mm: vmscan: set zone flags before blocking
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /* Check if a page is dirty or under writeback */
673 static void page_check_dirty_writeback(struct page *page,
674                                        bool *dirty, bool *writeback)
675 {
676         /*
677          * Anonymous pages are not handled by flushers and must be written
678          * from reclaim context. Do not stall reclaim based on them
679          */
680         if (!page_is_file_cache(page)) {
681                 *dirty = false;
682                 *writeback = false;
683                 return;
684         }
685
686         /* By default assume that the page flags are accurate */
687         *dirty = PageDirty(page);
688         *writeback = PageWriteback(page);
689 }
690
691 /*
692  * shrink_page_list() returns the number of reclaimed pages
693  */
694 static unsigned long shrink_page_list(struct list_head *page_list,
695                                       struct zone *zone,
696                                       struct scan_control *sc,
697                                       enum ttu_flags ttu_flags,
698                                       unsigned long *ret_nr_unqueued_dirty,
699                                       unsigned long *ret_nr_writeback,
700                                       unsigned long *ret_nr_immediate,
701                                       bool force_reclaim)
702 {
703         LIST_HEAD(ret_pages);
704         LIST_HEAD(free_pages);
705         int pgactivate = 0;
706         unsigned long nr_unqueued_dirty = 0;
707         unsigned long nr_dirty = 0;
708         unsigned long nr_congested = 0;
709         unsigned long nr_reclaimed = 0;
710         unsigned long nr_writeback = 0;
711         unsigned long nr_immediate = 0;
712
713         cond_resched();
714
715         mem_cgroup_uncharge_start();
716         while (!list_empty(page_list)) {
717                 struct address_space *mapping;
718                 struct page *page;
719                 int may_enter_fs;
720                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
721                 bool dirty, writeback;
722
723                 cond_resched();
724
725                 page = lru_to_page(page_list);
726                 list_del(&page->lru);
727
728                 if (!trylock_page(page))
729                         goto keep;
730
731                 VM_BUG_ON(PageActive(page));
732                 VM_BUG_ON(page_zone(page) != zone);
733
734                 sc->nr_scanned++;
735
736                 if (unlikely(!page_evictable(page)))
737                         goto cull_mlocked;
738
739                 if (!sc->may_unmap && page_mapped(page))
740                         goto keep_locked;
741
742                 /* Double the slab pressure for mapped and swapcache pages */
743                 if (page_mapped(page) || PageSwapCache(page))
744                         sc->nr_scanned++;
745
746                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
747                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
748
749                 /*
750                  * The number of dirty pages determines if a zone is marked
751                  * reclaim_congested which affects wait_iff_congested. kswapd
752                  * will stall and start writing pages if the tail of the LRU
753                  * is all dirty unqueued pages.
754                  */
755                 page_check_dirty_writeback(page, &dirty, &writeback);
756                 if (dirty || writeback)
757                         nr_dirty++;
758
759                 if (dirty && !writeback)
760                         nr_unqueued_dirty++;
761
762                 /* Treat this page as congested if underlying BDI is */
763                 mapping = page_mapping(page);
764                 if (mapping && bdi_write_congested(mapping->backing_dev_info))
765                         nr_congested++;
766
767                 /*
768                  * If a page at the tail of the LRU is under writeback, there
769                  * are three cases to consider.
770                  *
771                  * 1) If reclaim is encountering an excessive number of pages
772                  *    under writeback and this page is both under writeback and
773                  *    PageReclaim then it indicates that pages are being queued
774                  *    for IO but are being recycled through the LRU before the
775                  *    IO can complete. Waiting on the page itself risks an
776                  *    indefinite stall if it is impossible to writeback the
777                  *    page due to IO error or disconnected storage so instead
778                  *    note that the LRU is being scanned too quickly and the
779                  *    caller can stall after page list has been processed.
780                  *
781                  * 2) Global reclaim encounters a page, memcg encounters a
782                  *    page that is not marked for immediate reclaim or
783                  *    the caller does not have __GFP_IO. In this case mark
784                  *    the page for immediate reclaim and continue scanning.
785                  *
786                  *    __GFP_IO is checked  because a loop driver thread might
787                  *    enter reclaim, and deadlock if it waits on a page for
788                  *    which it is needed to do the write (loop masks off
789                  *    __GFP_IO|__GFP_FS for this reason); but more thought
790                  *    would probably show more reasons.
791                  *
792                  *    Don't require __GFP_FS, since we're not going into the
793                  *    FS, just waiting on its writeback completion. Worryingly,
794                  *    ext4 gfs2 and xfs allocate pages with
795                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
796                  *    may_enter_fs here is liable to OOM on them.
797                  *
798                  * 3) memcg encounters a page that is not already marked
799                  *    PageReclaim. memcg does not have any dirty pages
800                  *    throttling so we could easily OOM just because too many
801                  *    pages are in writeback and there is nothing else to
802                  *    reclaim. Wait for the writeback to complete.
803                  */
804                 if (PageWriteback(page)) {
805                         /* Case 1 above */
806                         if (current_is_kswapd() &&
807                             PageReclaim(page) &&
808                             zone_is_reclaim_writeback(zone)) {
809                                 nr_immediate++;
810                                 goto keep_locked;
811
812                         /* Case 2 above */
813                         } else if (global_reclaim(sc) ||
814                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
815                                 /*
816                                  * This is slightly racy - end_page_writeback()
817                                  * might have just cleared PageReclaim, then
818                                  * setting PageReclaim here end up interpreted
819                                  * as PageReadahead - but that does not matter
820                                  * enough to care.  What we do want is for this
821                                  * page to have PageReclaim set next time memcg
822                                  * reclaim reaches the tests above, so it will
823                                  * then wait_on_page_writeback() to avoid OOM;
824                                  * and it's also appropriate in global reclaim.
825                                  */
826                                 SetPageReclaim(page);
827                                 nr_writeback++;
828
829                                 goto keep_locked;
830
831                         /* Case 3 above */
832                         } else {
833                                 wait_on_page_writeback(page);
834                         }
835                 }
836
837                 if (!force_reclaim)
838                         references = page_check_references(page, sc);
839
840                 switch (references) {
841                 case PAGEREF_ACTIVATE:
842                         goto activate_locked;
843                 case PAGEREF_KEEP:
844                         goto keep_locked;
845                 case PAGEREF_RECLAIM:
846                 case PAGEREF_RECLAIM_CLEAN:
847                         ; /* try to reclaim the page below */
848                 }
849
850                 /*
851                  * Anonymous process memory has backing store?
852                  * Try to allocate it some swap space here.
853                  */
854                 if (PageAnon(page) && !PageSwapCache(page)) {
855                         if (!(sc->gfp_mask & __GFP_IO))
856                                 goto keep_locked;
857                         if (!add_to_swap(page, page_list))
858                                 goto activate_locked;
859                         may_enter_fs = 1;
860
861                         /* Adding to swap updated mapping */
862                         mapping = page_mapping(page);
863                 }
864
865                 /*
866                  * The page is mapped into the page tables of one or more
867                  * processes. Try to unmap it here.
868                  */
869                 if (page_mapped(page) && mapping) {
870                         switch (try_to_unmap(page, ttu_flags)) {
871                         case SWAP_FAIL:
872                                 goto activate_locked;
873                         case SWAP_AGAIN:
874                                 goto keep_locked;
875                         case SWAP_MLOCK:
876                                 goto cull_mlocked;
877                         case SWAP_SUCCESS:
878                                 ; /* try to free the page below */
879                         }
880                 }
881
882                 if (PageDirty(page)) {
883                         /*
884                          * Only kswapd can writeback filesystem pages to
885                          * avoid risk of stack overflow but only writeback
886                          * if many dirty pages have been encountered.
887                          */
888                         if (page_is_file_cache(page) &&
889                                         (!current_is_kswapd() ||
890                                          !zone_is_reclaim_dirty(zone))) {
891                                 /*
892                                  * Immediately reclaim when written back.
893                                  * Similar in principal to deactivate_page()
894                                  * except we already have the page isolated
895                                  * and know it's dirty
896                                  */
897                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
898                                 SetPageReclaim(page);
899
900                                 goto keep_locked;
901                         }
902
903                         if (references == PAGEREF_RECLAIM_CLEAN)
904                                 goto keep_locked;
905                         if (!may_enter_fs)
906                                 goto keep_locked;
907                         if (!sc->may_writepage)
908                                 goto keep_locked;
909
910                         /* Page is dirty, try to write it out here */
911                         switch (pageout(page, mapping, sc)) {
912                         case PAGE_KEEP:
913                                 goto keep_locked;
914                         case PAGE_ACTIVATE:
915                                 goto activate_locked;
916                         case PAGE_SUCCESS:
917                                 if (PageWriteback(page))
918                                         goto keep;
919                                 if (PageDirty(page))
920                                         goto keep;
921
922                                 /*
923                                  * A synchronous write - probably a ramdisk.  Go
924                                  * ahead and try to reclaim the page.
925                                  */
926                                 if (!trylock_page(page))
927                                         goto keep;
928                                 if (PageDirty(page) || PageWriteback(page))
929                                         goto keep_locked;
930                                 mapping = page_mapping(page);
931                         case PAGE_CLEAN:
932                                 ; /* try to free the page below */
933                         }
934                 }
935
936                 /*
937                  * If the page has buffers, try to free the buffer mappings
938                  * associated with this page. If we succeed we try to free
939                  * the page as well.
940                  *
941                  * We do this even if the page is PageDirty().
942                  * try_to_release_page() does not perform I/O, but it is
943                  * possible for a page to have PageDirty set, but it is actually
944                  * clean (all its buffers are clean).  This happens if the
945                  * buffers were written out directly, with submit_bh(). ext3
946                  * will do this, as well as the blockdev mapping.
947                  * try_to_release_page() will discover that cleanness and will
948                  * drop the buffers and mark the page clean - it can be freed.
949                  *
950                  * Rarely, pages can have buffers and no ->mapping.  These are
951                  * the pages which were not successfully invalidated in
952                  * truncate_complete_page().  We try to drop those buffers here
953                  * and if that worked, and the page is no longer mapped into
954                  * process address space (page_count == 1) it can be freed.
955                  * Otherwise, leave the page on the LRU so it is swappable.
956                  */
957                 if (page_has_private(page)) {
958                         if (!try_to_release_page(page, sc->gfp_mask))
959                                 goto activate_locked;
960                         if (!mapping && page_count(page) == 1) {
961                                 unlock_page(page);
962                                 if (put_page_testzero(page))
963                                         goto free_it;
964                                 else {
965                                         /*
966                                          * rare race with speculative reference.
967                                          * the speculative reference will free
968                                          * this page shortly, so we may
969                                          * increment nr_reclaimed here (and
970                                          * leave it off the LRU).
971                                          */
972                                         nr_reclaimed++;
973                                         continue;
974                                 }
975                         }
976                 }
977
978                 if (!mapping || !__remove_mapping(mapping, page))
979                         goto keep_locked;
980
981                 /*
982                  * At this point, we have no other references and there is
983                  * no way to pick any more up (removed from LRU, removed
984                  * from pagecache). Can use non-atomic bitops now (and
985                  * we obviously don't have to worry about waking up a process
986                  * waiting on the page lock, because there are no references.
987                  */
988                 __clear_page_locked(page);
989 free_it:
990                 nr_reclaimed++;
991
992                 /*
993                  * Is there need to periodically free_page_list? It would
994                  * appear not as the counts should be low
995                  */
996                 list_add(&page->lru, &free_pages);
997                 continue;
998
999 cull_mlocked:
1000                 if (PageSwapCache(page))
1001                         try_to_free_swap(page);
1002                 unlock_page(page);
1003                 putback_lru_page(page);
1004                 continue;
1005
1006 activate_locked:
1007                 /* Not a candidate for swapping, so reclaim swap space. */
1008                 if (PageSwapCache(page) && vm_swap_full())
1009                         try_to_free_swap(page);
1010                 VM_BUG_ON(PageActive(page));
1011                 SetPageActive(page);
1012                 pgactivate++;
1013 keep_locked:
1014                 unlock_page(page);
1015 keep:
1016                 list_add(&page->lru, &ret_pages);
1017                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1018         }
1019
1020         /*
1021          * Tag a zone as congested if all the dirty pages encountered were
1022          * backed by a congested BDI. In this case, reclaimers should just
1023          * back off and wait for congestion to clear because further reclaim
1024          * will encounter the same problem
1025          */
1026         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1027                 zone_set_flag(zone, ZONE_CONGESTED);
1028
1029         free_hot_cold_page_list(&free_pages, 1);
1030
1031         list_splice(&ret_pages, page_list);
1032         count_vm_events(PGACTIVATE, pgactivate);
1033         mem_cgroup_uncharge_end();
1034         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1035         *ret_nr_writeback += nr_writeback;
1036         *ret_nr_immediate += nr_immediate;
1037         return nr_reclaimed;
1038 }
1039
1040 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1041                                             struct list_head *page_list)
1042 {
1043         struct scan_control sc = {
1044                 .gfp_mask = GFP_KERNEL,
1045                 .priority = DEF_PRIORITY,
1046                 .may_unmap = 1,
1047         };
1048         unsigned long ret, dummy1, dummy2, dummy3;
1049         struct page *page, *next;
1050         LIST_HEAD(clean_pages);
1051
1052         list_for_each_entry_safe(page, next, page_list, lru) {
1053                 if (page_is_file_cache(page) && !PageDirty(page)) {
1054                         ClearPageActive(page);
1055                         list_move(&page->lru, &clean_pages);
1056                 }
1057         }
1058
1059         ret = shrink_page_list(&clean_pages, zone, &sc,
1060                                 TTU_UNMAP|TTU_IGNORE_ACCESS,
1061                                 &dummy1, &dummy2, &dummy3, true);
1062         list_splice(&clean_pages, page_list);
1063         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1064         return ret;
1065 }
1066
1067 /*
1068  * Attempt to remove the specified page from its LRU.  Only take this page
1069  * if it is of the appropriate PageActive status.  Pages which are being
1070  * freed elsewhere are also ignored.
1071  *
1072  * page:        page to consider
1073  * mode:        one of the LRU isolation modes defined above
1074  *
1075  * returns 0 on success, -ve errno on failure.
1076  */
1077 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1078 {
1079         int ret = -EINVAL;
1080
1081         /* Only take pages on the LRU. */
1082         if (!PageLRU(page))
1083                 return ret;
1084
1085         /* Compaction should not handle unevictable pages but CMA can do so */
1086         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1087                 return ret;
1088
1089         ret = -EBUSY;
1090
1091         /*
1092          * To minimise LRU disruption, the caller can indicate that it only
1093          * wants to isolate pages it will be able to operate on without
1094          * blocking - clean pages for the most part.
1095          *
1096          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1097          * is used by reclaim when it is cannot write to backing storage
1098          *
1099          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1100          * that it is possible to migrate without blocking
1101          */
1102         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1103                 /* All the caller can do on PageWriteback is block */
1104                 if (PageWriteback(page))
1105                         return ret;
1106
1107                 if (PageDirty(page)) {
1108                         struct address_space *mapping;
1109
1110                         /* ISOLATE_CLEAN means only clean pages */
1111                         if (mode & ISOLATE_CLEAN)
1112                                 return ret;
1113
1114                         /*
1115                          * Only pages without mappings or that have a
1116                          * ->migratepage callback are possible to migrate
1117                          * without blocking
1118                          */
1119                         mapping = page_mapping(page);
1120                         if (mapping && !mapping->a_ops->migratepage)
1121                                 return ret;
1122                 }
1123         }
1124
1125         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1126                 return ret;
1127
1128         if (likely(get_page_unless_zero(page))) {
1129                 /*
1130                  * Be careful not to clear PageLRU until after we're
1131                  * sure the page is not being freed elsewhere -- the
1132                  * page release code relies on it.
1133                  */
1134                 ClearPageLRU(page);
1135                 ret = 0;
1136         }
1137
1138         return ret;
1139 }
1140
1141 /*
1142  * zone->lru_lock is heavily contended.  Some of the functions that
1143  * shrink the lists perform better by taking out a batch of pages
1144  * and working on them outside the LRU lock.
1145  *
1146  * For pagecache intensive workloads, this function is the hottest
1147  * spot in the kernel (apart from copy_*_user functions).
1148  *
1149  * Appropriate locks must be held before calling this function.
1150  *
1151  * @nr_to_scan: The number of pages to look through on the list.
1152  * @lruvec:     The LRU vector to pull pages from.
1153  * @dst:        The temp list to put pages on to.
1154  * @nr_scanned: The number of pages that were scanned.
1155  * @sc:         The scan_control struct for this reclaim session
1156  * @mode:       One of the LRU isolation modes
1157  * @lru:        LRU list id for isolating
1158  *
1159  * returns how many pages were moved onto *@dst.
1160  */
1161 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1162                 struct lruvec *lruvec, struct list_head *dst,
1163                 unsigned long *nr_scanned, struct scan_control *sc,
1164                 isolate_mode_t mode, enum lru_list lru)
1165 {
1166         struct list_head *src = &lruvec->lists[lru];
1167         unsigned long nr_taken = 0;
1168         unsigned long scan;
1169
1170         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1171                 struct page *page;
1172                 int nr_pages;
1173
1174                 page = lru_to_page(src);
1175                 prefetchw_prev_lru_page(page, src, flags);
1176
1177                 VM_BUG_ON(!PageLRU(page));
1178
1179                 switch (__isolate_lru_page(page, mode)) {
1180                 case 0:
1181                         nr_pages = hpage_nr_pages(page);
1182                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1183                         list_move(&page->lru, dst);
1184                         nr_taken += nr_pages;
1185                         break;
1186
1187                 case -EBUSY:
1188                         /* else it is being freed elsewhere */
1189                         list_move(&page->lru, src);
1190                         continue;
1191
1192                 default:
1193                         BUG();
1194                 }
1195         }
1196
1197         *nr_scanned = scan;
1198         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1199                                     nr_taken, mode, is_file_lru(lru));
1200         return nr_taken;
1201 }
1202
1203 /**
1204  * isolate_lru_page - tries to isolate a page from its LRU list
1205  * @page: page to isolate from its LRU list
1206  *
1207  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1208  * vmstat statistic corresponding to whatever LRU list the page was on.
1209  *
1210  * Returns 0 if the page was removed from an LRU list.
1211  * Returns -EBUSY if the page was not on an LRU list.
1212  *
1213  * The returned page will have PageLRU() cleared.  If it was found on
1214  * the active list, it will have PageActive set.  If it was found on
1215  * the unevictable list, it will have the PageUnevictable bit set. That flag
1216  * may need to be cleared by the caller before letting the page go.
1217  *
1218  * The vmstat statistic corresponding to the list on which the page was
1219  * found will be decremented.
1220  *
1221  * Restrictions:
1222  * (1) Must be called with an elevated refcount on the page. This is a
1223  *     fundamentnal difference from isolate_lru_pages (which is called
1224  *     without a stable reference).
1225  * (2) the lru_lock must not be held.
1226  * (3) interrupts must be enabled.
1227  */
1228 int isolate_lru_page(struct page *page)
1229 {
1230         int ret = -EBUSY;
1231
1232         VM_BUG_ON(!page_count(page));
1233
1234         if (PageLRU(page)) {
1235                 struct zone *zone = page_zone(page);
1236                 struct lruvec *lruvec;
1237
1238                 spin_lock_irq(&zone->lru_lock);
1239                 lruvec = mem_cgroup_page_lruvec(page, zone);
1240                 if (PageLRU(page)) {
1241                         int lru = page_lru(page);
1242                         get_page(page);
1243                         ClearPageLRU(page);
1244                         del_page_from_lru_list(page, lruvec, lru);
1245                         ret = 0;
1246                 }
1247                 spin_unlock_irq(&zone->lru_lock);
1248         }
1249         return ret;
1250 }
1251
1252 /*
1253  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1254  * then get resheduled. When there are massive number of tasks doing page
1255  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1256  * the LRU list will go small and be scanned faster than necessary, leading to
1257  * unnecessary swapping, thrashing and OOM.
1258  */
1259 static int too_many_isolated(struct zone *zone, int file,
1260                 struct scan_control *sc)
1261 {
1262         unsigned long inactive, isolated;
1263
1264         if (current_is_kswapd())
1265                 return 0;
1266
1267         if (!global_reclaim(sc))
1268                 return 0;
1269
1270         if (file) {
1271                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1272                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1273         } else {
1274                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1275                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1276         }
1277
1278         /*
1279          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1280          * won't get blocked by normal direct-reclaimers, forming a circular
1281          * deadlock.
1282          */
1283         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1284                 inactive >>= 3;
1285
1286         return isolated > inactive;
1287 }
1288
1289 static noinline_for_stack void
1290 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1291 {
1292         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1293         struct zone *zone = lruvec_zone(lruvec);
1294         LIST_HEAD(pages_to_free);
1295
1296         /*
1297          * Put back any unfreeable pages.
1298          */
1299         while (!list_empty(page_list)) {
1300                 struct page *page = lru_to_page(page_list);
1301                 int lru;
1302
1303                 VM_BUG_ON(PageLRU(page));
1304                 list_del(&page->lru);
1305                 if (unlikely(!page_evictable(page))) {
1306                         spin_unlock_irq(&zone->lru_lock);
1307                         putback_lru_page(page);
1308                         spin_lock_irq(&zone->lru_lock);
1309                         continue;
1310                 }
1311
1312                 lruvec = mem_cgroup_page_lruvec(page, zone);
1313
1314                 SetPageLRU(page);
1315                 lru = page_lru(page);
1316                 add_page_to_lru_list(page, lruvec, lru);
1317
1318                 if (is_active_lru(lru)) {
1319                         int file = is_file_lru(lru);
1320                         int numpages = hpage_nr_pages(page);
1321                         reclaim_stat->recent_rotated[file] += numpages;
1322                 }
1323                 if (put_page_testzero(page)) {
1324                         __ClearPageLRU(page);
1325                         __ClearPageActive(page);
1326                         del_page_from_lru_list(page, lruvec, lru);
1327
1328                         if (unlikely(PageCompound(page))) {
1329                                 spin_unlock_irq(&zone->lru_lock);
1330                                 (*get_compound_page_dtor(page))(page);
1331                                 spin_lock_irq(&zone->lru_lock);
1332                         } else
1333                                 list_add(&page->lru, &pages_to_free);
1334                 }
1335         }
1336
1337         /*
1338          * To save our caller's stack, now use input list for pages to free.
1339          */
1340         list_splice(&pages_to_free, page_list);
1341 }
1342
1343 /*
1344  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1345  * of reclaimed pages
1346  */
1347 static noinline_for_stack unsigned long
1348 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1349                      struct scan_control *sc, enum lru_list lru)
1350 {
1351         LIST_HEAD(page_list);
1352         unsigned long nr_scanned;
1353         unsigned long nr_reclaimed = 0;
1354         unsigned long nr_taken;
1355         unsigned long nr_unqueued_dirty = 0;
1356         unsigned long nr_writeback = 0;
1357         unsigned long nr_immediate = 0;
1358         isolate_mode_t isolate_mode = 0;
1359         int file = is_file_lru(lru);
1360         struct zone *zone = lruvec_zone(lruvec);
1361         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1362
1363         while (unlikely(too_many_isolated(zone, file, sc))) {
1364                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1365
1366                 /* We are about to die and free our memory. Return now. */
1367                 if (fatal_signal_pending(current))
1368                         return SWAP_CLUSTER_MAX;
1369         }
1370
1371         lru_add_drain();
1372
1373         if (!sc->may_unmap)
1374                 isolate_mode |= ISOLATE_UNMAPPED;
1375         if (!sc->may_writepage)
1376                 isolate_mode |= ISOLATE_CLEAN;
1377
1378         spin_lock_irq(&zone->lru_lock);
1379
1380         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1381                                      &nr_scanned, sc, isolate_mode, lru);
1382
1383         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1384         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1385
1386         if (global_reclaim(sc)) {
1387                 zone->pages_scanned += nr_scanned;
1388                 if (current_is_kswapd())
1389                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1390                 else
1391                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1392         }
1393         spin_unlock_irq(&zone->lru_lock);
1394
1395         if (nr_taken == 0)
1396                 return 0;
1397
1398         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1399                         &nr_unqueued_dirty, &nr_writeback, &nr_immediate,
1400                         false);
1401
1402         spin_lock_irq(&zone->lru_lock);
1403
1404         reclaim_stat->recent_scanned[file] += nr_taken;
1405
1406         if (global_reclaim(sc)) {
1407                 if (current_is_kswapd())
1408                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1409                                                nr_reclaimed);
1410                 else
1411                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1412                                                nr_reclaimed);
1413         }
1414
1415         putback_inactive_pages(lruvec, &page_list);
1416
1417         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1418
1419         spin_unlock_irq(&zone->lru_lock);
1420
1421         free_hot_cold_page_list(&page_list, 1);
1422
1423         /*
1424          * If reclaim is isolating dirty pages under writeback, it implies
1425          * that the long-lived page allocation rate is exceeding the page
1426          * laundering rate. Either the global limits are not being effective
1427          * at throttling processes due to the page distribution throughout
1428          * zones or there is heavy usage of a slow backing device. The
1429          * only option is to throttle from reclaim context which is not ideal
1430          * as there is no guarantee the dirtying process is throttled in the
1431          * same way balance_dirty_pages() manages.
1432          *
1433          * This scales the number of dirty pages that must be under writeback
1434          * before throttling depending on priority. It is a simple backoff
1435          * function that has the most effect in the range DEF_PRIORITY to
1436          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1437          * in trouble and reclaim is considered to be in trouble.
1438          *
1439          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1440          * DEF_PRIORITY-1  50% must be PageWriteback
1441          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1442          * ...
1443          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1444          *                     isolated page is PageWriteback
1445          */
1446         if (nr_writeback && nr_writeback >=
1447                         (nr_taken >> (DEF_PRIORITY - sc->priority))) {
1448                 zone_set_flag(zone, ZONE_WRITEBACK);
1449                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1450         }
1451
1452         /*
1453          * memcg will stall in page writeback so only consider forcibly
1454          * stalling for global reclaim
1455          */
1456         if (global_reclaim(sc)) {
1457                 /*
1458                  * If dirty pages are scanned that are not queued for IO, it
1459                  * implies that flushers are not keeping up. In this case, flag
1460                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1461                  * pages from reclaim context. It will forcibly stall in the
1462                  * next check.
1463                  */
1464                 if (nr_unqueued_dirty == nr_taken)
1465                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1466
1467                 /*
1468                  * In addition, if kswapd scans pages marked marked for
1469                  * immediate reclaim and under writeback (nr_immediate), it
1470                  * implies that pages are cycling through the LRU faster than
1471                  * they are written so also forcibly stall.
1472                  */
1473                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1474                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1475         }
1476
1477         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1478                 zone_idx(zone),
1479                 nr_scanned, nr_reclaimed,
1480                 sc->priority,
1481                 trace_shrink_flags(file));
1482         return nr_reclaimed;
1483 }
1484
1485 /*
1486  * This moves pages from the active list to the inactive list.
1487  *
1488  * We move them the other way if the page is referenced by one or more
1489  * processes, from rmap.
1490  *
1491  * If the pages are mostly unmapped, the processing is fast and it is
1492  * appropriate to hold zone->lru_lock across the whole operation.  But if
1493  * the pages are mapped, the processing is slow (page_referenced()) so we
1494  * should drop zone->lru_lock around each page.  It's impossible to balance
1495  * this, so instead we remove the pages from the LRU while processing them.
1496  * It is safe to rely on PG_active against the non-LRU pages in here because
1497  * nobody will play with that bit on a non-LRU page.
1498  *
1499  * The downside is that we have to touch page->_count against each page.
1500  * But we had to alter page->flags anyway.
1501  */
1502
1503 static void move_active_pages_to_lru(struct lruvec *lruvec,
1504                                      struct list_head *list,
1505                                      struct list_head *pages_to_free,
1506                                      enum lru_list lru)
1507 {
1508         struct zone *zone = lruvec_zone(lruvec);
1509         unsigned long pgmoved = 0;
1510         struct page *page;
1511         int nr_pages;
1512
1513         while (!list_empty(list)) {
1514                 page = lru_to_page(list);
1515                 lruvec = mem_cgroup_page_lruvec(page, zone);
1516
1517                 VM_BUG_ON(PageLRU(page));
1518                 SetPageLRU(page);
1519
1520                 nr_pages = hpage_nr_pages(page);
1521                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1522                 list_move(&page->lru, &lruvec->lists[lru]);
1523                 pgmoved += nr_pages;
1524
1525                 if (put_page_testzero(page)) {
1526                         __ClearPageLRU(page);
1527                         __ClearPageActive(page);
1528                         del_page_from_lru_list(page, lruvec, lru);
1529
1530                         if (unlikely(PageCompound(page))) {
1531                                 spin_unlock_irq(&zone->lru_lock);
1532                                 (*get_compound_page_dtor(page))(page);
1533                                 spin_lock_irq(&zone->lru_lock);
1534                         } else
1535                                 list_add(&page->lru, pages_to_free);
1536                 }
1537         }
1538         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1539         if (!is_active_lru(lru))
1540                 __count_vm_events(PGDEACTIVATE, pgmoved);
1541 }
1542
1543 static void shrink_active_list(unsigned long nr_to_scan,
1544                                struct lruvec *lruvec,
1545                                struct scan_control *sc,
1546                                enum lru_list lru)
1547 {
1548         unsigned long nr_taken;
1549         unsigned long nr_scanned;
1550         unsigned long vm_flags;
1551         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1552         LIST_HEAD(l_active);
1553         LIST_HEAD(l_inactive);
1554         struct page *page;
1555         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1556         unsigned long nr_rotated = 0;
1557         isolate_mode_t isolate_mode = 0;
1558         int file = is_file_lru(lru);
1559         struct zone *zone = lruvec_zone(lruvec);
1560
1561         lru_add_drain();
1562
1563         if (!sc->may_unmap)
1564                 isolate_mode |= ISOLATE_UNMAPPED;
1565         if (!sc->may_writepage)
1566                 isolate_mode |= ISOLATE_CLEAN;
1567
1568         spin_lock_irq(&zone->lru_lock);
1569
1570         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1571                                      &nr_scanned, sc, isolate_mode, lru);
1572         if (global_reclaim(sc))
1573                 zone->pages_scanned += nr_scanned;
1574
1575         reclaim_stat->recent_scanned[file] += nr_taken;
1576
1577         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1578         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1579         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1580         spin_unlock_irq(&zone->lru_lock);
1581
1582         while (!list_empty(&l_hold)) {
1583                 cond_resched();
1584                 page = lru_to_page(&l_hold);
1585                 list_del(&page->lru);
1586
1587                 if (unlikely(!page_evictable(page))) {
1588                         putback_lru_page(page);
1589                         continue;
1590                 }
1591
1592                 if (unlikely(buffer_heads_over_limit)) {
1593                         if (page_has_private(page) && trylock_page(page)) {
1594                                 if (page_has_private(page))
1595                                         try_to_release_page(page, 0);
1596                                 unlock_page(page);
1597                         }
1598                 }
1599
1600                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1601                                     &vm_flags)) {
1602                         nr_rotated += hpage_nr_pages(page);
1603                         /*
1604                          * Identify referenced, file-backed active pages and
1605                          * give them one more trip around the active list. So
1606                          * that executable code get better chances to stay in
1607                          * memory under moderate memory pressure.  Anon pages
1608                          * are not likely to be evicted by use-once streaming
1609                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1610                          * so we ignore them here.
1611                          */
1612                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1613                                 list_add(&page->lru, &l_active);
1614                                 continue;
1615                         }
1616                 }
1617
1618                 ClearPageActive(page);  /* we are de-activating */
1619                 list_add(&page->lru, &l_inactive);
1620         }
1621
1622         /*
1623          * Move pages back to the lru list.
1624          */
1625         spin_lock_irq(&zone->lru_lock);
1626         /*
1627          * Count referenced pages from currently used mappings as rotated,
1628          * even though only some of them are actually re-activated.  This
1629          * helps balance scan pressure between file and anonymous pages in
1630          * get_scan_ratio.
1631          */
1632         reclaim_stat->recent_rotated[file] += nr_rotated;
1633
1634         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1635         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1636         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1637         spin_unlock_irq(&zone->lru_lock);
1638
1639         free_hot_cold_page_list(&l_hold, 1);
1640 }
1641
1642 #ifdef CONFIG_SWAP
1643 static int inactive_anon_is_low_global(struct zone *zone)
1644 {
1645         unsigned long active, inactive;
1646
1647         active = zone_page_state(zone, NR_ACTIVE_ANON);
1648         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1649
1650         if (inactive * zone->inactive_ratio < active)
1651                 return 1;
1652
1653         return 0;
1654 }
1655
1656 /**
1657  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1658  * @lruvec: LRU vector to check
1659  *
1660  * Returns true if the zone does not have enough inactive anon pages,
1661  * meaning some active anon pages need to be deactivated.
1662  */
1663 static int inactive_anon_is_low(struct lruvec *lruvec)
1664 {
1665         /*
1666          * If we don't have swap space, anonymous page deactivation
1667          * is pointless.
1668          */
1669         if (!total_swap_pages)
1670                 return 0;
1671
1672         if (!mem_cgroup_disabled())
1673                 return mem_cgroup_inactive_anon_is_low(lruvec);
1674
1675         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1676 }
1677 #else
1678 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1679 {
1680         return 0;
1681 }
1682 #endif
1683
1684 /**
1685  * inactive_file_is_low - check if file pages need to be deactivated
1686  * @lruvec: LRU vector to check
1687  *
1688  * When the system is doing streaming IO, memory pressure here
1689  * ensures that active file pages get deactivated, until more
1690  * than half of the file pages are on the inactive list.
1691  *
1692  * Once we get to that situation, protect the system's working
1693  * set from being evicted by disabling active file page aging.
1694  *
1695  * This uses a different ratio than the anonymous pages, because
1696  * the page cache uses a use-once replacement algorithm.
1697  */
1698 static int inactive_file_is_low(struct lruvec *lruvec)
1699 {
1700         unsigned long inactive;
1701         unsigned long active;
1702
1703         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1704         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1705
1706         return active > inactive;
1707 }
1708
1709 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1710 {
1711         if (is_file_lru(lru))
1712                 return inactive_file_is_low(lruvec);
1713         else
1714                 return inactive_anon_is_low(lruvec);
1715 }
1716
1717 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1718                                  struct lruvec *lruvec, struct scan_control *sc)
1719 {
1720         if (is_active_lru(lru)) {
1721                 if (inactive_list_is_low(lruvec, lru))
1722                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1723                 return 0;
1724         }
1725
1726         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1727 }
1728
1729 static int vmscan_swappiness(struct scan_control *sc)
1730 {
1731         if (global_reclaim(sc))
1732                 return vm_swappiness;
1733         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1734 }
1735
1736 enum scan_balance {
1737         SCAN_EQUAL,
1738         SCAN_FRACT,
1739         SCAN_ANON,
1740         SCAN_FILE,
1741 };
1742
1743 /*
1744  * Determine how aggressively the anon and file LRU lists should be
1745  * scanned.  The relative value of each set of LRU lists is determined
1746  * by looking at the fraction of the pages scanned we did rotate back
1747  * onto the active list instead of evict.
1748  *
1749  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1750  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1751  */
1752 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1753                            unsigned long *nr)
1754 {
1755         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1756         u64 fraction[2];
1757         u64 denominator = 0;    /* gcc */
1758         struct zone *zone = lruvec_zone(lruvec);
1759         unsigned long anon_prio, file_prio;
1760         enum scan_balance scan_balance;
1761         unsigned long anon, file, free;
1762         bool force_scan = false;
1763         unsigned long ap, fp;
1764         enum lru_list lru;
1765
1766         /*
1767          * If the zone or memcg is small, nr[l] can be 0.  This
1768          * results in no scanning on this priority and a potential
1769          * priority drop.  Global direct reclaim can go to the next
1770          * zone and tends to have no problems. Global kswapd is for
1771          * zone balancing and it needs to scan a minimum amount. When
1772          * reclaiming for a memcg, a priority drop can cause high
1773          * latencies, so it's better to scan a minimum amount there as
1774          * well.
1775          */
1776         if (current_is_kswapd() && zone->all_unreclaimable)
1777                 force_scan = true;
1778         if (!global_reclaim(sc))
1779                 force_scan = true;
1780
1781         /* If we have no swap space, do not bother scanning anon pages. */
1782         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1783                 scan_balance = SCAN_FILE;
1784                 goto out;
1785         }
1786
1787         /*
1788          * Global reclaim will swap to prevent OOM even with no
1789          * swappiness, but memcg users want to use this knob to
1790          * disable swapping for individual groups completely when
1791          * using the memory controller's swap limit feature would be
1792          * too expensive.
1793          */
1794         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1795                 scan_balance = SCAN_FILE;
1796                 goto out;
1797         }
1798
1799         /*
1800          * Do not apply any pressure balancing cleverness when the
1801          * system is close to OOM, scan both anon and file equally
1802          * (unless the swappiness setting disagrees with swapping).
1803          */
1804         if (!sc->priority && vmscan_swappiness(sc)) {
1805                 scan_balance = SCAN_EQUAL;
1806                 goto out;
1807         }
1808
1809         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1810                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1811         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1812                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1813
1814         /*
1815          * If it's foreseeable that reclaiming the file cache won't be
1816          * enough to get the zone back into a desirable shape, we have
1817          * to swap.  Better start now and leave the - probably heavily
1818          * thrashing - remaining file pages alone.
1819          */
1820         if (global_reclaim(sc)) {
1821                 free = zone_page_state(zone, NR_FREE_PAGES);
1822                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1823                         scan_balance = SCAN_ANON;
1824                         goto out;
1825                 }
1826         }
1827
1828         /*
1829          * There is enough inactive page cache, do not reclaim
1830          * anything from the anonymous working set right now.
1831          */
1832         if (!inactive_file_is_low(lruvec)) {
1833                 scan_balance = SCAN_FILE;
1834                 goto out;
1835         }
1836
1837         scan_balance = SCAN_FRACT;
1838
1839         /*
1840          * With swappiness at 100, anonymous and file have the same priority.
1841          * This scanning priority is essentially the inverse of IO cost.
1842          */
1843         anon_prio = vmscan_swappiness(sc);
1844         file_prio = 200 - anon_prio;
1845
1846         /*
1847          * OK, so we have swap space and a fair amount of page cache
1848          * pages.  We use the recently rotated / recently scanned
1849          * ratios to determine how valuable each cache is.
1850          *
1851          * Because workloads change over time (and to avoid overflow)
1852          * we keep these statistics as a floating average, which ends
1853          * up weighing recent references more than old ones.
1854          *
1855          * anon in [0], file in [1]
1856          */
1857         spin_lock_irq(&zone->lru_lock);
1858         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1859                 reclaim_stat->recent_scanned[0] /= 2;
1860                 reclaim_stat->recent_rotated[0] /= 2;
1861         }
1862
1863         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1864                 reclaim_stat->recent_scanned[1] /= 2;
1865                 reclaim_stat->recent_rotated[1] /= 2;
1866         }
1867
1868         /*
1869          * The amount of pressure on anon vs file pages is inversely
1870          * proportional to the fraction of recently scanned pages on
1871          * each list that were recently referenced and in active use.
1872          */
1873         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1874         ap /= reclaim_stat->recent_rotated[0] + 1;
1875
1876         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1877         fp /= reclaim_stat->recent_rotated[1] + 1;
1878         spin_unlock_irq(&zone->lru_lock);
1879
1880         fraction[0] = ap;
1881         fraction[1] = fp;
1882         denominator = ap + fp + 1;
1883 out:
1884         for_each_evictable_lru(lru) {
1885                 int file = is_file_lru(lru);
1886                 unsigned long size;
1887                 unsigned long scan;
1888
1889                 size = get_lru_size(lruvec, lru);
1890                 scan = size >> sc->priority;
1891
1892                 if (!scan && force_scan)
1893                         scan = min(size, SWAP_CLUSTER_MAX);
1894
1895                 switch (scan_balance) {
1896                 case SCAN_EQUAL:
1897                         /* Scan lists relative to size */
1898                         break;
1899                 case SCAN_FRACT:
1900                         /*
1901                          * Scan types proportional to swappiness and
1902                          * their relative recent reclaim efficiency.
1903                          */
1904                         scan = div64_u64(scan * fraction[file], denominator);
1905                         break;
1906                 case SCAN_FILE:
1907                 case SCAN_ANON:
1908                         /* Scan one type exclusively */
1909                         if ((scan_balance == SCAN_FILE) != file)
1910                                 scan = 0;
1911                         break;
1912                 default:
1913                         /* Look ma, no brain */
1914                         BUG();
1915                 }
1916                 nr[lru] = scan;
1917         }
1918 }
1919
1920 /*
1921  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1922  */
1923 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1924 {
1925         unsigned long nr[NR_LRU_LISTS];
1926         unsigned long targets[NR_LRU_LISTS];
1927         unsigned long nr_to_scan;
1928         enum lru_list lru;
1929         unsigned long nr_reclaimed = 0;
1930         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1931         struct blk_plug plug;
1932         bool scan_adjusted = false;
1933
1934         get_scan_count(lruvec, sc, nr);
1935
1936         /* Record the original scan target for proportional adjustments later */
1937         memcpy(targets, nr, sizeof(nr));
1938
1939         blk_start_plug(&plug);
1940         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1941                                         nr[LRU_INACTIVE_FILE]) {
1942                 unsigned long nr_anon, nr_file, percentage;
1943                 unsigned long nr_scanned;
1944
1945                 for_each_evictable_lru(lru) {
1946                         if (nr[lru]) {
1947                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1948                                 nr[lru] -= nr_to_scan;
1949
1950                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1951                                                             lruvec, sc);
1952                         }
1953                 }
1954
1955                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1956                         continue;
1957
1958                 /*
1959                  * For global direct reclaim, reclaim only the number of pages
1960                  * requested. Less care is taken to scan proportionally as it
1961                  * is more important to minimise direct reclaim stall latency
1962                  * than it is to properly age the LRU lists.
1963                  */
1964                 if (global_reclaim(sc) && !current_is_kswapd())
1965                         break;
1966
1967                 /*
1968                  * For kswapd and memcg, reclaim at least the number of pages
1969                  * requested. Ensure that the anon and file LRUs shrink
1970                  * proportionally what was requested by get_scan_count(). We
1971                  * stop reclaiming one LRU and reduce the amount scanning
1972                  * proportional to the original scan target.
1973                  */
1974                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1975                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1976
1977                 if (nr_file > nr_anon) {
1978                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1979                                                 targets[LRU_ACTIVE_ANON] + 1;
1980                         lru = LRU_BASE;
1981                         percentage = nr_anon * 100 / scan_target;
1982                 } else {
1983                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1984                                                 targets[LRU_ACTIVE_FILE] + 1;
1985                         lru = LRU_FILE;
1986                         percentage = nr_file * 100 / scan_target;
1987                 }
1988
1989                 /* Stop scanning the smaller of the LRU */
1990                 nr[lru] = 0;
1991                 nr[lru + LRU_ACTIVE] = 0;
1992
1993                 /*
1994                  * Recalculate the other LRU scan count based on its original
1995                  * scan target and the percentage scanning already complete
1996                  */
1997                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1998                 nr_scanned = targets[lru] - nr[lru];
1999                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2000                 nr[lru] -= min(nr[lru], nr_scanned);
2001
2002                 lru += LRU_ACTIVE;
2003                 nr_scanned = targets[lru] - nr[lru];
2004                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2005                 nr[lru] -= min(nr[lru], nr_scanned);
2006
2007                 scan_adjusted = true;
2008         }
2009         blk_finish_plug(&plug);
2010         sc->nr_reclaimed += nr_reclaimed;
2011
2012         /*
2013          * Even if we did not try to evict anon pages at all, we want to
2014          * rebalance the anon lru active/inactive ratio.
2015          */
2016         if (inactive_anon_is_low(lruvec))
2017                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2018                                    sc, LRU_ACTIVE_ANON);
2019
2020         throttle_vm_writeout(sc->gfp_mask);
2021 }
2022
2023 /* Use reclaim/compaction for costly allocs or under memory pressure */
2024 static bool in_reclaim_compaction(struct scan_control *sc)
2025 {
2026         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2027                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2028                          sc->priority < DEF_PRIORITY - 2))
2029                 return true;
2030
2031         return false;
2032 }
2033
2034 /*
2035  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2036  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2037  * true if more pages should be reclaimed such that when the page allocator
2038  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2039  * It will give up earlier than that if there is difficulty reclaiming pages.
2040  */
2041 static inline bool should_continue_reclaim(struct zone *zone,
2042                                         unsigned long nr_reclaimed,
2043                                         unsigned long nr_scanned,
2044                                         struct scan_control *sc)
2045 {
2046         unsigned long pages_for_compaction;
2047         unsigned long inactive_lru_pages;
2048
2049         /* If not in reclaim/compaction mode, stop */
2050         if (!in_reclaim_compaction(sc))
2051                 return false;
2052
2053         /* Consider stopping depending on scan and reclaim activity */
2054         if (sc->gfp_mask & __GFP_REPEAT) {
2055                 /*
2056                  * For __GFP_REPEAT allocations, stop reclaiming if the
2057                  * full LRU list has been scanned and we are still failing
2058                  * to reclaim pages. This full LRU scan is potentially
2059                  * expensive but a __GFP_REPEAT caller really wants to succeed
2060                  */
2061                 if (!nr_reclaimed && !nr_scanned)
2062                         return false;
2063         } else {
2064                 /*
2065                  * For non-__GFP_REPEAT allocations which can presumably
2066                  * fail without consequence, stop if we failed to reclaim
2067                  * any pages from the last SWAP_CLUSTER_MAX number of
2068                  * pages that were scanned. This will return to the
2069                  * caller faster at the risk reclaim/compaction and
2070                  * the resulting allocation attempt fails
2071                  */
2072                 if (!nr_reclaimed)
2073                         return false;
2074         }
2075
2076         /*
2077          * If we have not reclaimed enough pages for compaction and the
2078          * inactive lists are large enough, continue reclaiming
2079          */
2080         pages_for_compaction = (2UL << sc->order);
2081         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2082         if (get_nr_swap_pages() > 0)
2083                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2084         if (sc->nr_reclaimed < pages_for_compaction &&
2085                         inactive_lru_pages > pages_for_compaction)
2086                 return true;
2087
2088         /* If compaction would go ahead or the allocation would succeed, stop */
2089         switch (compaction_suitable(zone, sc->order)) {
2090         case COMPACT_PARTIAL:
2091         case COMPACT_CONTINUE:
2092                 return false;
2093         default:
2094                 return true;
2095         }
2096 }
2097
2098 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2099 {
2100         unsigned long nr_reclaimed, nr_scanned;
2101
2102         do {
2103                 struct mem_cgroup *root = sc->target_mem_cgroup;
2104                 struct mem_cgroup_reclaim_cookie reclaim = {
2105                         .zone = zone,
2106                         .priority = sc->priority,
2107                 };
2108                 struct mem_cgroup *memcg;
2109
2110                 nr_reclaimed = sc->nr_reclaimed;
2111                 nr_scanned = sc->nr_scanned;
2112
2113                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2114                 do {
2115                         struct lruvec *lruvec;
2116
2117                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2118
2119                         shrink_lruvec(lruvec, sc);
2120
2121                         /*
2122                          * Direct reclaim and kswapd have to scan all memory
2123                          * cgroups to fulfill the overall scan target for the
2124                          * zone.
2125                          *
2126                          * Limit reclaim, on the other hand, only cares about
2127                          * nr_to_reclaim pages to be reclaimed and it will
2128                          * retry with decreasing priority if one round over the
2129                          * whole hierarchy is not sufficient.
2130                          */
2131                         if (!global_reclaim(sc) &&
2132                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2133                                 mem_cgroup_iter_break(root, memcg);
2134                                 break;
2135                         }
2136                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2137                 } while (memcg);
2138
2139                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2140                            sc->nr_scanned - nr_scanned,
2141                            sc->nr_reclaimed - nr_reclaimed);
2142
2143         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2144                                          sc->nr_scanned - nr_scanned, sc));
2145 }
2146
2147 /* Returns true if compaction should go ahead for a high-order request */
2148 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2149 {
2150         unsigned long balance_gap, watermark;
2151         bool watermark_ok;
2152
2153         /* Do not consider compaction for orders reclaim is meant to satisfy */
2154         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2155                 return false;
2156
2157         /*
2158          * Compaction takes time to run and there are potentially other
2159          * callers using the pages just freed. Continue reclaiming until
2160          * there is a buffer of free pages available to give compaction
2161          * a reasonable chance of completing and allocating the page
2162          */
2163         balance_gap = min(low_wmark_pages(zone),
2164                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2165                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2166         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2167         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2168
2169         /*
2170          * If compaction is deferred, reclaim up to a point where
2171          * compaction will have a chance of success when re-enabled
2172          */
2173         if (compaction_deferred(zone, sc->order))
2174                 return watermark_ok;
2175
2176         /* If compaction is not ready to start, keep reclaiming */
2177         if (!compaction_suitable(zone, sc->order))
2178                 return false;
2179
2180         return watermark_ok;
2181 }
2182
2183 /*
2184  * This is the direct reclaim path, for page-allocating processes.  We only
2185  * try to reclaim pages from zones which will satisfy the caller's allocation
2186  * request.
2187  *
2188  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2189  * Because:
2190  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2191  *    allocation or
2192  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2193  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2194  *    zone defense algorithm.
2195  *
2196  * If a zone is deemed to be full of pinned pages then just give it a light
2197  * scan then give up on it.
2198  *
2199  * This function returns true if a zone is being reclaimed for a costly
2200  * high-order allocation and compaction is ready to begin. This indicates to
2201  * the caller that it should consider retrying the allocation instead of
2202  * further reclaim.
2203  */
2204 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2205 {
2206         struct zoneref *z;
2207         struct zone *zone;
2208         unsigned long nr_soft_reclaimed;
2209         unsigned long nr_soft_scanned;
2210         bool aborted_reclaim = false;
2211
2212         /*
2213          * If the number of buffer_heads in the machine exceeds the maximum
2214          * allowed level, force direct reclaim to scan the highmem zone as
2215          * highmem pages could be pinning lowmem pages storing buffer_heads
2216          */
2217         if (buffer_heads_over_limit)
2218                 sc->gfp_mask |= __GFP_HIGHMEM;
2219
2220         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2221                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2222                 if (!populated_zone(zone))
2223                         continue;
2224                 /*
2225                  * Take care memory controller reclaiming has small influence
2226                  * to global LRU.
2227                  */
2228                 if (global_reclaim(sc)) {
2229                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2230                                 continue;
2231                         if (zone->all_unreclaimable &&
2232                                         sc->priority != DEF_PRIORITY)
2233                                 continue;       /* Let kswapd poll it */
2234                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2235                                 /*
2236                                  * If we already have plenty of memory free for
2237                                  * compaction in this zone, don't free any more.
2238                                  * Even though compaction is invoked for any
2239                                  * non-zero order, only frequent costly order
2240                                  * reclamation is disruptive enough to become a
2241                                  * noticeable problem, like transparent huge
2242                                  * page allocations.
2243                                  */
2244                                 if (compaction_ready(zone, sc)) {
2245                                         aborted_reclaim = true;
2246                                         continue;
2247                                 }
2248                         }
2249                         /*
2250                          * This steals pages from memory cgroups over softlimit
2251                          * and returns the number of reclaimed pages and
2252                          * scanned pages. This works for global memory pressure
2253                          * and balancing, not for a memcg's limit.
2254                          */
2255                         nr_soft_scanned = 0;
2256                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2257                                                 sc->order, sc->gfp_mask,
2258                                                 &nr_soft_scanned);
2259                         sc->nr_reclaimed += nr_soft_reclaimed;
2260                         sc->nr_scanned += nr_soft_scanned;
2261                         /* need some check for avoid more shrink_zone() */
2262                 }
2263
2264                 shrink_zone(zone, sc);
2265         }
2266
2267         return aborted_reclaim;
2268 }
2269
2270 static bool zone_reclaimable(struct zone *zone)
2271 {
2272         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2273 }
2274
2275 /* All zones in zonelist are unreclaimable? */
2276 static bool all_unreclaimable(struct zonelist *zonelist,
2277                 struct scan_control *sc)
2278 {
2279         struct zoneref *z;
2280         struct zone *zone;
2281
2282         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2283                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2284                 if (!populated_zone(zone))
2285                         continue;
2286                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2287                         continue;
2288                 if (!zone->all_unreclaimable)
2289                         return false;
2290         }
2291
2292         return true;
2293 }
2294
2295 /*
2296  * This is the main entry point to direct page reclaim.
2297  *
2298  * If a full scan of the inactive list fails to free enough memory then we
2299  * are "out of memory" and something needs to be killed.
2300  *
2301  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2302  * high - the zone may be full of dirty or under-writeback pages, which this
2303  * caller can't do much about.  We kick the writeback threads and take explicit
2304  * naps in the hope that some of these pages can be written.  But if the
2305  * allocating task holds filesystem locks which prevent writeout this might not
2306  * work, and the allocation attempt will fail.
2307  *
2308  * returns:     0, if no pages reclaimed
2309  *              else, the number of pages reclaimed
2310  */
2311 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2312                                         struct scan_control *sc,
2313                                         struct shrink_control *shrink)
2314 {
2315         unsigned long total_scanned = 0;
2316         struct reclaim_state *reclaim_state = current->reclaim_state;
2317         struct zoneref *z;
2318         struct zone *zone;
2319         unsigned long writeback_threshold;
2320         bool aborted_reclaim;
2321
2322         delayacct_freepages_start();
2323
2324         if (global_reclaim(sc))
2325                 count_vm_event(ALLOCSTALL);
2326
2327         do {
2328                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2329                                 sc->priority);
2330                 sc->nr_scanned = 0;
2331                 aborted_reclaim = shrink_zones(zonelist, sc);
2332
2333                 /*
2334                  * Don't shrink slabs when reclaiming memory from
2335                  * over limit cgroups
2336                  */
2337                 if (global_reclaim(sc)) {
2338                         unsigned long lru_pages = 0;
2339                         for_each_zone_zonelist(zone, z, zonelist,
2340                                         gfp_zone(sc->gfp_mask)) {
2341                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2342                                         continue;
2343
2344                                 lru_pages += zone_reclaimable_pages(zone);
2345                         }
2346
2347                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2348                         if (reclaim_state) {
2349                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2350                                 reclaim_state->reclaimed_slab = 0;
2351                         }
2352                 }
2353                 total_scanned += sc->nr_scanned;
2354                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2355                         goto out;
2356
2357                 /*
2358                  * If we're getting trouble reclaiming, start doing
2359                  * writepage even in laptop mode.
2360                  */
2361                 if (sc->priority < DEF_PRIORITY - 2)
2362                         sc->may_writepage = 1;
2363
2364                 /*
2365                  * Try to write back as many pages as we just scanned.  This
2366                  * tends to cause slow streaming writers to write data to the
2367                  * disk smoothly, at the dirtying rate, which is nice.   But
2368                  * that's undesirable in laptop mode, where we *want* lumpy
2369                  * writeout.  So in laptop mode, write out the whole world.
2370                  */
2371                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2372                 if (total_scanned > writeback_threshold) {
2373                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2374                                                 WB_REASON_TRY_TO_FREE_PAGES);
2375                         sc->may_writepage = 1;
2376                 }
2377
2378                 /* Take a nap, wait for some writeback to complete */
2379                 if (!sc->hibernation_mode && sc->nr_scanned &&
2380                     sc->priority < DEF_PRIORITY - 2) {
2381                         struct zone *preferred_zone;
2382
2383                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2384                                                 &cpuset_current_mems_allowed,
2385                                                 &preferred_zone);
2386                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2387                 }
2388         } while (--sc->priority >= 0);
2389
2390 out:
2391         delayacct_freepages_end();
2392
2393         if (sc->nr_reclaimed)
2394                 return sc->nr_reclaimed;
2395
2396         /*
2397          * As hibernation is going on, kswapd is freezed so that it can't mark
2398          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2399          * check.
2400          */
2401         if (oom_killer_disabled)
2402                 return 0;
2403
2404         /* Aborted reclaim to try compaction? don't OOM, then */
2405         if (aborted_reclaim)
2406                 return 1;
2407
2408         /* top priority shrink_zones still had more to do? don't OOM, then */
2409         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2410                 return 1;
2411
2412         return 0;
2413 }
2414
2415 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2416 {
2417         struct zone *zone;
2418         unsigned long pfmemalloc_reserve = 0;
2419         unsigned long free_pages = 0;
2420         int i;
2421         bool wmark_ok;
2422
2423         for (i = 0; i <= ZONE_NORMAL; i++) {
2424                 zone = &pgdat->node_zones[i];
2425                 pfmemalloc_reserve += min_wmark_pages(zone);
2426                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2427         }
2428
2429         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2430
2431         /* kswapd must be awake if processes are being throttled */
2432         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2433                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2434                                                 (enum zone_type)ZONE_NORMAL);
2435                 wake_up_interruptible(&pgdat->kswapd_wait);
2436         }
2437
2438         return wmark_ok;
2439 }
2440
2441 /*
2442  * Throttle direct reclaimers if backing storage is backed by the network
2443  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2444  * depleted. kswapd will continue to make progress and wake the processes
2445  * when the low watermark is reached.
2446  *
2447  * Returns true if a fatal signal was delivered during throttling. If this
2448  * happens, the page allocator should not consider triggering the OOM killer.
2449  */
2450 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2451                                         nodemask_t *nodemask)
2452 {
2453         struct zone *zone;
2454         int high_zoneidx = gfp_zone(gfp_mask);
2455         pg_data_t *pgdat;
2456
2457         /*
2458          * Kernel threads should not be throttled as they may be indirectly
2459          * responsible for cleaning pages necessary for reclaim to make forward
2460          * progress. kjournald for example may enter direct reclaim while
2461          * committing a transaction where throttling it could forcing other
2462          * processes to block on log_wait_commit().
2463          */
2464         if (current->flags & PF_KTHREAD)
2465                 goto out;
2466
2467         /*
2468          * If a fatal signal is pending, this process should not throttle.
2469          * It should return quickly so it can exit and free its memory
2470          */
2471         if (fatal_signal_pending(current))
2472                 goto out;
2473
2474         /* Check if the pfmemalloc reserves are ok */
2475         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2476         pgdat = zone->zone_pgdat;
2477         if (pfmemalloc_watermark_ok(pgdat))
2478                 goto out;
2479
2480         /* Account for the throttling */
2481         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2482
2483         /*
2484          * If the caller cannot enter the filesystem, it's possible that it
2485          * is due to the caller holding an FS lock or performing a journal
2486          * transaction in the case of a filesystem like ext[3|4]. In this case,
2487          * it is not safe to block on pfmemalloc_wait as kswapd could be
2488          * blocked waiting on the same lock. Instead, throttle for up to a
2489          * second before continuing.
2490          */
2491         if (!(gfp_mask & __GFP_FS)) {
2492                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2493                         pfmemalloc_watermark_ok(pgdat), HZ);
2494
2495                 goto check_pending;
2496         }
2497
2498         /* Throttle until kswapd wakes the process */
2499         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2500                 pfmemalloc_watermark_ok(pgdat));
2501
2502 check_pending:
2503         if (fatal_signal_pending(current))
2504                 return true;
2505
2506 out:
2507         return false;
2508 }
2509
2510 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2511                                 gfp_t gfp_mask, nodemask_t *nodemask)
2512 {
2513         unsigned long nr_reclaimed;
2514         struct scan_control sc = {
2515                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2516                 .may_writepage = !laptop_mode,
2517                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2518                 .may_unmap = 1,
2519                 .may_swap = 1,
2520                 .order = order,
2521                 .priority = DEF_PRIORITY,
2522                 .target_mem_cgroup = NULL,
2523                 .nodemask = nodemask,
2524         };
2525         struct shrink_control shrink = {
2526                 .gfp_mask = sc.gfp_mask,
2527         };
2528
2529         /*
2530          * Do not enter reclaim if fatal signal was delivered while throttled.
2531          * 1 is returned so that the page allocator does not OOM kill at this
2532          * point.
2533          */
2534         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2535                 return 1;
2536
2537         trace_mm_vmscan_direct_reclaim_begin(order,
2538                                 sc.may_writepage,
2539                                 gfp_mask);
2540
2541         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2542
2543         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2544
2545         return nr_reclaimed;
2546 }
2547
2548 #ifdef CONFIG_MEMCG
2549
2550 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2551                                                 gfp_t gfp_mask, bool noswap,
2552                                                 struct zone *zone,
2553                                                 unsigned long *nr_scanned)
2554 {
2555         struct scan_control sc = {
2556                 .nr_scanned = 0,
2557                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2558                 .may_writepage = !laptop_mode,
2559                 .may_unmap = 1,
2560                 .may_swap = !noswap,
2561                 .order = 0,
2562                 .priority = 0,
2563                 .target_mem_cgroup = memcg,
2564         };
2565         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2566
2567         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2568                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2569
2570         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2571                                                       sc.may_writepage,
2572                                                       sc.gfp_mask);
2573
2574         /*
2575          * NOTE: Although we can get the priority field, using it
2576          * here is not a good idea, since it limits the pages we can scan.
2577          * if we don't reclaim here, the shrink_zone from balance_pgdat
2578          * will pick up pages from other mem cgroup's as well. We hack
2579          * the priority and make it zero.
2580          */
2581         shrink_lruvec(lruvec, &sc);
2582
2583         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2584
2585         *nr_scanned = sc.nr_scanned;
2586         return sc.nr_reclaimed;
2587 }
2588
2589 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2590                                            gfp_t gfp_mask,
2591                                            bool noswap)
2592 {
2593         struct zonelist *zonelist;
2594         unsigned long nr_reclaimed;
2595         int nid;
2596         struct scan_control sc = {
2597                 .may_writepage = !laptop_mode,
2598                 .may_unmap = 1,
2599                 .may_swap = !noswap,
2600                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2601                 .order = 0,
2602                 .priority = DEF_PRIORITY,
2603                 .target_mem_cgroup = memcg,
2604                 .nodemask = NULL, /* we don't care the placement */
2605                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2606                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2607         };
2608         struct shrink_control shrink = {
2609                 .gfp_mask = sc.gfp_mask,
2610         };
2611
2612         /*
2613          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2614          * take care of from where we get pages. So the node where we start the
2615          * scan does not need to be the current node.
2616          */
2617         nid = mem_cgroup_select_victim_node(memcg);
2618
2619         zonelist = NODE_DATA(nid)->node_zonelists;
2620
2621         trace_mm_vmscan_memcg_reclaim_begin(0,
2622                                             sc.may_writepage,
2623                                             sc.gfp_mask);
2624
2625         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2626
2627         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2628
2629         return nr_reclaimed;
2630 }
2631 #endif
2632
2633 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2634 {
2635         struct mem_cgroup *memcg;
2636
2637         if (!total_swap_pages)
2638                 return;
2639
2640         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2641         do {
2642                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2643
2644                 if (inactive_anon_is_low(lruvec))
2645                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2646                                            sc, LRU_ACTIVE_ANON);
2647
2648                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2649         } while (memcg);
2650 }
2651
2652 static bool zone_balanced(struct zone *zone, int order,
2653                           unsigned long balance_gap, int classzone_idx)
2654 {
2655         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2656                                     balance_gap, classzone_idx, 0))
2657                 return false;
2658
2659         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2660             !compaction_suitable(zone, order))
2661                 return false;
2662
2663         return true;
2664 }
2665
2666 /*
2667  * pgdat_balanced() is used when checking if a node is balanced.
2668  *
2669  * For order-0, all zones must be balanced!
2670  *
2671  * For high-order allocations only zones that meet watermarks and are in a
2672  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2673  * total of balanced pages must be at least 25% of the zones allowed by
2674  * classzone_idx for the node to be considered balanced. Forcing all zones to
2675  * be balanced for high orders can cause excessive reclaim when there are
2676  * imbalanced zones.
2677  * The choice of 25% is due to
2678  *   o a 16M DMA zone that is balanced will not balance a zone on any
2679  *     reasonable sized machine
2680  *   o On all other machines, the top zone must be at least a reasonable
2681  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2682  *     would need to be at least 256M for it to be balance a whole node.
2683  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2684  *     to balance a node on its own. These seemed like reasonable ratios.
2685  */
2686 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2687 {
2688         unsigned long managed_pages = 0;
2689         unsigned long balanced_pages = 0;
2690         int i;
2691
2692         /* Check the watermark levels */
2693         for (i = 0; i <= classzone_idx; i++) {
2694                 struct zone *zone = pgdat->node_zones + i;
2695
2696                 if (!populated_zone(zone))
2697                         continue;
2698
2699                 managed_pages += zone->managed_pages;
2700
2701                 /*
2702                  * A special case here:
2703                  *
2704                  * balance_pgdat() skips over all_unreclaimable after
2705                  * DEF_PRIORITY. Effectively, it considers them balanced so
2706                  * they must be considered balanced here as well!
2707                  */
2708                 if (zone->all_unreclaimable) {
2709                         balanced_pages += zone->managed_pages;
2710                         continue;
2711                 }
2712
2713                 if (zone_balanced(zone, order, 0, i))
2714                         balanced_pages += zone->managed_pages;
2715                 else if (!order)
2716                         return false;
2717         }
2718
2719         if (order)
2720                 return balanced_pages >= (managed_pages >> 2);
2721         else
2722                 return true;
2723 }
2724
2725 /*
2726  * Prepare kswapd for sleeping. This verifies that there are no processes
2727  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2728  *
2729  * Returns true if kswapd is ready to sleep
2730  */
2731 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2732                                         int classzone_idx)
2733 {
2734         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2735         if (remaining)
2736                 return false;
2737
2738         /*
2739          * There is a potential race between when kswapd checks its watermarks
2740          * and a process gets throttled. There is also a potential race if
2741          * processes get throttled, kswapd wakes, a large process exits therby
2742          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2743          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2744          * so wake them now if necessary. If necessary, processes will wake
2745          * kswapd and get throttled again
2746          */
2747         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2748                 wake_up(&pgdat->pfmemalloc_wait);
2749                 return false;
2750         }
2751
2752         return pgdat_balanced(pgdat, order, classzone_idx);
2753 }
2754
2755 /*
2756  * kswapd shrinks the zone by the number of pages required to reach
2757  * the high watermark.
2758  *
2759  * Returns true if kswapd scanned at least the requested number of pages to
2760  * reclaim or if the lack of progress was due to pages under writeback.
2761  * This is used to determine if the scanning priority needs to be raised.
2762  */
2763 static bool kswapd_shrink_zone(struct zone *zone,
2764                                int classzone_idx,
2765                                struct scan_control *sc,
2766                                unsigned long lru_pages,
2767                                unsigned long *nr_attempted)
2768 {
2769         unsigned long nr_slab;
2770         int testorder = sc->order;
2771         unsigned long balance_gap;
2772         struct reclaim_state *reclaim_state = current->reclaim_state;
2773         struct shrink_control shrink = {
2774                 .gfp_mask = sc->gfp_mask,
2775         };
2776         bool lowmem_pressure;
2777
2778         /* Reclaim above the high watermark. */
2779         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2780
2781         /*
2782          * Kswapd reclaims only single pages with compaction enabled. Trying
2783          * too hard to reclaim until contiguous free pages have become
2784          * available can hurt performance by evicting too much useful data
2785          * from memory. Do not reclaim more than needed for compaction.
2786          */
2787         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2788                         compaction_suitable(zone, sc->order) !=
2789                                 COMPACT_SKIPPED)
2790                 testorder = 0;
2791
2792         /*
2793          * We put equal pressure on every zone, unless one zone has way too
2794          * many pages free already. The "too many pages" is defined as the
2795          * high wmark plus a "gap" where the gap is either the low
2796          * watermark or 1% of the zone, whichever is smaller.
2797          */
2798         balance_gap = min(low_wmark_pages(zone),
2799                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2800                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2801
2802         /*
2803          * If there is no low memory pressure or the zone is balanced then no
2804          * reclaim is necessary
2805          */
2806         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2807         if (!lowmem_pressure && zone_balanced(zone, testorder,
2808                                                 balance_gap, classzone_idx))
2809                 return true;
2810
2811         shrink_zone(zone, sc);
2812
2813         reclaim_state->reclaimed_slab = 0;
2814         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2815         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2816
2817         /* Account for the number of pages attempted to reclaim */
2818         *nr_attempted += sc->nr_to_reclaim;
2819
2820         if (nr_slab == 0 && !zone_reclaimable(zone))
2821                 zone->all_unreclaimable = 1;
2822
2823         zone_clear_flag(zone, ZONE_WRITEBACK);
2824
2825         /*
2826          * If a zone reaches its high watermark, consider it to be no longer
2827          * congested. It's possible there are dirty pages backed by congested
2828          * BDIs but as pressure is relieved, speculatively avoid congestion
2829          * waits.
2830          */
2831         if (!zone->all_unreclaimable &&
2832             zone_balanced(zone, testorder, 0, classzone_idx)) {
2833                 zone_clear_flag(zone, ZONE_CONGESTED);
2834                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2835         }
2836
2837         return sc->nr_scanned >= sc->nr_to_reclaim;
2838 }
2839
2840 /*
2841  * For kswapd, balance_pgdat() will work across all this node's zones until
2842  * they are all at high_wmark_pages(zone).
2843  *
2844  * Returns the final order kswapd was reclaiming at
2845  *
2846  * There is special handling here for zones which are full of pinned pages.
2847  * This can happen if the pages are all mlocked, or if they are all used by
2848  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2849  * What we do is to detect the case where all pages in the zone have been
2850  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2851  * dead and from now on, only perform a short scan.  Basically we're polling
2852  * the zone for when the problem goes away.
2853  *
2854  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2855  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2856  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2857  * lower zones regardless of the number of free pages in the lower zones. This
2858  * interoperates with the page allocator fallback scheme to ensure that aging
2859  * of pages is balanced across the zones.
2860  */
2861 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2862                                                         int *classzone_idx)
2863 {
2864         int i;
2865         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2866         unsigned long nr_soft_reclaimed;
2867         unsigned long nr_soft_scanned;
2868         struct scan_control sc = {
2869                 .gfp_mask = GFP_KERNEL,
2870                 .priority = DEF_PRIORITY,
2871                 .may_unmap = 1,
2872                 .may_swap = 1,
2873                 .may_writepage = !laptop_mode,
2874                 .order = order,
2875                 .target_mem_cgroup = NULL,
2876         };
2877         count_vm_event(PAGEOUTRUN);
2878
2879         do {
2880                 unsigned long lru_pages = 0;
2881                 unsigned long nr_attempted = 0;
2882                 bool raise_priority = true;
2883                 bool pgdat_needs_compaction = (order > 0);
2884
2885                 sc.nr_reclaimed = 0;
2886
2887                 /*
2888                  * Scan in the highmem->dma direction for the highest
2889                  * zone which needs scanning
2890                  */
2891                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2892                         struct zone *zone = pgdat->node_zones + i;
2893
2894                         if (!populated_zone(zone))
2895                                 continue;
2896
2897                         if (zone->all_unreclaimable &&
2898                             sc.priority != DEF_PRIORITY)
2899                                 continue;
2900
2901                         /*
2902                          * Do some background aging of the anon list, to give
2903                          * pages a chance to be referenced before reclaiming.
2904                          */
2905                         age_active_anon(zone, &sc);
2906
2907                         /*
2908                          * If the number of buffer_heads in the machine
2909                          * exceeds the maximum allowed level and this node
2910                          * has a highmem zone, force kswapd to reclaim from
2911                          * it to relieve lowmem pressure.
2912                          */
2913                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2914                                 end_zone = i;
2915                                 break;
2916                         }
2917
2918                         if (!zone_balanced(zone, order, 0, 0)) {
2919                                 end_zone = i;
2920                                 break;
2921                         } else {
2922                                 /*
2923                                  * If balanced, clear the dirty and congested
2924                                  * flags
2925                                  */
2926                                 zone_clear_flag(zone, ZONE_CONGESTED);
2927                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2928                         }
2929                 }
2930
2931                 if (i < 0)
2932                         goto out;
2933
2934                 for (i = 0; i <= end_zone; i++) {
2935                         struct zone *zone = pgdat->node_zones + i;
2936
2937                         if (!populated_zone(zone))
2938                                 continue;
2939
2940                         lru_pages += zone_reclaimable_pages(zone);
2941
2942                         /*
2943                          * If any zone is currently balanced then kswapd will
2944                          * not call compaction as it is expected that the
2945                          * necessary pages are already available.
2946                          */
2947                         if (pgdat_needs_compaction &&
2948                                         zone_watermark_ok(zone, order,
2949                                                 low_wmark_pages(zone),
2950                                                 *classzone_idx, 0))
2951                                 pgdat_needs_compaction = false;
2952                 }
2953
2954                 /*
2955                  * If we're getting trouble reclaiming, start doing writepage
2956                  * even in laptop mode.
2957                  */
2958                 if (sc.priority < DEF_PRIORITY - 2)
2959                         sc.may_writepage = 1;
2960
2961                 /*
2962                  * Now scan the zone in the dma->highmem direction, stopping
2963                  * at the last zone which needs scanning.
2964                  *
2965                  * We do this because the page allocator works in the opposite
2966                  * direction.  This prevents the page allocator from allocating
2967                  * pages behind kswapd's direction of progress, which would
2968                  * cause too much scanning of the lower zones.
2969                  */
2970                 for (i = 0; i <= end_zone; i++) {
2971                         struct zone *zone = pgdat->node_zones + i;
2972
2973                         if (!populated_zone(zone))
2974                                 continue;
2975
2976                         if (zone->all_unreclaimable &&
2977                             sc.priority != DEF_PRIORITY)
2978                                 continue;
2979
2980                         sc.nr_scanned = 0;
2981
2982                         nr_soft_scanned = 0;
2983                         /*
2984                          * Call soft limit reclaim before calling shrink_zone.
2985                          */
2986                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2987                                                         order, sc.gfp_mask,
2988                                                         &nr_soft_scanned);
2989                         sc.nr_reclaimed += nr_soft_reclaimed;
2990
2991                         /*
2992                          * There should be no need to raise the scanning
2993                          * priority if enough pages are already being scanned
2994                          * that that high watermark would be met at 100%
2995                          * efficiency.
2996                          */
2997                         if (kswapd_shrink_zone(zone, end_zone, &sc,
2998                                         lru_pages, &nr_attempted))
2999                                 raise_priority = false;
3000                 }
3001
3002                 /*
3003                  * If the low watermark is met there is no need for processes
3004                  * to be throttled on pfmemalloc_wait as they should not be
3005                  * able to safely make forward progress. Wake them
3006                  */
3007                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3008                                 pfmemalloc_watermark_ok(pgdat))
3009                         wake_up(&pgdat->pfmemalloc_wait);
3010
3011                 /*
3012                  * Fragmentation may mean that the system cannot be rebalanced
3013                  * for high-order allocations in all zones. If twice the
3014                  * allocation size has been reclaimed and the zones are still
3015                  * not balanced then recheck the watermarks at order-0 to
3016                  * prevent kswapd reclaiming excessively. Assume that a
3017                  * process requested a high-order can direct reclaim/compact.
3018                  */
3019                 if (order && sc.nr_reclaimed >= 2UL << order)
3020                         order = sc.order = 0;
3021
3022                 /* Check if kswapd should be suspending */
3023                 if (try_to_freeze() || kthread_should_stop())
3024                         break;
3025
3026                 /*
3027                  * Compact if necessary and kswapd is reclaiming at least the
3028                  * high watermark number of pages as requsted
3029                  */
3030                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3031                         compact_pgdat(pgdat, order);
3032
3033                 /*
3034                  * Raise priority if scanning rate is too low or there was no
3035                  * progress in reclaiming pages
3036                  */
3037                 if (raise_priority || !sc.nr_reclaimed)
3038                         sc.priority--;
3039         } while (sc.priority >= 1 &&
3040                  !pgdat_balanced(pgdat, order, *classzone_idx));
3041
3042 out:
3043         /*
3044          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3045          * makes a decision on the order we were last reclaiming at. However,
3046          * if another caller entered the allocator slow path while kswapd
3047          * was awake, order will remain at the higher level
3048          */
3049         *classzone_idx = end_zone;
3050         return order;
3051 }
3052
3053 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3054 {
3055         long remaining = 0;
3056         DEFINE_WAIT(wait);
3057
3058         if (freezing(current) || kthread_should_stop())
3059                 return;
3060
3061         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3062
3063         /* Try to sleep for a short interval */
3064         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3065                 remaining = schedule_timeout(HZ/10);
3066                 finish_wait(&pgdat->kswapd_wait, &wait);
3067                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3068         }
3069
3070         /*
3071          * After a short sleep, check if it was a premature sleep. If not, then
3072          * go fully to sleep until explicitly woken up.
3073          */
3074         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3075                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3076
3077                 /*
3078                  * vmstat counters are not perfectly accurate and the estimated
3079                  * value for counters such as NR_FREE_PAGES can deviate from the
3080                  * true value by nr_online_cpus * threshold. To avoid the zone
3081                  * watermarks being breached while under pressure, we reduce the
3082                  * per-cpu vmstat threshold while kswapd is awake and restore
3083                  * them before going back to sleep.
3084                  */
3085                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3086
3087                 /*
3088                  * Compaction records what page blocks it recently failed to
3089                  * isolate pages from and skips them in the future scanning.
3090                  * When kswapd is going to sleep, it is reasonable to assume
3091                  * that pages and compaction may succeed so reset the cache.
3092                  */
3093                 reset_isolation_suitable(pgdat);
3094
3095                 if (!kthread_should_stop())
3096                         schedule();
3097
3098                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3099         } else {
3100                 if (remaining)
3101                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3102                 else
3103                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3104         }
3105         finish_wait(&pgdat->kswapd_wait, &wait);
3106 }
3107
3108 /*
3109  * The background pageout daemon, started as a kernel thread
3110  * from the init process.
3111  *
3112  * This basically trickles out pages so that we have _some_
3113  * free memory available even if there is no other activity
3114  * that frees anything up. This is needed for things like routing
3115  * etc, where we otherwise might have all activity going on in
3116  * asynchronous contexts that cannot page things out.
3117  *
3118  * If there are applications that are active memory-allocators
3119  * (most normal use), this basically shouldn't matter.
3120  */
3121 static int kswapd(void *p)
3122 {
3123         unsigned long order, new_order;
3124         unsigned balanced_order;
3125         int classzone_idx, new_classzone_idx;
3126         int balanced_classzone_idx;
3127         pg_data_t *pgdat = (pg_data_t*)p;
3128         struct task_struct *tsk = current;
3129
3130         struct reclaim_state reclaim_state = {
3131                 .reclaimed_slab = 0,
3132         };
3133         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3134
3135         lockdep_set_current_reclaim_state(GFP_KERNEL);
3136
3137         if (!cpumask_empty(cpumask))
3138                 set_cpus_allowed_ptr(tsk, cpumask);
3139         current->reclaim_state = &reclaim_state;
3140
3141         /*
3142          * Tell the memory management that we're a "memory allocator",
3143          * and that if we need more memory we should get access to it
3144          * regardless (see "__alloc_pages()"). "kswapd" should
3145          * never get caught in the normal page freeing logic.
3146          *
3147          * (Kswapd normally doesn't need memory anyway, but sometimes
3148          * you need a small amount of memory in order to be able to
3149          * page out something else, and this flag essentially protects
3150          * us from recursively trying to free more memory as we're
3151          * trying to free the first piece of memory in the first place).
3152          */
3153         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3154         set_freezable();
3155
3156         order = new_order = 0;
3157         balanced_order = 0;
3158         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3159         balanced_classzone_idx = classzone_idx;
3160         for ( ; ; ) {
3161                 bool ret;
3162
3163                 /*
3164                  * If the last balance_pgdat was unsuccessful it's unlikely a
3165                  * new request of a similar or harder type will succeed soon
3166                  * so consider going to sleep on the basis we reclaimed at
3167                  */
3168                 if (balanced_classzone_idx >= new_classzone_idx &&
3169                                         balanced_order == new_order) {
3170                         new_order = pgdat->kswapd_max_order;
3171                         new_classzone_idx = pgdat->classzone_idx;
3172                         pgdat->kswapd_max_order =  0;
3173                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3174                 }
3175
3176                 if (order < new_order || classzone_idx > new_classzone_idx) {
3177                         /*
3178                          * Don't sleep if someone wants a larger 'order'
3179                          * allocation or has tigher zone constraints
3180                          */
3181                         order = new_order;
3182                         classzone_idx = new_classzone_idx;
3183                 } else {
3184                         kswapd_try_to_sleep(pgdat, balanced_order,
3185                                                 balanced_classzone_idx);
3186                         order = pgdat->kswapd_max_order;
3187                         classzone_idx = pgdat->classzone_idx;
3188                         new_order = order;
3189                         new_classzone_idx = classzone_idx;
3190                         pgdat->kswapd_max_order = 0;
3191                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3192                 }
3193
3194                 ret = try_to_freeze();
3195                 if (kthread_should_stop())
3196                         break;
3197
3198                 /*
3199                  * We can speed up thawing tasks if we don't call balance_pgdat
3200                  * after returning from the refrigerator
3201                  */
3202                 if (!ret) {
3203                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3204                         balanced_classzone_idx = classzone_idx;
3205                         balanced_order = balance_pgdat(pgdat, order,
3206                                                 &balanced_classzone_idx);
3207                 }
3208         }
3209
3210         current->reclaim_state = NULL;
3211         return 0;
3212 }
3213
3214 /*
3215  * A zone is low on free memory, so wake its kswapd task to service it.
3216  */
3217 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3218 {
3219         pg_data_t *pgdat;
3220
3221         if (!populated_zone(zone))
3222                 return;
3223
3224         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3225                 return;
3226         pgdat = zone->zone_pgdat;
3227         if (pgdat->kswapd_max_order < order) {
3228                 pgdat->kswapd_max_order = order;
3229                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3230         }
3231         if (!waitqueue_active(&pgdat->kswapd_wait))
3232                 return;
3233         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3234                 return;
3235
3236         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3237         wake_up_interruptible(&pgdat->kswapd_wait);
3238 }
3239
3240 /*
3241  * The reclaimable count would be mostly accurate.
3242  * The less reclaimable pages may be
3243  * - mlocked pages, which will be moved to unevictable list when encountered
3244  * - mapped pages, which may require several travels to be reclaimed
3245  * - dirty pages, which is not "instantly" reclaimable
3246  */
3247 unsigned long global_reclaimable_pages(void)
3248 {
3249         int nr;
3250
3251         nr = global_page_state(NR_ACTIVE_FILE) +
3252              global_page_state(NR_INACTIVE_FILE);
3253
3254         if (get_nr_swap_pages() > 0)
3255                 nr += global_page_state(NR_ACTIVE_ANON) +
3256                       global_page_state(NR_INACTIVE_ANON);
3257
3258         return nr;
3259 }
3260
3261 unsigned long zone_reclaimable_pages(struct zone *zone)
3262 {
3263         int nr;
3264
3265         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3266              zone_page_state(zone, NR_INACTIVE_FILE);
3267
3268         if (get_nr_swap_pages() > 0)
3269                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3270                       zone_page_state(zone, NR_INACTIVE_ANON);
3271
3272         return nr;
3273 }
3274
3275 #ifdef CONFIG_HIBERNATION
3276 /*
3277  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3278  * freed pages.
3279  *
3280  * Rather than trying to age LRUs the aim is to preserve the overall
3281  * LRU order by reclaiming preferentially
3282  * inactive > active > active referenced > active mapped
3283  */
3284 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3285 {
3286         struct reclaim_state reclaim_state;
3287         struct scan_control sc = {
3288                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3289                 .may_swap = 1,
3290                 .may_unmap = 1,
3291                 .may_writepage = 1,
3292                 .nr_to_reclaim = nr_to_reclaim,
3293                 .hibernation_mode = 1,
3294                 .order = 0,
3295                 .priority = DEF_PRIORITY,
3296         };
3297         struct shrink_control shrink = {
3298                 .gfp_mask = sc.gfp_mask,
3299         };
3300         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3301         struct task_struct *p = current;
3302         unsigned long nr_reclaimed;
3303
3304         p->flags |= PF_MEMALLOC;
3305         lockdep_set_current_reclaim_state(sc.gfp_mask);
3306         reclaim_state.reclaimed_slab = 0;
3307         p->reclaim_state = &reclaim_state;
3308
3309         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3310
3311         p->reclaim_state = NULL;
3312         lockdep_clear_current_reclaim_state();
3313         p->flags &= ~PF_MEMALLOC;
3314
3315         return nr_reclaimed;
3316 }
3317 #endif /* CONFIG_HIBERNATION */
3318
3319 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3320    not required for correctness.  So if the last cpu in a node goes
3321    away, we get changed to run anywhere: as the first one comes back,
3322    restore their cpu bindings. */
3323 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3324                         void *hcpu)
3325 {
3326         int nid;
3327
3328         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3329                 for_each_node_state(nid, N_MEMORY) {
3330                         pg_data_t *pgdat = NODE_DATA(nid);
3331                         const struct cpumask *mask;
3332
3333                         mask = cpumask_of_node(pgdat->node_id);
3334
3335                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3336                                 /* One of our CPUs online: restore mask */
3337                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3338                 }
3339         }
3340         return NOTIFY_OK;
3341 }
3342
3343 /*
3344  * This kswapd start function will be called by init and node-hot-add.
3345  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3346  */
3347 int kswapd_run(int nid)
3348 {
3349         pg_data_t *pgdat = NODE_DATA(nid);
3350         int ret = 0;
3351
3352         if (pgdat->kswapd)
3353                 return 0;
3354
3355         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3356         if (IS_ERR(pgdat->kswapd)) {
3357                 /* failure at boot is fatal */
3358                 BUG_ON(system_state == SYSTEM_BOOTING);
3359                 pr_err("Failed to start kswapd on node %d\n", nid);
3360                 ret = PTR_ERR(pgdat->kswapd);
3361                 pgdat->kswapd = NULL;
3362         }
3363         return ret;
3364 }
3365
3366 /*
3367  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3368  * hold lock_memory_hotplug().
3369  */
3370 void kswapd_stop(int nid)
3371 {
3372         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3373
3374         if (kswapd) {
3375                 kthread_stop(kswapd);
3376                 NODE_DATA(nid)->kswapd = NULL;
3377         }
3378 }
3379
3380 static int __init kswapd_init(void)
3381 {
3382         int nid;
3383
3384         swap_setup();
3385         for_each_node_state(nid, N_MEMORY)
3386                 kswapd_run(nid);
3387         hotcpu_notifier(cpu_callback, 0);
3388         return 0;
3389 }
3390
3391 module_init(kswapd_init)
3392
3393 #ifdef CONFIG_NUMA
3394 /*
3395  * Zone reclaim mode
3396  *
3397  * If non-zero call zone_reclaim when the number of free pages falls below
3398  * the watermarks.
3399  */
3400 int zone_reclaim_mode __read_mostly;
3401
3402 #define RECLAIM_OFF 0
3403 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3404 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3405 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3406
3407 /*
3408  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3409  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3410  * a zone.
3411  */
3412 #define ZONE_RECLAIM_PRIORITY 4
3413
3414 /*
3415  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3416  * occur.
3417  */
3418 int sysctl_min_unmapped_ratio = 1;
3419
3420 /*
3421  * If the number of slab pages in a zone grows beyond this percentage then
3422  * slab reclaim needs to occur.
3423  */
3424 int sysctl_min_slab_ratio = 5;
3425
3426 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3427 {
3428         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3429         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3430                 zone_page_state(zone, NR_ACTIVE_FILE);
3431
3432         /*
3433          * It's possible for there to be more file mapped pages than
3434          * accounted for by the pages on the file LRU lists because
3435          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3436          */
3437         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3438 }
3439
3440 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3441 static long zone_pagecache_reclaimable(struct zone *zone)
3442 {
3443         long nr_pagecache_reclaimable;
3444         long delta = 0;
3445
3446         /*
3447          * If RECLAIM_SWAP is set, then all file pages are considered
3448          * potentially reclaimable. Otherwise, we have to worry about
3449          * pages like swapcache and zone_unmapped_file_pages() provides
3450          * a better estimate
3451          */
3452         if (zone_reclaim_mode & RECLAIM_SWAP)
3453                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3454         else
3455                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3456
3457         /* If we can't clean pages, remove dirty pages from consideration */
3458         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3459                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3460
3461         /* Watch for any possible underflows due to delta */
3462         if (unlikely(delta > nr_pagecache_reclaimable))
3463                 delta = nr_pagecache_reclaimable;
3464
3465         return nr_pagecache_reclaimable - delta;
3466 }
3467
3468 /*
3469  * Try to free up some pages from this zone through reclaim.
3470  */
3471 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3472 {
3473         /* Minimum pages needed in order to stay on node */
3474         const unsigned long nr_pages = 1 << order;
3475         struct task_struct *p = current;
3476         struct reclaim_state reclaim_state;
3477         struct scan_control sc = {
3478                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3479                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3480                 .may_swap = 1,
3481                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3482                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3483                 .order = order,
3484                 .priority = ZONE_RECLAIM_PRIORITY,
3485         };
3486         struct shrink_control shrink = {
3487                 .gfp_mask = sc.gfp_mask,
3488         };
3489         unsigned long nr_slab_pages0, nr_slab_pages1;
3490
3491         cond_resched();
3492         /*
3493          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3494          * and we also need to be able to write out pages for RECLAIM_WRITE
3495          * and RECLAIM_SWAP.
3496          */
3497         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3498         lockdep_set_current_reclaim_state(gfp_mask);
3499         reclaim_state.reclaimed_slab = 0;
3500         p->reclaim_state = &reclaim_state;
3501
3502         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3503                 /*
3504                  * Free memory by calling shrink zone with increasing
3505                  * priorities until we have enough memory freed.
3506                  */
3507                 do {
3508                         shrink_zone(zone, &sc);
3509                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3510         }
3511
3512         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3513         if (nr_slab_pages0 > zone->min_slab_pages) {
3514                 /*
3515                  * shrink_slab() does not currently allow us to determine how
3516                  * many pages were freed in this zone. So we take the current
3517                  * number of slab pages and shake the slab until it is reduced
3518                  * by the same nr_pages that we used for reclaiming unmapped
3519                  * pages.
3520                  *
3521                  * Note that shrink_slab will free memory on all zones and may
3522                  * take a long time.
3523                  */
3524                 for (;;) {
3525                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3526
3527                         /* No reclaimable slab or very low memory pressure */
3528                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3529                                 break;
3530
3531                         /* Freed enough memory */
3532                         nr_slab_pages1 = zone_page_state(zone,
3533                                                         NR_SLAB_RECLAIMABLE);
3534                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3535                                 break;
3536                 }
3537
3538                 /*
3539                  * Update nr_reclaimed by the number of slab pages we
3540                  * reclaimed from this zone.
3541                  */
3542                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3543                 if (nr_slab_pages1 < nr_slab_pages0)
3544                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3545         }
3546
3547         p->reclaim_state = NULL;
3548         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3549         lockdep_clear_current_reclaim_state();
3550         return sc.nr_reclaimed >= nr_pages;
3551 }
3552
3553 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3554 {
3555         int node_id;
3556         int ret;
3557
3558         /*
3559          * Zone reclaim reclaims unmapped file backed pages and
3560          * slab pages if we are over the defined limits.
3561          *
3562          * A small portion of unmapped file backed pages is needed for
3563          * file I/O otherwise pages read by file I/O will be immediately
3564          * thrown out if the zone is overallocated. So we do not reclaim
3565          * if less than a specified percentage of the zone is used by
3566          * unmapped file backed pages.
3567          */
3568         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3569             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3570                 return ZONE_RECLAIM_FULL;
3571
3572         if (zone->all_unreclaimable)
3573                 return ZONE_RECLAIM_FULL;
3574
3575         /*
3576          * Do not scan if the allocation should not be delayed.
3577          */
3578         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3579                 return ZONE_RECLAIM_NOSCAN;
3580
3581         /*
3582          * Only run zone reclaim on the local zone or on zones that do not
3583          * have associated processors. This will favor the local processor
3584          * over remote processors and spread off node memory allocations
3585          * as wide as possible.
3586          */
3587         node_id = zone_to_nid(zone);
3588         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3589                 return ZONE_RECLAIM_NOSCAN;
3590
3591         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3592                 return ZONE_RECLAIM_NOSCAN;
3593
3594         ret = __zone_reclaim(zone, gfp_mask, order);
3595         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3596
3597         if (!ret)
3598                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3599
3600         return ret;
3601 }
3602 #endif
3603
3604 /*
3605  * page_evictable - test whether a page is evictable
3606  * @page: the page to test
3607  *
3608  * Test whether page is evictable--i.e., should be placed on active/inactive
3609  * lists vs unevictable list.
3610  *
3611  * Reasons page might not be evictable:
3612  * (1) page's mapping marked unevictable
3613  * (2) page is part of an mlocked VMA
3614  *
3615  */
3616 int page_evictable(struct page *page)
3617 {
3618         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3619 }
3620
3621 #ifdef CONFIG_SHMEM
3622 /**
3623  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3624  * @pages:      array of pages to check
3625  * @nr_pages:   number of pages to check
3626  *
3627  * Checks pages for evictability and moves them to the appropriate lru list.
3628  *
3629  * This function is only used for SysV IPC SHM_UNLOCK.
3630  */
3631 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3632 {
3633         struct lruvec *lruvec;
3634         struct zone *zone = NULL;
3635         int pgscanned = 0;
3636         int pgrescued = 0;
3637         int i;
3638
3639         for (i = 0; i < nr_pages; i++) {
3640                 struct page *page = pages[i];
3641                 struct zone *pagezone;
3642
3643                 pgscanned++;
3644                 pagezone = page_zone(page);
3645                 if (pagezone != zone) {
3646                         if (zone)
3647                                 spin_unlock_irq(&zone->lru_lock);
3648                         zone = pagezone;
3649                         spin_lock_irq(&zone->lru_lock);
3650                 }
3651                 lruvec = mem_cgroup_page_lruvec(page, zone);
3652
3653                 if (!PageLRU(page) || !PageUnevictable(page))
3654                         continue;
3655
3656                 if (page_evictable(page)) {
3657                         enum lru_list lru = page_lru_base_type(page);
3658
3659                         VM_BUG_ON(PageActive(page));
3660                         ClearPageUnevictable(page);
3661                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3662                         add_page_to_lru_list(page, lruvec, lru);
3663                         pgrescued++;
3664                 }
3665         }
3666
3667         if (zone) {
3668                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3669                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3670                 spin_unlock_irq(&zone->lru_lock);
3671         }
3672 }
3673 #endif /* CONFIG_SHMEM */
3674
3675 static void warn_scan_unevictable_pages(void)
3676 {
3677         printk_once(KERN_WARNING
3678                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3679                     "disabled for lack of a legitimate use case.  If you have "
3680                     "one, please send an email to linux-mm@kvack.org.\n",
3681                     current->comm);
3682 }
3683
3684 /*
3685  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3686  * all nodes' unevictable lists for evictable pages
3687  */
3688 unsigned long scan_unevictable_pages;
3689
3690 int scan_unevictable_handler(struct ctl_table *table, int write,
3691                            void __user *buffer,
3692                            size_t *length, loff_t *ppos)
3693 {
3694         warn_scan_unevictable_pages();
3695         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3696         scan_unevictable_pages = 0;
3697         return 0;
3698 }
3699
3700 #ifdef CONFIG_NUMA
3701 /*
3702  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3703  * a specified node's per zone unevictable lists for evictable pages.
3704  */
3705
3706 static ssize_t read_scan_unevictable_node(struct device *dev,
3707                                           struct device_attribute *attr,
3708                                           char *buf)
3709 {
3710         warn_scan_unevictable_pages();
3711         return sprintf(buf, "0\n");     /* always zero; should fit... */
3712 }
3713
3714 static ssize_t write_scan_unevictable_node(struct device *dev,
3715                                            struct device_attribute *attr,
3716                                         const char *buf, size_t count)
3717 {
3718         warn_scan_unevictable_pages();
3719         return 1;
3720 }
3721
3722
3723 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3724                         read_scan_unevictable_node,
3725                         write_scan_unevictable_node);
3726
3727 int scan_unevictable_register_node(struct node *node)
3728 {
3729         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3730 }
3731
3732 void scan_unevictable_unregister_node(struct node *node)
3733 {
3734         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3735 }
3736 #endif