4898daf074cfa88e7047d5a301d65d6db7367258
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int active = !!TestClearPageActive(page);
550         int was_unevictable = PageUnevictable(page);
551
552         VM_BUG_ON(PageLRU(page));
553
554 redo:
555         ClearPageUnevictable(page);
556
557         if (page_evictable(page)) {
558                 /*
559                  * For evictable pages, we can use the cache.
560                  * In event of a race, worst case is we end up with an
561                  * unevictable page on [in]active list.
562                  * We know how to handle that.
563                  */
564                 lru = active + page_lru_base_type(page);
565                 lru_cache_add_lru(page, lru);
566         } else {
567                 /*
568                  * Put unevictable pages directly on zone's unevictable
569                  * list.
570                  */
571                 lru = LRU_UNEVICTABLE;
572                 add_page_to_unevictable_list(page);
573                 /*
574                  * When racing with an mlock or AS_UNEVICTABLE clearing
575                  * (page is unlocked) make sure that if the other thread
576                  * does not observe our setting of PG_lru and fails
577                  * isolation/check_move_unevictable_pages,
578                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579                  * the page back to the evictable list.
580                  *
581                  * The other side is TestClearPageMlocked() or shmem_lock().
582                  */
583                 smp_mb();
584         }
585
586         /*
587          * page's status can change while we move it among lru. If an evictable
588          * page is on unevictable list, it never be freed. To avoid that,
589          * check after we added it to the list, again.
590          */
591         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592                 if (!isolate_lru_page(page)) {
593                         put_page(page);
594                         goto redo;
595                 }
596                 /* This means someone else dropped this page from LRU
597                  * So, it will be freed or putback to LRU again. There is
598                  * nothing to do here.
599                  */
600         }
601
602         if (was_unevictable && lru != LRU_UNEVICTABLE)
603                 count_vm_event(UNEVICTABLE_PGRESCUED);
604         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605                 count_vm_event(UNEVICTABLE_PGCULLED);
606
607         put_page(page);         /* drop ref from isolate */
608 }
609
610 enum page_references {
611         PAGEREF_RECLAIM,
612         PAGEREF_RECLAIM_CLEAN,
613         PAGEREF_KEEP,
614         PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618                                                   struct scan_control *sc)
619 {
620         int referenced_ptes, referenced_page;
621         unsigned long vm_flags;
622
623         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624                                           &vm_flags);
625         referenced_page = TestClearPageReferenced(page);
626
627         /*
628          * Mlock lost the isolation race with us.  Let try_to_unmap()
629          * move the page to the unevictable list.
630          */
631         if (vm_flags & VM_LOCKED)
632                 return PAGEREF_RECLAIM;
633
634         if (referenced_ptes) {
635                 if (PageSwapBacked(page))
636                         return PAGEREF_ACTIVATE;
637                 /*
638                  * All mapped pages start out with page table
639                  * references from the instantiating fault, so we need
640                  * to look twice if a mapped file page is used more
641                  * than once.
642                  *
643                  * Mark it and spare it for another trip around the
644                  * inactive list.  Another page table reference will
645                  * lead to its activation.
646                  *
647                  * Note: the mark is set for activated pages as well
648                  * so that recently deactivated but used pages are
649                  * quickly recovered.
650                  */
651                 SetPageReferenced(page);
652
653                 if (referenced_page || referenced_ptes > 1)
654                         return PAGEREF_ACTIVATE;
655
656                 /*
657                  * Activate file-backed executable pages after first usage.
658                  */
659                 if (vm_flags & VM_EXEC)
660                         return PAGEREF_ACTIVATE;
661
662                 return PAGEREF_KEEP;
663         }
664
665         /* Reclaim if clean, defer dirty pages to writeback */
666         if (referenced_page && !PageSwapBacked(page))
667                 return PAGEREF_RECLAIM_CLEAN;
668
669         return PAGEREF_RECLAIM;
670 }
671
672 /* Check if a page is dirty or under writeback */
673 static void page_check_dirty_writeback(struct page *page,
674                                        bool *dirty, bool *writeback)
675 {
676         /*
677          * Anonymous pages are not handled by flushers and must be written
678          * from reclaim context. Do not stall reclaim based on them
679          */
680         if (!page_is_file_cache(page)) {
681                 *dirty = false;
682                 *writeback = false;
683                 return;
684         }
685
686         /* By default assume that the page flags are accurate */
687         *dirty = PageDirty(page);
688         *writeback = PageWriteback(page);
689 }
690
691 /*
692  * shrink_page_list() returns the number of reclaimed pages
693  */
694 static unsigned long shrink_page_list(struct list_head *page_list,
695                                       struct zone *zone,
696                                       struct scan_control *sc,
697                                       enum ttu_flags ttu_flags,
698                                       unsigned long *ret_nr_dirty,
699                                       unsigned long *ret_nr_unqueued_dirty,
700                                       unsigned long *ret_nr_congested,
701                                       unsigned long *ret_nr_writeback,
702                                       unsigned long *ret_nr_immediate,
703                                       bool force_reclaim)
704 {
705         LIST_HEAD(ret_pages);
706         LIST_HEAD(free_pages);
707         int pgactivate = 0;
708         unsigned long nr_unqueued_dirty = 0;
709         unsigned long nr_dirty = 0;
710         unsigned long nr_congested = 0;
711         unsigned long nr_reclaimed = 0;
712         unsigned long nr_writeback = 0;
713         unsigned long nr_immediate = 0;
714
715         cond_resched();
716
717         mem_cgroup_uncharge_start();
718         while (!list_empty(page_list)) {
719                 struct address_space *mapping;
720                 struct page *page;
721                 int may_enter_fs;
722                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
723                 bool dirty, writeback;
724
725                 cond_resched();
726
727                 page = lru_to_page(page_list);
728                 list_del(&page->lru);
729
730                 if (!trylock_page(page))
731                         goto keep;
732
733                 VM_BUG_ON(PageActive(page));
734                 VM_BUG_ON(page_zone(page) != zone);
735
736                 sc->nr_scanned++;
737
738                 if (unlikely(!page_evictable(page)))
739                         goto cull_mlocked;
740
741                 if (!sc->may_unmap && page_mapped(page))
742                         goto keep_locked;
743
744                 /* Double the slab pressure for mapped and swapcache pages */
745                 if (page_mapped(page) || PageSwapCache(page))
746                         sc->nr_scanned++;
747
748                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
749                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
750
751                 /*
752                  * The number of dirty pages determines if a zone is marked
753                  * reclaim_congested which affects wait_iff_congested. kswapd
754                  * will stall and start writing pages if the tail of the LRU
755                  * is all dirty unqueued pages.
756                  */
757                 page_check_dirty_writeback(page, &dirty, &writeback);
758                 if (dirty || writeback)
759                         nr_dirty++;
760
761                 if (dirty && !writeback)
762                         nr_unqueued_dirty++;
763
764                 /* Treat this page as congested if underlying BDI is */
765                 mapping = page_mapping(page);
766                 if (mapping && bdi_write_congested(mapping->backing_dev_info))
767                         nr_congested++;
768
769                 /*
770                  * If a page at the tail of the LRU is under writeback, there
771                  * are three cases to consider.
772                  *
773                  * 1) If reclaim is encountering an excessive number of pages
774                  *    under writeback and this page is both under writeback and
775                  *    PageReclaim then it indicates that pages are being queued
776                  *    for IO but are being recycled through the LRU before the
777                  *    IO can complete. Waiting on the page itself risks an
778                  *    indefinite stall if it is impossible to writeback the
779                  *    page due to IO error or disconnected storage so instead
780                  *    note that the LRU is being scanned too quickly and the
781                  *    caller can stall after page list has been processed.
782                  *
783                  * 2) Global reclaim encounters a page, memcg encounters a
784                  *    page that is not marked for immediate reclaim or
785                  *    the caller does not have __GFP_IO. In this case mark
786                  *    the page for immediate reclaim and continue scanning.
787                  *
788                  *    __GFP_IO is checked  because a loop driver thread might
789                  *    enter reclaim, and deadlock if it waits on a page for
790                  *    which it is needed to do the write (loop masks off
791                  *    __GFP_IO|__GFP_FS for this reason); but more thought
792                  *    would probably show more reasons.
793                  *
794                  *    Don't require __GFP_FS, since we're not going into the
795                  *    FS, just waiting on its writeback completion. Worryingly,
796                  *    ext4 gfs2 and xfs allocate pages with
797                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
798                  *    may_enter_fs here is liable to OOM on them.
799                  *
800                  * 3) memcg encounters a page that is not already marked
801                  *    PageReclaim. memcg does not have any dirty pages
802                  *    throttling so we could easily OOM just because too many
803                  *    pages are in writeback and there is nothing else to
804                  *    reclaim. Wait for the writeback to complete.
805                  */
806                 if (PageWriteback(page)) {
807                         /* Case 1 above */
808                         if (current_is_kswapd() &&
809                             PageReclaim(page) &&
810                             zone_is_reclaim_writeback(zone)) {
811                                 nr_immediate++;
812                                 goto keep_locked;
813
814                         /* Case 2 above */
815                         } else if (global_reclaim(sc) ||
816                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
817                                 /*
818                                  * This is slightly racy - end_page_writeback()
819                                  * might have just cleared PageReclaim, then
820                                  * setting PageReclaim here end up interpreted
821                                  * as PageReadahead - but that does not matter
822                                  * enough to care.  What we do want is for this
823                                  * page to have PageReclaim set next time memcg
824                                  * reclaim reaches the tests above, so it will
825                                  * then wait_on_page_writeback() to avoid OOM;
826                                  * and it's also appropriate in global reclaim.
827                                  */
828                                 SetPageReclaim(page);
829                                 nr_writeback++;
830
831                                 goto keep_locked;
832
833                         /* Case 3 above */
834                         } else {
835                                 wait_on_page_writeback(page);
836                         }
837                 }
838
839                 if (!force_reclaim)
840                         references = page_check_references(page, sc);
841
842                 switch (references) {
843                 case PAGEREF_ACTIVATE:
844                         goto activate_locked;
845                 case PAGEREF_KEEP:
846                         goto keep_locked;
847                 case PAGEREF_RECLAIM:
848                 case PAGEREF_RECLAIM_CLEAN:
849                         ; /* try to reclaim the page below */
850                 }
851
852                 /*
853                  * Anonymous process memory has backing store?
854                  * Try to allocate it some swap space here.
855                  */
856                 if (PageAnon(page) && !PageSwapCache(page)) {
857                         if (!(sc->gfp_mask & __GFP_IO))
858                                 goto keep_locked;
859                         if (!add_to_swap(page, page_list))
860                                 goto activate_locked;
861                         may_enter_fs = 1;
862
863                         /* Adding to swap updated mapping */
864                         mapping = page_mapping(page);
865                 }
866
867                 /*
868                  * The page is mapped into the page tables of one or more
869                  * processes. Try to unmap it here.
870                  */
871                 if (page_mapped(page) && mapping) {
872                         switch (try_to_unmap(page, ttu_flags)) {
873                         case SWAP_FAIL:
874                                 goto activate_locked;
875                         case SWAP_AGAIN:
876                                 goto keep_locked;
877                         case SWAP_MLOCK:
878                                 goto cull_mlocked;
879                         case SWAP_SUCCESS:
880                                 ; /* try to free the page below */
881                         }
882                 }
883
884                 if (PageDirty(page)) {
885                         /*
886                          * Only kswapd can writeback filesystem pages to
887                          * avoid risk of stack overflow but only writeback
888                          * if many dirty pages have been encountered.
889                          */
890                         if (page_is_file_cache(page) &&
891                                         (!current_is_kswapd() ||
892                                          !zone_is_reclaim_dirty(zone))) {
893                                 /*
894                                  * Immediately reclaim when written back.
895                                  * Similar in principal to deactivate_page()
896                                  * except we already have the page isolated
897                                  * and know it's dirty
898                                  */
899                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
900                                 SetPageReclaim(page);
901
902                                 goto keep_locked;
903                         }
904
905                         if (references == PAGEREF_RECLAIM_CLEAN)
906                                 goto keep_locked;
907                         if (!may_enter_fs)
908                                 goto keep_locked;
909                         if (!sc->may_writepage)
910                                 goto keep_locked;
911
912                         /* Page is dirty, try to write it out here */
913                         switch (pageout(page, mapping, sc)) {
914                         case PAGE_KEEP:
915                                 goto keep_locked;
916                         case PAGE_ACTIVATE:
917                                 goto activate_locked;
918                         case PAGE_SUCCESS:
919                                 if (PageWriteback(page))
920                                         goto keep;
921                                 if (PageDirty(page))
922                                         goto keep;
923
924                                 /*
925                                  * A synchronous write - probably a ramdisk.  Go
926                                  * ahead and try to reclaim the page.
927                                  */
928                                 if (!trylock_page(page))
929                                         goto keep;
930                                 if (PageDirty(page) || PageWriteback(page))
931                                         goto keep_locked;
932                                 mapping = page_mapping(page);
933                         case PAGE_CLEAN:
934                                 ; /* try to free the page below */
935                         }
936                 }
937
938                 /*
939                  * If the page has buffers, try to free the buffer mappings
940                  * associated with this page. If we succeed we try to free
941                  * the page as well.
942                  *
943                  * We do this even if the page is PageDirty().
944                  * try_to_release_page() does not perform I/O, but it is
945                  * possible for a page to have PageDirty set, but it is actually
946                  * clean (all its buffers are clean).  This happens if the
947                  * buffers were written out directly, with submit_bh(). ext3
948                  * will do this, as well as the blockdev mapping.
949                  * try_to_release_page() will discover that cleanness and will
950                  * drop the buffers and mark the page clean - it can be freed.
951                  *
952                  * Rarely, pages can have buffers and no ->mapping.  These are
953                  * the pages which were not successfully invalidated in
954                  * truncate_complete_page().  We try to drop those buffers here
955                  * and if that worked, and the page is no longer mapped into
956                  * process address space (page_count == 1) it can be freed.
957                  * Otherwise, leave the page on the LRU so it is swappable.
958                  */
959                 if (page_has_private(page)) {
960                         if (!try_to_release_page(page, sc->gfp_mask))
961                                 goto activate_locked;
962                         if (!mapping && page_count(page) == 1) {
963                                 unlock_page(page);
964                                 if (put_page_testzero(page))
965                                         goto free_it;
966                                 else {
967                                         /*
968                                          * rare race with speculative reference.
969                                          * the speculative reference will free
970                                          * this page shortly, so we may
971                                          * increment nr_reclaimed here (and
972                                          * leave it off the LRU).
973                                          */
974                                         nr_reclaimed++;
975                                         continue;
976                                 }
977                         }
978                 }
979
980                 if (!mapping || !__remove_mapping(mapping, page))
981                         goto keep_locked;
982
983                 /*
984                  * At this point, we have no other references and there is
985                  * no way to pick any more up (removed from LRU, removed
986                  * from pagecache). Can use non-atomic bitops now (and
987                  * we obviously don't have to worry about waking up a process
988                  * waiting on the page lock, because there are no references.
989                  */
990                 __clear_page_locked(page);
991 free_it:
992                 nr_reclaimed++;
993
994                 /*
995                  * Is there need to periodically free_page_list? It would
996                  * appear not as the counts should be low
997                  */
998                 list_add(&page->lru, &free_pages);
999                 continue;
1000
1001 cull_mlocked:
1002                 if (PageSwapCache(page))
1003                         try_to_free_swap(page);
1004                 unlock_page(page);
1005                 putback_lru_page(page);
1006                 continue;
1007
1008 activate_locked:
1009                 /* Not a candidate for swapping, so reclaim swap space. */
1010                 if (PageSwapCache(page) && vm_swap_full())
1011                         try_to_free_swap(page);
1012                 VM_BUG_ON(PageActive(page));
1013                 SetPageActive(page);
1014                 pgactivate++;
1015 keep_locked:
1016                 unlock_page(page);
1017 keep:
1018                 list_add(&page->lru, &ret_pages);
1019                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1020         }
1021
1022         free_hot_cold_page_list(&free_pages, 1);
1023
1024         list_splice(&ret_pages, page_list);
1025         count_vm_events(PGACTIVATE, pgactivate);
1026         mem_cgroup_uncharge_end();
1027         *ret_nr_dirty += nr_dirty;
1028         *ret_nr_congested += nr_congested;
1029         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1030         *ret_nr_writeback += nr_writeback;
1031         *ret_nr_immediate += nr_immediate;
1032         return nr_reclaimed;
1033 }
1034
1035 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1036                                             struct list_head *page_list)
1037 {
1038         struct scan_control sc = {
1039                 .gfp_mask = GFP_KERNEL,
1040                 .priority = DEF_PRIORITY,
1041                 .may_unmap = 1,
1042         };
1043         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1044         struct page *page, *next;
1045         LIST_HEAD(clean_pages);
1046
1047         list_for_each_entry_safe(page, next, page_list, lru) {
1048                 if (page_is_file_cache(page) && !PageDirty(page)) {
1049                         ClearPageActive(page);
1050                         list_move(&page->lru, &clean_pages);
1051                 }
1052         }
1053
1054         ret = shrink_page_list(&clean_pages, zone, &sc,
1055                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1056                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1057         list_splice(&clean_pages, page_list);
1058         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1059         return ret;
1060 }
1061
1062 /*
1063  * Attempt to remove the specified page from its LRU.  Only take this page
1064  * if it is of the appropriate PageActive status.  Pages which are being
1065  * freed elsewhere are also ignored.
1066  *
1067  * page:        page to consider
1068  * mode:        one of the LRU isolation modes defined above
1069  *
1070  * returns 0 on success, -ve errno on failure.
1071  */
1072 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1073 {
1074         int ret = -EINVAL;
1075
1076         /* Only take pages on the LRU. */
1077         if (!PageLRU(page))
1078                 return ret;
1079
1080         /* Compaction should not handle unevictable pages but CMA can do so */
1081         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1082                 return ret;
1083
1084         ret = -EBUSY;
1085
1086         /*
1087          * To minimise LRU disruption, the caller can indicate that it only
1088          * wants to isolate pages it will be able to operate on without
1089          * blocking - clean pages for the most part.
1090          *
1091          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1092          * is used by reclaim when it is cannot write to backing storage
1093          *
1094          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1095          * that it is possible to migrate without blocking
1096          */
1097         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1098                 /* All the caller can do on PageWriteback is block */
1099                 if (PageWriteback(page))
1100                         return ret;
1101
1102                 if (PageDirty(page)) {
1103                         struct address_space *mapping;
1104
1105                         /* ISOLATE_CLEAN means only clean pages */
1106                         if (mode & ISOLATE_CLEAN)
1107                                 return ret;
1108
1109                         /*
1110                          * Only pages without mappings or that have a
1111                          * ->migratepage callback are possible to migrate
1112                          * without blocking
1113                          */
1114                         mapping = page_mapping(page);
1115                         if (mapping && !mapping->a_ops->migratepage)
1116                                 return ret;
1117                 }
1118         }
1119
1120         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1121                 return ret;
1122
1123         if (likely(get_page_unless_zero(page))) {
1124                 /*
1125                  * Be careful not to clear PageLRU until after we're
1126                  * sure the page is not being freed elsewhere -- the
1127                  * page release code relies on it.
1128                  */
1129                 ClearPageLRU(page);
1130                 ret = 0;
1131         }
1132
1133         return ret;
1134 }
1135
1136 /*
1137  * zone->lru_lock is heavily contended.  Some of the functions that
1138  * shrink the lists perform better by taking out a batch of pages
1139  * and working on them outside the LRU lock.
1140  *
1141  * For pagecache intensive workloads, this function is the hottest
1142  * spot in the kernel (apart from copy_*_user functions).
1143  *
1144  * Appropriate locks must be held before calling this function.
1145  *
1146  * @nr_to_scan: The number of pages to look through on the list.
1147  * @lruvec:     The LRU vector to pull pages from.
1148  * @dst:        The temp list to put pages on to.
1149  * @nr_scanned: The number of pages that were scanned.
1150  * @sc:         The scan_control struct for this reclaim session
1151  * @mode:       One of the LRU isolation modes
1152  * @lru:        LRU list id for isolating
1153  *
1154  * returns how many pages were moved onto *@dst.
1155  */
1156 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1157                 struct lruvec *lruvec, struct list_head *dst,
1158                 unsigned long *nr_scanned, struct scan_control *sc,
1159                 isolate_mode_t mode, enum lru_list lru)
1160 {
1161         struct list_head *src = &lruvec->lists[lru];
1162         unsigned long nr_taken = 0;
1163         unsigned long scan;
1164
1165         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1166                 struct page *page;
1167                 int nr_pages;
1168
1169                 page = lru_to_page(src);
1170                 prefetchw_prev_lru_page(page, src, flags);
1171
1172                 VM_BUG_ON(!PageLRU(page));
1173
1174                 switch (__isolate_lru_page(page, mode)) {
1175                 case 0:
1176                         nr_pages = hpage_nr_pages(page);
1177                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1178                         list_move(&page->lru, dst);
1179                         nr_taken += nr_pages;
1180                         break;
1181
1182                 case -EBUSY:
1183                         /* else it is being freed elsewhere */
1184                         list_move(&page->lru, src);
1185                         continue;
1186
1187                 default:
1188                         BUG();
1189                 }
1190         }
1191
1192         *nr_scanned = scan;
1193         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1194                                     nr_taken, mode, is_file_lru(lru));
1195         return nr_taken;
1196 }
1197
1198 /**
1199  * isolate_lru_page - tries to isolate a page from its LRU list
1200  * @page: page to isolate from its LRU list
1201  *
1202  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1203  * vmstat statistic corresponding to whatever LRU list the page was on.
1204  *
1205  * Returns 0 if the page was removed from an LRU list.
1206  * Returns -EBUSY if the page was not on an LRU list.
1207  *
1208  * The returned page will have PageLRU() cleared.  If it was found on
1209  * the active list, it will have PageActive set.  If it was found on
1210  * the unevictable list, it will have the PageUnevictable bit set. That flag
1211  * may need to be cleared by the caller before letting the page go.
1212  *
1213  * The vmstat statistic corresponding to the list on which the page was
1214  * found will be decremented.
1215  *
1216  * Restrictions:
1217  * (1) Must be called with an elevated refcount on the page. This is a
1218  *     fundamentnal difference from isolate_lru_pages (which is called
1219  *     without a stable reference).
1220  * (2) the lru_lock must not be held.
1221  * (3) interrupts must be enabled.
1222  */
1223 int isolate_lru_page(struct page *page)
1224 {
1225         int ret = -EBUSY;
1226
1227         VM_BUG_ON(!page_count(page));
1228
1229         if (PageLRU(page)) {
1230                 struct zone *zone = page_zone(page);
1231                 struct lruvec *lruvec;
1232
1233                 spin_lock_irq(&zone->lru_lock);
1234                 lruvec = mem_cgroup_page_lruvec(page, zone);
1235                 if (PageLRU(page)) {
1236                         int lru = page_lru(page);
1237                         get_page(page);
1238                         ClearPageLRU(page);
1239                         del_page_from_lru_list(page, lruvec, lru);
1240                         ret = 0;
1241                 }
1242                 spin_unlock_irq(&zone->lru_lock);
1243         }
1244         return ret;
1245 }
1246
1247 /*
1248  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1249  * then get resheduled. When there are massive number of tasks doing page
1250  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1251  * the LRU list will go small and be scanned faster than necessary, leading to
1252  * unnecessary swapping, thrashing and OOM.
1253  */
1254 static int too_many_isolated(struct zone *zone, int file,
1255                 struct scan_control *sc)
1256 {
1257         unsigned long inactive, isolated;
1258
1259         if (current_is_kswapd())
1260                 return 0;
1261
1262         if (!global_reclaim(sc))
1263                 return 0;
1264
1265         if (file) {
1266                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1267                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1268         } else {
1269                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1270                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1271         }
1272
1273         /*
1274          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1275          * won't get blocked by normal direct-reclaimers, forming a circular
1276          * deadlock.
1277          */
1278         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1279                 inactive >>= 3;
1280
1281         return isolated > inactive;
1282 }
1283
1284 static noinline_for_stack void
1285 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1286 {
1287         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1288         struct zone *zone = lruvec_zone(lruvec);
1289         LIST_HEAD(pages_to_free);
1290
1291         /*
1292          * Put back any unfreeable pages.
1293          */
1294         while (!list_empty(page_list)) {
1295                 struct page *page = lru_to_page(page_list);
1296                 int lru;
1297
1298                 VM_BUG_ON(PageLRU(page));
1299                 list_del(&page->lru);
1300                 if (unlikely(!page_evictable(page))) {
1301                         spin_unlock_irq(&zone->lru_lock);
1302                         putback_lru_page(page);
1303                         spin_lock_irq(&zone->lru_lock);
1304                         continue;
1305                 }
1306
1307                 lruvec = mem_cgroup_page_lruvec(page, zone);
1308
1309                 SetPageLRU(page);
1310                 lru = page_lru(page);
1311                 add_page_to_lru_list(page, lruvec, lru);
1312
1313                 if (is_active_lru(lru)) {
1314                         int file = is_file_lru(lru);
1315                         int numpages = hpage_nr_pages(page);
1316                         reclaim_stat->recent_rotated[file] += numpages;
1317                 }
1318                 if (put_page_testzero(page)) {
1319                         __ClearPageLRU(page);
1320                         __ClearPageActive(page);
1321                         del_page_from_lru_list(page, lruvec, lru);
1322
1323                         if (unlikely(PageCompound(page))) {
1324                                 spin_unlock_irq(&zone->lru_lock);
1325                                 (*get_compound_page_dtor(page))(page);
1326                                 spin_lock_irq(&zone->lru_lock);
1327                         } else
1328                                 list_add(&page->lru, &pages_to_free);
1329                 }
1330         }
1331
1332         /*
1333          * To save our caller's stack, now use input list for pages to free.
1334          */
1335         list_splice(&pages_to_free, page_list);
1336 }
1337
1338 /*
1339  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1340  * of reclaimed pages
1341  */
1342 static noinline_for_stack unsigned long
1343 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1344                      struct scan_control *sc, enum lru_list lru)
1345 {
1346         LIST_HEAD(page_list);
1347         unsigned long nr_scanned;
1348         unsigned long nr_reclaimed = 0;
1349         unsigned long nr_taken;
1350         unsigned long nr_dirty = 0;
1351         unsigned long nr_congested = 0;
1352         unsigned long nr_unqueued_dirty = 0;
1353         unsigned long nr_writeback = 0;
1354         unsigned long nr_immediate = 0;
1355         isolate_mode_t isolate_mode = 0;
1356         int file = is_file_lru(lru);
1357         struct zone *zone = lruvec_zone(lruvec);
1358         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1359
1360         while (unlikely(too_many_isolated(zone, file, sc))) {
1361                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1362
1363                 /* We are about to die and free our memory. Return now. */
1364                 if (fatal_signal_pending(current))
1365                         return SWAP_CLUSTER_MAX;
1366         }
1367
1368         lru_add_drain();
1369
1370         if (!sc->may_unmap)
1371                 isolate_mode |= ISOLATE_UNMAPPED;
1372         if (!sc->may_writepage)
1373                 isolate_mode |= ISOLATE_CLEAN;
1374
1375         spin_lock_irq(&zone->lru_lock);
1376
1377         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1378                                      &nr_scanned, sc, isolate_mode, lru);
1379
1380         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1381         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1382
1383         if (global_reclaim(sc)) {
1384                 zone->pages_scanned += nr_scanned;
1385                 if (current_is_kswapd())
1386                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1387                 else
1388                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1389         }
1390         spin_unlock_irq(&zone->lru_lock);
1391
1392         if (nr_taken == 0)
1393                 return 0;
1394
1395         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1396                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1397                                 &nr_writeback, &nr_immediate,
1398                                 false);
1399
1400         spin_lock_irq(&zone->lru_lock);
1401
1402         reclaim_stat->recent_scanned[file] += nr_taken;
1403
1404         if (global_reclaim(sc)) {
1405                 if (current_is_kswapd())
1406                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1407                                                nr_reclaimed);
1408                 else
1409                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1410                                                nr_reclaimed);
1411         }
1412
1413         putback_inactive_pages(lruvec, &page_list);
1414
1415         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1416
1417         spin_unlock_irq(&zone->lru_lock);
1418
1419         free_hot_cold_page_list(&page_list, 1);
1420
1421         /*
1422          * If reclaim is isolating dirty pages under writeback, it implies
1423          * that the long-lived page allocation rate is exceeding the page
1424          * laundering rate. Either the global limits are not being effective
1425          * at throttling processes due to the page distribution throughout
1426          * zones or there is heavy usage of a slow backing device. The
1427          * only option is to throttle from reclaim context which is not ideal
1428          * as there is no guarantee the dirtying process is throttled in the
1429          * same way balance_dirty_pages() manages.
1430          *
1431          * This scales the number of dirty pages that must be under writeback
1432          * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1433          * function that has the most effect in the range DEF_PRIORITY to
1434          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1435          * in trouble and reclaim is considered to be in trouble.
1436          *
1437          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1438          * DEF_PRIORITY-1  50% must be PageWriteback
1439          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1440          * ...
1441          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1442          *                     isolated page is PageWriteback
1443          *
1444          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1445          * of pages under pages flagged for immediate reclaim and stall if any
1446          * are encountered in the nr_immediate check below.
1447          */
1448         if (nr_writeback && nr_writeback >=
1449                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1450                 zone_set_flag(zone, ZONE_WRITEBACK);
1451
1452         /*
1453          * memcg will stall in page writeback so only consider forcibly
1454          * stalling for global reclaim
1455          */
1456         if (global_reclaim(sc)) {
1457                 /*
1458                  * Tag a zone as congested if all the dirty pages scanned were
1459                  * backed by a congested BDI and wait_iff_congested will stall.
1460                  */
1461                 if (nr_dirty && nr_dirty == nr_congested)
1462                         zone_set_flag(zone, ZONE_CONGESTED);
1463
1464                 /*
1465                  * If dirty pages are scanned that are not queued for IO, it
1466                  * implies that flushers are not keeping up. In this case, flag
1467                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1468                  * pages from reclaim context. It will forcibly stall in the
1469                  * next check.
1470                  */
1471                 if (nr_unqueued_dirty == nr_taken)
1472                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1473
1474                 /*
1475                  * In addition, if kswapd scans pages marked marked for
1476                  * immediate reclaim and under writeback (nr_immediate), it
1477                  * implies that pages are cycling through the LRU faster than
1478                  * they are written so also forcibly stall.
1479                  */
1480                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1481                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1482         }
1483
1484         /*
1485          * Stall direct reclaim for IO completions if underlying BDIs or zone
1486          * is congested. Allow kswapd to continue until it starts encountering
1487          * unqueued dirty pages or cycling through the LRU too quickly.
1488          */
1489         if (!sc->hibernation_mode && !current_is_kswapd())
1490                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1491
1492         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1493                 zone_idx(zone),
1494                 nr_scanned, nr_reclaimed,
1495                 sc->priority,
1496                 trace_shrink_flags(file));
1497         return nr_reclaimed;
1498 }
1499
1500 /*
1501  * This moves pages from the active list to the inactive list.
1502  *
1503  * We move them the other way if the page is referenced by one or more
1504  * processes, from rmap.
1505  *
1506  * If the pages are mostly unmapped, the processing is fast and it is
1507  * appropriate to hold zone->lru_lock across the whole operation.  But if
1508  * the pages are mapped, the processing is slow (page_referenced()) so we
1509  * should drop zone->lru_lock around each page.  It's impossible to balance
1510  * this, so instead we remove the pages from the LRU while processing them.
1511  * It is safe to rely on PG_active against the non-LRU pages in here because
1512  * nobody will play with that bit on a non-LRU page.
1513  *
1514  * The downside is that we have to touch page->_count against each page.
1515  * But we had to alter page->flags anyway.
1516  */
1517
1518 static void move_active_pages_to_lru(struct lruvec *lruvec,
1519                                      struct list_head *list,
1520                                      struct list_head *pages_to_free,
1521                                      enum lru_list lru)
1522 {
1523         struct zone *zone = lruvec_zone(lruvec);
1524         unsigned long pgmoved = 0;
1525         struct page *page;
1526         int nr_pages;
1527
1528         while (!list_empty(list)) {
1529                 page = lru_to_page(list);
1530                 lruvec = mem_cgroup_page_lruvec(page, zone);
1531
1532                 VM_BUG_ON(PageLRU(page));
1533                 SetPageLRU(page);
1534
1535                 nr_pages = hpage_nr_pages(page);
1536                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1537                 list_move(&page->lru, &lruvec->lists[lru]);
1538                 pgmoved += nr_pages;
1539
1540                 if (put_page_testzero(page)) {
1541                         __ClearPageLRU(page);
1542                         __ClearPageActive(page);
1543                         del_page_from_lru_list(page, lruvec, lru);
1544
1545                         if (unlikely(PageCompound(page))) {
1546                                 spin_unlock_irq(&zone->lru_lock);
1547                                 (*get_compound_page_dtor(page))(page);
1548                                 spin_lock_irq(&zone->lru_lock);
1549                         } else
1550                                 list_add(&page->lru, pages_to_free);
1551                 }
1552         }
1553         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1554         if (!is_active_lru(lru))
1555                 __count_vm_events(PGDEACTIVATE, pgmoved);
1556 }
1557
1558 static void shrink_active_list(unsigned long nr_to_scan,
1559                                struct lruvec *lruvec,
1560                                struct scan_control *sc,
1561                                enum lru_list lru)
1562 {
1563         unsigned long nr_taken;
1564         unsigned long nr_scanned;
1565         unsigned long vm_flags;
1566         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1567         LIST_HEAD(l_active);
1568         LIST_HEAD(l_inactive);
1569         struct page *page;
1570         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1571         unsigned long nr_rotated = 0;
1572         isolate_mode_t isolate_mode = 0;
1573         int file = is_file_lru(lru);
1574         struct zone *zone = lruvec_zone(lruvec);
1575
1576         lru_add_drain();
1577
1578         if (!sc->may_unmap)
1579                 isolate_mode |= ISOLATE_UNMAPPED;
1580         if (!sc->may_writepage)
1581                 isolate_mode |= ISOLATE_CLEAN;
1582
1583         spin_lock_irq(&zone->lru_lock);
1584
1585         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1586                                      &nr_scanned, sc, isolate_mode, lru);
1587         if (global_reclaim(sc))
1588                 zone->pages_scanned += nr_scanned;
1589
1590         reclaim_stat->recent_scanned[file] += nr_taken;
1591
1592         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1593         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1594         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1595         spin_unlock_irq(&zone->lru_lock);
1596
1597         while (!list_empty(&l_hold)) {
1598                 cond_resched();
1599                 page = lru_to_page(&l_hold);
1600                 list_del(&page->lru);
1601
1602                 if (unlikely(!page_evictable(page))) {
1603                         putback_lru_page(page);
1604                         continue;
1605                 }
1606
1607                 if (unlikely(buffer_heads_over_limit)) {
1608                         if (page_has_private(page) && trylock_page(page)) {
1609                                 if (page_has_private(page))
1610                                         try_to_release_page(page, 0);
1611                                 unlock_page(page);
1612                         }
1613                 }
1614
1615                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1616                                     &vm_flags)) {
1617                         nr_rotated += hpage_nr_pages(page);
1618                         /*
1619                          * Identify referenced, file-backed active pages and
1620                          * give them one more trip around the active list. So
1621                          * that executable code get better chances to stay in
1622                          * memory under moderate memory pressure.  Anon pages
1623                          * are not likely to be evicted by use-once streaming
1624                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1625                          * so we ignore them here.
1626                          */
1627                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1628                                 list_add(&page->lru, &l_active);
1629                                 continue;
1630                         }
1631                 }
1632
1633                 ClearPageActive(page);  /* we are de-activating */
1634                 list_add(&page->lru, &l_inactive);
1635         }
1636
1637         /*
1638          * Move pages back to the lru list.
1639          */
1640         spin_lock_irq(&zone->lru_lock);
1641         /*
1642          * Count referenced pages from currently used mappings as rotated,
1643          * even though only some of them are actually re-activated.  This
1644          * helps balance scan pressure between file and anonymous pages in
1645          * get_scan_ratio.
1646          */
1647         reclaim_stat->recent_rotated[file] += nr_rotated;
1648
1649         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1650         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1651         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1652         spin_unlock_irq(&zone->lru_lock);
1653
1654         free_hot_cold_page_list(&l_hold, 1);
1655 }
1656
1657 #ifdef CONFIG_SWAP
1658 static int inactive_anon_is_low_global(struct zone *zone)
1659 {
1660         unsigned long active, inactive;
1661
1662         active = zone_page_state(zone, NR_ACTIVE_ANON);
1663         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1664
1665         if (inactive * zone->inactive_ratio < active)
1666                 return 1;
1667
1668         return 0;
1669 }
1670
1671 /**
1672  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1673  * @lruvec: LRU vector to check
1674  *
1675  * Returns true if the zone does not have enough inactive anon pages,
1676  * meaning some active anon pages need to be deactivated.
1677  */
1678 static int inactive_anon_is_low(struct lruvec *lruvec)
1679 {
1680         /*
1681          * If we don't have swap space, anonymous page deactivation
1682          * is pointless.
1683          */
1684         if (!total_swap_pages)
1685                 return 0;
1686
1687         if (!mem_cgroup_disabled())
1688                 return mem_cgroup_inactive_anon_is_low(lruvec);
1689
1690         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1691 }
1692 #else
1693 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1694 {
1695         return 0;
1696 }
1697 #endif
1698
1699 /**
1700  * inactive_file_is_low - check if file pages need to be deactivated
1701  * @lruvec: LRU vector to check
1702  *
1703  * When the system is doing streaming IO, memory pressure here
1704  * ensures that active file pages get deactivated, until more
1705  * than half of the file pages are on the inactive list.
1706  *
1707  * Once we get to that situation, protect the system's working
1708  * set from being evicted by disabling active file page aging.
1709  *
1710  * This uses a different ratio than the anonymous pages, because
1711  * the page cache uses a use-once replacement algorithm.
1712  */
1713 static int inactive_file_is_low(struct lruvec *lruvec)
1714 {
1715         unsigned long inactive;
1716         unsigned long active;
1717
1718         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1719         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1720
1721         return active > inactive;
1722 }
1723
1724 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1725 {
1726         if (is_file_lru(lru))
1727                 return inactive_file_is_low(lruvec);
1728         else
1729                 return inactive_anon_is_low(lruvec);
1730 }
1731
1732 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1733                                  struct lruvec *lruvec, struct scan_control *sc)
1734 {
1735         if (is_active_lru(lru)) {
1736                 if (inactive_list_is_low(lruvec, lru))
1737                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1738                 return 0;
1739         }
1740
1741         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1742 }
1743
1744 static int vmscan_swappiness(struct scan_control *sc)
1745 {
1746         if (global_reclaim(sc))
1747                 return vm_swappiness;
1748         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1749 }
1750
1751 enum scan_balance {
1752         SCAN_EQUAL,
1753         SCAN_FRACT,
1754         SCAN_ANON,
1755         SCAN_FILE,
1756 };
1757
1758 /*
1759  * Determine how aggressively the anon and file LRU lists should be
1760  * scanned.  The relative value of each set of LRU lists is determined
1761  * by looking at the fraction of the pages scanned we did rotate back
1762  * onto the active list instead of evict.
1763  *
1764  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1765  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1766  */
1767 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1768                            unsigned long *nr)
1769 {
1770         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1771         u64 fraction[2];
1772         u64 denominator = 0;    /* gcc */
1773         struct zone *zone = lruvec_zone(lruvec);
1774         unsigned long anon_prio, file_prio;
1775         enum scan_balance scan_balance;
1776         unsigned long anon, file, free;
1777         bool force_scan = false;
1778         unsigned long ap, fp;
1779         enum lru_list lru;
1780
1781         /*
1782          * If the zone or memcg is small, nr[l] can be 0.  This
1783          * results in no scanning on this priority and a potential
1784          * priority drop.  Global direct reclaim can go to the next
1785          * zone and tends to have no problems. Global kswapd is for
1786          * zone balancing and it needs to scan a minimum amount. When
1787          * reclaiming for a memcg, a priority drop can cause high
1788          * latencies, so it's better to scan a minimum amount there as
1789          * well.
1790          */
1791         if (current_is_kswapd() && zone->all_unreclaimable)
1792                 force_scan = true;
1793         if (!global_reclaim(sc))
1794                 force_scan = true;
1795
1796         /* If we have no swap space, do not bother scanning anon pages. */
1797         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1798                 scan_balance = SCAN_FILE;
1799                 goto out;
1800         }
1801
1802         /*
1803          * Global reclaim will swap to prevent OOM even with no
1804          * swappiness, but memcg users want to use this knob to
1805          * disable swapping for individual groups completely when
1806          * using the memory controller's swap limit feature would be
1807          * too expensive.
1808          */
1809         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1810                 scan_balance = SCAN_FILE;
1811                 goto out;
1812         }
1813
1814         /*
1815          * Do not apply any pressure balancing cleverness when the
1816          * system is close to OOM, scan both anon and file equally
1817          * (unless the swappiness setting disagrees with swapping).
1818          */
1819         if (!sc->priority && vmscan_swappiness(sc)) {
1820                 scan_balance = SCAN_EQUAL;
1821                 goto out;
1822         }
1823
1824         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1825                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1826         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1827                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1828
1829         /*
1830          * If it's foreseeable that reclaiming the file cache won't be
1831          * enough to get the zone back into a desirable shape, we have
1832          * to swap.  Better start now and leave the - probably heavily
1833          * thrashing - remaining file pages alone.
1834          */
1835         if (global_reclaim(sc)) {
1836                 free = zone_page_state(zone, NR_FREE_PAGES);
1837                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1838                         scan_balance = SCAN_ANON;
1839                         goto out;
1840                 }
1841         }
1842
1843         /*
1844          * There is enough inactive page cache, do not reclaim
1845          * anything from the anonymous working set right now.
1846          */
1847         if (!inactive_file_is_low(lruvec)) {
1848                 scan_balance = SCAN_FILE;
1849                 goto out;
1850         }
1851
1852         scan_balance = SCAN_FRACT;
1853
1854         /*
1855          * With swappiness at 100, anonymous and file have the same priority.
1856          * This scanning priority is essentially the inverse of IO cost.
1857          */
1858         anon_prio = vmscan_swappiness(sc);
1859         file_prio = 200 - anon_prio;
1860
1861         /*
1862          * OK, so we have swap space and a fair amount of page cache
1863          * pages.  We use the recently rotated / recently scanned
1864          * ratios to determine how valuable each cache is.
1865          *
1866          * Because workloads change over time (and to avoid overflow)
1867          * we keep these statistics as a floating average, which ends
1868          * up weighing recent references more than old ones.
1869          *
1870          * anon in [0], file in [1]
1871          */
1872         spin_lock_irq(&zone->lru_lock);
1873         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1874                 reclaim_stat->recent_scanned[0] /= 2;
1875                 reclaim_stat->recent_rotated[0] /= 2;
1876         }
1877
1878         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1879                 reclaim_stat->recent_scanned[1] /= 2;
1880                 reclaim_stat->recent_rotated[1] /= 2;
1881         }
1882
1883         /*
1884          * The amount of pressure on anon vs file pages is inversely
1885          * proportional to the fraction of recently scanned pages on
1886          * each list that were recently referenced and in active use.
1887          */
1888         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1889         ap /= reclaim_stat->recent_rotated[0] + 1;
1890
1891         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1892         fp /= reclaim_stat->recent_rotated[1] + 1;
1893         spin_unlock_irq(&zone->lru_lock);
1894
1895         fraction[0] = ap;
1896         fraction[1] = fp;
1897         denominator = ap + fp + 1;
1898 out:
1899         for_each_evictable_lru(lru) {
1900                 int file = is_file_lru(lru);
1901                 unsigned long size;
1902                 unsigned long scan;
1903
1904                 size = get_lru_size(lruvec, lru);
1905                 scan = size >> sc->priority;
1906
1907                 if (!scan && force_scan)
1908                         scan = min(size, SWAP_CLUSTER_MAX);
1909
1910                 switch (scan_balance) {
1911                 case SCAN_EQUAL:
1912                         /* Scan lists relative to size */
1913                         break;
1914                 case SCAN_FRACT:
1915                         /*
1916                          * Scan types proportional to swappiness and
1917                          * their relative recent reclaim efficiency.
1918                          */
1919                         scan = div64_u64(scan * fraction[file], denominator);
1920                         break;
1921                 case SCAN_FILE:
1922                 case SCAN_ANON:
1923                         /* Scan one type exclusively */
1924                         if ((scan_balance == SCAN_FILE) != file)
1925                                 scan = 0;
1926                         break;
1927                 default:
1928                         /* Look ma, no brain */
1929                         BUG();
1930                 }
1931                 nr[lru] = scan;
1932         }
1933 }
1934
1935 /*
1936  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1937  */
1938 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1939 {
1940         unsigned long nr[NR_LRU_LISTS];
1941         unsigned long targets[NR_LRU_LISTS];
1942         unsigned long nr_to_scan;
1943         enum lru_list lru;
1944         unsigned long nr_reclaimed = 0;
1945         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1946         struct blk_plug plug;
1947         bool scan_adjusted = false;
1948
1949         get_scan_count(lruvec, sc, nr);
1950
1951         /* Record the original scan target for proportional adjustments later */
1952         memcpy(targets, nr, sizeof(nr));
1953
1954         blk_start_plug(&plug);
1955         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1956                                         nr[LRU_INACTIVE_FILE]) {
1957                 unsigned long nr_anon, nr_file, percentage;
1958                 unsigned long nr_scanned;
1959
1960                 for_each_evictable_lru(lru) {
1961                         if (nr[lru]) {
1962                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1963                                 nr[lru] -= nr_to_scan;
1964
1965                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1966                                                             lruvec, sc);
1967                         }
1968                 }
1969
1970                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1971                         continue;
1972
1973                 /*
1974                  * For global direct reclaim, reclaim only the number of pages
1975                  * requested. Less care is taken to scan proportionally as it
1976                  * is more important to minimise direct reclaim stall latency
1977                  * than it is to properly age the LRU lists.
1978                  */
1979                 if (global_reclaim(sc) && !current_is_kswapd())
1980                         break;
1981
1982                 /*
1983                  * For kswapd and memcg, reclaim at least the number of pages
1984                  * requested. Ensure that the anon and file LRUs shrink
1985                  * proportionally what was requested by get_scan_count(). We
1986                  * stop reclaiming one LRU and reduce the amount scanning
1987                  * proportional to the original scan target.
1988                  */
1989                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1990                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1991
1992                 if (nr_file > nr_anon) {
1993                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1994                                                 targets[LRU_ACTIVE_ANON] + 1;
1995                         lru = LRU_BASE;
1996                         percentage = nr_anon * 100 / scan_target;
1997                 } else {
1998                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1999                                                 targets[LRU_ACTIVE_FILE] + 1;
2000                         lru = LRU_FILE;
2001                         percentage = nr_file * 100 / scan_target;
2002                 }
2003
2004                 /* Stop scanning the smaller of the LRU */
2005                 nr[lru] = 0;
2006                 nr[lru + LRU_ACTIVE] = 0;
2007
2008                 /*
2009                  * Recalculate the other LRU scan count based on its original
2010                  * scan target and the percentage scanning already complete
2011                  */
2012                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2013                 nr_scanned = targets[lru] - nr[lru];
2014                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2015                 nr[lru] -= min(nr[lru], nr_scanned);
2016
2017                 lru += LRU_ACTIVE;
2018                 nr_scanned = targets[lru] - nr[lru];
2019                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2020                 nr[lru] -= min(nr[lru], nr_scanned);
2021
2022                 scan_adjusted = true;
2023         }
2024         blk_finish_plug(&plug);
2025         sc->nr_reclaimed += nr_reclaimed;
2026
2027         /*
2028          * Even if we did not try to evict anon pages at all, we want to
2029          * rebalance the anon lru active/inactive ratio.
2030          */
2031         if (inactive_anon_is_low(lruvec))
2032                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2033                                    sc, LRU_ACTIVE_ANON);
2034
2035         throttle_vm_writeout(sc->gfp_mask);
2036 }
2037
2038 /* Use reclaim/compaction for costly allocs or under memory pressure */
2039 static bool in_reclaim_compaction(struct scan_control *sc)
2040 {
2041         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2042                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2043                          sc->priority < DEF_PRIORITY - 2))
2044                 return true;
2045
2046         return false;
2047 }
2048
2049 /*
2050  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2051  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2052  * true if more pages should be reclaimed such that when the page allocator
2053  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2054  * It will give up earlier than that if there is difficulty reclaiming pages.
2055  */
2056 static inline bool should_continue_reclaim(struct zone *zone,
2057                                         unsigned long nr_reclaimed,
2058                                         unsigned long nr_scanned,
2059                                         struct scan_control *sc)
2060 {
2061         unsigned long pages_for_compaction;
2062         unsigned long inactive_lru_pages;
2063
2064         /* If not in reclaim/compaction mode, stop */
2065         if (!in_reclaim_compaction(sc))
2066                 return false;
2067
2068         /* Consider stopping depending on scan and reclaim activity */
2069         if (sc->gfp_mask & __GFP_REPEAT) {
2070                 /*
2071                  * For __GFP_REPEAT allocations, stop reclaiming if the
2072                  * full LRU list has been scanned and we are still failing
2073                  * to reclaim pages. This full LRU scan is potentially
2074                  * expensive but a __GFP_REPEAT caller really wants to succeed
2075                  */
2076                 if (!nr_reclaimed && !nr_scanned)
2077                         return false;
2078         } else {
2079                 /*
2080                  * For non-__GFP_REPEAT allocations which can presumably
2081                  * fail without consequence, stop if we failed to reclaim
2082                  * any pages from the last SWAP_CLUSTER_MAX number of
2083                  * pages that were scanned. This will return to the
2084                  * caller faster at the risk reclaim/compaction and
2085                  * the resulting allocation attempt fails
2086                  */
2087                 if (!nr_reclaimed)
2088                         return false;
2089         }
2090
2091         /*
2092          * If we have not reclaimed enough pages for compaction and the
2093          * inactive lists are large enough, continue reclaiming
2094          */
2095         pages_for_compaction = (2UL << sc->order);
2096         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2097         if (get_nr_swap_pages() > 0)
2098                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2099         if (sc->nr_reclaimed < pages_for_compaction &&
2100                         inactive_lru_pages > pages_for_compaction)
2101                 return true;
2102
2103         /* If compaction would go ahead or the allocation would succeed, stop */
2104         switch (compaction_suitable(zone, sc->order)) {
2105         case COMPACT_PARTIAL:
2106         case COMPACT_CONTINUE:
2107                 return false;
2108         default:
2109                 return true;
2110         }
2111 }
2112
2113 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2114 {
2115         unsigned long nr_reclaimed, nr_scanned;
2116
2117         do {
2118                 struct mem_cgroup *root = sc->target_mem_cgroup;
2119                 struct mem_cgroup_reclaim_cookie reclaim = {
2120                         .zone = zone,
2121                         .priority = sc->priority,
2122                 };
2123                 struct mem_cgroup *memcg;
2124
2125                 nr_reclaimed = sc->nr_reclaimed;
2126                 nr_scanned = sc->nr_scanned;
2127
2128                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2129                 do {
2130                         struct lruvec *lruvec;
2131
2132                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2133
2134                         shrink_lruvec(lruvec, sc);
2135
2136                         /*
2137                          * Direct reclaim and kswapd have to scan all memory
2138                          * cgroups to fulfill the overall scan target for the
2139                          * zone.
2140                          *
2141                          * Limit reclaim, on the other hand, only cares about
2142                          * nr_to_reclaim pages to be reclaimed and it will
2143                          * retry with decreasing priority if one round over the
2144                          * whole hierarchy is not sufficient.
2145                          */
2146                         if (!global_reclaim(sc) &&
2147                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2148                                 mem_cgroup_iter_break(root, memcg);
2149                                 break;
2150                         }
2151                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2152                 } while (memcg);
2153
2154                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2155                            sc->nr_scanned - nr_scanned,
2156                            sc->nr_reclaimed - nr_reclaimed);
2157
2158         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2159                                          sc->nr_scanned - nr_scanned, sc));
2160 }
2161
2162 /* Returns true if compaction should go ahead for a high-order request */
2163 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2164 {
2165         unsigned long balance_gap, watermark;
2166         bool watermark_ok;
2167
2168         /* Do not consider compaction for orders reclaim is meant to satisfy */
2169         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2170                 return false;
2171
2172         /*
2173          * Compaction takes time to run and there are potentially other
2174          * callers using the pages just freed. Continue reclaiming until
2175          * there is a buffer of free pages available to give compaction
2176          * a reasonable chance of completing and allocating the page
2177          */
2178         balance_gap = min(low_wmark_pages(zone),
2179                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2180                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2181         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2182         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2183
2184         /*
2185          * If compaction is deferred, reclaim up to a point where
2186          * compaction will have a chance of success when re-enabled
2187          */
2188         if (compaction_deferred(zone, sc->order))
2189                 return watermark_ok;
2190
2191         /* If compaction is not ready to start, keep reclaiming */
2192         if (!compaction_suitable(zone, sc->order))
2193                 return false;
2194
2195         return watermark_ok;
2196 }
2197
2198 /*
2199  * This is the direct reclaim path, for page-allocating processes.  We only
2200  * try to reclaim pages from zones which will satisfy the caller's allocation
2201  * request.
2202  *
2203  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2204  * Because:
2205  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2206  *    allocation or
2207  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2208  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2209  *    zone defense algorithm.
2210  *
2211  * If a zone is deemed to be full of pinned pages then just give it a light
2212  * scan then give up on it.
2213  *
2214  * This function returns true if a zone is being reclaimed for a costly
2215  * high-order allocation and compaction is ready to begin. This indicates to
2216  * the caller that it should consider retrying the allocation instead of
2217  * further reclaim.
2218  */
2219 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2220 {
2221         struct zoneref *z;
2222         struct zone *zone;
2223         unsigned long nr_soft_reclaimed;
2224         unsigned long nr_soft_scanned;
2225         bool aborted_reclaim = false;
2226
2227         /*
2228          * If the number of buffer_heads in the machine exceeds the maximum
2229          * allowed level, force direct reclaim to scan the highmem zone as
2230          * highmem pages could be pinning lowmem pages storing buffer_heads
2231          */
2232         if (buffer_heads_over_limit)
2233                 sc->gfp_mask |= __GFP_HIGHMEM;
2234
2235         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2236                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2237                 if (!populated_zone(zone))
2238                         continue;
2239                 /*
2240                  * Take care memory controller reclaiming has small influence
2241                  * to global LRU.
2242                  */
2243                 if (global_reclaim(sc)) {
2244                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2245                                 continue;
2246                         if (zone->all_unreclaimable &&
2247                                         sc->priority != DEF_PRIORITY)
2248                                 continue;       /* Let kswapd poll it */
2249                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2250                                 /*
2251                                  * If we already have plenty of memory free for
2252                                  * compaction in this zone, don't free any more.
2253                                  * Even though compaction is invoked for any
2254                                  * non-zero order, only frequent costly order
2255                                  * reclamation is disruptive enough to become a
2256                                  * noticeable problem, like transparent huge
2257                                  * page allocations.
2258                                  */
2259                                 if (compaction_ready(zone, sc)) {
2260                                         aborted_reclaim = true;
2261                                         continue;
2262                                 }
2263                         }
2264                         /*
2265                          * This steals pages from memory cgroups over softlimit
2266                          * and returns the number of reclaimed pages and
2267                          * scanned pages. This works for global memory pressure
2268                          * and balancing, not for a memcg's limit.
2269                          */
2270                         nr_soft_scanned = 0;
2271                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2272                                                 sc->order, sc->gfp_mask,
2273                                                 &nr_soft_scanned);
2274                         sc->nr_reclaimed += nr_soft_reclaimed;
2275                         sc->nr_scanned += nr_soft_scanned;
2276                         /* need some check for avoid more shrink_zone() */
2277                 }
2278
2279                 shrink_zone(zone, sc);
2280         }
2281
2282         return aborted_reclaim;
2283 }
2284
2285 static bool zone_reclaimable(struct zone *zone)
2286 {
2287         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2288 }
2289
2290 /* All zones in zonelist are unreclaimable? */
2291 static bool all_unreclaimable(struct zonelist *zonelist,
2292                 struct scan_control *sc)
2293 {
2294         struct zoneref *z;
2295         struct zone *zone;
2296
2297         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2298                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2299                 if (!populated_zone(zone))
2300                         continue;
2301                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2302                         continue;
2303                 if (!zone->all_unreclaimable)
2304                         return false;
2305         }
2306
2307         return true;
2308 }
2309
2310 /*
2311  * This is the main entry point to direct page reclaim.
2312  *
2313  * If a full scan of the inactive list fails to free enough memory then we
2314  * are "out of memory" and something needs to be killed.
2315  *
2316  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2317  * high - the zone may be full of dirty or under-writeback pages, which this
2318  * caller can't do much about.  We kick the writeback threads and take explicit
2319  * naps in the hope that some of these pages can be written.  But if the
2320  * allocating task holds filesystem locks which prevent writeout this might not
2321  * work, and the allocation attempt will fail.
2322  *
2323  * returns:     0, if no pages reclaimed
2324  *              else, the number of pages reclaimed
2325  */
2326 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2327                                         struct scan_control *sc,
2328                                         struct shrink_control *shrink)
2329 {
2330         unsigned long total_scanned = 0;
2331         struct reclaim_state *reclaim_state = current->reclaim_state;
2332         struct zoneref *z;
2333         struct zone *zone;
2334         unsigned long writeback_threshold;
2335         bool aborted_reclaim;
2336
2337         delayacct_freepages_start();
2338
2339         if (global_reclaim(sc))
2340                 count_vm_event(ALLOCSTALL);
2341
2342         do {
2343                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2344                                 sc->priority);
2345                 sc->nr_scanned = 0;
2346                 aborted_reclaim = shrink_zones(zonelist, sc);
2347
2348                 /*
2349                  * Don't shrink slabs when reclaiming memory from
2350                  * over limit cgroups
2351                  */
2352                 if (global_reclaim(sc)) {
2353                         unsigned long lru_pages = 0;
2354                         for_each_zone_zonelist(zone, z, zonelist,
2355                                         gfp_zone(sc->gfp_mask)) {
2356                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2357                                         continue;
2358
2359                                 lru_pages += zone_reclaimable_pages(zone);
2360                         }
2361
2362                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2363                         if (reclaim_state) {
2364                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2365                                 reclaim_state->reclaimed_slab = 0;
2366                         }
2367                 }
2368                 total_scanned += sc->nr_scanned;
2369                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2370                         goto out;
2371
2372                 /*
2373                  * If we're getting trouble reclaiming, start doing
2374                  * writepage even in laptop mode.
2375                  */
2376                 if (sc->priority < DEF_PRIORITY - 2)
2377                         sc->may_writepage = 1;
2378
2379                 /*
2380                  * Try to write back as many pages as we just scanned.  This
2381                  * tends to cause slow streaming writers to write data to the
2382                  * disk smoothly, at the dirtying rate, which is nice.   But
2383                  * that's undesirable in laptop mode, where we *want* lumpy
2384                  * writeout.  So in laptop mode, write out the whole world.
2385                  */
2386                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2387                 if (total_scanned > writeback_threshold) {
2388                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2389                                                 WB_REASON_TRY_TO_FREE_PAGES);
2390                         sc->may_writepage = 1;
2391                 }
2392         } while (--sc->priority >= 0);
2393
2394 out:
2395         delayacct_freepages_end();
2396
2397         if (sc->nr_reclaimed)
2398                 return sc->nr_reclaimed;
2399
2400         /*
2401          * As hibernation is going on, kswapd is freezed so that it can't mark
2402          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2403          * check.
2404          */
2405         if (oom_killer_disabled)
2406                 return 0;
2407
2408         /* Aborted reclaim to try compaction? don't OOM, then */
2409         if (aborted_reclaim)
2410                 return 1;
2411
2412         /* top priority shrink_zones still had more to do? don't OOM, then */
2413         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2414                 return 1;
2415
2416         return 0;
2417 }
2418
2419 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2420 {
2421         struct zone *zone;
2422         unsigned long pfmemalloc_reserve = 0;
2423         unsigned long free_pages = 0;
2424         int i;
2425         bool wmark_ok;
2426
2427         for (i = 0; i <= ZONE_NORMAL; i++) {
2428                 zone = &pgdat->node_zones[i];
2429                 pfmemalloc_reserve += min_wmark_pages(zone);
2430                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2431         }
2432
2433         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2434
2435         /* kswapd must be awake if processes are being throttled */
2436         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2437                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2438                                                 (enum zone_type)ZONE_NORMAL);
2439                 wake_up_interruptible(&pgdat->kswapd_wait);
2440         }
2441
2442         return wmark_ok;
2443 }
2444
2445 /*
2446  * Throttle direct reclaimers if backing storage is backed by the network
2447  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2448  * depleted. kswapd will continue to make progress and wake the processes
2449  * when the low watermark is reached.
2450  *
2451  * Returns true if a fatal signal was delivered during throttling. If this
2452  * happens, the page allocator should not consider triggering the OOM killer.
2453  */
2454 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2455                                         nodemask_t *nodemask)
2456 {
2457         struct zone *zone;
2458         int high_zoneidx = gfp_zone(gfp_mask);
2459         pg_data_t *pgdat;
2460
2461         /*
2462          * Kernel threads should not be throttled as they may be indirectly
2463          * responsible for cleaning pages necessary for reclaim to make forward
2464          * progress. kjournald for example may enter direct reclaim while
2465          * committing a transaction where throttling it could forcing other
2466          * processes to block on log_wait_commit().
2467          */
2468         if (current->flags & PF_KTHREAD)
2469                 goto out;
2470
2471         /*
2472          * If a fatal signal is pending, this process should not throttle.
2473          * It should return quickly so it can exit and free its memory
2474          */
2475         if (fatal_signal_pending(current))
2476                 goto out;
2477
2478         /* Check if the pfmemalloc reserves are ok */
2479         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2480         pgdat = zone->zone_pgdat;
2481         if (pfmemalloc_watermark_ok(pgdat))
2482                 goto out;
2483
2484         /* Account for the throttling */
2485         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2486
2487         /*
2488          * If the caller cannot enter the filesystem, it's possible that it
2489          * is due to the caller holding an FS lock or performing a journal
2490          * transaction in the case of a filesystem like ext[3|4]. In this case,
2491          * it is not safe to block on pfmemalloc_wait as kswapd could be
2492          * blocked waiting on the same lock. Instead, throttle for up to a
2493          * second before continuing.
2494          */
2495         if (!(gfp_mask & __GFP_FS)) {
2496                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2497                         pfmemalloc_watermark_ok(pgdat), HZ);
2498
2499                 goto check_pending;
2500         }
2501
2502         /* Throttle until kswapd wakes the process */
2503         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2504                 pfmemalloc_watermark_ok(pgdat));
2505
2506 check_pending:
2507         if (fatal_signal_pending(current))
2508                 return true;
2509
2510 out:
2511         return false;
2512 }
2513
2514 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2515                                 gfp_t gfp_mask, nodemask_t *nodemask)
2516 {
2517         unsigned long nr_reclaimed;
2518         struct scan_control sc = {
2519                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2520                 .may_writepage = !laptop_mode,
2521                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2522                 .may_unmap = 1,
2523                 .may_swap = 1,
2524                 .order = order,
2525                 .priority = DEF_PRIORITY,
2526                 .target_mem_cgroup = NULL,
2527                 .nodemask = nodemask,
2528         };
2529         struct shrink_control shrink = {
2530                 .gfp_mask = sc.gfp_mask,
2531         };
2532
2533         /*
2534          * Do not enter reclaim if fatal signal was delivered while throttled.
2535          * 1 is returned so that the page allocator does not OOM kill at this
2536          * point.
2537          */
2538         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2539                 return 1;
2540
2541         trace_mm_vmscan_direct_reclaim_begin(order,
2542                                 sc.may_writepage,
2543                                 gfp_mask);
2544
2545         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2546
2547         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2548
2549         return nr_reclaimed;
2550 }
2551
2552 #ifdef CONFIG_MEMCG
2553
2554 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2555                                                 gfp_t gfp_mask, bool noswap,
2556                                                 struct zone *zone,
2557                                                 unsigned long *nr_scanned)
2558 {
2559         struct scan_control sc = {
2560                 .nr_scanned = 0,
2561                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2562                 .may_writepage = !laptop_mode,
2563                 .may_unmap = 1,
2564                 .may_swap = !noswap,
2565                 .order = 0,
2566                 .priority = 0,
2567                 .target_mem_cgroup = memcg,
2568         };
2569         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2570
2571         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2572                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2573
2574         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2575                                                       sc.may_writepage,
2576                                                       sc.gfp_mask);
2577
2578         /*
2579          * NOTE: Although we can get the priority field, using it
2580          * here is not a good idea, since it limits the pages we can scan.
2581          * if we don't reclaim here, the shrink_zone from balance_pgdat
2582          * will pick up pages from other mem cgroup's as well. We hack
2583          * the priority and make it zero.
2584          */
2585         shrink_lruvec(lruvec, &sc);
2586
2587         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2588
2589         *nr_scanned = sc.nr_scanned;
2590         return sc.nr_reclaimed;
2591 }
2592
2593 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2594                                            gfp_t gfp_mask,
2595                                            bool noswap)
2596 {
2597         struct zonelist *zonelist;
2598         unsigned long nr_reclaimed;
2599         int nid;
2600         struct scan_control sc = {
2601                 .may_writepage = !laptop_mode,
2602                 .may_unmap = 1,
2603                 .may_swap = !noswap,
2604                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2605                 .order = 0,
2606                 .priority = DEF_PRIORITY,
2607                 .target_mem_cgroup = memcg,
2608                 .nodemask = NULL, /* we don't care the placement */
2609                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2610                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2611         };
2612         struct shrink_control shrink = {
2613                 .gfp_mask = sc.gfp_mask,
2614         };
2615
2616         /*
2617          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2618          * take care of from where we get pages. So the node where we start the
2619          * scan does not need to be the current node.
2620          */
2621         nid = mem_cgroup_select_victim_node(memcg);
2622
2623         zonelist = NODE_DATA(nid)->node_zonelists;
2624
2625         trace_mm_vmscan_memcg_reclaim_begin(0,
2626                                             sc.may_writepage,
2627                                             sc.gfp_mask);
2628
2629         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2630
2631         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2632
2633         return nr_reclaimed;
2634 }
2635 #endif
2636
2637 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2638 {
2639         struct mem_cgroup *memcg;
2640
2641         if (!total_swap_pages)
2642                 return;
2643
2644         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2645         do {
2646                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2647
2648                 if (inactive_anon_is_low(lruvec))
2649                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2650                                            sc, LRU_ACTIVE_ANON);
2651
2652                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2653         } while (memcg);
2654 }
2655
2656 static bool zone_balanced(struct zone *zone, int order,
2657                           unsigned long balance_gap, int classzone_idx)
2658 {
2659         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2660                                     balance_gap, classzone_idx, 0))
2661                 return false;
2662
2663         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2664             !compaction_suitable(zone, order))
2665                 return false;
2666
2667         return true;
2668 }
2669
2670 /*
2671  * pgdat_balanced() is used when checking if a node is balanced.
2672  *
2673  * For order-0, all zones must be balanced!
2674  *
2675  * For high-order allocations only zones that meet watermarks and are in a
2676  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2677  * total of balanced pages must be at least 25% of the zones allowed by
2678  * classzone_idx for the node to be considered balanced. Forcing all zones to
2679  * be balanced for high orders can cause excessive reclaim when there are
2680  * imbalanced zones.
2681  * The choice of 25% is due to
2682  *   o a 16M DMA zone that is balanced will not balance a zone on any
2683  *     reasonable sized machine
2684  *   o On all other machines, the top zone must be at least a reasonable
2685  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2686  *     would need to be at least 256M for it to be balance a whole node.
2687  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2688  *     to balance a node on its own. These seemed like reasonable ratios.
2689  */
2690 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2691 {
2692         unsigned long managed_pages = 0;
2693         unsigned long balanced_pages = 0;
2694         int i;
2695
2696         /* Check the watermark levels */
2697         for (i = 0; i <= classzone_idx; i++) {
2698                 struct zone *zone = pgdat->node_zones + i;
2699
2700                 if (!populated_zone(zone))
2701                         continue;
2702
2703                 managed_pages += zone->managed_pages;
2704
2705                 /*
2706                  * A special case here:
2707                  *
2708                  * balance_pgdat() skips over all_unreclaimable after
2709                  * DEF_PRIORITY. Effectively, it considers them balanced so
2710                  * they must be considered balanced here as well!
2711                  */
2712                 if (zone->all_unreclaimable) {
2713                         balanced_pages += zone->managed_pages;
2714                         continue;
2715                 }
2716
2717                 if (zone_balanced(zone, order, 0, i))
2718                         balanced_pages += zone->managed_pages;
2719                 else if (!order)
2720                         return false;
2721         }
2722
2723         if (order)
2724                 return balanced_pages >= (managed_pages >> 2);
2725         else
2726                 return true;
2727 }
2728
2729 /*
2730  * Prepare kswapd for sleeping. This verifies that there are no processes
2731  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2732  *
2733  * Returns true if kswapd is ready to sleep
2734  */
2735 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2736                                         int classzone_idx)
2737 {
2738         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2739         if (remaining)
2740                 return false;
2741
2742         /*
2743          * There is a potential race between when kswapd checks its watermarks
2744          * and a process gets throttled. There is also a potential race if
2745          * processes get throttled, kswapd wakes, a large process exits therby
2746          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2747          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2748          * so wake them now if necessary. If necessary, processes will wake
2749          * kswapd and get throttled again
2750          */
2751         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2752                 wake_up(&pgdat->pfmemalloc_wait);
2753                 return false;
2754         }
2755
2756         return pgdat_balanced(pgdat, order, classzone_idx);
2757 }
2758
2759 /*
2760  * kswapd shrinks the zone by the number of pages required to reach
2761  * the high watermark.
2762  *
2763  * Returns true if kswapd scanned at least the requested number of pages to
2764  * reclaim or if the lack of progress was due to pages under writeback.
2765  * This is used to determine if the scanning priority needs to be raised.
2766  */
2767 static bool kswapd_shrink_zone(struct zone *zone,
2768                                int classzone_idx,
2769                                struct scan_control *sc,
2770                                unsigned long lru_pages,
2771                                unsigned long *nr_attempted)
2772 {
2773         unsigned long nr_slab;
2774         int testorder = sc->order;
2775         unsigned long balance_gap;
2776         struct reclaim_state *reclaim_state = current->reclaim_state;
2777         struct shrink_control shrink = {
2778                 .gfp_mask = sc->gfp_mask,
2779         };
2780         bool lowmem_pressure;
2781
2782         /* Reclaim above the high watermark. */
2783         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2784
2785         /*
2786          * Kswapd reclaims only single pages with compaction enabled. Trying
2787          * too hard to reclaim until contiguous free pages have become
2788          * available can hurt performance by evicting too much useful data
2789          * from memory. Do not reclaim more than needed for compaction.
2790          */
2791         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2792                         compaction_suitable(zone, sc->order) !=
2793                                 COMPACT_SKIPPED)
2794                 testorder = 0;
2795
2796         /*
2797          * We put equal pressure on every zone, unless one zone has way too
2798          * many pages free already. The "too many pages" is defined as the
2799          * high wmark plus a "gap" where the gap is either the low
2800          * watermark or 1% of the zone, whichever is smaller.
2801          */
2802         balance_gap = min(low_wmark_pages(zone),
2803                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2804                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2805
2806         /*
2807          * If there is no low memory pressure or the zone is balanced then no
2808          * reclaim is necessary
2809          */
2810         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2811         if (!lowmem_pressure && zone_balanced(zone, testorder,
2812                                                 balance_gap, classzone_idx))
2813                 return true;
2814
2815         shrink_zone(zone, sc);
2816
2817         reclaim_state->reclaimed_slab = 0;
2818         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2819         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2820
2821         /* Account for the number of pages attempted to reclaim */
2822         *nr_attempted += sc->nr_to_reclaim;
2823
2824         if (nr_slab == 0 && !zone_reclaimable(zone))
2825                 zone->all_unreclaimable = 1;
2826
2827         zone_clear_flag(zone, ZONE_WRITEBACK);
2828
2829         /*
2830          * If a zone reaches its high watermark, consider it to be no longer
2831          * congested. It's possible there are dirty pages backed by congested
2832          * BDIs but as pressure is relieved, speculatively avoid congestion
2833          * waits.
2834          */
2835         if (!zone->all_unreclaimable &&
2836             zone_balanced(zone, testorder, 0, classzone_idx)) {
2837                 zone_clear_flag(zone, ZONE_CONGESTED);
2838                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2839         }
2840
2841         return sc->nr_scanned >= sc->nr_to_reclaim;
2842 }
2843
2844 /*
2845  * For kswapd, balance_pgdat() will work across all this node's zones until
2846  * they are all at high_wmark_pages(zone).
2847  *
2848  * Returns the final order kswapd was reclaiming at
2849  *
2850  * There is special handling here for zones which are full of pinned pages.
2851  * This can happen if the pages are all mlocked, or if they are all used by
2852  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2853  * What we do is to detect the case where all pages in the zone have been
2854  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2855  * dead and from now on, only perform a short scan.  Basically we're polling
2856  * the zone for when the problem goes away.
2857  *
2858  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2859  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2860  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2861  * lower zones regardless of the number of free pages in the lower zones. This
2862  * interoperates with the page allocator fallback scheme to ensure that aging
2863  * of pages is balanced across the zones.
2864  */
2865 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2866                                                         int *classzone_idx)
2867 {
2868         int i;
2869         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2870         unsigned long nr_soft_reclaimed;
2871         unsigned long nr_soft_scanned;
2872         struct scan_control sc = {
2873                 .gfp_mask = GFP_KERNEL,
2874                 .priority = DEF_PRIORITY,
2875                 .may_unmap = 1,
2876                 .may_swap = 1,
2877                 .may_writepage = !laptop_mode,
2878                 .order = order,
2879                 .target_mem_cgroup = NULL,
2880         };
2881         count_vm_event(PAGEOUTRUN);
2882
2883         do {
2884                 unsigned long lru_pages = 0;
2885                 unsigned long nr_attempted = 0;
2886                 bool raise_priority = true;
2887                 bool pgdat_needs_compaction = (order > 0);
2888
2889                 sc.nr_reclaimed = 0;
2890
2891                 /*
2892                  * Scan in the highmem->dma direction for the highest
2893                  * zone which needs scanning
2894                  */
2895                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2896                         struct zone *zone = pgdat->node_zones + i;
2897
2898                         if (!populated_zone(zone))
2899                                 continue;
2900
2901                         if (zone->all_unreclaimable &&
2902                             sc.priority != DEF_PRIORITY)
2903                                 continue;
2904
2905                         /*
2906                          * Do some background aging of the anon list, to give
2907                          * pages a chance to be referenced before reclaiming.
2908                          */
2909                         age_active_anon(zone, &sc);
2910
2911                         /*
2912                          * If the number of buffer_heads in the machine
2913                          * exceeds the maximum allowed level and this node
2914                          * has a highmem zone, force kswapd to reclaim from
2915                          * it to relieve lowmem pressure.
2916                          */
2917                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2918                                 end_zone = i;
2919                                 break;
2920                         }
2921
2922                         if (!zone_balanced(zone, order, 0, 0)) {
2923                                 end_zone = i;
2924                                 break;
2925                         } else {
2926                                 /*
2927                                  * If balanced, clear the dirty and congested
2928                                  * flags
2929                                  */
2930                                 zone_clear_flag(zone, ZONE_CONGESTED);
2931                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2932                         }
2933                 }
2934
2935                 if (i < 0)
2936                         goto out;
2937
2938                 for (i = 0; i <= end_zone; i++) {
2939                         struct zone *zone = pgdat->node_zones + i;
2940
2941                         if (!populated_zone(zone))
2942                                 continue;
2943
2944                         lru_pages += zone_reclaimable_pages(zone);
2945
2946                         /*
2947                          * If any zone is currently balanced then kswapd will
2948                          * not call compaction as it is expected that the
2949                          * necessary pages are already available.
2950                          */
2951                         if (pgdat_needs_compaction &&
2952                                         zone_watermark_ok(zone, order,
2953                                                 low_wmark_pages(zone),
2954                                                 *classzone_idx, 0))
2955                                 pgdat_needs_compaction = false;
2956                 }
2957
2958                 /*
2959                  * If we're getting trouble reclaiming, start doing writepage
2960                  * even in laptop mode.
2961                  */
2962                 if (sc.priority < DEF_PRIORITY - 2)
2963                         sc.may_writepage = 1;
2964
2965                 /*
2966                  * Now scan the zone in the dma->highmem direction, stopping
2967                  * at the last zone which needs scanning.
2968                  *
2969                  * We do this because the page allocator works in the opposite
2970                  * direction.  This prevents the page allocator from allocating
2971                  * pages behind kswapd's direction of progress, which would
2972                  * cause too much scanning of the lower zones.
2973                  */
2974                 for (i = 0; i <= end_zone; i++) {
2975                         struct zone *zone = pgdat->node_zones + i;
2976
2977                         if (!populated_zone(zone))
2978                                 continue;
2979
2980                         if (zone->all_unreclaimable &&
2981                             sc.priority != DEF_PRIORITY)
2982                                 continue;
2983
2984                         sc.nr_scanned = 0;
2985
2986                         nr_soft_scanned = 0;
2987                         /*
2988                          * Call soft limit reclaim before calling shrink_zone.
2989                          */
2990                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2991                                                         order, sc.gfp_mask,
2992                                                         &nr_soft_scanned);
2993                         sc.nr_reclaimed += nr_soft_reclaimed;
2994
2995                         /*
2996                          * There should be no need to raise the scanning
2997                          * priority if enough pages are already being scanned
2998                          * that that high watermark would be met at 100%
2999                          * efficiency.
3000                          */
3001                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3002                                         lru_pages, &nr_attempted))
3003                                 raise_priority = false;
3004                 }
3005
3006                 /*
3007                  * If the low watermark is met there is no need for processes
3008                  * to be throttled on pfmemalloc_wait as they should not be
3009                  * able to safely make forward progress. Wake them
3010                  */
3011                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3012                                 pfmemalloc_watermark_ok(pgdat))
3013                         wake_up(&pgdat->pfmemalloc_wait);
3014
3015                 /*
3016                  * Fragmentation may mean that the system cannot be rebalanced
3017                  * for high-order allocations in all zones. If twice the
3018                  * allocation size has been reclaimed and the zones are still
3019                  * not balanced then recheck the watermarks at order-0 to
3020                  * prevent kswapd reclaiming excessively. Assume that a
3021                  * process requested a high-order can direct reclaim/compact.
3022                  */
3023                 if (order && sc.nr_reclaimed >= 2UL << order)
3024                         order = sc.order = 0;
3025
3026                 /* Check if kswapd should be suspending */
3027                 if (try_to_freeze() || kthread_should_stop())
3028                         break;
3029
3030                 /*
3031                  * Compact if necessary and kswapd is reclaiming at least the
3032                  * high watermark number of pages as requsted
3033                  */
3034                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3035                         compact_pgdat(pgdat, order);
3036
3037                 /*
3038                  * Raise priority if scanning rate is too low or there was no
3039                  * progress in reclaiming pages
3040                  */
3041                 if (raise_priority || !sc.nr_reclaimed)
3042                         sc.priority--;
3043         } while (sc.priority >= 1 &&
3044                  !pgdat_balanced(pgdat, order, *classzone_idx));
3045
3046 out:
3047         /*
3048          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3049          * makes a decision on the order we were last reclaiming at. However,
3050          * if another caller entered the allocator slow path while kswapd
3051          * was awake, order will remain at the higher level
3052          */
3053         *classzone_idx = end_zone;
3054         return order;
3055 }
3056
3057 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3058 {
3059         long remaining = 0;
3060         DEFINE_WAIT(wait);
3061
3062         if (freezing(current) || kthread_should_stop())
3063                 return;
3064
3065         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3066
3067         /* Try to sleep for a short interval */
3068         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3069                 remaining = schedule_timeout(HZ/10);
3070                 finish_wait(&pgdat->kswapd_wait, &wait);
3071                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3072         }
3073
3074         /*
3075          * After a short sleep, check if it was a premature sleep. If not, then
3076          * go fully to sleep until explicitly woken up.
3077          */
3078         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3079                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3080
3081                 /*
3082                  * vmstat counters are not perfectly accurate and the estimated
3083                  * value for counters such as NR_FREE_PAGES can deviate from the
3084                  * true value by nr_online_cpus * threshold. To avoid the zone
3085                  * watermarks being breached while under pressure, we reduce the
3086                  * per-cpu vmstat threshold while kswapd is awake and restore
3087                  * them before going back to sleep.
3088                  */
3089                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3090
3091                 /*
3092                  * Compaction records what page blocks it recently failed to
3093                  * isolate pages from and skips them in the future scanning.
3094                  * When kswapd is going to sleep, it is reasonable to assume
3095                  * that pages and compaction may succeed so reset the cache.
3096                  */
3097                 reset_isolation_suitable(pgdat);
3098
3099                 if (!kthread_should_stop())
3100                         schedule();
3101
3102                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3103         } else {
3104                 if (remaining)
3105                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3106                 else
3107                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3108         }
3109         finish_wait(&pgdat->kswapd_wait, &wait);
3110 }
3111
3112 /*
3113  * The background pageout daemon, started as a kernel thread
3114  * from the init process.
3115  *
3116  * This basically trickles out pages so that we have _some_
3117  * free memory available even if there is no other activity
3118  * that frees anything up. This is needed for things like routing
3119  * etc, where we otherwise might have all activity going on in
3120  * asynchronous contexts that cannot page things out.
3121  *
3122  * If there are applications that are active memory-allocators
3123  * (most normal use), this basically shouldn't matter.
3124  */
3125 static int kswapd(void *p)
3126 {
3127         unsigned long order, new_order;
3128         unsigned balanced_order;
3129         int classzone_idx, new_classzone_idx;
3130         int balanced_classzone_idx;
3131         pg_data_t *pgdat = (pg_data_t*)p;
3132         struct task_struct *tsk = current;
3133
3134         struct reclaim_state reclaim_state = {
3135                 .reclaimed_slab = 0,
3136         };
3137         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3138
3139         lockdep_set_current_reclaim_state(GFP_KERNEL);
3140
3141         if (!cpumask_empty(cpumask))
3142                 set_cpus_allowed_ptr(tsk, cpumask);
3143         current->reclaim_state = &reclaim_state;
3144
3145         /*
3146          * Tell the memory management that we're a "memory allocator",
3147          * and that if we need more memory we should get access to it
3148          * regardless (see "__alloc_pages()"). "kswapd" should
3149          * never get caught in the normal page freeing logic.
3150          *
3151          * (Kswapd normally doesn't need memory anyway, but sometimes
3152          * you need a small amount of memory in order to be able to
3153          * page out something else, and this flag essentially protects
3154          * us from recursively trying to free more memory as we're
3155          * trying to free the first piece of memory in the first place).
3156          */
3157         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3158         set_freezable();
3159
3160         order = new_order = 0;
3161         balanced_order = 0;
3162         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3163         balanced_classzone_idx = classzone_idx;
3164         for ( ; ; ) {
3165                 bool ret;
3166
3167                 /*
3168                  * If the last balance_pgdat was unsuccessful it's unlikely a
3169                  * new request of a similar or harder type will succeed soon
3170                  * so consider going to sleep on the basis we reclaimed at
3171                  */
3172                 if (balanced_classzone_idx >= new_classzone_idx &&
3173                                         balanced_order == new_order) {
3174                         new_order = pgdat->kswapd_max_order;
3175                         new_classzone_idx = pgdat->classzone_idx;
3176                         pgdat->kswapd_max_order =  0;
3177                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3178                 }
3179
3180                 if (order < new_order || classzone_idx > new_classzone_idx) {
3181                         /*
3182                          * Don't sleep if someone wants a larger 'order'
3183                          * allocation or has tigher zone constraints
3184                          */
3185                         order = new_order;
3186                         classzone_idx = new_classzone_idx;
3187                 } else {
3188                         kswapd_try_to_sleep(pgdat, balanced_order,
3189                                                 balanced_classzone_idx);
3190                         order = pgdat->kswapd_max_order;
3191                         classzone_idx = pgdat->classzone_idx;
3192                         new_order = order;
3193                         new_classzone_idx = classzone_idx;
3194                         pgdat->kswapd_max_order = 0;
3195                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3196                 }
3197
3198                 ret = try_to_freeze();
3199                 if (kthread_should_stop())
3200                         break;
3201
3202                 /*
3203                  * We can speed up thawing tasks if we don't call balance_pgdat
3204                  * after returning from the refrigerator
3205                  */
3206                 if (!ret) {
3207                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3208                         balanced_classzone_idx = classzone_idx;
3209                         balanced_order = balance_pgdat(pgdat, order,
3210                                                 &balanced_classzone_idx);
3211                 }
3212         }
3213
3214         current->reclaim_state = NULL;
3215         return 0;
3216 }
3217
3218 /*
3219  * A zone is low on free memory, so wake its kswapd task to service it.
3220  */
3221 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3222 {
3223         pg_data_t *pgdat;
3224
3225         if (!populated_zone(zone))
3226                 return;
3227
3228         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3229                 return;
3230         pgdat = zone->zone_pgdat;
3231         if (pgdat->kswapd_max_order < order) {
3232                 pgdat->kswapd_max_order = order;
3233                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3234         }
3235         if (!waitqueue_active(&pgdat->kswapd_wait))
3236                 return;
3237         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3238                 return;
3239
3240         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3241         wake_up_interruptible(&pgdat->kswapd_wait);
3242 }
3243
3244 /*
3245  * The reclaimable count would be mostly accurate.
3246  * The less reclaimable pages may be
3247  * - mlocked pages, which will be moved to unevictable list when encountered
3248  * - mapped pages, which may require several travels to be reclaimed
3249  * - dirty pages, which is not "instantly" reclaimable
3250  */
3251 unsigned long global_reclaimable_pages(void)
3252 {
3253         int nr;
3254
3255         nr = global_page_state(NR_ACTIVE_FILE) +
3256              global_page_state(NR_INACTIVE_FILE);
3257
3258         if (get_nr_swap_pages() > 0)
3259                 nr += global_page_state(NR_ACTIVE_ANON) +
3260                       global_page_state(NR_INACTIVE_ANON);
3261
3262         return nr;
3263 }
3264
3265 unsigned long zone_reclaimable_pages(struct zone *zone)
3266 {
3267         int nr;
3268
3269         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3270              zone_page_state(zone, NR_INACTIVE_FILE);
3271
3272         if (get_nr_swap_pages() > 0)
3273                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3274                       zone_page_state(zone, NR_INACTIVE_ANON);
3275
3276         return nr;
3277 }
3278
3279 #ifdef CONFIG_HIBERNATION
3280 /*
3281  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3282  * freed pages.
3283  *
3284  * Rather than trying to age LRUs the aim is to preserve the overall
3285  * LRU order by reclaiming preferentially
3286  * inactive > active > active referenced > active mapped
3287  */
3288 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3289 {
3290         struct reclaim_state reclaim_state;
3291         struct scan_control sc = {
3292                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3293                 .may_swap = 1,
3294                 .may_unmap = 1,
3295                 .may_writepage = 1,
3296                 .nr_to_reclaim = nr_to_reclaim,
3297                 .hibernation_mode = 1,
3298                 .order = 0,
3299                 .priority = DEF_PRIORITY,
3300         };
3301         struct shrink_control shrink = {
3302                 .gfp_mask = sc.gfp_mask,
3303         };
3304         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3305         struct task_struct *p = current;
3306         unsigned long nr_reclaimed;
3307
3308         p->flags |= PF_MEMALLOC;
3309         lockdep_set_current_reclaim_state(sc.gfp_mask);
3310         reclaim_state.reclaimed_slab = 0;
3311         p->reclaim_state = &reclaim_state;
3312
3313         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3314
3315         p->reclaim_state = NULL;
3316         lockdep_clear_current_reclaim_state();
3317         p->flags &= ~PF_MEMALLOC;
3318
3319         return nr_reclaimed;
3320 }
3321 #endif /* CONFIG_HIBERNATION */
3322
3323 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3324    not required for correctness.  So if the last cpu in a node goes
3325    away, we get changed to run anywhere: as the first one comes back,
3326    restore their cpu bindings. */
3327 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3328                         void *hcpu)
3329 {
3330         int nid;
3331
3332         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3333                 for_each_node_state(nid, N_MEMORY) {
3334                         pg_data_t *pgdat = NODE_DATA(nid);
3335                         const struct cpumask *mask;
3336
3337                         mask = cpumask_of_node(pgdat->node_id);
3338
3339                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3340                                 /* One of our CPUs online: restore mask */
3341                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3342                 }
3343         }
3344         return NOTIFY_OK;
3345 }
3346
3347 /*
3348  * This kswapd start function will be called by init and node-hot-add.
3349  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3350  */
3351 int kswapd_run(int nid)
3352 {
3353         pg_data_t *pgdat = NODE_DATA(nid);
3354         int ret = 0;
3355
3356         if (pgdat->kswapd)
3357                 return 0;
3358
3359         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3360         if (IS_ERR(pgdat->kswapd)) {
3361                 /* failure at boot is fatal */
3362                 BUG_ON(system_state == SYSTEM_BOOTING);
3363                 pr_err("Failed to start kswapd on node %d\n", nid);
3364                 ret = PTR_ERR(pgdat->kswapd);
3365                 pgdat->kswapd = NULL;
3366         }
3367         return ret;
3368 }
3369
3370 /*
3371  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3372  * hold lock_memory_hotplug().
3373  */
3374 void kswapd_stop(int nid)
3375 {
3376         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3377
3378         if (kswapd) {
3379                 kthread_stop(kswapd);
3380                 NODE_DATA(nid)->kswapd = NULL;
3381         }
3382 }
3383
3384 static int __init kswapd_init(void)
3385 {
3386         int nid;
3387
3388         swap_setup();
3389         for_each_node_state(nid, N_MEMORY)
3390                 kswapd_run(nid);
3391         hotcpu_notifier(cpu_callback, 0);
3392         return 0;
3393 }
3394
3395 module_init(kswapd_init)
3396
3397 #ifdef CONFIG_NUMA
3398 /*
3399  * Zone reclaim mode
3400  *
3401  * If non-zero call zone_reclaim when the number of free pages falls below
3402  * the watermarks.
3403  */
3404 int zone_reclaim_mode __read_mostly;
3405
3406 #define RECLAIM_OFF 0
3407 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3408 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3409 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3410
3411 /*
3412  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3413  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3414  * a zone.
3415  */
3416 #define ZONE_RECLAIM_PRIORITY 4
3417
3418 /*
3419  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3420  * occur.
3421  */
3422 int sysctl_min_unmapped_ratio = 1;
3423
3424 /*
3425  * If the number of slab pages in a zone grows beyond this percentage then
3426  * slab reclaim needs to occur.
3427  */
3428 int sysctl_min_slab_ratio = 5;
3429
3430 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3431 {
3432         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3433         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3434                 zone_page_state(zone, NR_ACTIVE_FILE);
3435
3436         /*
3437          * It's possible for there to be more file mapped pages than
3438          * accounted for by the pages on the file LRU lists because
3439          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3440          */
3441         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3442 }
3443
3444 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3445 static long zone_pagecache_reclaimable(struct zone *zone)
3446 {
3447         long nr_pagecache_reclaimable;
3448         long delta = 0;
3449
3450         /*
3451          * If RECLAIM_SWAP is set, then all file pages are considered
3452          * potentially reclaimable. Otherwise, we have to worry about
3453          * pages like swapcache and zone_unmapped_file_pages() provides
3454          * a better estimate
3455          */
3456         if (zone_reclaim_mode & RECLAIM_SWAP)
3457                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3458         else
3459                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3460
3461         /* If we can't clean pages, remove dirty pages from consideration */
3462         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3463                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3464
3465         /* Watch for any possible underflows due to delta */
3466         if (unlikely(delta > nr_pagecache_reclaimable))
3467                 delta = nr_pagecache_reclaimable;
3468
3469         return nr_pagecache_reclaimable - delta;
3470 }
3471
3472 /*
3473  * Try to free up some pages from this zone through reclaim.
3474  */
3475 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3476 {
3477         /* Minimum pages needed in order to stay on node */
3478         const unsigned long nr_pages = 1 << order;
3479         struct task_struct *p = current;
3480         struct reclaim_state reclaim_state;
3481         struct scan_control sc = {
3482                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3483                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3484                 .may_swap = 1,
3485                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3486                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3487                 .order = order,
3488                 .priority = ZONE_RECLAIM_PRIORITY,
3489         };
3490         struct shrink_control shrink = {
3491                 .gfp_mask = sc.gfp_mask,
3492         };
3493         unsigned long nr_slab_pages0, nr_slab_pages1;
3494
3495         cond_resched();
3496         /*
3497          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3498          * and we also need to be able to write out pages for RECLAIM_WRITE
3499          * and RECLAIM_SWAP.
3500          */
3501         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3502         lockdep_set_current_reclaim_state(gfp_mask);
3503         reclaim_state.reclaimed_slab = 0;
3504         p->reclaim_state = &reclaim_state;
3505
3506         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3507                 /*
3508                  * Free memory by calling shrink zone with increasing
3509                  * priorities until we have enough memory freed.
3510                  */
3511                 do {
3512                         shrink_zone(zone, &sc);
3513                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3514         }
3515
3516         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3517         if (nr_slab_pages0 > zone->min_slab_pages) {
3518                 /*
3519                  * shrink_slab() does not currently allow us to determine how
3520                  * many pages were freed in this zone. So we take the current
3521                  * number of slab pages and shake the slab until it is reduced
3522                  * by the same nr_pages that we used for reclaiming unmapped
3523                  * pages.
3524                  *
3525                  * Note that shrink_slab will free memory on all zones and may
3526                  * take a long time.
3527                  */
3528                 for (;;) {
3529                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3530
3531                         /* No reclaimable slab or very low memory pressure */
3532                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3533                                 break;
3534
3535                         /* Freed enough memory */
3536                         nr_slab_pages1 = zone_page_state(zone,
3537                                                         NR_SLAB_RECLAIMABLE);
3538                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3539                                 break;
3540                 }
3541
3542                 /*
3543                  * Update nr_reclaimed by the number of slab pages we
3544                  * reclaimed from this zone.
3545                  */
3546                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3547                 if (nr_slab_pages1 < nr_slab_pages0)
3548                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3549         }
3550
3551         p->reclaim_state = NULL;
3552         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3553         lockdep_clear_current_reclaim_state();
3554         return sc.nr_reclaimed >= nr_pages;
3555 }
3556
3557 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3558 {
3559         int node_id;
3560         int ret;
3561
3562         /*
3563          * Zone reclaim reclaims unmapped file backed pages and
3564          * slab pages if we are over the defined limits.
3565          *
3566          * A small portion of unmapped file backed pages is needed for
3567          * file I/O otherwise pages read by file I/O will be immediately
3568          * thrown out if the zone is overallocated. So we do not reclaim
3569          * if less than a specified percentage of the zone is used by
3570          * unmapped file backed pages.
3571          */
3572         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3573             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3574                 return ZONE_RECLAIM_FULL;
3575
3576         if (zone->all_unreclaimable)
3577                 return ZONE_RECLAIM_FULL;
3578
3579         /*
3580          * Do not scan if the allocation should not be delayed.
3581          */
3582         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3583                 return ZONE_RECLAIM_NOSCAN;
3584
3585         /*
3586          * Only run zone reclaim on the local zone or on zones that do not
3587          * have associated processors. This will favor the local processor
3588          * over remote processors and spread off node memory allocations
3589          * as wide as possible.
3590          */
3591         node_id = zone_to_nid(zone);
3592         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3593                 return ZONE_RECLAIM_NOSCAN;
3594
3595         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3596                 return ZONE_RECLAIM_NOSCAN;
3597
3598         ret = __zone_reclaim(zone, gfp_mask, order);
3599         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3600
3601         if (!ret)
3602                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3603
3604         return ret;
3605 }
3606 #endif
3607
3608 /*
3609  * page_evictable - test whether a page is evictable
3610  * @page: the page to test
3611  *
3612  * Test whether page is evictable--i.e., should be placed on active/inactive
3613  * lists vs unevictable list.
3614  *
3615  * Reasons page might not be evictable:
3616  * (1) page's mapping marked unevictable
3617  * (2) page is part of an mlocked VMA
3618  *
3619  */
3620 int page_evictable(struct page *page)
3621 {
3622         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3623 }
3624
3625 #ifdef CONFIG_SHMEM
3626 /**
3627  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3628  * @pages:      array of pages to check
3629  * @nr_pages:   number of pages to check
3630  *
3631  * Checks pages for evictability and moves them to the appropriate lru list.
3632  *
3633  * This function is only used for SysV IPC SHM_UNLOCK.
3634  */
3635 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3636 {
3637         struct lruvec *lruvec;
3638         struct zone *zone = NULL;
3639         int pgscanned = 0;
3640         int pgrescued = 0;
3641         int i;
3642
3643         for (i = 0; i < nr_pages; i++) {
3644                 struct page *page = pages[i];
3645                 struct zone *pagezone;
3646
3647                 pgscanned++;
3648                 pagezone = page_zone(page);
3649                 if (pagezone != zone) {
3650                         if (zone)
3651                                 spin_unlock_irq(&zone->lru_lock);
3652                         zone = pagezone;
3653                         spin_lock_irq(&zone->lru_lock);
3654                 }
3655                 lruvec = mem_cgroup_page_lruvec(page, zone);
3656
3657                 if (!PageLRU(page) || !PageUnevictable(page))
3658                         continue;
3659
3660                 if (page_evictable(page)) {
3661                         enum lru_list lru = page_lru_base_type(page);
3662
3663                         VM_BUG_ON(PageActive(page));
3664                         ClearPageUnevictable(page);
3665                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3666                         add_page_to_lru_list(page, lruvec, lru);
3667                         pgrescued++;
3668                 }
3669         }
3670
3671         if (zone) {
3672                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3673                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3674                 spin_unlock_irq(&zone->lru_lock);
3675         }
3676 }
3677 #endif /* CONFIG_SHMEM */
3678
3679 static void warn_scan_unevictable_pages(void)
3680 {
3681         printk_once(KERN_WARNING
3682                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3683                     "disabled for lack of a legitimate use case.  If you have "
3684                     "one, please send an email to linux-mm@kvack.org.\n",
3685                     current->comm);
3686 }
3687
3688 /*
3689  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3690  * all nodes' unevictable lists for evictable pages
3691  */
3692 unsigned long scan_unevictable_pages;
3693
3694 int scan_unevictable_handler(struct ctl_table *table, int write,
3695                            void __user *buffer,
3696                            size_t *length, loff_t *ppos)
3697 {
3698         warn_scan_unevictable_pages();
3699         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3700         scan_unevictable_pages = 0;
3701         return 0;
3702 }
3703
3704 #ifdef CONFIG_NUMA
3705 /*
3706  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3707  * a specified node's per zone unevictable lists for evictable pages.
3708  */
3709
3710 static ssize_t read_scan_unevictable_node(struct device *dev,
3711                                           struct device_attribute *attr,
3712                                           char *buf)
3713 {
3714         warn_scan_unevictable_pages();
3715         return sprintf(buf, "0\n");     /* always zero; should fit... */
3716 }
3717
3718 static ssize_t write_scan_unevictable_node(struct device *dev,
3719                                            struct device_attribute *attr,
3720                                         const char *buf, size_t count)
3721 {
3722         warn_scan_unevictable_pages();
3723         return 1;
3724 }
3725
3726
3727 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3728                         read_scan_unevictable_node,
3729                         write_scan_unevictable_node);
3730
3731 int scan_unevictable_register_node(struct node *node)
3732 {
3733         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3734 }
3735
3736 void scan_unevictable_unregister_node(struct node *node)
3737 {
3738         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3739 }
3740 #endif