mm/vmscan: push lruvec pointer into putback_inactive_pages()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /* Scan (total_size >> priority) pages at once */
82         int priority;
83
84         /*
85          * The memory cgroup that hit its limit and as a result is the
86          * primary target of this reclaim invocation.
87          */
88         struct mem_cgroup *target_mem_cgroup;
89
90         /*
91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
92          * are scanned.
93          */
94         nodemask_t      *nodemask;
95 };
96
97 struct mem_cgroup_zone {
98         struct mem_cgroup *mem_cgroup;
99         struct zone *zone;
100 };
101
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field)                    \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetch(&prev->_field);                        \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetchw(&prev->_field);                       \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 /*
133  * From 0 .. 100.  Higher means more swappy.
134  */
135 int vm_swappiness = 60;
136 long vm_total_pages;    /* The total number of pages which the VM controls */
137
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
140
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 static bool global_reclaim(struct scan_control *sc)
143 {
144         return !sc->target_mem_cgroup;
145 }
146 #else
147 static bool global_reclaim(struct scan_control *sc)
148 {
149         return true;
150 }
151 #endif
152
153 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
154 {
155         return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
156 }
157
158 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
159                                        enum lru_list lru)
160 {
161         if (!mem_cgroup_disabled())
162                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
163                                                     zone_to_nid(mz->zone),
164                                                     zone_idx(mz->zone),
165                                                     BIT(lru));
166
167         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
168 }
169
170
171 /*
172  * Add a shrinker callback to be called from the vm
173  */
174 void register_shrinker(struct shrinker *shrinker)
175 {
176         atomic_long_set(&shrinker->nr_in_batch, 0);
177         down_write(&shrinker_rwsem);
178         list_add_tail(&shrinker->list, &shrinker_list);
179         up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(register_shrinker);
182
183 /*
184  * Remove one
185  */
186 void unregister_shrinker(struct shrinker *shrinker)
187 {
188         down_write(&shrinker_rwsem);
189         list_del(&shrinker->list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(unregister_shrinker);
193
194 static inline int do_shrinker_shrink(struct shrinker *shrinker,
195                                      struct shrink_control *sc,
196                                      unsigned long nr_to_scan)
197 {
198         sc->nr_to_scan = nr_to_scan;
199         return (*shrinker->shrink)(shrinker, sc);
200 }
201
202 #define SHRINK_BATCH 128
203 /*
204  * Call the shrink functions to age shrinkable caches
205  *
206  * Here we assume it costs one seek to replace a lru page and that it also
207  * takes a seek to recreate a cache object.  With this in mind we age equal
208  * percentages of the lru and ageable caches.  This should balance the seeks
209  * generated by these structures.
210  *
211  * If the vm encountered mapped pages on the LRU it increase the pressure on
212  * slab to avoid swapping.
213  *
214  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
215  *
216  * `lru_pages' represents the number of on-LRU pages in all the zones which
217  * are eligible for the caller's allocation attempt.  It is used for balancing
218  * slab reclaim versus page reclaim.
219  *
220  * Returns the number of slab objects which we shrunk.
221  */
222 unsigned long shrink_slab(struct shrink_control *shrink,
223                           unsigned long nr_pages_scanned,
224                           unsigned long lru_pages)
225 {
226         struct shrinker *shrinker;
227         unsigned long ret = 0;
228
229         if (nr_pages_scanned == 0)
230                 nr_pages_scanned = SWAP_CLUSTER_MAX;
231
232         if (!down_read_trylock(&shrinker_rwsem)) {
233                 /* Assume we'll be able to shrink next time */
234                 ret = 1;
235                 goto out;
236         }
237
238         list_for_each_entry(shrinker, &shrinker_list, list) {
239                 unsigned long long delta;
240                 long total_scan;
241                 long max_pass;
242                 int shrink_ret = 0;
243                 long nr;
244                 long new_nr;
245                 long batch_size = shrinker->batch ? shrinker->batch
246                                                   : SHRINK_BATCH;
247
248                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
249                 if (max_pass <= 0)
250                         continue;
251
252                 /*
253                  * copy the current shrinker scan count into a local variable
254                  * and zero it so that other concurrent shrinker invocations
255                  * don't also do this scanning work.
256                  */
257                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
258
259                 total_scan = nr;
260                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
261                 delta *= max_pass;
262                 do_div(delta, lru_pages + 1);
263                 total_scan += delta;
264                 if (total_scan < 0) {
265                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
266                                "delete nr=%ld\n",
267                                shrinker->shrink, total_scan);
268                         total_scan = max_pass;
269                 }
270
271                 /*
272                  * We need to avoid excessive windup on filesystem shrinkers
273                  * due to large numbers of GFP_NOFS allocations causing the
274                  * shrinkers to return -1 all the time. This results in a large
275                  * nr being built up so when a shrink that can do some work
276                  * comes along it empties the entire cache due to nr >>>
277                  * max_pass.  This is bad for sustaining a working set in
278                  * memory.
279                  *
280                  * Hence only allow the shrinker to scan the entire cache when
281                  * a large delta change is calculated directly.
282                  */
283                 if (delta < max_pass / 4)
284                         total_scan = min(total_scan, max_pass / 2);
285
286                 /*
287                  * Avoid risking looping forever due to too large nr value:
288                  * never try to free more than twice the estimate number of
289                  * freeable entries.
290                  */
291                 if (total_scan > max_pass * 2)
292                         total_scan = max_pass * 2;
293
294                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
295                                         nr_pages_scanned, lru_pages,
296                                         max_pass, delta, total_scan);
297
298                 while (total_scan >= batch_size) {
299                         int nr_before;
300
301                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
302                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
303                                                         batch_size);
304                         if (shrink_ret == -1)
305                                 break;
306                         if (shrink_ret < nr_before)
307                                 ret += nr_before - shrink_ret;
308                         count_vm_events(SLABS_SCANNED, batch_size);
309                         total_scan -= batch_size;
310
311                         cond_resched();
312                 }
313
314                 /*
315                  * move the unused scan count back into the shrinker in a
316                  * manner that handles concurrent updates. If we exhausted the
317                  * scan, there is no need to do an update.
318                  */
319                 if (total_scan > 0)
320                         new_nr = atomic_long_add_return(total_scan,
321                                         &shrinker->nr_in_batch);
322                 else
323                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
324
325                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
326         }
327         up_read(&shrinker_rwsem);
328 out:
329         cond_resched();
330         return ret;
331 }
332
333 static inline int is_page_cache_freeable(struct page *page)
334 {
335         /*
336          * A freeable page cache page is referenced only by the caller
337          * that isolated the page, the page cache radix tree and
338          * optional buffer heads at page->private.
339          */
340         return page_count(page) - page_has_private(page) == 2;
341 }
342
343 static int may_write_to_queue(struct backing_dev_info *bdi,
344                               struct scan_control *sc)
345 {
346         if (current->flags & PF_SWAPWRITE)
347                 return 1;
348         if (!bdi_write_congested(bdi))
349                 return 1;
350         if (bdi == current->backing_dev_info)
351                 return 1;
352         return 0;
353 }
354
355 /*
356  * We detected a synchronous write error writing a page out.  Probably
357  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
358  * fsync(), msync() or close().
359  *
360  * The tricky part is that after writepage we cannot touch the mapping: nothing
361  * prevents it from being freed up.  But we have a ref on the page and once
362  * that page is locked, the mapping is pinned.
363  *
364  * We're allowed to run sleeping lock_page() here because we know the caller has
365  * __GFP_FS.
366  */
367 static void handle_write_error(struct address_space *mapping,
368                                 struct page *page, int error)
369 {
370         lock_page(page);
371         if (page_mapping(page) == mapping)
372                 mapping_set_error(mapping, error);
373         unlock_page(page);
374 }
375
376 /* possible outcome of pageout() */
377 typedef enum {
378         /* failed to write page out, page is locked */
379         PAGE_KEEP,
380         /* move page to the active list, page is locked */
381         PAGE_ACTIVATE,
382         /* page has been sent to the disk successfully, page is unlocked */
383         PAGE_SUCCESS,
384         /* page is clean and locked */
385         PAGE_CLEAN,
386 } pageout_t;
387
388 /*
389  * pageout is called by shrink_page_list() for each dirty page.
390  * Calls ->writepage().
391  */
392 static pageout_t pageout(struct page *page, struct address_space *mapping,
393                          struct scan_control *sc)
394 {
395         /*
396          * If the page is dirty, only perform writeback if that write
397          * will be non-blocking.  To prevent this allocation from being
398          * stalled by pagecache activity.  But note that there may be
399          * stalls if we need to run get_block().  We could test
400          * PagePrivate for that.
401          *
402          * If this process is currently in __generic_file_aio_write() against
403          * this page's queue, we can perform writeback even if that
404          * will block.
405          *
406          * If the page is swapcache, write it back even if that would
407          * block, for some throttling. This happens by accident, because
408          * swap_backing_dev_info is bust: it doesn't reflect the
409          * congestion state of the swapdevs.  Easy to fix, if needed.
410          */
411         if (!is_page_cache_freeable(page))
412                 return PAGE_KEEP;
413         if (!mapping) {
414                 /*
415                  * Some data journaling orphaned pages can have
416                  * page->mapping == NULL while being dirty with clean buffers.
417                  */
418                 if (page_has_private(page)) {
419                         if (try_to_free_buffers(page)) {
420                                 ClearPageDirty(page);
421                                 printk("%s: orphaned page\n", __func__);
422                                 return PAGE_CLEAN;
423                         }
424                 }
425                 return PAGE_KEEP;
426         }
427         if (mapping->a_ops->writepage == NULL)
428                 return PAGE_ACTIVATE;
429         if (!may_write_to_queue(mapping->backing_dev_info, sc))
430                 return PAGE_KEEP;
431
432         if (clear_page_dirty_for_io(page)) {
433                 int res;
434                 struct writeback_control wbc = {
435                         .sync_mode = WB_SYNC_NONE,
436                         .nr_to_write = SWAP_CLUSTER_MAX,
437                         .range_start = 0,
438                         .range_end = LLONG_MAX,
439                         .for_reclaim = 1,
440                 };
441
442                 SetPageReclaim(page);
443                 res = mapping->a_ops->writepage(page, &wbc);
444                 if (res < 0)
445                         handle_write_error(mapping, page, res);
446                 if (res == AOP_WRITEPAGE_ACTIVATE) {
447                         ClearPageReclaim(page);
448                         return PAGE_ACTIVATE;
449                 }
450
451                 if (!PageWriteback(page)) {
452                         /* synchronous write or broken a_ops? */
453                         ClearPageReclaim(page);
454                 }
455                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
456                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
457                 return PAGE_SUCCESS;
458         }
459
460         return PAGE_CLEAN;
461 }
462
463 /*
464  * Same as remove_mapping, but if the page is removed from the mapping, it
465  * gets returned with a refcount of 0.
466  */
467 static int __remove_mapping(struct address_space *mapping, struct page *page)
468 {
469         BUG_ON(!PageLocked(page));
470         BUG_ON(mapping != page_mapping(page));
471
472         spin_lock_irq(&mapping->tree_lock);
473         /*
474          * The non racy check for a busy page.
475          *
476          * Must be careful with the order of the tests. When someone has
477          * a ref to the page, it may be possible that they dirty it then
478          * drop the reference. So if PageDirty is tested before page_count
479          * here, then the following race may occur:
480          *
481          * get_user_pages(&page);
482          * [user mapping goes away]
483          * write_to(page);
484          *                              !PageDirty(page)    [good]
485          * SetPageDirty(page);
486          * put_page(page);
487          *                              !page_count(page)   [good, discard it]
488          *
489          * [oops, our write_to data is lost]
490          *
491          * Reversing the order of the tests ensures such a situation cannot
492          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
493          * load is not satisfied before that of page->_count.
494          *
495          * Note that if SetPageDirty is always performed via set_page_dirty,
496          * and thus under tree_lock, then this ordering is not required.
497          */
498         if (!page_freeze_refs(page, 2))
499                 goto cannot_free;
500         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
501         if (unlikely(PageDirty(page))) {
502                 page_unfreeze_refs(page, 2);
503                 goto cannot_free;
504         }
505
506         if (PageSwapCache(page)) {
507                 swp_entry_t swap = { .val = page_private(page) };
508                 __delete_from_swap_cache(page);
509                 spin_unlock_irq(&mapping->tree_lock);
510                 swapcache_free(swap, page);
511         } else {
512                 void (*freepage)(struct page *);
513
514                 freepage = mapping->a_ops->freepage;
515
516                 __delete_from_page_cache(page);
517                 spin_unlock_irq(&mapping->tree_lock);
518                 mem_cgroup_uncharge_cache_page(page);
519
520                 if (freepage != NULL)
521                         freepage(page);
522         }
523
524         return 1;
525
526 cannot_free:
527         spin_unlock_irq(&mapping->tree_lock);
528         return 0;
529 }
530
531 /*
532  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
533  * someone else has a ref on the page, abort and return 0.  If it was
534  * successfully detached, return 1.  Assumes the caller has a single ref on
535  * this page.
536  */
537 int remove_mapping(struct address_space *mapping, struct page *page)
538 {
539         if (__remove_mapping(mapping, page)) {
540                 /*
541                  * Unfreezing the refcount with 1 rather than 2 effectively
542                  * drops the pagecache ref for us without requiring another
543                  * atomic operation.
544                  */
545                 page_unfreeze_refs(page, 1);
546                 return 1;
547         }
548         return 0;
549 }
550
551 /**
552  * putback_lru_page - put previously isolated page onto appropriate LRU list
553  * @page: page to be put back to appropriate lru list
554  *
555  * Add previously isolated @page to appropriate LRU list.
556  * Page may still be unevictable for other reasons.
557  *
558  * lru_lock must not be held, interrupts must be enabled.
559  */
560 void putback_lru_page(struct page *page)
561 {
562         int lru;
563         int active = !!TestClearPageActive(page);
564         int was_unevictable = PageUnevictable(page);
565
566         VM_BUG_ON(PageLRU(page));
567
568 redo:
569         ClearPageUnevictable(page);
570
571         if (page_evictable(page, NULL)) {
572                 /*
573                  * For evictable pages, we can use the cache.
574                  * In event of a race, worst case is we end up with an
575                  * unevictable page on [in]active list.
576                  * We know how to handle that.
577                  */
578                 lru = active + page_lru_base_type(page);
579                 lru_cache_add_lru(page, lru);
580         } else {
581                 /*
582                  * Put unevictable pages directly on zone's unevictable
583                  * list.
584                  */
585                 lru = LRU_UNEVICTABLE;
586                 add_page_to_unevictable_list(page);
587                 /*
588                  * When racing with an mlock or AS_UNEVICTABLE clearing
589                  * (page is unlocked) make sure that if the other thread
590                  * does not observe our setting of PG_lru and fails
591                  * isolation/check_move_unevictable_pages,
592                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
593                  * the page back to the evictable list.
594                  *
595                  * The other side is TestClearPageMlocked() or shmem_lock().
596                  */
597                 smp_mb();
598         }
599
600         /*
601          * page's status can change while we move it among lru. If an evictable
602          * page is on unevictable list, it never be freed. To avoid that,
603          * check after we added it to the list, again.
604          */
605         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606                 if (!isolate_lru_page(page)) {
607                         put_page(page);
608                         goto redo;
609                 }
610                 /* This means someone else dropped this page from LRU
611                  * So, it will be freed or putback to LRU again. There is
612                  * nothing to do here.
613                  */
614         }
615
616         if (was_unevictable && lru != LRU_UNEVICTABLE)
617                 count_vm_event(UNEVICTABLE_PGRESCUED);
618         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619                 count_vm_event(UNEVICTABLE_PGCULLED);
620
621         put_page(page);         /* drop ref from isolate */
622 }
623
624 enum page_references {
625         PAGEREF_RECLAIM,
626         PAGEREF_RECLAIM_CLEAN,
627         PAGEREF_KEEP,
628         PAGEREF_ACTIVATE,
629 };
630
631 static enum page_references page_check_references(struct page *page,
632                                                   struct scan_control *sc)
633 {
634         int referenced_ptes, referenced_page;
635         unsigned long vm_flags;
636
637         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
638                                           &vm_flags);
639         referenced_page = TestClearPageReferenced(page);
640
641         /*
642          * Mlock lost the isolation race with us.  Let try_to_unmap()
643          * move the page to the unevictable list.
644          */
645         if (vm_flags & VM_LOCKED)
646                 return PAGEREF_RECLAIM;
647
648         if (referenced_ptes) {
649                 if (PageSwapBacked(page))
650                         return PAGEREF_ACTIVATE;
651                 /*
652                  * All mapped pages start out with page table
653                  * references from the instantiating fault, so we need
654                  * to look twice if a mapped file page is used more
655                  * than once.
656                  *
657                  * Mark it and spare it for another trip around the
658                  * inactive list.  Another page table reference will
659                  * lead to its activation.
660                  *
661                  * Note: the mark is set for activated pages as well
662                  * so that recently deactivated but used pages are
663                  * quickly recovered.
664                  */
665                 SetPageReferenced(page);
666
667                 if (referenced_page || referenced_ptes > 1)
668                         return PAGEREF_ACTIVATE;
669
670                 /*
671                  * Activate file-backed executable pages after first usage.
672                  */
673                 if (vm_flags & VM_EXEC)
674                         return PAGEREF_ACTIVATE;
675
676                 return PAGEREF_KEEP;
677         }
678
679         /* Reclaim if clean, defer dirty pages to writeback */
680         if (referenced_page && !PageSwapBacked(page))
681                 return PAGEREF_RECLAIM_CLEAN;
682
683         return PAGEREF_RECLAIM;
684 }
685
686 /*
687  * shrink_page_list() returns the number of reclaimed pages
688  */
689 static unsigned long shrink_page_list(struct list_head *page_list,
690                                       struct zone *zone,
691                                       struct scan_control *sc,
692                                       unsigned long *ret_nr_dirty,
693                                       unsigned long *ret_nr_writeback)
694 {
695         LIST_HEAD(ret_pages);
696         LIST_HEAD(free_pages);
697         int pgactivate = 0;
698         unsigned long nr_dirty = 0;
699         unsigned long nr_congested = 0;
700         unsigned long nr_reclaimed = 0;
701         unsigned long nr_writeback = 0;
702
703         cond_resched();
704
705         while (!list_empty(page_list)) {
706                 enum page_references references;
707                 struct address_space *mapping;
708                 struct page *page;
709                 int may_enter_fs;
710
711                 cond_resched();
712
713                 page = lru_to_page(page_list);
714                 list_del(&page->lru);
715
716                 if (!trylock_page(page))
717                         goto keep;
718
719                 VM_BUG_ON(PageActive(page));
720                 VM_BUG_ON(page_zone(page) != zone);
721
722                 sc->nr_scanned++;
723
724                 if (unlikely(!page_evictable(page, NULL)))
725                         goto cull_mlocked;
726
727                 if (!sc->may_unmap && page_mapped(page))
728                         goto keep_locked;
729
730                 /* Double the slab pressure for mapped and swapcache pages */
731                 if (page_mapped(page) || PageSwapCache(page))
732                         sc->nr_scanned++;
733
734                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
735                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
736
737                 if (PageWriteback(page)) {
738                         nr_writeback++;
739                         unlock_page(page);
740                         goto keep;
741                 }
742
743                 references = page_check_references(page, sc);
744                 switch (references) {
745                 case PAGEREF_ACTIVATE:
746                         goto activate_locked;
747                 case PAGEREF_KEEP:
748                         goto keep_locked;
749                 case PAGEREF_RECLAIM:
750                 case PAGEREF_RECLAIM_CLEAN:
751                         ; /* try to reclaim the page below */
752                 }
753
754                 /*
755                  * Anonymous process memory has backing store?
756                  * Try to allocate it some swap space here.
757                  */
758                 if (PageAnon(page) && !PageSwapCache(page)) {
759                         if (!(sc->gfp_mask & __GFP_IO))
760                                 goto keep_locked;
761                         if (!add_to_swap(page))
762                                 goto activate_locked;
763                         may_enter_fs = 1;
764                 }
765
766                 mapping = page_mapping(page);
767
768                 /*
769                  * The page is mapped into the page tables of one or more
770                  * processes. Try to unmap it here.
771                  */
772                 if (page_mapped(page) && mapping) {
773                         switch (try_to_unmap(page, TTU_UNMAP)) {
774                         case SWAP_FAIL:
775                                 goto activate_locked;
776                         case SWAP_AGAIN:
777                                 goto keep_locked;
778                         case SWAP_MLOCK:
779                                 goto cull_mlocked;
780                         case SWAP_SUCCESS:
781                                 ; /* try to free the page below */
782                         }
783                 }
784
785                 if (PageDirty(page)) {
786                         nr_dirty++;
787
788                         /*
789                          * Only kswapd can writeback filesystem pages to
790                          * avoid risk of stack overflow but do not writeback
791                          * unless under significant pressure.
792                          */
793                         if (page_is_file_cache(page) &&
794                                         (!current_is_kswapd() ||
795                                          sc->priority >= DEF_PRIORITY - 2)) {
796                                 /*
797                                  * Immediately reclaim when written back.
798                                  * Similar in principal to deactivate_page()
799                                  * except we already have the page isolated
800                                  * and know it's dirty
801                                  */
802                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
803                                 SetPageReclaim(page);
804
805                                 goto keep_locked;
806                         }
807
808                         if (references == PAGEREF_RECLAIM_CLEAN)
809                                 goto keep_locked;
810                         if (!may_enter_fs)
811                                 goto keep_locked;
812                         if (!sc->may_writepage)
813                                 goto keep_locked;
814
815                         /* Page is dirty, try to write it out here */
816                         switch (pageout(page, mapping, sc)) {
817                         case PAGE_KEEP:
818                                 nr_congested++;
819                                 goto keep_locked;
820                         case PAGE_ACTIVATE:
821                                 goto activate_locked;
822                         case PAGE_SUCCESS:
823                                 if (PageWriteback(page))
824                                         goto keep;
825                                 if (PageDirty(page))
826                                         goto keep;
827
828                                 /*
829                                  * A synchronous write - probably a ramdisk.  Go
830                                  * ahead and try to reclaim the page.
831                                  */
832                                 if (!trylock_page(page))
833                                         goto keep;
834                                 if (PageDirty(page) || PageWriteback(page))
835                                         goto keep_locked;
836                                 mapping = page_mapping(page);
837                         case PAGE_CLEAN:
838                                 ; /* try to free the page below */
839                         }
840                 }
841
842                 /*
843                  * If the page has buffers, try to free the buffer mappings
844                  * associated with this page. If we succeed we try to free
845                  * the page as well.
846                  *
847                  * We do this even if the page is PageDirty().
848                  * try_to_release_page() does not perform I/O, but it is
849                  * possible for a page to have PageDirty set, but it is actually
850                  * clean (all its buffers are clean).  This happens if the
851                  * buffers were written out directly, with submit_bh(). ext3
852                  * will do this, as well as the blockdev mapping.
853                  * try_to_release_page() will discover that cleanness and will
854                  * drop the buffers and mark the page clean - it can be freed.
855                  *
856                  * Rarely, pages can have buffers and no ->mapping.  These are
857                  * the pages which were not successfully invalidated in
858                  * truncate_complete_page().  We try to drop those buffers here
859                  * and if that worked, and the page is no longer mapped into
860                  * process address space (page_count == 1) it can be freed.
861                  * Otherwise, leave the page on the LRU so it is swappable.
862                  */
863                 if (page_has_private(page)) {
864                         if (!try_to_release_page(page, sc->gfp_mask))
865                                 goto activate_locked;
866                         if (!mapping && page_count(page) == 1) {
867                                 unlock_page(page);
868                                 if (put_page_testzero(page))
869                                         goto free_it;
870                                 else {
871                                         /*
872                                          * rare race with speculative reference.
873                                          * the speculative reference will free
874                                          * this page shortly, so we may
875                                          * increment nr_reclaimed here (and
876                                          * leave it off the LRU).
877                                          */
878                                         nr_reclaimed++;
879                                         continue;
880                                 }
881                         }
882                 }
883
884                 if (!mapping || !__remove_mapping(mapping, page))
885                         goto keep_locked;
886
887                 /*
888                  * At this point, we have no other references and there is
889                  * no way to pick any more up (removed from LRU, removed
890                  * from pagecache). Can use non-atomic bitops now (and
891                  * we obviously don't have to worry about waking up a process
892                  * waiting on the page lock, because there are no references.
893                  */
894                 __clear_page_locked(page);
895 free_it:
896                 nr_reclaimed++;
897
898                 /*
899                  * Is there need to periodically free_page_list? It would
900                  * appear not as the counts should be low
901                  */
902                 list_add(&page->lru, &free_pages);
903                 continue;
904
905 cull_mlocked:
906                 if (PageSwapCache(page))
907                         try_to_free_swap(page);
908                 unlock_page(page);
909                 putback_lru_page(page);
910                 continue;
911
912 activate_locked:
913                 /* Not a candidate for swapping, so reclaim swap space. */
914                 if (PageSwapCache(page) && vm_swap_full())
915                         try_to_free_swap(page);
916                 VM_BUG_ON(PageActive(page));
917                 SetPageActive(page);
918                 pgactivate++;
919 keep_locked:
920                 unlock_page(page);
921 keep:
922                 list_add(&page->lru, &ret_pages);
923                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
924         }
925
926         /*
927          * Tag a zone as congested if all the dirty pages encountered were
928          * backed by a congested BDI. In this case, reclaimers should just
929          * back off and wait for congestion to clear because further reclaim
930          * will encounter the same problem
931          */
932         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
933                 zone_set_flag(zone, ZONE_CONGESTED);
934
935         free_hot_cold_page_list(&free_pages, 1);
936
937         list_splice(&ret_pages, page_list);
938         count_vm_events(PGACTIVATE, pgactivate);
939         *ret_nr_dirty += nr_dirty;
940         *ret_nr_writeback += nr_writeback;
941         return nr_reclaimed;
942 }
943
944 /*
945  * Attempt to remove the specified page from its LRU.  Only take this page
946  * if it is of the appropriate PageActive status.  Pages which are being
947  * freed elsewhere are also ignored.
948  *
949  * page:        page to consider
950  * mode:        one of the LRU isolation modes defined above
951  *
952  * returns 0 on success, -ve errno on failure.
953  */
954 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
955 {
956         int ret = -EINVAL;
957
958         /* Only take pages on the LRU. */
959         if (!PageLRU(page))
960                 return ret;
961
962         /* Do not give back unevictable pages for compaction */
963         if (PageUnevictable(page))
964                 return ret;
965
966         ret = -EBUSY;
967
968         /*
969          * To minimise LRU disruption, the caller can indicate that it only
970          * wants to isolate pages it will be able to operate on without
971          * blocking - clean pages for the most part.
972          *
973          * ISOLATE_CLEAN means that only clean pages should be isolated. This
974          * is used by reclaim when it is cannot write to backing storage
975          *
976          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
977          * that it is possible to migrate without blocking
978          */
979         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
980                 /* All the caller can do on PageWriteback is block */
981                 if (PageWriteback(page))
982                         return ret;
983
984                 if (PageDirty(page)) {
985                         struct address_space *mapping;
986
987                         /* ISOLATE_CLEAN means only clean pages */
988                         if (mode & ISOLATE_CLEAN)
989                                 return ret;
990
991                         /*
992                          * Only pages without mappings or that have a
993                          * ->migratepage callback are possible to migrate
994                          * without blocking
995                          */
996                         mapping = page_mapping(page);
997                         if (mapping && !mapping->a_ops->migratepage)
998                                 return ret;
999                 }
1000         }
1001
1002         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1003                 return ret;
1004
1005         if (likely(get_page_unless_zero(page))) {
1006                 /*
1007                  * Be careful not to clear PageLRU until after we're
1008                  * sure the page is not being freed elsewhere -- the
1009                  * page release code relies on it.
1010                  */
1011                 ClearPageLRU(page);
1012                 ret = 0;
1013         }
1014
1015         return ret;
1016 }
1017
1018 /*
1019  * zone->lru_lock is heavily contended.  Some of the functions that
1020  * shrink the lists perform better by taking out a batch of pages
1021  * and working on them outside the LRU lock.
1022  *
1023  * For pagecache intensive workloads, this function is the hottest
1024  * spot in the kernel (apart from copy_*_user functions).
1025  *
1026  * Appropriate locks must be held before calling this function.
1027  *
1028  * @nr_to_scan: The number of pages to look through on the list.
1029  * @lruvec:     The LRU vector to pull pages from.
1030  * @dst:        The temp list to put pages on to.
1031  * @nr_scanned: The number of pages that were scanned.
1032  * @sc:         The scan_control struct for this reclaim session
1033  * @mode:       One of the LRU isolation modes
1034  * @lru:        LRU list id for isolating
1035  *
1036  * returns how many pages were moved onto *@dst.
1037  */
1038 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1039                 struct lruvec *lruvec, struct list_head *dst,
1040                 unsigned long *nr_scanned, struct scan_control *sc,
1041                 isolate_mode_t mode, enum lru_list lru)
1042 {
1043         struct list_head *src;
1044         unsigned long nr_taken = 0;
1045         unsigned long scan;
1046         int file = is_file_lru(lru);
1047
1048         src = &lruvec->lists[lru];
1049
1050         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1051                 struct page *page;
1052
1053                 page = lru_to_page(src);
1054                 prefetchw_prev_lru_page(page, src, flags);
1055
1056                 VM_BUG_ON(!PageLRU(page));
1057
1058                 switch (__isolate_lru_page(page, mode)) {
1059                 case 0:
1060                         mem_cgroup_lru_del_list(page, lru);
1061                         list_move(&page->lru, dst);
1062                         nr_taken += hpage_nr_pages(page);
1063                         break;
1064
1065                 case -EBUSY:
1066                         /* else it is being freed elsewhere */
1067                         list_move(&page->lru, src);
1068                         continue;
1069
1070                 default:
1071                         BUG();
1072                 }
1073         }
1074
1075         *nr_scanned = scan;
1076
1077         trace_mm_vmscan_lru_isolate(sc->order,
1078                         nr_to_scan, scan,
1079                         nr_taken,
1080                         mode, file);
1081         return nr_taken;
1082 }
1083
1084 /**
1085  * isolate_lru_page - tries to isolate a page from its LRU list
1086  * @page: page to isolate from its LRU list
1087  *
1088  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1089  * vmstat statistic corresponding to whatever LRU list the page was on.
1090  *
1091  * Returns 0 if the page was removed from an LRU list.
1092  * Returns -EBUSY if the page was not on an LRU list.
1093  *
1094  * The returned page will have PageLRU() cleared.  If it was found on
1095  * the active list, it will have PageActive set.  If it was found on
1096  * the unevictable list, it will have the PageUnevictable bit set. That flag
1097  * may need to be cleared by the caller before letting the page go.
1098  *
1099  * The vmstat statistic corresponding to the list on which the page was
1100  * found will be decremented.
1101  *
1102  * Restrictions:
1103  * (1) Must be called with an elevated refcount on the page. This is a
1104  *     fundamentnal difference from isolate_lru_pages (which is called
1105  *     without a stable reference).
1106  * (2) the lru_lock must not be held.
1107  * (3) interrupts must be enabled.
1108  */
1109 int isolate_lru_page(struct page *page)
1110 {
1111         int ret = -EBUSY;
1112
1113         VM_BUG_ON(!page_count(page));
1114
1115         if (PageLRU(page)) {
1116                 struct zone *zone = page_zone(page);
1117
1118                 spin_lock_irq(&zone->lru_lock);
1119                 if (PageLRU(page)) {
1120                         int lru = page_lru(page);
1121                         ret = 0;
1122                         get_page(page);
1123                         ClearPageLRU(page);
1124
1125                         del_page_from_lru_list(zone, page, lru);
1126                 }
1127                 spin_unlock_irq(&zone->lru_lock);
1128         }
1129         return ret;
1130 }
1131
1132 /*
1133  * Are there way too many processes in the direct reclaim path already?
1134  */
1135 static int too_many_isolated(struct zone *zone, int file,
1136                 struct scan_control *sc)
1137 {
1138         unsigned long inactive, isolated;
1139
1140         if (current_is_kswapd())
1141                 return 0;
1142
1143         if (!global_reclaim(sc))
1144                 return 0;
1145
1146         if (file) {
1147                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1148                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1149         } else {
1150                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1151                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1152         }
1153
1154         return isolated > inactive;
1155 }
1156
1157 static noinline_for_stack void
1158 putback_inactive_pages(struct lruvec *lruvec,
1159                        struct list_head *page_list)
1160 {
1161         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1162         struct zone *zone = lruvec_zone(lruvec);
1163         LIST_HEAD(pages_to_free);
1164
1165         /*
1166          * Put back any unfreeable pages.
1167          */
1168         while (!list_empty(page_list)) {
1169                 struct page *page = lru_to_page(page_list);
1170                 int lru;
1171
1172                 VM_BUG_ON(PageLRU(page));
1173                 list_del(&page->lru);
1174                 if (unlikely(!page_evictable(page, NULL))) {
1175                         spin_unlock_irq(&zone->lru_lock);
1176                         putback_lru_page(page);
1177                         spin_lock_irq(&zone->lru_lock);
1178                         continue;
1179                 }
1180                 SetPageLRU(page);
1181                 lru = page_lru(page);
1182                 add_page_to_lru_list(zone, page, lru);
1183                 if (is_active_lru(lru)) {
1184                         int file = is_file_lru(lru);
1185                         int numpages = hpage_nr_pages(page);
1186                         reclaim_stat->recent_rotated[file] += numpages;
1187                 }
1188                 if (put_page_testzero(page)) {
1189                         __ClearPageLRU(page);
1190                         __ClearPageActive(page);
1191                         del_page_from_lru_list(zone, page, lru);
1192
1193                         if (unlikely(PageCompound(page))) {
1194                                 spin_unlock_irq(&zone->lru_lock);
1195                                 (*get_compound_page_dtor(page))(page);
1196                                 spin_lock_irq(&zone->lru_lock);
1197                         } else
1198                                 list_add(&page->lru, &pages_to_free);
1199                 }
1200         }
1201
1202         /*
1203          * To save our caller's stack, now use input list for pages to free.
1204          */
1205         list_splice(&pages_to_free, page_list);
1206 }
1207
1208 /*
1209  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1210  * of reclaimed pages
1211  */
1212 static noinline_for_stack unsigned long
1213 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1214                      struct scan_control *sc, enum lru_list lru)
1215 {
1216         LIST_HEAD(page_list);
1217         unsigned long nr_scanned;
1218         unsigned long nr_reclaimed = 0;
1219         unsigned long nr_taken;
1220         unsigned long nr_dirty = 0;
1221         unsigned long nr_writeback = 0;
1222         isolate_mode_t isolate_mode = 0;
1223         int file = is_file_lru(lru);
1224         struct zone *zone = mz->zone;
1225         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1226         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
1227
1228         while (unlikely(too_many_isolated(zone, file, sc))) {
1229                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1230
1231                 /* We are about to die and free our memory. Return now. */
1232                 if (fatal_signal_pending(current))
1233                         return SWAP_CLUSTER_MAX;
1234         }
1235
1236         lru_add_drain();
1237
1238         if (!sc->may_unmap)
1239                 isolate_mode |= ISOLATE_UNMAPPED;
1240         if (!sc->may_writepage)
1241                 isolate_mode |= ISOLATE_CLEAN;
1242
1243         spin_lock_irq(&zone->lru_lock);
1244
1245         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1246                                      &nr_scanned, sc, isolate_mode, lru);
1247
1248         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1249         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1250
1251         if (global_reclaim(sc)) {
1252                 zone->pages_scanned += nr_scanned;
1253                 if (current_is_kswapd())
1254                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1255                                                nr_scanned);
1256                 else
1257                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1258                                                nr_scanned);
1259         }
1260         spin_unlock_irq(&zone->lru_lock);
1261
1262         if (nr_taken == 0)
1263                 return 0;
1264
1265         nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1266                                                 &nr_dirty, &nr_writeback);
1267
1268         spin_lock_irq(&zone->lru_lock);
1269
1270         reclaim_stat->recent_scanned[file] += nr_taken;
1271
1272         if (global_reclaim(sc)) {
1273                 if (current_is_kswapd())
1274                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1275                                                nr_reclaimed);
1276                 else
1277                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1278                                                nr_reclaimed);
1279         }
1280
1281         putback_inactive_pages(lruvec, &page_list);
1282
1283         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1284
1285         spin_unlock_irq(&zone->lru_lock);
1286
1287         free_hot_cold_page_list(&page_list, 1);
1288
1289         /*
1290          * If reclaim is isolating dirty pages under writeback, it implies
1291          * that the long-lived page allocation rate is exceeding the page
1292          * laundering rate. Either the global limits are not being effective
1293          * at throttling processes due to the page distribution throughout
1294          * zones or there is heavy usage of a slow backing device. The
1295          * only option is to throttle from reclaim context which is not ideal
1296          * as there is no guarantee the dirtying process is throttled in the
1297          * same way balance_dirty_pages() manages.
1298          *
1299          * This scales the number of dirty pages that must be under writeback
1300          * before throttling depending on priority. It is a simple backoff
1301          * function that has the most effect in the range DEF_PRIORITY to
1302          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1303          * in trouble and reclaim is considered to be in trouble.
1304          *
1305          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1306          * DEF_PRIORITY-1  50% must be PageWriteback
1307          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1308          * ...
1309          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1310          *                     isolated page is PageWriteback
1311          */
1312         if (nr_writeback && nr_writeback >=
1313                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1314                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1315
1316         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1317                 zone_idx(zone),
1318                 nr_scanned, nr_reclaimed,
1319                 sc->priority,
1320                 trace_shrink_flags(file));
1321         return nr_reclaimed;
1322 }
1323
1324 /*
1325  * This moves pages from the active list to the inactive list.
1326  *
1327  * We move them the other way if the page is referenced by one or more
1328  * processes, from rmap.
1329  *
1330  * If the pages are mostly unmapped, the processing is fast and it is
1331  * appropriate to hold zone->lru_lock across the whole operation.  But if
1332  * the pages are mapped, the processing is slow (page_referenced()) so we
1333  * should drop zone->lru_lock around each page.  It's impossible to balance
1334  * this, so instead we remove the pages from the LRU while processing them.
1335  * It is safe to rely on PG_active against the non-LRU pages in here because
1336  * nobody will play with that bit on a non-LRU page.
1337  *
1338  * The downside is that we have to touch page->_count against each page.
1339  * But we had to alter page->flags anyway.
1340  */
1341
1342 static void move_active_pages_to_lru(struct zone *zone,
1343                                      struct list_head *list,
1344                                      struct list_head *pages_to_free,
1345                                      enum lru_list lru)
1346 {
1347         unsigned long pgmoved = 0;
1348         struct page *page;
1349
1350         while (!list_empty(list)) {
1351                 struct lruvec *lruvec;
1352
1353                 page = lru_to_page(list);
1354
1355                 VM_BUG_ON(PageLRU(page));
1356                 SetPageLRU(page);
1357
1358                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1359                 list_move(&page->lru, &lruvec->lists[lru]);
1360                 pgmoved += hpage_nr_pages(page);
1361
1362                 if (put_page_testzero(page)) {
1363                         __ClearPageLRU(page);
1364                         __ClearPageActive(page);
1365                         del_page_from_lru_list(zone, page, lru);
1366
1367                         if (unlikely(PageCompound(page))) {
1368                                 spin_unlock_irq(&zone->lru_lock);
1369                                 (*get_compound_page_dtor(page))(page);
1370                                 spin_lock_irq(&zone->lru_lock);
1371                         } else
1372                                 list_add(&page->lru, pages_to_free);
1373                 }
1374         }
1375         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1376         if (!is_active_lru(lru))
1377                 __count_vm_events(PGDEACTIVATE, pgmoved);
1378 }
1379
1380 static void shrink_active_list(unsigned long nr_to_scan,
1381                                struct mem_cgroup_zone *mz,
1382                                struct scan_control *sc,
1383                                enum lru_list lru)
1384 {
1385         unsigned long nr_taken;
1386         unsigned long nr_scanned;
1387         unsigned long vm_flags;
1388         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1389         LIST_HEAD(l_active);
1390         LIST_HEAD(l_inactive);
1391         struct page *page;
1392         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1393         unsigned long nr_rotated = 0;
1394         isolate_mode_t isolate_mode = 0;
1395         int file = is_file_lru(lru);
1396         struct zone *zone = mz->zone;
1397         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
1398
1399         lru_add_drain();
1400
1401         if (!sc->may_unmap)
1402                 isolate_mode |= ISOLATE_UNMAPPED;
1403         if (!sc->may_writepage)
1404                 isolate_mode |= ISOLATE_CLEAN;
1405
1406         spin_lock_irq(&zone->lru_lock);
1407
1408         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1409                                      &nr_scanned, sc, isolate_mode, lru);
1410         if (global_reclaim(sc))
1411                 zone->pages_scanned += nr_scanned;
1412
1413         reclaim_stat->recent_scanned[file] += nr_taken;
1414
1415         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1416         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1417         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1418         spin_unlock_irq(&zone->lru_lock);
1419
1420         while (!list_empty(&l_hold)) {
1421                 cond_resched();
1422                 page = lru_to_page(&l_hold);
1423                 list_del(&page->lru);
1424
1425                 if (unlikely(!page_evictable(page, NULL))) {
1426                         putback_lru_page(page);
1427                         continue;
1428                 }
1429
1430                 if (unlikely(buffer_heads_over_limit)) {
1431                         if (page_has_private(page) && trylock_page(page)) {
1432                                 if (page_has_private(page))
1433                                         try_to_release_page(page, 0);
1434                                 unlock_page(page);
1435                         }
1436                 }
1437
1438                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1439                                     &vm_flags)) {
1440                         nr_rotated += hpage_nr_pages(page);
1441                         /*
1442                          * Identify referenced, file-backed active pages and
1443                          * give them one more trip around the active list. So
1444                          * that executable code get better chances to stay in
1445                          * memory under moderate memory pressure.  Anon pages
1446                          * are not likely to be evicted by use-once streaming
1447                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1448                          * so we ignore them here.
1449                          */
1450                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1451                                 list_add(&page->lru, &l_active);
1452                                 continue;
1453                         }
1454                 }
1455
1456                 ClearPageActive(page);  /* we are de-activating */
1457                 list_add(&page->lru, &l_inactive);
1458         }
1459
1460         /*
1461          * Move pages back to the lru list.
1462          */
1463         spin_lock_irq(&zone->lru_lock);
1464         /*
1465          * Count referenced pages from currently used mappings as rotated,
1466          * even though only some of them are actually re-activated.  This
1467          * helps balance scan pressure between file and anonymous pages in
1468          * get_scan_ratio.
1469          */
1470         reclaim_stat->recent_rotated[file] += nr_rotated;
1471
1472         move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1473         move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1474         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1475         spin_unlock_irq(&zone->lru_lock);
1476
1477         free_hot_cold_page_list(&l_hold, 1);
1478 }
1479
1480 #ifdef CONFIG_SWAP
1481 static int inactive_anon_is_low_global(struct zone *zone)
1482 {
1483         unsigned long active, inactive;
1484
1485         active = zone_page_state(zone, NR_ACTIVE_ANON);
1486         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1487
1488         if (inactive * zone->inactive_ratio < active)
1489                 return 1;
1490
1491         return 0;
1492 }
1493
1494 /**
1495  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1496  * @zone: zone to check
1497  * @sc:   scan control of this context
1498  *
1499  * Returns true if the zone does not have enough inactive anon pages,
1500  * meaning some active anon pages need to be deactivated.
1501  */
1502 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1503 {
1504         /*
1505          * If we don't have swap space, anonymous page deactivation
1506          * is pointless.
1507          */
1508         if (!total_swap_pages)
1509                 return 0;
1510
1511         if (!mem_cgroup_disabled())
1512                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1513                                                        mz->zone);
1514
1515         return inactive_anon_is_low_global(mz->zone);
1516 }
1517 #else
1518 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1519 {
1520         return 0;
1521 }
1522 #endif
1523
1524 static int inactive_file_is_low_global(struct zone *zone)
1525 {
1526         unsigned long active, inactive;
1527
1528         active = zone_page_state(zone, NR_ACTIVE_FILE);
1529         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1530
1531         return (active > inactive);
1532 }
1533
1534 /**
1535  * inactive_file_is_low - check if file pages need to be deactivated
1536  * @mz: memory cgroup and zone to check
1537  *
1538  * When the system is doing streaming IO, memory pressure here
1539  * ensures that active file pages get deactivated, until more
1540  * than half of the file pages are on the inactive list.
1541  *
1542  * Once we get to that situation, protect the system's working
1543  * set from being evicted by disabling active file page aging.
1544  *
1545  * This uses a different ratio than the anonymous pages, because
1546  * the page cache uses a use-once replacement algorithm.
1547  */
1548 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1549 {
1550         if (!mem_cgroup_disabled())
1551                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1552                                                        mz->zone);
1553
1554         return inactive_file_is_low_global(mz->zone);
1555 }
1556
1557 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1558 {
1559         if (file)
1560                 return inactive_file_is_low(mz);
1561         else
1562                 return inactive_anon_is_low(mz);
1563 }
1564
1565 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1566                                  struct mem_cgroup_zone *mz,
1567                                  struct scan_control *sc)
1568 {
1569         int file = is_file_lru(lru);
1570
1571         if (is_active_lru(lru)) {
1572                 if (inactive_list_is_low(mz, file))
1573                         shrink_active_list(nr_to_scan, mz, sc, lru);
1574                 return 0;
1575         }
1576
1577         return shrink_inactive_list(nr_to_scan, mz, sc, lru);
1578 }
1579
1580 static int vmscan_swappiness(struct scan_control *sc)
1581 {
1582         if (global_reclaim(sc))
1583                 return vm_swappiness;
1584         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1585 }
1586
1587 /*
1588  * Determine how aggressively the anon and file LRU lists should be
1589  * scanned.  The relative value of each set of LRU lists is determined
1590  * by looking at the fraction of the pages scanned we did rotate back
1591  * onto the active list instead of evict.
1592  *
1593  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1594  */
1595 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1596                            unsigned long *nr)
1597 {
1598         unsigned long anon, file, free;
1599         unsigned long anon_prio, file_prio;
1600         unsigned long ap, fp;
1601         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1602         u64 fraction[2], denominator;
1603         enum lru_list lru;
1604         int noswap = 0;
1605         bool force_scan = false;
1606
1607         /*
1608          * If the zone or memcg is small, nr[l] can be 0.  This
1609          * results in no scanning on this priority and a potential
1610          * priority drop.  Global direct reclaim can go to the next
1611          * zone and tends to have no problems. Global kswapd is for
1612          * zone balancing and it needs to scan a minimum amount. When
1613          * reclaiming for a memcg, a priority drop can cause high
1614          * latencies, so it's better to scan a minimum amount there as
1615          * well.
1616          */
1617         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1618                 force_scan = true;
1619         if (!global_reclaim(sc))
1620                 force_scan = true;
1621
1622         /* If we have no swap space, do not bother scanning anon pages. */
1623         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1624                 noswap = 1;
1625                 fraction[0] = 0;
1626                 fraction[1] = 1;
1627                 denominator = 1;
1628                 goto out;
1629         }
1630
1631         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1632                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1633         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1634                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1635
1636         if (global_reclaim(sc)) {
1637                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1638                 /* If we have very few page cache pages,
1639                    force-scan anon pages. */
1640                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1641                         fraction[0] = 1;
1642                         fraction[1] = 0;
1643                         denominator = 1;
1644                         goto out;
1645                 }
1646         }
1647
1648         /*
1649          * With swappiness at 100, anonymous and file have the same priority.
1650          * This scanning priority is essentially the inverse of IO cost.
1651          */
1652         anon_prio = vmscan_swappiness(sc);
1653         file_prio = 200 - vmscan_swappiness(sc);
1654
1655         /*
1656          * OK, so we have swap space and a fair amount of page cache
1657          * pages.  We use the recently rotated / recently scanned
1658          * ratios to determine how valuable each cache is.
1659          *
1660          * Because workloads change over time (and to avoid overflow)
1661          * we keep these statistics as a floating average, which ends
1662          * up weighing recent references more than old ones.
1663          *
1664          * anon in [0], file in [1]
1665          */
1666         spin_lock_irq(&mz->zone->lru_lock);
1667         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1668                 reclaim_stat->recent_scanned[0] /= 2;
1669                 reclaim_stat->recent_rotated[0] /= 2;
1670         }
1671
1672         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1673                 reclaim_stat->recent_scanned[1] /= 2;
1674                 reclaim_stat->recent_rotated[1] /= 2;
1675         }
1676
1677         /*
1678          * The amount of pressure on anon vs file pages is inversely
1679          * proportional to the fraction of recently scanned pages on
1680          * each list that were recently referenced and in active use.
1681          */
1682         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1683         ap /= reclaim_stat->recent_rotated[0] + 1;
1684
1685         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1686         fp /= reclaim_stat->recent_rotated[1] + 1;
1687         spin_unlock_irq(&mz->zone->lru_lock);
1688
1689         fraction[0] = ap;
1690         fraction[1] = fp;
1691         denominator = ap + fp + 1;
1692 out:
1693         for_each_evictable_lru(lru) {
1694                 int file = is_file_lru(lru);
1695                 unsigned long scan;
1696
1697                 scan = zone_nr_lru_pages(mz, lru);
1698                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1699                         scan >>= sc->priority;
1700                         if (!scan && force_scan)
1701                                 scan = SWAP_CLUSTER_MAX;
1702                         scan = div64_u64(scan * fraction[file], denominator);
1703                 }
1704                 nr[lru] = scan;
1705         }
1706 }
1707
1708 /* Use reclaim/compaction for costly allocs or under memory pressure */
1709 static bool in_reclaim_compaction(struct scan_control *sc)
1710 {
1711         if (COMPACTION_BUILD && sc->order &&
1712                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1713                          sc->priority < DEF_PRIORITY - 2))
1714                 return true;
1715
1716         return false;
1717 }
1718
1719 /*
1720  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1721  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1722  * true if more pages should be reclaimed such that when the page allocator
1723  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1724  * It will give up earlier than that if there is difficulty reclaiming pages.
1725  */
1726 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1727                                         unsigned long nr_reclaimed,
1728                                         unsigned long nr_scanned,
1729                                         struct scan_control *sc)
1730 {
1731         unsigned long pages_for_compaction;
1732         unsigned long inactive_lru_pages;
1733
1734         /* If not in reclaim/compaction mode, stop */
1735         if (!in_reclaim_compaction(sc))
1736                 return false;
1737
1738         /* Consider stopping depending on scan and reclaim activity */
1739         if (sc->gfp_mask & __GFP_REPEAT) {
1740                 /*
1741                  * For __GFP_REPEAT allocations, stop reclaiming if the
1742                  * full LRU list has been scanned and we are still failing
1743                  * to reclaim pages. This full LRU scan is potentially
1744                  * expensive but a __GFP_REPEAT caller really wants to succeed
1745                  */
1746                 if (!nr_reclaimed && !nr_scanned)
1747                         return false;
1748         } else {
1749                 /*
1750                  * For non-__GFP_REPEAT allocations which can presumably
1751                  * fail without consequence, stop if we failed to reclaim
1752                  * any pages from the last SWAP_CLUSTER_MAX number of
1753                  * pages that were scanned. This will return to the
1754                  * caller faster at the risk reclaim/compaction and
1755                  * the resulting allocation attempt fails
1756                  */
1757                 if (!nr_reclaimed)
1758                         return false;
1759         }
1760
1761         /*
1762          * If we have not reclaimed enough pages for compaction and the
1763          * inactive lists are large enough, continue reclaiming
1764          */
1765         pages_for_compaction = (2UL << sc->order);
1766         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1767         if (nr_swap_pages > 0)
1768                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1769         if (sc->nr_reclaimed < pages_for_compaction &&
1770                         inactive_lru_pages > pages_for_compaction)
1771                 return true;
1772
1773         /* If compaction would go ahead or the allocation would succeed, stop */
1774         switch (compaction_suitable(mz->zone, sc->order)) {
1775         case COMPACT_PARTIAL:
1776         case COMPACT_CONTINUE:
1777                 return false;
1778         default:
1779                 return true;
1780         }
1781 }
1782
1783 /*
1784  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1785  */
1786 static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1787                                    struct scan_control *sc)
1788 {
1789         unsigned long nr[NR_LRU_LISTS];
1790         unsigned long nr_to_scan;
1791         enum lru_list lru;
1792         unsigned long nr_reclaimed, nr_scanned;
1793         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1794         struct blk_plug plug;
1795
1796 restart:
1797         nr_reclaimed = 0;
1798         nr_scanned = sc->nr_scanned;
1799         get_scan_count(mz, sc, nr);
1800
1801         blk_start_plug(&plug);
1802         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1803                                         nr[LRU_INACTIVE_FILE]) {
1804                 for_each_evictable_lru(lru) {
1805                         if (nr[lru]) {
1806                                 nr_to_scan = min_t(unsigned long,
1807                                                    nr[lru], SWAP_CLUSTER_MAX);
1808                                 nr[lru] -= nr_to_scan;
1809
1810                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1811                                                             mz, sc);
1812                         }
1813                 }
1814                 /*
1815                  * On large memory systems, scan >> priority can become
1816                  * really large. This is fine for the starting priority;
1817                  * we want to put equal scanning pressure on each zone.
1818                  * However, if the VM has a harder time of freeing pages,
1819                  * with multiple processes reclaiming pages, the total
1820                  * freeing target can get unreasonably large.
1821                  */
1822                 if (nr_reclaimed >= nr_to_reclaim &&
1823                     sc->priority < DEF_PRIORITY)
1824                         break;
1825         }
1826         blk_finish_plug(&plug);
1827         sc->nr_reclaimed += nr_reclaimed;
1828
1829         /*
1830          * Even if we did not try to evict anon pages at all, we want to
1831          * rebalance the anon lru active/inactive ratio.
1832          */
1833         if (inactive_anon_is_low(mz))
1834                 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1835                                    sc, LRU_ACTIVE_ANON);
1836
1837         /* reclaim/compaction might need reclaim to continue */
1838         if (should_continue_reclaim(mz, nr_reclaimed,
1839                                     sc->nr_scanned - nr_scanned, sc))
1840                 goto restart;
1841
1842         throttle_vm_writeout(sc->gfp_mask);
1843 }
1844
1845 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1846 {
1847         struct mem_cgroup *root = sc->target_mem_cgroup;
1848         struct mem_cgroup_reclaim_cookie reclaim = {
1849                 .zone = zone,
1850                 .priority = sc->priority,
1851         };
1852         struct mem_cgroup *memcg;
1853
1854         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1855         do {
1856                 struct mem_cgroup_zone mz = {
1857                         .mem_cgroup = memcg,
1858                         .zone = zone,
1859                 };
1860
1861                 shrink_mem_cgroup_zone(&mz, sc);
1862                 /*
1863                  * Limit reclaim has historically picked one memcg and
1864                  * scanned it with decreasing priority levels until
1865                  * nr_to_reclaim had been reclaimed.  This priority
1866                  * cycle is thus over after a single memcg.
1867                  *
1868                  * Direct reclaim and kswapd, on the other hand, have
1869                  * to scan all memory cgroups to fulfill the overall
1870                  * scan target for the zone.
1871                  */
1872                 if (!global_reclaim(sc)) {
1873                         mem_cgroup_iter_break(root, memcg);
1874                         break;
1875                 }
1876                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1877         } while (memcg);
1878 }
1879
1880 /* Returns true if compaction should go ahead for a high-order request */
1881 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1882 {
1883         unsigned long balance_gap, watermark;
1884         bool watermark_ok;
1885
1886         /* Do not consider compaction for orders reclaim is meant to satisfy */
1887         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1888                 return false;
1889
1890         /*
1891          * Compaction takes time to run and there are potentially other
1892          * callers using the pages just freed. Continue reclaiming until
1893          * there is a buffer of free pages available to give compaction
1894          * a reasonable chance of completing and allocating the page
1895          */
1896         balance_gap = min(low_wmark_pages(zone),
1897                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1898                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1899         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1900         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1901
1902         /*
1903          * If compaction is deferred, reclaim up to a point where
1904          * compaction will have a chance of success when re-enabled
1905          */
1906         if (compaction_deferred(zone, sc->order))
1907                 return watermark_ok;
1908
1909         /* If compaction is not ready to start, keep reclaiming */
1910         if (!compaction_suitable(zone, sc->order))
1911                 return false;
1912
1913         return watermark_ok;
1914 }
1915
1916 /*
1917  * This is the direct reclaim path, for page-allocating processes.  We only
1918  * try to reclaim pages from zones which will satisfy the caller's allocation
1919  * request.
1920  *
1921  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1922  * Because:
1923  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1924  *    allocation or
1925  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1926  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1927  *    zone defense algorithm.
1928  *
1929  * If a zone is deemed to be full of pinned pages then just give it a light
1930  * scan then give up on it.
1931  *
1932  * This function returns true if a zone is being reclaimed for a costly
1933  * high-order allocation and compaction is ready to begin. This indicates to
1934  * the caller that it should consider retrying the allocation instead of
1935  * further reclaim.
1936  */
1937 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1938 {
1939         struct zoneref *z;
1940         struct zone *zone;
1941         unsigned long nr_soft_reclaimed;
1942         unsigned long nr_soft_scanned;
1943         bool aborted_reclaim = false;
1944
1945         /*
1946          * If the number of buffer_heads in the machine exceeds the maximum
1947          * allowed level, force direct reclaim to scan the highmem zone as
1948          * highmem pages could be pinning lowmem pages storing buffer_heads
1949          */
1950         if (buffer_heads_over_limit)
1951                 sc->gfp_mask |= __GFP_HIGHMEM;
1952
1953         for_each_zone_zonelist_nodemask(zone, z, zonelist,
1954                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
1955                 if (!populated_zone(zone))
1956                         continue;
1957                 /*
1958                  * Take care memory controller reclaiming has small influence
1959                  * to global LRU.
1960                  */
1961                 if (global_reclaim(sc)) {
1962                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1963                                 continue;
1964                         if (zone->all_unreclaimable &&
1965                                         sc->priority != DEF_PRIORITY)
1966                                 continue;       /* Let kswapd poll it */
1967                         if (COMPACTION_BUILD) {
1968                                 /*
1969                                  * If we already have plenty of memory free for
1970                                  * compaction in this zone, don't free any more.
1971                                  * Even though compaction is invoked for any
1972                                  * non-zero order, only frequent costly order
1973                                  * reclamation is disruptive enough to become a
1974                                  * noticeable problem, like transparent huge
1975                                  * page allocations.
1976                                  */
1977                                 if (compaction_ready(zone, sc)) {
1978                                         aborted_reclaim = true;
1979                                         continue;
1980                                 }
1981                         }
1982                         /*
1983                          * This steals pages from memory cgroups over softlimit
1984                          * and returns the number of reclaimed pages and
1985                          * scanned pages. This works for global memory pressure
1986                          * and balancing, not for a memcg's limit.
1987                          */
1988                         nr_soft_scanned = 0;
1989                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1990                                                 sc->order, sc->gfp_mask,
1991                                                 &nr_soft_scanned);
1992                         sc->nr_reclaimed += nr_soft_reclaimed;
1993                         sc->nr_scanned += nr_soft_scanned;
1994                         /* need some check for avoid more shrink_zone() */
1995                 }
1996
1997                 shrink_zone(zone, sc);
1998         }
1999
2000         return aborted_reclaim;
2001 }
2002
2003 static bool zone_reclaimable(struct zone *zone)
2004 {
2005         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2006 }
2007
2008 /* All zones in zonelist are unreclaimable? */
2009 static bool all_unreclaimable(struct zonelist *zonelist,
2010                 struct scan_control *sc)
2011 {
2012         struct zoneref *z;
2013         struct zone *zone;
2014
2015         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2016                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2017                 if (!populated_zone(zone))
2018                         continue;
2019                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2020                         continue;
2021                 if (!zone->all_unreclaimable)
2022                         return false;
2023         }
2024
2025         return true;
2026 }
2027
2028 /*
2029  * This is the main entry point to direct page reclaim.
2030  *
2031  * If a full scan of the inactive list fails to free enough memory then we
2032  * are "out of memory" and something needs to be killed.
2033  *
2034  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2035  * high - the zone may be full of dirty or under-writeback pages, which this
2036  * caller can't do much about.  We kick the writeback threads and take explicit
2037  * naps in the hope that some of these pages can be written.  But if the
2038  * allocating task holds filesystem locks which prevent writeout this might not
2039  * work, and the allocation attempt will fail.
2040  *
2041  * returns:     0, if no pages reclaimed
2042  *              else, the number of pages reclaimed
2043  */
2044 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2045                                         struct scan_control *sc,
2046                                         struct shrink_control *shrink)
2047 {
2048         unsigned long total_scanned = 0;
2049         struct reclaim_state *reclaim_state = current->reclaim_state;
2050         struct zoneref *z;
2051         struct zone *zone;
2052         unsigned long writeback_threshold;
2053         bool aborted_reclaim;
2054
2055         delayacct_freepages_start();
2056
2057         if (global_reclaim(sc))
2058                 count_vm_event(ALLOCSTALL);
2059
2060         do {
2061                 sc->nr_scanned = 0;
2062                 aborted_reclaim = shrink_zones(zonelist, sc);
2063
2064                 /*
2065                  * Don't shrink slabs when reclaiming memory from
2066                  * over limit cgroups
2067                  */
2068                 if (global_reclaim(sc)) {
2069                         unsigned long lru_pages = 0;
2070                         for_each_zone_zonelist(zone, z, zonelist,
2071                                         gfp_zone(sc->gfp_mask)) {
2072                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2073                                         continue;
2074
2075                                 lru_pages += zone_reclaimable_pages(zone);
2076                         }
2077
2078                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2079                         if (reclaim_state) {
2080                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2081                                 reclaim_state->reclaimed_slab = 0;
2082                         }
2083                 }
2084                 total_scanned += sc->nr_scanned;
2085                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2086                         goto out;
2087
2088                 /*
2089                  * Try to write back as many pages as we just scanned.  This
2090                  * tends to cause slow streaming writers to write data to the
2091                  * disk smoothly, at the dirtying rate, which is nice.   But
2092                  * that's undesirable in laptop mode, where we *want* lumpy
2093                  * writeout.  So in laptop mode, write out the whole world.
2094                  */
2095                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2096                 if (total_scanned > writeback_threshold) {
2097                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2098                                                 WB_REASON_TRY_TO_FREE_PAGES);
2099                         sc->may_writepage = 1;
2100                 }
2101
2102                 /* Take a nap, wait for some writeback to complete */
2103                 if (!sc->hibernation_mode && sc->nr_scanned &&
2104                     sc->priority < DEF_PRIORITY - 2) {
2105                         struct zone *preferred_zone;
2106
2107                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2108                                                 &cpuset_current_mems_allowed,
2109                                                 &preferred_zone);
2110                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2111                 }
2112         } while (--sc->priority >= 0);
2113
2114 out:
2115         delayacct_freepages_end();
2116
2117         if (sc->nr_reclaimed)
2118                 return sc->nr_reclaimed;
2119
2120         /*
2121          * As hibernation is going on, kswapd is freezed so that it can't mark
2122          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2123          * check.
2124          */
2125         if (oom_killer_disabled)
2126                 return 0;
2127
2128         /* Aborted reclaim to try compaction? don't OOM, then */
2129         if (aborted_reclaim)
2130                 return 1;
2131
2132         /* top priority shrink_zones still had more to do? don't OOM, then */
2133         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2134                 return 1;
2135
2136         return 0;
2137 }
2138
2139 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2140                                 gfp_t gfp_mask, nodemask_t *nodemask)
2141 {
2142         unsigned long nr_reclaimed;
2143         struct scan_control sc = {
2144                 .gfp_mask = gfp_mask,
2145                 .may_writepage = !laptop_mode,
2146                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2147                 .may_unmap = 1,
2148                 .may_swap = 1,
2149                 .order = order,
2150                 .priority = DEF_PRIORITY,
2151                 .target_mem_cgroup = NULL,
2152                 .nodemask = nodemask,
2153         };
2154         struct shrink_control shrink = {
2155                 .gfp_mask = sc.gfp_mask,
2156         };
2157
2158         trace_mm_vmscan_direct_reclaim_begin(order,
2159                                 sc.may_writepage,
2160                                 gfp_mask);
2161
2162         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2163
2164         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2165
2166         return nr_reclaimed;
2167 }
2168
2169 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2170
2171 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2172                                                 gfp_t gfp_mask, bool noswap,
2173                                                 struct zone *zone,
2174                                                 unsigned long *nr_scanned)
2175 {
2176         struct scan_control sc = {
2177                 .nr_scanned = 0,
2178                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2179                 .may_writepage = !laptop_mode,
2180                 .may_unmap = 1,
2181                 .may_swap = !noswap,
2182                 .order = 0,
2183                 .priority = 0,
2184                 .target_mem_cgroup = memcg,
2185         };
2186         struct mem_cgroup_zone mz = {
2187                 .mem_cgroup = memcg,
2188                 .zone = zone,
2189         };
2190
2191         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2192                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2193
2194         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2195                                                       sc.may_writepage,
2196                                                       sc.gfp_mask);
2197
2198         /*
2199          * NOTE: Although we can get the priority field, using it
2200          * here is not a good idea, since it limits the pages we can scan.
2201          * if we don't reclaim here, the shrink_zone from balance_pgdat
2202          * will pick up pages from other mem cgroup's as well. We hack
2203          * the priority and make it zero.
2204          */
2205         shrink_mem_cgroup_zone(&mz, &sc);
2206
2207         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2208
2209         *nr_scanned = sc.nr_scanned;
2210         return sc.nr_reclaimed;
2211 }
2212
2213 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2214                                            gfp_t gfp_mask,
2215                                            bool noswap)
2216 {
2217         struct zonelist *zonelist;
2218         unsigned long nr_reclaimed;
2219         int nid;
2220         struct scan_control sc = {
2221                 .may_writepage = !laptop_mode,
2222                 .may_unmap = 1,
2223                 .may_swap = !noswap,
2224                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2225                 .order = 0,
2226                 .priority = DEF_PRIORITY,
2227                 .target_mem_cgroup = memcg,
2228                 .nodemask = NULL, /* we don't care the placement */
2229                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2230                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2231         };
2232         struct shrink_control shrink = {
2233                 .gfp_mask = sc.gfp_mask,
2234         };
2235
2236         /*
2237          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2238          * take care of from where we get pages. So the node where we start the
2239          * scan does not need to be the current node.
2240          */
2241         nid = mem_cgroup_select_victim_node(memcg);
2242
2243         zonelist = NODE_DATA(nid)->node_zonelists;
2244
2245         trace_mm_vmscan_memcg_reclaim_begin(0,
2246                                             sc.may_writepage,
2247                                             sc.gfp_mask);
2248
2249         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2250
2251         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2252
2253         return nr_reclaimed;
2254 }
2255 #endif
2256
2257 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2258 {
2259         struct mem_cgroup *memcg;
2260
2261         if (!total_swap_pages)
2262                 return;
2263
2264         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2265         do {
2266                 struct mem_cgroup_zone mz = {
2267                         .mem_cgroup = memcg,
2268                         .zone = zone,
2269                 };
2270
2271                 if (inactive_anon_is_low(&mz))
2272                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2273                                            sc, LRU_ACTIVE_ANON);
2274
2275                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2276         } while (memcg);
2277 }
2278
2279 /*
2280  * pgdat_balanced is used when checking if a node is balanced for high-order
2281  * allocations. Only zones that meet watermarks and are in a zone allowed
2282  * by the callers classzone_idx are added to balanced_pages. The total of
2283  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2284  * for the node to be considered balanced. Forcing all zones to be balanced
2285  * for high orders can cause excessive reclaim when there are imbalanced zones.
2286  * The choice of 25% is due to
2287  *   o a 16M DMA zone that is balanced will not balance a zone on any
2288  *     reasonable sized machine
2289  *   o On all other machines, the top zone must be at least a reasonable
2290  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2291  *     would need to be at least 256M for it to be balance a whole node.
2292  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2293  *     to balance a node on its own. These seemed like reasonable ratios.
2294  */
2295 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2296                                                 int classzone_idx)
2297 {
2298         unsigned long present_pages = 0;
2299         int i;
2300
2301         for (i = 0; i <= classzone_idx; i++)
2302                 present_pages += pgdat->node_zones[i].present_pages;
2303
2304         /* A special case here: if zone has no page, we think it's balanced */
2305         return balanced_pages >= (present_pages >> 2);
2306 }
2307
2308 /* is kswapd sleeping prematurely? */
2309 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2310                                         int classzone_idx)
2311 {
2312         int i;
2313         unsigned long balanced = 0;
2314         bool all_zones_ok = true;
2315
2316         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2317         if (remaining)
2318                 return true;
2319
2320         /* Check the watermark levels */
2321         for (i = 0; i <= classzone_idx; i++) {
2322                 struct zone *zone = pgdat->node_zones + i;
2323
2324                 if (!populated_zone(zone))
2325                         continue;
2326
2327                 /*
2328                  * balance_pgdat() skips over all_unreclaimable after
2329                  * DEF_PRIORITY. Effectively, it considers them balanced so
2330                  * they must be considered balanced here as well if kswapd
2331                  * is to sleep
2332                  */
2333                 if (zone->all_unreclaimable) {
2334                         balanced += zone->present_pages;
2335                         continue;
2336                 }
2337
2338                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2339                                                         i, 0))
2340                         all_zones_ok = false;
2341                 else
2342                         balanced += zone->present_pages;
2343         }
2344
2345         /*
2346          * For high-order requests, the balanced zones must contain at least
2347          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2348          * must be balanced
2349          */
2350         if (order)
2351                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2352         else
2353                 return !all_zones_ok;
2354 }
2355
2356 /*
2357  * For kswapd, balance_pgdat() will work across all this node's zones until
2358  * they are all at high_wmark_pages(zone).
2359  *
2360  * Returns the final order kswapd was reclaiming at
2361  *
2362  * There is special handling here for zones which are full of pinned pages.
2363  * This can happen if the pages are all mlocked, or if they are all used by
2364  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2365  * What we do is to detect the case where all pages in the zone have been
2366  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2367  * dead and from now on, only perform a short scan.  Basically we're polling
2368  * the zone for when the problem goes away.
2369  *
2370  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2371  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2372  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2373  * lower zones regardless of the number of free pages in the lower zones. This
2374  * interoperates with the page allocator fallback scheme to ensure that aging
2375  * of pages is balanced across the zones.
2376  */
2377 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2378                                                         int *classzone_idx)
2379 {
2380         int all_zones_ok;
2381         unsigned long balanced;
2382         int i;
2383         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2384         unsigned long total_scanned;
2385         struct reclaim_state *reclaim_state = current->reclaim_state;
2386         unsigned long nr_soft_reclaimed;
2387         unsigned long nr_soft_scanned;
2388         struct scan_control sc = {
2389                 .gfp_mask = GFP_KERNEL,
2390                 .may_unmap = 1,
2391                 .may_swap = 1,
2392                 /*
2393                  * kswapd doesn't want to be bailed out while reclaim. because
2394                  * we want to put equal scanning pressure on each zone.
2395                  */
2396                 .nr_to_reclaim = ULONG_MAX,
2397                 .order = order,
2398                 .target_mem_cgroup = NULL,
2399         };
2400         struct shrink_control shrink = {
2401                 .gfp_mask = sc.gfp_mask,
2402         };
2403 loop_again:
2404         total_scanned = 0;
2405         sc.priority = DEF_PRIORITY;
2406         sc.nr_reclaimed = 0;
2407         sc.may_writepage = !laptop_mode;
2408         count_vm_event(PAGEOUTRUN);
2409
2410         do {
2411                 unsigned long lru_pages = 0;
2412                 int has_under_min_watermark_zone = 0;
2413
2414                 all_zones_ok = 1;
2415                 balanced = 0;
2416
2417                 /*
2418                  * Scan in the highmem->dma direction for the highest
2419                  * zone which needs scanning
2420                  */
2421                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2422                         struct zone *zone = pgdat->node_zones + i;
2423
2424                         if (!populated_zone(zone))
2425                                 continue;
2426
2427                         if (zone->all_unreclaimable &&
2428                             sc.priority != DEF_PRIORITY)
2429                                 continue;
2430
2431                         /*
2432                          * Do some background aging of the anon list, to give
2433                          * pages a chance to be referenced before reclaiming.
2434                          */
2435                         age_active_anon(zone, &sc);
2436
2437                         /*
2438                          * If the number of buffer_heads in the machine
2439                          * exceeds the maximum allowed level and this node
2440                          * has a highmem zone, force kswapd to reclaim from
2441                          * it to relieve lowmem pressure.
2442                          */
2443                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2444                                 end_zone = i;
2445                                 break;
2446                         }
2447
2448                         if (!zone_watermark_ok_safe(zone, order,
2449                                         high_wmark_pages(zone), 0, 0)) {
2450                                 end_zone = i;
2451                                 break;
2452                         } else {
2453                                 /* If balanced, clear the congested flag */
2454                                 zone_clear_flag(zone, ZONE_CONGESTED);
2455                         }
2456                 }
2457                 if (i < 0)
2458                         goto out;
2459
2460                 for (i = 0; i <= end_zone; i++) {
2461                         struct zone *zone = pgdat->node_zones + i;
2462
2463                         lru_pages += zone_reclaimable_pages(zone);
2464                 }
2465
2466                 /*
2467                  * Now scan the zone in the dma->highmem direction, stopping
2468                  * at the last zone which needs scanning.
2469                  *
2470                  * We do this because the page allocator works in the opposite
2471                  * direction.  This prevents the page allocator from allocating
2472                  * pages behind kswapd's direction of progress, which would
2473                  * cause too much scanning of the lower zones.
2474                  */
2475                 for (i = 0; i <= end_zone; i++) {
2476                         struct zone *zone = pgdat->node_zones + i;
2477                         int nr_slab, testorder;
2478                         unsigned long balance_gap;
2479
2480                         if (!populated_zone(zone))
2481                                 continue;
2482
2483                         if (zone->all_unreclaimable &&
2484                             sc.priority != DEF_PRIORITY)
2485                                 continue;
2486
2487                         sc.nr_scanned = 0;
2488
2489                         nr_soft_scanned = 0;
2490                         /*
2491                          * Call soft limit reclaim before calling shrink_zone.
2492                          */
2493                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2494                                                         order, sc.gfp_mask,
2495                                                         &nr_soft_scanned);
2496                         sc.nr_reclaimed += nr_soft_reclaimed;
2497                         total_scanned += nr_soft_scanned;
2498
2499                         /*
2500                          * We put equal pressure on every zone, unless
2501                          * one zone has way too many pages free
2502                          * already. The "too many pages" is defined
2503                          * as the high wmark plus a "gap" where the
2504                          * gap is either the low watermark or 1%
2505                          * of the zone, whichever is smaller.
2506                          */
2507                         balance_gap = min(low_wmark_pages(zone),
2508                                 (zone->present_pages +
2509                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2510                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2511                         /*
2512                          * Kswapd reclaims only single pages with compaction
2513                          * enabled. Trying too hard to reclaim until contiguous
2514                          * free pages have become available can hurt performance
2515                          * by evicting too much useful data from memory.
2516                          * Do not reclaim more than needed for compaction.
2517                          */
2518                         testorder = order;
2519                         if (COMPACTION_BUILD && order &&
2520                                         compaction_suitable(zone, order) !=
2521                                                 COMPACT_SKIPPED)
2522                                 testorder = 0;
2523
2524                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2525                                     !zone_watermark_ok_safe(zone, testorder,
2526                                         high_wmark_pages(zone) + balance_gap,
2527                                         end_zone, 0)) {
2528                                 shrink_zone(zone, &sc);
2529
2530                                 reclaim_state->reclaimed_slab = 0;
2531                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2532                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2533                                 total_scanned += sc.nr_scanned;
2534
2535                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2536                                         zone->all_unreclaimable = 1;
2537                         }
2538
2539                         /*
2540                          * If we've done a decent amount of scanning and
2541                          * the reclaim ratio is low, start doing writepage
2542                          * even in laptop mode
2543                          */
2544                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2545                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2546                                 sc.may_writepage = 1;
2547
2548                         if (zone->all_unreclaimable) {
2549                                 if (end_zone && end_zone == i)
2550                                         end_zone--;
2551                                 continue;
2552                         }
2553
2554                         if (!zone_watermark_ok_safe(zone, testorder,
2555                                         high_wmark_pages(zone), end_zone, 0)) {
2556                                 all_zones_ok = 0;
2557                                 /*
2558                                  * We are still under min water mark.  This
2559                                  * means that we have a GFP_ATOMIC allocation
2560                                  * failure risk. Hurry up!
2561                                  */
2562                                 if (!zone_watermark_ok_safe(zone, order,
2563                                             min_wmark_pages(zone), end_zone, 0))
2564                                         has_under_min_watermark_zone = 1;
2565                         } else {
2566                                 /*
2567                                  * If a zone reaches its high watermark,
2568                                  * consider it to be no longer congested. It's
2569                                  * possible there are dirty pages backed by
2570                                  * congested BDIs but as pressure is relieved,
2571                                  * spectulatively avoid congestion waits
2572                                  */
2573                                 zone_clear_flag(zone, ZONE_CONGESTED);
2574                                 if (i <= *classzone_idx)
2575                                         balanced += zone->present_pages;
2576                         }
2577
2578                 }
2579                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2580                         break;          /* kswapd: all done */
2581                 /*
2582                  * OK, kswapd is getting into trouble.  Take a nap, then take
2583                  * another pass across the zones.
2584                  */
2585                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2586                         if (has_under_min_watermark_zone)
2587                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2588                         else
2589                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2590                 }
2591
2592                 /*
2593                  * We do this so kswapd doesn't build up large priorities for
2594                  * example when it is freeing in parallel with allocators. It
2595                  * matches the direct reclaim path behaviour in terms of impact
2596                  * on zone->*_priority.
2597                  */
2598                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2599                         break;
2600         } while (--sc.priority >= 0);
2601 out:
2602
2603         /*
2604          * order-0: All zones must meet high watermark for a balanced node
2605          * high-order: Balanced zones must make up at least 25% of the node
2606          *             for the node to be balanced
2607          */
2608         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2609                 cond_resched();
2610
2611                 try_to_freeze();
2612
2613                 /*
2614                  * Fragmentation may mean that the system cannot be
2615                  * rebalanced for high-order allocations in all zones.
2616                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2617                  * it means the zones have been fully scanned and are still
2618                  * not balanced. For high-order allocations, there is
2619                  * little point trying all over again as kswapd may
2620                  * infinite loop.
2621                  *
2622                  * Instead, recheck all watermarks at order-0 as they
2623                  * are the most important. If watermarks are ok, kswapd will go
2624                  * back to sleep. High-order users can still perform direct
2625                  * reclaim if they wish.
2626                  */
2627                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2628                         order = sc.order = 0;
2629
2630                 goto loop_again;
2631         }
2632
2633         /*
2634          * If kswapd was reclaiming at a higher order, it has the option of
2635          * sleeping without all zones being balanced. Before it does, it must
2636          * ensure that the watermarks for order-0 on *all* zones are met and
2637          * that the congestion flags are cleared. The congestion flag must
2638          * be cleared as kswapd is the only mechanism that clears the flag
2639          * and it is potentially going to sleep here.
2640          */
2641         if (order) {
2642                 int zones_need_compaction = 1;
2643
2644                 for (i = 0; i <= end_zone; i++) {
2645                         struct zone *zone = pgdat->node_zones + i;
2646
2647                         if (!populated_zone(zone))
2648                                 continue;
2649
2650                         if (zone->all_unreclaimable &&
2651                             sc.priority != DEF_PRIORITY)
2652                                 continue;
2653
2654                         /* Would compaction fail due to lack of free memory? */
2655                         if (COMPACTION_BUILD &&
2656                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2657                                 goto loop_again;
2658
2659                         /* Confirm the zone is balanced for order-0 */
2660                         if (!zone_watermark_ok(zone, 0,
2661                                         high_wmark_pages(zone), 0, 0)) {
2662                                 order = sc.order = 0;
2663                                 goto loop_again;
2664                         }
2665
2666                         /* Check if the memory needs to be defragmented. */
2667                         if (zone_watermark_ok(zone, order,
2668                                     low_wmark_pages(zone), *classzone_idx, 0))
2669                                 zones_need_compaction = 0;
2670
2671                         /* If balanced, clear the congested flag */
2672                         zone_clear_flag(zone, ZONE_CONGESTED);
2673                 }
2674
2675                 if (zones_need_compaction)
2676                         compact_pgdat(pgdat, order);
2677         }
2678
2679         /*
2680          * Return the order we were reclaiming at so sleeping_prematurely()
2681          * makes a decision on the order we were last reclaiming at. However,
2682          * if another caller entered the allocator slow path while kswapd
2683          * was awake, order will remain at the higher level
2684          */
2685         *classzone_idx = end_zone;
2686         return order;
2687 }
2688
2689 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2690 {
2691         long remaining = 0;
2692         DEFINE_WAIT(wait);
2693
2694         if (freezing(current) || kthread_should_stop())
2695                 return;
2696
2697         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2698
2699         /* Try to sleep for a short interval */
2700         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2701                 remaining = schedule_timeout(HZ/10);
2702                 finish_wait(&pgdat->kswapd_wait, &wait);
2703                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2704         }
2705
2706         /*
2707          * After a short sleep, check if it was a premature sleep. If not, then
2708          * go fully to sleep until explicitly woken up.
2709          */
2710         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2711                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2712
2713                 /*
2714                  * vmstat counters are not perfectly accurate and the estimated
2715                  * value for counters such as NR_FREE_PAGES can deviate from the
2716                  * true value by nr_online_cpus * threshold. To avoid the zone
2717                  * watermarks being breached while under pressure, we reduce the
2718                  * per-cpu vmstat threshold while kswapd is awake and restore
2719                  * them before going back to sleep.
2720                  */
2721                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2722                 schedule();
2723                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2724         } else {
2725                 if (remaining)
2726                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2727                 else
2728                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2729         }
2730         finish_wait(&pgdat->kswapd_wait, &wait);
2731 }
2732
2733 /*
2734  * The background pageout daemon, started as a kernel thread
2735  * from the init process.
2736  *
2737  * This basically trickles out pages so that we have _some_
2738  * free memory available even if there is no other activity
2739  * that frees anything up. This is needed for things like routing
2740  * etc, where we otherwise might have all activity going on in
2741  * asynchronous contexts that cannot page things out.
2742  *
2743  * If there are applications that are active memory-allocators
2744  * (most normal use), this basically shouldn't matter.
2745  */
2746 static int kswapd(void *p)
2747 {
2748         unsigned long order, new_order;
2749         unsigned balanced_order;
2750         int classzone_idx, new_classzone_idx;
2751         int balanced_classzone_idx;
2752         pg_data_t *pgdat = (pg_data_t*)p;
2753         struct task_struct *tsk = current;
2754
2755         struct reclaim_state reclaim_state = {
2756                 .reclaimed_slab = 0,
2757         };
2758         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2759
2760         lockdep_set_current_reclaim_state(GFP_KERNEL);
2761
2762         if (!cpumask_empty(cpumask))
2763                 set_cpus_allowed_ptr(tsk, cpumask);
2764         current->reclaim_state = &reclaim_state;
2765
2766         /*
2767          * Tell the memory management that we're a "memory allocator",
2768          * and that if we need more memory we should get access to it
2769          * regardless (see "__alloc_pages()"). "kswapd" should
2770          * never get caught in the normal page freeing logic.
2771          *
2772          * (Kswapd normally doesn't need memory anyway, but sometimes
2773          * you need a small amount of memory in order to be able to
2774          * page out something else, and this flag essentially protects
2775          * us from recursively trying to free more memory as we're
2776          * trying to free the first piece of memory in the first place).
2777          */
2778         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2779         set_freezable();
2780
2781         order = new_order = 0;
2782         balanced_order = 0;
2783         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2784         balanced_classzone_idx = classzone_idx;
2785         for ( ; ; ) {
2786                 int ret;
2787
2788                 /*
2789                  * If the last balance_pgdat was unsuccessful it's unlikely a
2790                  * new request of a similar or harder type will succeed soon
2791                  * so consider going to sleep on the basis we reclaimed at
2792                  */
2793                 if (balanced_classzone_idx >= new_classzone_idx &&
2794                                         balanced_order == new_order) {
2795                         new_order = pgdat->kswapd_max_order;
2796                         new_classzone_idx = pgdat->classzone_idx;
2797                         pgdat->kswapd_max_order =  0;
2798                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2799                 }
2800
2801                 if (order < new_order || classzone_idx > new_classzone_idx) {
2802                         /*
2803                          * Don't sleep if someone wants a larger 'order'
2804                          * allocation or has tigher zone constraints
2805                          */
2806                         order = new_order;
2807                         classzone_idx = new_classzone_idx;
2808                 } else {
2809                         kswapd_try_to_sleep(pgdat, balanced_order,
2810                                                 balanced_classzone_idx);
2811                         order = pgdat->kswapd_max_order;
2812                         classzone_idx = pgdat->classzone_idx;
2813                         new_order = order;
2814                         new_classzone_idx = classzone_idx;
2815                         pgdat->kswapd_max_order = 0;
2816                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2817                 }
2818
2819                 ret = try_to_freeze();
2820                 if (kthread_should_stop())
2821                         break;
2822
2823                 /*
2824                  * We can speed up thawing tasks if we don't call balance_pgdat
2825                  * after returning from the refrigerator
2826                  */
2827                 if (!ret) {
2828                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2829                         balanced_classzone_idx = classzone_idx;
2830                         balanced_order = balance_pgdat(pgdat, order,
2831                                                 &balanced_classzone_idx);
2832                 }
2833         }
2834         return 0;
2835 }
2836
2837 /*
2838  * A zone is low on free memory, so wake its kswapd task to service it.
2839  */
2840 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2841 {
2842         pg_data_t *pgdat;
2843
2844         if (!populated_zone(zone))
2845                 return;
2846
2847         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2848                 return;
2849         pgdat = zone->zone_pgdat;
2850         if (pgdat->kswapd_max_order < order) {
2851                 pgdat->kswapd_max_order = order;
2852                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2853         }
2854         if (!waitqueue_active(&pgdat->kswapd_wait))
2855                 return;
2856         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2857                 return;
2858
2859         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2860         wake_up_interruptible(&pgdat->kswapd_wait);
2861 }
2862
2863 /*
2864  * The reclaimable count would be mostly accurate.
2865  * The less reclaimable pages may be
2866  * - mlocked pages, which will be moved to unevictable list when encountered
2867  * - mapped pages, which may require several travels to be reclaimed
2868  * - dirty pages, which is not "instantly" reclaimable
2869  */
2870 unsigned long global_reclaimable_pages(void)
2871 {
2872         int nr;
2873
2874         nr = global_page_state(NR_ACTIVE_FILE) +
2875              global_page_state(NR_INACTIVE_FILE);
2876
2877         if (nr_swap_pages > 0)
2878                 nr += global_page_state(NR_ACTIVE_ANON) +
2879                       global_page_state(NR_INACTIVE_ANON);
2880
2881         return nr;
2882 }
2883
2884 unsigned long zone_reclaimable_pages(struct zone *zone)
2885 {
2886         int nr;
2887
2888         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2889              zone_page_state(zone, NR_INACTIVE_FILE);
2890
2891         if (nr_swap_pages > 0)
2892                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2893                       zone_page_state(zone, NR_INACTIVE_ANON);
2894
2895         return nr;
2896 }
2897
2898 #ifdef CONFIG_HIBERNATION
2899 /*
2900  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2901  * freed pages.
2902  *
2903  * Rather than trying to age LRUs the aim is to preserve the overall
2904  * LRU order by reclaiming preferentially
2905  * inactive > active > active referenced > active mapped
2906  */
2907 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2908 {
2909         struct reclaim_state reclaim_state;
2910         struct scan_control sc = {
2911                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2912                 .may_swap = 1,
2913                 .may_unmap = 1,
2914                 .may_writepage = 1,
2915                 .nr_to_reclaim = nr_to_reclaim,
2916                 .hibernation_mode = 1,
2917                 .order = 0,
2918                 .priority = DEF_PRIORITY,
2919         };
2920         struct shrink_control shrink = {
2921                 .gfp_mask = sc.gfp_mask,
2922         };
2923         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2924         struct task_struct *p = current;
2925         unsigned long nr_reclaimed;
2926
2927         p->flags |= PF_MEMALLOC;
2928         lockdep_set_current_reclaim_state(sc.gfp_mask);
2929         reclaim_state.reclaimed_slab = 0;
2930         p->reclaim_state = &reclaim_state;
2931
2932         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2933
2934         p->reclaim_state = NULL;
2935         lockdep_clear_current_reclaim_state();
2936         p->flags &= ~PF_MEMALLOC;
2937
2938         return nr_reclaimed;
2939 }
2940 #endif /* CONFIG_HIBERNATION */
2941
2942 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2943    not required for correctness.  So if the last cpu in a node goes
2944    away, we get changed to run anywhere: as the first one comes back,
2945    restore their cpu bindings. */
2946 static int __devinit cpu_callback(struct notifier_block *nfb,
2947                                   unsigned long action, void *hcpu)
2948 {
2949         int nid;
2950
2951         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2952                 for_each_node_state(nid, N_HIGH_MEMORY) {
2953                         pg_data_t *pgdat = NODE_DATA(nid);
2954                         const struct cpumask *mask;
2955
2956                         mask = cpumask_of_node(pgdat->node_id);
2957
2958                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2959                                 /* One of our CPUs online: restore mask */
2960                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2961                 }
2962         }
2963         return NOTIFY_OK;
2964 }
2965
2966 /*
2967  * This kswapd start function will be called by init and node-hot-add.
2968  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2969  */
2970 int kswapd_run(int nid)
2971 {
2972         pg_data_t *pgdat = NODE_DATA(nid);
2973         int ret = 0;
2974
2975         if (pgdat->kswapd)
2976                 return 0;
2977
2978         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2979         if (IS_ERR(pgdat->kswapd)) {
2980                 /* failure at boot is fatal */
2981                 BUG_ON(system_state == SYSTEM_BOOTING);
2982                 printk("Failed to start kswapd on node %d\n",nid);
2983                 ret = -1;
2984         }
2985         return ret;
2986 }
2987
2988 /*
2989  * Called by memory hotplug when all memory in a node is offlined.
2990  */
2991 void kswapd_stop(int nid)
2992 {
2993         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2994
2995         if (kswapd)
2996                 kthread_stop(kswapd);
2997 }
2998
2999 static int __init kswapd_init(void)
3000 {
3001         int nid;
3002
3003         swap_setup();
3004         for_each_node_state(nid, N_HIGH_MEMORY)
3005                 kswapd_run(nid);
3006         hotcpu_notifier(cpu_callback, 0);
3007         return 0;
3008 }
3009
3010 module_init(kswapd_init)
3011
3012 #ifdef CONFIG_NUMA
3013 /*
3014  * Zone reclaim mode
3015  *
3016  * If non-zero call zone_reclaim when the number of free pages falls below
3017  * the watermarks.
3018  */
3019 int zone_reclaim_mode __read_mostly;
3020
3021 #define RECLAIM_OFF 0
3022 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3023 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3024 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3025
3026 /*
3027  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3028  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3029  * a zone.
3030  */
3031 #define ZONE_RECLAIM_PRIORITY 4
3032
3033 /*
3034  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3035  * occur.
3036  */
3037 int sysctl_min_unmapped_ratio = 1;
3038
3039 /*
3040  * If the number of slab pages in a zone grows beyond this percentage then
3041  * slab reclaim needs to occur.
3042  */
3043 int sysctl_min_slab_ratio = 5;
3044
3045 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3046 {
3047         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3048         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3049                 zone_page_state(zone, NR_ACTIVE_FILE);
3050
3051         /*
3052          * It's possible for there to be more file mapped pages than
3053          * accounted for by the pages on the file LRU lists because
3054          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3055          */
3056         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3057 }
3058
3059 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3060 static long zone_pagecache_reclaimable(struct zone *zone)
3061 {
3062         long nr_pagecache_reclaimable;
3063         long delta = 0;
3064
3065         /*
3066          * If RECLAIM_SWAP is set, then all file pages are considered
3067          * potentially reclaimable. Otherwise, we have to worry about
3068          * pages like swapcache and zone_unmapped_file_pages() provides
3069          * a better estimate
3070          */
3071         if (zone_reclaim_mode & RECLAIM_SWAP)
3072                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3073         else
3074                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3075
3076         /* If we can't clean pages, remove dirty pages from consideration */
3077         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3078                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3079
3080         /* Watch for any possible underflows due to delta */
3081         if (unlikely(delta > nr_pagecache_reclaimable))
3082                 delta = nr_pagecache_reclaimable;
3083
3084         return nr_pagecache_reclaimable - delta;
3085 }
3086
3087 /*
3088  * Try to free up some pages from this zone through reclaim.
3089  */
3090 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3091 {
3092         /* Minimum pages needed in order to stay on node */
3093         const unsigned long nr_pages = 1 << order;
3094         struct task_struct *p = current;
3095         struct reclaim_state reclaim_state;
3096         struct scan_control sc = {
3097                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3098                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3099                 .may_swap = 1,
3100                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3101                                        SWAP_CLUSTER_MAX),
3102                 .gfp_mask = gfp_mask,
3103                 .order = order,
3104                 .priority = ZONE_RECLAIM_PRIORITY,
3105         };
3106         struct shrink_control shrink = {
3107                 .gfp_mask = sc.gfp_mask,
3108         };
3109         unsigned long nr_slab_pages0, nr_slab_pages1;
3110
3111         cond_resched();
3112         /*
3113          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3114          * and we also need to be able to write out pages for RECLAIM_WRITE
3115          * and RECLAIM_SWAP.
3116          */
3117         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3118         lockdep_set_current_reclaim_state(gfp_mask);
3119         reclaim_state.reclaimed_slab = 0;
3120         p->reclaim_state = &reclaim_state;
3121
3122         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3123                 /*
3124                  * Free memory by calling shrink zone with increasing
3125                  * priorities until we have enough memory freed.
3126                  */
3127                 do {
3128                         shrink_zone(zone, &sc);
3129                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3130         }
3131
3132         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3133         if (nr_slab_pages0 > zone->min_slab_pages) {
3134                 /*
3135                  * shrink_slab() does not currently allow us to determine how
3136                  * many pages were freed in this zone. So we take the current
3137                  * number of slab pages and shake the slab until it is reduced
3138                  * by the same nr_pages that we used for reclaiming unmapped
3139                  * pages.
3140                  *
3141                  * Note that shrink_slab will free memory on all zones and may
3142                  * take a long time.
3143                  */
3144                 for (;;) {
3145                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3146
3147                         /* No reclaimable slab or very low memory pressure */
3148                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3149                                 break;
3150
3151                         /* Freed enough memory */
3152                         nr_slab_pages1 = zone_page_state(zone,
3153                                                         NR_SLAB_RECLAIMABLE);
3154                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3155                                 break;
3156                 }
3157
3158                 /*
3159                  * Update nr_reclaimed by the number of slab pages we
3160                  * reclaimed from this zone.
3161                  */
3162                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3163                 if (nr_slab_pages1 < nr_slab_pages0)
3164                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3165         }
3166
3167         p->reclaim_state = NULL;
3168         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3169         lockdep_clear_current_reclaim_state();
3170         return sc.nr_reclaimed >= nr_pages;
3171 }
3172
3173 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3174 {
3175         int node_id;
3176         int ret;
3177
3178         /*
3179          * Zone reclaim reclaims unmapped file backed pages and
3180          * slab pages if we are over the defined limits.
3181          *
3182          * A small portion of unmapped file backed pages is needed for
3183          * file I/O otherwise pages read by file I/O will be immediately
3184          * thrown out if the zone is overallocated. So we do not reclaim
3185          * if less than a specified percentage of the zone is used by
3186          * unmapped file backed pages.
3187          */
3188         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3189             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3190                 return ZONE_RECLAIM_FULL;
3191
3192         if (zone->all_unreclaimable)
3193                 return ZONE_RECLAIM_FULL;
3194
3195         /*
3196          * Do not scan if the allocation should not be delayed.
3197          */
3198         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3199                 return ZONE_RECLAIM_NOSCAN;
3200
3201         /*
3202          * Only run zone reclaim on the local zone or on zones that do not
3203          * have associated processors. This will favor the local processor
3204          * over remote processors and spread off node memory allocations
3205          * as wide as possible.
3206          */
3207         node_id = zone_to_nid(zone);
3208         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3209                 return ZONE_RECLAIM_NOSCAN;
3210
3211         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3212                 return ZONE_RECLAIM_NOSCAN;
3213
3214         ret = __zone_reclaim(zone, gfp_mask, order);
3215         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3216
3217         if (!ret)
3218                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3219
3220         return ret;
3221 }
3222 #endif
3223
3224 /*
3225  * page_evictable - test whether a page is evictable
3226  * @page: the page to test
3227  * @vma: the VMA in which the page is or will be mapped, may be NULL
3228  *
3229  * Test whether page is evictable--i.e., should be placed on active/inactive
3230  * lists vs unevictable list.  The vma argument is !NULL when called from the
3231  * fault path to determine how to instantate a new page.
3232  *
3233  * Reasons page might not be evictable:
3234  * (1) page's mapping marked unevictable
3235  * (2) page is part of an mlocked VMA
3236  *
3237  */
3238 int page_evictable(struct page *page, struct vm_area_struct *vma)
3239 {
3240
3241         if (mapping_unevictable(page_mapping(page)))
3242                 return 0;
3243
3244         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3245                 return 0;
3246
3247         return 1;
3248 }
3249
3250 #ifdef CONFIG_SHMEM
3251 /**
3252  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3253  * @pages:      array of pages to check
3254  * @nr_pages:   number of pages to check
3255  *
3256  * Checks pages for evictability and moves them to the appropriate lru list.
3257  *
3258  * This function is only used for SysV IPC SHM_UNLOCK.
3259  */
3260 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3261 {
3262         struct lruvec *lruvec;
3263         struct zone *zone = NULL;
3264         int pgscanned = 0;
3265         int pgrescued = 0;
3266         int i;
3267
3268         for (i = 0; i < nr_pages; i++) {
3269                 struct page *page = pages[i];
3270                 struct zone *pagezone;
3271
3272                 pgscanned++;
3273                 pagezone = page_zone(page);
3274                 if (pagezone != zone) {
3275                         if (zone)
3276                                 spin_unlock_irq(&zone->lru_lock);
3277                         zone = pagezone;
3278                         spin_lock_irq(&zone->lru_lock);
3279                 }
3280
3281                 if (!PageLRU(page) || !PageUnevictable(page))
3282                         continue;
3283
3284                 if (page_evictable(page, NULL)) {
3285                         enum lru_list lru = page_lru_base_type(page);
3286
3287                         VM_BUG_ON(PageActive(page));
3288                         ClearPageUnevictable(page);
3289                         __dec_zone_state(zone, NR_UNEVICTABLE);
3290                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3291                                                 LRU_UNEVICTABLE, lru);
3292                         list_move(&page->lru, &lruvec->lists[lru]);
3293                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3294                         pgrescued++;
3295                 }
3296         }
3297
3298         if (zone) {
3299                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3300                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3301                 spin_unlock_irq(&zone->lru_lock);
3302         }
3303 }
3304 #endif /* CONFIG_SHMEM */
3305
3306 static void warn_scan_unevictable_pages(void)
3307 {
3308         printk_once(KERN_WARNING
3309                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3310                     "disabled for lack of a legitimate use case.  If you have "
3311                     "one, please send an email to linux-mm@kvack.org.\n",
3312                     current->comm);
3313 }
3314
3315 /*
3316  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3317  * all nodes' unevictable lists for evictable pages
3318  */
3319 unsigned long scan_unevictable_pages;
3320
3321 int scan_unevictable_handler(struct ctl_table *table, int write,
3322                            void __user *buffer,
3323                            size_t *length, loff_t *ppos)
3324 {
3325         warn_scan_unevictable_pages();
3326         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3327         scan_unevictable_pages = 0;
3328         return 0;
3329 }
3330
3331 #ifdef CONFIG_NUMA
3332 /*
3333  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3334  * a specified node's per zone unevictable lists for evictable pages.
3335  */
3336
3337 static ssize_t read_scan_unevictable_node(struct device *dev,
3338                                           struct device_attribute *attr,
3339                                           char *buf)
3340 {
3341         warn_scan_unevictable_pages();
3342         return sprintf(buf, "0\n");     /* always zero; should fit... */
3343 }
3344
3345 static ssize_t write_scan_unevictable_node(struct device *dev,
3346                                            struct device_attribute *attr,
3347                                         const char *buf, size_t count)
3348 {
3349         warn_scan_unevictable_pages();
3350         return 1;
3351 }
3352
3353
3354 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3355                         read_scan_unevictable_node,
3356                         write_scan_unevictable_node);
3357
3358 int scan_unevictable_register_node(struct node *node)
3359 {
3360         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3361 }
3362
3363 void scan_unevictable_unregister_node(struct node *node)
3364 {
3365         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3366 }
3367 #endif