vmscan: activate executable pages after first usage
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         atomic_long_set(&shrinker->nr_in_batch, 0);
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 long total_scan;
251                 long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259                 if (max_pass <= 0)
260                         continue;
261
262                 /*
263                  * copy the current shrinker scan count into a local variable
264                  * and zero it so that other concurrent shrinker invocations
265                  * don't also do this scanning work.
266                  */
267                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269                 total_scan = nr;
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 if (total_scan > 0)
330                         new_nr = atomic_long_add_return(total_scan,
331                                         &shrinker->nr_in_batch);
332                 else
333                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock or AS_UNEVICTABLE clearing
637                  * (page is unlocked) make sure that if the other thread
638                  * does not observe our setting of PG_lru and fails
639                  * isolation/check_move_unevictable_page,
640                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked() or shmem_lock().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageAnon(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page || referenced_ptes > 1)
719                         return PAGEREF_ACTIVATE;
720
721                 /*
722                  * Activate file-backed executable pages after first usage.
723                  */
724                 if (vm_flags & VM_EXEC)
725                         return PAGEREF_ACTIVATE;
726
727                 return PAGEREF_KEEP;
728         }
729
730         /* Reclaim if clean, defer dirty pages to writeback */
731         if (referenced_page && !PageSwapBacked(page))
732                 return PAGEREF_RECLAIM_CLEAN;
733
734         return PAGEREF_RECLAIM;
735 }
736
737 static noinline_for_stack void free_page_list(struct list_head *free_pages)
738 {
739         struct pagevec freed_pvec;
740         struct page *page, *tmp;
741
742         pagevec_init(&freed_pvec, 1);
743
744         list_for_each_entry_safe(page, tmp, free_pages, lru) {
745                 list_del(&page->lru);
746                 if (!pagevec_add(&freed_pvec, page)) {
747                         __pagevec_free(&freed_pvec);
748                         pagevec_reinit(&freed_pvec);
749                 }
750         }
751
752         pagevec_free(&freed_pvec);
753 }
754
755 /*
756  * shrink_page_list() returns the number of reclaimed pages
757  */
758 static unsigned long shrink_page_list(struct list_head *page_list,
759                                       struct zone *zone,
760                                       struct scan_control *sc,
761                                       int priority,
762                                       unsigned long *ret_nr_dirty,
763                                       unsigned long *ret_nr_writeback)
764 {
765         LIST_HEAD(ret_pages);
766         LIST_HEAD(free_pages);
767         int pgactivate = 0;
768         unsigned long nr_dirty = 0;
769         unsigned long nr_congested = 0;
770         unsigned long nr_reclaimed = 0;
771         unsigned long nr_writeback = 0;
772
773         cond_resched();
774
775         while (!list_empty(page_list)) {
776                 enum page_references references;
777                 struct address_space *mapping;
778                 struct page *page;
779                 int may_enter_fs;
780
781                 cond_resched();
782
783                 page = lru_to_page(page_list);
784                 list_del(&page->lru);
785
786                 if (!trylock_page(page))
787                         goto keep;
788
789                 VM_BUG_ON(PageActive(page));
790                 VM_BUG_ON(page_zone(page) != zone);
791
792                 sc->nr_scanned++;
793
794                 if (unlikely(!page_evictable(page, NULL)))
795                         goto cull_mlocked;
796
797                 if (!sc->may_unmap && page_mapped(page))
798                         goto keep_locked;
799
800                 /* Double the slab pressure for mapped and swapcache pages */
801                 if (page_mapped(page) || PageSwapCache(page))
802                         sc->nr_scanned++;
803
804                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
805                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
806
807                 if (PageWriteback(page)) {
808                         nr_writeback++;
809                         /*
810                          * Synchronous reclaim cannot queue pages for
811                          * writeback due to the possibility of stack overflow
812                          * but if it encounters a page under writeback, wait
813                          * for the IO to complete.
814                          */
815                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816                             may_enter_fs)
817                                 wait_on_page_writeback(page);
818                         else {
819                                 unlock_page(page);
820                                 goto keep_lumpy;
821                         }
822                 }
823
824                 references = page_check_references(page, sc);
825                 switch (references) {
826                 case PAGEREF_ACTIVATE:
827                         goto activate_locked;
828                 case PAGEREF_KEEP:
829                         goto keep_locked;
830                 case PAGEREF_RECLAIM:
831                 case PAGEREF_RECLAIM_CLEAN:
832                         ; /* try to reclaim the page below */
833                 }
834
835                 /*
836                  * Anonymous process memory has backing store?
837                  * Try to allocate it some swap space here.
838                  */
839                 if (PageAnon(page) && !PageSwapCache(page)) {
840                         if (!(sc->gfp_mask & __GFP_IO))
841                                 goto keep_locked;
842                         if (!add_to_swap(page))
843                                 goto activate_locked;
844                         may_enter_fs = 1;
845                 }
846
847                 mapping = page_mapping(page);
848
849                 /*
850                  * The page is mapped into the page tables of one or more
851                  * processes. Try to unmap it here.
852                  */
853                 if (page_mapped(page) && mapping) {
854                         switch (try_to_unmap(page, TTU_UNMAP)) {
855                         case SWAP_FAIL:
856                                 goto activate_locked;
857                         case SWAP_AGAIN:
858                                 goto keep_locked;
859                         case SWAP_MLOCK:
860                                 goto cull_mlocked;
861                         case SWAP_SUCCESS:
862                                 ; /* try to free the page below */
863                         }
864                 }
865
866                 if (PageDirty(page)) {
867                         nr_dirty++;
868
869                         /*
870                          * Only kswapd can writeback filesystem pages to
871                          * avoid risk of stack overflow but do not writeback
872                          * unless under significant pressure.
873                          */
874                         if (page_is_file_cache(page) &&
875                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
876                                 /*
877                                  * Immediately reclaim when written back.
878                                  * Similar in principal to deactivate_page()
879                                  * except we already have the page isolated
880                                  * and know it's dirty
881                                  */
882                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
883                                 SetPageReclaim(page);
884
885                                 goto keep_locked;
886                         }
887
888                         if (references == PAGEREF_RECLAIM_CLEAN)
889                                 goto keep_locked;
890                         if (!may_enter_fs)
891                                 goto keep_locked;
892                         if (!sc->may_writepage)
893                                 goto keep_locked;
894
895                         /* Page is dirty, try to write it out here */
896                         switch (pageout(page, mapping, sc)) {
897                         case PAGE_KEEP:
898                                 nr_congested++;
899                                 goto keep_locked;
900                         case PAGE_ACTIVATE:
901                                 goto activate_locked;
902                         case PAGE_SUCCESS:
903                                 if (PageWriteback(page))
904                                         goto keep_lumpy;
905                                 if (PageDirty(page))
906                                         goto keep;
907
908                                 /*
909                                  * A synchronous write - probably a ramdisk.  Go
910                                  * ahead and try to reclaim the page.
911                                  */
912                                 if (!trylock_page(page))
913                                         goto keep;
914                                 if (PageDirty(page) || PageWriteback(page))
915                                         goto keep_locked;
916                                 mapping = page_mapping(page);
917                         case PAGE_CLEAN:
918                                 ; /* try to free the page below */
919                         }
920                 }
921
922                 /*
923                  * If the page has buffers, try to free the buffer mappings
924                  * associated with this page. If we succeed we try to free
925                  * the page as well.
926                  *
927                  * We do this even if the page is PageDirty().
928                  * try_to_release_page() does not perform I/O, but it is
929                  * possible for a page to have PageDirty set, but it is actually
930                  * clean (all its buffers are clean).  This happens if the
931                  * buffers were written out directly, with submit_bh(). ext3
932                  * will do this, as well as the blockdev mapping.
933                  * try_to_release_page() will discover that cleanness and will
934                  * drop the buffers and mark the page clean - it can be freed.
935                  *
936                  * Rarely, pages can have buffers and no ->mapping.  These are
937                  * the pages which were not successfully invalidated in
938                  * truncate_complete_page().  We try to drop those buffers here
939                  * and if that worked, and the page is no longer mapped into
940                  * process address space (page_count == 1) it can be freed.
941                  * Otherwise, leave the page on the LRU so it is swappable.
942                  */
943                 if (page_has_private(page)) {
944                         if (!try_to_release_page(page, sc->gfp_mask))
945                                 goto activate_locked;
946                         if (!mapping && page_count(page) == 1) {
947                                 unlock_page(page);
948                                 if (put_page_testzero(page))
949                                         goto free_it;
950                                 else {
951                                         /*
952                                          * rare race with speculative reference.
953                                          * the speculative reference will free
954                                          * this page shortly, so we may
955                                          * increment nr_reclaimed here (and
956                                          * leave it off the LRU).
957                                          */
958                                         nr_reclaimed++;
959                                         continue;
960                                 }
961                         }
962                 }
963
964                 if (!mapping || !__remove_mapping(mapping, page))
965                         goto keep_locked;
966
967                 /*
968                  * At this point, we have no other references and there is
969                  * no way to pick any more up (removed from LRU, removed
970                  * from pagecache). Can use non-atomic bitops now (and
971                  * we obviously don't have to worry about waking up a process
972                  * waiting on the page lock, because there are no references.
973                  */
974                 __clear_page_locked(page);
975 free_it:
976                 nr_reclaimed++;
977
978                 /*
979                  * Is there need to periodically free_page_list? It would
980                  * appear not as the counts should be low
981                  */
982                 list_add(&page->lru, &free_pages);
983                 continue;
984
985 cull_mlocked:
986                 if (PageSwapCache(page))
987                         try_to_free_swap(page);
988                 unlock_page(page);
989                 putback_lru_page(page);
990                 reset_reclaim_mode(sc);
991                 continue;
992
993 activate_locked:
994                 /* Not a candidate for swapping, so reclaim swap space. */
995                 if (PageSwapCache(page) && vm_swap_full())
996                         try_to_free_swap(page);
997                 VM_BUG_ON(PageActive(page));
998                 SetPageActive(page);
999                 pgactivate++;
1000 keep_locked:
1001                 unlock_page(page);
1002 keep:
1003                 reset_reclaim_mode(sc);
1004 keep_lumpy:
1005                 list_add(&page->lru, &ret_pages);
1006                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1007         }
1008
1009         /*
1010          * Tag a zone as congested if all the dirty pages encountered were
1011          * backed by a congested BDI. In this case, reclaimers should just
1012          * back off and wait for congestion to clear because further reclaim
1013          * will encounter the same problem
1014          */
1015         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1016                 zone_set_flag(zone, ZONE_CONGESTED);
1017
1018         free_page_list(&free_pages);
1019
1020         list_splice(&ret_pages, page_list);
1021         count_vm_events(PGACTIVATE, pgactivate);
1022         *ret_nr_dirty += nr_dirty;
1023         *ret_nr_writeback += nr_writeback;
1024         return nr_reclaimed;
1025 }
1026
1027 /*
1028  * Attempt to remove the specified page from its LRU.  Only take this page
1029  * if it is of the appropriate PageActive status.  Pages which are being
1030  * freed elsewhere are also ignored.
1031  *
1032  * page:        page to consider
1033  * mode:        one of the LRU isolation modes defined above
1034  *
1035  * returns 0 on success, -ve errno on failure.
1036  */
1037 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1038 {
1039         bool all_lru_mode;
1040         int ret = -EINVAL;
1041
1042         /* Only take pages on the LRU. */
1043         if (!PageLRU(page))
1044                 return ret;
1045
1046         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1047                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1048
1049         /*
1050          * When checking the active state, we need to be sure we are
1051          * dealing with comparible boolean values.  Take the logical not
1052          * of each.
1053          */
1054         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1055                 return ret;
1056
1057         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1058                 return ret;
1059
1060         /*
1061          * When this function is being called for lumpy reclaim, we
1062          * initially look into all LRU pages, active, inactive and
1063          * unevictable; only give shrink_page_list evictable pages.
1064          */
1065         if (PageUnevictable(page))
1066                 return ret;
1067
1068         ret = -EBUSY;
1069
1070         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1071                 return ret;
1072
1073         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1074                 return ret;
1075
1076         if (likely(get_page_unless_zero(page))) {
1077                 /*
1078                  * Be careful not to clear PageLRU until after we're
1079                  * sure the page is not being freed elsewhere -- the
1080                  * page release code relies on it.
1081                  */
1082                 ClearPageLRU(page);
1083                 ret = 0;
1084         }
1085
1086         return ret;
1087 }
1088
1089 /*
1090  * zone->lru_lock is heavily contended.  Some of the functions that
1091  * shrink the lists perform better by taking out a batch of pages
1092  * and working on them outside the LRU lock.
1093  *
1094  * For pagecache intensive workloads, this function is the hottest
1095  * spot in the kernel (apart from copy_*_user functions).
1096  *
1097  * Appropriate locks must be held before calling this function.
1098  *
1099  * @nr_to_scan: The number of pages to look through on the list.
1100  * @src:        The LRU list to pull pages off.
1101  * @dst:        The temp list to put pages on to.
1102  * @scanned:    The number of pages that were scanned.
1103  * @order:      The caller's attempted allocation order
1104  * @mode:       One of the LRU isolation modes
1105  * @file:       True [1] if isolating file [!anon] pages
1106  *
1107  * returns how many pages were moved onto *@dst.
1108  */
1109 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1110                 struct list_head *src, struct list_head *dst,
1111                 unsigned long *scanned, int order, isolate_mode_t mode,
1112                 int file)
1113 {
1114         unsigned long nr_taken = 0;
1115         unsigned long nr_lumpy_taken = 0;
1116         unsigned long nr_lumpy_dirty = 0;
1117         unsigned long nr_lumpy_failed = 0;
1118         unsigned long scan;
1119
1120         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1121                 struct page *page;
1122                 unsigned long pfn;
1123                 unsigned long end_pfn;
1124                 unsigned long page_pfn;
1125                 int zone_id;
1126
1127                 page = lru_to_page(src);
1128                 prefetchw_prev_lru_page(page, src, flags);
1129
1130                 VM_BUG_ON(!PageLRU(page));
1131
1132                 switch (__isolate_lru_page(page, mode, file)) {
1133                 case 0:
1134                         list_move(&page->lru, dst);
1135                         mem_cgroup_del_lru(page);
1136                         nr_taken += hpage_nr_pages(page);
1137                         break;
1138
1139                 case -EBUSY:
1140                         /* else it is being freed elsewhere */
1141                         list_move(&page->lru, src);
1142                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1143                         continue;
1144
1145                 default:
1146                         BUG();
1147                 }
1148
1149                 if (!order)
1150                         continue;
1151
1152                 /*
1153                  * Attempt to take all pages in the order aligned region
1154                  * surrounding the tag page.  Only take those pages of
1155                  * the same active state as that tag page.  We may safely
1156                  * round the target page pfn down to the requested order
1157                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1158                  * where that page is in a different zone we will detect
1159                  * it from its zone id and abort this block scan.
1160                  */
1161                 zone_id = page_zone_id(page);
1162                 page_pfn = page_to_pfn(page);
1163                 pfn = page_pfn & ~((1 << order) - 1);
1164                 end_pfn = pfn + (1 << order);
1165                 for (; pfn < end_pfn; pfn++) {
1166                         struct page *cursor_page;
1167
1168                         /* The target page is in the block, ignore it. */
1169                         if (unlikely(pfn == page_pfn))
1170                                 continue;
1171
1172                         /* Avoid holes within the zone. */
1173                         if (unlikely(!pfn_valid_within(pfn)))
1174                                 break;
1175
1176                         cursor_page = pfn_to_page(pfn);
1177
1178                         /* Check that we have not crossed a zone boundary. */
1179                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1180                                 break;
1181
1182                         /*
1183                          * If we don't have enough swap space, reclaiming of
1184                          * anon page which don't already have a swap slot is
1185                          * pointless.
1186                          */
1187                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1188                             !PageSwapCache(cursor_page))
1189                                 break;
1190
1191                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1192                                 list_move(&cursor_page->lru, dst);
1193                                 mem_cgroup_del_lru(cursor_page);
1194                                 nr_taken += hpage_nr_pages(page);
1195                                 nr_lumpy_taken++;
1196                                 if (PageDirty(cursor_page))
1197                                         nr_lumpy_dirty++;
1198                                 scan++;
1199                         } else {
1200                                 /*
1201                                  * Check if the page is freed already.
1202                                  *
1203                                  * We can't use page_count() as that
1204                                  * requires compound_head and we don't
1205                                  * have a pin on the page here. If a
1206                                  * page is tail, we may or may not
1207                                  * have isolated the head, so assume
1208                                  * it's not free, it'd be tricky to
1209                                  * track the head status without a
1210                                  * page pin.
1211                                  */
1212                                 if (!PageTail(cursor_page) &&
1213                                     !atomic_read(&cursor_page->_count))
1214                                         continue;
1215                                 break;
1216                         }
1217                 }
1218
1219                 /* If we break out of the loop above, lumpy reclaim failed */
1220                 if (pfn < end_pfn)
1221                         nr_lumpy_failed++;
1222         }
1223
1224         *scanned = scan;
1225
1226         trace_mm_vmscan_lru_isolate(order,
1227                         nr_to_scan, scan,
1228                         nr_taken,
1229                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1230                         mode);
1231         return nr_taken;
1232 }
1233
1234 static unsigned long isolate_pages_global(unsigned long nr,
1235                                         struct list_head *dst,
1236                                         unsigned long *scanned, int order,
1237                                         isolate_mode_t mode,
1238                                         struct zone *z, int active, int file)
1239 {
1240         int lru = LRU_BASE;
1241         if (active)
1242                 lru += LRU_ACTIVE;
1243         if (file)
1244                 lru += LRU_FILE;
1245         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1246                                                                 mode, file);
1247 }
1248
1249 /*
1250  * clear_active_flags() is a helper for shrink_active_list(), clearing
1251  * any active bits from the pages in the list.
1252  */
1253 static unsigned long clear_active_flags(struct list_head *page_list,
1254                                         unsigned int *count)
1255 {
1256         int nr_active = 0;
1257         int lru;
1258         struct page *page;
1259
1260         list_for_each_entry(page, page_list, lru) {
1261                 int numpages = hpage_nr_pages(page);
1262                 lru = page_lru_base_type(page);
1263                 if (PageActive(page)) {
1264                         lru += LRU_ACTIVE;
1265                         ClearPageActive(page);
1266                         nr_active += numpages;
1267                 }
1268                 if (count)
1269                         count[lru] += numpages;
1270         }
1271
1272         return nr_active;
1273 }
1274
1275 /**
1276  * isolate_lru_page - tries to isolate a page from its LRU list
1277  * @page: page to isolate from its LRU list
1278  *
1279  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1280  * vmstat statistic corresponding to whatever LRU list the page was on.
1281  *
1282  * Returns 0 if the page was removed from an LRU list.
1283  * Returns -EBUSY if the page was not on an LRU list.
1284  *
1285  * The returned page will have PageLRU() cleared.  If it was found on
1286  * the active list, it will have PageActive set.  If it was found on
1287  * the unevictable list, it will have the PageUnevictable bit set. That flag
1288  * may need to be cleared by the caller before letting the page go.
1289  *
1290  * The vmstat statistic corresponding to the list on which the page was
1291  * found will be decremented.
1292  *
1293  * Restrictions:
1294  * (1) Must be called with an elevated refcount on the page. This is a
1295  *     fundamentnal difference from isolate_lru_pages (which is called
1296  *     without a stable reference).
1297  * (2) the lru_lock must not be held.
1298  * (3) interrupts must be enabled.
1299  */
1300 int isolate_lru_page(struct page *page)
1301 {
1302         int ret = -EBUSY;
1303
1304         VM_BUG_ON(!page_count(page));
1305
1306         if (PageLRU(page)) {
1307                 struct zone *zone = page_zone(page);
1308
1309                 spin_lock_irq(&zone->lru_lock);
1310                 if (PageLRU(page)) {
1311                         int lru = page_lru(page);
1312                         ret = 0;
1313                         get_page(page);
1314                         ClearPageLRU(page);
1315
1316                         del_page_from_lru_list(zone, page, lru);
1317                 }
1318                 spin_unlock_irq(&zone->lru_lock);
1319         }
1320         return ret;
1321 }
1322
1323 /*
1324  * Are there way too many processes in the direct reclaim path already?
1325  */
1326 static int too_many_isolated(struct zone *zone, int file,
1327                 struct scan_control *sc)
1328 {
1329         unsigned long inactive, isolated;
1330
1331         if (current_is_kswapd())
1332                 return 0;
1333
1334         if (!scanning_global_lru(sc))
1335                 return 0;
1336
1337         if (file) {
1338                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1339                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1340         } else {
1341                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1342                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1343         }
1344
1345         return isolated > inactive;
1346 }
1347
1348 /*
1349  * TODO: Try merging with migrations version of putback_lru_pages
1350  */
1351 static noinline_for_stack void
1352 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1353                                 unsigned long nr_anon, unsigned long nr_file,
1354                                 struct list_head *page_list)
1355 {
1356         struct page *page;
1357         struct pagevec pvec;
1358         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1359
1360         pagevec_init(&pvec, 1);
1361
1362         /*
1363          * Put back any unfreeable pages.
1364          */
1365         spin_lock(&zone->lru_lock);
1366         while (!list_empty(page_list)) {
1367                 int lru;
1368                 page = lru_to_page(page_list);
1369                 VM_BUG_ON(PageLRU(page));
1370                 list_del(&page->lru);
1371                 if (unlikely(!page_evictable(page, NULL))) {
1372                         spin_unlock_irq(&zone->lru_lock);
1373                         putback_lru_page(page);
1374                         spin_lock_irq(&zone->lru_lock);
1375                         continue;
1376                 }
1377                 SetPageLRU(page);
1378                 lru = page_lru(page);
1379                 add_page_to_lru_list(zone, page, lru);
1380                 if (is_active_lru(lru)) {
1381                         int file = is_file_lru(lru);
1382                         int numpages = hpage_nr_pages(page);
1383                         reclaim_stat->recent_rotated[file] += numpages;
1384                 }
1385                 if (!pagevec_add(&pvec, page)) {
1386                         spin_unlock_irq(&zone->lru_lock);
1387                         __pagevec_release(&pvec);
1388                         spin_lock_irq(&zone->lru_lock);
1389                 }
1390         }
1391         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1392         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1393
1394         spin_unlock_irq(&zone->lru_lock);
1395         pagevec_release(&pvec);
1396 }
1397
1398 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1399                                         struct scan_control *sc,
1400                                         unsigned long *nr_anon,
1401                                         unsigned long *nr_file,
1402                                         struct list_head *isolated_list)
1403 {
1404         unsigned long nr_active;
1405         unsigned int count[NR_LRU_LISTS] = { 0, };
1406         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1407
1408         nr_active = clear_active_flags(isolated_list, count);
1409         __count_vm_events(PGDEACTIVATE, nr_active);
1410
1411         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1412                               -count[LRU_ACTIVE_FILE]);
1413         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1414                               -count[LRU_INACTIVE_FILE]);
1415         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1416                               -count[LRU_ACTIVE_ANON]);
1417         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1418                               -count[LRU_INACTIVE_ANON]);
1419
1420         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1421         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1422         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1423         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1424
1425         reclaim_stat->recent_scanned[0] += *nr_anon;
1426         reclaim_stat->recent_scanned[1] += *nr_file;
1427 }
1428
1429 /*
1430  * Returns true if a direct reclaim should wait on pages under writeback.
1431  *
1432  * If we are direct reclaiming for contiguous pages and we do not reclaim
1433  * everything in the list, try again and wait for writeback IO to complete.
1434  * This will stall high-order allocations noticeably. Only do that when really
1435  * need to free the pages under high memory pressure.
1436  */
1437 static inline bool should_reclaim_stall(unsigned long nr_taken,
1438                                         unsigned long nr_freed,
1439                                         int priority,
1440                                         struct scan_control *sc)
1441 {
1442         int lumpy_stall_priority;
1443
1444         /* kswapd should not stall on sync IO */
1445         if (current_is_kswapd())
1446                 return false;
1447
1448         /* Only stall on lumpy reclaim */
1449         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1450                 return false;
1451
1452         /* If we have reclaimed everything on the isolated list, no stall */
1453         if (nr_freed == nr_taken)
1454                 return false;
1455
1456         /*
1457          * For high-order allocations, there are two stall thresholds.
1458          * High-cost allocations stall immediately where as lower
1459          * order allocations such as stacks require the scanning
1460          * priority to be much higher before stalling.
1461          */
1462         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1463                 lumpy_stall_priority = DEF_PRIORITY;
1464         else
1465                 lumpy_stall_priority = DEF_PRIORITY / 3;
1466
1467         return priority <= lumpy_stall_priority;
1468 }
1469
1470 /*
1471  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1472  * of reclaimed pages
1473  */
1474 static noinline_for_stack unsigned long
1475 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1476                         struct scan_control *sc, int priority, int file)
1477 {
1478         LIST_HEAD(page_list);
1479         unsigned long nr_scanned;
1480         unsigned long nr_reclaimed = 0;
1481         unsigned long nr_taken;
1482         unsigned long nr_anon;
1483         unsigned long nr_file;
1484         unsigned long nr_dirty = 0;
1485         unsigned long nr_writeback = 0;
1486         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1487
1488         while (unlikely(too_many_isolated(zone, file, sc))) {
1489                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1490
1491                 /* We are about to die and free our memory. Return now. */
1492                 if (fatal_signal_pending(current))
1493                         return SWAP_CLUSTER_MAX;
1494         }
1495
1496         set_reclaim_mode(priority, sc, false);
1497         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1498                 reclaim_mode |= ISOLATE_ACTIVE;
1499
1500         lru_add_drain();
1501
1502         if (!sc->may_unmap)
1503                 reclaim_mode |= ISOLATE_UNMAPPED;
1504         if (!sc->may_writepage)
1505                 reclaim_mode |= ISOLATE_CLEAN;
1506
1507         spin_lock_irq(&zone->lru_lock);
1508
1509         if (scanning_global_lru(sc)) {
1510                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1511                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1512                 zone->pages_scanned += nr_scanned;
1513                 if (current_is_kswapd())
1514                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1515                                                nr_scanned);
1516                 else
1517                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1518                                                nr_scanned);
1519         } else {
1520                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1521                         &nr_scanned, sc->order, reclaim_mode, zone,
1522                         sc->mem_cgroup, 0, file);
1523                 /*
1524                  * mem_cgroup_isolate_pages() keeps track of
1525                  * scanned pages on its own.
1526                  */
1527         }
1528
1529         if (nr_taken == 0) {
1530                 spin_unlock_irq(&zone->lru_lock);
1531                 return 0;
1532         }
1533
1534         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1535
1536         spin_unlock_irq(&zone->lru_lock);
1537
1538         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1539                                                 &nr_dirty, &nr_writeback);
1540
1541         /* Check if we should syncronously wait for writeback */
1542         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1543                 set_reclaim_mode(priority, sc, true);
1544                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1545                                         priority, &nr_dirty, &nr_writeback);
1546         }
1547
1548         local_irq_disable();
1549         if (current_is_kswapd())
1550                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1551         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1552
1553         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1554
1555         /*
1556          * If reclaim is isolating dirty pages under writeback, it implies
1557          * that the long-lived page allocation rate is exceeding the page
1558          * laundering rate. Either the global limits are not being effective
1559          * at throttling processes due to the page distribution throughout
1560          * zones or there is heavy usage of a slow backing device. The
1561          * only option is to throttle from reclaim context which is not ideal
1562          * as there is no guarantee the dirtying process is throttled in the
1563          * same way balance_dirty_pages() manages.
1564          *
1565          * This scales the number of dirty pages that must be under writeback
1566          * before throttling depending on priority. It is a simple backoff
1567          * function that has the most effect in the range DEF_PRIORITY to
1568          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1569          * in trouble and reclaim is considered to be in trouble.
1570          *
1571          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1572          * DEF_PRIORITY-1  50% must be PageWriteback
1573          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1574          * ...
1575          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1576          *                     isolated page is PageWriteback
1577          */
1578         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1579                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
1581         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582                 zone_idx(zone),
1583                 nr_scanned, nr_reclaimed,
1584                 priority,
1585                 trace_shrink_flags(file, sc->reclaim_mode));
1586         return nr_reclaimed;
1587 }
1588
1589 /*
1590  * This moves pages from the active list to the inactive list.
1591  *
1592  * We move them the other way if the page is referenced by one or more
1593  * processes, from rmap.
1594  *
1595  * If the pages are mostly unmapped, the processing is fast and it is
1596  * appropriate to hold zone->lru_lock across the whole operation.  But if
1597  * the pages are mapped, the processing is slow (page_referenced()) so we
1598  * should drop zone->lru_lock around each page.  It's impossible to balance
1599  * this, so instead we remove the pages from the LRU while processing them.
1600  * It is safe to rely on PG_active against the non-LRU pages in here because
1601  * nobody will play with that bit on a non-LRU page.
1602  *
1603  * The downside is that we have to touch page->_count against each page.
1604  * But we had to alter page->flags anyway.
1605  */
1606
1607 static void move_active_pages_to_lru(struct zone *zone,
1608                                      struct list_head *list,
1609                                      enum lru_list lru)
1610 {
1611         unsigned long pgmoved = 0;
1612         struct pagevec pvec;
1613         struct page *page;
1614
1615         pagevec_init(&pvec, 1);
1616
1617         while (!list_empty(list)) {
1618                 page = lru_to_page(list);
1619
1620                 VM_BUG_ON(PageLRU(page));
1621                 SetPageLRU(page);
1622
1623                 list_move(&page->lru, &zone->lru[lru].list);
1624                 mem_cgroup_add_lru_list(page, lru);
1625                 pgmoved += hpage_nr_pages(page);
1626
1627                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1628                         spin_unlock_irq(&zone->lru_lock);
1629                         if (buffer_heads_over_limit)
1630                                 pagevec_strip(&pvec);
1631                         __pagevec_release(&pvec);
1632                         spin_lock_irq(&zone->lru_lock);
1633                 }
1634         }
1635         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1636         if (!is_active_lru(lru))
1637                 __count_vm_events(PGDEACTIVATE, pgmoved);
1638 }
1639
1640 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1641                         struct scan_control *sc, int priority, int file)
1642 {
1643         unsigned long nr_taken;
1644         unsigned long pgscanned;
1645         unsigned long vm_flags;
1646         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1647         LIST_HEAD(l_active);
1648         LIST_HEAD(l_inactive);
1649         struct page *page;
1650         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1651         unsigned long nr_rotated = 0;
1652         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1653
1654         lru_add_drain();
1655
1656         if (!sc->may_unmap)
1657                 reclaim_mode |= ISOLATE_UNMAPPED;
1658         if (!sc->may_writepage)
1659                 reclaim_mode |= ISOLATE_CLEAN;
1660
1661         spin_lock_irq(&zone->lru_lock);
1662         if (scanning_global_lru(sc)) {
1663                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1664                                                 &pgscanned, sc->order,
1665                                                 reclaim_mode, zone,
1666                                                 1, file);
1667                 zone->pages_scanned += pgscanned;
1668         } else {
1669                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1670                                                 &pgscanned, sc->order,
1671                                                 reclaim_mode, zone,
1672                                                 sc->mem_cgroup, 1, file);
1673                 /*
1674                  * mem_cgroup_isolate_pages() keeps track of
1675                  * scanned pages on its own.
1676                  */
1677         }
1678
1679         reclaim_stat->recent_scanned[file] += nr_taken;
1680
1681         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1682         if (file)
1683                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1684         else
1685                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1686         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1687         spin_unlock_irq(&zone->lru_lock);
1688
1689         while (!list_empty(&l_hold)) {
1690                 cond_resched();
1691                 page = lru_to_page(&l_hold);
1692                 list_del(&page->lru);
1693
1694                 if (unlikely(!page_evictable(page, NULL))) {
1695                         putback_lru_page(page);
1696                         continue;
1697                 }
1698
1699                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1700                         nr_rotated += hpage_nr_pages(page);
1701                         /*
1702                          * Identify referenced, file-backed active pages and
1703                          * give them one more trip around the active list. So
1704                          * that executable code get better chances to stay in
1705                          * memory under moderate memory pressure.  Anon pages
1706                          * are not likely to be evicted by use-once streaming
1707                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1708                          * so we ignore them here.
1709                          */
1710                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1711                                 list_add(&page->lru, &l_active);
1712                                 continue;
1713                         }
1714                 }
1715
1716                 ClearPageActive(page);  /* we are de-activating */
1717                 list_add(&page->lru, &l_inactive);
1718         }
1719
1720         /*
1721          * Move pages back to the lru list.
1722          */
1723         spin_lock_irq(&zone->lru_lock);
1724         /*
1725          * Count referenced pages from currently used mappings as rotated,
1726          * even though only some of them are actually re-activated.  This
1727          * helps balance scan pressure between file and anonymous pages in
1728          * get_scan_ratio.
1729          */
1730         reclaim_stat->recent_rotated[file] += nr_rotated;
1731
1732         move_active_pages_to_lru(zone, &l_active,
1733                                                 LRU_ACTIVE + file * LRU_FILE);
1734         move_active_pages_to_lru(zone, &l_inactive,
1735                                                 LRU_BASE   + file * LRU_FILE);
1736         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1737         spin_unlock_irq(&zone->lru_lock);
1738 }
1739
1740 #ifdef CONFIG_SWAP
1741 static int inactive_anon_is_low_global(struct zone *zone)
1742 {
1743         unsigned long active, inactive;
1744
1745         active = zone_page_state(zone, NR_ACTIVE_ANON);
1746         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1747
1748         if (inactive * zone->inactive_ratio < active)
1749                 return 1;
1750
1751         return 0;
1752 }
1753
1754 /**
1755  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1756  * @zone: zone to check
1757  * @sc:   scan control of this context
1758  *
1759  * Returns true if the zone does not have enough inactive anon pages,
1760  * meaning some active anon pages need to be deactivated.
1761  */
1762 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1763 {
1764         int low;
1765
1766         /*
1767          * If we don't have swap space, anonymous page deactivation
1768          * is pointless.
1769          */
1770         if (!total_swap_pages)
1771                 return 0;
1772
1773         if (scanning_global_lru(sc))
1774                 low = inactive_anon_is_low_global(zone);
1775         else
1776                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1777         return low;
1778 }
1779 #else
1780 static inline int inactive_anon_is_low(struct zone *zone,
1781                                         struct scan_control *sc)
1782 {
1783         return 0;
1784 }
1785 #endif
1786
1787 static int inactive_file_is_low_global(struct zone *zone)
1788 {
1789         unsigned long active, inactive;
1790
1791         active = zone_page_state(zone, NR_ACTIVE_FILE);
1792         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1793
1794         return (active > inactive);
1795 }
1796
1797 /**
1798  * inactive_file_is_low - check if file pages need to be deactivated
1799  * @zone: zone to check
1800  * @sc:   scan control of this context
1801  *
1802  * When the system is doing streaming IO, memory pressure here
1803  * ensures that active file pages get deactivated, until more
1804  * than half of the file pages are on the inactive list.
1805  *
1806  * Once we get to that situation, protect the system's working
1807  * set from being evicted by disabling active file page aging.
1808  *
1809  * This uses a different ratio than the anonymous pages, because
1810  * the page cache uses a use-once replacement algorithm.
1811  */
1812 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1813 {
1814         int low;
1815
1816         if (scanning_global_lru(sc))
1817                 low = inactive_file_is_low_global(zone);
1818         else
1819                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1820         return low;
1821 }
1822
1823 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1824                                 int file)
1825 {
1826         if (file)
1827                 return inactive_file_is_low(zone, sc);
1828         else
1829                 return inactive_anon_is_low(zone, sc);
1830 }
1831
1832 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1833         struct zone *zone, struct scan_control *sc, int priority)
1834 {
1835         int file = is_file_lru(lru);
1836
1837         if (is_active_lru(lru)) {
1838                 if (inactive_list_is_low(zone, sc, file))
1839                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1840                 return 0;
1841         }
1842
1843         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1844 }
1845
1846 static int vmscan_swappiness(struct scan_control *sc)
1847 {
1848         if (scanning_global_lru(sc))
1849                 return vm_swappiness;
1850         return mem_cgroup_swappiness(sc->mem_cgroup);
1851 }
1852
1853 /*
1854  * Determine how aggressively the anon and file LRU lists should be
1855  * scanned.  The relative value of each set of LRU lists is determined
1856  * by looking at the fraction of the pages scanned we did rotate back
1857  * onto the active list instead of evict.
1858  *
1859  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1860  */
1861 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1862                                         unsigned long *nr, int priority)
1863 {
1864         unsigned long anon, file, free;
1865         unsigned long anon_prio, file_prio;
1866         unsigned long ap, fp;
1867         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1868         u64 fraction[2], denominator;
1869         enum lru_list l;
1870         int noswap = 0;
1871         bool force_scan = false;
1872
1873         /*
1874          * If the zone or memcg is small, nr[l] can be 0.  This
1875          * results in no scanning on this priority and a potential
1876          * priority drop.  Global direct reclaim can go to the next
1877          * zone and tends to have no problems. Global kswapd is for
1878          * zone balancing and it needs to scan a minimum amount. When
1879          * reclaiming for a memcg, a priority drop can cause high
1880          * latencies, so it's better to scan a minimum amount there as
1881          * well.
1882          */
1883         if (scanning_global_lru(sc) && current_is_kswapd())
1884                 force_scan = true;
1885         if (!scanning_global_lru(sc))
1886                 force_scan = true;
1887
1888         /* If we have no swap space, do not bother scanning anon pages. */
1889         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1890                 noswap = 1;
1891                 fraction[0] = 0;
1892                 fraction[1] = 1;
1893                 denominator = 1;
1894                 goto out;
1895         }
1896
1897         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1898                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1899         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1900                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1901
1902         if (scanning_global_lru(sc)) {
1903                 free  = zone_page_state(zone, NR_FREE_PAGES);
1904                 /* If we have very few page cache pages,
1905                    force-scan anon pages. */
1906                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1907                         fraction[0] = 1;
1908                         fraction[1] = 0;
1909                         denominator = 1;
1910                         goto out;
1911                 }
1912         }
1913
1914         /*
1915          * With swappiness at 100, anonymous and file have the same priority.
1916          * This scanning priority is essentially the inverse of IO cost.
1917          */
1918         anon_prio = vmscan_swappiness(sc);
1919         file_prio = 200 - vmscan_swappiness(sc);
1920
1921         /*
1922          * OK, so we have swap space and a fair amount of page cache
1923          * pages.  We use the recently rotated / recently scanned
1924          * ratios to determine how valuable each cache is.
1925          *
1926          * Because workloads change over time (and to avoid overflow)
1927          * we keep these statistics as a floating average, which ends
1928          * up weighing recent references more than old ones.
1929          *
1930          * anon in [0], file in [1]
1931          */
1932         spin_lock_irq(&zone->lru_lock);
1933         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1934                 reclaim_stat->recent_scanned[0] /= 2;
1935                 reclaim_stat->recent_rotated[0] /= 2;
1936         }
1937
1938         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1939                 reclaim_stat->recent_scanned[1] /= 2;
1940                 reclaim_stat->recent_rotated[1] /= 2;
1941         }
1942
1943         /*
1944          * The amount of pressure on anon vs file pages is inversely
1945          * proportional to the fraction of recently scanned pages on
1946          * each list that were recently referenced and in active use.
1947          */
1948         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1949         ap /= reclaim_stat->recent_rotated[0] + 1;
1950
1951         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1952         fp /= reclaim_stat->recent_rotated[1] + 1;
1953         spin_unlock_irq(&zone->lru_lock);
1954
1955         fraction[0] = ap;
1956         fraction[1] = fp;
1957         denominator = ap + fp + 1;
1958 out:
1959         for_each_evictable_lru(l) {
1960                 int file = is_file_lru(l);
1961                 unsigned long scan;
1962
1963                 scan = zone_nr_lru_pages(zone, sc, l);
1964                 if (priority || noswap) {
1965                         scan >>= priority;
1966                         if (!scan && force_scan)
1967                                 scan = SWAP_CLUSTER_MAX;
1968                         scan = div64_u64(scan * fraction[file], denominator);
1969                 }
1970                 nr[l] = scan;
1971         }
1972 }
1973
1974 /*
1975  * Reclaim/compaction depends on a number of pages being freed. To avoid
1976  * disruption to the system, a small number of order-0 pages continue to be
1977  * rotated and reclaimed in the normal fashion. However, by the time we get
1978  * back to the allocator and call try_to_compact_zone(), we ensure that
1979  * there are enough free pages for it to be likely successful
1980  */
1981 static inline bool should_continue_reclaim(struct zone *zone,
1982                                         unsigned long nr_reclaimed,
1983                                         unsigned long nr_scanned,
1984                                         struct scan_control *sc)
1985 {
1986         unsigned long pages_for_compaction;
1987         unsigned long inactive_lru_pages;
1988
1989         /* If not in reclaim/compaction mode, stop */
1990         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1991                 return false;
1992
1993         /* Consider stopping depending on scan and reclaim activity */
1994         if (sc->gfp_mask & __GFP_REPEAT) {
1995                 /*
1996                  * For __GFP_REPEAT allocations, stop reclaiming if the
1997                  * full LRU list has been scanned and we are still failing
1998                  * to reclaim pages. This full LRU scan is potentially
1999                  * expensive but a __GFP_REPEAT caller really wants to succeed
2000                  */
2001                 if (!nr_reclaimed && !nr_scanned)
2002                         return false;
2003         } else {
2004                 /*
2005                  * For non-__GFP_REPEAT allocations which can presumably
2006                  * fail without consequence, stop if we failed to reclaim
2007                  * any pages from the last SWAP_CLUSTER_MAX number of
2008                  * pages that were scanned. This will return to the
2009                  * caller faster at the risk reclaim/compaction and
2010                  * the resulting allocation attempt fails
2011                  */
2012                 if (!nr_reclaimed)
2013                         return false;
2014         }
2015
2016         /*
2017          * If we have not reclaimed enough pages for compaction and the
2018          * inactive lists are large enough, continue reclaiming
2019          */
2020         pages_for_compaction = (2UL << sc->order);
2021         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2022                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2023         if (sc->nr_reclaimed < pages_for_compaction &&
2024                         inactive_lru_pages > pages_for_compaction)
2025                 return true;
2026
2027         /* If compaction would go ahead or the allocation would succeed, stop */
2028         switch (compaction_suitable(zone, sc->order)) {
2029         case COMPACT_PARTIAL:
2030         case COMPACT_CONTINUE:
2031                 return false;
2032         default:
2033                 return true;
2034         }
2035 }
2036
2037 /*
2038  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2039  */
2040 static void shrink_zone(int priority, struct zone *zone,
2041                                 struct scan_control *sc)
2042 {
2043         unsigned long nr[NR_LRU_LISTS];
2044         unsigned long nr_to_scan;
2045         enum lru_list l;
2046         unsigned long nr_reclaimed, nr_scanned;
2047         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2048         struct blk_plug plug;
2049
2050 restart:
2051         nr_reclaimed = 0;
2052         nr_scanned = sc->nr_scanned;
2053         get_scan_count(zone, sc, nr, priority);
2054
2055         blk_start_plug(&plug);
2056         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2057                                         nr[LRU_INACTIVE_FILE]) {
2058                 for_each_evictable_lru(l) {
2059                         if (nr[l]) {
2060                                 nr_to_scan = min_t(unsigned long,
2061                                                    nr[l], SWAP_CLUSTER_MAX);
2062                                 nr[l] -= nr_to_scan;
2063
2064                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2065                                                             zone, sc, priority);
2066                         }
2067                 }
2068                 /*
2069                  * On large memory systems, scan >> priority can become
2070                  * really large. This is fine for the starting priority;
2071                  * we want to put equal scanning pressure on each zone.
2072                  * However, if the VM has a harder time of freeing pages,
2073                  * with multiple processes reclaiming pages, the total
2074                  * freeing target can get unreasonably large.
2075                  */
2076                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2077                         break;
2078         }
2079         blk_finish_plug(&plug);
2080         sc->nr_reclaimed += nr_reclaimed;
2081
2082         /*
2083          * Even if we did not try to evict anon pages at all, we want to
2084          * rebalance the anon lru active/inactive ratio.
2085          */
2086         if (inactive_anon_is_low(zone, sc))
2087                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2088
2089         /* reclaim/compaction might need reclaim to continue */
2090         if (should_continue_reclaim(zone, nr_reclaimed,
2091                                         sc->nr_scanned - nr_scanned, sc))
2092                 goto restart;
2093
2094         throttle_vm_writeout(sc->gfp_mask);
2095 }
2096
2097 /*
2098  * This is the direct reclaim path, for page-allocating processes.  We only
2099  * try to reclaim pages from zones which will satisfy the caller's allocation
2100  * request.
2101  *
2102  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2103  * Because:
2104  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2105  *    allocation or
2106  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2107  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2108  *    zone defense algorithm.
2109  *
2110  * If a zone is deemed to be full of pinned pages then just give it a light
2111  * scan then give up on it.
2112  *
2113  * This function returns true if a zone is being reclaimed for a costly
2114  * high-order allocation and compaction is either ready to begin or deferred.
2115  * This indicates to the caller that it should retry the allocation or fail.
2116  */
2117 static bool shrink_zones(int priority, struct zonelist *zonelist,
2118                                         struct scan_control *sc)
2119 {
2120         struct zoneref *z;
2121         struct zone *zone;
2122         unsigned long nr_soft_reclaimed;
2123         unsigned long nr_soft_scanned;
2124         bool should_abort_reclaim = false;
2125
2126         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2127                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2128                 if (!populated_zone(zone))
2129                         continue;
2130                 /*
2131                  * Take care memory controller reclaiming has small influence
2132                  * to global LRU.
2133                  */
2134                 if (scanning_global_lru(sc)) {
2135                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2136                                 continue;
2137                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2138                                 continue;       /* Let kswapd poll it */
2139                         if (COMPACTION_BUILD) {
2140                                 /*
2141                                  * If we already have plenty of memory free for
2142                                  * compaction in this zone, don't free any more.
2143                                  * Even though compaction is invoked for any
2144                                  * non-zero order, only frequent costly order
2145                                  * reclamation is disruptive enough to become a
2146                                  * noticable problem, like transparent huge page
2147                                  * allocations.
2148                                  */
2149                                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2150                                         (compaction_suitable(zone, sc->order) ||
2151                                          compaction_deferred(zone))) {
2152                                         should_abort_reclaim = true;
2153                                         continue;
2154                                 }
2155                         }
2156                         /*
2157                          * This steals pages from memory cgroups over softlimit
2158                          * and returns the number of reclaimed pages and
2159                          * scanned pages. This works for global memory pressure
2160                          * and balancing, not for a memcg's limit.
2161                          */
2162                         nr_soft_scanned = 0;
2163                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2164                                                 sc->order, sc->gfp_mask,
2165                                                 &nr_soft_scanned);
2166                         sc->nr_reclaimed += nr_soft_reclaimed;
2167                         sc->nr_scanned += nr_soft_scanned;
2168                         /* need some check for avoid more shrink_zone() */
2169                 }
2170
2171                 shrink_zone(priority, zone, sc);
2172         }
2173
2174         return should_abort_reclaim;
2175 }
2176
2177 static bool zone_reclaimable(struct zone *zone)
2178 {
2179         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2180 }
2181
2182 /* All zones in zonelist are unreclaimable? */
2183 static bool all_unreclaimable(struct zonelist *zonelist,
2184                 struct scan_control *sc)
2185 {
2186         struct zoneref *z;
2187         struct zone *zone;
2188
2189         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2190                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2191                 if (!populated_zone(zone))
2192                         continue;
2193                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2194                         continue;
2195                 if (!zone->all_unreclaimable)
2196                         return false;
2197         }
2198
2199         return true;
2200 }
2201
2202 /*
2203  * This is the main entry point to direct page reclaim.
2204  *
2205  * If a full scan of the inactive list fails to free enough memory then we
2206  * are "out of memory" and something needs to be killed.
2207  *
2208  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2209  * high - the zone may be full of dirty or under-writeback pages, which this
2210  * caller can't do much about.  We kick the writeback threads and take explicit
2211  * naps in the hope that some of these pages can be written.  But if the
2212  * allocating task holds filesystem locks which prevent writeout this might not
2213  * work, and the allocation attempt will fail.
2214  *
2215  * returns:     0, if no pages reclaimed
2216  *              else, the number of pages reclaimed
2217  */
2218 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2219                                         struct scan_control *sc,
2220                                         struct shrink_control *shrink)
2221 {
2222         int priority;
2223         unsigned long total_scanned = 0;
2224         struct reclaim_state *reclaim_state = current->reclaim_state;
2225         struct zoneref *z;
2226         struct zone *zone;
2227         unsigned long writeback_threshold;
2228
2229         get_mems_allowed();
2230         delayacct_freepages_start();
2231
2232         if (scanning_global_lru(sc))
2233                 count_vm_event(ALLOCSTALL);
2234
2235         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2236                 sc->nr_scanned = 0;
2237                 if (!priority)
2238                         disable_swap_token(sc->mem_cgroup);
2239                 if (shrink_zones(priority, zonelist, sc))
2240                         break;
2241
2242                 /*
2243                  * Don't shrink slabs when reclaiming memory from
2244                  * over limit cgroups
2245                  */
2246                 if (scanning_global_lru(sc)) {
2247                         unsigned long lru_pages = 0;
2248                         for_each_zone_zonelist(zone, z, zonelist,
2249                                         gfp_zone(sc->gfp_mask)) {
2250                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2251                                         continue;
2252
2253                                 lru_pages += zone_reclaimable_pages(zone);
2254                         }
2255
2256                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2257                         if (reclaim_state) {
2258                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2259                                 reclaim_state->reclaimed_slab = 0;
2260                         }
2261                 }
2262                 total_scanned += sc->nr_scanned;
2263                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2264                         goto out;
2265
2266                 /*
2267                  * Try to write back as many pages as we just scanned.  This
2268                  * tends to cause slow streaming writers to write data to the
2269                  * disk smoothly, at the dirtying rate, which is nice.   But
2270                  * that's undesirable in laptop mode, where we *want* lumpy
2271                  * writeout.  So in laptop mode, write out the whole world.
2272                  */
2273                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2274                 if (total_scanned > writeback_threshold) {
2275                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2276                                                 WB_REASON_TRY_TO_FREE_PAGES);
2277                         sc->may_writepage = 1;
2278                 }
2279
2280                 /* Take a nap, wait for some writeback to complete */
2281                 if (!sc->hibernation_mode && sc->nr_scanned &&
2282                     priority < DEF_PRIORITY - 2) {
2283                         struct zone *preferred_zone;
2284
2285                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2286                                                 &cpuset_current_mems_allowed,
2287                                                 &preferred_zone);
2288                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2289                 }
2290         }
2291
2292 out:
2293         delayacct_freepages_end();
2294         put_mems_allowed();
2295
2296         if (sc->nr_reclaimed)
2297                 return sc->nr_reclaimed;
2298
2299         /*
2300          * As hibernation is going on, kswapd is freezed so that it can't mark
2301          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2302          * check.
2303          */
2304         if (oom_killer_disabled)
2305                 return 0;
2306
2307         /* top priority shrink_zones still had more to do? don't OOM, then */
2308         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2309                 return 1;
2310
2311         return 0;
2312 }
2313
2314 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2315                                 gfp_t gfp_mask, nodemask_t *nodemask)
2316 {
2317         unsigned long nr_reclaimed;
2318         struct scan_control sc = {
2319                 .gfp_mask = gfp_mask,
2320                 .may_writepage = !laptop_mode,
2321                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2322                 .may_unmap = 1,
2323                 .may_swap = 1,
2324                 .order = order,
2325                 .mem_cgroup = NULL,
2326                 .nodemask = nodemask,
2327         };
2328         struct shrink_control shrink = {
2329                 .gfp_mask = sc.gfp_mask,
2330         };
2331
2332         trace_mm_vmscan_direct_reclaim_begin(order,
2333                                 sc.may_writepage,
2334                                 gfp_mask);
2335
2336         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2337
2338         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2339
2340         return nr_reclaimed;
2341 }
2342
2343 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2344
2345 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2346                                                 gfp_t gfp_mask, bool noswap,
2347                                                 struct zone *zone,
2348                                                 unsigned long *nr_scanned)
2349 {
2350         struct scan_control sc = {
2351                 .nr_scanned = 0,
2352                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2353                 .may_writepage = !laptop_mode,
2354                 .may_unmap = 1,
2355                 .may_swap = !noswap,
2356                 .order = 0,
2357                 .mem_cgroup = mem,
2358         };
2359
2360         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2361                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2362
2363         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2364                                                       sc.may_writepage,
2365                                                       sc.gfp_mask);
2366
2367         /*
2368          * NOTE: Although we can get the priority field, using it
2369          * here is not a good idea, since it limits the pages we can scan.
2370          * if we don't reclaim here, the shrink_zone from balance_pgdat
2371          * will pick up pages from other mem cgroup's as well. We hack
2372          * the priority and make it zero.
2373          */
2374         shrink_zone(0, zone, &sc);
2375
2376         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2377
2378         *nr_scanned = sc.nr_scanned;
2379         return sc.nr_reclaimed;
2380 }
2381
2382 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2383                                            gfp_t gfp_mask,
2384                                            bool noswap)
2385 {
2386         struct zonelist *zonelist;
2387         unsigned long nr_reclaimed;
2388         int nid;
2389         struct scan_control sc = {
2390                 .may_writepage = !laptop_mode,
2391                 .may_unmap = 1,
2392                 .may_swap = !noswap,
2393                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2394                 .order = 0,
2395                 .mem_cgroup = mem_cont,
2396                 .nodemask = NULL, /* we don't care the placement */
2397                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2398                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2399         };
2400         struct shrink_control shrink = {
2401                 .gfp_mask = sc.gfp_mask,
2402         };
2403
2404         /*
2405          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2406          * take care of from where we get pages. So the node where we start the
2407          * scan does not need to be the current node.
2408          */
2409         nid = mem_cgroup_select_victim_node(mem_cont);
2410
2411         zonelist = NODE_DATA(nid)->node_zonelists;
2412
2413         trace_mm_vmscan_memcg_reclaim_begin(0,
2414                                             sc.may_writepage,
2415                                             sc.gfp_mask);
2416
2417         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2418
2419         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2420
2421         return nr_reclaimed;
2422 }
2423 #endif
2424
2425 /*
2426  * pgdat_balanced is used when checking if a node is balanced for high-order
2427  * allocations. Only zones that meet watermarks and are in a zone allowed
2428  * by the callers classzone_idx are added to balanced_pages. The total of
2429  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2430  * for the node to be considered balanced. Forcing all zones to be balanced
2431  * for high orders can cause excessive reclaim when there are imbalanced zones.
2432  * The choice of 25% is due to
2433  *   o a 16M DMA zone that is balanced will not balance a zone on any
2434  *     reasonable sized machine
2435  *   o On all other machines, the top zone must be at least a reasonable
2436  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2437  *     would need to be at least 256M for it to be balance a whole node.
2438  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2439  *     to balance a node on its own. These seemed like reasonable ratios.
2440  */
2441 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2442                                                 int classzone_idx)
2443 {
2444         unsigned long present_pages = 0;
2445         int i;
2446
2447         for (i = 0; i <= classzone_idx; i++)
2448                 present_pages += pgdat->node_zones[i].present_pages;
2449
2450         /* A special case here: if zone has no page, we think it's balanced */
2451         return balanced_pages >= (present_pages >> 2);
2452 }
2453
2454 /* is kswapd sleeping prematurely? */
2455 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2456                                         int classzone_idx)
2457 {
2458         int i;
2459         unsigned long balanced = 0;
2460         bool all_zones_ok = true;
2461
2462         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2463         if (remaining)
2464                 return true;
2465
2466         /* Check the watermark levels */
2467         for (i = 0; i <= classzone_idx; i++) {
2468                 struct zone *zone = pgdat->node_zones + i;
2469
2470                 if (!populated_zone(zone))
2471                         continue;
2472
2473                 /*
2474                  * balance_pgdat() skips over all_unreclaimable after
2475                  * DEF_PRIORITY. Effectively, it considers them balanced so
2476                  * they must be considered balanced here as well if kswapd
2477                  * is to sleep
2478                  */
2479                 if (zone->all_unreclaimable) {
2480                         balanced += zone->present_pages;
2481                         continue;
2482                 }
2483
2484                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2485                                                         i, 0))
2486                         all_zones_ok = false;
2487                 else
2488                         balanced += zone->present_pages;
2489         }
2490
2491         /*
2492          * For high-order requests, the balanced zones must contain at least
2493          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2494          * must be balanced
2495          */
2496         if (order)
2497                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2498         else
2499                 return !all_zones_ok;
2500 }
2501
2502 /*
2503  * For kswapd, balance_pgdat() will work across all this node's zones until
2504  * they are all at high_wmark_pages(zone).
2505  *
2506  * Returns the final order kswapd was reclaiming at
2507  *
2508  * There is special handling here for zones which are full of pinned pages.
2509  * This can happen if the pages are all mlocked, or if they are all used by
2510  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2511  * What we do is to detect the case where all pages in the zone have been
2512  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2513  * dead and from now on, only perform a short scan.  Basically we're polling
2514  * the zone for when the problem goes away.
2515  *
2516  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2517  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2518  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2519  * lower zones regardless of the number of free pages in the lower zones. This
2520  * interoperates with the page allocator fallback scheme to ensure that aging
2521  * of pages is balanced across the zones.
2522  */
2523 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2524                                                         int *classzone_idx)
2525 {
2526         int all_zones_ok;
2527         unsigned long balanced;
2528         int priority;
2529         int i;
2530         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2531         unsigned long total_scanned;
2532         struct reclaim_state *reclaim_state = current->reclaim_state;
2533         unsigned long nr_soft_reclaimed;
2534         unsigned long nr_soft_scanned;
2535         struct scan_control sc = {
2536                 .gfp_mask = GFP_KERNEL,
2537                 .may_unmap = 1,
2538                 .may_swap = 1,
2539                 /*
2540                  * kswapd doesn't want to be bailed out while reclaim. because
2541                  * we want to put equal scanning pressure on each zone.
2542                  */
2543                 .nr_to_reclaim = ULONG_MAX,
2544                 .order = order,
2545                 .mem_cgroup = NULL,
2546         };
2547         struct shrink_control shrink = {
2548                 .gfp_mask = sc.gfp_mask,
2549         };
2550 loop_again:
2551         total_scanned = 0;
2552         sc.nr_reclaimed = 0;
2553         sc.may_writepage = !laptop_mode;
2554         count_vm_event(PAGEOUTRUN);
2555
2556         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2557                 unsigned long lru_pages = 0;
2558                 int has_under_min_watermark_zone = 0;
2559
2560                 /* The swap token gets in the way of swapout... */
2561                 if (!priority)
2562                         disable_swap_token(NULL);
2563
2564                 all_zones_ok = 1;
2565                 balanced = 0;
2566
2567                 /*
2568                  * Scan in the highmem->dma direction for the highest
2569                  * zone which needs scanning
2570                  */
2571                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2572                         struct zone *zone = pgdat->node_zones + i;
2573
2574                         if (!populated_zone(zone))
2575                                 continue;
2576
2577                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2578                                 continue;
2579
2580                         /*
2581                          * Do some background aging of the anon list, to give
2582                          * pages a chance to be referenced before reclaiming.
2583                          */
2584                         if (inactive_anon_is_low(zone, &sc))
2585                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2586                                                         &sc, priority, 0);
2587
2588                         if (!zone_watermark_ok_safe(zone, order,
2589                                         high_wmark_pages(zone), 0, 0)) {
2590                                 end_zone = i;
2591                                 break;
2592                         } else {
2593                                 /* If balanced, clear the congested flag */
2594                                 zone_clear_flag(zone, ZONE_CONGESTED);
2595                         }
2596                 }
2597                 if (i < 0)
2598                         goto out;
2599
2600                 for (i = 0; i <= end_zone; i++) {
2601                         struct zone *zone = pgdat->node_zones + i;
2602
2603                         lru_pages += zone_reclaimable_pages(zone);
2604                 }
2605
2606                 /*
2607                  * Now scan the zone in the dma->highmem direction, stopping
2608                  * at the last zone which needs scanning.
2609                  *
2610                  * We do this because the page allocator works in the opposite
2611                  * direction.  This prevents the page allocator from allocating
2612                  * pages behind kswapd's direction of progress, which would
2613                  * cause too much scanning of the lower zones.
2614                  */
2615                 for (i = 0; i <= end_zone; i++) {
2616                         struct zone *zone = pgdat->node_zones + i;
2617                         int nr_slab;
2618                         unsigned long balance_gap;
2619
2620                         if (!populated_zone(zone))
2621                                 continue;
2622
2623                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2624                                 continue;
2625
2626                         sc.nr_scanned = 0;
2627
2628                         nr_soft_scanned = 0;
2629                         /*
2630                          * Call soft limit reclaim before calling shrink_zone.
2631                          */
2632                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2633                                                         order, sc.gfp_mask,
2634                                                         &nr_soft_scanned);
2635                         sc.nr_reclaimed += nr_soft_reclaimed;
2636                         total_scanned += nr_soft_scanned;
2637
2638                         /*
2639                          * We put equal pressure on every zone, unless
2640                          * one zone has way too many pages free
2641                          * already. The "too many pages" is defined
2642                          * as the high wmark plus a "gap" where the
2643                          * gap is either the low watermark or 1%
2644                          * of the zone, whichever is smaller.
2645                          */
2646                         balance_gap = min(low_wmark_pages(zone),
2647                                 (zone->present_pages +
2648                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2649                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2650                         if (!zone_watermark_ok_safe(zone, order,
2651                                         high_wmark_pages(zone) + balance_gap,
2652                                         end_zone, 0)) {
2653                                 shrink_zone(priority, zone, &sc);
2654
2655                                 reclaim_state->reclaimed_slab = 0;
2656                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2657                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2658                                 total_scanned += sc.nr_scanned;
2659
2660                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2661                                         zone->all_unreclaimable = 1;
2662                         }
2663
2664                         /*
2665                          * If we've done a decent amount of scanning and
2666                          * the reclaim ratio is low, start doing writepage
2667                          * even in laptop mode
2668                          */
2669                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2670                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2671                                 sc.may_writepage = 1;
2672
2673                         if (zone->all_unreclaimable) {
2674                                 if (end_zone && end_zone == i)
2675                                         end_zone--;
2676                                 continue;
2677                         }
2678
2679                         if (!zone_watermark_ok_safe(zone, order,
2680                                         high_wmark_pages(zone), end_zone, 0)) {
2681                                 all_zones_ok = 0;
2682                                 /*
2683                                  * We are still under min water mark.  This
2684                                  * means that we have a GFP_ATOMIC allocation
2685                                  * failure risk. Hurry up!
2686                                  */
2687                                 if (!zone_watermark_ok_safe(zone, order,
2688                                             min_wmark_pages(zone), end_zone, 0))
2689                                         has_under_min_watermark_zone = 1;
2690                         } else {
2691                                 /*
2692                                  * If a zone reaches its high watermark,
2693                                  * consider it to be no longer congested. It's
2694                                  * possible there are dirty pages backed by
2695                                  * congested BDIs but as pressure is relieved,
2696                                  * spectulatively avoid congestion waits
2697                                  */
2698                                 zone_clear_flag(zone, ZONE_CONGESTED);
2699                                 if (i <= *classzone_idx)
2700                                         balanced += zone->present_pages;
2701                         }
2702
2703                 }
2704                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2705                         break;          /* kswapd: all done */
2706                 /*
2707                  * OK, kswapd is getting into trouble.  Take a nap, then take
2708                  * another pass across the zones.
2709                  */
2710                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2711                         if (has_under_min_watermark_zone)
2712                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2713                         else
2714                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2715                 }
2716
2717                 /*
2718                  * We do this so kswapd doesn't build up large priorities for
2719                  * example when it is freeing in parallel with allocators. It
2720                  * matches the direct reclaim path behaviour in terms of impact
2721                  * on zone->*_priority.
2722                  */
2723                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2724                         break;
2725         }
2726 out:
2727
2728         /*
2729          * order-0: All zones must meet high watermark for a balanced node
2730          * high-order: Balanced zones must make up at least 25% of the node
2731          *             for the node to be balanced
2732          */
2733         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2734                 cond_resched();
2735
2736                 try_to_freeze();
2737
2738                 /*
2739                  * Fragmentation may mean that the system cannot be
2740                  * rebalanced for high-order allocations in all zones.
2741                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2742                  * it means the zones have been fully scanned and are still
2743                  * not balanced. For high-order allocations, there is
2744                  * little point trying all over again as kswapd may
2745                  * infinite loop.
2746                  *
2747                  * Instead, recheck all watermarks at order-0 as they
2748                  * are the most important. If watermarks are ok, kswapd will go
2749                  * back to sleep. High-order users can still perform direct
2750                  * reclaim if they wish.
2751                  */
2752                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2753                         order = sc.order = 0;
2754
2755                 goto loop_again;
2756         }
2757
2758         /*
2759          * If kswapd was reclaiming at a higher order, it has the option of
2760          * sleeping without all zones being balanced. Before it does, it must
2761          * ensure that the watermarks for order-0 on *all* zones are met and
2762          * that the congestion flags are cleared. The congestion flag must
2763          * be cleared as kswapd is the only mechanism that clears the flag
2764          * and it is potentially going to sleep here.
2765          */
2766         if (order) {
2767                 for (i = 0; i <= end_zone; i++) {
2768                         struct zone *zone = pgdat->node_zones + i;
2769
2770                         if (!populated_zone(zone))
2771                                 continue;
2772
2773                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2774                                 continue;
2775
2776                         /* Confirm the zone is balanced for order-0 */
2777                         if (!zone_watermark_ok(zone, 0,
2778                                         high_wmark_pages(zone), 0, 0)) {
2779                                 order = sc.order = 0;
2780                                 goto loop_again;
2781                         }
2782
2783                         /* If balanced, clear the congested flag */
2784                         zone_clear_flag(zone, ZONE_CONGESTED);
2785                         if (i <= *classzone_idx)
2786                                 balanced += zone->present_pages;
2787                 }
2788         }
2789
2790         /*
2791          * Return the order we were reclaiming at so sleeping_prematurely()
2792          * makes a decision on the order we were last reclaiming at. However,
2793          * if another caller entered the allocator slow path while kswapd
2794          * was awake, order will remain at the higher level
2795          */
2796         *classzone_idx = end_zone;
2797         return order;
2798 }
2799
2800 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2801 {
2802         long remaining = 0;
2803         DEFINE_WAIT(wait);
2804
2805         if (freezing(current) || kthread_should_stop())
2806                 return;
2807
2808         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2809
2810         /* Try to sleep for a short interval */
2811         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2812                 remaining = schedule_timeout(HZ/10);
2813                 finish_wait(&pgdat->kswapd_wait, &wait);
2814                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2815         }
2816
2817         /*
2818          * After a short sleep, check if it was a premature sleep. If not, then
2819          * go fully to sleep until explicitly woken up.
2820          */
2821         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2822                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2823
2824                 /*
2825                  * vmstat counters are not perfectly accurate and the estimated
2826                  * value for counters such as NR_FREE_PAGES can deviate from the
2827                  * true value by nr_online_cpus * threshold. To avoid the zone
2828                  * watermarks being breached while under pressure, we reduce the
2829                  * per-cpu vmstat threshold while kswapd is awake and restore
2830                  * them before going back to sleep.
2831                  */
2832                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2833                 schedule();
2834                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2835         } else {
2836                 if (remaining)
2837                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2838                 else
2839                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2840         }
2841         finish_wait(&pgdat->kswapd_wait, &wait);
2842 }
2843
2844 /*
2845  * The background pageout daemon, started as a kernel thread
2846  * from the init process.
2847  *
2848  * This basically trickles out pages so that we have _some_
2849  * free memory available even if there is no other activity
2850  * that frees anything up. This is needed for things like routing
2851  * etc, where we otherwise might have all activity going on in
2852  * asynchronous contexts that cannot page things out.
2853  *
2854  * If there are applications that are active memory-allocators
2855  * (most normal use), this basically shouldn't matter.
2856  */
2857 static int kswapd(void *p)
2858 {
2859         unsigned long order, new_order;
2860         unsigned balanced_order;
2861         int classzone_idx, new_classzone_idx;
2862         int balanced_classzone_idx;
2863         pg_data_t *pgdat = (pg_data_t*)p;
2864         struct task_struct *tsk = current;
2865
2866         struct reclaim_state reclaim_state = {
2867                 .reclaimed_slab = 0,
2868         };
2869         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2870
2871         lockdep_set_current_reclaim_state(GFP_KERNEL);
2872
2873         if (!cpumask_empty(cpumask))
2874                 set_cpus_allowed_ptr(tsk, cpumask);
2875         current->reclaim_state = &reclaim_state;
2876
2877         /*
2878          * Tell the memory management that we're a "memory allocator",
2879          * and that if we need more memory we should get access to it
2880          * regardless (see "__alloc_pages()"). "kswapd" should
2881          * never get caught in the normal page freeing logic.
2882          *
2883          * (Kswapd normally doesn't need memory anyway, but sometimes
2884          * you need a small amount of memory in order to be able to
2885          * page out something else, and this flag essentially protects
2886          * us from recursively trying to free more memory as we're
2887          * trying to free the first piece of memory in the first place).
2888          */
2889         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2890         set_freezable();
2891
2892         order = new_order = 0;
2893         balanced_order = 0;
2894         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2895         balanced_classzone_idx = classzone_idx;
2896         for ( ; ; ) {
2897                 int ret;
2898
2899                 /*
2900                  * If the last balance_pgdat was unsuccessful it's unlikely a
2901                  * new request of a similar or harder type will succeed soon
2902                  * so consider going to sleep on the basis we reclaimed at
2903                  */
2904                 if (balanced_classzone_idx >= new_classzone_idx &&
2905                                         balanced_order == new_order) {
2906                         new_order = pgdat->kswapd_max_order;
2907                         new_classzone_idx = pgdat->classzone_idx;
2908                         pgdat->kswapd_max_order =  0;
2909                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2910                 }
2911
2912                 if (order < new_order || classzone_idx > new_classzone_idx) {
2913                         /*
2914                          * Don't sleep if someone wants a larger 'order'
2915                          * allocation or has tigher zone constraints
2916                          */
2917                         order = new_order;
2918                         classzone_idx = new_classzone_idx;
2919                 } else {
2920                         kswapd_try_to_sleep(pgdat, balanced_order,
2921                                                 balanced_classzone_idx);
2922                         order = pgdat->kswapd_max_order;
2923                         classzone_idx = pgdat->classzone_idx;
2924                         new_order = order;
2925                         new_classzone_idx = classzone_idx;
2926                         pgdat->kswapd_max_order = 0;
2927                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2928                 }
2929
2930                 ret = try_to_freeze();
2931                 if (kthread_should_stop())
2932                         break;
2933
2934                 /*
2935                  * We can speed up thawing tasks if we don't call balance_pgdat
2936                  * after returning from the refrigerator
2937                  */
2938                 if (!ret) {
2939                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2940                         balanced_classzone_idx = classzone_idx;
2941                         balanced_order = balance_pgdat(pgdat, order,
2942                                                 &balanced_classzone_idx);
2943                 }
2944         }
2945         return 0;
2946 }
2947
2948 /*
2949  * A zone is low on free memory, so wake its kswapd task to service it.
2950  */
2951 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2952 {
2953         pg_data_t *pgdat;
2954
2955         if (!populated_zone(zone))
2956                 return;
2957
2958         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2959                 return;
2960         pgdat = zone->zone_pgdat;
2961         if (pgdat->kswapd_max_order < order) {
2962                 pgdat->kswapd_max_order = order;
2963                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2964         }
2965         if (!waitqueue_active(&pgdat->kswapd_wait))
2966                 return;
2967         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2968                 return;
2969
2970         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2971         wake_up_interruptible(&pgdat->kswapd_wait);
2972 }
2973
2974 /*
2975  * The reclaimable count would be mostly accurate.
2976  * The less reclaimable pages may be
2977  * - mlocked pages, which will be moved to unevictable list when encountered
2978  * - mapped pages, which may require several travels to be reclaimed
2979  * - dirty pages, which is not "instantly" reclaimable
2980  */
2981 unsigned long global_reclaimable_pages(void)
2982 {
2983         int nr;
2984
2985         nr = global_page_state(NR_ACTIVE_FILE) +
2986              global_page_state(NR_INACTIVE_FILE);
2987
2988         if (nr_swap_pages > 0)
2989                 nr += global_page_state(NR_ACTIVE_ANON) +
2990                       global_page_state(NR_INACTIVE_ANON);
2991
2992         return nr;
2993 }
2994
2995 unsigned long zone_reclaimable_pages(struct zone *zone)
2996 {
2997         int nr;
2998
2999         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3000              zone_page_state(zone, NR_INACTIVE_FILE);
3001
3002         if (nr_swap_pages > 0)
3003                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3004                       zone_page_state(zone, NR_INACTIVE_ANON);
3005
3006         return nr;
3007 }
3008
3009 #ifdef CONFIG_HIBERNATION
3010 /*
3011  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3012  * freed pages.
3013  *
3014  * Rather than trying to age LRUs the aim is to preserve the overall
3015  * LRU order by reclaiming preferentially
3016  * inactive > active > active referenced > active mapped
3017  */
3018 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3019 {
3020         struct reclaim_state reclaim_state;
3021         struct scan_control sc = {
3022                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3023                 .may_swap = 1,
3024                 .may_unmap = 1,
3025                 .may_writepage = 1,
3026                 .nr_to_reclaim = nr_to_reclaim,
3027                 .hibernation_mode = 1,
3028                 .order = 0,
3029         };
3030         struct shrink_control shrink = {
3031                 .gfp_mask = sc.gfp_mask,
3032         };
3033         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3034         struct task_struct *p = current;
3035         unsigned long nr_reclaimed;
3036
3037         p->flags |= PF_MEMALLOC;
3038         lockdep_set_current_reclaim_state(sc.gfp_mask);
3039         reclaim_state.reclaimed_slab = 0;
3040         p->reclaim_state = &reclaim_state;
3041
3042         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3043
3044         p->reclaim_state = NULL;
3045         lockdep_clear_current_reclaim_state();
3046         p->flags &= ~PF_MEMALLOC;
3047
3048         return nr_reclaimed;
3049 }
3050 #endif /* CONFIG_HIBERNATION */
3051
3052 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3053    not required for correctness.  So if the last cpu in a node goes
3054    away, we get changed to run anywhere: as the first one comes back,
3055    restore their cpu bindings. */
3056 static int __devinit cpu_callback(struct notifier_block *nfb,
3057                                   unsigned long action, void *hcpu)
3058 {
3059         int nid;
3060
3061         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3062                 for_each_node_state(nid, N_HIGH_MEMORY) {
3063                         pg_data_t *pgdat = NODE_DATA(nid);
3064                         const struct cpumask *mask;
3065
3066                         mask = cpumask_of_node(pgdat->node_id);
3067
3068                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3069                                 /* One of our CPUs online: restore mask */
3070                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3071                 }
3072         }
3073         return NOTIFY_OK;
3074 }
3075
3076 /*
3077  * This kswapd start function will be called by init and node-hot-add.
3078  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3079  */
3080 int kswapd_run(int nid)
3081 {
3082         pg_data_t *pgdat = NODE_DATA(nid);
3083         int ret = 0;
3084
3085         if (pgdat->kswapd)
3086                 return 0;
3087
3088         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3089         if (IS_ERR(pgdat->kswapd)) {
3090                 /* failure at boot is fatal */
3091                 BUG_ON(system_state == SYSTEM_BOOTING);
3092                 printk("Failed to start kswapd on node %d\n",nid);
3093                 ret = -1;
3094         }
3095         return ret;
3096 }
3097
3098 /*
3099  * Called by memory hotplug when all memory in a node is offlined.
3100  */
3101 void kswapd_stop(int nid)
3102 {
3103         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3104
3105         if (kswapd)
3106                 kthread_stop(kswapd);
3107 }
3108
3109 static int __init kswapd_init(void)
3110 {
3111         int nid;
3112
3113         swap_setup();
3114         for_each_node_state(nid, N_HIGH_MEMORY)
3115                 kswapd_run(nid);
3116         hotcpu_notifier(cpu_callback, 0);
3117         return 0;
3118 }
3119
3120 module_init(kswapd_init)
3121
3122 #ifdef CONFIG_NUMA
3123 /*
3124  * Zone reclaim mode
3125  *
3126  * If non-zero call zone_reclaim when the number of free pages falls below
3127  * the watermarks.
3128  */
3129 int zone_reclaim_mode __read_mostly;
3130
3131 #define RECLAIM_OFF 0
3132 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3133 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3134 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3135
3136 /*
3137  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3138  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3139  * a zone.
3140  */
3141 #define ZONE_RECLAIM_PRIORITY 4
3142
3143 /*
3144  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3145  * occur.
3146  */
3147 int sysctl_min_unmapped_ratio = 1;
3148
3149 /*
3150  * If the number of slab pages in a zone grows beyond this percentage then
3151  * slab reclaim needs to occur.
3152  */
3153 int sysctl_min_slab_ratio = 5;
3154
3155 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3156 {
3157         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3158         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3159                 zone_page_state(zone, NR_ACTIVE_FILE);
3160
3161         /*
3162          * It's possible for there to be more file mapped pages than
3163          * accounted for by the pages on the file LRU lists because
3164          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3165          */
3166         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3167 }
3168
3169 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3170 static long zone_pagecache_reclaimable(struct zone *zone)
3171 {
3172         long nr_pagecache_reclaimable;
3173         long delta = 0;
3174
3175         /*
3176          * If RECLAIM_SWAP is set, then all file pages are considered
3177          * potentially reclaimable. Otherwise, we have to worry about
3178          * pages like swapcache and zone_unmapped_file_pages() provides
3179          * a better estimate
3180          */
3181         if (zone_reclaim_mode & RECLAIM_SWAP)
3182                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3183         else
3184                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3185
3186         /* If we can't clean pages, remove dirty pages from consideration */
3187         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3188                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3189
3190         /* Watch for any possible underflows due to delta */
3191         if (unlikely(delta > nr_pagecache_reclaimable))
3192                 delta = nr_pagecache_reclaimable;
3193
3194         return nr_pagecache_reclaimable - delta;
3195 }
3196
3197 /*
3198  * Try to free up some pages from this zone through reclaim.
3199  */
3200 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3201 {
3202         /* Minimum pages needed in order to stay on node */
3203         const unsigned long nr_pages = 1 << order;
3204         struct task_struct *p = current;
3205         struct reclaim_state reclaim_state;
3206         int priority;
3207         struct scan_control sc = {
3208                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3209                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3210                 .may_swap = 1,
3211                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3212                                        SWAP_CLUSTER_MAX),
3213                 .gfp_mask = gfp_mask,
3214                 .order = order,
3215         };
3216         struct shrink_control shrink = {
3217                 .gfp_mask = sc.gfp_mask,
3218         };
3219         unsigned long nr_slab_pages0, nr_slab_pages1;
3220
3221         cond_resched();
3222         /*
3223          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3224          * and we also need to be able to write out pages for RECLAIM_WRITE
3225          * and RECLAIM_SWAP.
3226          */
3227         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3228         lockdep_set_current_reclaim_state(gfp_mask);
3229         reclaim_state.reclaimed_slab = 0;
3230         p->reclaim_state = &reclaim_state;
3231
3232         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3233                 /*
3234                  * Free memory by calling shrink zone with increasing
3235                  * priorities until we have enough memory freed.
3236                  */
3237                 priority = ZONE_RECLAIM_PRIORITY;
3238                 do {
3239                         shrink_zone(priority, zone, &sc);
3240                         priority--;
3241                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3242         }
3243
3244         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3245         if (nr_slab_pages0 > zone->min_slab_pages) {
3246                 /*
3247                  * shrink_slab() does not currently allow us to determine how
3248                  * many pages were freed in this zone. So we take the current
3249                  * number of slab pages and shake the slab until it is reduced
3250                  * by the same nr_pages that we used for reclaiming unmapped
3251                  * pages.
3252                  *
3253                  * Note that shrink_slab will free memory on all zones and may
3254                  * take a long time.
3255                  */
3256                 for (;;) {
3257                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3258
3259                         /* No reclaimable slab or very low memory pressure */
3260                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3261                                 break;
3262
3263                         /* Freed enough memory */
3264                         nr_slab_pages1 = zone_page_state(zone,
3265                                                         NR_SLAB_RECLAIMABLE);
3266                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3267                                 break;
3268                 }
3269
3270                 /*
3271                  * Update nr_reclaimed by the number of slab pages we
3272                  * reclaimed from this zone.
3273                  */
3274                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3275                 if (nr_slab_pages1 < nr_slab_pages0)
3276                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3277         }
3278
3279         p->reclaim_state = NULL;
3280         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3281         lockdep_clear_current_reclaim_state();
3282         return sc.nr_reclaimed >= nr_pages;
3283 }
3284
3285 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3286 {
3287         int node_id;
3288         int ret;
3289
3290         /*
3291          * Zone reclaim reclaims unmapped file backed pages and
3292          * slab pages if we are over the defined limits.
3293          *
3294          * A small portion of unmapped file backed pages is needed for
3295          * file I/O otherwise pages read by file I/O will be immediately
3296          * thrown out if the zone is overallocated. So we do not reclaim
3297          * if less than a specified percentage of the zone is used by
3298          * unmapped file backed pages.
3299          */
3300         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3301             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3302                 return ZONE_RECLAIM_FULL;
3303
3304         if (zone->all_unreclaimable)
3305                 return ZONE_RECLAIM_FULL;
3306
3307         /*
3308          * Do not scan if the allocation should not be delayed.
3309          */
3310         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3311                 return ZONE_RECLAIM_NOSCAN;
3312
3313         /*
3314          * Only run zone reclaim on the local zone or on zones that do not
3315          * have associated processors. This will favor the local processor
3316          * over remote processors and spread off node memory allocations
3317          * as wide as possible.
3318          */
3319         node_id = zone_to_nid(zone);
3320         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3321                 return ZONE_RECLAIM_NOSCAN;
3322
3323         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3324                 return ZONE_RECLAIM_NOSCAN;
3325
3326         ret = __zone_reclaim(zone, gfp_mask, order);
3327         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3328
3329         if (!ret)
3330                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3331
3332         return ret;
3333 }
3334 #endif
3335
3336 /*
3337  * page_evictable - test whether a page is evictable
3338  * @page: the page to test
3339  * @vma: the VMA in which the page is or will be mapped, may be NULL
3340  *
3341  * Test whether page is evictable--i.e., should be placed on active/inactive
3342  * lists vs unevictable list.  The vma argument is !NULL when called from the
3343  * fault path to determine how to instantate a new page.
3344  *
3345  * Reasons page might not be evictable:
3346  * (1) page's mapping marked unevictable
3347  * (2) page is part of an mlocked VMA
3348  *
3349  */
3350 int page_evictable(struct page *page, struct vm_area_struct *vma)
3351 {
3352
3353         if (mapping_unevictable(page_mapping(page)))
3354                 return 0;
3355
3356         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3357                 return 0;
3358
3359         return 1;
3360 }
3361
3362 /**
3363  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3364  * @page: page to check evictability and move to appropriate lru list
3365  * @zone: zone page is in
3366  *
3367  * Checks a page for evictability and moves the page to the appropriate
3368  * zone lru list.
3369  *
3370  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3371  * have PageUnevictable set.
3372  */
3373 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3374 {
3375         VM_BUG_ON(PageActive(page));
3376
3377 retry:
3378         ClearPageUnevictable(page);
3379         if (page_evictable(page, NULL)) {
3380                 enum lru_list l = page_lru_base_type(page);
3381
3382                 __dec_zone_state(zone, NR_UNEVICTABLE);
3383                 list_move(&page->lru, &zone->lru[l].list);
3384                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3385                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3386                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3387         } else {
3388                 /*
3389                  * rotate unevictable list
3390                  */
3391                 SetPageUnevictable(page);
3392                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3393                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3394                 if (page_evictable(page, NULL))
3395                         goto retry;
3396         }
3397 }
3398
3399 /**
3400  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3401  * @mapping: struct address_space to scan for evictable pages
3402  *
3403  * Scan all pages in mapping.  Check unevictable pages for
3404  * evictability and move them to the appropriate zone lru list.
3405  */
3406 void scan_mapping_unevictable_pages(struct address_space *mapping)
3407 {
3408         pgoff_t next = 0;
3409         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3410                          PAGE_CACHE_SHIFT;
3411         struct zone *zone;
3412         struct pagevec pvec;
3413
3414         if (mapping->nrpages == 0)
3415                 return;
3416
3417         pagevec_init(&pvec, 0);
3418         while (next < end &&
3419                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3420                 int i;
3421                 int pg_scanned = 0;
3422
3423                 zone = NULL;
3424
3425                 for (i = 0; i < pagevec_count(&pvec); i++) {
3426                         struct page *page = pvec.pages[i];
3427                         pgoff_t page_index = page->index;
3428                         struct zone *pagezone = page_zone(page);
3429
3430                         pg_scanned++;
3431                         if (page_index > next)
3432                                 next = page_index;
3433                         next++;
3434
3435                         if (pagezone != zone) {
3436                                 if (zone)
3437                                         spin_unlock_irq(&zone->lru_lock);
3438                                 zone = pagezone;
3439                                 spin_lock_irq(&zone->lru_lock);
3440                         }
3441
3442                         if (PageLRU(page) && PageUnevictable(page))
3443                                 check_move_unevictable_page(page, zone);
3444                 }
3445                 if (zone)
3446                         spin_unlock_irq(&zone->lru_lock);
3447                 pagevec_release(&pvec);
3448
3449                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3450         }
3451
3452 }
3453
3454 static void warn_scan_unevictable_pages(void)
3455 {
3456         printk_once(KERN_WARNING
3457                     "The scan_unevictable_pages sysctl/node-interface has been "
3458                     "disabled for lack of a legitimate use case.  If you have "
3459                     "one, please send an email to linux-mm@kvack.org.\n");
3460 }
3461
3462 /*
3463  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3464  * all nodes' unevictable lists for evictable pages
3465  */
3466 unsigned long scan_unevictable_pages;
3467
3468 int scan_unevictable_handler(struct ctl_table *table, int write,
3469                            void __user *buffer,
3470                            size_t *length, loff_t *ppos)
3471 {
3472         warn_scan_unevictable_pages();
3473         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3474         scan_unevictable_pages = 0;
3475         return 0;
3476 }
3477
3478 #ifdef CONFIG_NUMA
3479 /*
3480  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3481  * a specified node's per zone unevictable lists for evictable pages.
3482  */
3483
3484 static ssize_t read_scan_unevictable_node(struct device *dev,
3485                                           struct device_attribute *attr,
3486                                           char *buf)
3487 {
3488         warn_scan_unevictable_pages();
3489         return sprintf(buf, "0\n");     /* always zero; should fit... */
3490 }
3491
3492 static ssize_t write_scan_unevictable_node(struct device *dev,
3493                                            struct device_attribute *attr,
3494                                         const char *buf, size_t count)
3495 {
3496         warn_scan_unevictable_pages();
3497         return 1;
3498 }
3499
3500
3501 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3502                         read_scan_unevictable_node,
3503                         write_scan_unevictable_node);
3504
3505 int scan_unevictable_register_node(struct node *node)
3506 {
3507         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3508 }
3509
3510 void scan_unevictable_unregister_node(struct node *node)
3511 {
3512         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3513 }
3514 #endif