_low - check if file pages need to be deactivated
1837  * @mz: memory cgroup and zone to check
1838  *
1839  * When the system is doing streaming IO, memory pressure here
1840  * ensures that active file pages get deactivated, until more
1841  * than half of the file pages are on the inactive list.
1842  *
1843  * Once we get to that situation, protect the system's working
1844  * set from being evicted by disabling active file page aging.
1845  *
1846  * This uses a different ratio than the anonymous pages, because
1847  * the page cache uses a use-once replacement algorithm.
1848  */
1849 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1850 {
1851         if (!scanning_global_lru(mz))
1852                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1853                                                        mz->zone);
1854
1855         return inactive_file_is_low_global(mz->zone);
1856 }
1857
1858 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1859 {
1860         if (file)
1861                 return inactive_file_is_low(mz);
1862         else
1863                 return inactive_anon_is_low(mz);
1864 }
1865
1866 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1867                                  struct mem_cgroup_zone *mz,
1868                                  struct scan_control *sc, int priority)
1869 {
1870         int file = is_file_lru(lru);
1871
1872         if (is_active_lru(lru)) {
1873                 if (inactive_list_is_low(mz, file))
1874                         shrink_active_list(nr_to_scan, mz, sc, priority, file);
1875                 return 0;
1876         }
1877
1878         return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1879 }
1880
1881 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1882                              struct scan_control *sc)
1883 {
1884         if (global_reclaim(sc))
1885                 return vm_swappiness;
1886         return mem_cgroup_swappiness(mz->mem_cgroup);
1887 }
1888
1889 /*
1890  * Determine how aggressively the anon and file LRU lists should be
1891  * scanned.  The relative value of each set of LRU lists is determined
1892  * by looking at the fraction of the pages scanned we did rotate back
1893  * onto the active list instead of evict.
1894  *
1895  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1896  */
1897 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1898                            unsigned long *nr, int priority)
1899 {
1900         unsigned long anon, file, free;
1901         unsigned long anon_prio, file_prio;
1902         unsigned long ap, fp;
1903         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1904         u64 fraction[2], denominator;
1905         enum lru_list lru;
1906         int noswap = 0;
1907         bool force_scan = false;
1908
1909         /*
1910          * If the zone or memcg is small, nr[l] can be 0.  This
1911          * results in no scanning on this priority and a potential
1912          * priority drop.  Global direct reclaim can go to the next
1913          * zone and tends to have no problems. Global kswapd is for
1914          * zone balancing and it needs to scan a minimum amount. When
1915          * reclaiming for a memcg, a priority drop can cause high
1916          * latencies, so it's better to scan a minimum amount there as
1917          * well.
1918          */
1919         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1920                 force_scan = true;
1921         if (!global_reclaim(sc))
1922                 force_scan = true;
1923
1924         /* If we have no swap space, do not bother scanning anon pages. */
1925         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1926                 noswap = 1;
1927                 fraction[0] = 0;
1928                 fraction[1] = 1;
1929                 denominator = 1;
1930                 goto out;
1931         }
1932
1933         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1934                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1935         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1936                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1937
1938         if (global_reclaim(sc)) {
1939                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1940                 /* If we have very few page cache pages,
1941                    force-scan anon pages. */
1942                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1943                         fraction[0] = 1;
1944                         fraction[1] = 0;
1945                         denominator = 1;
1946                         goto out;
1947                 }
1948         }
1949
1950         /*
1951          * With swappiness at 100, anonymous and file have the same priority.
1952          * This scanning priority is essentially the inverse of IO cost.
1953          */
1954         anon_prio = vmscan_swappiness(mz, sc);
1955         file_prio = 200 - vmscan_swappiness(mz, sc);
1956
1957         /*
1958          * OK, so we have swap space and a fair amount of page cache
1959          * pages.  We use the recently rotated / recently scanned
1960          * ratios to determine how valuable each cache is.
1961          *
1962          * Because workloads change over time (and to avoid overflow)
1963          * we keep these statistics as a floating average, which ends
1964          * up weighing recent references more than old ones.
1965          *
1966          * anon in [0], file in [1]
1967          */
1968         spin_lock_irq(&mz->zone->lru_lock);
1969         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1970                 reclaim_stat->recent_scanned[0] /= 2;
1971                 reclaim_stat->recent_rotated[0] /= 2;
1972         }
1973
1974         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1975                 reclaim_stat->recent_scanned[1] /= 2;
1976                 reclaim_stat->recent_rotated[1] /= 2;
1977         }
1978
1979         /*
1980          * The amount of pressure on anon vs file pages is inversely
1981          * proportional to the fraction of recently scanned pages on
1982          * each list that were recently referenced and in active use.
1983          */
1984         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1985         ap /= reclaim_stat->recent_rotated[0] + 1;
1986
1987         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1988         fp /= reclaim_stat->recent_rotated[1] + 1;
1989         spin_unlock_irq(&mz->zone->lru_lock);
1990
1991         fraction[0] = ap;
1992         fraction[1] = fp;
1993         denominator = ap + fp + 1;
1994 out:
1995         for_each_evictable_lru(lru) {
1996                 int file = is_file_lru(lru);
1997                 unsigned long scan;
1998
1999                 scan = zone_nr_lru_pages(mz, lru);
2000                 if (priority || noswap) {
2001                         scan >>= priority;
2002                         if (!scan && force_scan)
2003                                 scan = SWAP_CLUSTER_MAX;
2004                         scan = div64_u64(scan * fraction[file], denominator);
2005                 }
2006                 nr[lru] = scan;
2007         }
2008 }
2009
2010 /*
2011  * Reclaim/compaction depends on a number of pages being freed. To avoid
2012  * disruption to the system, a small number of order-0 pages continue to be
2013  * rotated and reclaimed in the normal fashion. However, by the time we get
2014  * back to the allocator and call try_to_compact_zone(), we ensure that
2015  * there are enough free pages for it to be likely successful
2016  */
2017 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2018                                         unsigned long nr_reclaimed,
2019                                         unsigned long nr_scanned,
2020                                         struct scan_control *sc)
2021 {
2022         unsigned long pages_for_compaction;
2023         unsigned long inactive_lru_pages;
2024
2025         /* If not in reclaim/compaction mode, stop */
2026         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2027                 return false;
2028
2029         /* Consider stopping depending on scan and reclaim activity */
2030         if (sc->gfp_mask & __GFP_REPEAT) {
2031                 /*
2032                  * For __GFP_REPEAT allocations, stop reclaiming if the
2033                  * full LRU list has been scanned and we are still failing
2034                  * to reclaim pages. This full LRU scan is potentially
2035                  * expensive but a __GFP_REPEAT caller really wants to succeed
2036                  */
2037                 if (!nr_reclaimed && !nr_scanned)
2038                         return false;
2039         } else {
2040                 /*
2041                  * For non-__GFP_REPEAT allocations which can presumably
2042                  * fail without consequence, stop if we failed to reclaim
2043                  * any pages from the last SWAP_CLUSTER_MAX number of
2044                  * pages that were scanned. This will return to the
2045                  * caller faster at the risk reclaim/compaction and
2046                  * the resulting allocation attempt fails
2047                  */
2048                 if (!nr_reclaimed)
2049                         return false;
2050         }
2051
2052         /*
2053          * If we have not reclaimed enough pages for compaction and the
2054          * inactive lists are large enough, continue reclaiming
2055          */
2056         pages_for_compaction = (2UL << sc->order);
2057         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2058         if (nr_swap_pages > 0)
2059                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2060         if (sc->nr_reclaimed < pages_for_compaction &&
2061                         inactive_lru_pages > pages_for_compaction)
2062                 return true;
2063
2064         /* If compaction would go ahead or the allocation would succeed, stop */
2065         switch (compaction_suitable(mz->zone, sc->order)) {
2066         case COMPACT_PARTIAL:
2067         case COMPACT_CONTINUE:
2068                 return false;
2069         default:
2070                 return true;
2071         }
2072 }
2073
2074 /*
2075  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2076  */
2077 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2078                                    struct scan_control *sc)
2079 {
2080         unsigned long nr[NR_LRU_LISTS];
2081         unsigned long nr_to_scan;
2082         enum lru_list lru;
2083         unsigned long nr_reclaimed, nr_scanned;
2084         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2085         struct blk_plug plug;
2086
2087 restart:
2088         nr_reclaimed = 0;
2089         nr_scanned = sc->nr_scanned;
2090         get_scan_count(mz, sc, nr, priority);
2091
2092         blk_start_plug(&plug);
2093         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2094                                         nr[LRU_INACTIVE_FILE]) {
2095                 for_each_evictable_lru(lru) {
2096                         if (nr[lru]) {
2097                                 nr_to_scan = min_t(unsigned long,
2098                                                    nr[lru], SWAP_CLUSTER_MAX);
2099                                 nr[lru] -= nr_to_scan;
2100
2101                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2102                                                             mz, sc, priority);
2103                         }
2104                 }
2105                 /*
2106                  * On large memory systems, scan >> priority can become
2107                  * really large. This is fine for the starting priority;
2108                  * we want to put equal scanning pressure on each zone.
2109                  * However, if the VM has a harder time of freeing pages,
2110                  * with multiple processes reclaiming pages, the total
2111                  * freeing target can get unreasonably large.
2112                  */
2113                 if (nr_reclaimed >= nr_to_reclaim)
2114                         nr_to_reclaim = 0;
2115                 else
2116                         nr_to_reclaim -= nr_reclaimed;
2117
2118                 if (!nr_to_reclaim && priority < DEF_PRIORITY)
2119                         break;
2120         }
2121         blk_finish_plug(&plug);
2122         sc->nr_reclaimed += nr_reclaimed;
2123
2124         /*
2125          * Even if we did not try to evict anon pages at all, we want to
2126          * rebalance the anon lru active/inactive ratio.
2127          */
2128         if (inactive_anon_is_low(mz))
2129                 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2130
2131         /* reclaim/compaction might need reclaim to continue */
2132         if (should_continue_reclaim(mz, nr_reclaimed,
2133                                         sc->nr_scanned - nr_scanned, sc))
2134                 goto restart;
2135
2136         throttle_vm_writeout(sc->gfp_mask);
2137 }
2138
2139 static void shrink_zone(int priority, struct zone *zone,
2140                         struct scan_control *sc)
2141 {
2142         struct mem_cgroup *root = sc->target_mem_cgroup;
2143         struct mem_cgroup_reclaim_cookie reclaim = {
2144                 .zone = zone,
2145                 .priority = priority,
2146         };
2147         struct mem_cgroup *memcg;
2148
2149         memcg = mem_cgroup_iter(root, NULL, &reclaim);
2150         do {
2151                 struct mem_cgroup_zone mz = {
2152                         .mem_cgroup = memcg,
2153                         .zone = zone,
2154                 };
2155
2156                 shrink_mem_cgroup_zone(priority, &mz, sc);
2157                 /*
2158                  * Limit reclaim has historically picked one memcg and
2159                  * scanned it with decreasing priority levels until
2160                  * nr_to_reclaim had been reclaimed.  This priority
2161                  * cycle is thus over after a single memcg.
2162                  *
2163                  * Direct reclaim and kswapd, on the other hand, have
2164                  * to scan all memory cgroups to fulfill the overall
2165                  * scan target for the zone.
2166                  */
2167                 if (!global_reclaim(sc)) {
2168                         mem_cgroup_iter_break(root, memcg);
2169                         break;
2170                 }
2171                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2172         } while (memcg);
2173 }
2174
2175 /* Returns true if compaction should go ahead for a high-order request */
2176 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2177 {
2178         unsigned long balance_gap, watermark;
2179         bool watermark_ok;
2180
2181         /* Do not consider compaction for orders reclaim is meant to satisfy */
2182         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2183                 return false;
2184
2185         /*
2186          * Compaction takes time to run and there are potentially other
2187          * callers using the pages just freed. Continue reclaiming until
2188          * there is a buffer of free pages available to give compaction
2189          * a reasonable chance of completing and allocating the page
2190          */
2191         balance_gap = min(low_wmark_pages(zone),
2192                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2193                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2194         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2195         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2196
2197         /*
2198          * If compaction is deferred, reclaim up to a point where
2199          * compaction will have a chance of success when re-enabled
2200          */
2201         if (compaction_deferred(zone))
2202                 return watermark_ok;
2203
2204         /* If compaction is not ready to start, keep reclaiming */
2205         if (!compaction_suitable(zone, sc->order))
2206                 return false;
2207
2208         return watermark_ok;
2209 }
2210
2211 /*
2212  * This is the direct reclaim path, for page-allocating processes.  We only
2213  * try to reclaim pages from zones which will satisfy the caller's allocation
2214  * request.
2215  *
2216  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2217  * Because:
2218  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2219  *    allocation or
2220  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2221  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2222  *    zone defense algorithm.
2223  *
2224  * If a zone is deemed to be full of pinned pages then just give it a light
2225  * scan then give up on it.
2226  *
2227  * This function returns true if a zone is being reclaimed for a costly
2228  * high-order allocation and compaction is ready to begin. This indicates to
2229  * the caller that it should consider retrying the allocation instead of
2230  * further reclaim.
2231  */
2232 static bool shrink_zones(int priority, struct zonelist *zonelist,
2233                                         struct scan_control *sc)
2234 {
2235         struct zoneref *z;
2236         struct zone *zone;
2237         unsigned long nr_soft_reclaimed;
2238         unsigned long nr_soft_scanned;
2239         bool aborted_reclaim = false;
2240
2241         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2242                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2243                 if (!populated_zone(zone))
2244                         continue;
2245                 /*
2246                  * Take care memory controller reclaiming has small influence
2247                  * to global LRU.
2248                  */
2249                 if (global_reclaim(sc)) {
2250                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2251                                 continue;
2252                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2253                                 continue;       /* Let kswapd poll it */
2254                         if (COMPACTION_BUILD) {
2255                                 /*
2256                                  * If we already have plenty of memory free for
2257                                  * compaction in this zone, don't free any more.
2258                                  * Even though compaction is invoked for any
2259                                  * non-zero order, only frequent costly order
2260                                  * reclamation is disruptive enough to become a
2261                                  * noticable problem, like transparent huge page
2262                                  * allocations.
2263                                  */
2264                                 if (compaction_ready(zone, sc)) {
2265                                         aborted_reclaim = true;
2266                                         continue;
2267                                 }
2268                         }
2269                         /*
2270                          * This steals pages from memory cgroups over softlimit
2271                          * and returns the number of reclaimed pages and
2272                          * scanned pages. This works for global memory pressure
2273                          * and balancing, not for a memcg's limit.
2274                          */
2275                         nr_soft_scanned = 0;
2276                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2277                                                 sc->order, sc->gfp_mask,
2278                                                 &nr_soft_scanned);
2279                         sc->nr_reclaimed += nr_soft_reclaimed;
2280                         sc->nr_scanned += nr_soft_scanned;
2281                         /* need some check for avoid more shrink_zone() */
2282                 }
2283
2284                 shrink_zone(priority, zone, sc);
2285         }
2286
2287         return aborted_reclaim;
2288 }
2289
2290 static bool zone_reclaimable(struct zone *zone)
2291 {
2292         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2293 }
2294
2295 /* All zones in zonelist are unreclaimable? */
2296 static bool all_unreclaimable(struct zonelist *zonelist,
2297                 struct scan_control *sc)
2298 {
2299         struct zoneref *z;
2300         struct zone *zone;
2301
2302         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2303                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2304                 if (!populated_zone(zone))
2305                         continue;
2306                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2307                         continue;
2308                 if (!zone->all_unreclaimable)
2309                         return false;
2310         }
2311
2312         return true;
2313 }
2314
2315 /*
2316  * This is the main entry point to direct page reclaim.
2317  *
2318  * If a full scan of the inactive list fails to free enough memory then we
2319  * are "out of memory" and something needs to be killed.
2320  *
2321  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2322  * high - the zone may be full of dirty or under-writeback pages, which this
2323  * caller can't do much about.  We kick the writeback threads and take explicit
2324  * naps in the hope that some of these pages can be written.  But if the
2325  * allocating task holds filesystem locks which prevent writeout this might not
2326  * work, and the allocation attempt will fail.
2327  *
2328  * returns:     0, if no pages reclaimed
2329  *              else, the number of pages reclaimed
2330  */
2331 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2332                                         struct scan_control *sc,
2333                                         struct shrink_control *shrink)
2334 {
2335         int priority;
2336         unsigned long total_scanned = 0;
2337         struct reclaim_state *reclaim_state = current->reclaim_state;
2338         struct zoneref *z;
2339         struct zone *zone;
2340         unsigned long writeback_threshold;
2341         bool aborted_reclaim;
2342
2343         get_mems_allowed();
2344         delayacct_freepages_start();
2345
2346         if (global_reclaim(sc))
2347                 count_vm_event(ALLOCSTALL);
2348
2349         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2350                 sc->nr_scanned = 0;
2351                 if (!priority)
2352                         disable_swap_token(sc->target_mem_cgroup);
2353                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2354
2355                 /*
2356                  * Don't shrink slabs when reclaiming memory from
2357                  * over limit cgroups
2358                  */
2359                 if (global_reclaim(sc)) {
2360                         unsigned long lru_pages = 0;
2361                         for_each_zone_zonelist(zone, z, zonelist,
2362                                         gfp_zone(sc->gfp_mask)) {
2363                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2364                                         continue;
2365
2366                                 lru_pages += zone_reclaimable_pages(zone);
2367                         }
2368
2369                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2370                         if (reclaim_state) {
2371                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2372                                 reclaim_state->reclaimed_slab = 0;
2373                         }
2374                 }
2375                 total_scanned += sc->nr_scanned;
2376                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2377                         goto out;
2378
2379                 /*
2380                  * Try to write back as many pages as we just scanned.  This
2381                  * tends to cause slow streaming writers to write data to the
2382                  * disk smoothly, at the dirtying rate, which is nice.   But
2383                  * that's undesirable in laptop mode, where we *want* lumpy
2384                  * writeout.  So in laptop mode, write out the whole world.
2385                  */
2386                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2387                 if (total_scanned > writeback_threshold) {
2388                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2389                                                 WB_REASON_TRY_TO_FREE_PAGES);
2390                         sc->may_writepage = 1;
2391                 }
2392
2393                 /* Take a nap, wait for some writeback to complete */
2394                 if (!sc->hibernation_mode && sc->nr_scanned &&
2395                     priority < DEF_PRIORITY - 2) {
2396                         struct zone *preferred_zone;
2397
2398                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2399                                                 &cpuset_current_mems_allowed,
2400                                                 &preferred_zone);
2401                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2402                 }
2403         }
2404
2405 out:
2406         delayacct_freepages_end();
2407         put_mems_allowed();
2408
2409         if (sc->nr_reclaimed)
2410                 return sc->nr_reclaimed;
2411
2412         /*
2413          * As hibernation is going on, kswapd is freezed so that it can't mark
2414          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2415          * check.
2416          */
2417         if (oom_killer_disabled)
2418                 return 0;
2419
2420         /* Aborted reclaim to try compaction? don't OOM, then */
2421         if (aborted_reclaim)
2422                 return 1;
2423
2424         /* top priority shrink_zones still had more to do? don't OOM, then */
2425         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2426                 return 1;
2427
2428         return 0;
2429 }
2430
2431 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2432                                 gfp_t gfp_mask, nodemask_t *nodemask)
2433 {
2434         unsigned long nr_reclaimed;
2435         struct scan_control sc = {
2436                 .gfp_mask = gfp_mask,
2437                 .may_writepage = !laptop_mode,
2438                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2439                 .may_unmap = 1,
2440                 .may_swap = 1,
2441                 .order = order,
2442                 .target_mem_cgroup = NULL,
2443                 .nodemask = nodemask,
2444         };
2445         struct shrink_control shrink = {
2446                 .gfp_mask = sc.gfp_mask,
2447         };
2448
2449         trace_mm_vmscan_direct_reclaim_begin(order,
2450                                 sc.may_writepage,
2451                                 gfp_mask);
2452
2453         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2454
2455         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2456
2457         return nr_reclaimed;
2458 }
2459
2460 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2461
2462 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2463                                                 gfp_t gfp_mask, bool noswap,
2464                                                 struct zone *zone,
2465                                                 unsigned long *nr_scanned)
2466 {
2467         struct scan_control sc = {
2468                 .nr_scanned = 0,
2469                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2470                 .may_writepage = !laptop_mode,
2471                 .may_unmap = 1,
2472                 .may_swap = !noswap,
2473                 .order = 0,
2474                 .target_mem_cgroup = memcg,
2475         };
2476         struct mem_cgroup_zone mz = {
2477                 .mem_cgroup = memcg,
2478                 .zone = zone,
2479         };
2480
2481         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2482                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2483
2484         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2485                                                       sc.may_writepage,
2486                                                       sc.gfp_mask);
2487
2488         /*
2489          * NOTE: Although we can get the priority field, using it
2490          * here is not a good idea, since it limits the pages we can scan.
2491          * if we don't reclaim here, the shrink_zone from balance_pgdat
2492          * will pick up pages from other mem cgroup's as well. We hack
2493          * the priority and make it zero.
2494          */
2495         shrink_mem_cgroup_zone(0, &mz, &sc);
2496
2497         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2498
2499         *nr_scanned = sc.nr_scanned;
2500         return sc.nr_reclaimed;
2501 }
2502
2503 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2504                                            gfp_t gfp_mask,
2505                                            bool noswap)
2506 {
2507         struct zonelist *zonelist;
2508         unsigned long nr_reclaimed;
2509         int nid;
2510         struct scan_control sc = {
2511                 .may_writepage = !laptop_mode,
2512                 .may_unmap = 1,
2513                 .may_swap = !noswap,
2514                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2515                 .order = 0,
2516                 .target_mem_cgroup = memcg,
2517                 .nodemask = NULL, /* we don't care the placement */
2518                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2519                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2520         };
2521         struct shrink_control shrink = {
2522                 .gfp_mask = sc.gfp_mask,
2523         };
2524
2525         /*
2526          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2527          * take care of from where we get pages. So the node where we start the
2528          * scan does not need to be the current node.
2529          */
2530         nid = mem_cgroup_select_victim_node(memcg);
2531
2532         zonelist = NODE_DATA(nid)->node_zonelists;
2533
2534         trace_mm_vmscan_memcg_reclaim_begin(0,
2535                                             sc.may_writepage,
2536                                             sc.gfp_mask);
2537
2538         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2539
2540         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2541
2542         return nr_reclaimed;
2543 }
2544 #endif
2545
2546 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2547                             int priority)
2548 {
2549         struct mem_cgroup *memcg;
2550
2551         if (!total_swap_pages)
2552                 return;
2553
2554         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2555         do {
2556                 struct mem_cgroup_zone mz = {
2557                         .mem_cgroup = memcg,
2558                         .zone = zone,
2559                 };
2560
2561                 if (inactive_anon_is_low(&mz))
2562                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2563                                            sc, priority, 0);
2564
2565                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2566         } while (memcg);
2567 }
2568
2569 /*
2570  * pgdat_balanced is used when checking if a node is balanced for high-order
2571  * allocations. Only zones that meet watermarks and are in a zone allowed
2572  * by the callers classzone_idx are added to balanced_pages. The total of
2573  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2574  * for the node to be considered balanced. Forcing all zones to be balanced
2575  * for high orders can cause excessive reclaim when there are imbalanced zones.
2576  * The choice of 25% is due to
2577  *   o a 16M DMA zone that is balanced will not balance a zone on any
2578  *     reasonable sized machine
2579  *   o On all other machines, the top zone must be at least a reasonable
2580  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2581  *     would need to be at least 256M for it to be balance a whole node.
2582  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2583  *     to balance a node on its own. These seemed like reasonable ratios.
2584  */
2585 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2586                                                 int classzone_idx)
2587 {
2588         unsigned long present_pages = 0;
2589         int i;
2590
2591         for (i = 0; i <= classzone_idx; i++)
2592                 present_pages += pgdat->node_zones[i].present_pages;
2593
2594         /* A special case here: if zone has no page, we think it's balanced */
2595         return balanced_pages >= (present_pages >> 2);
2596 }
2597
2598 /* is kswapd sleeping prematurely? */
2599 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2600                                         int classzone_idx)
2601 {
2602         int i;
2603         unsigned long balanced = 0;
2604         bool all_zones_ok = true;
2605
2606         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2607         if (remaining)
2608                 return true;
2609
2610         /* Check the watermark levels */
2611         for (i = 0; i <= classzone_idx; i++) {
2612                 struct zone *zone = pgdat->node_zones + i;
2613
2614                 if (!populated_zone(zone))
2615                         continue;
2616
2617                 /*
2618                  * balance_pgdat() skips over all_unreclaimable after
2619                  * DEF_PRIORITY. Effectively, it considers them balanced so
2620                  * they must be considered balanced here as well if kswapd
2621                  * is to sleep
2622                  */
2623                 if (zone->all_unreclaimable) {
2624                         balanced += zone->present_pages;
2625                         continue;
2626                 }
2627
2628                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2629                                                         i, 0))
2630                         all_zones_ok = false;
2631                 else
2632                         balanced += zone->present_pages;
2633         }
2634
2635         /*
2636          * For high-order requests, the balanced zones must contain at least
2637          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2638          * must be balanced
2639          */
2640         if (order)
2641                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2642         else
2643                 return !all_zones_ok;
2644 }
2645
2646 /*
2647  * For kswapd, balance_pgdat() will work across all this node's zones until
2648  * they are all at high_wmark_pages(zone).
2649  *
2650  * Returns the final order kswapd was reclaiming at
2651  *
2652  * There is special handling here for zones which are full of pinned pages.
2653  * This can happen if the pages are all mlocked, or if they are all used by
2654  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2655  * What we do is to detect the case where all pages in the zone have been
2656  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2657  * dead and from now on, only perform a short scan.  Basically we're polling
2658  * the zone for when the problem goes away.
2659  *
2660  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2661  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2662  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2663  * lower zones regardless of the number of free pages in the lower zones. This
2664  * interoperates with the page allocator fallback scheme to ensure that aging
2665  * of pages is balanced across the zones.
2666  */
2667 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2668                                                         int *classzone_idx)
2669 {
2670         int all_zones_ok;
2671         unsigned long balanced;
2672         int priority;
2673         int i;
2674         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2675         unsigned long total_scanned;
2676         struct reclaim_state *reclaim_state = current->reclaim_state;
2677         unsigned long nr_soft_reclaimed;
2678         unsigned long nr_soft_scanned;
2679         struct scan_control sc = {
2680                 .gfp_mask = GFP_KERNEL,
2681                 .may_unmap = 1,
2682                 .may_swap = 1,
2683                 /*
2684                  * kswapd doesn't want to be bailed out while reclaim. because
2685                  * we want to put equal scanning pressure on each zone.
2686                  */
2687                 .nr_to_reclaim = ULONG_MAX,
2688                 .order = order,
2689                 .target_mem_cgroup = NULL,
2690         };
2691         struct shrink_control shrink = {
2692                 .gfp_mask = sc.gfp_mask,
2693         };
2694 loop_again:
2695         total_scanned = 0;
2696         sc.nr_reclaimed = 0;
2697         sc.may_writepage = !laptop_mode;
2698         count_vm_event(PAGEOUTRUN);
2699
2700         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2701                 unsigned long lru_pages = 0;
2702                 int has_under_min_watermark_zone = 0;
2703
2704                 /* The swap token gets in the way of swapout... */
2705                 if (!priority)
2706                         disable_swap_token(NULL);
2707
2708                 all_zones_ok = 1;
2709                 balanced = 0;
2710
2711                 /*
2712                  * Scan in the highmem->dma direction for the highest
2713                  * zone which needs scanning
2714                  */
2715                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2716                         struct zone *zone = pgdat->node_zones + i;
2717
2718                         if (!populated_zone(zone))
2719                                 continue;
2720
2721                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2722                                 continue;
2723
2724                         /*
2725                          * Do some background aging of the anon list, to give
2726                          * pages a chance to be referenced before reclaiming.
2727                          */
2728                         age_active_anon(zone, &sc, priority);
2729
2730                         if (!zone_watermark_ok_safe(zone, order,
2731                                         high_wmark_pages(zone), 0, 0)) {
2732                                 end_zone = i;
2733                                 break;
2734                         } else {
2735                                 /* If balanced, clear the congested flag */
2736                                 zone_clear_flag(zone, ZONE_CONGESTED);
2737                         }
2738                 }
2739                 if (i < 0)
2740                         goto out;
2741
2742                 for (i = 0; i <= end_zone; i++) {
2743                         struct zone *zone = pgdat->node_zones + i;
2744
2745                         lru_pages += zone_reclaimable_pages(zone);
2746                 }
2747
2748                 /*
2749                  * Now scan the zone in the dma->highmem direction, stopping
2750                  * at the last zone which needs scanning.
2751                  *
2752                  * We do this because the page allocator works in the opposite
2753                  * direction.  This prevents the page allocator from allocating
2754                  * pages behind kswapd's direction of progress, which would
2755                  * cause too much scanning of the lower zones.
2756                  */
2757                 for (i = 0; i <= end_zone; i++) {
2758                         struct zone *zone = pgdat->node_zones + i;
2759                         int nr_slab, testorder;
2760                         unsigned long balance_gap;
2761
2762                         if (!populated_zone(zone))
2763                                 continue;
2764
2765                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2766                                 continue;
2767
2768                         sc.nr_scanned = 0;
2769
2770                         nr_soft_scanned = 0;
2771                         /*
2772                          * Call soft limit reclaim before calling shrink_zone.
2773                          */
2774                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2775                                                         order, sc.gfp_mask,
2776                                                         &nr_soft_scanned);
2777                         sc.nr_reclaimed += nr_soft_reclaimed;
2778                         total_scanned += nr_soft_scanned;
2779
2780                         /*
2781                          * We put equal pressure on every zone, unless
2782                          * one zone has way too many pages free
2783                          * already. The "too many pages" is defined
2784                          * as the high wmark plus a "gap" where the
2785                          * gap is either the low watermark or 1%
2786                          * of the zone, whichever is smaller.
2787                          */
2788                         balance_gap = min(low_wmark_pages(zone),
2789                                 (zone->present_pages +
2790                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2791                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2792                         /*
2793                          * Kswapd reclaims only single pages with compaction
2794                          * enabled. Trying too hard to reclaim until contiguous
2795                          * free pages have become available can hurt performance
2796                          * by evicting too much useful data from memory.
2797                          * Do not reclaim more than needed for compaction.
2798                          */
2799                         testorder = order;
2800                         if (COMPACTION_BUILD && order &&
2801                                         compaction_suitable(zone, order) !=
2802                                                 COMPACT_SKIPPED)
2803                                 testorder = 0;
2804
2805                         if (!zone_watermark_ok_safe(zone, testorder,
2806                                         high_wmark_pages(zone) + balance_gap,
2807                                         end_zone, 0)) {
2808                                 shrink_zone(priority, zone, &sc);
2809
2810                                 reclaim_state->reclaimed_slab = 0;
2811                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2812                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2813                                 total_scanned += sc.nr_scanned;
2814
2815                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2816                                         zone->all_unreclaimable = 1;
2817                         }
2818
2819                         /*
2820                          * If we've done a decent amount of scanning and
2821                          * the reclaim ratio is low, start doing writepage
2822                          * even in laptop mode
2823                          */
2824                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2825                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2826                                 sc.may_writepage = 1;
2827
2828                         if (zone->all_unreclaimable) {
2829                                 if (end_zone && end_zone == i)
2830                                         end_zone--;
2831                                 continue;
2832                         }
2833
2834                         if (!zone_watermark_ok_safe(zone, testorder,
2835                                         high_wmark_pages(zone), end_zone, 0)) {
2836                                 all_zones_ok = 0;
2837                                 /*
2838                                  * We are still under min water mark.  This
2839                                  * means that we have a GFP_ATOMIC allocation
2840                                  * failure risk. Hurry up!
2841                                  */
2842                                 if (!zone_watermark_ok_safe(zone, order,
2843                                             min_wmark_pages(zone), end_zone, 0))
2844                                         has_under_min_watermark_zone = 1;
2845                         } else {
2846                                 /*
2847                                  * If a zone reaches its high watermark,
2848                                  * consider it to be no longer congested. It's
2849                                  * possible there are dirty pages backed by
2850                                  * congested BDIs but as pressure is relieved,
2851                                  * spectulatively avoid congestion waits
2852                                  */
2853                                 zone_clear_flag(zone, ZONE_CONGESTED);
2854                                 if (i <= *classzone_idx)
2855                                         balanced += zone->present_pages;
2856                         }
2857
2858                 }
2859                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2860                         break;          /* kswapd: all done */
2861                 /*
2862                  * OK, kswapd is getting into trouble.  Take a nap, then take
2863                  * another pass across the zones.
2864                  */
2865                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2866                         if (has_under_min_watermark_zone)
2867                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2868                         else
2869                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2870                 }
2871
2872                 /*
2873                  * We do this so kswapd doesn't build up large priorities for
2874                  * example when it is freeing in parallel with allocators. It
2875                  * matches the direct reclaim path behaviour in terms of impact
2876                  * on zone->*_priority.
2877                  */
2878                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2879                         break;
2880         }
2881 out:
2882
2883         /*
2884          * order-0: All zones must meet high watermark for a balanced node
2885          * high-order: Balanced zones must make up at least 25% of the node
2886          *             for the node to be balanced
2887          */
2888         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2889                 cond_resched();
2890
2891                 try_to_freeze();
2892
2893                 /*
2894                  * Fragmentation may mean that the system cannot be
2895                  * rebalanced for high-order allocations in all zones.
2896                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2897                  * it means the zones have been fully scanned and are still
2898                  * not balanced. For high-order allocations, there is
2899                  * little point trying all over again as kswapd may
2900                  * infinite loop.
2901                  *
2902                  * Instead, recheck all watermarks at order-0 as they
2903                  * are the most important. If watermarks are ok, kswapd will go
2904                  * back to sleep. High-order users can still perform direct
2905                  * reclaim if they wish.
2906                  */
2907                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2908                         order = sc.order = 0;
2909
2910                 goto loop_again;
2911         }
2912
2913         /*
2914          * If kswapd was reclaiming at a higher order, it has the option of
2915          * sleeping without all zones being balanced. Before it does, it must
2916          * ensure that the watermarks for order-0 on *all* zones are met and
2917          * that the congestion flags are cleared. The congestion flag must
2918          * be cleared as kswapd is the only mechanism that clears the flag
2919          * and it is potentially going to sleep here.
2920          */
2921         if (order) {
2922                 int zones_need_compaction = 1;
2923
2924                 for (i = 0; i <= end_zone; i++) {
2925                         struct zone *zone = pgdat->node_zones + i;
2926
2927                         if (!populated_zone(zone))
2928                                 continue;
2929
2930                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2931                                 continue;
2932
2933                         /* Would compaction fail due to lack of free memory? */
2934                         if (compaction_suitable(zone, order) == COMPACT_SKIPPED)
2935                                 goto loop_again;
2936
2937                         /* Confirm the zone is balanced for order-0 */
2938                         if (!zone_watermark_ok(zone, 0,
2939                                         high_wmark_pages(zone), 0, 0)) {
2940                                 order = sc.order = 0;
2941                                 goto loop_again;
2942                         }
2943
2944                         /* Check if the memory needs to be defragmented. */
2945                         if (zone_watermark_ok(zone, order,
2946                                     low_wmark_pages(zone), *classzone_idx, 0))
2947                                 zones_need_compaction = 0;
2948
2949                         /* If balanced, clear the congested flag */
2950                         zone_clear_flag(zone, ZONE_CONGESTED);
2951                 }
2952
2953                 if (zones_need_compaction)
2954                         compact_pgdat(pgdat, order);
2955         }
2956
2957         /*
2958          * Return the order we were reclaiming at so sleeping_prematurely()
2959          * makes a decision on the order we were last reclaiming at. However,
2960          * if another caller entered the allocator slow path while kswapd
2961          * was awake, order will remain at the higher level
2962          */
2963         *classzone_idx = end_zone;
2964         return order;
2965 }
2966
2967 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2968 {
2969         long remaining = 0;
2970         DEFINE_WAIT(wait);
2971
2972         if (freezing(current) || kthread_should_stop())
2973                 return;
2974
2975         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2976
2977         /* Try to sleep for a short interval */
2978         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2979                 remaining = schedule_timeout(HZ/10);
2980                 finish_wait(&pgdat->kswapd_wait, &wait);
2981                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2982         }
2983
2984         /*
2985          * After a short sleep, check if it was a premature sleep. If not, then
2986          * go fully to sleep until explicitly woken up.
2987          */
2988         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2989                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2990
2991                 /*
2992                  * vmstat counters are not perfectly accurate and the estimated
2993                  * value for counters such as NR_FREE_PAGES can deviate from the
2994                  * true value by nr_online_cpus * threshold. To avoid the zone
2995                  * watermarks being breached while under pressure, we reduce the
2996                  * per-cpu vmstat threshold while kswapd is awake and restore
2997                  * them before going back to sleep.
2998                  */
2999                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3000                 schedule();
3001                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3002         } else {
3003                 if (remaining)
3004                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3005                 else
3006                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3007         }
3008         finish_wait(&pgdat->kswapd_wait, &wait);
3009 }
3010
3011 /*
3012  * The background pageout daemon, started as a kernel thread
3013  * from the init process.
3014  *
3015  * This basically trickles out pages so that we have _some_
3016  * free memory available even if there is no other activity
3017  * that frees anything up. This is needed for things like routing
3018  * etc, where we otherwise might have all activity going on in
3019  * asynchronous contexts that cannot page things out.
3020  *
3021  * If there are applications that are active memory-allocators
3022  * (most normal use), this basically shouldn't matter.
3023  */
3024 static int kswapd(void *p)
3025 {
3026         unsigned long order, new_order;
3027         unsigned balanced_order;
3028         int classzone_idx, new_classzone_idx;
3029         int balanced_classzone_idx;
3030         pg_data_t *pgdat = (pg_data_t*)p;
3031         struct task_struct *tsk = current;
3032
3033         struct reclaim_state reclaim_state = {
3034                 .reclaimed_slab = 0,
3035         };
3036         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3037
3038         lockdep_set_current_reclaim_state(GFP_KERNEL);
3039
3040         if (!cpumask_empty(cpumask))
3041                 set_cpus_allowed_ptr(tsk, cpumask);
3042         current->reclaim_state = &reclaim_state;
3043
3044         /*
3045          * Tell the memory management that we're a "memory allocator",
3046          * and that if we need more memory we should get access to it
3047          * regardless (see "__alloc_pages()"). "kswapd" should
3048          * never get caught in the normal page freeing logic.
3049          *
3050          * (Kswapd normally doesn't need memory anyway, but sometimes
3051          * you need a small amount of memory in order to be able to
3052          * page out something else, and this flag essentially protects
3053          * us from recursively trying to free more memory as we're
3054          * trying to free the first piece of memory in the first place).
3055          */
3056         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3057         set_freezable();
3058
3059         order = new_order = 0;
3060         balanced_order = 0;
3061         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3062         balanced_classzone_idx = classzone_idx;
3063         for ( ; ; ) {
3064                 int ret;
3065
3066                 /*
3067                  * If the last balance_pgdat was unsuccessful it's unlikely a
3068                  * new request of a similar or harder type will succeed soon
3069                  * so consider going to sleep on the basis we reclaimed at
3070                  */
3071                 if (balanced_classzone_idx >= new_classzone_idx &&
3072                                         balanced_order == new_order) {
3073                         new_order = pgdat->kswapd_max_order;
3074                         new_classzone_idx = pgdat->classzone_idx;
3075                         pgdat->kswapd_max_order =  0;
3076                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3077                 }
3078
3079                 if (order < new_order || classzone_idx > new_classzone_idx) {
3080                         /*
3081                          * Don't sleep if someone wants a larger 'order'
3082                          * allocation or has tigher zone constraints
3083                          */
3084                         order = new_order;
3085                         classzone_idx = new_classzone_idx;
3086                 } else {
3087                         kswapd_try_to_sleep(pgdat, balanced_order,
3088                                                 balanced_classzone_idx);
3089                         order = pgdat->kswapd_max_order;
3090                         classzone_idx = pgdat->classzone_idx;
3091                         new_order = order;
3092                         new_classzone_idx = classzone_idx;
3093                         pgdat->kswapd_max_order = 0;
3094                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3095                 }
3096
3097                 ret = try_to_freeze();
3098                 if (kthread_should_stop())
3099                         break;
3100
3101                 /*
3102                  * We can speed up thawing tasks if we don't call balance_pgdat
3103                  * after returning from the refrigerator
3104                  */
3105                 if (!ret) {
3106                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3107                         balanced_classzone_idx = classzone_idx;
3108                         balanced_order = balance_pgdat(pgdat, order,
3109                                                 &balanced_classzone_idx);
3110                 }
3111         }
3112         return 0;
3113 }
3114
3115 /*
3116  * A zone is low on free memory, so wake its kswapd task to service it.
3117  */
3118 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3119 {
3120         pg_data_t *pgdat;
3121
3122         if (!populated_zone(zone))
3123                 return;
3124
3125         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3126                 return;
3127         pgdat = zone->zone_pgdat;
3128         if (pgdat->kswapd_max_order < order) {
3129                 pgdat->kswapd_max_order = order;
3130                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3131         }
3132         if (!waitqueue_active(&pgdat->kswapd_wait))
3133                 return;
3134         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3135                 return;
3136
3137         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3138         wake_up_interruptible(&pgdat->kswapd_wait);
3139 }
3140
3141 /*
3142  * The reclaimable count would be mostly accurate.
3143  * The less reclaimable pages may be
3144  * - mlocked pages, which will be moved to unevictable list when encountered
3145  * - mapped pages, which may require several travels to be reclaimed
3146  * - dirty pages, which is not "instantly" reclaimable
3147  */
3148 unsigned long global_reclaimable_pages(void)
3149 {
3150         int nr;
3151
3152         nr = global_page_state(NR_ACTIVE_FILE) +
3153              global_page_state(NR_INACTIVE_FILE);
3154
3155         if (nr_swap_pages > 0)
3156                 nr += global_page_state(NR_ACTIVE_ANON) +
3157                       global_page_state(NR_INACTIVE_ANON);
3158
3159         return nr;
3160 }
3161
3162 unsigned long zone_reclaimable_pages(struct zone *zone)
3163 {
3164         int nr;
3165
3166         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3167              zone_page_state(zone, NR_INACTIVE_FILE);
3168
3169         if (nr_swap_pages > 0)
3170                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3171                       zone_page_state(zone, NR_INACTIVE_ANON);
3172
3173         return nr;
3174 }
3175
3176 #ifdef CONFIG_HIBERNATION
3177 /*
3178  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3179  * freed pages.
3180  *
3181  * Rather than trying to age LRUs the aim is to preserve the overall
3182  * LRU order by reclaiming preferentially
3183  * inactive > active > active referenced > active mapped
3184  */
3185 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3186 {
3187         struct reclaim_state reclaim_state;
3188         struct scan_control sc = {
3189                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3190                 .may_swap = 1,
3191                 .may_unmap = 1,
3192                 .may_writepage = 1,
3193                 .nr_to_reclaim = nr_to_reclaim,
3194                 .hibernation_mode = 1,
3195                 .order = 0,
3196         };
3197         struct shrink_control shrink = {
3198                 .gfp_mask = sc.gfp_mask,
3199         };
3200         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3201         struct task_struct *p = current;
3202         unsigned long nr_reclaimed;
3203
3204         p->flags |= PF_MEMALLOC;
3205         lockdep_set_current_reclaim_state(sc.gfp_mask);
3206         reclaim_state.reclaimed_slab = 0;
3207         p->reclaim_state = &reclaim_state;
3208
3209         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3210
3211         p->reclaim_state = NULL;
3212         lockdep_clear_current_reclaim_state();
3213         p->flags &= ~PF_MEMALLOC;
3214
3215         return nr_reclaimed;
3216 }
3217 #endif /* CONFIG_HIBERNATION */
3218
3219 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3220    not required for correctness.  So if the last cpu in a node goes
3221    away, we get changed to run anywhere: as the first one comes back,
3222    restore their cpu bindings. */
3223 static int __devinit cpu_callback(struct notifier_block *nfb,
3224                                   unsigned long action, void *hcpu)
3225 {
3226         int nid;
3227
3228         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3229                 for_each_node_state(nid, N_HIGH_MEMORY) {
3230                         pg_data_t *pgdat = NODE_DATA(nid);
3231                         const struct cpumask *mask;
3232
3233                         mask = cpumask_of_node(pgdat->node_id);
3234
3235                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3236                                 /* One of our CPUs online: restore mask */
3237                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3238                 }
3239         }
3240         return NOTIFY_OK;
3241 }
3242
3243 /*
3244  * This kswapd start function will be called by init and node-hot-add.
3245  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3246  */
3247 int kswapd_run(int nid)
3248 {
3249         pg_data_t *pgdat = NODE_DATA(nid);
3250         int ret = 0;
3251
3252         if (pgdat->kswapd)
3253                 return 0;
3254
3255         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3256         if (IS_ERR(pgdat->kswapd)) {
3257                 /* failure at boot is fatal */
3258                 BUG_ON(system_state == SYSTEM_BOOTING);
3259                 printk("Failed to start kswapd on node %d\n",nid);
3260                 ret = -1;
3261         }
3262         return ret;
3263 }
3264
3265 /*
3266  * Called by memory hotplug when all memory in a node is offlined.
3267  */
3268 void kswapd_stop(int nid)
3269 {
3270         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3271
3272         if (kswapd)
3273                 kthread_stop(kswapd);
3274 }
3275
3276 static int __init kswapd_init(void)
3277 {
3278         int nid;
3279
3280         swap_setup();
3281         for_each_node_state(nid, N_HIGH_MEMORY)
3282                 kswapd_run(nid);
3283         hotcpu_notifier(cpu_callback, 0);
3284         return 0;
3285 }
3286
3287 module_init(kswapd_init)
3288
3289 #ifdef CONFIG_NUMA
3290 /*
3291  * Zone reclaim mode
3292  *
3293  * If non-zero call zone_reclaim when the number of free pages falls below
3294  * the watermarks.
3295  */
3296 int zone_reclaim_mode __read_mostly;
3297
3298 #define RECLAIM_OFF 0
3299 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3300 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3301 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3302
3303 /*
3304  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3305  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3306  * a zone.
3307  */
3308 #define ZONE_RECLAIM_PRIORITY 4
3309
3310 /*
3311  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3312  * occur.
3313  */
3314 int sysctl_min_unmapped_ratio = 1;
3315
3316 /*
3317  * If the number of slab pages in a zone grows beyond this percentage then
3318  * slab reclaim needs to occur.
3319  */
3320 int sysctl_min_slab_ratio = 5;
3321
3322 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3323 {
3324         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3325         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3326                 zone_page_state(zone, NR_ACTIVE_FILE);
3327
3328         /*
3329          * It's possible for there to be more file mapped pages than
3330          * accounted for by the pages on the file LRU lists because
3331          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3332          */
3333         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3334 }
3335
3336 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3337 static long zone_pagecache_reclaimable(struct zone *zone)
3338 {
3339         long nr_pagecache_reclaimable;
3340         long delta = 0;
3341
3342         /*
3343          * If RECLAIM_SWAP is set, then all file pages are considered
3344          * potentially reclaimable. Otherwise, we have to worry about
3345          * pages like swapcache and zone_unmapped_file_pages() provides
3346          * a better estimate
3347          */
3348         if (zone_reclaim_mode & RECLAIM_SWAP)
3349                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3350         else
3351                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3352
3353         /* If we can't clean pages, remove dirty pages from consideration */
3354         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3355                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3356
3357         /* Watch for any possible underflows due to delta */
3358         if (unlikely(delta > nr_pagecache_reclaimable))
3359                 delta = nr_pagecache_reclaimable;
3360
3361         return nr_pagecache_reclaimable - delta;
3362 }
3363
3364 /*
3365  * Try to free up some pages from this zone through reclaim.
3366  */
3367 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3368 {
3369         /* Minimum pages needed in order to stay on node */
3370         const unsigned long nr_pages = 1 << order;
3371         struct task_struct *p = current;
3372         struct reclaim_state reclaim_state;
3373         int priority;
3374         struct scan_control sc = {
3375                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3376                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3377                 .may_swap = 1,
3378                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3379                                        SWAP_CLUSTER_MAX),
3380                 .gfp_mask = gfp_mask,
3381                 .order = order,
3382         };
3383         struct shrink_control shrink = {
3384                 .gfp_mask = sc.gfp_mask,
3385         };
3386         unsigned long nr_slab_pages0, nr_slab_pages1;
3387
3388         cond_resched();
3389         /*
3390          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3391          * and we also need to be able to write out pages for RECLAIM_WRITE
3392          * and RECLAIM_SWAP.
3393          */
3394         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3395         lockdep_set_current_reclaim_state(gfp_mask);
3396         reclaim_state.reclaimed_slab = 0;
3397         p->reclaim_state = &reclaim_state;
3398
3399         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3400                 /*
3401                  * Free memory by calling shrink zone with increasing
3402                  * priorities until we have enough memory freed.
3403                  */
3404                 priority = ZONE_RECLAIM_PRIORITY;
3405                 do {
3406                         shrink_zone(priority, zone, &sc);
3407                         priority--;
3408                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3409         }
3410
3411         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3412         if (nr_slab_pages0 > zone->min_slab_pages) {
3413                 /*
3414                  * shrink_slab() does not currently allow us to determine how
3415                  * many pages were freed in this zone. So we take the current
3416                  * number of slab pages and shake the slab until it is reduced
3417                  * by the same nr_pages that we used for reclaiming unmapped
3418                  * pages.
3419                  *
3420                  * Note that shrink_slab will free memory on all zones and may
3421                  * take a long time.
3422                  */
3423                 for (;;) {
3424                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3425
3426                         /* No reclaimable slab or very low memory pressure */
3427                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3428                                 break;
3429
3430                         /* Freed enough memory */
3431                         nr_slab_pages1 = zone_page_state(zone,
3432                                                         NR_SLAB_RECLAIMABLE);
3433                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3434                                 break;
3435                 }
3436
3437                 /*
3438                  * Update nr_reclaimed by the number of slab pages we
3439                  * reclaimed from this zone.
3440                  */
3441                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3442                 if (nr_slab_pages1 < nr_slab_pages0)
3443                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3444         }
3445
3446         p->reclaim_state = NULL;
3447         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3448         lockdep_clear_current_reclaim_state();
3449         return sc.nr_reclaimed >= nr_pages;
3450 }
3451
3452 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3453 {
3454         int node_id;
3455         int ret;
3456
3457         /*
3458          * Zone reclaim reclaims unmapped file backed pages and
3459          * slab pages if we are over the defined limits.
3460          *
3461          * A small portion of unmapped file backed pages is needed for
3462          * file I/O otherwise pages read by file I/O will be immediately
3463          * thrown out if the zone is overallocated. So we do not reclaim
3464          * if less than a specified percentage of the zone is used by
3465          * unmapped file backed pages.
3466          */
3467         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3468             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3469                 return ZONE_RECLAIM_FULL;
3470
3471         if (zone->all_unreclaimable)
3472                 return ZONE_RECLAIM_FULL;
3473
3474         /*
3475          * Do not scan if the allocation should not be delayed.
3476          */
3477         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3478                 return ZONE_RECLAIM_NOSCAN;
3479
3480         /*
3481          * Only run zone reclaim on the local zone or on zones that do not
3482          * have associated processors. This will favor the local processor
3483          * over remote processors and spread off node memory allocations
3484          * as wide as possible.
3485          */
3486         node_id = zone_to_nid(zone);
3487         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3488                 return ZONE_RECLAIM_NOSCAN;
3489
3490         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3491                 return ZONE_RECLAIM_NOSCAN;
3492
3493         ret = __zone_reclaim(zone, gfp_mask, order);
3494         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3495
3496         if (!ret)
3497                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3498
3499         return ret;
3500 }
3501 #endif
3502
3503 /*
3504  * page_evictable - test whether a page is evictable
3505  * @page: the page to test
3506  * @vma: the VMA in which the page is or will be mapped, may be NULL
3507  *
3508  * Test whether page is evictable--i.e., should be placed on active/inactive
3509  * lists vs unevictable list.  The vma argument is !NULL when called from the
3510  * fault path to determine how to instantate a new page.
3511  *
3512  * Reasons page might not be evictable:
3513  * (1) page's mapping marked unevictable
3514  * (2) page is part of an mlocked VMA
3515  *
3516  */
3517 int page_evictable(struct page *page, struct vm_area_struct *vma)
3518 {
3519
3520         if (mapping_unevictable(page_mapping(page)))
3521                 return 0;
3522
3523         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3524                 return 0;
3525
3526         return 1;
3527 }
3528
3529 #ifdef CONFIG_SHMEM
3530 /**
3531  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3532  * @pages:      array of pages to check
3533  * @nr_pages:   number of pages to check
3534  *
3535  * Checks pages for evictability and moves them to the appropriate lru list.
3536  *
3537  * This function is only used for SysV IPC SHM_UNLOCK.
3538  */
3539 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3540 {
3541         struct lruvec *lruvec;
3542         struct zone *zone = NULL;
3543         int pgscanned = 0;
3544         int pgrescued = 0;
3545         int i;
3546
3547         for (i = 0; i < nr_pages; i++) {
3548                 struct page *page = pages[i];
3549                 struct zone *pagezone;
3550
3551                 pgscanned++;
3552                 pagezone = page_zone(page);
3553                 if (pagezone != zone) {
3554                         if (zone)
3555                                 spin_unlock_irq(&zone->lru_lock);
3556                         zone = pagezone;
3557                         spin_lock_irq(&zone->lru_lock);
3558                 }
3559
3560                 if (!PageLRU(page) || !PageUnevictable(page))
3561                         continue;
3562
3563                 if (page_evictable(page, NULL)) {
3564                         enum lru_list lru = page_lru_base_type(page);
3565
3566                         VM_BUG_ON(PageActive(page));
3567                         ClearPageUnevictable(page);
3568                         __dec_zone_state(zone, NR_UNEVICTABLE);
3569                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3570                                                 LRU_UNEVICTABLE, lru);
3571                         list_move(&page->lru, &lruvec->lists[lru]);
3572                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3573                         pgrescued++;
3574                 }
3575         }
3576
3577         if (zone) {
3578                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3579                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3580                 spin_unlock_irq(&zone->lru_lock);
3581         }
3582 }
3583 #endif /* CONFIG_SHMEM */
3584
3585 static void warn_scan_unevictable_pages(void)
3586 {
3587         printk_once(KERN_WARNING
3588                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3589                     "disabled for lack of a legitimate use case.  If you have "
3590                     "one, please send an email to linux-mm@kvack.org.\n",
3591                     current->comm);
3592 }
3593
3594 /*
3595  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3596  * all nodes' unevictable lists for evictable pages
3597  */
3598 unsigned long scan_unevictable_pages;
3599
3600 int scan_unevictable_handler(struct ctl_table *table, int write,
3601                            void __user *buffer,
3602                            size_t *length, loff_t *ppos)
3603 {
3604         warn_scan_unevictable_pages();
3605         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3606         scan_unevictable_pages = 0;
3607         return 0;
3608 }
3609
3610 #ifdef CONFIG_NUMA
3611 /*
3612  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3613  * a specified node's per zone unevictable lists for evictable pages.
3614  */
3615
3616 static ssize_t read_scan_unevictable_node(struct device *dev,
3617                                           struct device_attribute *attr,
3618                                           char *buf)
3619 {
3620         warn_scan_unevictable_pages();
3621         return sprintf(buf, "0\n");     /* always zero; should fit... */
3622 }
3623
3624 static ssize_t write_scan_unevictable_node(struct device *dev,
3625                                            struct device_attribute *attr,
3626                                         const char *buf, size_t count)
3627 {
3628         warn_scan_unevictable_pages();
3629         return 1;
3630 }
3631
3632
3633 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3634                         read_scan_unevictable_node,
3635                         write_scan_unevictable_node);
3636
3637 int scan_unevictable_register_node(struct node *node)
3638 {
3639         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3640 }
3641
3642 void scan_unevictable_unregister_node(struct node *node)
3643 {
3644         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3645 }
3646 #endif