Merge tag 'mmc-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[platform/kernel/linux-rpi.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>  /* for try_to_release_page(),
32                                         buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65         /* How many pages shrink_list() should reclaim */
66         unsigned long nr_to_reclaim;
67
68         /*
69          * Nodemask of nodes allowed by the caller. If NULL, all nodes
70          * are scanned.
71          */
72         nodemask_t      *nodemask;
73
74         /*
75          * The memory cgroup that hit its limit and as a result is the
76          * primary target of this reclaim invocation.
77          */
78         struct mem_cgroup *target_mem_cgroup;
79
80         /* Writepage batching in laptop mode; RECLAIM_WRITE */
81         unsigned int may_writepage:1;
82
83         /* Can mapped pages be reclaimed? */
84         unsigned int may_unmap:1;
85
86         /* Can pages be swapped as part of reclaim? */
87         unsigned int may_swap:1;
88
89         /*
90          * Cgroups are not reclaimed below their configured memory.low,
91          * unless we threaten to OOM. If any cgroups are skipped due to
92          * memory.low and nothing was reclaimed, go back for memory.low.
93          */
94         unsigned int memcg_low_reclaim:1;
95         unsigned int memcg_low_skipped:1;
96
97         unsigned int hibernation_mode:1;
98
99         /* One of the zones is ready for compaction */
100         unsigned int compaction_ready:1;
101
102         /* Allocation order */
103         s8 order;
104
105         /* Scan (total_size >> priority) pages at once */
106         s8 priority;
107
108         /* The highest zone to isolate pages for reclaim from */
109         s8 reclaim_idx;
110
111         /* This context's GFP mask */
112         gfp_t gfp_mask;
113
114         /* Incremented by the number of inactive pages that were scanned */
115         unsigned long nr_scanned;
116
117         /* Number of pages freed so far during a call to shrink_zones() */
118         unsigned long nr_reclaimed;
119
120         struct {
121                 unsigned int dirty;
122                 unsigned int unqueued_dirty;
123                 unsigned int congested;
124                 unsigned int writeback;
125                 unsigned int immediate;
126                 unsigned int file_taken;
127                 unsigned int taken;
128         } nr;
129 };
130
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)                    \
133         do {                                                            \
134                 if ((_page)->lru.prev != _base) {                       \
135                         struct page *prev;                              \
136                                                                         \
137                         prev = lru_to_page(&(_page->lru));              \
138                         prefetch(&prev->_field);                        \
139                 }                                                       \
140         } while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
147         do {                                                            \
148                 if ((_page)->lru.prev != _base) {                       \
149                         struct page *prev;                              \
150                                                                         \
151                         prev = lru_to_page(&(_page->lru));              \
152                         prefetchw(&prev->_field);                       \
153                 }                                                       \
154         } while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171
172 #ifdef CONFIG_MEMCG_KMEM
173
174 /*
175  * We allow subsystems to populate their shrinker-related
176  * LRU lists before register_shrinker_prepared() is called
177  * for the shrinker, since we don't want to impose
178  * restrictions on their internal registration order.
179  * In this case shrink_slab_memcg() may find corresponding
180  * bit is set in the shrinkers map.
181  *
182  * This value is used by the function to detect registering
183  * shrinkers and to skip do_shrink_slab() calls for them.
184  */
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
189
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191 {
192         int id, ret = -ENOMEM;
193
194         down_write(&shrinker_rwsem);
195         /* This may call shrinker, so it must use down_read_trylock() */
196         id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197         if (id < 0)
198                 goto unlock;
199
200         if (id >= shrinker_nr_max) {
201                 if (memcg_expand_shrinker_maps(id)) {
202                         idr_remove(&shrinker_idr, id);
203                         goto unlock;
204                 }
205
206                 shrinker_nr_max = id + 1;
207         }
208         shrinker->id = id;
209         ret = 0;
210 unlock:
211         up_write(&shrinker_rwsem);
212         return ret;
213 }
214
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
216 {
217         int id = shrinker->id;
218
219         BUG_ON(id < 0);
220
221         down_write(&shrinker_rwsem);
222         idr_remove(&shrinker_idr, id);
223         up_write(&shrinker_rwsem);
224 }
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227 {
228         return 0;
229 }
230
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 }
234 #endif /* CONFIG_MEMCG_KMEM */
235
236 #ifdef CONFIG_MEMCG
237 static bool global_reclaim(struct scan_control *sc)
238 {
239         return !sc->target_mem_cgroup;
240 }
241
242 /**
243  * sane_reclaim - is the usual dirty throttling mechanism operational?
244  * @sc: scan_control in question
245  *
246  * The normal page dirty throttling mechanism in balance_dirty_pages() is
247  * completely broken with the legacy memcg and direct stalling in
248  * shrink_page_list() is used for throttling instead, which lacks all the
249  * niceties such as fairness, adaptive pausing, bandwidth proportional
250  * allocation and configurability.
251  *
252  * This function tests whether the vmscan currently in progress can assume
253  * that the normal dirty throttling mechanism is operational.
254  */
255 static bool sane_reclaim(struct scan_control *sc)
256 {
257         struct mem_cgroup *memcg = sc->target_mem_cgroup;
258
259         if (!memcg)
260                 return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263                 return true;
264 #endif
265         return false;
266 }
267
268 static void set_memcg_congestion(pg_data_t *pgdat,
269                                 struct mem_cgroup *memcg,
270                                 bool congested)
271 {
272         struct mem_cgroup_per_node *mn;
273
274         if (!memcg)
275                 return;
276
277         mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278         WRITE_ONCE(mn->congested, congested);
279 }
280
281 static bool memcg_congested(pg_data_t *pgdat,
282                         struct mem_cgroup *memcg)
283 {
284         struct mem_cgroup_per_node *mn;
285
286         mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287         return READ_ONCE(mn->congested);
288
289 }
290 #else
291 static bool global_reclaim(struct scan_control *sc)
292 {
293         return true;
294 }
295
296 static bool sane_reclaim(struct scan_control *sc)
297 {
298         return true;
299 }
300
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302                                 struct mem_cgroup *memcg, bool congested)
303 {
304 }
305
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307                         struct mem_cgroup *memcg)
308 {
309         return false;
310
311 }
312 #endif
313
314 /*
315  * This misses isolated pages which are not accounted for to save counters.
316  * As the data only determines if reclaim or compaction continues, it is
317  * not expected that isolated pages will be a dominating factor.
318  */
319 unsigned long zone_reclaimable_pages(struct zone *zone)
320 {
321         unsigned long nr;
322
323         nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324                 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325         if (get_nr_swap_pages() > 0)
326                 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327                         zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328
329         return nr;
330 }
331
332 /**
333  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
334  * @lruvec: lru vector
335  * @lru: lru to use
336  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337  */
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339 {
340         unsigned long lru_size;
341         int zid;
342
343         if (!mem_cgroup_disabled())
344                 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345         else
346                 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347
348         for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349                 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350                 unsigned long size;
351
352                 if (!managed_zone(zone))
353                         continue;
354
355                 if (!mem_cgroup_disabled())
356                         size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357                 else
358                         size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359                                        NR_ZONE_LRU_BASE + lru);
360                 lru_size -= min(size, lru_size);
361         }
362
363         return lru_size;
364
365 }
366
367 /*
368  * Add a shrinker callback to be called from the vm.
369  */
370 int prealloc_shrinker(struct shrinker *shrinker)
371 {
372         size_t size = sizeof(*shrinker->nr_deferred);
373
374         if (shrinker->flags & SHRINKER_NUMA_AWARE)
375                 size *= nr_node_ids;
376
377         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378         if (!shrinker->nr_deferred)
379                 return -ENOMEM;
380
381         if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382                 if (prealloc_memcg_shrinker(shrinker))
383                         goto free_deferred;
384         }
385
386         return 0;
387
388 free_deferred:
389         kfree(shrinker->nr_deferred);
390         shrinker->nr_deferred = NULL;
391         return -ENOMEM;
392 }
393
394 void free_prealloced_shrinker(struct shrinker *shrinker)
395 {
396         if (!shrinker->nr_deferred)
397                 return;
398
399         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400                 unregister_memcg_shrinker(shrinker);
401
402         kfree(shrinker->nr_deferred);
403         shrinker->nr_deferred = NULL;
404 }
405
406 void register_shrinker_prepared(struct shrinker *shrinker)
407 {
408         down_write(&shrinker_rwsem);
409         list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412                 idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 #endif
414         up_write(&shrinker_rwsem);
415 }
416
417 int register_shrinker(struct shrinker *shrinker)
418 {
419         int err = prealloc_shrinker(shrinker);
420
421         if (err)
422                 return err;
423         register_shrinker_prepared(shrinker);
424         return 0;
425 }
426 EXPORT_SYMBOL(register_shrinker);
427
428 /*
429  * Remove one
430  */
431 void unregister_shrinker(struct shrinker *shrinker)
432 {
433         if (!shrinker->nr_deferred)
434                 return;
435         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436                 unregister_memcg_shrinker(shrinker);
437         down_write(&shrinker_rwsem);
438         list_del(&shrinker->list);
439         up_write(&shrinker_rwsem);
440         kfree(shrinker->nr_deferred);
441         shrinker->nr_deferred = NULL;
442 }
443 EXPORT_SYMBOL(unregister_shrinker);
444
445 #define SHRINK_BATCH 128
446
447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448                                     struct shrinker *shrinker, int priority)
449 {
450         unsigned long freed = 0;
451         unsigned long long delta;
452         long total_scan;
453         long freeable;
454         long nr;
455         long new_nr;
456         int nid = shrinkctl->nid;
457         long batch_size = shrinker->batch ? shrinker->batch
458                                           : SHRINK_BATCH;
459         long scanned = 0, next_deferred;
460
461         if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462                 nid = 0;
463
464         freeable = shrinker->count_objects(shrinker, shrinkctl);
465         if (freeable == 0 || freeable == SHRINK_EMPTY)
466                 return freeable;
467
468         /*
469          * copy the current shrinker scan count into a local variable
470          * and zero it so that other concurrent shrinker invocations
471          * don't also do this scanning work.
472          */
473         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474
475         total_scan = nr;
476         delta = freeable >> priority;
477         delta *= 4;
478         do_div(delta, shrinker->seeks);
479         total_scan += delta;
480         if (total_scan < 0) {
481                 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
482                        shrinker->scan_objects, total_scan);
483                 total_scan = freeable;
484                 next_deferred = nr;
485         } else
486                 next_deferred = total_scan;
487
488         /*
489          * We need to avoid excessive windup on filesystem shrinkers
490          * due to large numbers of GFP_NOFS allocations causing the
491          * shrinkers to return -1 all the time. This results in a large
492          * nr being built up so when a shrink that can do some work
493          * comes along it empties the entire cache due to nr >>>
494          * freeable. This is bad for sustaining a working set in
495          * memory.
496          *
497          * Hence only allow the shrinker to scan the entire cache when
498          * a large delta change is calculated directly.
499          */
500         if (delta < freeable / 4)
501                 total_scan = min(total_scan, freeable / 2);
502
503         /*
504          * Avoid risking looping forever due to too large nr value:
505          * never try to free more than twice the estimate number of
506          * freeable entries.
507          */
508         if (total_scan > freeable * 2)
509                 total_scan = freeable * 2;
510
511         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
512                                    freeable, delta, total_scan, priority);
513
514         /*
515          * Normally, we should not scan less than batch_size objects in one
516          * pass to avoid too frequent shrinker calls, but if the slab has less
517          * than batch_size objects in total and we are really tight on memory,
518          * we will try to reclaim all available objects, otherwise we can end
519          * up failing allocations although there are plenty of reclaimable
520          * objects spread over several slabs with usage less than the
521          * batch_size.
522          *
523          * We detect the "tight on memory" situations by looking at the total
524          * number of objects we want to scan (total_scan). If it is greater
525          * than the total number of objects on slab (freeable), we must be
526          * scanning at high prio and therefore should try to reclaim as much as
527          * possible.
528          */
529         while (total_scan >= batch_size ||
530                total_scan >= freeable) {
531                 unsigned long ret;
532                 unsigned long nr_to_scan = min(batch_size, total_scan);
533
534                 shrinkctl->nr_to_scan = nr_to_scan;
535                 shrinkctl->nr_scanned = nr_to_scan;
536                 ret = shrinker->scan_objects(shrinker, shrinkctl);
537                 if (ret == SHRINK_STOP)
538                         break;
539                 freed += ret;
540
541                 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
542                 total_scan -= shrinkctl->nr_scanned;
543                 scanned += shrinkctl->nr_scanned;
544
545                 cond_resched();
546         }
547
548         if (next_deferred >= scanned)
549                 next_deferred -= scanned;
550         else
551                 next_deferred = 0;
552         /*
553          * move the unused scan count back into the shrinker in a
554          * manner that handles concurrent updates. If we exhausted the
555          * scan, there is no need to do an update.
556          */
557         if (next_deferred > 0)
558                 new_nr = atomic_long_add_return(next_deferred,
559                                                 &shrinker->nr_deferred[nid]);
560         else
561                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
562
563         trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
564         return freed;
565 }
566
567 #ifdef CONFIG_MEMCG_KMEM
568 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
569                         struct mem_cgroup *memcg, int priority)
570 {
571         struct memcg_shrinker_map *map;
572         unsigned long freed = 0;
573         int ret, i;
574
575         if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
576                 return 0;
577
578         if (!down_read_trylock(&shrinker_rwsem))
579                 return 0;
580
581         map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
582                                         true);
583         if (unlikely(!map))
584                 goto unlock;
585
586         for_each_set_bit(i, map->map, shrinker_nr_max) {
587                 struct shrink_control sc = {
588                         .gfp_mask = gfp_mask,
589                         .nid = nid,
590                         .memcg = memcg,
591                 };
592                 struct shrinker *shrinker;
593
594                 shrinker = idr_find(&shrinker_idr, i);
595                 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
596                         if (!shrinker)
597                                 clear_bit(i, map->map);
598                         continue;
599                 }
600
601                 ret = do_shrink_slab(&sc, shrinker, priority);
602                 if (ret == SHRINK_EMPTY) {
603                         clear_bit(i, map->map);
604                         /*
605                          * After the shrinker reported that it had no objects to
606                          * free, but before we cleared the corresponding bit in
607                          * the memcg shrinker map, a new object might have been
608                          * added. To make sure, we have the bit set in this
609                          * case, we invoke the shrinker one more time and reset
610                          * the bit if it reports that it is not empty anymore.
611                          * The memory barrier here pairs with the barrier in
612                          * memcg_set_shrinker_bit():
613                          *
614                          * list_lru_add()     shrink_slab_memcg()
615                          *   list_add_tail()    clear_bit()
616                          *   <MB>               <MB>
617                          *   set_bit()          do_shrink_slab()
618                          */
619                         smp_mb__after_atomic();
620                         ret = do_shrink_slab(&sc, shrinker, priority);
621                         if (ret == SHRINK_EMPTY)
622                                 ret = 0;
623                         else
624                                 memcg_set_shrinker_bit(memcg, nid, i);
625                 }
626                 freed += ret;
627
628                 if (rwsem_is_contended(&shrinker_rwsem)) {
629                         freed = freed ? : 1;
630                         break;
631                 }
632         }
633 unlock:
634         up_read(&shrinker_rwsem);
635         return freed;
636 }
637 #else /* CONFIG_MEMCG_KMEM */
638 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
639                         struct mem_cgroup *memcg, int priority)
640 {
641         return 0;
642 }
643 #endif /* CONFIG_MEMCG_KMEM */
644
645 /**
646  * shrink_slab - shrink slab caches
647  * @gfp_mask: allocation context
648  * @nid: node whose slab caches to target
649  * @memcg: memory cgroup whose slab caches to target
650  * @priority: the reclaim priority
651  *
652  * Call the shrink functions to age shrinkable caches.
653  *
654  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
655  * unaware shrinkers will receive a node id of 0 instead.
656  *
657  * @memcg specifies the memory cgroup to target. Unaware shrinkers
658  * are called only if it is the root cgroup.
659  *
660  * @priority is sc->priority, we take the number of objects and >> by priority
661  * in order to get the scan target.
662  *
663  * Returns the number of reclaimed slab objects.
664  */
665 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
666                                  struct mem_cgroup *memcg,
667                                  int priority)
668 {
669         struct shrinker *shrinker;
670         unsigned long freed = 0;
671         int ret;
672
673         if (!mem_cgroup_is_root(memcg))
674                 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
675
676         if (!down_read_trylock(&shrinker_rwsem))
677                 goto out;
678
679         list_for_each_entry(shrinker, &shrinker_list, list) {
680                 struct shrink_control sc = {
681                         .gfp_mask = gfp_mask,
682                         .nid = nid,
683                         .memcg = memcg,
684                 };
685
686                 ret = do_shrink_slab(&sc, shrinker, priority);
687                 if (ret == SHRINK_EMPTY)
688                         ret = 0;
689                 freed += ret;
690                 /*
691                  * Bail out if someone want to register a new shrinker to
692                  * prevent the regsitration from being stalled for long periods
693                  * by parallel ongoing shrinking.
694                  */
695                 if (rwsem_is_contended(&shrinker_rwsem)) {
696                         freed = freed ? : 1;
697                         break;
698                 }
699         }
700
701         up_read(&shrinker_rwsem);
702 out:
703         cond_resched();
704         return freed;
705 }
706
707 void drop_slab_node(int nid)
708 {
709         unsigned long freed;
710
711         do {
712                 struct mem_cgroup *memcg = NULL;
713
714                 freed = 0;
715                 memcg = mem_cgroup_iter(NULL, NULL, NULL);
716                 do {
717                         freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
718                 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
719         } while (freed > 10);
720 }
721
722 void drop_slab(void)
723 {
724         int nid;
725
726         for_each_online_node(nid)
727                 drop_slab_node(nid);
728 }
729
730 static inline int is_page_cache_freeable(struct page *page)
731 {
732         /*
733          * A freeable page cache page is referenced only by the caller
734          * that isolated the page, the page cache radix tree and
735          * optional buffer heads at page->private.
736          */
737         int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
738                 HPAGE_PMD_NR : 1;
739         return page_count(page) - page_has_private(page) == 1 + radix_pins;
740 }
741
742 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
743 {
744         if (current->flags & PF_SWAPWRITE)
745                 return 1;
746         if (!inode_write_congested(inode))
747                 return 1;
748         if (inode_to_bdi(inode) == current->backing_dev_info)
749                 return 1;
750         return 0;
751 }
752
753 /*
754  * We detected a synchronous write error writing a page out.  Probably
755  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
756  * fsync(), msync() or close().
757  *
758  * The tricky part is that after writepage we cannot touch the mapping: nothing
759  * prevents it from being freed up.  But we have a ref on the page and once
760  * that page is locked, the mapping is pinned.
761  *
762  * We're allowed to run sleeping lock_page() here because we know the caller has
763  * __GFP_FS.
764  */
765 static void handle_write_error(struct address_space *mapping,
766                                 struct page *page, int error)
767 {
768         lock_page(page);
769         if (page_mapping(page) == mapping)
770                 mapping_set_error(mapping, error);
771         unlock_page(page);
772 }
773
774 /* possible outcome of pageout() */
775 typedef enum {
776         /* failed to write page out, page is locked */
777         PAGE_KEEP,
778         /* move page to the active list, page is locked */
779         PAGE_ACTIVATE,
780         /* page has been sent to the disk successfully, page is unlocked */
781         PAGE_SUCCESS,
782         /* page is clean and locked */
783         PAGE_CLEAN,
784 } pageout_t;
785
786 /*
787  * pageout is called by shrink_page_list() for each dirty page.
788  * Calls ->writepage().
789  */
790 static pageout_t pageout(struct page *page, struct address_space *mapping,
791                          struct scan_control *sc)
792 {
793         /*
794          * If the page is dirty, only perform writeback if that write
795          * will be non-blocking.  To prevent this allocation from being
796          * stalled by pagecache activity.  But note that there may be
797          * stalls if we need to run get_block().  We could test
798          * PagePrivate for that.
799          *
800          * If this process is currently in __generic_file_write_iter() against
801          * this page's queue, we can perform writeback even if that
802          * will block.
803          *
804          * If the page is swapcache, write it back even if that would
805          * block, for some throttling. This happens by accident, because
806          * swap_backing_dev_info is bust: it doesn't reflect the
807          * congestion state of the swapdevs.  Easy to fix, if needed.
808          */
809         if (!is_page_cache_freeable(page))
810                 return PAGE_KEEP;
811         if (!mapping) {
812                 /*
813                  * Some data journaling orphaned pages can have
814                  * page->mapping == NULL while being dirty with clean buffers.
815                  */
816                 if (page_has_private(page)) {
817                         if (try_to_free_buffers(page)) {
818                                 ClearPageDirty(page);
819                                 pr_info("%s: orphaned page\n", __func__);
820                                 return PAGE_CLEAN;
821                         }
822                 }
823                 return PAGE_KEEP;
824         }
825         if (mapping->a_ops->writepage == NULL)
826                 return PAGE_ACTIVATE;
827         if (!may_write_to_inode(mapping->host, sc))
828                 return PAGE_KEEP;
829
830         if (clear_page_dirty_for_io(page)) {
831                 int res;
832                 struct writeback_control wbc = {
833                         .sync_mode = WB_SYNC_NONE,
834                         .nr_to_write = SWAP_CLUSTER_MAX,
835                         .range_start = 0,
836                         .range_end = LLONG_MAX,
837                         .for_reclaim = 1,
838                 };
839
840                 SetPageReclaim(page);
841                 res = mapping->a_ops->writepage(page, &wbc);
842                 if (res < 0)
843                         handle_write_error(mapping, page, res);
844                 if (res == AOP_WRITEPAGE_ACTIVATE) {
845                         ClearPageReclaim(page);
846                         return PAGE_ACTIVATE;
847                 }
848
849                 if (!PageWriteback(page)) {
850                         /* synchronous write or broken a_ops? */
851                         ClearPageReclaim(page);
852                 }
853                 trace_mm_vmscan_writepage(page);
854                 inc_node_page_state(page, NR_VMSCAN_WRITE);
855                 return PAGE_SUCCESS;
856         }
857
858         return PAGE_CLEAN;
859 }
860
861 /*
862  * Same as remove_mapping, but if the page is removed from the mapping, it
863  * gets returned with a refcount of 0.
864  */
865 static int __remove_mapping(struct address_space *mapping, struct page *page,
866                             bool reclaimed)
867 {
868         unsigned long flags;
869         int refcount;
870
871         BUG_ON(!PageLocked(page));
872         BUG_ON(mapping != page_mapping(page));
873
874         xa_lock_irqsave(&mapping->i_pages, flags);
875         /*
876          * The non racy check for a busy page.
877          *
878          * Must be careful with the order of the tests. When someone has
879          * a ref to the page, it may be possible that they dirty it then
880          * drop the reference. So if PageDirty is tested before page_count
881          * here, then the following race may occur:
882          *
883          * get_user_pages(&page);
884          * [user mapping goes away]
885          * write_to(page);
886          *                              !PageDirty(page)    [good]
887          * SetPageDirty(page);
888          * put_page(page);
889          *                              !page_count(page)   [good, discard it]
890          *
891          * [oops, our write_to data is lost]
892          *
893          * Reversing the order of the tests ensures such a situation cannot
894          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
895          * load is not satisfied before that of page->_refcount.
896          *
897          * Note that if SetPageDirty is always performed via set_page_dirty,
898          * and thus under the i_pages lock, then this ordering is not required.
899          */
900         if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
901                 refcount = 1 + HPAGE_PMD_NR;
902         else
903                 refcount = 2;
904         if (!page_ref_freeze(page, refcount))
905                 goto cannot_free;
906         /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
907         if (unlikely(PageDirty(page))) {
908                 page_ref_unfreeze(page, refcount);
909                 goto cannot_free;
910         }
911
912         if (PageSwapCache(page)) {
913                 swp_entry_t swap = { .val = page_private(page) };
914                 mem_cgroup_swapout(page, swap);
915                 __delete_from_swap_cache(page);
916                 xa_unlock_irqrestore(&mapping->i_pages, flags);
917                 put_swap_page(page, swap);
918         } else {
919                 void (*freepage)(struct page *);
920                 void *shadow = NULL;
921
922                 freepage = mapping->a_ops->freepage;
923                 /*
924                  * Remember a shadow entry for reclaimed file cache in
925                  * order to detect refaults, thus thrashing, later on.
926                  *
927                  * But don't store shadows in an address space that is
928                  * already exiting.  This is not just an optizimation,
929                  * inode reclaim needs to empty out the radix tree or
930                  * the nodes are lost.  Don't plant shadows behind its
931                  * back.
932                  *
933                  * We also don't store shadows for DAX mappings because the
934                  * only page cache pages found in these are zero pages
935                  * covering holes, and because we don't want to mix DAX
936                  * exceptional entries and shadow exceptional entries in the
937                  * same address_space.
938                  */
939                 if (reclaimed && page_is_file_cache(page) &&
940                     !mapping_exiting(mapping) && !dax_mapping(mapping))
941                         shadow = workingset_eviction(mapping, page);
942                 __delete_from_page_cache(page, shadow);
943                 xa_unlock_irqrestore(&mapping->i_pages, flags);
944
945                 if (freepage != NULL)
946                         freepage(page);
947         }
948
949         return 1;
950
951 cannot_free:
952         xa_unlock_irqrestore(&mapping->i_pages, flags);
953         return 0;
954 }
955
956 /*
957  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
958  * someone else has a ref on the page, abort and return 0.  If it was
959  * successfully detached, return 1.  Assumes the caller has a single ref on
960  * this page.
961  */
962 int remove_mapping(struct address_space *mapping, struct page *page)
963 {
964         if (__remove_mapping(mapping, page, false)) {
965                 /*
966                  * Unfreezing the refcount with 1 rather than 2 effectively
967                  * drops the pagecache ref for us without requiring another
968                  * atomic operation.
969                  */
970                 page_ref_unfreeze(page, 1);
971                 return 1;
972         }
973         return 0;
974 }
975
976 /**
977  * putback_lru_page - put previously isolated page onto appropriate LRU list
978  * @page: page to be put back to appropriate lru list
979  *
980  * Add previously isolated @page to appropriate LRU list.
981  * Page may still be unevictable for other reasons.
982  *
983  * lru_lock must not be held, interrupts must be enabled.
984  */
985 void putback_lru_page(struct page *page)
986 {
987         lru_cache_add(page);
988         put_page(page);         /* drop ref from isolate */
989 }
990
991 enum page_references {
992         PAGEREF_RECLAIM,
993         PAGEREF_RECLAIM_CLEAN,
994         PAGEREF_KEEP,
995         PAGEREF_ACTIVATE,
996 };
997
998 static enum page_references page_check_references(struct page *page,
999                                                   struct scan_control *sc)
1000 {
1001         int referenced_ptes, referenced_page;
1002         unsigned long vm_flags;
1003
1004         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1005                                           &vm_flags);
1006         referenced_page = TestClearPageReferenced(page);
1007
1008         /*
1009          * Mlock lost the isolation race with us.  Let try_to_unmap()
1010          * move the page to the unevictable list.
1011          */
1012         if (vm_flags & VM_LOCKED)
1013                 return PAGEREF_RECLAIM;
1014
1015         if (referenced_ptes) {
1016                 if (PageSwapBacked(page))
1017                         return PAGEREF_ACTIVATE;
1018                 /*
1019                  * All mapped pages start out with page table
1020                  * references from the instantiating fault, so we need
1021                  * to look twice if a mapped file page is used more
1022                  * than once.
1023                  *
1024                  * Mark it and spare it for another trip around the
1025                  * inactive list.  Another page table reference will
1026                  * lead to its activation.
1027                  *
1028                  * Note: the mark is set for activated pages as well
1029                  * so that recently deactivated but used pages are
1030                  * quickly recovered.
1031                  */
1032                 SetPageReferenced(page);
1033
1034                 if (referenced_page || referenced_ptes > 1)
1035                         return PAGEREF_ACTIVATE;
1036
1037                 /*
1038                  * Activate file-backed executable pages after first usage.
1039                  */
1040                 if (vm_flags & VM_EXEC)
1041                         return PAGEREF_ACTIVATE;
1042
1043                 return PAGEREF_KEEP;
1044         }
1045
1046         /* Reclaim if clean, defer dirty pages to writeback */
1047         if (referenced_page && !PageSwapBacked(page))
1048                 return PAGEREF_RECLAIM_CLEAN;
1049
1050         return PAGEREF_RECLAIM;
1051 }
1052
1053 /* Check if a page is dirty or under writeback */
1054 static void page_check_dirty_writeback(struct page *page,
1055                                        bool *dirty, bool *writeback)
1056 {
1057         struct address_space *mapping;
1058
1059         /*
1060          * Anonymous pages are not handled by flushers and must be written
1061          * from reclaim context. Do not stall reclaim based on them
1062          */
1063         if (!page_is_file_cache(page) ||
1064             (PageAnon(page) && !PageSwapBacked(page))) {
1065                 *dirty = false;
1066                 *writeback = false;
1067                 return;
1068         }
1069
1070         /* By default assume that the page flags are accurate */
1071         *dirty = PageDirty(page);
1072         *writeback = PageWriteback(page);
1073
1074         /* Verify dirty/writeback state if the filesystem supports it */
1075         if (!page_has_private(page))
1076                 return;
1077
1078         mapping = page_mapping(page);
1079         if (mapping && mapping->a_ops->is_dirty_writeback)
1080                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1081 }
1082
1083 /*
1084  * shrink_page_list() returns the number of reclaimed pages
1085  */
1086 static unsigned long shrink_page_list(struct list_head *page_list,
1087                                       struct pglist_data *pgdat,
1088                                       struct scan_control *sc,
1089                                       enum ttu_flags ttu_flags,
1090                                       struct reclaim_stat *stat,
1091                                       bool force_reclaim)
1092 {
1093         LIST_HEAD(ret_pages);
1094         LIST_HEAD(free_pages);
1095         int pgactivate = 0;
1096         unsigned nr_unqueued_dirty = 0;
1097         unsigned nr_dirty = 0;
1098         unsigned nr_congested = 0;
1099         unsigned nr_reclaimed = 0;
1100         unsigned nr_writeback = 0;
1101         unsigned nr_immediate = 0;
1102         unsigned nr_ref_keep = 0;
1103         unsigned nr_unmap_fail = 0;
1104
1105         cond_resched();
1106
1107         while (!list_empty(page_list)) {
1108                 struct address_space *mapping;
1109                 struct page *page;
1110                 int may_enter_fs;
1111                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1112                 bool dirty, writeback;
1113
1114                 cond_resched();
1115
1116                 page = lru_to_page(page_list);
1117                 list_del(&page->lru);
1118
1119                 if (!trylock_page(page))
1120                         goto keep;
1121
1122                 VM_BUG_ON_PAGE(PageActive(page), page);
1123
1124                 sc->nr_scanned++;
1125
1126                 if (unlikely(!page_evictable(page)))
1127                         goto activate_locked;
1128
1129                 if (!sc->may_unmap && page_mapped(page))
1130                         goto keep_locked;
1131
1132                 /* Double the slab pressure for mapped and swapcache pages */
1133                 if ((page_mapped(page) || PageSwapCache(page)) &&
1134                     !(PageAnon(page) && !PageSwapBacked(page)))
1135                         sc->nr_scanned++;
1136
1137                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1138                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1139
1140                 /*
1141                  * The number of dirty pages determines if a node is marked
1142                  * reclaim_congested which affects wait_iff_congested. kswapd
1143                  * will stall and start writing pages if the tail of the LRU
1144                  * is all dirty unqueued pages.
1145                  */
1146                 page_check_dirty_writeback(page, &dirty, &writeback);
1147                 if (dirty || writeback)
1148                         nr_dirty++;
1149
1150                 if (dirty && !writeback)
1151                         nr_unqueued_dirty++;
1152
1153                 /*
1154                  * Treat this page as congested if the underlying BDI is or if
1155                  * pages are cycling through the LRU so quickly that the
1156                  * pages marked for immediate reclaim are making it to the
1157                  * end of the LRU a second time.
1158                  */
1159                 mapping = page_mapping(page);
1160                 if (((dirty || writeback) && mapping &&
1161                      inode_write_congested(mapping->host)) ||
1162                     (writeback && PageReclaim(page)))
1163                         nr_congested++;
1164
1165                 /*
1166                  * If a page at the tail of the LRU is under writeback, there
1167                  * are three cases to consider.
1168                  *
1169                  * 1) If reclaim is encountering an excessive number of pages
1170                  *    under writeback and this page is both under writeback and
1171                  *    PageReclaim then it indicates that pages are being queued
1172                  *    for IO but are being recycled through the LRU before the
1173                  *    IO can complete. Waiting on the page itself risks an
1174                  *    indefinite stall if it is impossible to writeback the
1175                  *    page due to IO error or disconnected storage so instead
1176                  *    note that the LRU is being scanned too quickly and the
1177                  *    caller can stall after page list has been processed.
1178                  *
1179                  * 2) Global or new memcg reclaim encounters a page that is
1180                  *    not marked for immediate reclaim, or the caller does not
1181                  *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1182                  *    not to fs). In this case mark the page for immediate
1183                  *    reclaim and continue scanning.
1184                  *
1185                  *    Require may_enter_fs because we would wait on fs, which
1186                  *    may not have submitted IO yet. And the loop driver might
1187                  *    enter reclaim, and deadlock if it waits on a page for
1188                  *    which it is needed to do the write (loop masks off
1189                  *    __GFP_IO|__GFP_FS for this reason); but more thought
1190                  *    would probably show more reasons.
1191                  *
1192                  * 3) Legacy memcg encounters a page that is already marked
1193                  *    PageReclaim. memcg does not have any dirty pages
1194                  *    throttling so we could easily OOM just because too many
1195                  *    pages are in writeback and there is nothing else to
1196                  *    reclaim. Wait for the writeback to complete.
1197                  *
1198                  * In cases 1) and 2) we activate the pages to get them out of
1199                  * the way while we continue scanning for clean pages on the
1200                  * inactive list and refilling from the active list. The
1201                  * observation here is that waiting for disk writes is more
1202                  * expensive than potentially causing reloads down the line.
1203                  * Since they're marked for immediate reclaim, they won't put
1204                  * memory pressure on the cache working set any longer than it
1205                  * takes to write them to disk.
1206                  */
1207                 if (PageWriteback(page)) {
1208                         /* Case 1 above */
1209                         if (current_is_kswapd() &&
1210                             PageReclaim(page) &&
1211                             test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1212                                 nr_immediate++;
1213                                 goto activate_locked;
1214
1215                         /* Case 2 above */
1216                         } else if (sane_reclaim(sc) ||
1217                             !PageReclaim(page) || !may_enter_fs) {
1218                                 /*
1219                                  * This is slightly racy - end_page_writeback()
1220                                  * might have just cleared PageReclaim, then
1221                                  * setting PageReclaim here end up interpreted
1222                                  * as PageReadahead - but that does not matter
1223                                  * enough to care.  What we do want is for this
1224                                  * page to have PageReclaim set next time memcg
1225                                  * reclaim reaches the tests above, so it will
1226                                  * then wait_on_page_writeback() to avoid OOM;
1227                                  * and it's also appropriate in global reclaim.
1228                                  */
1229                                 SetPageReclaim(page);
1230                                 nr_writeback++;
1231                                 goto activate_locked;
1232
1233                         /* Case 3 above */
1234                         } else {
1235                                 unlock_page(page);
1236                                 wait_on_page_writeback(page);
1237                                 /* then go back and try same page again */
1238                                 list_add_tail(&page->lru, page_list);
1239                                 continue;
1240                         }
1241                 }
1242
1243                 if (!force_reclaim)
1244                         references = page_check_references(page, sc);
1245
1246                 switch (references) {
1247                 case PAGEREF_ACTIVATE:
1248                         goto activate_locked;
1249                 case PAGEREF_KEEP:
1250                         nr_ref_keep++;
1251                         goto keep_locked;
1252                 case PAGEREF_RECLAIM:
1253                 case PAGEREF_RECLAIM_CLEAN:
1254                         ; /* try to reclaim the page below */
1255                 }
1256
1257                 /*
1258                  * Anonymous process memory has backing store?
1259                  * Try to allocate it some swap space here.
1260                  * Lazyfree page could be freed directly
1261                  */
1262                 if (PageAnon(page) && PageSwapBacked(page)) {
1263                         if (!PageSwapCache(page)) {
1264                                 if (!(sc->gfp_mask & __GFP_IO))
1265                                         goto keep_locked;
1266                                 if (PageTransHuge(page)) {
1267                                         /* cannot split THP, skip it */
1268                                         if (!can_split_huge_page(page, NULL))
1269                                                 goto activate_locked;
1270                                         /*
1271                                          * Split pages without a PMD map right
1272                                          * away. Chances are some or all of the
1273                                          * tail pages can be freed without IO.
1274                                          */
1275                                         if (!compound_mapcount(page) &&
1276                                             split_huge_page_to_list(page,
1277                                                                     page_list))
1278                                                 goto activate_locked;
1279                                 }
1280                                 if (!add_to_swap(page)) {
1281                                         if (!PageTransHuge(page))
1282                                                 goto activate_locked;
1283                                         /* Fallback to swap normal pages */
1284                                         if (split_huge_page_to_list(page,
1285                                                                     page_list))
1286                                                 goto activate_locked;
1287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1288                                         count_vm_event(THP_SWPOUT_FALLBACK);
1289 #endif
1290                                         if (!add_to_swap(page))
1291                                                 goto activate_locked;
1292                                 }
1293
1294                                 may_enter_fs = 1;
1295
1296                                 /* Adding to swap updated mapping */
1297                                 mapping = page_mapping(page);
1298                         }
1299                 } else if (unlikely(PageTransHuge(page))) {
1300                         /* Split file THP */
1301                         if (split_huge_page_to_list(page, page_list))
1302                                 goto keep_locked;
1303                 }
1304
1305                 /*
1306                  * The page is mapped into the page tables of one or more
1307                  * processes. Try to unmap it here.
1308                  */
1309                 if (page_mapped(page)) {
1310                         enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1311
1312                         if (unlikely(PageTransHuge(page)))
1313                                 flags |= TTU_SPLIT_HUGE_PMD;
1314                         if (!try_to_unmap(page, flags)) {
1315                                 nr_unmap_fail++;
1316                                 goto activate_locked;
1317                         }
1318                 }
1319
1320                 if (PageDirty(page)) {
1321                         /*
1322                          * Only kswapd can writeback filesystem pages
1323                          * to avoid risk of stack overflow. But avoid
1324                          * injecting inefficient single-page IO into
1325                          * flusher writeback as much as possible: only
1326                          * write pages when we've encountered many
1327                          * dirty pages, and when we've already scanned
1328                          * the rest of the LRU for clean pages and see
1329                          * the same dirty pages again (PageReclaim).
1330                          */
1331                         if (page_is_file_cache(page) &&
1332                             (!current_is_kswapd() || !PageReclaim(page) ||
1333                              !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1334                                 /*
1335                                  * Immediately reclaim when written back.
1336                                  * Similar in principal to deactivate_page()
1337                                  * except we already have the page isolated
1338                                  * and know it's dirty
1339                                  */
1340                                 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1341                                 SetPageReclaim(page);
1342
1343                                 goto activate_locked;
1344                         }
1345
1346                         if (references == PAGEREF_RECLAIM_CLEAN)
1347                                 goto keep_locked;
1348                         if (!may_enter_fs)
1349                                 goto keep_locked;
1350                         if (!sc->may_writepage)
1351                                 goto keep_locked;
1352
1353                         /*
1354                          * Page is dirty. Flush the TLB if a writable entry
1355                          * potentially exists to avoid CPU writes after IO
1356                          * starts and then write it out here.
1357                          */
1358                         try_to_unmap_flush_dirty();
1359                         switch (pageout(page, mapping, sc)) {
1360                         case PAGE_KEEP:
1361                                 goto keep_locked;
1362                         case PAGE_ACTIVATE:
1363                                 goto activate_locked;
1364                         case PAGE_SUCCESS:
1365                                 if (PageWriteback(page))
1366                                         goto keep;
1367                                 if (PageDirty(page))
1368                                         goto keep;
1369
1370                                 /*
1371                                  * A synchronous write - probably a ramdisk.  Go
1372                                  * ahead and try to reclaim the page.
1373                                  */
1374                                 if (!trylock_page(page))
1375                                         goto keep;
1376                                 if (PageDirty(page) || PageWriteback(page))
1377                                         goto keep_locked;
1378                                 mapping = page_mapping(page);
1379                         case PAGE_CLEAN:
1380                                 ; /* try to free the page below */
1381                         }
1382                 }
1383
1384                 /*
1385                  * If the page has buffers, try to free the buffer mappings
1386                  * associated with this page. If we succeed we try to free
1387                  * the page as well.
1388                  *
1389                  * We do this even if the page is PageDirty().
1390                  * try_to_release_page() does not perform I/O, but it is
1391                  * possible for a page to have PageDirty set, but it is actually
1392                  * clean (all its buffers are clean).  This happens if the
1393                  * buffers were written out directly, with submit_bh(). ext3
1394                  * will do this, as well as the blockdev mapping.
1395                  * try_to_release_page() will discover that cleanness and will
1396                  * drop the buffers and mark the page clean - it can be freed.
1397                  *
1398                  * Rarely, pages can have buffers and no ->mapping.  These are
1399                  * the pages which were not successfully invalidated in
1400                  * truncate_complete_page().  We try to drop those buffers here
1401                  * and if that worked, and the page is no longer mapped into
1402                  * process address space (page_count == 1) it can be freed.
1403                  * Otherwise, leave the page on the LRU so it is swappable.
1404                  */
1405                 if (page_has_private(page)) {
1406                         if (!try_to_release_page(page, sc->gfp_mask))
1407                                 goto activate_locked;
1408                         if (!mapping && page_count(page) == 1) {
1409                                 unlock_page(page);
1410                                 if (put_page_testzero(page))
1411                                         goto free_it;
1412                                 else {
1413                                         /*
1414                                          * rare race with speculative reference.
1415                                          * the speculative reference will free
1416                                          * this page shortly, so we may
1417                                          * increment nr_reclaimed here (and
1418                                          * leave it off the LRU).
1419                                          */
1420                                         nr_reclaimed++;
1421                                         continue;
1422                                 }
1423                         }
1424                 }
1425
1426                 if (PageAnon(page) && !PageSwapBacked(page)) {
1427                         /* follow __remove_mapping for reference */
1428                         if (!page_ref_freeze(page, 1))
1429                                 goto keep_locked;
1430                         if (PageDirty(page)) {
1431                                 page_ref_unfreeze(page, 1);
1432                                 goto keep_locked;
1433                         }
1434
1435                         count_vm_event(PGLAZYFREED);
1436                         count_memcg_page_event(page, PGLAZYFREED);
1437                 } else if (!mapping || !__remove_mapping(mapping, page, true))
1438                         goto keep_locked;
1439                 /*
1440                  * At this point, we have no other references and there is
1441                  * no way to pick any more up (removed from LRU, removed
1442                  * from pagecache). Can use non-atomic bitops now (and
1443                  * we obviously don't have to worry about waking up a process
1444                  * waiting on the page lock, because there are no references.
1445                  */
1446                 __ClearPageLocked(page);
1447 free_it:
1448                 nr_reclaimed++;
1449
1450                 /*
1451                  * Is there need to periodically free_page_list? It would
1452                  * appear not as the counts should be low
1453                  */
1454                 if (unlikely(PageTransHuge(page))) {
1455                         mem_cgroup_uncharge(page);
1456                         (*get_compound_page_dtor(page))(page);
1457                 } else
1458                         list_add(&page->lru, &free_pages);
1459                 continue;
1460
1461 activate_locked:
1462                 /* Not a candidate for swapping, so reclaim swap space. */
1463                 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1464                                                 PageMlocked(page)))
1465                         try_to_free_swap(page);
1466                 VM_BUG_ON_PAGE(PageActive(page), page);
1467                 if (!PageMlocked(page)) {
1468                         SetPageActive(page);
1469                         pgactivate++;
1470                         count_memcg_page_event(page, PGACTIVATE);
1471                 }
1472 keep_locked:
1473                 unlock_page(page);
1474 keep:
1475                 list_add(&page->lru, &ret_pages);
1476                 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1477         }
1478
1479         mem_cgroup_uncharge_list(&free_pages);
1480         try_to_unmap_flush();
1481         free_unref_page_list(&free_pages);
1482
1483         list_splice(&ret_pages, page_list);
1484         count_vm_events(PGACTIVATE, pgactivate);
1485
1486         if (stat) {
1487                 stat->nr_dirty = nr_dirty;
1488                 stat->nr_congested = nr_congested;
1489                 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1490                 stat->nr_writeback = nr_writeback;
1491                 stat->nr_immediate = nr_immediate;
1492                 stat->nr_activate = pgactivate;
1493                 stat->nr_ref_keep = nr_ref_keep;
1494                 stat->nr_unmap_fail = nr_unmap_fail;
1495         }
1496         return nr_reclaimed;
1497 }
1498
1499 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1500                                             struct list_head *page_list)
1501 {
1502         struct scan_control sc = {
1503                 .gfp_mask = GFP_KERNEL,
1504                 .priority = DEF_PRIORITY,
1505                 .may_unmap = 1,
1506         };
1507         unsigned long ret;
1508         struct page *page, *next;
1509         LIST_HEAD(clean_pages);
1510
1511         list_for_each_entry_safe(page, next, page_list, lru) {
1512                 if (page_is_file_cache(page) && !PageDirty(page) &&
1513                     !__PageMovable(page)) {
1514                         ClearPageActive(page);
1515                         list_move(&page->lru, &clean_pages);
1516                 }
1517         }
1518
1519         ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1520                         TTU_IGNORE_ACCESS, NULL, true);
1521         list_splice(&clean_pages, page_list);
1522         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1523         return ret;
1524 }
1525
1526 /*
1527  * Attempt to remove the specified page from its LRU.  Only take this page
1528  * if it is of the appropriate PageActive status.  Pages which are being
1529  * freed elsewhere are also ignored.
1530  *
1531  * page:        page to consider
1532  * mode:        one of the LRU isolation modes defined above
1533  *
1534  * returns 0 on success, -ve errno on failure.
1535  */
1536 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1537 {
1538         int ret = -EINVAL;
1539
1540         /* Only take pages on the LRU. */
1541         if (!PageLRU(page))
1542                 return ret;
1543
1544         /* Compaction should not handle unevictable pages but CMA can do so */
1545         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1546                 return ret;
1547
1548         ret = -EBUSY;
1549
1550         /*
1551          * To minimise LRU disruption, the caller can indicate that it only
1552          * wants to isolate pages it will be able to operate on without
1553          * blocking - clean pages for the most part.
1554          *
1555          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1556          * that it is possible to migrate without blocking
1557          */
1558         if (mode & ISOLATE_ASYNC_MIGRATE) {
1559                 /* All the caller can do on PageWriteback is block */
1560                 if (PageWriteback(page))
1561                         return ret;
1562
1563                 if (PageDirty(page)) {
1564                         struct address_space *mapping;
1565                         bool migrate_dirty;
1566
1567                         /*
1568                          * Only pages without mappings or that have a
1569                          * ->migratepage callback are possible to migrate
1570                          * without blocking. However, we can be racing with
1571                          * truncation so it's necessary to lock the page
1572                          * to stabilise the mapping as truncation holds
1573                          * the page lock until after the page is removed
1574                          * from the page cache.
1575                          */
1576                         if (!trylock_page(page))
1577                                 return ret;
1578
1579                         mapping = page_mapping(page);
1580                         migrate_dirty = !mapping || mapping->a_ops->migratepage;
1581                         unlock_page(page);
1582                         if (!migrate_dirty)
1583                                 return ret;
1584                 }
1585         }
1586
1587         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1588                 return ret;
1589
1590         if (likely(get_page_unless_zero(page))) {
1591                 /*
1592                  * Be careful not to clear PageLRU until after we're
1593                  * sure the page is not being freed elsewhere -- the
1594                  * page release code relies on it.
1595                  */
1596                 ClearPageLRU(page);
1597                 ret = 0;
1598         }
1599
1600         return ret;
1601 }
1602
1603
1604 /*
1605  * Update LRU sizes after isolating pages. The LRU size updates must
1606  * be complete before mem_cgroup_update_lru_size due to a santity check.
1607  */
1608 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1609                         enum lru_list lru, unsigned long *nr_zone_taken)
1610 {
1611         int zid;
1612
1613         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1614                 if (!nr_zone_taken[zid])
1615                         continue;
1616
1617                 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1618 #ifdef CONFIG_MEMCG
1619                 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1620 #endif
1621         }
1622
1623 }
1624
1625 /*
1626  * zone_lru_lock is heavily contended.  Some of the functions that
1627  * shrink the lists perform better by taking out a batch of pages
1628  * and working on them outside the LRU lock.
1629  *
1630  * For pagecache intensive workloads, this function is the hottest
1631  * spot in the kernel (apart from copy_*_user functions).
1632  *
1633  * Appropriate locks must be held before calling this function.
1634  *
1635  * @nr_to_scan: The number of eligible pages to look through on the list.
1636  * @lruvec:     The LRU vector to pull pages from.
1637  * @dst:        The temp list to put pages on to.
1638  * @nr_scanned: The number of pages that were scanned.
1639  * @sc:         The scan_control struct for this reclaim session
1640  * @mode:       One of the LRU isolation modes
1641  * @lru:        LRU list id for isolating
1642  *
1643  * returns how many pages were moved onto *@dst.
1644  */
1645 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1646                 struct lruvec *lruvec, struct list_head *dst,
1647                 unsigned long *nr_scanned, struct scan_control *sc,
1648                 isolate_mode_t mode, enum lru_list lru)
1649 {
1650         struct list_head *src = &lruvec->lists[lru];
1651         unsigned long nr_taken = 0;
1652         unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1653         unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1654         unsigned long skipped = 0;
1655         unsigned long scan, total_scan, nr_pages;
1656         LIST_HEAD(pages_skipped);
1657
1658         scan = 0;
1659         for (total_scan = 0;
1660              scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1661              total_scan++) {
1662                 struct page *page;
1663
1664                 page = lru_to_page(src);
1665                 prefetchw_prev_lru_page(page, src, flags);
1666
1667                 VM_BUG_ON_PAGE(!PageLRU(page), page);
1668
1669                 if (page_zonenum(page) > sc->reclaim_idx) {
1670                         list_move(&page->lru, &pages_skipped);
1671                         nr_skipped[page_zonenum(page)]++;
1672                         continue;
1673                 }
1674
1675                 /*
1676                  * Do not count skipped pages because that makes the function
1677                  * return with no isolated pages if the LRU mostly contains
1678                  * ineligible pages.  This causes the VM to not reclaim any
1679                  * pages, triggering a premature OOM.
1680                  */
1681                 scan++;
1682                 switch (__isolate_lru_page(page, mode)) {
1683                 case 0:
1684                         nr_pages = hpage_nr_pages(page);
1685                         nr_taken += nr_pages;
1686                         nr_zone_taken[page_zonenum(page)] += nr_pages;
1687                         list_move(&page->lru, dst);
1688                         break;
1689
1690                 case -EBUSY:
1691                         /* else it is being freed elsewhere */
1692                         list_move(&page->lru, src);
1693                         continue;
1694
1695                 default:
1696                         BUG();
1697                 }
1698         }
1699
1700         /*
1701          * Splice any skipped pages to the start of the LRU list. Note that
1702          * this disrupts the LRU order when reclaiming for lower zones but
1703          * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1704          * scanning would soon rescan the same pages to skip and put the
1705          * system at risk of premature OOM.
1706          */
1707         if (!list_empty(&pages_skipped)) {
1708                 int zid;
1709
1710                 list_splice(&pages_skipped, src);
1711                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1712                         if (!nr_skipped[zid])
1713                                 continue;
1714
1715                         __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1716                         skipped += nr_skipped[zid];
1717                 }
1718         }
1719         *nr_scanned = total_scan;
1720         trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1721                                     total_scan, skipped, nr_taken, mode, lru);
1722         update_lru_sizes(lruvec, lru, nr_zone_taken);
1723         return nr_taken;
1724 }
1725
1726 /**
1727  * isolate_lru_page - tries to isolate a page from its LRU list
1728  * @page: page to isolate from its LRU list
1729  *
1730  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1731  * vmstat statistic corresponding to whatever LRU list the page was on.
1732  *
1733  * Returns 0 if the page was removed from an LRU list.
1734  * Returns -EBUSY if the page was not on an LRU list.
1735  *
1736  * The returned page will have PageLRU() cleared.  If it was found on
1737  * the active list, it will have PageActive set.  If it was found on
1738  * the unevictable list, it will have the PageUnevictable bit set. That flag
1739  * may need to be cleared by the caller before letting the page go.
1740  *
1741  * The vmstat statistic corresponding to the list on which the page was
1742  * found will be decremented.
1743  *
1744  * Restrictions:
1745  *
1746  * (1) Must be called with an elevated refcount on the page. This is a
1747  *     fundamentnal difference from isolate_lru_pages (which is called
1748  *     without a stable reference).
1749  * (2) the lru_lock must not be held.
1750  * (3) interrupts must be enabled.
1751  */
1752 int isolate_lru_page(struct page *page)
1753 {
1754         int ret = -EBUSY;
1755
1756         VM_BUG_ON_PAGE(!page_count(page), page);
1757         WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1758
1759         if (PageLRU(page)) {
1760                 struct zone *zone = page_zone(page);
1761                 struct lruvec *lruvec;
1762
1763                 spin_lock_irq(zone_lru_lock(zone));
1764                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1765                 if (PageLRU(page)) {
1766                         int lru = page_lru(page);
1767                         get_page(page);
1768                         ClearPageLRU(page);
1769                         del_page_from_lru_list(page, lruvec, lru);
1770                         ret = 0;
1771                 }
1772                 spin_unlock_irq(zone_lru_lock(zone));
1773         }
1774         return ret;
1775 }
1776
1777 /*
1778  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1779  * then get resheduled. When there are massive number of tasks doing page
1780  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1781  * the LRU list will go small and be scanned faster than necessary, leading to
1782  * unnecessary swapping, thrashing and OOM.
1783  */
1784 static int too_many_isolated(struct pglist_data *pgdat, int file,
1785                 struct scan_control *sc)
1786 {
1787         unsigned long inactive, isolated;
1788
1789         if (current_is_kswapd())
1790                 return 0;
1791
1792         if (!sane_reclaim(sc))
1793                 return 0;
1794
1795         if (file) {
1796                 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1797                 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1798         } else {
1799                 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1800                 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1801         }
1802
1803         /*
1804          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1805          * won't get blocked by normal direct-reclaimers, forming a circular
1806          * deadlock.
1807          */
1808         if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1809                 inactive >>= 3;
1810
1811         return isolated > inactive;
1812 }
1813
1814 static noinline_for_stack void
1815 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1816 {
1817         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1818         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1819         LIST_HEAD(pages_to_free);
1820
1821         /*
1822          * Put back any unfreeable pages.
1823          */
1824         while (!list_empty(page_list)) {
1825                 struct page *page = lru_to_page(page_list);
1826                 int lru;
1827
1828                 VM_BUG_ON_PAGE(PageLRU(page), page);
1829                 list_del(&page->lru);
1830                 if (unlikely(!page_evictable(page))) {
1831                         spin_unlock_irq(&pgdat->lru_lock);
1832                         putback_lru_page(page);
1833                         spin_lock_irq(&pgdat->lru_lock);
1834                         continue;
1835                 }
1836
1837                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1838
1839                 SetPageLRU(page);
1840                 lru = page_lru(page);
1841                 add_page_to_lru_list(page, lruvec, lru);
1842
1843                 if (is_active_lru(lru)) {
1844                         int file = is_file_lru(lru);
1845                         int numpages = hpage_nr_pages(page);
1846                         reclaim_stat->recent_rotated[file] += numpages;
1847                 }
1848                 if (put_page_testzero(page)) {
1849                         __ClearPageLRU(page);
1850                         __ClearPageActive(page);
1851                         del_page_from_lru_list(page, lruvec, lru);
1852
1853                         if (unlikely(PageCompound(page))) {
1854                                 spin_unlock_irq(&pgdat->lru_lock);
1855                                 mem_cgroup_uncharge(page);
1856                                 (*get_compound_page_dtor(page))(page);
1857                                 spin_lock_irq(&pgdat->lru_lock);
1858                         } else
1859                                 list_add(&page->lru, &pages_to_free);
1860                 }
1861         }
1862
1863         /*
1864          * To save our caller's stack, now use input list for pages to free.
1865          */
1866         list_splice(&pages_to_free, page_list);
1867 }
1868
1869 /*
1870  * If a kernel thread (such as nfsd for loop-back mounts) services
1871  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1872  * In that case we should only throttle if the backing device it is
1873  * writing to is congested.  In other cases it is safe to throttle.
1874  */
1875 static int current_may_throttle(void)
1876 {
1877         return !(current->flags & PF_LESS_THROTTLE) ||
1878                 current->backing_dev_info == NULL ||
1879                 bdi_write_congested(current->backing_dev_info);
1880 }
1881
1882 /*
1883  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1884  * of reclaimed pages
1885  */
1886 static noinline_for_stack unsigned long
1887 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1888                      struct scan_control *sc, enum lru_list lru)
1889 {
1890         LIST_HEAD(page_list);
1891         unsigned long nr_scanned;
1892         unsigned long nr_reclaimed = 0;
1893         unsigned long nr_taken;
1894         struct reclaim_stat stat = {};
1895         isolate_mode_t isolate_mode = 0;
1896         int file = is_file_lru(lru);
1897         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1898         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1899         bool stalled = false;
1900
1901         while (unlikely(too_many_isolated(pgdat, file, sc))) {
1902                 if (stalled)
1903                         return 0;
1904
1905                 /* wait a bit for the reclaimer. */
1906                 msleep(100);
1907                 stalled = true;
1908
1909                 /* We are about to die and free our memory. Return now. */
1910                 if (fatal_signal_pending(current))
1911                         return SWAP_CLUSTER_MAX;
1912         }
1913
1914         lru_add_drain();
1915
1916         if (!sc->may_unmap)
1917                 isolate_mode |= ISOLATE_UNMAPPED;
1918
1919         spin_lock_irq(&pgdat->lru_lock);
1920
1921         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1922                                      &nr_scanned, sc, isolate_mode, lru);
1923
1924         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1925         reclaim_stat->recent_scanned[file] += nr_taken;
1926
1927         if (current_is_kswapd()) {
1928                 if (global_reclaim(sc))
1929                         __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1930                 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1931                                    nr_scanned);
1932         } else {
1933                 if (global_reclaim(sc))
1934                         __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1935                 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1936                                    nr_scanned);
1937         }
1938         spin_unlock_irq(&pgdat->lru_lock);
1939
1940         if (nr_taken == 0)
1941                 return 0;
1942
1943         nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1944                                 &stat, false);
1945
1946         spin_lock_irq(&pgdat->lru_lock);
1947
1948         if (current_is_kswapd()) {
1949                 if (global_reclaim(sc))
1950                         __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1951                 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1952                                    nr_reclaimed);
1953         } else {
1954                 if (global_reclaim(sc))
1955                         __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1956                 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1957                                    nr_reclaimed);
1958         }
1959
1960         putback_inactive_pages(lruvec, &page_list);
1961
1962         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1963
1964         spin_unlock_irq(&pgdat->lru_lock);
1965
1966         mem_cgroup_uncharge_list(&page_list);
1967         free_unref_page_list(&page_list);
1968
1969         /*
1970          * If dirty pages are scanned that are not queued for IO, it
1971          * implies that flushers are not doing their job. This can
1972          * happen when memory pressure pushes dirty pages to the end of
1973          * the LRU before the dirty limits are breached and the dirty
1974          * data has expired. It can also happen when the proportion of
1975          * dirty pages grows not through writes but through memory
1976          * pressure reclaiming all the clean cache. And in some cases,
1977          * the flushers simply cannot keep up with the allocation
1978          * rate. Nudge the flusher threads in case they are asleep.
1979          */
1980         if (stat.nr_unqueued_dirty == nr_taken)
1981                 wakeup_flusher_threads(WB_REASON_VMSCAN);
1982
1983         sc->nr.dirty += stat.nr_dirty;
1984         sc->nr.congested += stat.nr_congested;
1985         sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1986         sc->nr.writeback += stat.nr_writeback;
1987         sc->nr.immediate += stat.nr_immediate;
1988         sc->nr.taken += nr_taken;
1989         if (file)
1990                 sc->nr.file_taken += nr_taken;
1991
1992         trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1993                         nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1994         return nr_reclaimed;
1995 }
1996
1997 /*
1998  * This moves pages from the active list to the inactive list.
1999  *
2000  * We move them the other way if the page is referenced by one or more
2001  * processes, from rmap.
2002  *
2003  * If the pages are mostly unmapped, the processing is fast and it is
2004  * appropriate to hold zone_lru_lock across the whole operation.  But if
2005  * the pages are mapped, the processing is slow (page_referenced()) so we
2006  * should drop zone_lru_lock around each page.  It's impossible to balance
2007  * this, so instead we remove the pages from the LRU while processing them.
2008  * It is safe to rely on PG_active against the non-LRU pages in here because
2009  * nobody will play with that bit on a non-LRU page.
2010  *
2011  * The downside is that we have to touch page->_refcount against each page.
2012  * But we had to alter page->flags anyway.
2013  *
2014  * Returns the number of pages moved to the given lru.
2015  */
2016
2017 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2018                                      struct list_head *list,
2019                                      struct list_head *pages_to_free,
2020                                      enum lru_list lru)
2021 {
2022         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2023         struct page *page;
2024         int nr_pages;
2025         int nr_moved = 0;
2026
2027         while (!list_empty(list)) {
2028                 page = lru_to_page(list);
2029                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2030
2031                 VM_BUG_ON_PAGE(PageLRU(page), page);
2032                 SetPageLRU(page);
2033
2034                 nr_pages = hpage_nr_pages(page);
2035                 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2036                 list_move(&page->lru, &lruvec->lists[lru]);
2037
2038                 if (put_page_testzero(page)) {
2039                         __ClearPageLRU(page);
2040                         __ClearPageActive(page);
2041                         del_page_from_lru_list(page, lruvec, lru);
2042
2043                         if (unlikely(PageCompound(page))) {
2044                                 spin_unlock_irq(&pgdat->lru_lock);
2045                                 mem_cgroup_uncharge(page);
2046                                 (*get_compound_page_dtor(page))(page);
2047                                 spin_lock_irq(&pgdat->lru_lock);
2048                         } else
2049                                 list_add(&page->lru, pages_to_free);
2050                 } else {
2051                         nr_moved += nr_pages;
2052                 }
2053         }
2054
2055         if (!is_active_lru(lru)) {
2056                 __count_vm_events(PGDEACTIVATE, nr_moved);
2057                 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2058                                    nr_moved);
2059         }
2060
2061         return nr_moved;
2062 }
2063
2064 static void shrink_active_list(unsigned long nr_to_scan,
2065                                struct lruvec *lruvec,
2066                                struct scan_control *sc,
2067                                enum lru_list lru)
2068 {
2069         unsigned long nr_taken;
2070         unsigned long nr_scanned;
2071         unsigned long vm_flags;
2072         LIST_HEAD(l_hold);      /* The pages which were snipped off */
2073         LIST_HEAD(l_active);
2074         LIST_HEAD(l_inactive);
2075         struct page *page;
2076         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2077         unsigned nr_deactivate, nr_activate;
2078         unsigned nr_rotated = 0;
2079         isolate_mode_t isolate_mode = 0;
2080         int file = is_file_lru(lru);
2081         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2082
2083         lru_add_drain();
2084
2085         if (!sc->may_unmap)
2086                 isolate_mode |= ISOLATE_UNMAPPED;
2087
2088         spin_lock_irq(&pgdat->lru_lock);
2089
2090         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2091                                      &nr_scanned, sc, isolate_mode, lru);
2092
2093         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2094         reclaim_stat->recent_scanned[file] += nr_taken;
2095
2096         __count_vm_events(PGREFILL, nr_scanned);
2097         count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2098
2099         spin_unlock_irq(&pgdat->lru_lock);
2100
2101         while (!list_empty(&l_hold)) {
2102                 cond_resched();
2103                 page = lru_to_page(&l_hold);
2104                 list_del(&page->lru);
2105
2106                 if (unlikely(!page_evictable(page))) {
2107                         putback_lru_page(page);
2108                         continue;
2109                 }
2110
2111                 if (unlikely(buffer_heads_over_limit)) {
2112                         if (page_has_private(page) && trylock_page(page)) {
2113                                 if (page_has_private(page))
2114                                         try_to_release_page(page, 0);
2115                                 unlock_page(page);
2116                         }
2117                 }
2118
2119                 if (page_referenced(page, 0, sc->target_mem_cgroup,
2120                                     &vm_flags)) {
2121                         nr_rotated += hpage_nr_pages(page);
2122                         /*
2123                          * Identify referenced, file-backed active pages and
2124                          * give them one more trip around the active list. So
2125                          * that executable code get better chances to stay in
2126                          * memory under moderate memory pressure.  Anon pages
2127                          * are not likely to be evicted by use-once streaming
2128                          * IO, plus JVM can create lots of anon VM_EXEC pages,
2129                          * so we ignore them here.
2130                          */
2131                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2132                                 list_add(&page->lru, &l_active);
2133                                 continue;
2134                         }
2135                 }
2136
2137                 ClearPageActive(page);  /* we are de-activating */
2138                 list_add(&page->lru, &l_inactive);
2139         }
2140
2141         /*
2142          * Move pages back to the lru list.
2143          */
2144         spin_lock_irq(&pgdat->lru_lock);
2145         /*
2146          * Count referenced pages from currently used mappings as rotated,
2147          * even though only some of them are actually re-activated.  This
2148          * helps balance scan pressure between file and anonymous pages in
2149          * get_scan_count.
2150          */
2151         reclaim_stat->recent_rotated[file] += nr_rotated;
2152
2153         nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2154         nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2155         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2156         spin_unlock_irq(&pgdat->lru_lock);
2157
2158         mem_cgroup_uncharge_list(&l_hold);
2159         free_unref_page_list(&l_hold);
2160         trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2161                         nr_deactivate, nr_rotated, sc->priority, file);
2162 }
2163
2164 /*
2165  * The inactive anon list should be small enough that the VM never has
2166  * to do too much work.
2167  *
2168  * The inactive file list should be small enough to leave most memory
2169  * to the established workingset on the scan-resistant active list,
2170  * but large enough to avoid thrashing the aggregate readahead window.
2171  *
2172  * Both inactive lists should also be large enough that each inactive
2173  * page has a chance to be referenced again before it is reclaimed.
2174  *
2175  * If that fails and refaulting is observed, the inactive list grows.
2176  *
2177  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2178  * on this LRU, maintained by the pageout code. An inactive_ratio
2179  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2180  *
2181  * total     target    max
2182  * memory    ratio     inactive
2183  * -------------------------------------
2184  *   10MB       1         5MB
2185  *  100MB       1        50MB
2186  *    1GB       3       250MB
2187  *   10GB      10       0.9GB
2188  *  100GB      31         3GB
2189  *    1TB     101        10GB
2190  *   10TB     320        32GB
2191  */
2192 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2193                                  struct mem_cgroup *memcg,
2194                                  struct scan_control *sc, bool actual_reclaim)
2195 {
2196         enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2197         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2198         enum lru_list inactive_lru = file * LRU_FILE;
2199         unsigned long inactive, active;
2200         unsigned long inactive_ratio;
2201         unsigned long refaults;
2202         unsigned long gb;
2203
2204         /*
2205          * If we don't have swap space, anonymous page deactivation
2206          * is pointless.
2207          */
2208         if (!file && !total_swap_pages)
2209                 return false;
2210
2211         inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2212         active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2213
2214         if (memcg)
2215                 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2216         else
2217                 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2218
2219         /*
2220          * When refaults are being observed, it means a new workingset
2221          * is being established. Disable active list protection to get
2222          * rid of the stale workingset quickly.
2223          */
2224         if (file && actual_reclaim && lruvec->refaults != refaults) {
2225                 inactive_ratio = 0;
2226         } else {
2227                 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2228                 if (gb)
2229                         inactive_ratio = int_sqrt(10 * gb);
2230                 else
2231                         inactive_ratio = 1;
2232         }
2233
2234         if (actual_reclaim)
2235                 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2236                         lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2237                         lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2238                         inactive_ratio, file);
2239
2240         return inactive * inactive_ratio < active;
2241 }
2242
2243 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2244                                  struct lruvec *lruvec, struct mem_cgroup *memcg,
2245                                  struct scan_control *sc)
2246 {
2247         if (is_active_lru(lru)) {
2248                 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2249                                          memcg, sc, true))
2250                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
2251                 return 0;
2252         }
2253
2254         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2255 }
2256
2257 enum scan_balance {
2258         SCAN_EQUAL,
2259         SCAN_FRACT,
2260         SCAN_ANON,
2261         SCAN_FILE,
2262 };
2263
2264 /*
2265  * Determine how aggressively the anon and file LRU lists should be
2266  * scanned.  The relative value of each set of LRU lists is determined
2267  * by looking at the fraction of the pages scanned we did rotate back
2268  * onto the active list instead of evict.
2269  *
2270  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2271  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2272  */
2273 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2274                            struct scan_control *sc, unsigned long *nr,
2275                            unsigned long *lru_pages)
2276 {
2277         int swappiness = mem_cgroup_swappiness(memcg);
2278         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2279         u64 fraction[2];
2280         u64 denominator = 0;    /* gcc */
2281         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2282         unsigned long anon_prio, file_prio;
2283         enum scan_balance scan_balance;
2284         unsigned long anon, file;
2285         unsigned long ap, fp;
2286         enum lru_list lru;
2287
2288         /* If we have no swap space, do not bother scanning anon pages. */
2289         if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2290                 scan_balance = SCAN_FILE;
2291                 goto out;
2292         }
2293
2294         /*
2295          * Global reclaim will swap to prevent OOM even with no
2296          * swappiness, but memcg users want to use this knob to
2297          * disable swapping for individual groups completely when
2298          * using the memory controller's swap limit feature would be
2299          * too expensive.
2300          */
2301         if (!global_reclaim(sc) && !swappiness) {
2302                 scan_balance = SCAN_FILE;
2303                 goto out;
2304         }
2305
2306         /*
2307          * Do not apply any pressure balancing cleverness when the
2308          * system is close to OOM, scan both anon and file equally
2309          * (unless the swappiness setting disagrees with swapping).
2310          */
2311         if (!sc->priority && swappiness) {
2312                 scan_balance = SCAN_EQUAL;
2313                 goto out;
2314         }
2315
2316         /*
2317          * Prevent the reclaimer from falling into the cache trap: as
2318          * cache pages start out inactive, every cache fault will tip
2319          * the scan balance towards the file LRU.  And as the file LRU
2320          * shrinks, so does the window for rotation from references.
2321          * This means we have a runaway feedback loop where a tiny
2322          * thrashing file LRU becomes infinitely more attractive than
2323          * anon pages.  Try to detect this based on file LRU size.
2324          */
2325         if (global_reclaim(sc)) {
2326                 unsigned long pgdatfile;
2327                 unsigned long pgdatfree;
2328                 int z;
2329                 unsigned long total_high_wmark = 0;
2330
2331                 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2332                 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2333                            node_page_state(pgdat, NR_INACTIVE_FILE);
2334
2335                 for (z = 0; z < MAX_NR_ZONES; z++) {
2336                         struct zone *zone = &pgdat->node_zones[z];
2337                         if (!managed_zone(zone))
2338                                 continue;
2339
2340                         total_high_wmark += high_wmark_pages(zone);
2341                 }
2342
2343                 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2344                         /*
2345                          * Force SCAN_ANON if there are enough inactive
2346                          * anonymous pages on the LRU in eligible zones.
2347                          * Otherwise, the small LRU gets thrashed.
2348                          */
2349                         if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2350                             lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2351                                         >> sc->priority) {
2352                                 scan_balance = SCAN_ANON;
2353                                 goto out;
2354                         }
2355                 }
2356         }
2357
2358         /*
2359          * If there is enough inactive page cache, i.e. if the size of the
2360          * inactive list is greater than that of the active list *and* the
2361          * inactive list actually has some pages to scan on this priority, we
2362          * do not reclaim anything from the anonymous working set right now.
2363          * Without the second condition we could end up never scanning an
2364          * lruvec even if it has plenty of old anonymous pages unless the
2365          * system is under heavy pressure.
2366          */
2367         if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2368             lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2369                 scan_balance = SCAN_FILE;
2370                 goto out;
2371         }
2372
2373         scan_balance = SCAN_FRACT;
2374
2375         /*
2376          * With swappiness at 100, anonymous and file have the same priority.
2377          * This scanning priority is essentially the inverse of IO cost.
2378          */
2379         anon_prio = swappiness;
2380         file_prio = 200 - anon_prio;
2381
2382         /*
2383          * OK, so we have swap space and a fair amount of page cache
2384          * pages.  We use the recently rotated / recently scanned
2385          * ratios to determine how valuable each cache is.
2386          *
2387          * Because workloads change over time (and to avoid overflow)
2388          * we keep these statistics as a floating average, which ends
2389          * up weighing recent references more than old ones.
2390          *
2391          * anon in [0], file in [1]
2392          */
2393
2394         anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2395                 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2396         file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2397                 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2398
2399         spin_lock_irq(&pgdat->lru_lock);
2400         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2401                 reclaim_stat->recent_scanned[0] /= 2;
2402                 reclaim_stat->recent_rotated[0] /= 2;
2403         }
2404
2405         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2406                 reclaim_stat->recent_scanned[1] /= 2;
2407                 reclaim_stat->recent_rotated[1] /= 2;
2408         }
2409
2410         /*
2411          * The amount of pressure on anon vs file pages is inversely
2412          * proportional to the fraction of recently scanned pages on
2413          * each list that were recently referenced and in active use.
2414          */
2415         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2416         ap /= reclaim_stat->recent_rotated[0] + 1;
2417
2418         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2419         fp /= reclaim_stat->recent_rotated[1] + 1;
2420         spin_unlock_irq(&pgdat->lru_lock);
2421
2422         fraction[0] = ap;
2423         fraction[1] = fp;
2424         denominator = ap + fp + 1;
2425 out:
2426         *lru_pages = 0;
2427         for_each_evictable_lru(lru) {
2428                 int file = is_file_lru(lru);
2429                 unsigned long size;
2430                 unsigned long scan;
2431
2432                 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2433                 scan = size >> sc->priority;
2434                 /*
2435                  * If the cgroup's already been deleted, make sure to
2436                  * scrape out the remaining cache.
2437                  */
2438                 if (!scan && !mem_cgroup_online(memcg))
2439                         scan = min(size, SWAP_CLUSTER_MAX);
2440
2441                 switch (scan_balance) {
2442                 case SCAN_EQUAL:
2443                         /* Scan lists relative to size */
2444                         break;
2445                 case SCAN_FRACT:
2446                         /*
2447                          * Scan types proportional to swappiness and
2448                          * their relative recent reclaim efficiency.
2449                          */
2450                         scan = div64_u64(scan * fraction[file],
2451                                          denominator);
2452                         break;
2453                 case SCAN_FILE:
2454                 case SCAN_ANON:
2455                         /* Scan one type exclusively */
2456                         if ((scan_balance == SCAN_FILE) != file) {
2457                                 size = 0;
2458                                 scan = 0;
2459                         }
2460                         break;
2461                 default:
2462                         /* Look ma, no brain */
2463                         BUG();
2464                 }
2465
2466                 *lru_pages += size;
2467                 nr[lru] = scan;
2468         }
2469 }
2470
2471 /*
2472  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2473  */
2474 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2475                               struct scan_control *sc, unsigned long *lru_pages)
2476 {
2477         struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2478         unsigned long nr[NR_LRU_LISTS];
2479         unsigned long targets[NR_LRU_LISTS];
2480         unsigned long nr_to_scan;
2481         enum lru_list lru;
2482         unsigned long nr_reclaimed = 0;
2483         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2484         struct blk_plug plug;
2485         bool scan_adjusted;
2486
2487         get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2488
2489         /* Record the original scan target for proportional adjustments later */
2490         memcpy(targets, nr, sizeof(nr));
2491
2492         /*
2493          * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2494          * event that can occur when there is little memory pressure e.g.
2495          * multiple streaming readers/writers. Hence, we do not abort scanning
2496          * when the requested number of pages are reclaimed when scanning at
2497          * DEF_PRIORITY on the assumption that the fact we are direct
2498          * reclaiming implies that kswapd is not keeping up and it is best to
2499          * do a batch of work at once. For memcg reclaim one check is made to
2500          * abort proportional reclaim if either the file or anon lru has already
2501          * dropped to zero at the first pass.
2502          */
2503         scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2504                          sc->priority == DEF_PRIORITY);
2505
2506         blk_start_plug(&plug);
2507         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2508                                         nr[LRU_INACTIVE_FILE]) {
2509                 unsigned long nr_anon, nr_file, percentage;
2510                 unsigned long nr_scanned;
2511
2512                 for_each_evictable_lru(lru) {
2513                         if (nr[lru]) {
2514                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2515                                 nr[lru] -= nr_to_scan;
2516
2517                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2518                                                             lruvec, memcg, sc);
2519                         }
2520                 }
2521
2522                 cond_resched();
2523
2524                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2525                         continue;
2526
2527                 /*
2528                  * For kswapd and memcg, reclaim at least the number of pages
2529                  * requested. Ensure that the anon and file LRUs are scanned
2530                  * proportionally what was requested by get_scan_count(). We
2531                  * stop reclaiming one LRU and reduce the amount scanning
2532                  * proportional to the original scan target.
2533                  */
2534                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2535                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2536
2537                 /*
2538                  * It's just vindictive to attack the larger once the smaller
2539                  * has gone to zero.  And given the way we stop scanning the
2540                  * smaller below, this makes sure that we only make one nudge
2541                  * towards proportionality once we've got nr_to_reclaim.
2542                  */
2543                 if (!nr_file || !nr_anon)
2544                         break;
2545
2546                 if (nr_file > nr_anon) {
2547                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2548                                                 targets[LRU_ACTIVE_ANON] + 1;
2549                         lru = LRU_BASE;
2550                         percentage = nr_anon * 100 / scan_target;
2551                 } else {
2552                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2553                                                 targets[LRU_ACTIVE_FILE] + 1;
2554                         lru = LRU_FILE;
2555                         percentage = nr_file * 100 / scan_target;
2556                 }
2557
2558                 /* Stop scanning the smaller of the LRU */
2559                 nr[lru] = 0;
2560                 nr[lru + LRU_ACTIVE] = 0;
2561
2562                 /*
2563                  * Recalculate the other LRU scan count based on its original
2564                  * scan target and the percentage scanning already complete
2565                  */
2566                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2567                 nr_scanned = targets[lru] - nr[lru];
2568                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2569                 nr[lru] -= min(nr[lru], nr_scanned);
2570
2571                 lru += LRU_ACTIVE;
2572                 nr_scanned = targets[lru] - nr[lru];
2573                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2574                 nr[lru] -= min(nr[lru], nr_scanned);
2575
2576                 scan_adjusted = true;
2577         }
2578         blk_finish_plug(&plug);
2579         sc->nr_reclaimed += nr_reclaimed;
2580
2581         /*
2582          * Even if we did not try to evict anon pages at all, we want to
2583          * rebalance the anon lru active/inactive ratio.
2584          */
2585         if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2586                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2587                                    sc, LRU_ACTIVE_ANON);
2588 }
2589
2590 /* Use reclaim/compaction for costly allocs or under memory pressure */
2591 static bool in_reclaim_compaction(struct scan_control *sc)
2592 {
2593         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2594                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2595                          sc->priority < DEF_PRIORITY - 2))
2596                 return true;
2597
2598         return false;
2599 }
2600
2601 /*
2602  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2603  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2604  * true if more pages should be reclaimed such that when the page allocator
2605  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2606  * It will give up earlier than that if there is difficulty reclaiming pages.
2607  */
2608 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2609                                         unsigned long nr_reclaimed,
2610                                         unsigned long nr_scanned,
2611                                         struct scan_control *sc)
2612 {
2613         unsigned long pages_for_compaction;
2614         unsigned long inactive_lru_pages;
2615         int z;
2616
2617         /* If not in reclaim/compaction mode, stop */
2618         if (!in_reclaim_compaction(sc))
2619                 return false;
2620
2621         /* Consider stopping depending on scan and reclaim activity */
2622         if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2623                 /*
2624                  * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2625                  * full LRU list has been scanned and we are still failing
2626                  * to reclaim pages. This full LRU scan is potentially
2627                  * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2628                  */
2629                 if (!nr_reclaimed && !nr_scanned)
2630                         return false;
2631         } else {
2632                 /*
2633                  * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2634                  * fail without consequence, stop if we failed to reclaim
2635                  * any pages from the last SWAP_CLUSTER_MAX number of
2636                  * pages that were scanned. This will return to the
2637                  * caller faster at the risk reclaim/compaction and
2638                  * the resulting allocation attempt fails
2639                  */
2640                 if (!nr_reclaimed)
2641                         return false;
2642         }
2643
2644         /*
2645          * If we have not reclaimed enough pages for compaction and the
2646          * inactive lists are large enough, continue reclaiming
2647          */
2648         pages_for_compaction = compact_gap(sc->order);
2649         inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2650         if (get_nr_swap_pages() > 0)
2651                 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2652         if (sc->nr_reclaimed < pages_for_compaction &&
2653                         inactive_lru_pages > pages_for_compaction)
2654                 return true;
2655
2656         /* If compaction would go ahead or the allocation would succeed, stop */
2657         for (z = 0; z <= sc->reclaim_idx; z++) {
2658                 struct zone *zone = &pgdat->node_zones[z];
2659                 if (!managed_zone(zone))
2660                         continue;
2661
2662                 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2663                 case COMPACT_SUCCESS:
2664                 case COMPACT_CONTINUE:
2665                         return false;
2666                 default:
2667                         /* check next zone */
2668                         ;
2669                 }
2670         }
2671         return true;
2672 }
2673
2674 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2675 {
2676         return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2677                 (memcg && memcg_congested(pgdat, memcg));
2678 }
2679
2680 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2681 {
2682         struct reclaim_state *reclaim_state = current->reclaim_state;
2683         unsigned long nr_reclaimed, nr_scanned;
2684         bool reclaimable = false;
2685
2686         do {
2687                 struct mem_cgroup *root = sc->target_mem_cgroup;
2688                 struct mem_cgroup_reclaim_cookie reclaim = {
2689                         .pgdat = pgdat,
2690                         .priority = sc->priority,
2691                 };
2692                 unsigned long node_lru_pages = 0;
2693                 struct mem_cgroup *memcg;
2694
2695                 memset(&sc->nr, 0, sizeof(sc->nr));
2696
2697                 nr_reclaimed = sc->nr_reclaimed;
2698                 nr_scanned = sc->nr_scanned;
2699
2700                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2701                 do {
2702                         unsigned long lru_pages;
2703                         unsigned long reclaimed;
2704                         unsigned long scanned;
2705
2706                         switch (mem_cgroup_protected(root, memcg)) {
2707                         case MEMCG_PROT_MIN:
2708                                 /*
2709                                  * Hard protection.
2710                                  * If there is no reclaimable memory, OOM.
2711                                  */
2712                                 continue;
2713                         case MEMCG_PROT_LOW:
2714                                 /*
2715                                  * Soft protection.
2716                                  * Respect the protection only as long as
2717                                  * there is an unprotected supply
2718                                  * of reclaimable memory from other cgroups.
2719                                  */
2720                                 if (!sc->memcg_low_reclaim) {
2721                                         sc->memcg_low_skipped = 1;
2722                                         continue;
2723                                 }
2724                                 memcg_memory_event(memcg, MEMCG_LOW);
2725                                 break;
2726                         case MEMCG_PROT_NONE:
2727                                 break;
2728                         }
2729
2730                         reclaimed = sc->nr_reclaimed;
2731                         scanned = sc->nr_scanned;
2732                         shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2733                         node_lru_pages += lru_pages;
2734
2735                         shrink_slab(sc->gfp_mask, pgdat->node_id,
2736                                     memcg, sc->priority);
2737
2738                         /* Record the group's reclaim efficiency */
2739                         vmpressure(sc->gfp_mask, memcg, false,
2740                                    sc->nr_scanned - scanned,
2741                                    sc->nr_reclaimed - reclaimed);
2742
2743                         /*
2744                          * Direct reclaim and kswapd have to scan all memory
2745                          * cgroups to fulfill the overall scan target for the
2746                          * node.
2747                          *
2748                          * Limit reclaim, on the other hand, only cares about
2749                          * nr_to_reclaim pages to be reclaimed and it will
2750                          * retry with decreasing priority if one round over the
2751                          * whole hierarchy is not sufficient.
2752                          */
2753                         if (!global_reclaim(sc) &&
2754                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2755                                 mem_cgroup_iter_break(root, memcg);
2756                                 break;
2757                         }
2758                 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2759
2760                 if (reclaim_state) {
2761                         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2762                         reclaim_state->reclaimed_slab = 0;
2763                 }
2764
2765                 /* Record the subtree's reclaim efficiency */
2766                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2767                            sc->nr_scanned - nr_scanned,
2768                            sc->nr_reclaimed - nr_reclaimed);
2769
2770                 if (sc->nr_reclaimed - nr_reclaimed)
2771                         reclaimable = true;
2772
2773                 if (current_is_kswapd()) {
2774                         /*
2775                          * If reclaim is isolating dirty pages under writeback,
2776                          * it implies that the long-lived page allocation rate
2777                          * is exceeding the page laundering rate. Either the
2778                          * global limits are not being effective at throttling
2779                          * processes due to the page distribution throughout
2780                          * zones or there is heavy usage of a slow backing
2781                          * device. The only option is to throttle from reclaim
2782                          * context which is not ideal as there is no guarantee
2783                          * the dirtying process is throttled in the same way
2784                          * balance_dirty_pages() manages.
2785                          *
2786                          * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2787                          * count the number of pages under pages flagged for
2788                          * immediate reclaim and stall if any are encountered
2789                          * in the nr_immediate check below.
2790                          */
2791                         if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2792                                 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2793
2794                         /*
2795                          * Tag a node as congested if all the dirty pages
2796                          * scanned were backed by a congested BDI and
2797                          * wait_iff_congested will stall.
2798                          */
2799                         if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2800                                 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2801
2802                         /* Allow kswapd to start writing pages during reclaim.*/
2803                         if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2804                                 set_bit(PGDAT_DIRTY, &pgdat->flags);
2805
2806                         /*
2807                          * If kswapd scans pages marked marked for immediate
2808                          * reclaim and under writeback (nr_immediate), it
2809                          * implies that pages are cycling through the LRU
2810                          * faster than they are written so also forcibly stall.
2811                          */
2812                         if (sc->nr.immediate)
2813                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2814                 }
2815
2816                 /*
2817                  * Legacy memcg will stall in page writeback so avoid forcibly
2818                  * stalling in wait_iff_congested().
2819                  */
2820                 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2821                     sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2822                         set_memcg_congestion(pgdat, root, true);
2823
2824                 /*
2825                  * Stall direct reclaim for IO completions if underlying BDIs
2826                  * and node is congested. Allow kswapd to continue until it
2827                  * starts encountering unqueued dirty pages or cycling through
2828                  * the LRU too quickly.
2829                  */
2830                 if (!sc->hibernation_mode && !current_is_kswapd() &&
2831                    current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2832                         wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2833
2834         } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2835                                          sc->nr_scanned - nr_scanned, sc));
2836
2837         /*
2838          * Kswapd gives up on balancing particular nodes after too
2839          * many failures to reclaim anything from them and goes to
2840          * sleep. On reclaim progress, reset the failure counter. A
2841          * successful direct reclaim run will revive a dormant kswapd.
2842          */
2843         if (reclaimable)
2844                 pgdat->kswapd_failures = 0;
2845
2846         return reclaimable;
2847 }
2848
2849 /*
2850  * Returns true if compaction should go ahead for a costly-order request, or
2851  * the allocation would already succeed without compaction. Return false if we
2852  * should reclaim first.
2853  */
2854 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2855 {
2856         unsigned long watermark;
2857         enum compact_result suitable;
2858
2859         suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2860         if (suitable == COMPACT_SUCCESS)
2861                 /* Allocation should succeed already. Don't reclaim. */
2862                 return true;
2863         if (suitable == COMPACT_SKIPPED)
2864                 /* Compaction cannot yet proceed. Do reclaim. */
2865                 return false;
2866
2867         /*
2868          * Compaction is already possible, but it takes time to run and there
2869          * are potentially other callers using the pages just freed. So proceed
2870          * with reclaim to make a buffer of free pages available to give
2871          * compaction a reasonable chance of completing and allocating the page.
2872          * Note that we won't actually reclaim the whole buffer in one attempt
2873          * as the target watermark in should_continue_reclaim() is lower. But if
2874          * we are already above the high+gap watermark, don't reclaim at all.
2875          */
2876         watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2877
2878         return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2879 }
2880
2881 /*
2882  * This is the direct reclaim path, for page-allocating processes.  We only
2883  * try to reclaim pages from zones which will satisfy the caller's allocation
2884  * request.
2885  *
2886  * If a zone is deemed to be full of pinned pages then just give it a light
2887  * scan then give up on it.
2888  */
2889 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2890 {
2891         struct zoneref *z;
2892         struct zone *zone;
2893         unsigned long nr_soft_reclaimed;
2894         unsigned long nr_soft_scanned;
2895         gfp_t orig_mask;
2896         pg_data_t *last_pgdat = NULL;
2897
2898         /*
2899          * If the number of buffer_heads in the machine exceeds the maximum
2900          * allowed level, force direct reclaim to scan the highmem zone as
2901          * highmem pages could be pinning lowmem pages storing buffer_heads
2902          */
2903         orig_mask = sc->gfp_mask;
2904         if (buffer_heads_over_limit) {
2905                 sc->gfp_mask |= __GFP_HIGHMEM;
2906                 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2907         }
2908
2909         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2910                                         sc->reclaim_idx, sc->nodemask) {
2911                 /*
2912                  * Take care memory controller reclaiming has small influence
2913                  * to global LRU.
2914                  */
2915                 if (global_reclaim(sc)) {
2916                         if (!cpuset_zone_allowed(zone,
2917                                                  GFP_KERNEL | __GFP_HARDWALL))
2918                                 continue;
2919
2920                         /*
2921                          * If we already have plenty of memory free for
2922                          * compaction in this zone, don't free any more.
2923                          * Even though compaction is invoked for any
2924                          * non-zero order, only frequent costly order
2925                          * reclamation is disruptive enough to become a
2926                          * noticeable problem, like transparent huge
2927                          * page allocations.
2928                          */
2929                         if (IS_ENABLED(CONFIG_COMPACTION) &&
2930                             sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2931                             compaction_ready(zone, sc)) {
2932                                 sc->compaction_ready = true;
2933                                 continue;
2934                         }
2935
2936                         /*
2937                          * Shrink each node in the zonelist once. If the
2938                          * zonelist is ordered by zone (not the default) then a
2939                          * node may be shrunk multiple times but in that case
2940                          * the user prefers lower zones being preserved.
2941                          */
2942                         if (zone->zone_pgdat == last_pgdat)
2943                                 continue;
2944
2945                         /*
2946                          * This steals pages from memory cgroups over softlimit
2947                          * and returns the number of reclaimed pages and
2948                          * scanned pages. This works for global memory pressure
2949                          * and balancing, not for a memcg's limit.
2950                          */
2951                         nr_soft_scanned = 0;
2952                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2953                                                 sc->order, sc->gfp_mask,
2954                                                 &nr_soft_scanned);
2955                         sc->nr_reclaimed += nr_soft_reclaimed;
2956                         sc->nr_scanned += nr_soft_scanned;
2957                         /* need some check for avoid more shrink_zone() */
2958                 }
2959
2960                 /* See comment about same check for global reclaim above */
2961                 if (zone->zone_pgdat == last_pgdat)
2962                         continue;
2963                 last_pgdat = zone->zone_pgdat;
2964                 shrink_node(zone->zone_pgdat, sc);
2965         }
2966
2967         /*
2968          * Restore to original mask to avoid the impact on the caller if we
2969          * promoted it to __GFP_HIGHMEM.
2970          */
2971         sc->gfp_mask = orig_mask;
2972 }
2973
2974 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2975 {
2976         struct mem_cgroup *memcg;
2977
2978         memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2979         do {
2980                 unsigned long refaults;
2981                 struct lruvec *lruvec;
2982
2983                 if (memcg)
2984                         refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2985                 else
2986                         refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2987
2988                 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2989                 lruvec->refaults = refaults;
2990         } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2991 }
2992
2993 /*
2994  * This is the main entry point to direct page reclaim.
2995  *
2996  * If a full scan of the inactive list fails to free enough memory then we
2997  * are "out of memory" and something needs to be killed.
2998  *
2999  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000  * high - the zone may be full of dirty or under-writeback pages, which this
3001  * caller can't do much about.  We kick the writeback threads and take explicit
3002  * naps in the hope that some of these pages can be written.  But if the
3003  * allocating task holds filesystem locks which prevent writeout this might not
3004  * work, and the allocation attempt will fail.
3005  *
3006  * returns:     0, if no pages reclaimed
3007  *              else, the number of pages reclaimed
3008  */
3009 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010                                           struct scan_control *sc)
3011 {
3012         int initial_priority = sc->priority;
3013         pg_data_t *last_pgdat;
3014         struct zoneref *z;
3015         struct zone *zone;
3016 retry:
3017         delayacct_freepages_start();
3018
3019         if (global_reclaim(sc))
3020                 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021
3022         do {
3023                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024                                 sc->priority);
3025                 sc->nr_scanned = 0;
3026                 shrink_zones(zonelist, sc);
3027
3028                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029                         break;
3030
3031                 if (sc->compaction_ready)
3032                         break;
3033
3034                 /*
3035                  * If we're getting trouble reclaiming, start doing
3036                  * writepage even in laptop mode.
3037                  */
3038                 if (sc->priority < DEF_PRIORITY - 2)
3039                         sc->may_writepage = 1;
3040         } while (--sc->priority >= 0);
3041
3042         last_pgdat = NULL;
3043         for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044                                         sc->nodemask) {
3045                 if (zone->zone_pgdat == last_pgdat)
3046                         continue;
3047                 last_pgdat = zone->zone_pgdat;
3048                 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3049                 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3050         }
3051
3052         delayacct_freepages_end();
3053
3054         if (sc->nr_reclaimed)
3055                 return sc->nr_reclaimed;
3056
3057         /* Aborted reclaim to try compaction? don't OOM, then */
3058         if (sc->compaction_ready)
3059                 return 1;
3060
3061         /* Untapped cgroup reserves?  Don't OOM, retry. */
3062         if (sc->memcg_low_skipped) {
3063                 sc->priority = initial_priority;
3064                 sc->memcg_low_reclaim = 1;
3065                 sc->memcg_low_skipped = 0;
3066                 goto retry;
3067         }
3068
3069         return 0;
3070 }
3071
3072 static bool allow_direct_reclaim(pg_data_t *pgdat)
3073 {
3074         struct zone *zone;
3075         unsigned long pfmemalloc_reserve = 0;
3076         unsigned long free_pages = 0;
3077         int i;
3078         bool wmark_ok;
3079
3080         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3081                 return true;
3082
3083         for (i = 0; i <= ZONE_NORMAL; i++) {
3084                 zone = &pgdat->node_zones[i];
3085                 if (!managed_zone(zone))
3086                         continue;
3087
3088                 if (!zone_reclaimable_pages(zone))
3089                         continue;
3090
3091                 pfmemalloc_reserve += min_wmark_pages(zone);
3092                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3093         }
3094
3095         /* If there are no reserves (unexpected config) then do not throttle */
3096         if (!pfmemalloc_reserve)
3097                 return true;
3098
3099         wmark_ok = free_pages > pfmemalloc_reserve / 2;
3100
3101         /* kswapd must be awake if processes are being throttled */
3102         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3103                 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3104                                                 (enum zone_type)ZONE_NORMAL);
3105                 wake_up_interruptible(&pgdat->kswapd_wait);
3106         }
3107
3108         return wmark_ok;
3109 }
3110
3111 /*
3112  * Throttle direct reclaimers if backing storage is backed by the network
3113  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3114  * depleted. kswapd will continue to make progress and wake the processes
3115  * when the low watermark is reached.
3116  *
3117  * Returns true if a fatal signal was delivered during throttling. If this
3118  * happens, the page allocator should not consider triggering the OOM killer.
3119  */
3120 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3121                                         nodemask_t *nodemask)
3122 {
3123         struct zoneref *z;
3124         struct zone *zone;
3125         pg_data_t *pgdat = NULL;
3126
3127         /*
3128          * Kernel threads should not be throttled as they may be indirectly
3129          * responsible for cleaning pages necessary for reclaim to make forward
3130          * progress. kjournald for example may enter direct reclaim while
3131          * committing a transaction where throttling it could forcing other
3132          * processes to block on log_wait_commit().
3133          */
3134         if (current->flags & PF_KTHREAD)
3135                 goto out;
3136
3137         /*
3138          * If a fatal signal is pending, this process should not throttle.
3139          * It should return quickly so it can exit and free its memory
3140          */
3141         if (fatal_signal_pending(current))
3142                 goto out;
3143
3144         /*
3145          * Check if the pfmemalloc reserves are ok by finding the first node
3146          * with a usable ZONE_NORMAL or lower zone. The expectation is that
3147          * GFP_KERNEL will be required for allocating network buffers when
3148          * swapping over the network so ZONE_HIGHMEM is unusable.
3149          *
3150          * Throttling is based on the first usable node and throttled processes
3151          * wait on a queue until kswapd makes progress and wakes them. There
3152          * is an affinity then between processes waking up and where reclaim
3153          * progress has been made assuming the process wakes on the same node.
3154          * More importantly, processes running on remote nodes will not compete
3155          * for remote pfmemalloc reserves and processes on different nodes
3156          * should make reasonable progress.
3157          */
3158         for_each_zone_zonelist_nodemask(zone, z, zonelist,
3159                                         gfp_zone(gfp_mask), nodemask) {
3160                 if (zone_idx(zone) > ZONE_NORMAL)
3161                         continue;
3162
3163                 /* Throttle based on the first usable node */
3164                 pgdat = zone->zone_pgdat;
3165                 if (allow_direct_reclaim(pgdat))
3166                         goto out;
3167                 break;
3168         }
3169
3170         /* If no zone was usable by the allocation flags then do not throttle */
3171         if (!pgdat)
3172                 goto out;
3173
3174         /* Account for the throttling */
3175         count_vm_event(PGSCAN_DIRECT_THROTTLE);
3176
3177         /*
3178          * If the caller cannot enter the filesystem, it's possible that it
3179          * is due to the caller holding an FS lock or performing a journal
3180          * transaction in the case of a filesystem like ext[3|4]. In this case,
3181          * it is not safe to block on pfmemalloc_wait as kswapd could be
3182          * blocked waiting on the same lock. Instead, throttle for up to a
3183          * second before continuing.
3184          */
3185         if (!(gfp_mask & __GFP_FS)) {
3186                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3187                         allow_direct_reclaim(pgdat), HZ);
3188
3189                 goto check_pending;
3190         }
3191
3192         /* Throttle until kswapd wakes the process */
3193         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3194                 allow_direct_reclaim(pgdat));
3195
3196 check_pending:
3197         if (fatal_signal_pending(current))
3198                 return true;
3199
3200 out:
3201         return false;
3202 }
3203
3204 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3205                                 gfp_t gfp_mask, nodemask_t *nodemask)
3206 {
3207         unsigned long nr_reclaimed;
3208         struct scan_control sc = {
3209                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3210                 .gfp_mask = current_gfp_context(gfp_mask),
3211                 .reclaim_idx = gfp_zone(gfp_mask),
3212                 .order = order,
3213                 .nodemask = nodemask,
3214                 .priority = DEF_PRIORITY,
3215                 .may_writepage = !laptop_mode,
3216                 .may_unmap = 1,
3217                 .may_swap = 1,
3218         };
3219
3220         /*
3221          * scan_control uses s8 fields for order, priority, and reclaim_idx.
3222          * Confirm they are large enough for max values.
3223          */
3224         BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3225         BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3226         BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3227
3228         /*
3229          * Do not enter reclaim if fatal signal was delivered while throttled.
3230          * 1 is returned so that the page allocator does not OOM kill at this
3231          * point.
3232          */
3233         if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3234                 return 1;
3235
3236         trace_mm_vmscan_direct_reclaim_begin(order,
3237                                 sc.may_writepage,
3238                                 sc.gfp_mask,
3239                                 sc.reclaim_idx);
3240
3241         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3242
3243         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3244
3245         return nr_reclaimed;
3246 }
3247
3248 #ifdef CONFIG_MEMCG
3249
3250 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3251                                                 gfp_t gfp_mask, bool noswap,
3252                                                 pg_data_t *pgdat,
3253                                                 unsigned long *nr_scanned)
3254 {
3255         struct scan_control sc = {
3256                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3257                 .target_mem_cgroup = memcg,
3258                 .may_writepage = !laptop_mode,
3259                 .may_unmap = 1,
3260                 .reclaim_idx = MAX_NR_ZONES - 1,
3261                 .may_swap = !noswap,
3262         };
3263         unsigned long lru_pages;
3264
3265         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3266                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3267
3268         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3269                                                       sc.may_writepage,
3270                                                       sc.gfp_mask,
3271                                                       sc.reclaim_idx);
3272
3273         /*
3274          * NOTE: Although we can get the priority field, using it
3275          * here is not a good idea, since it limits the pages we can scan.
3276          * if we don't reclaim here, the shrink_node from balance_pgdat
3277          * will pick up pages from other mem cgroup's as well. We hack
3278          * the priority and make it zero.
3279          */
3280         shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3281
3282         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3283
3284         *nr_scanned = sc.nr_scanned;
3285         return sc.nr_reclaimed;
3286 }
3287
3288 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3289                                            unsigned long nr_pages,
3290                                            gfp_t gfp_mask,
3291                                            bool may_swap)
3292 {
3293         struct zonelist *zonelist;
3294         unsigned long nr_reclaimed;
3295         int nid;
3296         unsigned int noreclaim_flag;
3297         struct scan_control sc = {
3298                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3299                 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3300                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3301                 .reclaim_idx = MAX_NR_ZONES - 1,
3302                 .target_mem_cgroup = memcg,
3303                 .priority = DEF_PRIORITY,
3304                 .may_writepage = !laptop_mode,
3305                 .may_unmap = 1,
3306                 .may_swap = may_swap,
3307         };
3308
3309         /*
3310          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3311          * take care of from where we get pages. So the node where we start the
3312          * scan does not need to be the current node.
3313          */
3314         nid = mem_cgroup_select_victim_node(memcg);
3315
3316         zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3317
3318         trace_mm_vmscan_memcg_reclaim_begin(0,
3319                                             sc.may_writepage,
3320                                             sc.gfp_mask,
3321                                             sc.reclaim_idx);
3322
3323         noreclaim_flag = memalloc_noreclaim_save();
3324         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3325         memalloc_noreclaim_restore(noreclaim_flag);
3326
3327         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3328
3329         return nr_reclaimed;
3330 }
3331 #endif
3332
3333 static void age_active_anon(struct pglist_data *pgdat,
3334                                 struct scan_control *sc)
3335 {
3336         struct mem_cgroup *memcg;
3337
3338         if (!total_swap_pages)
3339                 return;
3340
3341         memcg = mem_cgroup_iter(NULL, NULL, NULL);
3342         do {
3343                 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3344
3345                 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3346                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3347                                            sc, LRU_ACTIVE_ANON);
3348
3349                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3350         } while (memcg);
3351 }
3352
3353 /*
3354  * Returns true if there is an eligible zone balanced for the request order
3355  * and classzone_idx
3356  */
3357 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3358 {
3359         int i;
3360         unsigned long mark = -1;
3361         struct zone *zone;
3362
3363         for (i = 0; i <= classzone_idx; i++) {
3364                 zone = pgdat->node_zones + i;
3365
3366                 if (!managed_zone(zone))
3367                         continue;
3368
3369                 mark = high_wmark_pages(zone);
3370                 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3371                         return true;
3372         }
3373
3374         /*
3375          * If a node has no populated zone within classzone_idx, it does not
3376          * need balancing by definition. This can happen if a zone-restricted
3377          * allocation tries to wake a remote kswapd.
3378          */
3379         if (mark == -1)
3380                 return true;
3381
3382         return false;
3383 }
3384
3385 /* Clear pgdat state for congested, dirty or under writeback. */
3386 static void clear_pgdat_congested(pg_data_t *pgdat)
3387 {
3388         clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3389         clear_bit(PGDAT_DIRTY, &pgdat->flags);
3390         clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3391 }
3392
3393 /*
3394  * Prepare kswapd for sleeping. This verifies that there are no processes
3395  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3396  *
3397  * Returns true if kswapd is ready to sleep
3398  */
3399 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3400 {
3401         /*
3402          * The throttled processes are normally woken up in balance_pgdat() as
3403          * soon as allow_direct_reclaim() is true. But there is a potential
3404          * race between when kswapd checks the watermarks and a process gets
3405          * throttled. There is also a potential race if processes get
3406          * throttled, kswapd wakes, a large process exits thereby balancing the
3407          * zones, which causes kswapd to exit balance_pgdat() before reaching
3408          * the wake up checks. If kswapd is going to sleep, no process should
3409          * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3410          * the wake up is premature, processes will wake kswapd and get
3411          * throttled again. The difference from wake ups in balance_pgdat() is
3412          * that here we are under prepare_to_wait().
3413          */
3414         if (waitqueue_active(&pgdat->pfmemalloc_wait))
3415                 wake_up_all(&pgdat->pfmemalloc_wait);
3416
3417         /* Hopeless node, leave it to direct reclaim */
3418         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3419                 return true;
3420
3421         if (pgdat_balanced(pgdat, order, classzone_idx)) {
3422                 clear_pgdat_congested(pgdat);
3423                 return true;
3424         }
3425
3426         return false;
3427 }
3428
3429 /*
3430  * kswapd shrinks a node of pages that are at or below the highest usable
3431  * zone that is currently unbalanced.
3432  *
3433  * Returns true if kswapd scanned at least the requested number of pages to
3434  * reclaim or if the lack of progress was due to pages under writeback.
3435  * This is used to determine if the scanning priority needs to be raised.
3436  */
3437 static bool kswapd_shrink_node(pg_data_t *pgdat,
3438                                struct scan_control *sc)
3439 {
3440         struct zone *zone;
3441         int z;
3442
3443         /* Reclaim a number of pages proportional to the number of zones */
3444         sc->nr_to_reclaim = 0;
3445         for (z = 0; z <= sc->reclaim_idx; z++) {
3446                 zone = pgdat->node_zones + z;
3447                 if (!managed_zone(zone))
3448                         continue;
3449
3450                 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3451         }
3452
3453         /*
3454          * Historically care was taken to put equal pressure on all zones but
3455          * now pressure is applied based on node LRU order.
3456          */
3457         shrink_node(pgdat, sc);
3458
3459         /*
3460          * Fragmentation may mean that the system cannot be rebalanced for
3461          * high-order allocations. If twice the allocation size has been
3462          * reclaimed then recheck watermarks only at order-0 to prevent
3463          * excessive reclaim. Assume that a process requested a high-order
3464          * can direct reclaim/compact.
3465          */
3466         if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3467                 sc->order = 0;
3468
3469         return sc->nr_scanned >= sc->nr_to_reclaim;
3470 }
3471
3472 /*
3473  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3474  * that are eligible for use by the caller until at least one zone is
3475  * balanced.
3476  *
3477  * Returns the order kswapd finished reclaiming at.
3478  *
3479  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3480  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3481  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3482  * or lower is eligible for reclaim until at least one usable zone is
3483  * balanced.
3484  */
3485 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3486 {
3487         int i;
3488         unsigned long nr_soft_reclaimed;
3489         unsigned long nr_soft_scanned;
3490         struct zone *zone;
3491         struct scan_control sc = {
3492                 .gfp_mask = GFP_KERNEL,
3493                 .order = order,
3494                 .priority = DEF_PRIORITY,
3495                 .may_writepage = !laptop_mode,
3496                 .may_unmap = 1,
3497                 .may_swap = 1,
3498         };
3499
3500         __fs_reclaim_acquire();
3501
3502         count_vm_event(PAGEOUTRUN);
3503
3504         do {
3505                 unsigned long nr_reclaimed = sc.nr_reclaimed;
3506                 bool raise_priority = true;
3507                 bool ret;
3508
3509                 sc.reclaim_idx = classzone_idx;
3510
3511                 /*
3512                  * If the number of buffer_heads exceeds the maximum allowed
3513                  * then consider reclaiming from all zones. This has a dual
3514                  * purpose -- on 64-bit systems it is expected that
3515                  * buffer_heads are stripped during active rotation. On 32-bit
3516                  * systems, highmem pages can pin lowmem memory and shrinking
3517                  * buffers can relieve lowmem pressure. Reclaim may still not
3518                  * go ahead if all eligible zones for the original allocation
3519                  * request are balanced to avoid excessive reclaim from kswapd.
3520                  */
3521                 if (buffer_heads_over_limit) {
3522                         for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3523                                 zone = pgdat->node_zones + i;
3524                                 if (!managed_zone(zone))
3525                                         continue;
3526
3527                                 sc.reclaim_idx = i;
3528                                 break;
3529                         }
3530                 }
3531
3532                 /*
3533                  * Only reclaim if there are no eligible zones. Note that
3534                  * sc.reclaim_idx is not used as buffer_heads_over_limit may
3535                  * have adjusted it.
3536                  */
3537                 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3538                         goto out;
3539
3540                 /*
3541                  * Do some background aging of the anon list, to give
3542                  * pages a chance to be referenced before reclaiming. All
3543                  * pages are rotated regardless of classzone as this is
3544                  * about consistent aging.
3545                  */
3546                 age_active_anon(pgdat, &sc);
3547
3548                 /*
3549                  * If we're getting trouble reclaiming, start doing writepage
3550                  * even in laptop mode.
3551                  */
3552                 if (sc.priority < DEF_PRIORITY - 2)
3553                         sc.may_writepage = 1;
3554
3555                 /* Call soft limit reclaim before calling shrink_node. */
3556                 sc.nr_scanned = 0;
3557                 nr_soft_scanned = 0;
3558                 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3559                                                 sc.gfp_mask, &nr_soft_scanned);
3560                 sc.nr_reclaimed += nr_soft_reclaimed;
3561
3562                 /*
3563                  * There should be no need to raise the scanning priority if
3564                  * enough pages are already being scanned that that high
3565                  * watermark would be met at 100% efficiency.
3566                  */
3567                 if (kswapd_shrink_node(pgdat, &sc))
3568                         raise_priority = false;
3569
3570                 /*
3571                  * If the low watermark is met there is no need for processes
3572                  * to be throttled on pfmemalloc_wait as they should not be
3573                  * able to safely make forward progress. Wake them
3574                  */
3575                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3576                                 allow_direct_reclaim(pgdat))
3577                         wake_up_all(&pgdat->pfmemalloc_wait);
3578
3579                 /* Check if kswapd should be suspending */
3580                 __fs_reclaim_release();
3581                 ret = try_to_freeze();
3582                 __fs_reclaim_acquire();
3583                 if (ret || kthread_should_stop())
3584                         break;
3585
3586                 /*
3587                  * Raise priority if scanning rate is too low or there was no
3588                  * progress in reclaiming pages
3589                  */
3590                 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3591                 if (raise_priority || !nr_reclaimed)
3592                         sc.priority--;
3593         } while (sc.priority >= 1);
3594
3595         if (!sc.nr_reclaimed)
3596                 pgdat->kswapd_failures++;
3597
3598 out:
3599         snapshot_refaults(NULL, pgdat);
3600         __fs_reclaim_release();
3601         /*
3602          * Return the order kswapd stopped reclaiming at as
3603          * prepare_kswapd_sleep() takes it into account. If another caller
3604          * entered the allocator slow path while kswapd was awake, order will
3605          * remain at the higher level.
3606          */
3607         return sc.order;
3608 }
3609
3610 /*
3611  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3612  * allocation request woke kswapd for. When kswapd has not woken recently,
3613  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3614  * given classzone and returns it or the highest classzone index kswapd
3615  * was recently woke for.
3616  */
3617 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3618                                            enum zone_type classzone_idx)
3619 {
3620         if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3621                 return classzone_idx;
3622
3623         return max(pgdat->kswapd_classzone_idx, classzone_idx);
3624 }
3625
3626 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3627                                 unsigned int classzone_idx)
3628 {
3629         long remaining = 0;
3630         DEFINE_WAIT(wait);
3631
3632         if (freezing(current) || kthread_should_stop())
3633                 return;
3634
3635         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3636
3637         /*
3638          * Try to sleep for a short interval. Note that kcompactd will only be
3639          * woken if it is possible to sleep for a short interval. This is
3640          * deliberate on the assumption that if reclaim cannot keep an
3641          * eligible zone balanced that it's also unlikely that compaction will
3642          * succeed.
3643          */
3644         if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3645                 /*
3646                  * Compaction records what page blocks it recently failed to
3647                  * isolate pages from and skips them in the future scanning.
3648                  * When kswapd is going to sleep, it is reasonable to assume
3649                  * that pages and compaction may succeed so reset the cache.
3650                  */
3651                 reset_isolation_suitable(pgdat);
3652
3653                 /*
3654                  * We have freed the memory, now we should compact it to make
3655                  * allocation of the requested order possible.
3656                  */
3657                 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3658
3659                 remaining = schedule_timeout(HZ/10);
3660
3661                 /*
3662                  * If woken prematurely then reset kswapd_classzone_idx and
3663                  * order. The values will either be from a wakeup request or
3664                  * the previous request that slept prematurely.
3665                  */
3666                 if (remaining) {
3667                         pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3668                         pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3669                 }
3670
3671                 finish_wait(&pgdat->kswapd_wait, &wait);
3672                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3673         }
3674
3675         /*
3676          * After a short sleep, check if it was a premature sleep. If not, then
3677          * go fully to sleep until explicitly woken up.
3678          */
3679         if (!remaining &&
3680             prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3681                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3682
3683                 /*
3684                  * vmstat counters are not perfectly accurate and the estimated
3685                  * value for counters such as NR_FREE_PAGES can deviate from the
3686                  * true value by nr_online_cpus * threshold. To avoid the zone
3687                  * watermarks being breached while under pressure, we reduce the
3688                  * per-cpu vmstat threshold while kswapd is awake and restore
3689                  * them before going back to sleep.
3690                  */
3691                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3692
3693                 if (!kthread_should_stop())
3694                         schedule();
3695
3696                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3697         } else {
3698                 if (remaining)
3699                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3700                 else
3701                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3702         }
3703         finish_wait(&pgdat->kswapd_wait, &wait);
3704 }
3705
3706 /*
3707  * The background pageout daemon, started as a kernel thread
3708  * from the init process.
3709  *
3710  * This basically trickles out pages so that we have _some_
3711  * free memory available even if there is no other activity
3712  * that frees anything up. This is needed for things like routing
3713  * etc, where we otherwise might have all activity going on in
3714  * asynchronous contexts that cannot page things out.
3715  *
3716  * If there are applications that are active memory-allocators
3717  * (most normal use), this basically shouldn't matter.
3718  */
3719 static int kswapd(void *p)
3720 {
3721         unsigned int alloc_order, reclaim_order;
3722         unsigned int classzone_idx = MAX_NR_ZONES - 1;
3723         pg_data_t *pgdat = (pg_data_t*)p;
3724         struct task_struct *tsk = current;
3725
3726         struct reclaim_state reclaim_state = {
3727                 .reclaimed_slab = 0,
3728         };
3729         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3730
3731         if (!cpumask_empty(cpumask))
3732                 set_cpus_allowed_ptr(tsk, cpumask);
3733         current->reclaim_state = &reclaim_state;
3734
3735         /*
3736          * Tell the memory management that we're a "memory allocator",
3737          * and that if we need more memory we should get access to it
3738          * regardless (see "__alloc_pages()"). "kswapd" should
3739          * never get caught in the normal page freeing logic.
3740          *
3741          * (Kswapd normally doesn't need memory anyway, but sometimes
3742          * you need a small amount of memory in order to be able to
3743          * page out something else, and this flag essentially protects
3744          * us from recursively trying to free more memory as we're
3745          * trying to free the first piece of memory in the first place).
3746          */
3747         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3748         set_freezable();
3749
3750         pgdat->kswapd_order = 0;
3751         pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3752         for ( ; ; ) {
3753                 bool ret;
3754
3755                 alloc_order = reclaim_order = pgdat->kswapd_order;
3756                 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3757
3758 kswapd_try_sleep:
3759                 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3760                                         classzone_idx);
3761
3762                 /* Read the new order and classzone_idx */
3763                 alloc_order = reclaim_order = pgdat->kswapd_order;
3764                 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3765                 pgdat->kswapd_order = 0;
3766                 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3767
3768                 ret = try_to_freeze();
3769                 if (kthread_should_stop())
3770                         break;
3771
3772                 /*
3773                  * We can speed up thawing tasks if we don't call balance_pgdat
3774                  * after returning from the refrigerator
3775                  */
3776                 if (ret)
3777                         continue;
3778
3779                 /*
3780                  * Reclaim begins at the requested order but if a high-order
3781                  * reclaim fails then kswapd falls back to reclaiming for
3782                  * order-0. If that happens, kswapd will consider sleeping
3783                  * for the order it finished reclaiming at (reclaim_order)
3784                  * but kcompactd is woken to compact for the original
3785                  * request (alloc_order).
3786                  */
3787                 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3788                                                 alloc_order);
3789                 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3790                 if (reclaim_order < alloc_order)
3791                         goto kswapd_try_sleep;
3792         }
3793
3794         tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3795         current->reclaim_state = NULL;
3796
3797         return 0;
3798 }
3799
3800 /*
3801  * A zone is low on free memory or too fragmented for high-order memory.  If
3802  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3803  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3804  * has failed or is not needed, still wake up kcompactd if only compaction is
3805  * needed.
3806  */
3807 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3808                    enum zone_type classzone_idx)
3809 {
3810         pg_data_t *pgdat;
3811
3812         if (!managed_zone(zone))
3813                 return;
3814
3815         if (!cpuset_zone_allowed(zone, gfp_flags))
3816                 return;
3817         pgdat = zone->zone_pgdat;
3818         pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3819                                                            classzone_idx);
3820         pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3821         if (!waitqueue_active(&pgdat->kswapd_wait))
3822                 return;
3823
3824         /* Hopeless node, leave it to direct reclaim if possible */
3825         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3826             pgdat_balanced(pgdat, order, classzone_idx)) {
3827                 /*
3828                  * There may be plenty of free memory available, but it's too
3829                  * fragmented for high-order allocations.  Wake up kcompactd
3830                  * and rely on compaction_suitable() to determine if it's
3831                  * needed.  If it fails, it will defer subsequent attempts to
3832                  * ratelimit its work.
3833                  */
3834                 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3835                         wakeup_kcompactd(pgdat, order, classzone_idx);
3836                 return;
3837         }
3838
3839         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3840                                       gfp_flags);
3841         wake_up_interruptible(&pgdat->kswapd_wait);
3842 }
3843
3844 #ifdef CONFIG_HIBERNATION
3845 /*
3846  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3847  * freed pages.
3848  *
3849  * Rather than trying to age LRUs the aim is to preserve the overall
3850  * LRU order by reclaiming preferentially
3851  * inactive > active > active referenced > active mapped
3852  */
3853 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3854 {
3855         struct reclaim_state reclaim_state;
3856         struct scan_control sc = {
3857                 .nr_to_reclaim = nr_to_reclaim,
3858                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3859                 .reclaim_idx = MAX_NR_ZONES - 1,
3860                 .priority = DEF_PRIORITY,
3861                 .may_writepage = 1,
3862                 .may_unmap = 1,
3863                 .may_swap = 1,
3864                 .hibernation_mode = 1,
3865         };
3866         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3867         struct task_struct *p = current;
3868         unsigned long nr_reclaimed;
3869         unsigned int noreclaim_flag;
3870
3871         fs_reclaim_acquire(sc.gfp_mask);
3872         noreclaim_flag = memalloc_noreclaim_save();
3873         reclaim_state.reclaimed_slab = 0;
3874         p->reclaim_state = &reclaim_state;
3875
3876         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3877
3878         p->reclaim_state = NULL;
3879         memalloc_noreclaim_restore(noreclaim_flag);
3880         fs_reclaim_release(sc.gfp_mask);
3881
3882         return nr_reclaimed;
3883 }
3884 #endif /* CONFIG_HIBERNATION */
3885
3886 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3887    not required for correctness.  So if the last cpu in a node goes
3888    away, we get changed to run anywhere: as the first one comes back,
3889    restore their cpu bindings. */
3890 static int kswapd_cpu_online(unsigned int cpu)
3891 {
3892         int nid;
3893
3894         for_each_node_state(nid, N_MEMORY) {
3895                 pg_data_t *pgdat = NODE_DATA(nid);
3896                 const struct cpumask *mask;
3897
3898                 mask = cpumask_of_node(pgdat->node_id);
3899
3900                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3901                         /* One of our CPUs online: restore mask */
3902                         set_cpus_allowed_ptr(pgdat->kswapd, mask);
3903         }
3904         return 0;
3905 }
3906
3907 /*
3908  * This kswapd start function will be called by init and node-hot-add.
3909  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3910  */
3911 int kswapd_run(int nid)
3912 {
3913         pg_data_t *pgdat = NODE_DATA(nid);
3914         int ret = 0;
3915
3916         if (pgdat->kswapd)
3917                 return 0;
3918
3919         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3920         if (IS_ERR(pgdat->kswapd)) {
3921                 /* failure at boot is fatal */
3922                 BUG_ON(system_state < SYSTEM_RUNNING);
3923                 pr_err("Failed to start kswapd on node %d\n", nid);
3924                 ret = PTR_ERR(pgdat->kswapd);
3925                 pgdat->kswapd = NULL;
3926         }
3927         return ret;
3928 }
3929
3930 /*
3931  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3932  * hold mem_hotplug_begin/end().
3933  */
3934 void kswapd_stop(int nid)
3935 {
3936         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3937
3938         if (kswapd) {
3939                 kthread_stop(kswapd);
3940                 NODE_DATA(nid)->kswapd = NULL;
3941         }
3942 }
3943
3944 static int __init kswapd_init(void)
3945 {
3946         int nid, ret;
3947
3948         swap_setup();
3949         for_each_node_state(nid, N_MEMORY)
3950                 kswapd_run(nid);
3951         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3952                                         "mm/vmscan:online", kswapd_cpu_online,
3953                                         NULL);
3954         WARN_ON(ret < 0);
3955         return 0;
3956 }
3957
3958 module_init(kswapd_init)
3959
3960 #ifdef CONFIG_NUMA
3961 /*
3962  * Node reclaim mode
3963  *
3964  * If non-zero call node_reclaim when the number of free pages falls below
3965  * the watermarks.
3966  */
3967 int node_reclaim_mode __read_mostly;
3968
3969 #define RECLAIM_OFF 0
3970 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3971 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3972 #define RECLAIM_UNMAP (1<<2)    /* Unmap pages during reclaim */
3973
3974 /*
3975  * Priority for NODE_RECLAIM. This determines the fraction of pages
3976  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3977  * a zone.
3978  */
3979 #define NODE_RECLAIM_PRIORITY 4
3980
3981 /*
3982  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3983  * occur.
3984  */
3985 int sysctl_min_unmapped_ratio = 1;
3986
3987 /*
3988  * If the number of slab pages in a zone grows beyond this percentage then
3989  * slab reclaim needs to occur.
3990  */
3991 int sysctl_min_slab_ratio = 5;
3992
3993 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3994 {
3995         unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3996         unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3997                 node_page_state(pgdat, NR_ACTIVE_FILE);
3998
3999         /*
4000          * It's possible for there to be more file mapped pages than
4001          * accounted for by the pages on the file LRU lists because
4002          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4003          */
4004         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4005 }
4006
4007 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4008 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4009 {
4010         unsigned long nr_pagecache_reclaimable;
4011         unsigned long delta = 0;
4012
4013         /*
4014          * If RECLAIM_UNMAP is set, then all file pages are considered
4015          * potentially reclaimable. Otherwise, we have to worry about
4016          * pages like swapcache and node_unmapped_file_pages() provides
4017          * a better estimate
4018          */
4019         if (node_reclaim_mode & RECLAIM_UNMAP)
4020                 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4021         else
4022                 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4023
4024         /* If we can't clean pages, remove dirty pages from consideration */
4025         if (!(node_reclaim_mode & RECLAIM_WRITE))
4026                 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4027
4028         /* Watch for any possible underflows due to delta */
4029         if (unlikely(delta > nr_pagecache_reclaimable))
4030                 delta = nr_pagecache_reclaimable;
4031
4032         return nr_pagecache_reclaimable - delta;
4033 }
4034
4035 /*
4036  * Try to free up some pages from this node through reclaim.
4037  */
4038 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4039 {
4040         /* Minimum pages needed in order to stay on node */
4041         const unsigned long nr_pages = 1 << order;
4042         struct task_struct *p = current;
4043         struct reclaim_state reclaim_state;
4044         unsigned int noreclaim_flag;
4045         struct scan_control sc = {
4046                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4047                 .gfp_mask = current_gfp_context(gfp_mask),
4048                 .order = order,
4049                 .priority = NODE_RECLAIM_PRIORITY,
4050                 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4051                 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4052                 .may_swap = 1,
4053                 .reclaim_idx = gfp_zone(gfp_mask),
4054         };
4055
4056         cond_resched();
4057         fs_reclaim_acquire(sc.gfp_mask);
4058         /*
4059          * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4060          * and we also need to be able to write out pages for RECLAIM_WRITE
4061          * and RECLAIM_UNMAP.
4062          */
4063         noreclaim_flag = memalloc_noreclaim_save();
4064         p->flags |= PF_SWAPWRITE;
4065         reclaim_state.reclaimed_slab = 0;
4066         p->reclaim_state = &reclaim_state;
4067
4068         if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4069                 /*
4070                  * Free memory by calling shrink node with increasing
4071                  * priorities until we have enough memory freed.
4072                  */
4073                 do {
4074                         shrink_node(pgdat, &sc);
4075                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4076         }
4077
4078         p->reclaim_state = NULL;
4079         current->flags &= ~PF_SWAPWRITE;
4080         memalloc_noreclaim_restore(noreclaim_flag);
4081         fs_reclaim_release(sc.gfp_mask);
4082         return sc.nr_reclaimed >= nr_pages;
4083 }
4084
4085 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4086 {
4087         int ret;
4088
4089         /*
4090          * Node reclaim reclaims unmapped file backed pages and
4091          * slab pages if we are over the defined limits.
4092          *
4093          * A small portion of unmapped file backed pages is needed for
4094          * file I/O otherwise pages read by file I/O will be immediately
4095          * thrown out if the node is overallocated. So we do not reclaim
4096          * if less than a specified percentage of the node is used by
4097          * unmapped file backed pages.
4098          */
4099         if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4100             node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4101                 return NODE_RECLAIM_FULL;
4102
4103         /*
4104          * Do not scan if the allocation should not be delayed.
4105          */
4106         if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4107                 return NODE_RECLAIM_NOSCAN;
4108
4109         /*
4110          * Only run node reclaim on the local node or on nodes that do not
4111          * have associated processors. This will favor the local processor
4112          * over remote processors and spread off node memory allocations
4113          * as wide as possible.
4114          */
4115         if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4116                 return NODE_RECLAIM_NOSCAN;
4117
4118         if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4119                 return NODE_RECLAIM_NOSCAN;
4120
4121         ret = __node_reclaim(pgdat, gfp_mask, order);
4122         clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4123
4124         if (!ret)
4125                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4126
4127         return ret;
4128 }
4129 #endif
4130
4131 /*
4132  * page_evictable - test whether a page is evictable
4133  * @page: the page to test
4134  *
4135  * Test whether page is evictable--i.e., should be placed on active/inactive
4136  * lists vs unevictable list.
4137  *
4138  * Reasons page might not be evictable:
4139  * (1) page's mapping marked unevictable
4140  * (2) page is part of an mlocked VMA
4141  *
4142  */
4143 int page_evictable(struct page *page)
4144 {
4145         int ret;
4146
4147         /* Prevent address_space of inode and swap cache from being freed */
4148         rcu_read_lock();
4149         ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4150         rcu_read_unlock();
4151         return ret;
4152 }
4153
4154 #ifdef CONFIG_SHMEM
4155 /**
4156  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4157  * @pages:      array of pages to check
4158  * @nr_pages:   number of pages to check
4159  *
4160  * Checks pages for evictability and moves them to the appropriate lru list.
4161  *
4162  * This function is only used for SysV IPC SHM_UNLOCK.
4163  */
4164 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4165 {
4166         struct lruvec *lruvec;
4167         struct pglist_data *pgdat = NULL;
4168         int pgscanned = 0;
4169         int pgrescued = 0;
4170         int i;
4171
4172         for (i = 0; i < nr_pages; i++) {
4173                 struct page *page = pages[i];
4174                 struct pglist_data *pagepgdat = page_pgdat(page);
4175
4176                 pgscanned++;
4177                 if (pagepgdat != pgdat) {
4178                         if (pgdat)
4179                                 spin_unlock_irq(&pgdat->lru_lock);
4180                         pgdat = pagepgdat;
4181                         spin_lock_irq(&pgdat->lru_lock);
4182                 }
4183                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4184
4185                 if (!PageLRU(page) || !PageUnevictable(page))
4186                         continue;
4187
4188                 if (page_evictable(page)) {
4189                         enum lru_list lru = page_lru_base_type(page);
4190
4191                         VM_BUG_ON_PAGE(PageActive(page), page);
4192                         ClearPageUnevictable(page);
4193                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4194                         add_page_to_lru_list(page, lruvec, lru);
4195                         pgrescued++;
4196                 }
4197         }
4198
4199         if (pgdat) {
4200                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4201                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4202                 spin_unlock_irq(&pgdat->lru_lock);
4203         }
4204 }
4205 #endif /* CONFIG_SHMEM */