mm/vmscan: store "priority" in struct scan_control
[platform/upstream/kernel-adaptation-pc.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /* Scan (total_size >> priority) pages at once */
82         int priority;
83
84         /*
85          * The memory cgroup that hit its limit and as a result is the
86          * primary target of this reclaim invocation.
87          */
88         struct mem_cgroup *target_mem_cgroup;
89
90         /*
91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
92          * are scanned.
93          */
94         nodemask_t      *nodemask;
95 };
96
97 struct mem_cgroup_zone {
98         struct mem_cgroup *mem_cgroup;
99         struct zone *zone;
100 };
101
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field)                    \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetch(&prev->_field);                        \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetchw(&prev->_field);                       \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 /*
133  * From 0 .. 100.  Higher means more swappy.
134  */
135 int vm_swappiness = 60;
136 long vm_total_pages;    /* The total number of pages which the VM controls */
137
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
140
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 static bool global_reclaim(struct scan_control *sc)
143 {
144         return !sc->target_mem_cgroup;
145 }
146 #else
147 static bool global_reclaim(struct scan_control *sc)
148 {
149         return true;
150 }
151 #endif
152
153 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
154 {
155         return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
156 }
157
158 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
159                                        enum lru_list lru)
160 {
161         if (!mem_cgroup_disabled())
162                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
163                                                     zone_to_nid(mz->zone),
164                                                     zone_idx(mz->zone),
165                                                     BIT(lru));
166
167         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
168 }
169
170
171 /*
172  * Add a shrinker callback to be called from the vm
173  */
174 void register_shrinker(struct shrinker *shrinker)
175 {
176         atomic_long_set(&shrinker->nr_in_batch, 0);
177         down_write(&shrinker_rwsem);
178         list_add_tail(&shrinker->list, &shrinker_list);
179         up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(register_shrinker);
182
183 /*
184  * Remove one
185  */
186 void unregister_shrinker(struct shrinker *shrinker)
187 {
188         down_write(&shrinker_rwsem);
189         list_del(&shrinker->list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(unregister_shrinker);
193
194 static inline int do_shrinker_shrink(struct shrinker *shrinker,
195                                      struct shrink_control *sc,
196                                      unsigned long nr_to_scan)
197 {
198         sc->nr_to_scan = nr_to_scan;
199         return (*shrinker->shrink)(shrinker, sc);
200 }
201
202 #define SHRINK_BATCH 128
203 /*
204  * Call the shrink functions to age shrinkable caches
205  *
206  * Here we assume it costs one seek to replace a lru page and that it also
207  * takes a seek to recreate a cache object.  With this in mind we age equal
208  * percentages of the lru and ageable caches.  This should balance the seeks
209  * generated by these structures.
210  *
211  * If the vm encountered mapped pages on the LRU it increase the pressure on
212  * slab to avoid swapping.
213  *
214  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
215  *
216  * `lru_pages' represents the number of on-LRU pages in all the zones which
217  * are eligible for the caller's allocation attempt.  It is used for balancing
218  * slab reclaim versus page reclaim.
219  *
220  * Returns the number of slab objects which we shrunk.
221  */
222 unsigned long shrink_slab(struct shrink_control *shrink,
223                           unsigned long nr_pages_scanned,
224                           unsigned long lru_pages)
225 {
226         struct shrinker *shrinker;
227         unsigned long ret = 0;
228
229         if (nr_pages_scanned == 0)
230                 nr_pages_scanned = SWAP_CLUSTER_MAX;
231
232         if (!down_read_trylock(&shrinker_rwsem)) {
233                 /* Assume we'll be able to shrink next time */
234                 ret = 1;
235                 goto out;
236         }
237
238         list_for_each_entry(shrinker, &shrinker_list, list) {
239                 unsigned long long delta;
240                 long total_scan;
241                 long max_pass;
242                 int shrink_ret = 0;
243                 long nr;
244                 long new_nr;
245                 long batch_size = shrinker->batch ? shrinker->batch
246                                                   : SHRINK_BATCH;
247
248                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
249                 if (max_pass <= 0)
250                         continue;
251
252                 /*
253                  * copy the current shrinker scan count into a local variable
254                  * and zero it so that other concurrent shrinker invocations
255                  * don't also do this scanning work.
256                  */
257                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
258
259                 total_scan = nr;
260                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
261                 delta *= max_pass;
262                 do_div(delta, lru_pages + 1);
263                 total_scan += delta;
264                 if (total_scan < 0) {
265                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
266                                "delete nr=%ld\n",
267                                shrinker->shrink, total_scan);
268                         total_scan = max_pass;
269                 }
270
271                 /*
272                  * We need to avoid excessive windup on filesystem shrinkers
273                  * due to large numbers of GFP_NOFS allocations causing the
274                  * shrinkers to return -1 all the time. This results in a large
275                  * nr being built up so when a shrink that can do some work
276                  * comes along it empties the entire cache due to nr >>>
277                  * max_pass.  This is bad for sustaining a working set in
278                  * memory.
279                  *
280                  * Hence only allow the shrinker to scan the entire cache when
281                  * a large delta change is calculated directly.
282                  */
283                 if (delta < max_pass / 4)
284                         total_scan = min(total_scan, max_pass / 2);
285
286                 /*
287                  * Avoid risking looping forever due to too large nr value:
288                  * never try to free more than twice the estimate number of
289                  * freeable entries.
290                  */
291                 if (total_scan > max_pass * 2)
292                         total_scan = max_pass * 2;
293
294                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
295                                         nr_pages_scanned, lru_pages,
296                                         max_pass, delta, total_scan);
297
298                 while (total_scan >= batch_size) {
299                         int nr_before;
300
301                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
302                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
303                                                         batch_size);
304                         if (shrink_ret == -1)
305                                 break;
306                         if (shrink_ret < nr_before)
307                                 ret += nr_before - shrink_ret;
308                         count_vm_events(SLABS_SCANNED, batch_size);
309                         total_scan -= batch_size;
310
311                         cond_resched();
312                 }
313
314                 /*
315                  * move the unused scan count back into the shrinker in a
316                  * manner that handles concurrent updates. If we exhausted the
317                  * scan, there is no need to do an update.
318                  */
319                 if (total_scan > 0)
320                         new_nr = atomic_long_add_return(total_scan,
321                                         &shrinker->nr_in_batch);
322                 else
323                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
324
325                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
326         }
327         up_read(&shrinker_rwsem);
328 out:
329         cond_resched();
330         return ret;
331 }
332
333 static inline int is_page_cache_freeable(struct page *page)
334 {
335         /*
336          * A freeable page cache page is referenced only by the caller
337          * that isolated the page, the page cache radix tree and
338          * optional buffer heads at page->private.
339          */
340         return page_count(page) - page_has_private(page) == 2;
341 }
342
343 static int may_write_to_queue(struct backing_dev_info *bdi,
344                               struct scan_control *sc)
345 {
346         if (current->flags & PF_SWAPWRITE)
347                 return 1;
348         if (!bdi_write_congested(bdi))
349                 return 1;
350         if (bdi == current->backing_dev_info)
351                 return 1;
352         return 0;
353 }
354
355 /*
356  * We detected a synchronous write error writing a page out.  Probably
357  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
358  * fsync(), msync() or close().
359  *
360  * The tricky part is that after writepage we cannot touch the mapping: nothing
361  * prevents it from being freed up.  But we have a ref on the page and once
362  * that page is locked, the mapping is pinned.
363  *
364  * We're allowed to run sleeping lock_page() here because we know the caller has
365  * __GFP_FS.
366  */
367 static void handle_write_error(struct address_space *mapping,
368                                 struct page *page, int error)
369 {
370         lock_page(page);
371         if (page_mapping(page) == mapping)
372                 mapping_set_error(mapping, error);
373         unlock_page(page);
374 }
375
376 /* possible outcome of pageout() */
377 typedef enum {
378         /* failed to write page out, page is locked */
379         PAGE_KEEP,
380         /* move page to the active list, page is locked */
381         PAGE_ACTIVATE,
382         /* page has been sent to the disk successfully, page is unlocked */
383         PAGE_SUCCESS,
384         /* page is clean and locked */
385         PAGE_CLEAN,
386 } pageout_t;
387
388 /*
389  * pageout is called by shrink_page_list() for each dirty page.
390  * Calls ->writepage().
391  */
392 static pageout_t pageout(struct page *page, struct address_space *mapping,
393                          struct scan_control *sc)
394 {
395         /*
396          * If the page is dirty, only perform writeback if that write
397          * will be non-blocking.  To prevent this allocation from being
398          * stalled by pagecache activity.  But note that there may be
399          * stalls if we need to run get_block().  We could test
400          * PagePrivate for that.
401          *
402          * If this process is currently in __generic_file_aio_write() against
403          * this page's queue, we can perform writeback even if that
404          * will block.
405          *
406          * If the page is swapcache, write it back even if that would
407          * block, for some throttling. This happens by accident, because
408          * swap_backing_dev_info is bust: it doesn't reflect the
409          * congestion state of the swapdevs.  Easy to fix, if needed.
410          */
411         if (!is_page_cache_freeable(page))
412                 return PAGE_KEEP;
413         if (!mapping) {
414                 /*
415                  * Some data journaling orphaned pages can have
416                  * page->mapping == NULL while being dirty with clean buffers.
417                  */
418                 if (page_has_private(page)) {
419                         if (try_to_free_buffers(page)) {
420                                 ClearPageDirty(page);
421                                 printk("%s: orphaned page\n", __func__);
422                                 return PAGE_CLEAN;
423                         }
424                 }
425                 return PAGE_KEEP;
426         }
427         if (mapping->a_ops->writepage == NULL)
428                 return PAGE_ACTIVATE;
429         if (!may_write_to_queue(mapping->backing_dev_info, sc))
430                 return PAGE_KEEP;
431
432         if (clear_page_dirty_for_io(page)) {
433                 int res;
434                 struct writeback_control wbc = {
435                         .sync_mode = WB_SYNC_NONE,
436                         .nr_to_write = SWAP_CLUSTER_MAX,
437                         .range_start = 0,
438                         .range_end = LLONG_MAX,
439                         .for_reclaim = 1,
440                 };
441
442                 SetPageReclaim(page);
443                 res = mapping->a_ops->writepage(page, &wbc);
444                 if (res < 0)
445                         handle_write_error(mapping, page, res);
446                 if (res == AOP_WRITEPAGE_ACTIVATE) {
447                         ClearPageReclaim(page);
448                         return PAGE_ACTIVATE;
449                 }
450
451                 if (!PageWriteback(page)) {
452                         /* synchronous write or broken a_ops? */
453                         ClearPageReclaim(page);
454                 }
455                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
456                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
457                 return PAGE_SUCCESS;
458         }
459
460         return PAGE_CLEAN;
461 }
462
463 /*
464  * Same as remove_mapping, but if the page is removed from the mapping, it
465  * gets returned with a refcount of 0.
466  */
467 static int __remove_mapping(struct address_space *mapping, struct page *page)
468 {
469         BUG_ON(!PageLocked(page));
470         BUG_ON(mapping != page_mapping(page));
471
472         spin_lock_irq(&mapping->tree_lock);
473         /*
474          * The non racy check for a busy page.
475          *
476          * Must be careful with the order of the tests. When someone has
477          * a ref to the page, it may be possible that they dirty it then
478          * drop the reference. So if PageDirty is tested before page_count
479          * here, then the following race may occur:
480          *
481          * get_user_pages(&page);
482          * [user mapping goes away]
483          * write_to(page);
484          *                              !PageDirty(page)    [good]
485          * SetPageDirty(page);
486          * put_page(page);
487          *                              !page_count(page)   [good, discard it]
488          *
489          * [oops, our write_to data is lost]
490          *
491          * Reversing the order of the tests ensures such a situation cannot
492          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
493          * load is not satisfied before that of page->_count.
494          *
495          * Note that if SetPageDirty is always performed via set_page_dirty,
496          * and thus under tree_lock, then this ordering is not required.
497          */
498         if (!page_freeze_refs(page, 2))
499                 goto cannot_free;
500         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
501         if (unlikely(PageDirty(page))) {
502                 page_unfreeze_refs(page, 2);
503                 goto cannot_free;
504         }
505
506         if (PageSwapCache(page)) {
507                 swp_entry_t swap = { .val = page_private(page) };
508                 __delete_from_swap_cache(page);
509                 spin_unlock_irq(&mapping->tree_lock);
510                 swapcache_free(swap, page);
511         } else {
512                 void (*freepage)(struct page *);
513
514                 freepage = mapping->a_ops->freepage;
515
516                 __delete_from_page_cache(page);
517                 spin_unlock_irq(&mapping->tree_lock);
518                 mem_cgroup_uncharge_cache_page(page);
519
520                 if (freepage != NULL)
521                         freepage(page);
522         }
523
524         return 1;
525
526 cannot_free:
527         spin_unlock_irq(&mapping->tree_lock);
528         return 0;
529 }
530
531 /*
532  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
533  * someone else has a ref on the page, abort and return 0.  If it was
534  * successfully detached, return 1.  Assumes the caller has a single ref on
535  * this page.
536  */
537 int remove_mapping(struct address_space *mapping, struct page *page)
538 {
539         if (__remove_mapping(mapping, page)) {
540                 /*
541                  * Unfreezing the refcount with 1 rather than 2 effectively
542                  * drops the pagecache ref for us without requiring another
543                  * atomic operation.
544                  */
545                 page_unfreeze_refs(page, 1);
546                 return 1;
547         }
548         return 0;
549 }
550
551 /**
552  * putback_lru_page - put previously isolated page onto appropriate LRU list
553  * @page: page to be put back to appropriate lru list
554  *
555  * Add previously isolated @page to appropriate LRU list.
556  * Page may still be unevictable for other reasons.
557  *
558  * lru_lock must not be held, interrupts must be enabled.
559  */
560 void putback_lru_page(struct page *page)
561 {
562         int lru;
563         int active = !!TestClearPageActive(page);
564         int was_unevictable = PageUnevictable(page);
565
566         VM_BUG_ON(PageLRU(page));
567
568 redo:
569         ClearPageUnevictable(page);
570
571         if (page_evictable(page, NULL)) {
572                 /*
573                  * For evictable pages, we can use the cache.
574                  * In event of a race, worst case is we end up with an
575                  * unevictable page on [in]active list.
576                  * We know how to handle that.
577                  */
578                 lru = active + page_lru_base_type(page);
579                 lru_cache_add_lru(page, lru);
580         } else {
581                 /*
582                  * Put unevictable pages directly on zone's unevictable
583                  * list.
584                  */
585                 lru = LRU_UNEVICTABLE;
586                 add_page_to_unevictable_list(page);
587                 /*
588                  * When racing with an mlock or AS_UNEVICTABLE clearing
589                  * (page is unlocked) make sure that if the other thread
590                  * does not observe our setting of PG_lru and fails
591                  * isolation/check_move_unevictable_pages,
592                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
593                  * the page back to the evictable list.
594                  *
595                  * The other side is TestClearPageMlocked() or shmem_lock().
596                  */
597                 smp_mb();
598         }
599
600         /*
601          * page's status can change while we move it among lru. If an evictable
602          * page is on unevictable list, it never be freed. To avoid that,
603          * check after we added it to the list, again.
604          */
605         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606                 if (!isolate_lru_page(page)) {
607                         put_page(page);
608                         goto redo;
609                 }
610                 /* This means someone else dropped this page from LRU
611                  * So, it will be freed or putback to LRU again. There is
612                  * nothing to do here.
613                  */
614         }
615
616         if (was_unevictable && lru != LRU_UNEVICTABLE)
617                 count_vm_event(UNEVICTABLE_PGRESCUED);
618         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619                 count_vm_event(UNEVICTABLE_PGCULLED);
620
621         put_page(page);         /* drop ref from isolate */
622 }
623
624 enum page_references {
625         PAGEREF_RECLAIM,
626         PAGEREF_RECLAIM_CLEAN,
627         PAGEREF_KEEP,
628         PAGEREF_ACTIVATE,
629 };
630
631 static enum page_references page_check_references(struct page *page,
632                                                   struct mem_cgroup_zone *mz,
633                                                   struct scan_control *sc)
634 {
635         int referenced_ptes, referenced_page;
636         unsigned long vm_flags;
637
638         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
639                                           &vm_flags);
640         referenced_page = TestClearPageReferenced(page);
641
642         /*
643          * Mlock lost the isolation race with us.  Let try_to_unmap()
644          * move the page to the unevictable list.
645          */
646         if (vm_flags & VM_LOCKED)
647                 return PAGEREF_RECLAIM;
648
649         if (referenced_ptes) {
650                 if (PageSwapBacked(page))
651                         return PAGEREF_ACTIVATE;
652                 /*
653                  * All mapped pages start out with page table
654                  * references from the instantiating fault, so we need
655                  * to look twice if a mapped file page is used more
656                  * than once.
657                  *
658                  * Mark it and spare it for another trip around the
659                  * inactive list.  Another page table reference will
660                  * lead to its activation.
661                  *
662                  * Note: the mark is set for activated pages as well
663                  * so that recently deactivated but used pages are
664                  * quickly recovered.
665                  */
666                 SetPageReferenced(page);
667
668                 if (referenced_page || referenced_ptes > 1)
669                         return PAGEREF_ACTIVATE;
670
671                 /*
672                  * Activate file-backed executable pages after first usage.
673                  */
674                 if (vm_flags & VM_EXEC)
675                         return PAGEREF_ACTIVATE;
676
677                 return PAGEREF_KEEP;
678         }
679
680         /* Reclaim if clean, defer dirty pages to writeback */
681         if (referenced_page && !PageSwapBacked(page))
682                 return PAGEREF_RECLAIM_CLEAN;
683
684         return PAGEREF_RECLAIM;
685 }
686
687 /*
688  * shrink_page_list() returns the number of reclaimed pages
689  */
690 static unsigned long shrink_page_list(struct list_head *page_list,
691                                       struct mem_cgroup_zone *mz,
692                                       struct scan_control *sc,
693                                       unsigned long *ret_nr_dirty,
694                                       unsigned long *ret_nr_writeback)
695 {
696         LIST_HEAD(ret_pages);
697         LIST_HEAD(free_pages);
698         int pgactivate = 0;
699         unsigned long nr_dirty = 0;
700         unsigned long nr_congested = 0;
701         unsigned long nr_reclaimed = 0;
702         unsigned long nr_writeback = 0;
703
704         cond_resched();
705
706         while (!list_empty(page_list)) {
707                 enum page_references references;
708                 struct address_space *mapping;
709                 struct page *page;
710                 int may_enter_fs;
711
712                 cond_resched();
713
714                 page = lru_to_page(page_list);
715                 list_del(&page->lru);
716
717                 if (!trylock_page(page))
718                         goto keep;
719
720                 VM_BUG_ON(PageActive(page));
721                 VM_BUG_ON(page_zone(page) != mz->zone);
722
723                 sc->nr_scanned++;
724
725                 if (unlikely(!page_evictable(page, NULL)))
726                         goto cull_mlocked;
727
728                 if (!sc->may_unmap && page_mapped(page))
729                         goto keep_locked;
730
731                 /* Double the slab pressure for mapped and swapcache pages */
732                 if (page_mapped(page) || PageSwapCache(page))
733                         sc->nr_scanned++;
734
735                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
736                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
737
738                 if (PageWriteback(page)) {
739                         nr_writeback++;
740                         unlock_page(page);
741                         goto keep;
742                 }
743
744                 references = page_check_references(page, mz, sc);
745                 switch (references) {
746                 case PAGEREF_ACTIVATE:
747                         goto activate_locked;
748                 case PAGEREF_KEEP:
749                         goto keep_locked;
750                 case PAGEREF_RECLAIM:
751                 case PAGEREF_RECLAIM_CLEAN:
752                         ; /* try to reclaim the page below */
753                 }
754
755                 /*
756                  * Anonymous process memory has backing store?
757                  * Try to allocate it some swap space here.
758                  */
759                 if (PageAnon(page) && !PageSwapCache(page)) {
760                         if (!(sc->gfp_mask & __GFP_IO))
761                                 goto keep_locked;
762                         if (!add_to_swap(page))
763                                 goto activate_locked;
764                         may_enter_fs = 1;
765                 }
766
767                 mapping = page_mapping(page);
768
769                 /*
770                  * The page is mapped into the page tables of one or more
771                  * processes. Try to unmap it here.
772                  */
773                 if (page_mapped(page) && mapping) {
774                         switch (try_to_unmap(page, TTU_UNMAP)) {
775                         case SWAP_FAIL:
776                                 goto activate_locked;
777                         case SWAP_AGAIN:
778                                 goto keep_locked;
779                         case SWAP_MLOCK:
780                                 goto cull_mlocked;
781                         case SWAP_SUCCESS:
782                                 ; /* try to free the page below */
783                         }
784                 }
785
786                 if (PageDirty(page)) {
787                         nr_dirty++;
788
789                         /*
790                          * Only kswapd can writeback filesystem pages to
791                          * avoid risk of stack overflow but do not writeback
792                          * unless under significant pressure.
793                          */
794                         if (page_is_file_cache(page) &&
795                                         (!current_is_kswapd() ||
796                                          sc->priority >= DEF_PRIORITY - 2)) {
797                                 /*
798                                  * Immediately reclaim when written back.
799                                  * Similar in principal to deactivate_page()
800                                  * except we already have the page isolated
801                                  * and know it's dirty
802                                  */
803                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
804                                 SetPageReclaim(page);
805
806                                 goto keep_locked;
807                         }
808
809                         if (references == PAGEREF_RECLAIM_CLEAN)
810                                 goto keep_locked;
811                         if (!may_enter_fs)
812                                 goto keep_locked;
813                         if (!sc->may_writepage)
814                                 goto keep_locked;
815
816                         /* Page is dirty, try to write it out here */
817                         switch (pageout(page, mapping, sc)) {
818                         case PAGE_KEEP:
819                                 nr_congested++;
820                                 goto keep_locked;
821                         case PAGE_ACTIVATE:
822                                 goto activate_locked;
823                         case PAGE_SUCCESS:
824                                 if (PageWriteback(page))
825                                         goto keep;
826                                 if (PageDirty(page))
827                                         goto keep;
828
829                                 /*
830                                  * A synchronous write - probably a ramdisk.  Go
831                                  * ahead and try to reclaim the page.
832                                  */
833                                 if (!trylock_page(page))
834                                         goto keep;
835                                 if (PageDirty(page) || PageWriteback(page))
836                                         goto keep_locked;
837                                 mapping = page_mapping(page);
838                         case PAGE_CLEAN:
839                                 ; /* try to free the page below */
840                         }
841                 }
842
843                 /*
844                  * If the page has buffers, try to free the buffer mappings
845                  * associated with this page. If we succeed we try to free
846                  * the page as well.
847                  *
848                  * We do this even if the page is PageDirty().
849                  * try_to_release_page() does not perform I/O, but it is
850                  * possible for a page to have PageDirty set, but it is actually
851                  * clean (all its buffers are clean).  This happens if the
852                  * buffers were written out directly, with submit_bh(). ext3
853                  * will do this, as well as the blockdev mapping.
854                  * try_to_release_page() will discover that cleanness and will
855                  * drop the buffers and mark the page clean - it can be freed.
856                  *
857                  * Rarely, pages can have buffers and no ->mapping.  These are
858                  * the pages which were not successfully invalidated in
859                  * truncate_complete_page().  We try to drop those buffers here
860                  * and if that worked, and the page is no longer mapped into
861                  * process address space (page_count == 1) it can be freed.
862                  * Otherwise, leave the page on the LRU so it is swappable.
863                  */
864                 if (page_has_private(page)) {
865                         if (!try_to_release_page(page, sc->gfp_mask))
866                                 goto activate_locked;
867                         if (!mapping && page_count(page) == 1) {
868                                 unlock_page(page);
869                                 if (put_page_testzero(page))
870                                         goto free_it;
871                                 else {
872                                         /*
873                                          * rare race with speculative reference.
874                                          * the speculative reference will free
875                                          * this page shortly, so we may
876                                          * increment nr_reclaimed here (and
877                                          * leave it off the LRU).
878                                          */
879                                         nr_reclaimed++;
880                                         continue;
881                                 }
882                         }
883                 }
884
885                 if (!mapping || !__remove_mapping(mapping, page))
886                         goto keep_locked;
887
888                 /*
889                  * At this point, we have no other references and there is
890                  * no way to pick any more up (removed from LRU, removed
891                  * from pagecache). Can use non-atomic bitops now (and
892                  * we obviously don't have to worry about waking up a process
893                  * waiting on the page lock, because there are no references.
894                  */
895                 __clear_page_locked(page);
896 free_it:
897                 nr_reclaimed++;
898
899                 /*
900                  * Is there need to periodically free_page_list? It would
901                  * appear not as the counts should be low
902                  */
903                 list_add(&page->lru, &free_pages);
904                 continue;
905
906 cull_mlocked:
907                 if (PageSwapCache(page))
908                         try_to_free_swap(page);
909                 unlock_page(page);
910                 putback_lru_page(page);
911                 continue;
912
913 activate_locked:
914                 /* Not a candidate for swapping, so reclaim swap space. */
915                 if (PageSwapCache(page) && vm_swap_full())
916                         try_to_free_swap(page);
917                 VM_BUG_ON(PageActive(page));
918                 SetPageActive(page);
919                 pgactivate++;
920 keep_locked:
921                 unlock_page(page);
922 keep:
923                 list_add(&page->lru, &ret_pages);
924                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
925         }
926
927         /*
928          * Tag a zone as congested if all the dirty pages encountered were
929          * backed by a congested BDI. In this case, reclaimers should just
930          * back off and wait for congestion to clear because further reclaim
931          * will encounter the same problem
932          */
933         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
934                 zone_set_flag(mz->zone, ZONE_CONGESTED);
935
936         free_hot_cold_page_list(&free_pages, 1);
937
938         list_splice(&ret_pages, page_list);
939         count_vm_events(PGACTIVATE, pgactivate);
940         *ret_nr_dirty += nr_dirty;
941         *ret_nr_writeback += nr_writeback;
942         return nr_reclaimed;
943 }
944
945 /*
946  * Attempt to remove the specified page from its LRU.  Only take this page
947  * if it is of the appropriate PageActive status.  Pages which are being
948  * freed elsewhere are also ignored.
949  *
950  * page:        page to consider
951  * mode:        one of the LRU isolation modes defined above
952  *
953  * returns 0 on success, -ve errno on failure.
954  */
955 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
956 {
957         int ret = -EINVAL;
958
959         /* Only take pages on the LRU. */
960         if (!PageLRU(page))
961                 return ret;
962
963         /* Do not give back unevictable pages for compaction */
964         if (PageUnevictable(page))
965                 return ret;
966
967         ret = -EBUSY;
968
969         /*
970          * To minimise LRU disruption, the caller can indicate that it only
971          * wants to isolate pages it will be able to operate on without
972          * blocking - clean pages for the most part.
973          *
974          * ISOLATE_CLEAN means that only clean pages should be isolated. This
975          * is used by reclaim when it is cannot write to backing storage
976          *
977          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
978          * that it is possible to migrate without blocking
979          */
980         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
981                 /* All the caller can do on PageWriteback is block */
982                 if (PageWriteback(page))
983                         return ret;
984
985                 if (PageDirty(page)) {
986                         struct address_space *mapping;
987
988                         /* ISOLATE_CLEAN means only clean pages */
989                         if (mode & ISOLATE_CLEAN)
990                                 return ret;
991
992                         /*
993                          * Only pages without mappings or that have a
994                          * ->migratepage callback are possible to migrate
995                          * without blocking
996                          */
997                         mapping = page_mapping(page);
998                         if (mapping && !mapping->a_ops->migratepage)
999                                 return ret;
1000                 }
1001         }
1002
1003         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1004                 return ret;
1005
1006         if (likely(get_page_unless_zero(page))) {
1007                 /*
1008                  * Be careful not to clear PageLRU until after we're
1009                  * sure the page is not being freed elsewhere -- the
1010                  * page release code relies on it.
1011                  */
1012                 ClearPageLRU(page);
1013                 ret = 0;
1014         }
1015
1016         return ret;
1017 }
1018
1019 /*
1020  * zone->lru_lock is heavily contended.  Some of the functions that
1021  * shrink the lists perform better by taking out a batch of pages
1022  * and working on them outside the LRU lock.
1023  *
1024  * For pagecache intensive workloads, this function is the hottest
1025  * spot in the kernel (apart from copy_*_user functions).
1026  *
1027  * Appropriate locks must be held before calling this function.
1028  *
1029  * @nr_to_scan: The number of pages to look through on the list.
1030  * @mz:         The mem_cgroup_zone to pull pages from.
1031  * @dst:        The temp list to put pages on to.
1032  * @nr_scanned: The number of pages that were scanned.
1033  * @sc:         The scan_control struct for this reclaim session
1034  * @mode:       One of the LRU isolation modes
1035  * @lru:        LRU list id for isolating
1036  *
1037  * returns how many pages were moved onto *@dst.
1038  */
1039 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1040                 struct mem_cgroup_zone *mz, struct list_head *dst,
1041                 unsigned long *nr_scanned, struct scan_control *sc,
1042                 isolate_mode_t mode, enum lru_list lru)
1043 {
1044         struct lruvec *lruvec;
1045         struct list_head *src;
1046         unsigned long nr_taken = 0;
1047         unsigned long scan;
1048         int file = is_file_lru(lru);
1049
1050         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1051         src = &lruvec->lists[lru];
1052
1053         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1054                 struct page *page;
1055
1056                 page = lru_to_page(src);
1057                 prefetchw_prev_lru_page(page, src, flags);
1058
1059                 VM_BUG_ON(!PageLRU(page));
1060
1061                 switch (__isolate_lru_page(page, mode)) {
1062                 case 0:
1063                         mem_cgroup_lru_del_list(page, lru);
1064                         list_move(&page->lru, dst);
1065                         nr_taken += hpage_nr_pages(page);
1066                         break;
1067
1068                 case -EBUSY:
1069                         /* else it is being freed elsewhere */
1070                         list_move(&page->lru, src);
1071                         continue;
1072
1073                 default:
1074                         BUG();
1075                 }
1076         }
1077
1078         *nr_scanned = scan;
1079
1080         trace_mm_vmscan_lru_isolate(sc->order,
1081                         nr_to_scan, scan,
1082                         nr_taken,
1083                         mode, file);
1084         return nr_taken;
1085 }
1086
1087 /**
1088  * isolate_lru_page - tries to isolate a page from its LRU list
1089  * @page: page to isolate from its LRU list
1090  *
1091  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1092  * vmstat statistic corresponding to whatever LRU list the page was on.
1093  *
1094  * Returns 0 if the page was removed from an LRU list.
1095  * Returns -EBUSY if the page was not on an LRU list.
1096  *
1097  * The returned page will have PageLRU() cleared.  If it was found on
1098  * the active list, it will have PageActive set.  If it was found on
1099  * the unevictable list, it will have the PageUnevictable bit set. That flag
1100  * may need to be cleared by the caller before letting the page go.
1101  *
1102  * The vmstat statistic corresponding to the list on which the page was
1103  * found will be decremented.
1104  *
1105  * Restrictions:
1106  * (1) Must be called with an elevated refcount on the page. This is a
1107  *     fundamentnal difference from isolate_lru_pages (which is called
1108  *     without a stable reference).
1109  * (2) the lru_lock must not be held.
1110  * (3) interrupts must be enabled.
1111  */
1112 int isolate_lru_page(struct page *page)
1113 {
1114         int ret = -EBUSY;
1115
1116         VM_BUG_ON(!page_count(page));
1117
1118         if (PageLRU(page)) {
1119                 struct zone *zone = page_zone(page);
1120
1121                 spin_lock_irq(&zone->lru_lock);
1122                 if (PageLRU(page)) {
1123                         int lru = page_lru(page);
1124                         ret = 0;
1125                         get_page(page);
1126                         ClearPageLRU(page);
1127
1128                         del_page_from_lru_list(zone, page, lru);
1129                 }
1130                 spin_unlock_irq(&zone->lru_lock);
1131         }
1132         return ret;
1133 }
1134
1135 /*
1136  * Are there way too many processes in the direct reclaim path already?
1137  */
1138 static int too_many_isolated(struct zone *zone, int file,
1139                 struct scan_control *sc)
1140 {
1141         unsigned long inactive, isolated;
1142
1143         if (current_is_kswapd())
1144                 return 0;
1145
1146         if (!global_reclaim(sc))
1147                 return 0;
1148
1149         if (file) {
1150                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1151                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1152         } else {
1153                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1154                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1155         }
1156
1157         return isolated > inactive;
1158 }
1159
1160 static noinline_for_stack void
1161 putback_inactive_pages(struct mem_cgroup_zone *mz,
1162                        struct list_head *page_list)
1163 {
1164         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1165         struct zone *zone = mz->zone;
1166         LIST_HEAD(pages_to_free);
1167
1168         /*
1169          * Put back any unfreeable pages.
1170          */
1171         while (!list_empty(page_list)) {
1172                 struct page *page = lru_to_page(page_list);
1173                 int lru;
1174
1175                 VM_BUG_ON(PageLRU(page));
1176                 list_del(&page->lru);
1177                 if (unlikely(!page_evictable(page, NULL))) {
1178                         spin_unlock_irq(&zone->lru_lock);
1179                         putback_lru_page(page);
1180                         spin_lock_irq(&zone->lru_lock);
1181                         continue;
1182                 }
1183                 SetPageLRU(page);
1184                 lru = page_lru(page);
1185                 add_page_to_lru_list(zone, page, lru);
1186                 if (is_active_lru(lru)) {
1187                         int file = is_file_lru(lru);
1188                         int numpages = hpage_nr_pages(page);
1189                         reclaim_stat->recent_rotated[file] += numpages;
1190                 }
1191                 if (put_page_testzero(page)) {
1192                         __ClearPageLRU(page);
1193                         __ClearPageActive(page);
1194                         del_page_from_lru_list(zone, page, lru);
1195
1196                         if (unlikely(PageCompound(page))) {
1197                                 spin_unlock_irq(&zone->lru_lock);
1198                                 (*get_compound_page_dtor(page))(page);
1199                                 spin_lock_irq(&zone->lru_lock);
1200                         } else
1201                                 list_add(&page->lru, &pages_to_free);
1202                 }
1203         }
1204
1205         /*
1206          * To save our caller's stack, now use input list for pages to free.
1207          */
1208         list_splice(&pages_to_free, page_list);
1209 }
1210
1211 static noinline_for_stack void
1212 update_isolated_counts(struct mem_cgroup_zone *mz,
1213                        struct list_head *page_list,
1214                        unsigned long *nr_anon,
1215                        unsigned long *nr_file)
1216 {
1217         struct zone *zone = mz->zone;
1218         unsigned int count[NR_LRU_LISTS] = { 0, };
1219         unsigned long nr_active = 0;
1220         struct page *page;
1221         int lru;
1222
1223         /*
1224          * Count pages and clear active flags
1225          */
1226         list_for_each_entry(page, page_list, lru) {
1227                 int numpages = hpage_nr_pages(page);
1228                 lru = page_lru_base_type(page);
1229                 if (PageActive(page)) {
1230                         lru += LRU_ACTIVE;
1231                         ClearPageActive(page);
1232                         nr_active += numpages;
1233                 }
1234                 count[lru] += numpages;
1235         }
1236
1237         preempt_disable();
1238         __count_vm_events(PGDEACTIVATE, nr_active);
1239
1240         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1241                               -count[LRU_ACTIVE_FILE]);
1242         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1243                               -count[LRU_INACTIVE_FILE]);
1244         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1245                               -count[LRU_ACTIVE_ANON]);
1246         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1247                               -count[LRU_INACTIVE_ANON]);
1248
1249         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1250         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1251
1252         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1253         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1254         preempt_enable();
1255 }
1256
1257 /*
1258  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1259  * of reclaimed pages
1260  */
1261 static noinline_for_stack unsigned long
1262 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1263                      struct scan_control *sc, enum lru_list lru)
1264 {
1265         LIST_HEAD(page_list);
1266         unsigned long nr_scanned;
1267         unsigned long nr_reclaimed = 0;
1268         unsigned long nr_taken;
1269         unsigned long nr_anon;
1270         unsigned long nr_file;
1271         unsigned long nr_dirty = 0;
1272         unsigned long nr_writeback = 0;
1273         isolate_mode_t isolate_mode = 0;
1274         int file = is_file_lru(lru);
1275         struct zone *zone = mz->zone;
1276         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1277
1278         while (unlikely(too_many_isolated(zone, file, sc))) {
1279                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1280
1281                 /* We are about to die and free our memory. Return now. */
1282                 if (fatal_signal_pending(current))
1283                         return SWAP_CLUSTER_MAX;
1284         }
1285
1286         lru_add_drain();
1287
1288         if (!sc->may_unmap)
1289                 isolate_mode |= ISOLATE_UNMAPPED;
1290         if (!sc->may_writepage)
1291                 isolate_mode |= ISOLATE_CLEAN;
1292
1293         spin_lock_irq(&zone->lru_lock);
1294
1295         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1296                                      sc, isolate_mode, lru);
1297         if (global_reclaim(sc)) {
1298                 zone->pages_scanned += nr_scanned;
1299                 if (current_is_kswapd())
1300                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1301                                                nr_scanned);
1302                 else
1303                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1304                                                nr_scanned);
1305         }
1306         spin_unlock_irq(&zone->lru_lock);
1307
1308         if (nr_taken == 0)
1309                 return 0;
1310
1311         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1312
1313         nr_reclaimed = shrink_page_list(&page_list, mz, sc,
1314                                                 &nr_dirty, &nr_writeback);
1315
1316         spin_lock_irq(&zone->lru_lock);
1317
1318         reclaim_stat->recent_scanned[0] += nr_anon;
1319         reclaim_stat->recent_scanned[1] += nr_file;
1320
1321         if (global_reclaim(sc)) {
1322                 if (current_is_kswapd())
1323                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1324                                                nr_reclaimed);
1325                 else
1326                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1327                                                nr_reclaimed);
1328         }
1329
1330         putback_inactive_pages(mz, &page_list);
1331
1332         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1333         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1334
1335         spin_unlock_irq(&zone->lru_lock);
1336
1337         free_hot_cold_page_list(&page_list, 1);
1338
1339         /*
1340          * If reclaim is isolating dirty pages under writeback, it implies
1341          * that the long-lived page allocation rate is exceeding the page
1342          * laundering rate. Either the global limits are not being effective
1343          * at throttling processes due to the page distribution throughout
1344          * zones or there is heavy usage of a slow backing device. The
1345          * only option is to throttle from reclaim context which is not ideal
1346          * as there is no guarantee the dirtying process is throttled in the
1347          * same way balance_dirty_pages() manages.
1348          *
1349          * This scales the number of dirty pages that must be under writeback
1350          * before throttling depending on priority. It is a simple backoff
1351          * function that has the most effect in the range DEF_PRIORITY to
1352          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1353          * in trouble and reclaim is considered to be in trouble.
1354          *
1355          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1356          * DEF_PRIORITY-1  50% must be PageWriteback
1357          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1358          * ...
1359          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1360          *                     isolated page is PageWriteback
1361          */
1362         if (nr_writeback && nr_writeback >=
1363                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1364                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1365
1366         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1367                 zone_idx(zone),
1368                 nr_scanned, nr_reclaimed,
1369                 sc->priority,
1370                 trace_shrink_flags(file));
1371         return nr_reclaimed;
1372 }
1373
1374 /*
1375  * This moves pages from the active list to the inactive list.
1376  *
1377  * We move them the other way if the page is referenced by one or more
1378  * processes, from rmap.
1379  *
1380  * If the pages are mostly unmapped, the processing is fast and it is
1381  * appropriate to hold zone->lru_lock across the whole operation.  But if
1382  * the pages are mapped, the processing is slow (page_referenced()) so we
1383  * should drop zone->lru_lock around each page.  It's impossible to balance
1384  * this, so instead we remove the pages from the LRU while processing them.
1385  * It is safe to rely on PG_active against the non-LRU pages in here because
1386  * nobody will play with that bit on a non-LRU page.
1387  *
1388  * The downside is that we have to touch page->_count against each page.
1389  * But we had to alter page->flags anyway.
1390  */
1391
1392 static void move_active_pages_to_lru(struct zone *zone,
1393                                      struct list_head *list,
1394                                      struct list_head *pages_to_free,
1395                                      enum lru_list lru)
1396 {
1397         unsigned long pgmoved = 0;
1398         struct page *page;
1399
1400         while (!list_empty(list)) {
1401                 struct lruvec *lruvec;
1402
1403                 page = lru_to_page(list);
1404
1405                 VM_BUG_ON(PageLRU(page));
1406                 SetPageLRU(page);
1407
1408                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1409                 list_move(&page->lru, &lruvec->lists[lru]);
1410                 pgmoved += hpage_nr_pages(page);
1411
1412                 if (put_page_testzero(page)) {
1413                         __ClearPageLRU(page);
1414                         __ClearPageActive(page);
1415                         del_page_from_lru_list(zone, page, lru);
1416
1417                         if (unlikely(PageCompound(page))) {
1418                                 spin_unlock_irq(&zone->lru_lock);
1419                                 (*get_compound_page_dtor(page))(page);
1420                                 spin_lock_irq(&zone->lru_lock);
1421                         } else
1422                                 list_add(&page->lru, pages_to_free);
1423                 }
1424         }
1425         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1426         if (!is_active_lru(lru))
1427                 __count_vm_events(PGDEACTIVATE, pgmoved);
1428 }
1429
1430 static void shrink_active_list(unsigned long nr_to_scan,
1431                                struct mem_cgroup_zone *mz,
1432                                struct scan_control *sc,
1433                                enum lru_list lru)
1434 {
1435         unsigned long nr_taken;
1436         unsigned long nr_scanned;
1437         unsigned long vm_flags;
1438         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1439         LIST_HEAD(l_active);
1440         LIST_HEAD(l_inactive);
1441         struct page *page;
1442         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1443         unsigned long nr_rotated = 0;
1444         isolate_mode_t isolate_mode = 0;
1445         int file = is_file_lru(lru);
1446         struct zone *zone = mz->zone;
1447
1448         lru_add_drain();
1449
1450         if (!sc->may_unmap)
1451                 isolate_mode |= ISOLATE_UNMAPPED;
1452         if (!sc->may_writepage)
1453                 isolate_mode |= ISOLATE_CLEAN;
1454
1455         spin_lock_irq(&zone->lru_lock);
1456
1457         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1458                                      isolate_mode, lru);
1459         if (global_reclaim(sc))
1460                 zone->pages_scanned += nr_scanned;
1461
1462         reclaim_stat->recent_scanned[file] += nr_taken;
1463
1464         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1465         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1466         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1467         spin_unlock_irq(&zone->lru_lock);
1468
1469         while (!list_empty(&l_hold)) {
1470                 cond_resched();
1471                 page = lru_to_page(&l_hold);
1472                 list_del(&page->lru);
1473
1474                 if (unlikely(!page_evictable(page, NULL))) {
1475                         putback_lru_page(page);
1476                         continue;
1477                 }
1478
1479                 if (unlikely(buffer_heads_over_limit)) {
1480                         if (page_has_private(page) && trylock_page(page)) {
1481                                 if (page_has_private(page))
1482                                         try_to_release_page(page, 0);
1483                                 unlock_page(page);
1484                         }
1485                 }
1486
1487                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1488                                     &vm_flags)) {
1489                         nr_rotated += hpage_nr_pages(page);
1490                         /*
1491                          * Identify referenced, file-backed active pages and
1492                          * give them one more trip around the active list. So
1493                          * that executable code get better chances to stay in
1494                          * memory under moderate memory pressure.  Anon pages
1495                          * are not likely to be evicted by use-once streaming
1496                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1497                          * so we ignore them here.
1498                          */
1499                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1500                                 list_add(&page->lru, &l_active);
1501                                 continue;
1502                         }
1503                 }
1504
1505                 ClearPageActive(page);  /* we are de-activating */
1506                 list_add(&page->lru, &l_inactive);
1507         }
1508
1509         /*
1510          * Move pages back to the lru list.
1511          */
1512         spin_lock_irq(&zone->lru_lock);
1513         /*
1514          * Count referenced pages from currently used mappings as rotated,
1515          * even though only some of them are actually re-activated.  This
1516          * helps balance scan pressure between file and anonymous pages in
1517          * get_scan_ratio.
1518          */
1519         reclaim_stat->recent_rotated[file] += nr_rotated;
1520
1521         move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1522         move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1523         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1524         spin_unlock_irq(&zone->lru_lock);
1525
1526         free_hot_cold_page_list(&l_hold, 1);
1527 }
1528
1529 #ifdef CONFIG_SWAP
1530 static int inactive_anon_is_low_global(struct zone *zone)
1531 {
1532         unsigned long active, inactive;
1533
1534         active = zone_page_state(zone, NR_ACTIVE_ANON);
1535         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1536
1537         if (inactive * zone->inactive_ratio < active)
1538                 return 1;
1539
1540         return 0;
1541 }
1542
1543 /**
1544  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1545  * @zone: zone to check
1546  * @sc:   scan control of this context
1547  *
1548  * Returns true if the zone does not have enough inactive anon pages,
1549  * meaning some active anon pages need to be deactivated.
1550  */
1551 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1552 {
1553         /*
1554          * If we don't have swap space, anonymous page deactivation
1555          * is pointless.
1556          */
1557         if (!total_swap_pages)
1558                 return 0;
1559
1560         if (!mem_cgroup_disabled())
1561                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1562                                                        mz->zone);
1563
1564         return inactive_anon_is_low_global(mz->zone);
1565 }
1566 #else
1567 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1568 {
1569         return 0;
1570 }
1571 #endif
1572
1573 static int inactive_file_is_low_global(struct zone *zone)
1574 {
1575         unsigned long active, inactive;
1576
1577         active = zone_page_state(zone, NR_ACTIVE_FILE);
1578         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1579
1580         return (active > inactive);
1581 }
1582
1583 /**
1584  * inactive_file_is_low - check if file pages need to be deactivated
1585  * @mz: memory cgroup and zone to check
1586  *
1587  * When the system is doing streaming IO, memory pressure here
1588  * ensures that active file pages get deactivated, until more
1589  * than half of the file pages are on the inactive list.
1590  *
1591  * Once we get to that situation, protect the system's working
1592  * set from being evicted by disabling active file page aging.
1593  *
1594  * This uses a different ratio than the anonymous pages, because
1595  * the page cache uses a use-once replacement algorithm.
1596  */
1597 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1598 {
1599         if (!mem_cgroup_disabled())
1600                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1601                                                        mz->zone);
1602
1603         return inactive_file_is_low_global(mz->zone);
1604 }
1605
1606 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1607 {
1608         if (file)
1609                 return inactive_file_is_low(mz);
1610         else
1611                 return inactive_anon_is_low(mz);
1612 }
1613
1614 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1615                                  struct mem_cgroup_zone *mz,
1616                                  struct scan_control *sc)
1617 {
1618         int file = is_file_lru(lru);
1619
1620         if (is_active_lru(lru)) {
1621                 if (inactive_list_is_low(mz, file))
1622                         shrink_active_list(nr_to_scan, mz, sc, lru);
1623                 return 0;
1624         }
1625
1626         return shrink_inactive_list(nr_to_scan, mz, sc, lru);
1627 }
1628
1629 static int vmscan_swappiness(struct scan_control *sc)
1630 {
1631         if (global_reclaim(sc))
1632                 return vm_swappiness;
1633         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1634 }
1635
1636 /*
1637  * Determine how aggressively the anon and file LRU lists should be
1638  * scanned.  The relative value of each set of LRU lists is determined
1639  * by looking at the fraction of the pages scanned we did rotate back
1640  * onto the active list instead of evict.
1641  *
1642  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1643  */
1644 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1645                            unsigned long *nr)
1646 {
1647         unsigned long anon, file, free;
1648         unsigned long anon_prio, file_prio;
1649         unsigned long ap, fp;
1650         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1651         u64 fraction[2], denominator;
1652         enum lru_list lru;
1653         int noswap = 0;
1654         bool force_scan = false;
1655
1656         /*
1657          * If the zone or memcg is small, nr[l] can be 0.  This
1658          * results in no scanning on this priority and a potential
1659          * priority drop.  Global direct reclaim can go to the next
1660          * zone and tends to have no problems. Global kswapd is for
1661          * zone balancing and it needs to scan a minimum amount. When
1662          * reclaiming for a memcg, a priority drop can cause high
1663          * latencies, so it's better to scan a minimum amount there as
1664          * well.
1665          */
1666         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1667                 force_scan = true;
1668         if (!global_reclaim(sc))
1669                 force_scan = true;
1670
1671         /* If we have no swap space, do not bother scanning anon pages. */
1672         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1673                 noswap = 1;
1674                 fraction[0] = 0;
1675                 fraction[1] = 1;
1676                 denominator = 1;
1677                 goto out;
1678         }
1679
1680         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1681                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1682         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1683                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1684
1685         if (global_reclaim(sc)) {
1686                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1687                 /* If we have very few page cache pages,
1688                    force-scan anon pages. */
1689                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1690                         fraction[0] = 1;
1691                         fraction[1] = 0;
1692                         denominator = 1;
1693                         goto out;
1694                 }
1695         }
1696
1697         /*
1698          * With swappiness at 100, anonymous and file have the same priority.
1699          * This scanning priority is essentially the inverse of IO cost.
1700          */
1701         anon_prio = vmscan_swappiness(sc);
1702         file_prio = 200 - vmscan_swappiness(sc);
1703
1704         /*
1705          * OK, so we have swap space and a fair amount of page cache
1706          * pages.  We use the recently rotated / recently scanned
1707          * ratios to determine how valuable each cache is.
1708          *
1709          * Because workloads change over time (and to avoid overflow)
1710          * we keep these statistics as a floating average, which ends
1711          * up weighing recent references more than old ones.
1712          *
1713          * anon in [0], file in [1]
1714          */
1715         spin_lock_irq(&mz->zone->lru_lock);
1716         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1717                 reclaim_stat->recent_scanned[0] /= 2;
1718                 reclaim_stat->recent_rotated[0] /= 2;
1719         }
1720
1721         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1722                 reclaim_stat->recent_scanned[1] /= 2;
1723                 reclaim_stat->recent_rotated[1] /= 2;
1724         }
1725
1726         /*
1727          * The amount of pressure on anon vs file pages is inversely
1728          * proportional to the fraction of recently scanned pages on
1729          * each list that were recently referenced and in active use.
1730          */
1731         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1732         ap /= reclaim_stat->recent_rotated[0] + 1;
1733
1734         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1735         fp /= reclaim_stat->recent_rotated[1] + 1;
1736         spin_unlock_irq(&mz->zone->lru_lock);
1737
1738         fraction[0] = ap;
1739         fraction[1] = fp;
1740         denominator = ap + fp + 1;
1741 out:
1742         for_each_evictable_lru(lru) {
1743                 int file = is_file_lru(lru);
1744                 unsigned long scan;
1745
1746                 scan = zone_nr_lru_pages(mz, lru);
1747                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1748                         scan >>= sc->priority;
1749                         if (!scan && force_scan)
1750                                 scan = SWAP_CLUSTER_MAX;
1751                         scan = div64_u64(scan * fraction[file], denominator);
1752                 }
1753                 nr[lru] = scan;
1754         }
1755 }
1756
1757 /* Use reclaim/compaction for costly allocs or under memory pressure */
1758 static bool in_reclaim_compaction(struct scan_control *sc)
1759 {
1760         if (COMPACTION_BUILD && sc->order &&
1761                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1762                          sc->priority < DEF_PRIORITY - 2))
1763                 return true;
1764
1765         return false;
1766 }
1767
1768 /*
1769  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1770  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1771  * true if more pages should be reclaimed such that when the page allocator
1772  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1773  * It will give up earlier than that if there is difficulty reclaiming pages.
1774  */
1775 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1776                                         unsigned long nr_reclaimed,
1777                                         unsigned long nr_scanned,
1778                                         struct scan_control *sc)
1779 {
1780         unsigned long pages_for_compaction;
1781         unsigned long inactive_lru_pages;
1782
1783         /* If not in reclaim/compaction mode, stop */
1784         if (!in_reclaim_compaction(sc))
1785                 return false;
1786
1787         /* Consider stopping depending on scan and reclaim activity */
1788         if (sc->gfp_mask & __GFP_REPEAT) {
1789                 /*
1790                  * For __GFP_REPEAT allocations, stop reclaiming if the
1791                  * full LRU list has been scanned and we are still failing
1792                  * to reclaim pages. This full LRU scan is potentially
1793                  * expensive but a __GFP_REPEAT caller really wants to succeed
1794                  */
1795                 if (!nr_reclaimed && !nr_scanned)
1796                         return false;
1797         } else {
1798                 /*
1799                  * For non-__GFP_REPEAT allocations which can presumably
1800                  * fail without consequence, stop if we failed to reclaim
1801                  * any pages from the last SWAP_CLUSTER_MAX number of
1802                  * pages that were scanned. This will return to the
1803                  * caller faster at the risk reclaim/compaction and
1804                  * the resulting allocation attempt fails
1805                  */
1806                 if (!nr_reclaimed)
1807                         return false;
1808         }
1809
1810         /*
1811          * If we have not reclaimed enough pages for compaction and the
1812          * inactive lists are large enough, continue reclaiming
1813          */
1814         pages_for_compaction = (2UL << sc->order);
1815         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1816         if (nr_swap_pages > 0)
1817                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1818         if (sc->nr_reclaimed < pages_for_compaction &&
1819                         inactive_lru_pages > pages_for_compaction)
1820                 return true;
1821
1822         /* If compaction would go ahead or the allocation would succeed, stop */
1823         switch (compaction_suitable(mz->zone, sc->order)) {
1824         case COMPACT_PARTIAL:
1825         case COMPACT_CONTINUE:
1826                 return false;
1827         default:
1828                 return true;
1829         }
1830 }
1831
1832 /*
1833  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1834  */
1835 static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1836                                    struct scan_control *sc)
1837 {
1838         unsigned long nr[NR_LRU_LISTS];
1839         unsigned long nr_to_scan;
1840         enum lru_list lru;
1841         unsigned long nr_reclaimed, nr_scanned;
1842         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1843         struct blk_plug plug;
1844
1845 restart:
1846         nr_reclaimed = 0;
1847         nr_scanned = sc->nr_scanned;
1848         get_scan_count(mz, sc, nr);
1849
1850         blk_start_plug(&plug);
1851         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1852                                         nr[LRU_INACTIVE_FILE]) {
1853                 for_each_evictable_lru(lru) {
1854                         if (nr[lru]) {
1855                                 nr_to_scan = min_t(unsigned long,
1856                                                    nr[lru], SWAP_CLUSTER_MAX);
1857                                 nr[lru] -= nr_to_scan;
1858
1859                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1860                                                             mz, sc);
1861                         }
1862                 }
1863                 /*
1864                  * On large memory systems, scan >> priority can become
1865                  * really large. This is fine for the starting priority;
1866                  * we want to put equal scanning pressure on each zone.
1867                  * However, if the VM has a harder time of freeing pages,
1868                  * with multiple processes reclaiming pages, the total
1869                  * freeing target can get unreasonably large.
1870                  */
1871                 if (nr_reclaimed >= nr_to_reclaim &&
1872                     sc->priority < DEF_PRIORITY)
1873                         break;
1874         }
1875         blk_finish_plug(&plug);
1876         sc->nr_reclaimed += nr_reclaimed;
1877
1878         /*
1879          * Even if we did not try to evict anon pages at all, we want to
1880          * rebalance the anon lru active/inactive ratio.
1881          */
1882         if (inactive_anon_is_low(mz))
1883                 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1884                                    sc, LRU_ACTIVE_ANON);
1885
1886         /* reclaim/compaction might need reclaim to continue */
1887         if (should_continue_reclaim(mz, nr_reclaimed,
1888                                     sc->nr_scanned - nr_scanned, sc))
1889                 goto restart;
1890
1891         throttle_vm_writeout(sc->gfp_mask);
1892 }
1893
1894 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1895 {
1896         struct mem_cgroup *root = sc->target_mem_cgroup;
1897         struct mem_cgroup_reclaim_cookie reclaim = {
1898                 .zone = zone,
1899                 .priority = sc->priority,
1900         };
1901         struct mem_cgroup *memcg;
1902
1903         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1904         do {
1905                 struct mem_cgroup_zone mz = {
1906                         .mem_cgroup = memcg,
1907                         .zone = zone,
1908                 };
1909
1910                 shrink_mem_cgroup_zone(&mz, sc);
1911                 /*
1912                  * Limit reclaim has historically picked one memcg and
1913                  * scanned it with decreasing priority levels until
1914                  * nr_to_reclaim had been reclaimed.  This priority
1915                  * cycle is thus over after a single memcg.
1916                  *
1917                  * Direct reclaim and kswapd, on the other hand, have
1918                  * to scan all memory cgroups to fulfill the overall
1919                  * scan target for the zone.
1920                  */
1921                 if (!global_reclaim(sc)) {
1922                         mem_cgroup_iter_break(root, memcg);
1923                         break;
1924                 }
1925                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1926         } while (memcg);
1927 }
1928
1929 /* Returns true if compaction should go ahead for a high-order request */
1930 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1931 {
1932         unsigned long balance_gap, watermark;
1933         bool watermark_ok;
1934
1935         /* Do not consider compaction for orders reclaim is meant to satisfy */
1936         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1937                 return false;
1938
1939         /*
1940          * Compaction takes time to run and there are potentially other
1941          * callers using the pages just freed. Continue reclaiming until
1942          * there is a buffer of free pages available to give compaction
1943          * a reasonable chance of completing and allocating the page
1944          */
1945         balance_gap = min(low_wmark_pages(zone),
1946                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1947                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1948         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1949         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1950
1951         /*
1952          * If compaction is deferred, reclaim up to a point where
1953          * compaction will have a chance of success when re-enabled
1954          */
1955         if (compaction_deferred(zone, sc->order))
1956                 return watermark_ok;
1957
1958         /* If compaction is not ready to start, keep reclaiming */
1959         if (!compaction_suitable(zone, sc->order))
1960                 return false;
1961
1962         return watermark_ok;
1963 }
1964
1965 /*
1966  * This is the direct reclaim path, for page-allocating processes.  We only
1967  * try to reclaim pages from zones which will satisfy the caller's allocation
1968  * request.
1969  *
1970  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1971  * Because:
1972  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1973  *    allocation or
1974  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1975  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1976  *    zone defense algorithm.
1977  *
1978  * If a zone is deemed to be full of pinned pages then just give it a light
1979  * scan then give up on it.
1980  *
1981  * This function returns true if a zone is being reclaimed for a costly
1982  * high-order allocation and compaction is ready to begin. This indicates to
1983  * the caller that it should consider retrying the allocation instead of
1984  * further reclaim.
1985  */
1986 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1987 {
1988         struct zoneref *z;
1989         struct zone *zone;
1990         unsigned long nr_soft_reclaimed;
1991         unsigned long nr_soft_scanned;
1992         bool aborted_reclaim = false;
1993
1994         /*
1995          * If the number of buffer_heads in the machine exceeds the maximum
1996          * allowed level, force direct reclaim to scan the highmem zone as
1997          * highmem pages could be pinning lowmem pages storing buffer_heads
1998          */
1999         if (buffer_heads_over_limit)
2000                 sc->gfp_mask |= __GFP_HIGHMEM;
2001
2002         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2003                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2004                 if (!populated_zone(zone))
2005                         continue;
2006                 /*
2007                  * Take care memory controller reclaiming has small influence
2008                  * to global LRU.
2009                  */
2010                 if (global_reclaim(sc)) {
2011                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2012                                 continue;
2013                         if (zone->all_unreclaimable &&
2014                                         sc->priority != DEF_PRIORITY)
2015                                 continue;       /* Let kswapd poll it */
2016                         if (COMPACTION_BUILD) {
2017                                 /*
2018                                  * If we already have plenty of memory free for
2019                                  * compaction in this zone, don't free any more.
2020                                  * Even though compaction is invoked for any
2021                                  * non-zero order, only frequent costly order
2022                                  * reclamation is disruptive enough to become a
2023                                  * noticeable problem, like transparent huge
2024                                  * page allocations.
2025                                  */
2026                                 if (compaction_ready(zone, sc)) {
2027                                         aborted_reclaim = true;
2028                                         continue;
2029                                 }
2030                         }
2031                         /*
2032                          * This steals pages from memory cgroups over softlimit
2033                          * and returns the number of reclaimed pages and
2034                          * scanned pages. This works for global memory pressure
2035                          * and balancing, not for a memcg's limit.
2036                          */
2037                         nr_soft_scanned = 0;
2038                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2039                                                 sc->order, sc->gfp_mask,
2040                                                 &nr_soft_scanned);
2041                         sc->nr_reclaimed += nr_soft_reclaimed;
2042                         sc->nr_scanned += nr_soft_scanned;
2043                         /* need some check for avoid more shrink_zone() */
2044                 }
2045
2046                 shrink_zone(zone, sc);
2047         }
2048
2049         return aborted_reclaim;
2050 }
2051
2052 static bool zone_reclaimable(struct zone *zone)
2053 {
2054         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2055 }
2056
2057 /* All zones in zonelist are unreclaimable? */
2058 static bool all_unreclaimable(struct zonelist *zonelist,
2059                 struct scan_control *sc)
2060 {
2061         struct zoneref *z;
2062         struct zone *zone;
2063
2064         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2065                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2066                 if (!populated_zone(zone))
2067                         continue;
2068                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2069                         continue;
2070                 if (!zone->all_unreclaimable)
2071                         return false;
2072         }
2073
2074         return true;
2075 }
2076
2077 /*
2078  * This is the main entry point to direct page reclaim.
2079  *
2080  * If a full scan of the inactive list fails to free enough memory then we
2081  * are "out of memory" and something needs to be killed.
2082  *
2083  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2084  * high - the zone may be full of dirty or under-writeback pages, which this
2085  * caller can't do much about.  We kick the writeback threads and take explicit
2086  * naps in the hope that some of these pages can be written.  But if the
2087  * allocating task holds filesystem locks which prevent writeout this might not
2088  * work, and the allocation attempt will fail.
2089  *
2090  * returns:     0, if no pages reclaimed
2091  *              else, the number of pages reclaimed
2092  */
2093 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2094                                         struct scan_control *sc,
2095                                         struct shrink_control *shrink)
2096 {
2097         unsigned long total_scanned = 0;
2098         struct reclaim_state *reclaim_state = current->reclaim_state;
2099         struct zoneref *z;
2100         struct zone *zone;
2101         unsigned long writeback_threshold;
2102         bool aborted_reclaim;
2103
2104         delayacct_freepages_start();
2105
2106         if (global_reclaim(sc))
2107                 count_vm_event(ALLOCSTALL);
2108
2109         do {
2110                 sc->nr_scanned = 0;
2111                 aborted_reclaim = shrink_zones(zonelist, sc);
2112
2113                 /*
2114                  * Don't shrink slabs when reclaiming memory from
2115                  * over limit cgroups
2116                  */
2117                 if (global_reclaim(sc)) {
2118                         unsigned long lru_pages = 0;
2119                         for_each_zone_zonelist(zone, z, zonelist,
2120                                         gfp_zone(sc->gfp_mask)) {
2121                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2122                                         continue;
2123
2124                                 lru_pages += zone_reclaimable_pages(zone);
2125                         }
2126
2127                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2128                         if (reclaim_state) {
2129                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2130                                 reclaim_state->reclaimed_slab = 0;
2131                         }
2132                 }
2133                 total_scanned += sc->nr_scanned;
2134                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2135                         goto out;
2136
2137                 /*
2138                  * Try to write back as many pages as we just scanned.  This
2139                  * tends to cause slow streaming writers to write data to the
2140                  * disk smoothly, at the dirtying rate, which is nice.   But
2141                  * that's undesirable in laptop mode, where we *want* lumpy
2142                  * writeout.  So in laptop mode, write out the whole world.
2143                  */
2144                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2145                 if (total_scanned > writeback_threshold) {
2146                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2147                                                 WB_REASON_TRY_TO_FREE_PAGES);
2148                         sc->may_writepage = 1;
2149                 }
2150
2151                 /* Take a nap, wait for some writeback to complete */
2152                 if (!sc->hibernation_mode && sc->nr_scanned &&
2153                     sc->priority < DEF_PRIORITY - 2) {
2154                         struct zone *preferred_zone;
2155
2156                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2157                                                 &cpuset_current_mems_allowed,
2158                                                 &preferred_zone);
2159                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2160                 }
2161         } while (--sc->priority >= 0);
2162
2163 out:
2164         delayacct_freepages_end();
2165
2166         if (sc->nr_reclaimed)
2167                 return sc->nr_reclaimed;
2168
2169         /*
2170          * As hibernation is going on, kswapd is freezed so that it can't mark
2171          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2172          * check.
2173          */
2174         if (oom_killer_disabled)
2175                 return 0;
2176
2177         /* Aborted reclaim to try compaction? don't OOM, then */
2178         if (aborted_reclaim)
2179                 return 1;
2180
2181         /* top priority shrink_zones still had more to do? don't OOM, then */
2182         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2183                 return 1;
2184
2185         return 0;
2186 }
2187
2188 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2189                                 gfp_t gfp_mask, nodemask_t *nodemask)
2190 {
2191         unsigned long nr_reclaimed;
2192         struct scan_control sc = {
2193                 .gfp_mask = gfp_mask,
2194                 .may_writepage = !laptop_mode,
2195                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2196                 .may_unmap = 1,
2197                 .may_swap = 1,
2198                 .order = order,
2199                 .priority = DEF_PRIORITY,
2200                 .target_mem_cgroup = NULL,
2201                 .nodemask = nodemask,
2202         };
2203         struct shrink_control shrink = {
2204                 .gfp_mask = sc.gfp_mask,
2205         };
2206
2207         trace_mm_vmscan_direct_reclaim_begin(order,
2208                                 sc.may_writepage,
2209                                 gfp_mask);
2210
2211         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2212
2213         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2214
2215         return nr_reclaimed;
2216 }
2217
2218 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2219
2220 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2221                                                 gfp_t gfp_mask, bool noswap,
2222                                                 struct zone *zone,
2223                                                 unsigned long *nr_scanned)
2224 {
2225         struct scan_control sc = {
2226                 .nr_scanned = 0,
2227                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2228                 .may_writepage = !laptop_mode,
2229                 .may_unmap = 1,
2230                 .may_swap = !noswap,
2231                 .order = 0,
2232                 .priority = 0,
2233                 .target_mem_cgroup = memcg,
2234         };
2235         struct mem_cgroup_zone mz = {
2236                 .mem_cgroup = memcg,
2237                 .zone = zone,
2238         };
2239
2240         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2241                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2242
2243         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2244                                                       sc.may_writepage,
2245                                                       sc.gfp_mask);
2246
2247         /*
2248          * NOTE: Although we can get the priority field, using it
2249          * here is not a good idea, since it limits the pages we can scan.
2250          * if we don't reclaim here, the shrink_zone from balance_pgdat
2251          * will pick up pages from other mem cgroup's as well. We hack
2252          * the priority and make it zero.
2253          */
2254         shrink_mem_cgroup_zone(&mz, &sc);
2255
2256         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2257
2258         *nr_scanned = sc.nr_scanned;
2259         return sc.nr_reclaimed;
2260 }
2261
2262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2263                                            gfp_t gfp_mask,
2264                                            bool noswap)
2265 {
2266         struct zonelist *zonelist;
2267         unsigned long nr_reclaimed;
2268         int nid;
2269         struct scan_control sc = {
2270                 .may_writepage = !laptop_mode,
2271                 .may_unmap = 1,
2272                 .may_swap = !noswap,
2273                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2274                 .order = 0,
2275                 .priority = DEF_PRIORITY,
2276                 .target_mem_cgroup = memcg,
2277                 .nodemask = NULL, /* we don't care the placement */
2278                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2279                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2280         };
2281         struct shrink_control shrink = {
2282                 .gfp_mask = sc.gfp_mask,
2283         };
2284
2285         /*
2286          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2287          * take care of from where we get pages. So the node where we start the
2288          * scan does not need to be the current node.
2289          */
2290         nid = mem_cgroup_select_victim_node(memcg);
2291
2292         zonelist = NODE_DATA(nid)->node_zonelists;
2293
2294         trace_mm_vmscan_memcg_reclaim_begin(0,
2295                                             sc.may_writepage,
2296                                             sc.gfp_mask);
2297
2298         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2299
2300         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2301
2302         return nr_reclaimed;
2303 }
2304 #endif
2305
2306 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2307 {
2308         struct mem_cgroup *memcg;
2309
2310         if (!total_swap_pages)
2311                 return;
2312
2313         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2314         do {
2315                 struct mem_cgroup_zone mz = {
2316                         .mem_cgroup = memcg,
2317                         .zone = zone,
2318                 };
2319
2320                 if (inactive_anon_is_low(&mz))
2321                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2322                                            sc, LRU_ACTIVE_ANON);
2323
2324                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2325         } while (memcg);
2326 }
2327
2328 /*
2329  * pgdat_balanced is used when checking if a node is balanced for high-order
2330  * allocations. Only zones that meet watermarks and are in a zone allowed
2331  * by the callers classzone_idx are added to balanced_pages. The total of
2332  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2333  * for the node to be considered balanced. Forcing all zones to be balanced
2334  * for high orders can cause excessive reclaim when there are imbalanced zones.
2335  * The choice of 25% is due to
2336  *   o a 16M DMA zone that is balanced will not balance a zone on any
2337  *     reasonable sized machine
2338  *   o On all other machines, the top zone must be at least a reasonable
2339  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2340  *     would need to be at least 256M for it to be balance a whole node.
2341  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2342  *     to balance a node on its own. These seemed like reasonable ratios.
2343  */
2344 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2345                                                 int classzone_idx)
2346 {
2347         unsigned long present_pages = 0;
2348         int i;
2349
2350         for (i = 0; i <= classzone_idx; i++)
2351                 present_pages += pgdat->node_zones[i].present_pages;
2352
2353         /* A special case here: if zone has no page, we think it's balanced */
2354         return balanced_pages >= (present_pages >> 2);
2355 }
2356
2357 /* is kswapd sleeping prematurely? */
2358 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2359                                         int classzone_idx)
2360 {
2361         int i;
2362         unsigned long balanced = 0;
2363         bool all_zones_ok = true;
2364
2365         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2366         if (remaining)
2367                 return true;
2368
2369         /* Check the watermark levels */
2370         for (i = 0; i <= classzone_idx; i++) {
2371                 struct zone *zone = pgdat->node_zones + i;
2372
2373                 if (!populated_zone(zone))
2374                         continue;
2375
2376                 /*
2377                  * balance_pgdat() skips over all_unreclaimable after
2378                  * DEF_PRIORITY. Effectively, it considers them balanced so
2379                  * they must be considered balanced here as well if kswapd
2380                  * is to sleep
2381                  */
2382                 if (zone->all_unreclaimable) {
2383                         balanced += zone->present_pages;
2384                         continue;
2385                 }
2386
2387                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2388                                                         i, 0))
2389                         all_zones_ok = false;
2390                 else
2391                         balanced += zone->present_pages;
2392         }
2393
2394         /*
2395          * For high-order requests, the balanced zones must contain at least
2396          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2397          * must be balanced
2398          */
2399         if (order)
2400                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2401         else
2402                 return !all_zones_ok;
2403 }
2404
2405 /*
2406  * For kswapd, balance_pgdat() will work across all this node's zones until
2407  * they are all at high_wmark_pages(zone).
2408  *
2409  * Returns the final order kswapd was reclaiming at
2410  *
2411  * There is special handling here for zones which are full of pinned pages.
2412  * This can happen if the pages are all mlocked, or if they are all used by
2413  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2414  * What we do is to detect the case where all pages in the zone have been
2415  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2416  * dead and from now on, only perform a short scan.  Basically we're polling
2417  * the zone for when the problem goes away.
2418  *
2419  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2420  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2421  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2422  * lower zones regardless of the number of free pages in the lower zones. This
2423  * interoperates with the page allocator fallback scheme to ensure that aging
2424  * of pages is balanced across the zones.
2425  */
2426 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2427                                                         int *classzone_idx)
2428 {
2429         int all_zones_ok;
2430         unsigned long balanced;
2431         int i;
2432         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2433         unsigned long total_scanned;
2434         struct reclaim_state *reclaim_state = current->reclaim_state;
2435         unsigned long nr_soft_reclaimed;
2436         unsigned long nr_soft_scanned;
2437         struct scan_control sc = {
2438                 .gfp_mask = GFP_KERNEL,
2439                 .may_unmap = 1,
2440                 .may_swap = 1,
2441                 /*
2442                  * kswapd doesn't want to be bailed out while reclaim. because
2443                  * we want to put equal scanning pressure on each zone.
2444                  */
2445                 .nr_to_reclaim = ULONG_MAX,
2446                 .order = order,
2447                 .target_mem_cgroup = NULL,
2448         };
2449         struct shrink_control shrink = {
2450                 .gfp_mask = sc.gfp_mask,
2451         };
2452 loop_again:
2453         total_scanned = 0;
2454         sc.priority = DEF_PRIORITY;
2455         sc.nr_reclaimed = 0;
2456         sc.may_writepage = !laptop_mode;
2457         count_vm_event(PAGEOUTRUN);
2458
2459         do {
2460                 unsigned long lru_pages = 0;
2461                 int has_under_min_watermark_zone = 0;
2462
2463                 all_zones_ok = 1;
2464                 balanced = 0;
2465
2466                 /*
2467                  * Scan in the highmem->dma direction for the highest
2468                  * zone which needs scanning
2469                  */
2470                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2471                         struct zone *zone = pgdat->node_zones + i;
2472
2473                         if (!populated_zone(zone))
2474                                 continue;
2475
2476                         if (zone->all_unreclaimable &&
2477                             sc.priority != DEF_PRIORITY)
2478                                 continue;
2479
2480                         /*
2481                          * Do some background aging of the anon list, to give
2482                          * pages a chance to be referenced before reclaiming.
2483                          */
2484                         age_active_anon(zone, &sc);
2485
2486                         /*
2487                          * If the number of buffer_heads in the machine
2488                          * exceeds the maximum allowed level and this node
2489                          * has a highmem zone, force kswapd to reclaim from
2490                          * it to relieve lowmem pressure.
2491                          */
2492                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2493                                 end_zone = i;
2494                                 break;
2495                         }
2496
2497                         if (!zone_watermark_ok_safe(zone, order,
2498                                         high_wmark_pages(zone), 0, 0)) {
2499                                 end_zone = i;
2500                                 break;
2501                         } else {
2502                                 /* If balanced, clear the congested flag */
2503                                 zone_clear_flag(zone, ZONE_CONGESTED);
2504                         }
2505                 }
2506                 if (i < 0)
2507                         goto out;
2508
2509                 for (i = 0; i <= end_zone; i++) {
2510                         struct zone *zone = pgdat->node_zones + i;
2511
2512                         lru_pages += zone_reclaimable_pages(zone);
2513                 }
2514
2515                 /*
2516                  * Now scan the zone in the dma->highmem direction, stopping
2517                  * at the last zone which needs scanning.
2518                  *
2519                  * We do this because the page allocator works in the opposite
2520                  * direction.  This prevents the page allocator from allocating
2521                  * pages behind kswapd's direction of progress, which would
2522                  * cause too much scanning of the lower zones.
2523                  */
2524                 for (i = 0; i <= end_zone; i++) {
2525                         struct zone *zone = pgdat->node_zones + i;
2526                         int nr_slab, testorder;
2527                         unsigned long balance_gap;
2528
2529                         if (!populated_zone(zone))
2530                                 continue;
2531
2532                         if (zone->all_unreclaimable &&
2533                             sc.priority != DEF_PRIORITY)
2534                                 continue;
2535
2536                         sc.nr_scanned = 0;
2537
2538                         nr_soft_scanned = 0;
2539                         /*
2540                          * Call soft limit reclaim before calling shrink_zone.
2541                          */
2542                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2543                                                         order, sc.gfp_mask,
2544                                                         &nr_soft_scanned);
2545                         sc.nr_reclaimed += nr_soft_reclaimed;
2546                         total_scanned += nr_soft_scanned;
2547
2548                         /*
2549                          * We put equal pressure on every zone, unless
2550                          * one zone has way too many pages free
2551                          * already. The "too many pages" is defined
2552                          * as the high wmark plus a "gap" where the
2553                          * gap is either the low watermark or 1%
2554                          * of the zone, whichever is smaller.
2555                          */
2556                         balance_gap = min(low_wmark_pages(zone),
2557                                 (zone->present_pages +
2558                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2559                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2560                         /*
2561                          * Kswapd reclaims only single pages with compaction
2562                          * enabled. Trying too hard to reclaim until contiguous
2563                          * free pages have become available can hurt performance
2564                          * by evicting too much useful data from memory.
2565                          * Do not reclaim more than needed for compaction.
2566                          */
2567                         testorder = order;
2568                         if (COMPACTION_BUILD && order &&
2569                                         compaction_suitable(zone, order) !=
2570                                                 COMPACT_SKIPPED)
2571                                 testorder = 0;
2572
2573                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2574                                     !zone_watermark_ok_safe(zone, testorder,
2575                                         high_wmark_pages(zone) + balance_gap,
2576                                         end_zone, 0)) {
2577                                 shrink_zone(zone, &sc);
2578
2579                                 reclaim_state->reclaimed_slab = 0;
2580                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2581                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2582                                 total_scanned += sc.nr_scanned;
2583
2584                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2585                                         zone->all_unreclaimable = 1;
2586                         }
2587
2588                         /*
2589                          * If we've done a decent amount of scanning and
2590                          * the reclaim ratio is low, start doing writepage
2591                          * even in laptop mode
2592                          */
2593                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2594                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2595                                 sc.may_writepage = 1;
2596
2597                         if (zone->all_unreclaimable) {
2598                                 if (end_zone && end_zone == i)
2599                                         end_zone--;
2600                                 continue;
2601                         }
2602
2603                         if (!zone_watermark_ok_safe(zone, testorder,
2604                                         high_wmark_pages(zone), end_zone, 0)) {
2605                                 all_zones_ok = 0;
2606                                 /*
2607                                  * We are still under min water mark.  This
2608                                  * means that we have a GFP_ATOMIC allocation
2609                                  * failure risk. Hurry up!
2610                                  */
2611                                 if (!zone_watermark_ok_safe(zone, order,
2612                                             min_wmark_pages(zone), end_zone, 0))
2613                                         has_under_min_watermark_zone = 1;
2614                         } else {
2615                                 /*
2616                                  * If a zone reaches its high watermark,
2617                                  * consider it to be no longer congested. It's
2618                                  * possible there are dirty pages backed by
2619                                  * congested BDIs but as pressure is relieved,
2620                                  * spectulatively avoid congestion waits
2621                                  */
2622                                 zone_clear_flag(zone, ZONE_CONGESTED);
2623                                 if (i <= *classzone_idx)
2624                                         balanced += zone->present_pages;
2625                         }
2626
2627                 }
2628                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2629                         break;          /* kswapd: all done */
2630                 /*
2631                  * OK, kswapd is getting into trouble.  Take a nap, then take
2632                  * another pass across the zones.
2633                  */
2634                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2635                         if (has_under_min_watermark_zone)
2636                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2637                         else
2638                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2639                 }
2640
2641                 /*
2642                  * We do this so kswapd doesn't build up large priorities for
2643                  * example when it is freeing in parallel with allocators. It
2644                  * matches the direct reclaim path behaviour in terms of impact
2645                  * on zone->*_priority.
2646                  */
2647                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2648                         break;
2649         } while (--sc.priority >= 0);
2650 out:
2651
2652         /*
2653          * order-0: All zones must meet high watermark for a balanced node
2654          * high-order: Balanced zones must make up at least 25% of the node
2655          *             for the node to be balanced
2656          */
2657         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2658                 cond_resched();
2659
2660                 try_to_freeze();
2661
2662                 /*
2663                  * Fragmentation may mean that the system cannot be
2664                  * rebalanced for high-order allocations in all zones.
2665                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2666                  * it means the zones have been fully scanned and are still
2667                  * not balanced. For high-order allocations, there is
2668                  * little point trying all over again as kswapd may
2669                  * infinite loop.
2670                  *
2671                  * Instead, recheck all watermarks at order-0 as they
2672                  * are the most important. If watermarks are ok, kswapd will go
2673                  * back to sleep. High-order users can still perform direct
2674                  * reclaim if they wish.
2675                  */
2676                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2677                         order = sc.order = 0;
2678
2679                 goto loop_again;
2680         }
2681
2682         /*
2683          * If kswapd was reclaiming at a higher order, it has the option of
2684          * sleeping without all zones being balanced. Before it does, it must
2685          * ensure that the watermarks for order-0 on *all* zones are met and
2686          * that the congestion flags are cleared. The congestion flag must
2687          * be cleared as kswapd is the only mechanism that clears the flag
2688          * and it is potentially going to sleep here.
2689          */
2690         if (order) {
2691                 int zones_need_compaction = 1;
2692
2693                 for (i = 0; i <= end_zone; i++) {
2694                         struct zone *zone = pgdat->node_zones + i;
2695
2696                         if (!populated_zone(zone))
2697                                 continue;
2698
2699                         if (zone->all_unreclaimable &&
2700                             sc.priority != DEF_PRIORITY)
2701                                 continue;
2702
2703                         /* Would compaction fail due to lack of free memory? */
2704                         if (COMPACTION_BUILD &&
2705                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2706                                 goto loop_again;
2707
2708                         /* Confirm the zone is balanced for order-0 */
2709                         if (!zone_watermark_ok(zone, 0,
2710                                         high_wmark_pages(zone), 0, 0)) {
2711                                 order = sc.order = 0;
2712                                 goto loop_again;
2713                         }
2714
2715                         /* Check if the memory needs to be defragmented. */
2716                         if (zone_watermark_ok(zone, order,
2717                                     low_wmark_pages(zone), *classzone_idx, 0))
2718                                 zones_need_compaction = 0;
2719
2720                         /* If balanced, clear the congested flag */
2721                         zone_clear_flag(zone, ZONE_CONGESTED);
2722                 }
2723
2724                 if (zones_need_compaction)
2725                         compact_pgdat(pgdat, order);
2726         }
2727
2728         /*
2729          * Return the order we were reclaiming at so sleeping_prematurely()
2730          * makes a decision on the order we were last reclaiming at. However,
2731          * if another caller entered the allocator slow path while kswapd
2732          * was awake, order will remain at the higher level
2733          */
2734         *classzone_idx = end_zone;
2735         return order;
2736 }
2737
2738 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2739 {
2740         long remaining = 0;
2741         DEFINE_WAIT(wait);
2742
2743         if (freezing(current) || kthread_should_stop())
2744                 return;
2745
2746         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2747
2748         /* Try to sleep for a short interval */
2749         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2750                 remaining = schedule_timeout(HZ/10);
2751                 finish_wait(&pgdat->kswapd_wait, &wait);
2752                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2753         }
2754
2755         /*
2756          * After a short sleep, check if it was a premature sleep. If not, then
2757          * go fully to sleep until explicitly woken up.
2758          */
2759         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2760                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2761
2762                 /*
2763                  * vmstat counters are not perfectly accurate and the estimated
2764                  * value for counters such as NR_FREE_PAGES can deviate from the
2765                  * true value by nr_online_cpus * threshold. To avoid the zone
2766                  * watermarks being breached while under pressure, we reduce the
2767                  * per-cpu vmstat threshold while kswapd is awake and restore
2768                  * them before going back to sleep.
2769                  */
2770                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2771                 schedule();
2772                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2773         } else {
2774                 if (remaining)
2775                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2776                 else
2777                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2778         }
2779         finish_wait(&pgdat->kswapd_wait, &wait);
2780 }
2781
2782 /*
2783  * The background pageout daemon, started as a kernel thread
2784  * from the init process.
2785  *
2786  * This basically trickles out pages so that we have _some_
2787  * free memory available even if there is no other activity
2788  * that frees anything up. This is needed for things like routing
2789  * etc, where we otherwise might have all activity going on in
2790  * asynchronous contexts that cannot page things out.
2791  *
2792  * If there are applications that are active memory-allocators
2793  * (most normal use), this basically shouldn't matter.
2794  */
2795 static int kswapd(void *p)
2796 {
2797         unsigned long order, new_order;
2798         unsigned balanced_order;
2799         int classzone_idx, new_classzone_idx;
2800         int balanced_classzone_idx;
2801         pg_data_t *pgdat = (pg_data_t*)p;
2802         struct task_struct *tsk = current;
2803
2804         struct reclaim_state reclaim_state = {
2805                 .reclaimed_slab = 0,
2806         };
2807         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2808
2809         lockdep_set_current_reclaim_state(GFP_KERNEL);
2810
2811         if (!cpumask_empty(cpumask))
2812                 set_cpus_allowed_ptr(tsk, cpumask);
2813         current->reclaim_state = &reclaim_state;
2814
2815         /*
2816          * Tell the memory management that we're a "memory allocator",
2817          * and that if we need more memory we should get access to it
2818          * regardless (see "__alloc_pages()"). "kswapd" should
2819          * never get caught in the normal page freeing logic.
2820          *
2821          * (Kswapd normally doesn't need memory anyway, but sometimes
2822          * you need a small amount of memory in order to be able to
2823          * page out something else, and this flag essentially protects
2824          * us from recursively trying to free more memory as we're
2825          * trying to free the first piece of memory in the first place).
2826          */
2827         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2828         set_freezable();
2829
2830         order = new_order = 0;
2831         balanced_order = 0;
2832         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2833         balanced_classzone_idx = classzone_idx;
2834         for ( ; ; ) {
2835                 int ret;
2836
2837                 /*
2838                  * If the last balance_pgdat was unsuccessful it's unlikely a
2839                  * new request of a similar or harder type will succeed soon
2840                  * so consider going to sleep on the basis we reclaimed at
2841                  */
2842                 if (balanced_classzone_idx >= new_classzone_idx &&
2843                                         balanced_order == new_order) {
2844                         new_order = pgdat->kswapd_max_order;
2845                         new_classzone_idx = pgdat->classzone_idx;
2846                         pgdat->kswapd_max_order =  0;
2847                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2848                 }
2849
2850                 if (order < new_order || classzone_idx > new_classzone_idx) {
2851                         /*
2852                          * Don't sleep if someone wants a larger 'order'
2853                          * allocation or has tigher zone constraints
2854                          */
2855                         order = new_order;
2856                         classzone_idx = new_classzone_idx;
2857                 } else {
2858                         kswapd_try_to_sleep(pgdat, balanced_order,
2859                                                 balanced_classzone_idx);
2860                         order = pgdat->kswapd_max_order;
2861                         classzone_idx = pgdat->classzone_idx;
2862                         new_order = order;
2863                         new_classzone_idx = classzone_idx;
2864                         pgdat->kswapd_max_order = 0;
2865                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2866                 }
2867
2868                 ret = try_to_freeze();
2869                 if (kthread_should_stop())
2870                         break;
2871
2872                 /*
2873                  * We can speed up thawing tasks if we don't call balance_pgdat
2874                  * after returning from the refrigerator
2875                  */
2876                 if (!ret) {
2877                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2878                         balanced_classzone_idx = classzone_idx;
2879                         balanced_order = balance_pgdat(pgdat, order,
2880                                                 &balanced_classzone_idx);
2881                 }
2882         }
2883         return 0;
2884 }
2885
2886 /*
2887  * A zone is low on free memory, so wake its kswapd task to service it.
2888  */
2889 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2890 {
2891         pg_data_t *pgdat;
2892
2893         if (!populated_zone(zone))
2894                 return;
2895
2896         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2897                 return;
2898         pgdat = zone->zone_pgdat;
2899         if (pgdat->kswapd_max_order < order) {
2900                 pgdat->kswapd_max_order = order;
2901                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2902         }
2903         if (!waitqueue_active(&pgdat->kswapd_wait))
2904                 return;
2905         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2906                 return;
2907
2908         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2909         wake_up_interruptible(&pgdat->kswapd_wait);
2910 }
2911
2912 /*
2913  * The reclaimable count would be mostly accurate.
2914  * The less reclaimable pages may be
2915  * - mlocked pages, which will be moved to unevictable list when encountered
2916  * - mapped pages, which may require several travels to be reclaimed
2917  * - dirty pages, which is not "instantly" reclaimable
2918  */
2919 unsigned long global_reclaimable_pages(void)
2920 {
2921         int nr;
2922
2923         nr = global_page_state(NR_ACTIVE_FILE) +
2924              global_page_state(NR_INACTIVE_FILE);
2925
2926         if (nr_swap_pages > 0)
2927                 nr += global_page_state(NR_ACTIVE_ANON) +
2928                       global_page_state(NR_INACTIVE_ANON);
2929
2930         return nr;
2931 }
2932
2933 unsigned long zone_reclaimable_pages(struct zone *zone)
2934 {
2935         int nr;
2936
2937         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2938              zone_page_state(zone, NR_INACTIVE_FILE);
2939
2940         if (nr_swap_pages > 0)
2941                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2942                       zone_page_state(zone, NR_INACTIVE_ANON);
2943
2944         return nr;
2945 }
2946
2947 #ifdef CONFIG_HIBERNATION
2948 /*
2949  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2950  * freed pages.
2951  *
2952  * Rather than trying to age LRUs the aim is to preserve the overall
2953  * LRU order by reclaiming preferentially
2954  * inactive > active > active referenced > active mapped
2955  */
2956 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2957 {
2958         struct reclaim_state reclaim_state;
2959         struct scan_control sc = {
2960                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2961                 .may_swap = 1,
2962                 .may_unmap = 1,
2963                 .may_writepage = 1,
2964                 .nr_to_reclaim = nr_to_reclaim,
2965                 .hibernation_mode = 1,
2966                 .order = 0,
2967                 .priority = DEF_PRIORITY,
2968         };
2969         struct shrink_control shrink = {
2970                 .gfp_mask = sc.gfp_mask,
2971         };
2972         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2973         struct task_struct *p = current;
2974         unsigned long nr_reclaimed;
2975
2976         p->flags |= PF_MEMALLOC;
2977         lockdep_set_current_reclaim_state(sc.gfp_mask);
2978         reclaim_state.reclaimed_slab = 0;
2979         p->reclaim_state = &reclaim_state;
2980
2981         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2982
2983         p->reclaim_state = NULL;
2984         lockdep_clear_current_reclaim_state();
2985         p->flags &= ~PF_MEMALLOC;
2986
2987         return nr_reclaimed;
2988 }
2989 #endif /* CONFIG_HIBERNATION */
2990
2991 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2992    not required for correctness.  So if the last cpu in a node goes
2993    away, we get changed to run anywhere: as the first one comes back,
2994    restore their cpu bindings. */
2995 static int __devinit cpu_callback(struct notifier_block *nfb,
2996                                   unsigned long action, void *hcpu)
2997 {
2998         int nid;
2999
3000         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3001                 for_each_node_state(nid, N_HIGH_MEMORY) {
3002                         pg_data_t *pgdat = NODE_DATA(nid);
3003                         const struct cpumask *mask;
3004
3005                         mask = cpumask_of_node(pgdat->node_id);
3006
3007                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3008                                 /* One of our CPUs online: restore mask */
3009                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3010                 }
3011         }
3012         return NOTIFY_OK;
3013 }
3014
3015 /*
3016  * This kswapd start function will be called by init and node-hot-add.
3017  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3018  */
3019 int kswapd_run(int nid)
3020 {
3021         pg_data_t *pgdat = NODE_DATA(nid);
3022         int ret = 0;
3023
3024         if (pgdat->kswapd)
3025                 return 0;
3026
3027         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3028         if (IS_ERR(pgdat->kswapd)) {
3029                 /* failure at boot is fatal */
3030                 BUG_ON(system_state == SYSTEM_BOOTING);
3031                 printk("Failed to start kswapd on node %d\n",nid);
3032                 ret = -1;
3033         }
3034         return ret;
3035 }
3036
3037 /*
3038  * Called by memory hotplug when all memory in a node is offlined.
3039  */
3040 void kswapd_stop(int nid)
3041 {
3042         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3043
3044         if (kswapd)
3045                 kthread_stop(kswapd);
3046 }
3047
3048 static int __init kswapd_init(void)
3049 {
3050         int nid;
3051
3052         swap_setup();
3053         for_each_node_state(nid, N_HIGH_MEMORY)
3054                 kswapd_run(nid);
3055         hotcpu_notifier(cpu_callback, 0);
3056         return 0;
3057 }
3058
3059 module_init(kswapd_init)
3060
3061 #ifdef CONFIG_NUMA
3062 /*
3063  * Zone reclaim mode
3064  *
3065  * If non-zero call zone_reclaim when the number of free pages falls below
3066  * the watermarks.
3067  */
3068 int zone_reclaim_mode __read_mostly;
3069
3070 #define RECLAIM_OFF 0
3071 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3072 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3073 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3074
3075 /*
3076  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3077  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3078  * a zone.
3079  */
3080 #define ZONE_RECLAIM_PRIORITY 4
3081
3082 /*
3083  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3084  * occur.
3085  */
3086 int sysctl_min_unmapped_ratio = 1;
3087
3088 /*
3089  * If the number of slab pages in a zone grows beyond this percentage then
3090  * slab reclaim needs to occur.
3091  */
3092 int sysctl_min_slab_ratio = 5;
3093
3094 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3095 {
3096         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3097         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3098                 zone_page_state(zone, NR_ACTIVE_FILE);
3099
3100         /*
3101          * It's possible for there to be more file mapped pages than
3102          * accounted for by the pages on the file LRU lists because
3103          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3104          */
3105         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3106 }
3107
3108 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3109 static long zone_pagecache_reclaimable(struct zone *zone)
3110 {
3111         long nr_pagecache_reclaimable;
3112         long delta = 0;
3113
3114         /*
3115          * If RECLAIM_SWAP is set, then all file pages are considered
3116          * potentially reclaimable. Otherwise, we have to worry about
3117          * pages like swapcache and zone_unmapped_file_pages() provides
3118          * a better estimate
3119          */
3120         if (zone_reclaim_mode & RECLAIM_SWAP)
3121                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3122         else
3123                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3124
3125         /* If we can't clean pages, remove dirty pages from consideration */
3126         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3127                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3128
3129         /* Watch for any possible underflows due to delta */
3130         if (unlikely(delta > nr_pagecache_reclaimable))
3131                 delta = nr_pagecache_reclaimable;
3132
3133         return nr_pagecache_reclaimable - delta;
3134 }
3135
3136 /*
3137  * Try to free up some pages from this zone through reclaim.
3138  */
3139 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3140 {
3141         /* Minimum pages needed in order to stay on node */
3142         const unsigned long nr_pages = 1 << order;
3143         struct task_struct *p = current;
3144         struct reclaim_state reclaim_state;
3145         struct scan_control sc = {
3146                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3147                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3148                 .may_swap = 1,
3149                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3150                                        SWAP_CLUSTER_MAX),
3151                 .gfp_mask = gfp_mask,
3152                 .order = order,
3153                 .priority = ZONE_RECLAIM_PRIORITY,
3154         };
3155         struct shrink_control shrink = {
3156                 .gfp_mask = sc.gfp_mask,
3157         };
3158         unsigned long nr_slab_pages0, nr_slab_pages1;
3159
3160         cond_resched();
3161         /*
3162          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3163          * and we also need to be able to write out pages for RECLAIM_WRITE
3164          * and RECLAIM_SWAP.
3165          */
3166         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3167         lockdep_set_current_reclaim_state(gfp_mask);
3168         reclaim_state.reclaimed_slab = 0;
3169         p->reclaim_state = &reclaim_state;
3170
3171         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3172                 /*
3173                  * Free memory by calling shrink zone with increasing
3174                  * priorities until we have enough memory freed.
3175                  */
3176                 do {
3177                         shrink_zone(zone, &sc);
3178                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3179         }
3180
3181         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3182         if (nr_slab_pages0 > zone->min_slab_pages) {
3183                 /*
3184                  * shrink_slab() does not currently allow us to determine how
3185                  * many pages were freed in this zone. So we take the current
3186                  * number of slab pages and shake the slab until it is reduced
3187                  * by the same nr_pages that we used for reclaiming unmapped
3188                  * pages.
3189                  *
3190                  * Note that shrink_slab will free memory on all zones and may
3191                  * take a long time.
3192                  */
3193                 for (;;) {
3194                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3195
3196                         /* No reclaimable slab or very low memory pressure */
3197                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3198                                 break;
3199
3200                         /* Freed enough memory */
3201                         nr_slab_pages1 = zone_page_state(zone,
3202                                                         NR_SLAB_RECLAIMABLE);
3203                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3204                                 break;
3205                 }
3206
3207                 /*
3208                  * Update nr_reclaimed by the number of slab pages we
3209                  * reclaimed from this zone.
3210                  */
3211                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3212                 if (nr_slab_pages1 < nr_slab_pages0)
3213                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3214         }
3215
3216         p->reclaim_state = NULL;
3217         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3218         lockdep_clear_current_reclaim_state();
3219         return sc.nr_reclaimed >= nr_pages;
3220 }
3221
3222 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3223 {
3224         int node_id;
3225         int ret;
3226
3227         /*
3228          * Zone reclaim reclaims unmapped file backed pages and
3229          * slab pages if we are over the defined limits.
3230          *
3231          * A small portion of unmapped file backed pages is needed for
3232          * file I/O otherwise pages read by file I/O will be immediately
3233          * thrown out if the zone is overallocated. So we do not reclaim
3234          * if less than a specified percentage of the zone is used by
3235          * unmapped file backed pages.
3236          */
3237         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3238             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3239                 return ZONE_RECLAIM_FULL;
3240
3241         if (zone->all_unreclaimable)
3242                 return ZONE_RECLAIM_FULL;
3243
3244         /*
3245          * Do not scan if the allocation should not be delayed.
3246          */
3247         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3248                 return ZONE_RECLAIM_NOSCAN;
3249
3250         /*
3251          * Only run zone reclaim on the local zone or on zones that do not
3252          * have associated processors. This will favor the local processor
3253          * over remote processors and spread off node memory allocations
3254          * as wide as possible.
3255          */
3256         node_id = zone_to_nid(zone);
3257         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3258                 return ZONE_RECLAIM_NOSCAN;
3259
3260         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3261                 return ZONE_RECLAIM_NOSCAN;
3262
3263         ret = __zone_reclaim(zone, gfp_mask, order);
3264         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3265
3266         if (!ret)
3267                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3268
3269         return ret;
3270 }
3271 #endif
3272
3273 /*
3274  * page_evictable - test whether a page is evictable
3275  * @page: the page to test
3276  * @vma: the VMA in which the page is or will be mapped, may be NULL
3277  *
3278  * Test whether page is evictable--i.e., should be placed on active/inactive
3279  * lists vs unevictable list.  The vma argument is !NULL when called from the
3280  * fault path to determine how to instantate a new page.
3281  *
3282  * Reasons page might not be evictable:
3283  * (1) page's mapping marked unevictable
3284  * (2) page is part of an mlocked VMA
3285  *
3286  */
3287 int page_evictable(struct page *page, struct vm_area_struct *vma)
3288 {
3289
3290         if (mapping_unevictable(page_mapping(page)))
3291                 return 0;
3292
3293         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3294                 return 0;
3295
3296         return 1;
3297 }
3298
3299 #ifdef CONFIG_SHMEM
3300 /**
3301  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3302  * @pages:      array of pages to check
3303  * @nr_pages:   number of pages to check
3304  *
3305  * Checks pages for evictability and moves them to the appropriate lru list.
3306  *
3307  * This function is only used for SysV IPC SHM_UNLOCK.
3308  */
3309 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3310 {
3311         struct lruvec *lruvec;
3312         struct zone *zone = NULL;
3313         int pgscanned = 0;
3314         int pgrescued = 0;
3315         int i;
3316
3317         for (i = 0; i < nr_pages; i++) {
3318                 struct page *page = pages[i];
3319                 struct zone *pagezone;
3320
3321                 pgscanned++;
3322                 pagezone = page_zone(page);
3323                 if (pagezone != zone) {
3324                         if (zone)
3325                                 spin_unlock_irq(&zone->lru_lock);
3326                         zone = pagezone;
3327                         spin_lock_irq(&zone->lru_lock);
3328                 }
3329
3330                 if (!PageLRU(page) || !PageUnevictable(page))
3331                         continue;
3332
3333                 if (page_evictable(page, NULL)) {
3334                         enum lru_list lru = page_lru_base_type(page);
3335
3336                         VM_BUG_ON(PageActive(page));
3337                         ClearPageUnevictable(page);
3338                         __dec_zone_state(zone, NR_UNEVICTABLE);
3339                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3340                                                 LRU_UNEVICTABLE, lru);
3341                         list_move(&page->lru, &lruvec->lists[lru]);
3342                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3343                         pgrescued++;
3344                 }
3345         }
3346
3347         if (zone) {
3348                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3349                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3350                 spin_unlock_irq(&zone->lru_lock);
3351         }
3352 }
3353 #endif /* CONFIG_SHMEM */
3354
3355 static void warn_scan_unevictable_pages(void)
3356 {
3357         printk_once(KERN_WARNING
3358                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3359                     "disabled for lack of a legitimate use case.  If you have "
3360                     "one, please send an email to linux-mm@kvack.org.\n",
3361                     current->comm);
3362 }
3363
3364 /*
3365  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3366  * all nodes' unevictable lists for evictable pages
3367  */
3368 unsigned long scan_unevictable_pages;
3369
3370 int scan_unevictable_handler(struct ctl_table *table, int write,
3371                            void __user *buffer,
3372                            size_t *length, loff_t *ppos)
3373 {
3374         warn_scan_unevictable_pages();
3375         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3376         scan_unevictable_pages = 0;
3377         return 0;
3378 }
3379
3380 #ifdef CONFIG_NUMA
3381 /*
3382  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3383  * a specified node's per zone unevictable lists for evictable pages.
3384  */
3385
3386 static ssize_t read_scan_unevictable_node(struct device *dev,
3387                                           struct device_attribute *attr,
3388                                           char *buf)
3389 {
3390         warn_scan_unevictable_pages();
3391         return sprintf(buf, "0\n");     /* always zero; should fit... */
3392 }
3393
3394 static ssize_t write_scan_unevictable_node(struct device *dev,
3395                                            struct device_attribute *attr,
3396                                         const char *buf, size_t count)
3397 {
3398         warn_scan_unevictable_pages();
3399         return 1;
3400 }
3401
3402
3403 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3404                         read_scan_unevictable_node,
3405                         write_scan_unevictable_node);
3406
3407 int scan_unevictable_register_node(struct node *node)
3408 {
3409         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3410 }
3411
3412 void scan_unevictable_unregister_node(struct node *node)
3413 {
3414         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3415 }
3416 #endif