mm/vmscan: push lruvec pointer into should_continue_reclaim()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /* Scan (total_size >> priority) pages at once */
82         int priority;
83
84         /*
85          * The memory cgroup that hit its limit and as a result is the
86          * primary target of this reclaim invocation.
87          */
88         struct mem_cgroup *target_mem_cgroup;
89
90         /*
91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
92          * are scanned.
93          */
94         nodemask_t      *nodemask;
95 };
96
97 struct mem_cgroup_zone {
98         struct mem_cgroup *mem_cgroup;
99         struct zone *zone;
100 };
101
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field)                    \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetch(&prev->_field);                        \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetchw(&prev->_field);                       \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 /*
133  * From 0 .. 100.  Higher means more swappy.
134  */
135 int vm_swappiness = 60;
136 long vm_total_pages;    /* The total number of pages which the VM controls */
137
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
140
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 static bool global_reclaim(struct scan_control *sc)
143 {
144         return !sc->target_mem_cgroup;
145 }
146 #else
147 static bool global_reclaim(struct scan_control *sc)
148 {
149         return true;
150 }
151 #endif
152
153 static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
154 {
155         if (!mem_cgroup_disabled())
156                 return mem_cgroup_get_lruvec_size(lruvec, lru);
157
158         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
159 }
160
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166         atomic_long_set(&shrinker->nr_in_batch, 0);
167         down_write(&shrinker_rwsem);
168         list_add_tail(&shrinker->list, &shrinker_list);
169         up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178         down_write(&shrinker_rwsem);
179         list_del(&shrinker->list);
180         up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183
184 static inline int do_shrinker_shrink(struct shrinker *shrinker,
185                                      struct shrink_control *sc,
186                                      unsigned long nr_to_scan)
187 {
188         sc->nr_to_scan = nr_to_scan;
189         return (*shrinker->shrink)(shrinker, sc);
190 }
191
192 #define SHRINK_BATCH 128
193 /*
194  * Call the shrink functions to age shrinkable caches
195  *
196  * Here we assume it costs one seek to replace a lru page and that it also
197  * takes a seek to recreate a cache object.  With this in mind we age equal
198  * percentages of the lru and ageable caches.  This should balance the seeks
199  * generated by these structures.
200  *
201  * If the vm encountered mapped pages on the LRU it increase the pressure on
202  * slab to avoid swapping.
203  *
204  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
205  *
206  * `lru_pages' represents the number of on-LRU pages in all the zones which
207  * are eligible for the caller's allocation attempt.  It is used for balancing
208  * slab reclaim versus page reclaim.
209  *
210  * Returns the number of slab objects which we shrunk.
211  */
212 unsigned long shrink_slab(struct shrink_control *shrink,
213                           unsigned long nr_pages_scanned,
214                           unsigned long lru_pages)
215 {
216         struct shrinker *shrinker;
217         unsigned long ret = 0;
218
219         if (nr_pages_scanned == 0)
220                 nr_pages_scanned = SWAP_CLUSTER_MAX;
221
222         if (!down_read_trylock(&shrinker_rwsem)) {
223                 /* Assume we'll be able to shrink next time */
224                 ret = 1;
225                 goto out;
226         }
227
228         list_for_each_entry(shrinker, &shrinker_list, list) {
229                 unsigned long long delta;
230                 long total_scan;
231                 long max_pass;
232                 int shrink_ret = 0;
233                 long nr;
234                 long new_nr;
235                 long batch_size = shrinker->batch ? shrinker->batch
236                                                   : SHRINK_BATCH;
237
238                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
239                 if (max_pass <= 0)
240                         continue;
241
242                 /*
243                  * copy the current shrinker scan count into a local variable
244                  * and zero it so that other concurrent shrinker invocations
245                  * don't also do this scanning work.
246                  */
247                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
248
249                 total_scan = nr;
250                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
251                 delta *= max_pass;
252                 do_div(delta, lru_pages + 1);
253                 total_scan += delta;
254                 if (total_scan < 0) {
255                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
256                                "delete nr=%ld\n",
257                                shrinker->shrink, total_scan);
258                         total_scan = max_pass;
259                 }
260
261                 /*
262                  * We need to avoid excessive windup on filesystem shrinkers
263                  * due to large numbers of GFP_NOFS allocations causing the
264                  * shrinkers to return -1 all the time. This results in a large
265                  * nr being built up so when a shrink that can do some work
266                  * comes along it empties the entire cache due to nr >>>
267                  * max_pass.  This is bad for sustaining a working set in
268                  * memory.
269                  *
270                  * Hence only allow the shrinker to scan the entire cache when
271                  * a large delta change is calculated directly.
272                  */
273                 if (delta < max_pass / 4)
274                         total_scan = min(total_scan, max_pass / 2);
275
276                 /*
277                  * Avoid risking looping forever due to too large nr value:
278                  * never try to free more than twice the estimate number of
279                  * freeable entries.
280                  */
281                 if (total_scan > max_pass * 2)
282                         total_scan = max_pass * 2;
283
284                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
285                                         nr_pages_scanned, lru_pages,
286                                         max_pass, delta, total_scan);
287
288                 while (total_scan >= batch_size) {
289                         int nr_before;
290
291                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
292                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
293                                                         batch_size);
294                         if (shrink_ret == -1)
295                                 break;
296                         if (shrink_ret < nr_before)
297                                 ret += nr_before - shrink_ret;
298                         count_vm_events(SLABS_SCANNED, batch_size);
299                         total_scan -= batch_size;
300
301                         cond_resched();
302                 }
303
304                 /*
305                  * move the unused scan count back into the shrinker in a
306                  * manner that handles concurrent updates. If we exhausted the
307                  * scan, there is no need to do an update.
308                  */
309                 if (total_scan > 0)
310                         new_nr = atomic_long_add_return(total_scan,
311                                         &shrinker->nr_in_batch);
312                 else
313                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
314
315                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
316         }
317         up_read(&shrinker_rwsem);
318 out:
319         cond_resched();
320         return ret;
321 }
322
323 static inline int is_page_cache_freeable(struct page *page)
324 {
325         /*
326          * A freeable page cache page is referenced only by the caller
327          * that isolated the page, the page cache radix tree and
328          * optional buffer heads at page->private.
329          */
330         return page_count(page) - page_has_private(page) == 2;
331 }
332
333 static int may_write_to_queue(struct backing_dev_info *bdi,
334                               struct scan_control *sc)
335 {
336         if (current->flags & PF_SWAPWRITE)
337                 return 1;
338         if (!bdi_write_congested(bdi))
339                 return 1;
340         if (bdi == current->backing_dev_info)
341                 return 1;
342         return 0;
343 }
344
345 /*
346  * We detected a synchronous write error writing a page out.  Probably
347  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
348  * fsync(), msync() or close().
349  *
350  * The tricky part is that after writepage we cannot touch the mapping: nothing
351  * prevents it from being freed up.  But we have a ref on the page and once
352  * that page is locked, the mapping is pinned.
353  *
354  * We're allowed to run sleeping lock_page() here because we know the caller has
355  * __GFP_FS.
356  */
357 static void handle_write_error(struct address_space *mapping,
358                                 struct page *page, int error)
359 {
360         lock_page(page);
361         if (page_mapping(page) == mapping)
362                 mapping_set_error(mapping, error);
363         unlock_page(page);
364 }
365
366 /* possible outcome of pageout() */
367 typedef enum {
368         /* failed to write page out, page is locked */
369         PAGE_KEEP,
370         /* move page to the active list, page is locked */
371         PAGE_ACTIVATE,
372         /* page has been sent to the disk successfully, page is unlocked */
373         PAGE_SUCCESS,
374         /* page is clean and locked */
375         PAGE_CLEAN,
376 } pageout_t;
377
378 /*
379  * pageout is called by shrink_page_list() for each dirty page.
380  * Calls ->writepage().
381  */
382 static pageout_t pageout(struct page *page, struct address_space *mapping,
383                          struct scan_control *sc)
384 {
385         /*
386          * If the page is dirty, only perform writeback if that write
387          * will be non-blocking.  To prevent this allocation from being
388          * stalled by pagecache activity.  But note that there may be
389          * stalls if we need to run get_block().  We could test
390          * PagePrivate for that.
391          *
392          * If this process is currently in __generic_file_aio_write() against
393          * this page's queue, we can perform writeback even if that
394          * will block.
395          *
396          * If the page is swapcache, write it back even if that would
397          * block, for some throttling. This happens by accident, because
398          * swap_backing_dev_info is bust: it doesn't reflect the
399          * congestion state of the swapdevs.  Easy to fix, if needed.
400          */
401         if (!is_page_cache_freeable(page))
402                 return PAGE_KEEP;
403         if (!mapping) {
404                 /*
405                  * Some data journaling orphaned pages can have
406                  * page->mapping == NULL while being dirty with clean buffers.
407                  */
408                 if (page_has_private(page)) {
409                         if (try_to_free_buffers(page)) {
410                                 ClearPageDirty(page);
411                                 printk("%s: orphaned page\n", __func__);
412                                 return PAGE_CLEAN;
413                         }
414                 }
415                 return PAGE_KEEP;
416         }
417         if (mapping->a_ops->writepage == NULL)
418                 return PAGE_ACTIVATE;
419         if (!may_write_to_queue(mapping->backing_dev_info, sc))
420                 return PAGE_KEEP;
421
422         if (clear_page_dirty_for_io(page)) {
423                 int res;
424                 struct writeback_control wbc = {
425                         .sync_mode = WB_SYNC_NONE,
426                         .nr_to_write = SWAP_CLUSTER_MAX,
427                         .range_start = 0,
428                         .range_end = LLONG_MAX,
429                         .for_reclaim = 1,
430                 };
431
432                 SetPageReclaim(page);
433                 res = mapping->a_ops->writepage(page, &wbc);
434                 if (res < 0)
435                         handle_write_error(mapping, page, res);
436                 if (res == AOP_WRITEPAGE_ACTIVATE) {
437                         ClearPageReclaim(page);
438                         return PAGE_ACTIVATE;
439                 }
440
441                 if (!PageWriteback(page)) {
442                         /* synchronous write or broken a_ops? */
443                         ClearPageReclaim(page);
444                 }
445                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
446                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
447                 return PAGE_SUCCESS;
448         }
449
450         return PAGE_CLEAN;
451 }
452
453 /*
454  * Same as remove_mapping, but if the page is removed from the mapping, it
455  * gets returned with a refcount of 0.
456  */
457 static int __remove_mapping(struct address_space *mapping, struct page *page)
458 {
459         BUG_ON(!PageLocked(page));
460         BUG_ON(mapping != page_mapping(page));
461
462         spin_lock_irq(&mapping->tree_lock);
463         /*
464          * The non racy check for a busy page.
465          *
466          * Must be careful with the order of the tests. When someone has
467          * a ref to the page, it may be possible that they dirty it then
468          * drop the reference. So if PageDirty is tested before page_count
469          * here, then the following race may occur:
470          *
471          * get_user_pages(&page);
472          * [user mapping goes away]
473          * write_to(page);
474          *                              !PageDirty(page)    [good]
475          * SetPageDirty(page);
476          * put_page(page);
477          *                              !page_count(page)   [good, discard it]
478          *
479          * [oops, our write_to data is lost]
480          *
481          * Reversing the order of the tests ensures such a situation cannot
482          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
483          * load is not satisfied before that of page->_count.
484          *
485          * Note that if SetPageDirty is always performed via set_page_dirty,
486          * and thus under tree_lock, then this ordering is not required.
487          */
488         if (!page_freeze_refs(page, 2))
489                 goto cannot_free;
490         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
491         if (unlikely(PageDirty(page))) {
492                 page_unfreeze_refs(page, 2);
493                 goto cannot_free;
494         }
495
496         if (PageSwapCache(page)) {
497                 swp_entry_t swap = { .val = page_private(page) };
498                 __delete_from_swap_cache(page);
499                 spin_unlock_irq(&mapping->tree_lock);
500                 swapcache_free(swap, page);
501         } else {
502                 void (*freepage)(struct page *);
503
504                 freepage = mapping->a_ops->freepage;
505
506                 __delete_from_page_cache(page);
507                 spin_unlock_irq(&mapping->tree_lock);
508                 mem_cgroup_uncharge_cache_page(page);
509
510                 if (freepage != NULL)
511                         freepage(page);
512         }
513
514         return 1;
515
516 cannot_free:
517         spin_unlock_irq(&mapping->tree_lock);
518         return 0;
519 }
520
521 /*
522  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
523  * someone else has a ref on the page, abort and return 0.  If it was
524  * successfully detached, return 1.  Assumes the caller has a single ref on
525  * this page.
526  */
527 int remove_mapping(struct address_space *mapping, struct page *page)
528 {
529         if (__remove_mapping(mapping, page)) {
530                 /*
531                  * Unfreezing the refcount with 1 rather than 2 effectively
532                  * drops the pagecache ref for us without requiring another
533                  * atomic operation.
534                  */
535                 page_unfreeze_refs(page, 1);
536                 return 1;
537         }
538         return 0;
539 }
540
541 /**
542  * putback_lru_page - put previously isolated page onto appropriate LRU list
543  * @page: page to be put back to appropriate lru list
544  *
545  * Add previously isolated @page to appropriate LRU list.
546  * Page may still be unevictable for other reasons.
547  *
548  * lru_lock must not be held, interrupts must be enabled.
549  */
550 void putback_lru_page(struct page *page)
551 {
552         int lru;
553         int active = !!TestClearPageActive(page);
554         int was_unevictable = PageUnevictable(page);
555
556         VM_BUG_ON(PageLRU(page));
557
558 redo:
559         ClearPageUnevictable(page);
560
561         if (page_evictable(page, NULL)) {
562                 /*
563                  * For evictable pages, we can use the cache.
564                  * In event of a race, worst case is we end up with an
565                  * unevictable page on [in]active list.
566                  * We know how to handle that.
567                  */
568                 lru = active + page_lru_base_type(page);
569                 lru_cache_add_lru(page, lru);
570         } else {
571                 /*
572                  * Put unevictable pages directly on zone's unevictable
573                  * list.
574                  */
575                 lru = LRU_UNEVICTABLE;
576                 add_page_to_unevictable_list(page);
577                 /*
578                  * When racing with an mlock or AS_UNEVICTABLE clearing
579                  * (page is unlocked) make sure that if the other thread
580                  * does not observe our setting of PG_lru and fails
581                  * isolation/check_move_unevictable_pages,
582                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
583                  * the page back to the evictable list.
584                  *
585                  * The other side is TestClearPageMlocked() or shmem_lock().
586                  */
587                 smp_mb();
588         }
589
590         /*
591          * page's status can change while we move it among lru. If an evictable
592          * page is on unevictable list, it never be freed. To avoid that,
593          * check after we added it to the list, again.
594          */
595         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
596                 if (!isolate_lru_page(page)) {
597                         put_page(page);
598                         goto redo;
599                 }
600                 /* This means someone else dropped this page from LRU
601                  * So, it will be freed or putback to LRU again. There is
602                  * nothing to do here.
603                  */
604         }
605
606         if (was_unevictable && lru != LRU_UNEVICTABLE)
607                 count_vm_event(UNEVICTABLE_PGRESCUED);
608         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
609                 count_vm_event(UNEVICTABLE_PGCULLED);
610
611         put_page(page);         /* drop ref from isolate */
612 }
613
614 enum page_references {
615         PAGEREF_RECLAIM,
616         PAGEREF_RECLAIM_CLEAN,
617         PAGEREF_KEEP,
618         PAGEREF_ACTIVATE,
619 };
620
621 static enum page_references page_check_references(struct page *page,
622                                                   struct scan_control *sc)
623 {
624         int referenced_ptes, referenced_page;
625         unsigned long vm_flags;
626
627         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
628                                           &vm_flags);
629         referenced_page = TestClearPageReferenced(page);
630
631         /*
632          * Mlock lost the isolation race with us.  Let try_to_unmap()
633          * move the page to the unevictable list.
634          */
635         if (vm_flags & VM_LOCKED)
636                 return PAGEREF_RECLAIM;
637
638         if (referenced_ptes) {
639                 if (PageSwapBacked(page))
640                         return PAGEREF_ACTIVATE;
641                 /*
642                  * All mapped pages start out with page table
643                  * references from the instantiating fault, so we need
644                  * to look twice if a mapped file page is used more
645                  * than once.
646                  *
647                  * Mark it and spare it for another trip around the
648                  * inactive list.  Another page table reference will
649                  * lead to its activation.
650                  *
651                  * Note: the mark is set for activated pages as well
652                  * so that recently deactivated but used pages are
653                  * quickly recovered.
654                  */
655                 SetPageReferenced(page);
656
657                 if (referenced_page || referenced_ptes > 1)
658                         return PAGEREF_ACTIVATE;
659
660                 /*
661                  * Activate file-backed executable pages after first usage.
662                  */
663                 if (vm_flags & VM_EXEC)
664                         return PAGEREF_ACTIVATE;
665
666                 return PAGEREF_KEEP;
667         }
668
669         /* Reclaim if clean, defer dirty pages to writeback */
670         if (referenced_page && !PageSwapBacked(page))
671                 return PAGEREF_RECLAIM_CLEAN;
672
673         return PAGEREF_RECLAIM;
674 }
675
676 /*
677  * shrink_page_list() returns the number of reclaimed pages
678  */
679 static unsigned long shrink_page_list(struct list_head *page_list,
680                                       struct zone *zone,
681                                       struct scan_control *sc,
682                                       unsigned long *ret_nr_dirty,
683                                       unsigned long *ret_nr_writeback)
684 {
685         LIST_HEAD(ret_pages);
686         LIST_HEAD(free_pages);
687         int pgactivate = 0;
688         unsigned long nr_dirty = 0;
689         unsigned long nr_congested = 0;
690         unsigned long nr_reclaimed = 0;
691         unsigned long nr_writeback = 0;
692
693         cond_resched();
694
695         while (!list_empty(page_list)) {
696                 enum page_references references;
697                 struct address_space *mapping;
698                 struct page *page;
699                 int may_enter_fs;
700
701                 cond_resched();
702
703                 page = lru_to_page(page_list);
704                 list_del(&page->lru);
705
706                 if (!trylock_page(page))
707                         goto keep;
708
709                 VM_BUG_ON(PageActive(page));
710                 VM_BUG_ON(page_zone(page) != zone);
711
712                 sc->nr_scanned++;
713
714                 if (unlikely(!page_evictable(page, NULL)))
715                         goto cull_mlocked;
716
717                 if (!sc->may_unmap && page_mapped(page))
718                         goto keep_locked;
719
720                 /* Double the slab pressure for mapped and swapcache pages */
721                 if (page_mapped(page) || PageSwapCache(page))
722                         sc->nr_scanned++;
723
724                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727                 if (PageWriteback(page)) {
728                         nr_writeback++;
729                         unlock_page(page);
730                         goto keep;
731                 }
732
733                 references = page_check_references(page, sc);
734                 switch (references) {
735                 case PAGEREF_ACTIVATE:
736                         goto activate_locked;
737                 case PAGEREF_KEEP:
738                         goto keep_locked;
739                 case PAGEREF_RECLAIM:
740                 case PAGEREF_RECLAIM_CLEAN:
741                         ; /* try to reclaim the page below */
742                 }
743
744                 /*
745                  * Anonymous process memory has backing store?
746                  * Try to allocate it some swap space here.
747                  */
748                 if (PageAnon(page) && !PageSwapCache(page)) {
749                         if (!(sc->gfp_mask & __GFP_IO))
750                                 goto keep_locked;
751                         if (!add_to_swap(page))
752                                 goto activate_locked;
753                         may_enter_fs = 1;
754                 }
755
756                 mapping = page_mapping(page);
757
758                 /*
759                  * The page is mapped into the page tables of one or more
760                  * processes. Try to unmap it here.
761                  */
762                 if (page_mapped(page) && mapping) {
763                         switch (try_to_unmap(page, TTU_UNMAP)) {
764                         case SWAP_FAIL:
765                                 goto activate_locked;
766                         case SWAP_AGAIN:
767                                 goto keep_locked;
768                         case SWAP_MLOCK:
769                                 goto cull_mlocked;
770                         case SWAP_SUCCESS:
771                                 ; /* try to free the page below */
772                         }
773                 }
774
775                 if (PageDirty(page)) {
776                         nr_dirty++;
777
778                         /*
779                          * Only kswapd can writeback filesystem pages to
780                          * avoid risk of stack overflow but do not writeback
781                          * unless under significant pressure.
782                          */
783                         if (page_is_file_cache(page) &&
784                                         (!current_is_kswapd() ||
785                                          sc->priority >= DEF_PRIORITY - 2)) {
786                                 /*
787                                  * Immediately reclaim when written back.
788                                  * Similar in principal to deactivate_page()
789                                  * except we already have the page isolated
790                                  * and know it's dirty
791                                  */
792                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
793                                 SetPageReclaim(page);
794
795                                 goto keep_locked;
796                         }
797
798                         if (references == PAGEREF_RECLAIM_CLEAN)
799                                 goto keep_locked;
800                         if (!may_enter_fs)
801                                 goto keep_locked;
802                         if (!sc->may_writepage)
803                                 goto keep_locked;
804
805                         /* Page is dirty, try to write it out here */
806                         switch (pageout(page, mapping, sc)) {
807                         case PAGE_KEEP:
808                                 nr_congested++;
809                                 goto keep_locked;
810                         case PAGE_ACTIVATE:
811                                 goto activate_locked;
812                         case PAGE_SUCCESS:
813                                 if (PageWriteback(page))
814                                         goto keep;
815                                 if (PageDirty(page))
816                                         goto keep;
817
818                                 /*
819                                  * A synchronous write - probably a ramdisk.  Go
820                                  * ahead and try to reclaim the page.
821                                  */
822                                 if (!trylock_page(page))
823                                         goto keep;
824                                 if (PageDirty(page) || PageWriteback(page))
825                                         goto keep_locked;
826                                 mapping = page_mapping(page);
827                         case PAGE_CLEAN:
828                                 ; /* try to free the page below */
829                         }
830                 }
831
832                 /*
833                  * If the page has buffers, try to free the buffer mappings
834                  * associated with this page. If we succeed we try to free
835                  * the page as well.
836                  *
837                  * We do this even if the page is PageDirty().
838                  * try_to_release_page() does not perform I/O, but it is
839                  * possible for a page to have PageDirty set, but it is actually
840                  * clean (all its buffers are clean).  This happens if the
841                  * buffers were written out directly, with submit_bh(). ext3
842                  * will do this, as well as the blockdev mapping.
843                  * try_to_release_page() will discover that cleanness and will
844                  * drop the buffers and mark the page clean - it can be freed.
845                  *
846                  * Rarely, pages can have buffers and no ->mapping.  These are
847                  * the pages which were not successfully invalidated in
848                  * truncate_complete_page().  We try to drop those buffers here
849                  * and if that worked, and the page is no longer mapped into
850                  * process address space (page_count == 1) it can be freed.
851                  * Otherwise, leave the page on the LRU so it is swappable.
852                  */
853                 if (page_has_private(page)) {
854                         if (!try_to_release_page(page, sc->gfp_mask))
855                                 goto activate_locked;
856                         if (!mapping && page_count(page) == 1) {
857                                 unlock_page(page);
858                                 if (put_page_testzero(page))
859                                         goto free_it;
860                                 else {
861                                         /*
862                                          * rare race with speculative reference.
863                                          * the speculative reference will free
864                                          * this page shortly, so we may
865                                          * increment nr_reclaimed here (and
866                                          * leave it off the LRU).
867                                          */
868                                         nr_reclaimed++;
869                                         continue;
870                                 }
871                         }
872                 }
873
874                 if (!mapping || !__remove_mapping(mapping, page))
875                         goto keep_locked;
876
877                 /*
878                  * At this point, we have no other references and there is
879                  * no way to pick any more up (removed from LRU, removed
880                  * from pagecache). Can use non-atomic bitops now (and
881                  * we obviously don't have to worry about waking up a process
882                  * waiting on the page lock, because there are no references.
883                  */
884                 __clear_page_locked(page);
885 free_it:
886                 nr_reclaimed++;
887
888                 /*
889                  * Is there need to periodically free_page_list? It would
890                  * appear not as the counts should be low
891                  */
892                 list_add(&page->lru, &free_pages);
893                 continue;
894
895 cull_mlocked:
896                 if (PageSwapCache(page))
897                         try_to_free_swap(page);
898                 unlock_page(page);
899                 putback_lru_page(page);
900                 continue;
901
902 activate_locked:
903                 /* Not a candidate for swapping, so reclaim swap space. */
904                 if (PageSwapCache(page) && vm_swap_full())
905                         try_to_free_swap(page);
906                 VM_BUG_ON(PageActive(page));
907                 SetPageActive(page);
908                 pgactivate++;
909 keep_locked:
910                 unlock_page(page);
911 keep:
912                 list_add(&page->lru, &ret_pages);
913                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
914         }
915
916         /*
917          * Tag a zone as congested if all the dirty pages encountered were
918          * backed by a congested BDI. In this case, reclaimers should just
919          * back off and wait for congestion to clear because further reclaim
920          * will encounter the same problem
921          */
922         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
923                 zone_set_flag(zone, ZONE_CONGESTED);
924
925         free_hot_cold_page_list(&free_pages, 1);
926
927         list_splice(&ret_pages, page_list);
928         count_vm_events(PGACTIVATE, pgactivate);
929         *ret_nr_dirty += nr_dirty;
930         *ret_nr_writeback += nr_writeback;
931         return nr_reclaimed;
932 }
933
934 /*
935  * Attempt to remove the specified page from its LRU.  Only take this page
936  * if it is of the appropriate PageActive status.  Pages which are being
937  * freed elsewhere are also ignored.
938  *
939  * page:        page to consider
940  * mode:        one of the LRU isolation modes defined above
941  *
942  * returns 0 on success, -ve errno on failure.
943  */
944 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
945 {
946         int ret = -EINVAL;
947
948         /* Only take pages on the LRU. */
949         if (!PageLRU(page))
950                 return ret;
951
952         /* Do not give back unevictable pages for compaction */
953         if (PageUnevictable(page))
954                 return ret;
955
956         ret = -EBUSY;
957
958         /*
959          * To minimise LRU disruption, the caller can indicate that it only
960          * wants to isolate pages it will be able to operate on without
961          * blocking - clean pages for the most part.
962          *
963          * ISOLATE_CLEAN means that only clean pages should be isolated. This
964          * is used by reclaim when it is cannot write to backing storage
965          *
966          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
967          * that it is possible to migrate without blocking
968          */
969         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
970                 /* All the caller can do on PageWriteback is block */
971                 if (PageWriteback(page))
972                         return ret;
973
974                 if (PageDirty(page)) {
975                         struct address_space *mapping;
976
977                         /* ISOLATE_CLEAN means only clean pages */
978                         if (mode & ISOLATE_CLEAN)
979                                 return ret;
980
981                         /*
982                          * Only pages without mappings or that have a
983                          * ->migratepage callback are possible to migrate
984                          * without blocking
985                          */
986                         mapping = page_mapping(page);
987                         if (mapping && !mapping->a_ops->migratepage)
988                                 return ret;
989                 }
990         }
991
992         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
993                 return ret;
994
995         if (likely(get_page_unless_zero(page))) {
996                 /*
997                  * Be careful not to clear PageLRU until after we're
998                  * sure the page is not being freed elsewhere -- the
999                  * page release code relies on it.
1000                  */
1001                 ClearPageLRU(page);
1002                 ret = 0;
1003         }
1004
1005         return ret;
1006 }
1007
1008 /*
1009  * zone->lru_lock is heavily contended.  Some of the functions that
1010  * shrink the lists perform better by taking out a batch of pages
1011  * and working on them outside the LRU lock.
1012  *
1013  * For pagecache intensive workloads, this function is the hottest
1014  * spot in the kernel (apart from copy_*_user functions).
1015  *
1016  * Appropriate locks must be held before calling this function.
1017  *
1018  * @nr_to_scan: The number of pages to look through on the list.
1019  * @lruvec:     The LRU vector to pull pages from.
1020  * @dst:        The temp list to put pages on to.
1021  * @nr_scanned: The number of pages that were scanned.
1022  * @sc:         The scan_control struct for this reclaim session
1023  * @mode:       One of the LRU isolation modes
1024  * @lru:        LRU list id for isolating
1025  *
1026  * returns how many pages were moved onto *@dst.
1027  */
1028 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1029                 struct lruvec *lruvec, struct list_head *dst,
1030                 unsigned long *nr_scanned, struct scan_control *sc,
1031                 isolate_mode_t mode, enum lru_list lru)
1032 {
1033         struct list_head *src;
1034         unsigned long nr_taken = 0;
1035         unsigned long scan;
1036         int file = is_file_lru(lru);
1037
1038         src = &lruvec->lists[lru];
1039
1040         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1041                 struct page *page;
1042
1043                 page = lru_to_page(src);
1044                 prefetchw_prev_lru_page(page, src, flags);
1045
1046                 VM_BUG_ON(!PageLRU(page));
1047
1048                 switch (__isolate_lru_page(page, mode)) {
1049                 case 0:
1050                         mem_cgroup_lru_del_list(page, lru);
1051                         list_move(&page->lru, dst);
1052                         nr_taken += hpage_nr_pages(page);
1053                         break;
1054
1055                 case -EBUSY:
1056                         /* else it is being freed elsewhere */
1057                         list_move(&page->lru, src);
1058                         continue;
1059
1060                 default:
1061                         BUG();
1062                 }
1063         }
1064
1065         *nr_scanned = scan;
1066
1067         trace_mm_vmscan_lru_isolate(sc->order,
1068                         nr_to_scan, scan,
1069                         nr_taken,
1070                         mode, file);
1071         return nr_taken;
1072 }
1073
1074 /**
1075  * isolate_lru_page - tries to isolate a page from its LRU list
1076  * @page: page to isolate from its LRU list
1077  *
1078  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1079  * vmstat statistic corresponding to whatever LRU list the page was on.
1080  *
1081  * Returns 0 if the page was removed from an LRU list.
1082  * Returns -EBUSY if the page was not on an LRU list.
1083  *
1084  * The returned page will have PageLRU() cleared.  If it was found on
1085  * the active list, it will have PageActive set.  If it was found on
1086  * the unevictable list, it will have the PageUnevictable bit set. That flag
1087  * may need to be cleared by the caller before letting the page go.
1088  *
1089  * The vmstat statistic corresponding to the list on which the page was
1090  * found will be decremented.
1091  *
1092  * Restrictions:
1093  * (1) Must be called with an elevated refcount on the page. This is a
1094  *     fundamentnal difference from isolate_lru_pages (which is called
1095  *     without a stable reference).
1096  * (2) the lru_lock must not be held.
1097  * (3) interrupts must be enabled.
1098  */
1099 int isolate_lru_page(struct page *page)
1100 {
1101         int ret = -EBUSY;
1102
1103         VM_BUG_ON(!page_count(page));
1104
1105         if (PageLRU(page)) {
1106                 struct zone *zone = page_zone(page);
1107
1108                 spin_lock_irq(&zone->lru_lock);
1109                 if (PageLRU(page)) {
1110                         int lru = page_lru(page);
1111                         ret = 0;
1112                         get_page(page);
1113                         ClearPageLRU(page);
1114
1115                         del_page_from_lru_list(zone, page, lru);
1116                 }
1117                 spin_unlock_irq(&zone->lru_lock);
1118         }
1119         return ret;
1120 }
1121
1122 /*
1123  * Are there way too many processes in the direct reclaim path already?
1124  */
1125 static int too_many_isolated(struct zone *zone, int file,
1126                 struct scan_control *sc)
1127 {
1128         unsigned long inactive, isolated;
1129
1130         if (current_is_kswapd())
1131                 return 0;
1132
1133         if (!global_reclaim(sc))
1134                 return 0;
1135
1136         if (file) {
1137                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1138                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1139         } else {
1140                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1141                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1142         }
1143
1144         return isolated > inactive;
1145 }
1146
1147 static noinline_for_stack void
1148 putback_inactive_pages(struct lruvec *lruvec,
1149                        struct list_head *page_list)
1150 {
1151         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1152         struct zone *zone = lruvec_zone(lruvec);
1153         LIST_HEAD(pages_to_free);
1154
1155         /*
1156          * Put back any unfreeable pages.
1157          */
1158         while (!list_empty(page_list)) {
1159                 struct page *page = lru_to_page(page_list);
1160                 int lru;
1161
1162                 VM_BUG_ON(PageLRU(page));
1163                 list_del(&page->lru);
1164                 if (unlikely(!page_evictable(page, NULL))) {
1165                         spin_unlock_irq(&zone->lru_lock);
1166                         putback_lru_page(page);
1167                         spin_lock_irq(&zone->lru_lock);
1168                         continue;
1169                 }
1170                 SetPageLRU(page);
1171                 lru = page_lru(page);
1172                 add_page_to_lru_list(zone, page, lru);
1173                 if (is_active_lru(lru)) {
1174                         int file = is_file_lru(lru);
1175                         int numpages = hpage_nr_pages(page);
1176                         reclaim_stat->recent_rotated[file] += numpages;
1177                 }
1178                 if (put_page_testzero(page)) {
1179                         __ClearPageLRU(page);
1180                         __ClearPageActive(page);
1181                         del_page_from_lru_list(zone, page, lru);
1182
1183                         if (unlikely(PageCompound(page))) {
1184                                 spin_unlock_irq(&zone->lru_lock);
1185                                 (*get_compound_page_dtor(page))(page);
1186                                 spin_lock_irq(&zone->lru_lock);
1187                         } else
1188                                 list_add(&page->lru, &pages_to_free);
1189                 }
1190         }
1191
1192         /*
1193          * To save our caller's stack, now use input list for pages to free.
1194          */
1195         list_splice(&pages_to_free, page_list);
1196 }
1197
1198 /*
1199  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1200  * of reclaimed pages
1201  */
1202 static noinline_for_stack unsigned long
1203 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1204                      struct scan_control *sc, enum lru_list lru)
1205 {
1206         LIST_HEAD(page_list);
1207         unsigned long nr_scanned;
1208         unsigned long nr_reclaimed = 0;
1209         unsigned long nr_taken;
1210         unsigned long nr_dirty = 0;
1211         unsigned long nr_writeback = 0;
1212         isolate_mode_t isolate_mode = 0;
1213         int file = is_file_lru(lru);
1214         struct zone *zone = lruvec_zone(lruvec);
1215         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1216
1217         while (unlikely(too_many_isolated(zone, file, sc))) {
1218                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1219
1220                 /* We are about to die and free our memory. Return now. */
1221                 if (fatal_signal_pending(current))
1222                         return SWAP_CLUSTER_MAX;
1223         }
1224
1225         lru_add_drain();
1226
1227         if (!sc->may_unmap)
1228                 isolate_mode |= ISOLATE_UNMAPPED;
1229         if (!sc->may_writepage)
1230                 isolate_mode |= ISOLATE_CLEAN;
1231
1232         spin_lock_irq(&zone->lru_lock);
1233
1234         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1235                                      &nr_scanned, sc, isolate_mode, lru);
1236
1237         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1238         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1239
1240         if (global_reclaim(sc)) {
1241                 zone->pages_scanned += nr_scanned;
1242                 if (current_is_kswapd())
1243                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1244                                                nr_scanned);
1245                 else
1246                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1247                                                nr_scanned);
1248         }
1249         spin_unlock_irq(&zone->lru_lock);
1250
1251         if (nr_taken == 0)
1252                 return 0;
1253
1254         nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1255                                                 &nr_dirty, &nr_writeback);
1256
1257         spin_lock_irq(&zone->lru_lock);
1258
1259         reclaim_stat->recent_scanned[file] += nr_taken;
1260
1261         if (global_reclaim(sc)) {
1262                 if (current_is_kswapd())
1263                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1264                                                nr_reclaimed);
1265                 else
1266                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1267                                                nr_reclaimed);
1268         }
1269
1270         putback_inactive_pages(lruvec, &page_list);
1271
1272         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1273
1274         spin_unlock_irq(&zone->lru_lock);
1275
1276         free_hot_cold_page_list(&page_list, 1);
1277
1278         /*
1279          * If reclaim is isolating dirty pages under writeback, it implies
1280          * that the long-lived page allocation rate is exceeding the page
1281          * laundering rate. Either the global limits are not being effective
1282          * at throttling processes due to the page distribution throughout
1283          * zones or there is heavy usage of a slow backing device. The
1284          * only option is to throttle from reclaim context which is not ideal
1285          * as there is no guarantee the dirtying process is throttled in the
1286          * same way balance_dirty_pages() manages.
1287          *
1288          * This scales the number of dirty pages that must be under writeback
1289          * before throttling depending on priority. It is a simple backoff
1290          * function that has the most effect in the range DEF_PRIORITY to
1291          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1292          * in trouble and reclaim is considered to be in trouble.
1293          *
1294          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1295          * DEF_PRIORITY-1  50% must be PageWriteback
1296          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1297          * ...
1298          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1299          *                     isolated page is PageWriteback
1300          */
1301         if (nr_writeback && nr_writeback >=
1302                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1303                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1304
1305         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1306                 zone_idx(zone),
1307                 nr_scanned, nr_reclaimed,
1308                 sc->priority,
1309                 trace_shrink_flags(file));
1310         return nr_reclaimed;
1311 }
1312
1313 /*
1314  * This moves pages from the active list to the inactive list.
1315  *
1316  * We move them the other way if the page is referenced by one or more
1317  * processes, from rmap.
1318  *
1319  * If the pages are mostly unmapped, the processing is fast and it is
1320  * appropriate to hold zone->lru_lock across the whole operation.  But if
1321  * the pages are mapped, the processing is slow (page_referenced()) so we
1322  * should drop zone->lru_lock around each page.  It's impossible to balance
1323  * this, so instead we remove the pages from the LRU while processing them.
1324  * It is safe to rely on PG_active against the non-LRU pages in here because
1325  * nobody will play with that bit on a non-LRU page.
1326  *
1327  * The downside is that we have to touch page->_count against each page.
1328  * But we had to alter page->flags anyway.
1329  */
1330
1331 static void move_active_pages_to_lru(struct zone *zone,
1332                                      struct list_head *list,
1333                                      struct list_head *pages_to_free,
1334                                      enum lru_list lru)
1335 {
1336         unsigned long pgmoved = 0;
1337         struct page *page;
1338
1339         while (!list_empty(list)) {
1340                 struct lruvec *lruvec;
1341
1342                 page = lru_to_page(list);
1343
1344                 VM_BUG_ON(PageLRU(page));
1345                 SetPageLRU(page);
1346
1347                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1348                 list_move(&page->lru, &lruvec->lists[lru]);
1349                 pgmoved += hpage_nr_pages(page);
1350
1351                 if (put_page_testzero(page)) {
1352                         __ClearPageLRU(page);
1353                         __ClearPageActive(page);
1354                         del_page_from_lru_list(zone, page, lru);
1355
1356                         if (unlikely(PageCompound(page))) {
1357                                 spin_unlock_irq(&zone->lru_lock);
1358                                 (*get_compound_page_dtor(page))(page);
1359                                 spin_lock_irq(&zone->lru_lock);
1360                         } else
1361                                 list_add(&page->lru, pages_to_free);
1362                 }
1363         }
1364         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1365         if (!is_active_lru(lru))
1366                 __count_vm_events(PGDEACTIVATE, pgmoved);
1367 }
1368
1369 static void shrink_active_list(unsigned long nr_to_scan,
1370                                struct lruvec *lruvec,
1371                                struct scan_control *sc,
1372                                enum lru_list lru)
1373 {
1374         unsigned long nr_taken;
1375         unsigned long nr_scanned;
1376         unsigned long vm_flags;
1377         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1378         LIST_HEAD(l_active);
1379         LIST_HEAD(l_inactive);
1380         struct page *page;
1381         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1382         unsigned long nr_rotated = 0;
1383         isolate_mode_t isolate_mode = 0;
1384         int file = is_file_lru(lru);
1385         struct zone *zone = lruvec_zone(lruvec);
1386
1387         lru_add_drain();
1388
1389         if (!sc->may_unmap)
1390                 isolate_mode |= ISOLATE_UNMAPPED;
1391         if (!sc->may_writepage)
1392                 isolate_mode |= ISOLATE_CLEAN;
1393
1394         spin_lock_irq(&zone->lru_lock);
1395
1396         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1397                                      &nr_scanned, sc, isolate_mode, lru);
1398         if (global_reclaim(sc))
1399                 zone->pages_scanned += nr_scanned;
1400
1401         reclaim_stat->recent_scanned[file] += nr_taken;
1402
1403         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1404         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1405         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1406         spin_unlock_irq(&zone->lru_lock);
1407
1408         while (!list_empty(&l_hold)) {
1409                 cond_resched();
1410                 page = lru_to_page(&l_hold);
1411                 list_del(&page->lru);
1412
1413                 if (unlikely(!page_evictable(page, NULL))) {
1414                         putback_lru_page(page);
1415                         continue;
1416                 }
1417
1418                 if (unlikely(buffer_heads_over_limit)) {
1419                         if (page_has_private(page) && trylock_page(page)) {
1420                                 if (page_has_private(page))
1421                                         try_to_release_page(page, 0);
1422                                 unlock_page(page);
1423                         }
1424                 }
1425
1426                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1427                                     &vm_flags)) {
1428                         nr_rotated += hpage_nr_pages(page);
1429                         /*
1430                          * Identify referenced, file-backed active pages and
1431                          * give them one more trip around the active list. So
1432                          * that executable code get better chances to stay in
1433                          * memory under moderate memory pressure.  Anon pages
1434                          * are not likely to be evicted by use-once streaming
1435                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1436                          * so we ignore them here.
1437                          */
1438                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1439                                 list_add(&page->lru, &l_active);
1440                                 continue;
1441                         }
1442                 }
1443
1444                 ClearPageActive(page);  /* we are de-activating */
1445                 list_add(&page->lru, &l_inactive);
1446         }
1447
1448         /*
1449          * Move pages back to the lru list.
1450          */
1451         spin_lock_irq(&zone->lru_lock);
1452         /*
1453          * Count referenced pages from currently used mappings as rotated,
1454          * even though only some of them are actually re-activated.  This
1455          * helps balance scan pressure between file and anonymous pages in
1456          * get_scan_ratio.
1457          */
1458         reclaim_stat->recent_rotated[file] += nr_rotated;
1459
1460         move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1461         move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1462         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1463         spin_unlock_irq(&zone->lru_lock);
1464
1465         free_hot_cold_page_list(&l_hold, 1);
1466 }
1467
1468 #ifdef CONFIG_SWAP
1469 static int inactive_anon_is_low_global(struct zone *zone)
1470 {
1471         unsigned long active, inactive;
1472
1473         active = zone_page_state(zone, NR_ACTIVE_ANON);
1474         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1475
1476         if (inactive * zone->inactive_ratio < active)
1477                 return 1;
1478
1479         return 0;
1480 }
1481
1482 /**
1483  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1484  * @lruvec: LRU vector to check
1485  *
1486  * Returns true if the zone does not have enough inactive anon pages,
1487  * meaning some active anon pages need to be deactivated.
1488  */
1489 static int inactive_anon_is_low(struct lruvec *lruvec)
1490 {
1491         /*
1492          * If we don't have swap space, anonymous page deactivation
1493          * is pointless.
1494          */
1495         if (!total_swap_pages)
1496                 return 0;
1497
1498         if (!mem_cgroup_disabled())
1499                 return mem_cgroup_inactive_anon_is_low(lruvec);
1500
1501         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1502 }
1503 #else
1504 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1505 {
1506         return 0;
1507 }
1508 #endif
1509
1510 static int inactive_file_is_low_global(struct zone *zone)
1511 {
1512         unsigned long active, inactive;
1513
1514         active = zone_page_state(zone, NR_ACTIVE_FILE);
1515         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1516
1517         return (active > inactive);
1518 }
1519
1520 /**
1521  * inactive_file_is_low - check if file pages need to be deactivated
1522  * @lruvec: LRU vector to check
1523  *
1524  * When the system is doing streaming IO, memory pressure here
1525  * ensures that active file pages get deactivated, until more
1526  * than half of the file pages are on the inactive list.
1527  *
1528  * Once we get to that situation, protect the system's working
1529  * set from being evicted by disabling active file page aging.
1530  *
1531  * This uses a different ratio than the anonymous pages, because
1532  * the page cache uses a use-once replacement algorithm.
1533  */
1534 static int inactive_file_is_low(struct lruvec *lruvec)
1535 {
1536         if (!mem_cgroup_disabled())
1537                 return mem_cgroup_inactive_file_is_low(lruvec);
1538
1539         return inactive_file_is_low_global(lruvec_zone(lruvec));
1540 }
1541
1542 static int inactive_list_is_low(struct lruvec *lruvec, int file)
1543 {
1544         if (file)
1545                 return inactive_file_is_low(lruvec);
1546         else
1547                 return inactive_anon_is_low(lruvec);
1548 }
1549
1550 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1551                                  struct lruvec *lruvec, struct scan_control *sc)
1552 {
1553         int file = is_file_lru(lru);
1554
1555         if (is_active_lru(lru)) {
1556                 if (inactive_list_is_low(lruvec, file))
1557                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1558                 return 0;
1559         }
1560
1561         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1562 }
1563
1564 static int vmscan_swappiness(struct scan_control *sc)
1565 {
1566         if (global_reclaim(sc))
1567                 return vm_swappiness;
1568         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1569 }
1570
1571 /*
1572  * Determine how aggressively the anon and file LRU lists should be
1573  * scanned.  The relative value of each set of LRU lists is determined
1574  * by looking at the fraction of the pages scanned we did rotate back
1575  * onto the active list instead of evict.
1576  *
1577  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1578  */
1579 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1580                            unsigned long *nr)
1581 {
1582         unsigned long anon, file, free;
1583         unsigned long anon_prio, file_prio;
1584         unsigned long ap, fp;
1585         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1586         u64 fraction[2], denominator;
1587         enum lru_list lru;
1588         int noswap = 0;
1589         bool force_scan = false;
1590         struct zone *zone = lruvec_zone(lruvec);
1591
1592         /*
1593          * If the zone or memcg is small, nr[l] can be 0.  This
1594          * results in no scanning on this priority and a potential
1595          * priority drop.  Global direct reclaim can go to the next
1596          * zone and tends to have no problems. Global kswapd is for
1597          * zone balancing and it needs to scan a minimum amount. When
1598          * reclaiming for a memcg, a priority drop can cause high
1599          * latencies, so it's better to scan a minimum amount there as
1600          * well.
1601          */
1602         if (current_is_kswapd() && zone->all_unreclaimable)
1603                 force_scan = true;
1604         if (!global_reclaim(sc))
1605                 force_scan = true;
1606
1607         /* If we have no swap space, do not bother scanning anon pages. */
1608         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1609                 noswap = 1;
1610                 fraction[0] = 0;
1611                 fraction[1] = 1;
1612                 denominator = 1;
1613                 goto out;
1614         }
1615
1616         anon  = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
1617                 get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1618         file  = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
1619                 get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1620
1621         if (global_reclaim(sc)) {
1622                 free  = zone_page_state(zone, NR_FREE_PAGES);
1623                 /* If we have very few page cache pages,
1624                    force-scan anon pages. */
1625                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1626                         fraction[0] = 1;
1627                         fraction[1] = 0;
1628                         denominator = 1;
1629                         goto out;
1630                 }
1631         }
1632
1633         /*
1634          * With swappiness at 100, anonymous and file have the same priority.
1635          * This scanning priority is essentially the inverse of IO cost.
1636          */
1637         anon_prio = vmscan_swappiness(sc);
1638         file_prio = 200 - vmscan_swappiness(sc);
1639
1640         /*
1641          * OK, so we have swap space and a fair amount of page cache
1642          * pages.  We use the recently rotated / recently scanned
1643          * ratios to determine how valuable each cache is.
1644          *
1645          * Because workloads change over time (and to avoid overflow)
1646          * we keep these statistics as a floating average, which ends
1647          * up weighing recent references more than old ones.
1648          *
1649          * anon in [0], file in [1]
1650          */
1651         spin_lock_irq(&zone->lru_lock);
1652         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1653                 reclaim_stat->recent_scanned[0] /= 2;
1654                 reclaim_stat->recent_rotated[0] /= 2;
1655         }
1656
1657         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1658                 reclaim_stat->recent_scanned[1] /= 2;
1659                 reclaim_stat->recent_rotated[1] /= 2;
1660         }
1661
1662         /*
1663          * The amount of pressure on anon vs file pages is inversely
1664          * proportional to the fraction of recently scanned pages on
1665          * each list that were recently referenced and in active use.
1666          */
1667         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1668         ap /= reclaim_stat->recent_rotated[0] + 1;
1669
1670         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1671         fp /= reclaim_stat->recent_rotated[1] + 1;
1672         spin_unlock_irq(&zone->lru_lock);
1673
1674         fraction[0] = ap;
1675         fraction[1] = fp;
1676         denominator = ap + fp + 1;
1677 out:
1678         for_each_evictable_lru(lru) {
1679                 int file = is_file_lru(lru);
1680                 unsigned long scan;
1681
1682                 scan = get_lruvec_size(lruvec, lru);
1683                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1684                         scan >>= sc->priority;
1685                         if (!scan && force_scan)
1686                                 scan = SWAP_CLUSTER_MAX;
1687                         scan = div64_u64(scan * fraction[file], denominator);
1688                 }
1689                 nr[lru] = scan;
1690         }
1691 }
1692
1693 /* Use reclaim/compaction for costly allocs or under memory pressure */
1694 static bool in_reclaim_compaction(struct scan_control *sc)
1695 {
1696         if (COMPACTION_BUILD && sc->order &&
1697                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1698                          sc->priority < DEF_PRIORITY - 2))
1699                 return true;
1700
1701         return false;
1702 }
1703
1704 /*
1705  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1706  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1707  * true if more pages should be reclaimed such that when the page allocator
1708  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1709  * It will give up earlier than that if there is difficulty reclaiming pages.
1710  */
1711 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1712                                         unsigned long nr_reclaimed,
1713                                         unsigned long nr_scanned,
1714                                         struct scan_control *sc)
1715 {
1716         unsigned long pages_for_compaction;
1717         unsigned long inactive_lru_pages;
1718
1719         /* If not in reclaim/compaction mode, stop */
1720         if (!in_reclaim_compaction(sc))
1721                 return false;
1722
1723         /* Consider stopping depending on scan and reclaim activity */
1724         if (sc->gfp_mask & __GFP_REPEAT) {
1725                 /*
1726                  * For __GFP_REPEAT allocations, stop reclaiming if the
1727                  * full LRU list has been scanned and we are still failing
1728                  * to reclaim pages. This full LRU scan is potentially
1729                  * expensive but a __GFP_REPEAT caller really wants to succeed
1730                  */
1731                 if (!nr_reclaimed && !nr_scanned)
1732                         return false;
1733         } else {
1734                 /*
1735                  * For non-__GFP_REPEAT allocations which can presumably
1736                  * fail without consequence, stop if we failed to reclaim
1737                  * any pages from the last SWAP_CLUSTER_MAX number of
1738                  * pages that were scanned. This will return to the
1739                  * caller faster at the risk reclaim/compaction and
1740                  * the resulting allocation attempt fails
1741                  */
1742                 if (!nr_reclaimed)
1743                         return false;
1744         }
1745
1746         /*
1747          * If we have not reclaimed enough pages for compaction and the
1748          * inactive lists are large enough, continue reclaiming
1749          */
1750         pages_for_compaction = (2UL << sc->order);
1751         inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1752         if (nr_swap_pages > 0)
1753                 inactive_lru_pages += get_lruvec_size(lruvec,
1754                                                       LRU_INACTIVE_ANON);
1755         if (sc->nr_reclaimed < pages_for_compaction &&
1756                         inactive_lru_pages > pages_for_compaction)
1757                 return true;
1758
1759         /* If compaction would go ahead or the allocation would succeed, stop */
1760         switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1761         case COMPACT_PARTIAL:
1762         case COMPACT_CONTINUE:
1763                 return false;
1764         default:
1765                 return true;
1766         }
1767 }
1768
1769 /*
1770  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1771  */
1772 static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1773                                    struct scan_control *sc)
1774 {
1775         unsigned long nr[NR_LRU_LISTS];
1776         unsigned long nr_to_scan;
1777         enum lru_list lru;
1778         unsigned long nr_reclaimed, nr_scanned;
1779         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1780         struct blk_plug plug;
1781         struct lruvec *lruvec;
1782
1783         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1784
1785 restart:
1786         nr_reclaimed = 0;
1787         nr_scanned = sc->nr_scanned;
1788         get_scan_count(lruvec, sc, nr);
1789
1790         blk_start_plug(&plug);
1791         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1792                                         nr[LRU_INACTIVE_FILE]) {
1793                 for_each_evictable_lru(lru) {
1794                         if (nr[lru]) {
1795                                 nr_to_scan = min_t(unsigned long,
1796                                                    nr[lru], SWAP_CLUSTER_MAX);
1797                                 nr[lru] -= nr_to_scan;
1798
1799                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1800                                                             lruvec, sc);
1801                         }
1802                 }
1803                 /*
1804                  * On large memory systems, scan >> priority can become
1805                  * really large. This is fine for the starting priority;
1806                  * we want to put equal scanning pressure on each zone.
1807                  * However, if the VM has a harder time of freeing pages,
1808                  * with multiple processes reclaiming pages, the total
1809                  * freeing target can get unreasonably large.
1810                  */
1811                 if (nr_reclaimed >= nr_to_reclaim &&
1812                     sc->priority < DEF_PRIORITY)
1813                         break;
1814         }
1815         blk_finish_plug(&plug);
1816         sc->nr_reclaimed += nr_reclaimed;
1817
1818         /*
1819          * Even if we did not try to evict anon pages at all, we want to
1820          * rebalance the anon lru active/inactive ratio.
1821          */
1822         if (inactive_anon_is_low(lruvec))
1823                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1824                                    sc, LRU_ACTIVE_ANON);
1825
1826         /* reclaim/compaction might need reclaim to continue */
1827         if (should_continue_reclaim(lruvec, nr_reclaimed,
1828                                     sc->nr_scanned - nr_scanned, sc))
1829                 goto restart;
1830
1831         throttle_vm_writeout(sc->gfp_mask);
1832 }
1833
1834 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1835 {
1836         struct mem_cgroup *root = sc->target_mem_cgroup;
1837         struct mem_cgroup_reclaim_cookie reclaim = {
1838                 .zone = zone,
1839                 .priority = sc->priority,
1840         };
1841         struct mem_cgroup *memcg;
1842
1843         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1844         do {
1845                 struct mem_cgroup_zone mz = {
1846                         .mem_cgroup = memcg,
1847                         .zone = zone,
1848                 };
1849
1850                 shrink_mem_cgroup_zone(&mz, sc);
1851                 /*
1852                  * Limit reclaim has historically picked one memcg and
1853                  * scanned it with decreasing priority levels until
1854                  * nr_to_reclaim had been reclaimed.  This priority
1855                  * cycle is thus over after a single memcg.
1856                  *
1857                  * Direct reclaim and kswapd, on the other hand, have
1858                  * to scan all memory cgroups to fulfill the overall
1859                  * scan target for the zone.
1860                  */
1861                 if (!global_reclaim(sc)) {
1862                         mem_cgroup_iter_break(root, memcg);
1863                         break;
1864                 }
1865                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1866         } while (memcg);
1867 }
1868
1869 /* Returns true if compaction should go ahead for a high-order request */
1870 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1871 {
1872         unsigned long balance_gap, watermark;
1873         bool watermark_ok;
1874
1875         /* Do not consider compaction for orders reclaim is meant to satisfy */
1876         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1877                 return false;
1878
1879         /*
1880          * Compaction takes time to run and there are potentially other
1881          * callers using the pages just freed. Continue reclaiming until
1882          * there is a buffer of free pages available to give compaction
1883          * a reasonable chance of completing and allocating the page
1884          */
1885         balance_gap = min(low_wmark_pages(zone),
1886                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1887                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1888         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1889         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1890
1891         /*
1892          * If compaction is deferred, reclaim up to a point where
1893          * compaction will have a chance of success when re-enabled
1894          */
1895         if (compaction_deferred(zone, sc->order))
1896                 return watermark_ok;
1897
1898         /* If compaction is not ready to start, keep reclaiming */
1899         if (!compaction_suitable(zone, sc->order))
1900                 return false;
1901
1902         return watermark_ok;
1903 }
1904
1905 /*
1906  * This is the direct reclaim path, for page-allocating processes.  We only
1907  * try to reclaim pages from zones which will satisfy the caller's allocation
1908  * request.
1909  *
1910  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1911  * Because:
1912  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1913  *    allocation or
1914  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1915  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1916  *    zone defense algorithm.
1917  *
1918  * If a zone is deemed to be full of pinned pages then just give it a light
1919  * scan then give up on it.
1920  *
1921  * This function returns true if a zone is being reclaimed for a costly
1922  * high-order allocation and compaction is ready to begin. This indicates to
1923  * the caller that it should consider retrying the allocation instead of
1924  * further reclaim.
1925  */
1926 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1927 {
1928         struct zoneref *z;
1929         struct zone *zone;
1930         unsigned long nr_soft_reclaimed;
1931         unsigned long nr_soft_scanned;
1932         bool aborted_reclaim = false;
1933
1934         /*
1935          * If the number of buffer_heads in the machine exceeds the maximum
1936          * allowed level, force direct reclaim to scan the highmem zone as
1937          * highmem pages could be pinning lowmem pages storing buffer_heads
1938          */
1939         if (buffer_heads_over_limit)
1940                 sc->gfp_mask |= __GFP_HIGHMEM;
1941
1942         for_each_zone_zonelist_nodemask(zone, z, zonelist,
1943                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
1944                 if (!populated_zone(zone))
1945                         continue;
1946                 /*
1947                  * Take care memory controller reclaiming has small influence
1948                  * to global LRU.
1949                  */
1950                 if (global_reclaim(sc)) {
1951                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1952                                 continue;
1953                         if (zone->all_unreclaimable &&
1954                                         sc->priority != DEF_PRIORITY)
1955                                 continue;       /* Let kswapd poll it */
1956                         if (COMPACTION_BUILD) {
1957                                 /*
1958                                  * If we already have plenty of memory free for
1959                                  * compaction in this zone, don't free any more.
1960                                  * Even though compaction is invoked for any
1961                                  * non-zero order, only frequent costly order
1962                                  * reclamation is disruptive enough to become a
1963                                  * noticeable problem, like transparent huge
1964                                  * page allocations.
1965                                  */
1966                                 if (compaction_ready(zone, sc)) {
1967                                         aborted_reclaim = true;
1968                                         continue;
1969                                 }
1970                         }
1971                         /*
1972                          * This steals pages from memory cgroups over softlimit
1973                          * and returns the number of reclaimed pages and
1974                          * scanned pages. This works for global memory pressure
1975                          * and balancing, not for a memcg's limit.
1976                          */
1977                         nr_soft_scanned = 0;
1978                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1979                                                 sc->order, sc->gfp_mask,
1980                                                 &nr_soft_scanned);
1981                         sc->nr_reclaimed += nr_soft_reclaimed;
1982                         sc->nr_scanned += nr_soft_scanned;
1983                         /* need some check for avoid more shrink_zone() */
1984                 }
1985
1986                 shrink_zone(zone, sc);
1987         }
1988
1989         return aborted_reclaim;
1990 }
1991
1992 static bool zone_reclaimable(struct zone *zone)
1993 {
1994         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1995 }
1996
1997 /* All zones in zonelist are unreclaimable? */
1998 static bool all_unreclaimable(struct zonelist *zonelist,
1999                 struct scan_control *sc)
2000 {
2001         struct zoneref *z;
2002         struct zone *zone;
2003
2004         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2005                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2006                 if (!populated_zone(zone))
2007                         continue;
2008                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2009                         continue;
2010                 if (!zone->all_unreclaimable)
2011                         return false;
2012         }
2013
2014         return true;
2015 }
2016
2017 /*
2018  * This is the main entry point to direct page reclaim.
2019  *
2020  * If a full scan of the inactive list fails to free enough memory then we
2021  * are "out of memory" and something needs to be killed.
2022  *
2023  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2024  * high - the zone may be full of dirty or under-writeback pages, which this
2025  * caller can't do much about.  We kick the writeback threads and take explicit
2026  * naps in the hope that some of these pages can be written.  But if the
2027  * allocating task holds filesystem locks which prevent writeout this might not
2028  * work, and the allocation attempt will fail.
2029  *
2030  * returns:     0, if no pages reclaimed
2031  *              else, the number of pages reclaimed
2032  */
2033 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2034                                         struct scan_control *sc,
2035                                         struct shrink_control *shrink)
2036 {
2037         unsigned long total_scanned = 0;
2038         struct reclaim_state *reclaim_state = current->reclaim_state;
2039         struct zoneref *z;
2040         struct zone *zone;
2041         unsigned long writeback_threshold;
2042         bool aborted_reclaim;
2043
2044         delayacct_freepages_start();
2045
2046         if (global_reclaim(sc))
2047                 count_vm_event(ALLOCSTALL);
2048
2049         do {
2050                 sc->nr_scanned = 0;
2051                 aborted_reclaim = shrink_zones(zonelist, sc);
2052
2053                 /*
2054                  * Don't shrink slabs when reclaiming memory from
2055                  * over limit cgroups
2056                  */
2057                 if (global_reclaim(sc)) {
2058                         unsigned long lru_pages = 0;
2059                         for_each_zone_zonelist(zone, z, zonelist,
2060                                         gfp_zone(sc->gfp_mask)) {
2061                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2062                                         continue;
2063
2064                                 lru_pages += zone_reclaimable_pages(zone);
2065                         }
2066
2067                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2068                         if (reclaim_state) {
2069                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2070                                 reclaim_state->reclaimed_slab = 0;
2071                         }
2072                 }
2073                 total_scanned += sc->nr_scanned;
2074                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2075                         goto out;
2076
2077                 /*
2078                  * Try to write back as many pages as we just scanned.  This
2079                  * tends to cause slow streaming writers to write data to the
2080                  * disk smoothly, at the dirtying rate, which is nice.   But
2081                  * that's undesirable in laptop mode, where we *want* lumpy
2082                  * writeout.  So in laptop mode, write out the whole world.
2083                  */
2084                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2085                 if (total_scanned > writeback_threshold) {
2086                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2087                                                 WB_REASON_TRY_TO_FREE_PAGES);
2088                         sc->may_writepage = 1;
2089                 }
2090
2091                 /* Take a nap, wait for some writeback to complete */
2092                 if (!sc->hibernation_mode && sc->nr_scanned &&
2093                     sc->priority < DEF_PRIORITY - 2) {
2094                         struct zone *preferred_zone;
2095
2096                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2097                                                 &cpuset_current_mems_allowed,
2098                                                 &preferred_zone);
2099                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2100                 }
2101         } while (--sc->priority >= 0);
2102
2103 out:
2104         delayacct_freepages_end();
2105
2106         if (sc->nr_reclaimed)
2107                 return sc->nr_reclaimed;
2108
2109         /*
2110          * As hibernation is going on, kswapd is freezed so that it can't mark
2111          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2112          * check.
2113          */
2114         if (oom_killer_disabled)
2115                 return 0;
2116
2117         /* Aborted reclaim to try compaction? don't OOM, then */
2118         if (aborted_reclaim)
2119                 return 1;
2120
2121         /* top priority shrink_zones still had more to do? don't OOM, then */
2122         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2123                 return 1;
2124
2125         return 0;
2126 }
2127
2128 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2129                                 gfp_t gfp_mask, nodemask_t *nodemask)
2130 {
2131         unsigned long nr_reclaimed;
2132         struct scan_control sc = {
2133                 .gfp_mask = gfp_mask,
2134                 .may_writepage = !laptop_mode,
2135                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2136                 .may_unmap = 1,
2137                 .may_swap = 1,
2138                 .order = order,
2139                 .priority = DEF_PRIORITY,
2140                 .target_mem_cgroup = NULL,
2141                 .nodemask = nodemask,
2142         };
2143         struct shrink_control shrink = {
2144                 .gfp_mask = sc.gfp_mask,
2145         };
2146
2147         trace_mm_vmscan_direct_reclaim_begin(order,
2148                                 sc.may_writepage,
2149                                 gfp_mask);
2150
2151         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2152
2153         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2154
2155         return nr_reclaimed;
2156 }
2157
2158 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2159
2160 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2161                                                 gfp_t gfp_mask, bool noswap,
2162                                                 struct zone *zone,
2163                                                 unsigned long *nr_scanned)
2164 {
2165         struct scan_control sc = {
2166                 .nr_scanned = 0,
2167                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2168                 .may_writepage = !laptop_mode,
2169                 .may_unmap = 1,
2170                 .may_swap = !noswap,
2171                 .order = 0,
2172                 .priority = 0,
2173                 .target_mem_cgroup = memcg,
2174         };
2175         struct mem_cgroup_zone mz = {
2176                 .mem_cgroup = memcg,
2177                 .zone = zone,
2178         };
2179
2180         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2181                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2182
2183         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2184                                                       sc.may_writepage,
2185                                                       sc.gfp_mask);
2186
2187         /*
2188          * NOTE: Although we can get the priority field, using it
2189          * here is not a good idea, since it limits the pages we can scan.
2190          * if we don't reclaim here, the shrink_zone from balance_pgdat
2191          * will pick up pages from other mem cgroup's as well. We hack
2192          * the priority and make it zero.
2193          */
2194         shrink_mem_cgroup_zone(&mz, &sc);
2195
2196         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2197
2198         *nr_scanned = sc.nr_scanned;
2199         return sc.nr_reclaimed;
2200 }
2201
2202 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2203                                            gfp_t gfp_mask,
2204                                            bool noswap)
2205 {
2206         struct zonelist *zonelist;
2207         unsigned long nr_reclaimed;
2208         int nid;
2209         struct scan_control sc = {
2210                 .may_writepage = !laptop_mode,
2211                 .may_unmap = 1,
2212                 .may_swap = !noswap,
2213                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2214                 .order = 0,
2215                 .priority = DEF_PRIORITY,
2216                 .target_mem_cgroup = memcg,
2217                 .nodemask = NULL, /* we don't care the placement */
2218                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2219                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2220         };
2221         struct shrink_control shrink = {
2222                 .gfp_mask = sc.gfp_mask,
2223         };
2224
2225         /*
2226          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2227          * take care of from where we get pages. So the node where we start the
2228          * scan does not need to be the current node.
2229          */
2230         nid = mem_cgroup_select_victim_node(memcg);
2231
2232         zonelist = NODE_DATA(nid)->node_zonelists;
2233
2234         trace_mm_vmscan_memcg_reclaim_begin(0,
2235                                             sc.may_writepage,
2236                                             sc.gfp_mask);
2237
2238         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2239
2240         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2241
2242         return nr_reclaimed;
2243 }
2244 #endif
2245
2246 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2247 {
2248         struct mem_cgroup *memcg;
2249
2250         if (!total_swap_pages)
2251                 return;
2252
2253         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2254         do {
2255                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2256
2257                 if (inactive_anon_is_low(lruvec))
2258                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2259                                            sc, LRU_ACTIVE_ANON);
2260
2261                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2262         } while (memcg);
2263 }
2264
2265 /*
2266  * pgdat_balanced is used when checking if a node is balanced for high-order
2267  * allocations. Only zones that meet watermarks and are in a zone allowed
2268  * by the callers classzone_idx are added to balanced_pages. The total of
2269  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2270  * for the node to be considered balanced. Forcing all zones to be balanced
2271  * for high orders can cause excessive reclaim when there are imbalanced zones.
2272  * The choice of 25% is due to
2273  *   o a 16M DMA zone that is balanced will not balance a zone on any
2274  *     reasonable sized machine
2275  *   o On all other machines, the top zone must be at least a reasonable
2276  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2277  *     would need to be at least 256M for it to be balance a whole node.
2278  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2279  *     to balance a node on its own. These seemed like reasonable ratios.
2280  */
2281 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2282                                                 int classzone_idx)
2283 {
2284         unsigned long present_pages = 0;
2285         int i;
2286
2287         for (i = 0; i <= classzone_idx; i++)
2288                 present_pages += pgdat->node_zones[i].present_pages;
2289
2290         /* A special case here: if zone has no page, we think it's balanced */
2291         return balanced_pages >= (present_pages >> 2);
2292 }
2293
2294 /* is kswapd sleeping prematurely? */
2295 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2296                                         int classzone_idx)
2297 {
2298         int i;
2299         unsigned long balanced = 0;
2300         bool all_zones_ok = true;
2301
2302         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2303         if (remaining)
2304                 return true;
2305
2306         /* Check the watermark levels */
2307         for (i = 0; i <= classzone_idx; i++) {
2308                 struct zone *zone = pgdat->node_zones + i;
2309
2310                 if (!populated_zone(zone))
2311                         continue;
2312
2313                 /*
2314                  * balance_pgdat() skips over all_unreclaimable after
2315                  * DEF_PRIORITY. Effectively, it considers them balanced so
2316                  * they must be considered balanced here as well if kswapd
2317                  * is to sleep
2318                  */
2319                 if (zone->all_unreclaimable) {
2320                         balanced += zone->present_pages;
2321                         continue;
2322                 }
2323
2324                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2325                                                         i, 0))
2326                         all_zones_ok = false;
2327                 else
2328                         balanced += zone->present_pages;
2329         }
2330
2331         /*
2332          * For high-order requests, the balanced zones must contain at least
2333          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2334          * must be balanced
2335          */
2336         if (order)
2337                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2338         else
2339                 return !all_zones_ok;
2340 }
2341
2342 /*
2343  * For kswapd, balance_pgdat() will work across all this node's zones until
2344  * they are all at high_wmark_pages(zone).
2345  *
2346  * Returns the final order kswapd was reclaiming at
2347  *
2348  * There is special handling here for zones which are full of pinned pages.
2349  * This can happen if the pages are all mlocked, or if they are all used by
2350  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2351  * What we do is to detect the case where all pages in the zone have been
2352  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2353  * dead and from now on, only perform a short scan.  Basically we're polling
2354  * the zone for when the problem goes away.
2355  *
2356  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2357  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2358  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2359  * lower zones regardless of the number of free pages in the lower zones. This
2360  * interoperates with the page allocator fallback scheme to ensure that aging
2361  * of pages is balanced across the zones.
2362  */
2363 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2364                                                         int *classzone_idx)
2365 {
2366         int all_zones_ok;
2367         unsigned long balanced;
2368         int i;
2369         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2370         unsigned long total_scanned;
2371         struct reclaim_state *reclaim_state = current->reclaim_state;
2372         unsigned long nr_soft_reclaimed;
2373         unsigned long nr_soft_scanned;
2374         struct scan_control sc = {
2375                 .gfp_mask = GFP_KERNEL,
2376                 .may_unmap = 1,
2377                 .may_swap = 1,
2378                 /*
2379                  * kswapd doesn't want to be bailed out while reclaim. because
2380                  * we want to put equal scanning pressure on each zone.
2381                  */
2382                 .nr_to_reclaim = ULONG_MAX,
2383                 .order = order,
2384                 .target_mem_cgroup = NULL,
2385         };
2386         struct shrink_control shrink = {
2387                 .gfp_mask = sc.gfp_mask,
2388         };
2389 loop_again:
2390         total_scanned = 0;
2391         sc.priority = DEF_PRIORITY;
2392         sc.nr_reclaimed = 0;
2393         sc.may_writepage = !laptop_mode;
2394         count_vm_event(PAGEOUTRUN);
2395
2396         do {
2397                 unsigned long lru_pages = 0;
2398                 int has_under_min_watermark_zone = 0;
2399
2400                 all_zones_ok = 1;
2401                 balanced = 0;
2402
2403                 /*
2404                  * Scan in the highmem->dma direction for the highest
2405                  * zone which needs scanning
2406                  */
2407                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2408                         struct zone *zone = pgdat->node_zones + i;
2409
2410                         if (!populated_zone(zone))
2411                                 continue;
2412
2413                         if (zone->all_unreclaimable &&
2414                             sc.priority != DEF_PRIORITY)
2415                                 continue;
2416
2417                         /*
2418                          * Do some background aging of the anon list, to give
2419                          * pages a chance to be referenced before reclaiming.
2420                          */
2421                         age_active_anon(zone, &sc);
2422
2423                         /*
2424                          * If the number of buffer_heads in the machine
2425                          * exceeds the maximum allowed level and this node
2426                          * has a highmem zone, force kswapd to reclaim from
2427                          * it to relieve lowmem pressure.
2428                          */
2429                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2430                                 end_zone = i;
2431                                 break;
2432                         }
2433
2434                         if (!zone_watermark_ok_safe(zone, order,
2435                                         high_wmark_pages(zone), 0, 0)) {
2436                                 end_zone = i;
2437                                 break;
2438                         } else {
2439                                 /* If balanced, clear the congested flag */
2440                                 zone_clear_flag(zone, ZONE_CONGESTED);
2441                         }
2442                 }
2443                 if (i < 0)
2444                         goto out;
2445
2446                 for (i = 0; i <= end_zone; i++) {
2447                         struct zone *zone = pgdat->node_zones + i;
2448
2449                         lru_pages += zone_reclaimable_pages(zone);
2450                 }
2451
2452                 /*
2453                  * Now scan the zone in the dma->highmem direction, stopping
2454                  * at the last zone which needs scanning.
2455                  *
2456                  * We do this because the page allocator works in the opposite
2457                  * direction.  This prevents the page allocator from allocating
2458                  * pages behind kswapd's direction of progress, which would
2459                  * cause too much scanning of the lower zones.
2460                  */
2461                 for (i = 0; i <= end_zone; i++) {
2462                         struct zone *zone = pgdat->node_zones + i;
2463                         int nr_slab, testorder;
2464                         unsigned long balance_gap;
2465
2466                         if (!populated_zone(zone))
2467                                 continue;
2468
2469                         if (zone->all_unreclaimable &&
2470                             sc.priority != DEF_PRIORITY)
2471                                 continue;
2472
2473                         sc.nr_scanned = 0;
2474
2475                         nr_soft_scanned = 0;
2476                         /*
2477                          * Call soft limit reclaim before calling shrink_zone.
2478                          */
2479                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2480                                                         order, sc.gfp_mask,
2481                                                         &nr_soft_scanned);
2482                         sc.nr_reclaimed += nr_soft_reclaimed;
2483                         total_scanned += nr_soft_scanned;
2484
2485                         /*
2486                          * We put equal pressure on every zone, unless
2487                          * one zone has way too many pages free
2488                          * already. The "too many pages" is defined
2489                          * as the high wmark plus a "gap" where the
2490                          * gap is either the low watermark or 1%
2491                          * of the zone, whichever is smaller.
2492                          */
2493                         balance_gap = min(low_wmark_pages(zone),
2494                                 (zone->present_pages +
2495                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2496                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2497                         /*
2498                          * Kswapd reclaims only single pages with compaction
2499                          * enabled. Trying too hard to reclaim until contiguous
2500                          * free pages have become available can hurt performance
2501                          * by evicting too much useful data from memory.
2502                          * Do not reclaim more than needed for compaction.
2503                          */
2504                         testorder = order;
2505                         if (COMPACTION_BUILD && order &&
2506                                         compaction_suitable(zone, order) !=
2507                                                 COMPACT_SKIPPED)
2508                                 testorder = 0;
2509
2510                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2511                                     !zone_watermark_ok_safe(zone, testorder,
2512                                         high_wmark_pages(zone) + balance_gap,
2513                                         end_zone, 0)) {
2514                                 shrink_zone(zone, &sc);
2515
2516                                 reclaim_state->reclaimed_slab = 0;
2517                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2518                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2519                                 total_scanned += sc.nr_scanned;
2520
2521                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2522                                         zone->all_unreclaimable = 1;
2523                         }
2524
2525                         /*
2526                          * If we've done a decent amount of scanning and
2527                          * the reclaim ratio is low, start doing writepage
2528                          * even in laptop mode
2529                          */
2530                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2531                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2532                                 sc.may_writepage = 1;
2533
2534                         if (zone->all_unreclaimable) {
2535                                 if (end_zone && end_zone == i)
2536                                         end_zone--;
2537                                 continue;
2538                         }
2539
2540                         if (!zone_watermark_ok_safe(zone, testorder,
2541                                         high_wmark_pages(zone), end_zone, 0)) {
2542                                 all_zones_ok = 0;
2543                                 /*
2544                                  * We are still under min water mark.  This
2545                                  * means that we have a GFP_ATOMIC allocation
2546                                  * failure risk. Hurry up!
2547                                  */
2548                                 if (!zone_watermark_ok_safe(zone, order,
2549                                             min_wmark_pages(zone), end_zone, 0))
2550                                         has_under_min_watermark_zone = 1;
2551                         } else {
2552                                 /*
2553                                  * If a zone reaches its high watermark,
2554                                  * consider it to be no longer congested. It's
2555                                  * possible there are dirty pages backed by
2556                                  * congested BDIs but as pressure is relieved,
2557                                  * spectulatively avoid congestion waits
2558                                  */
2559                                 zone_clear_flag(zone, ZONE_CONGESTED);
2560                                 if (i <= *classzone_idx)
2561                                         balanced += zone->present_pages;
2562                         }
2563
2564                 }
2565                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2566                         break;          /* kswapd: all done */
2567                 /*
2568                  * OK, kswapd is getting into trouble.  Take a nap, then take
2569                  * another pass across the zones.
2570                  */
2571                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2572                         if (has_under_min_watermark_zone)
2573                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2574                         else
2575                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2576                 }
2577
2578                 /*
2579                  * We do this so kswapd doesn't build up large priorities for
2580                  * example when it is freeing in parallel with allocators. It
2581                  * matches the direct reclaim path behaviour in terms of impact
2582                  * on zone->*_priority.
2583                  */
2584                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2585                         break;
2586         } while (--sc.priority >= 0);
2587 out:
2588
2589         /*
2590          * order-0: All zones must meet high watermark for a balanced node
2591          * high-order: Balanced zones must make up at least 25% of the node
2592          *             for the node to be balanced
2593          */
2594         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2595                 cond_resched();
2596
2597                 try_to_freeze();
2598
2599                 /*
2600                  * Fragmentation may mean that the system cannot be
2601                  * rebalanced for high-order allocations in all zones.
2602                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2603                  * it means the zones have been fully scanned and are still
2604                  * not balanced. For high-order allocations, there is
2605                  * little point trying all over again as kswapd may
2606                  * infinite loop.
2607                  *
2608                  * Instead, recheck all watermarks at order-0 as they
2609                  * are the most important. If watermarks are ok, kswapd will go
2610                  * back to sleep. High-order users can still perform direct
2611                  * reclaim if they wish.
2612                  */
2613                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2614                         order = sc.order = 0;
2615
2616                 goto loop_again;
2617         }
2618
2619         /*
2620          * If kswapd was reclaiming at a higher order, it has the option of
2621          * sleeping without all zones being balanced. Before it does, it must
2622          * ensure that the watermarks for order-0 on *all* zones are met and
2623          * that the congestion flags are cleared. The congestion flag must
2624          * be cleared as kswapd is the only mechanism that clears the flag
2625          * and it is potentially going to sleep here.
2626          */
2627         if (order) {
2628                 int zones_need_compaction = 1;
2629
2630                 for (i = 0; i <= end_zone; i++) {
2631                         struct zone *zone = pgdat->node_zones + i;
2632
2633                         if (!populated_zone(zone))
2634                                 continue;
2635
2636                         if (zone->all_unreclaimable &&
2637                             sc.priority != DEF_PRIORITY)
2638                                 continue;
2639
2640                         /* Would compaction fail due to lack of free memory? */
2641                         if (COMPACTION_BUILD &&
2642                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2643                                 goto loop_again;
2644
2645                         /* Confirm the zone is balanced for order-0 */
2646                         if (!zone_watermark_ok(zone, 0,
2647                                         high_wmark_pages(zone), 0, 0)) {
2648                                 order = sc.order = 0;
2649                                 goto loop_again;
2650                         }
2651
2652                         /* Check if the memory needs to be defragmented. */
2653                         if (zone_watermark_ok(zone, order,
2654                                     low_wmark_pages(zone), *classzone_idx, 0))
2655                                 zones_need_compaction = 0;
2656
2657                         /* If balanced, clear the congested flag */
2658                         zone_clear_flag(zone, ZONE_CONGESTED);
2659                 }
2660
2661                 if (zones_need_compaction)
2662                         compact_pgdat(pgdat, order);
2663         }
2664
2665         /*
2666          * Return the order we were reclaiming at so sleeping_prematurely()
2667          * makes a decision on the order we were last reclaiming at. However,
2668          * if another caller entered the allocator slow path while kswapd
2669          * was awake, order will remain at the higher level
2670          */
2671         *classzone_idx = end_zone;
2672         return order;
2673 }
2674
2675 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2676 {
2677         long remaining = 0;
2678         DEFINE_WAIT(wait);
2679
2680         if (freezing(current) || kthread_should_stop())
2681                 return;
2682
2683         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2684
2685         /* Try to sleep for a short interval */
2686         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2687                 remaining = schedule_timeout(HZ/10);
2688                 finish_wait(&pgdat->kswapd_wait, &wait);
2689                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2690         }
2691
2692         /*
2693          * After a short sleep, check if it was a premature sleep. If not, then
2694          * go fully to sleep until explicitly woken up.
2695          */
2696         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2697                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2698
2699                 /*
2700                  * vmstat counters are not perfectly accurate and the estimated
2701                  * value for counters such as NR_FREE_PAGES can deviate from the
2702                  * true value by nr_online_cpus * threshold. To avoid the zone
2703                  * watermarks being breached while under pressure, we reduce the
2704                  * per-cpu vmstat threshold while kswapd is awake and restore
2705                  * them before going back to sleep.
2706                  */
2707                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2708                 schedule();
2709                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2710         } else {
2711                 if (remaining)
2712                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2713                 else
2714                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2715         }
2716         finish_wait(&pgdat->kswapd_wait, &wait);
2717 }
2718
2719 /*
2720  * The background pageout daemon, started as a kernel thread
2721  * from the init process.
2722  *
2723  * This basically trickles out pages so that we have _some_
2724  * free memory available even if there is no other activity
2725  * that frees anything up. This is needed for things like routing
2726  * etc, where we otherwise might have all activity going on in
2727  * asynchronous contexts that cannot page things out.
2728  *
2729  * If there are applications that are active memory-allocators
2730  * (most normal use), this basically shouldn't matter.
2731  */
2732 static int kswapd(void *p)
2733 {
2734         unsigned long order, new_order;
2735         unsigned balanced_order;
2736         int classzone_idx, new_classzone_idx;
2737         int balanced_classzone_idx;
2738         pg_data_t *pgdat = (pg_data_t*)p;
2739         struct task_struct *tsk = current;
2740
2741         struct reclaim_state reclaim_state = {
2742                 .reclaimed_slab = 0,
2743         };
2744         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2745
2746         lockdep_set_current_reclaim_state(GFP_KERNEL);
2747
2748         if (!cpumask_empty(cpumask))
2749                 set_cpus_allowed_ptr(tsk, cpumask);
2750         current->reclaim_state = &reclaim_state;
2751
2752         /*
2753          * Tell the memory management that we're a "memory allocator",
2754          * and that if we need more memory we should get access to it
2755          * regardless (see "__alloc_pages()"). "kswapd" should
2756          * never get caught in the normal page freeing logic.
2757          *
2758          * (Kswapd normally doesn't need memory anyway, but sometimes
2759          * you need a small amount of memory in order to be able to
2760          * page out something else, and this flag essentially protects
2761          * us from recursively trying to free more memory as we're
2762          * trying to free the first piece of memory in the first place).
2763          */
2764         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2765         set_freezable();
2766
2767         order = new_order = 0;
2768         balanced_order = 0;
2769         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2770         balanced_classzone_idx = classzone_idx;
2771         for ( ; ; ) {
2772                 int ret;
2773
2774                 /*
2775                  * If the last balance_pgdat was unsuccessful it's unlikely a
2776                  * new request of a similar or harder type will succeed soon
2777                  * so consider going to sleep on the basis we reclaimed at
2778                  */
2779                 if (balanced_classzone_idx >= new_classzone_idx &&
2780                                         balanced_order == new_order) {
2781                         new_order = pgdat->kswapd_max_order;
2782                         new_classzone_idx = pgdat->classzone_idx;
2783                         pgdat->kswapd_max_order =  0;
2784                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2785                 }
2786
2787                 if (order < new_order || classzone_idx > new_classzone_idx) {
2788                         /*
2789                          * Don't sleep if someone wants a larger 'order'
2790                          * allocation or has tigher zone constraints
2791                          */
2792                         order = new_order;
2793                         classzone_idx = new_classzone_idx;
2794                 } else {
2795                         kswapd_try_to_sleep(pgdat, balanced_order,
2796                                                 balanced_classzone_idx);
2797                         order = pgdat->kswapd_max_order;
2798                         classzone_idx = pgdat->classzone_idx;
2799                         new_order = order;
2800                         new_classzone_idx = classzone_idx;
2801                         pgdat->kswapd_max_order = 0;
2802                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2803                 }
2804
2805                 ret = try_to_freeze();
2806                 if (kthread_should_stop())
2807                         break;
2808
2809                 /*
2810                  * We can speed up thawing tasks if we don't call balance_pgdat
2811                  * after returning from the refrigerator
2812                  */
2813                 if (!ret) {
2814                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2815                         balanced_classzone_idx = classzone_idx;
2816                         balanced_order = balance_pgdat(pgdat, order,
2817                                                 &balanced_classzone_idx);
2818                 }
2819         }
2820         return 0;
2821 }
2822
2823 /*
2824  * A zone is low on free memory, so wake its kswapd task to service it.
2825  */
2826 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2827 {
2828         pg_data_t *pgdat;
2829
2830         if (!populated_zone(zone))
2831                 return;
2832
2833         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2834                 return;
2835         pgdat = zone->zone_pgdat;
2836         if (pgdat->kswapd_max_order < order) {
2837                 pgdat->kswapd_max_order = order;
2838                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2839         }
2840         if (!waitqueue_active(&pgdat->kswapd_wait))
2841                 return;
2842         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2843                 return;
2844
2845         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2846         wake_up_interruptible(&pgdat->kswapd_wait);
2847 }
2848
2849 /*
2850  * The reclaimable count would be mostly accurate.
2851  * The less reclaimable pages may be
2852  * - mlocked pages, which will be moved to unevictable list when encountered
2853  * - mapped pages, which may require several travels to be reclaimed
2854  * - dirty pages, which is not "instantly" reclaimable
2855  */
2856 unsigned long global_reclaimable_pages(void)
2857 {
2858         int nr;
2859
2860         nr = global_page_state(NR_ACTIVE_FILE) +
2861              global_page_state(NR_INACTIVE_FILE);
2862
2863         if (nr_swap_pages > 0)
2864                 nr += global_page_state(NR_ACTIVE_ANON) +
2865                       global_page_state(NR_INACTIVE_ANON);
2866
2867         return nr;
2868 }
2869
2870 unsigned long zone_reclaimable_pages(struct zone *zone)
2871 {
2872         int nr;
2873
2874         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2875              zone_page_state(zone, NR_INACTIVE_FILE);
2876
2877         if (nr_swap_pages > 0)
2878                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2879                       zone_page_state(zone, NR_INACTIVE_ANON);
2880
2881         return nr;
2882 }
2883
2884 #ifdef CONFIG_HIBERNATION
2885 /*
2886  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2887  * freed pages.
2888  *
2889  * Rather than trying to age LRUs the aim is to preserve the overall
2890  * LRU order by reclaiming preferentially
2891  * inactive > active > active referenced > active mapped
2892  */
2893 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2894 {
2895         struct reclaim_state reclaim_state;
2896         struct scan_control sc = {
2897                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2898                 .may_swap = 1,
2899                 .may_unmap = 1,
2900                 .may_writepage = 1,
2901                 .nr_to_reclaim = nr_to_reclaim,
2902                 .hibernation_mode = 1,
2903                 .order = 0,
2904                 .priority = DEF_PRIORITY,
2905         };
2906         struct shrink_control shrink = {
2907                 .gfp_mask = sc.gfp_mask,
2908         };
2909         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2910         struct task_struct *p = current;
2911         unsigned long nr_reclaimed;
2912
2913         p->flags |= PF_MEMALLOC;
2914         lockdep_set_current_reclaim_state(sc.gfp_mask);
2915         reclaim_state.reclaimed_slab = 0;
2916         p->reclaim_state = &reclaim_state;
2917
2918         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2919
2920         p->reclaim_state = NULL;
2921         lockdep_clear_current_reclaim_state();
2922         p->flags &= ~PF_MEMALLOC;
2923
2924         return nr_reclaimed;
2925 }
2926 #endif /* CONFIG_HIBERNATION */
2927
2928 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2929    not required for correctness.  So if the last cpu in a node goes
2930    away, we get changed to run anywhere: as the first one comes back,
2931    restore their cpu bindings. */
2932 static int __devinit cpu_callback(struct notifier_block *nfb,
2933                                   unsigned long action, void *hcpu)
2934 {
2935         int nid;
2936
2937         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2938                 for_each_node_state(nid, N_HIGH_MEMORY) {
2939                         pg_data_t *pgdat = NODE_DATA(nid);
2940                         const struct cpumask *mask;
2941
2942                         mask = cpumask_of_node(pgdat->node_id);
2943
2944                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2945                                 /* One of our CPUs online: restore mask */
2946                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2947                 }
2948         }
2949         return NOTIFY_OK;
2950 }
2951
2952 /*
2953  * This kswapd start function will be called by init and node-hot-add.
2954  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2955  */
2956 int kswapd_run(int nid)
2957 {
2958         pg_data_t *pgdat = NODE_DATA(nid);
2959         int ret = 0;
2960
2961         if (pgdat->kswapd)
2962                 return 0;
2963
2964         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2965         if (IS_ERR(pgdat->kswapd)) {
2966                 /* failure at boot is fatal */
2967                 BUG_ON(system_state == SYSTEM_BOOTING);
2968                 printk("Failed to start kswapd on node %d\n",nid);
2969                 ret = -1;
2970         }
2971         return ret;
2972 }
2973
2974 /*
2975  * Called by memory hotplug when all memory in a node is offlined.
2976  */
2977 void kswapd_stop(int nid)
2978 {
2979         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2980
2981         if (kswapd)
2982                 kthread_stop(kswapd);
2983 }
2984
2985 static int __init kswapd_init(void)
2986 {
2987         int nid;
2988
2989         swap_setup();
2990         for_each_node_state(nid, N_HIGH_MEMORY)
2991                 kswapd_run(nid);
2992         hotcpu_notifier(cpu_callback, 0);
2993         return 0;
2994 }
2995
2996 module_init(kswapd_init)
2997
2998 #ifdef CONFIG_NUMA
2999 /*
3000  * Zone reclaim mode
3001  *
3002  * If non-zero call zone_reclaim when the number of free pages falls below
3003  * the watermarks.
3004  */
3005 int zone_reclaim_mode __read_mostly;
3006
3007 #define RECLAIM_OFF 0
3008 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3009 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3010 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3011
3012 /*
3013  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3014  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3015  * a zone.
3016  */
3017 #define ZONE_RECLAIM_PRIORITY 4
3018
3019 /*
3020  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3021  * occur.
3022  */
3023 int sysctl_min_unmapped_ratio = 1;
3024
3025 /*
3026  * If the number of slab pages in a zone grows beyond this percentage then
3027  * slab reclaim needs to occur.
3028  */
3029 int sysctl_min_slab_ratio = 5;
3030
3031 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3032 {
3033         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3034         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3035                 zone_page_state(zone, NR_ACTIVE_FILE);
3036
3037         /*
3038          * It's possible for there to be more file mapped pages than
3039          * accounted for by the pages on the file LRU lists because
3040          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3041          */
3042         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3043 }
3044
3045 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3046 static long zone_pagecache_reclaimable(struct zone *zone)
3047 {
3048         long nr_pagecache_reclaimable;
3049         long delta = 0;
3050
3051         /*
3052          * If RECLAIM_SWAP is set, then all file pages are considered
3053          * potentially reclaimable. Otherwise, we have to worry about
3054          * pages like swapcache and zone_unmapped_file_pages() provides
3055          * a better estimate
3056          */
3057         if (zone_reclaim_mode & RECLAIM_SWAP)
3058                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3059         else
3060                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3061
3062         /* If we can't clean pages, remove dirty pages from consideration */
3063         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3064                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3065
3066         /* Watch for any possible underflows due to delta */
3067         if (unlikely(delta > nr_pagecache_reclaimable))
3068                 delta = nr_pagecache_reclaimable;
3069
3070         return nr_pagecache_reclaimable - delta;
3071 }
3072
3073 /*
3074  * Try to free up some pages from this zone through reclaim.
3075  */
3076 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3077 {
3078         /* Minimum pages needed in order to stay on node */
3079         const unsigned long nr_pages = 1 << order;
3080         struct task_struct *p = current;
3081         struct reclaim_state reclaim_state;
3082         struct scan_control sc = {
3083                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3084                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3085                 .may_swap = 1,
3086                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3087                                        SWAP_CLUSTER_MAX),
3088                 .gfp_mask = gfp_mask,
3089                 .order = order,
3090                 .priority = ZONE_RECLAIM_PRIORITY,
3091         };
3092         struct shrink_control shrink = {
3093                 .gfp_mask = sc.gfp_mask,
3094         };
3095         unsigned long nr_slab_pages0, nr_slab_pages1;
3096
3097         cond_resched();
3098         /*
3099          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3100          * and we also need to be able to write out pages for RECLAIM_WRITE
3101          * and RECLAIM_SWAP.
3102          */
3103         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3104         lockdep_set_current_reclaim_state(gfp_mask);
3105         reclaim_state.reclaimed_slab = 0;
3106         p->reclaim_state = &reclaim_state;
3107
3108         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3109                 /*
3110                  * Free memory by calling shrink zone with increasing
3111                  * priorities until we have enough memory freed.
3112                  */
3113                 do {
3114                         shrink_zone(zone, &sc);
3115                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3116         }
3117
3118         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3119         if (nr_slab_pages0 > zone->min_slab_pages) {
3120                 /*
3121                  * shrink_slab() does not currently allow us to determine how
3122                  * many pages were freed in this zone. So we take the current
3123                  * number of slab pages and shake the slab until it is reduced
3124                  * by the same nr_pages that we used for reclaiming unmapped
3125                  * pages.
3126                  *
3127                  * Note that shrink_slab will free memory on all zones and may
3128                  * take a long time.
3129                  */
3130                 for (;;) {
3131                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3132
3133                         /* No reclaimable slab or very low memory pressure */
3134                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3135                                 break;
3136
3137                         /* Freed enough memory */
3138                         nr_slab_pages1 = zone_page_state(zone,
3139                                                         NR_SLAB_RECLAIMABLE);
3140                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3141                                 break;
3142                 }
3143
3144                 /*
3145                  * Update nr_reclaimed by the number of slab pages we
3146                  * reclaimed from this zone.
3147                  */
3148                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3149                 if (nr_slab_pages1 < nr_slab_pages0)
3150                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3151         }
3152
3153         p->reclaim_state = NULL;
3154         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3155         lockdep_clear_current_reclaim_state();
3156         return sc.nr_reclaimed >= nr_pages;
3157 }
3158
3159 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3160 {
3161         int node_id;
3162         int ret;
3163
3164         /*
3165          * Zone reclaim reclaims unmapped file backed pages and
3166          * slab pages if we are over the defined limits.
3167          *
3168          * A small portion of unmapped file backed pages is needed for
3169          * file I/O otherwise pages read by file I/O will be immediately
3170          * thrown out if the zone is overallocated. So we do not reclaim
3171          * if less than a specified percentage of the zone is used by
3172          * unmapped file backed pages.
3173          */
3174         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3175             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3176                 return ZONE_RECLAIM_FULL;
3177
3178         if (zone->all_unreclaimable)
3179                 return ZONE_RECLAIM_FULL;
3180
3181         /*
3182          * Do not scan if the allocation should not be delayed.
3183          */
3184         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3185                 return ZONE_RECLAIM_NOSCAN;
3186
3187         /*
3188          * Only run zone reclaim on the local zone or on zones that do not
3189          * have associated processors. This will favor the local processor
3190          * over remote processors and spread off node memory allocations
3191          * as wide as possible.
3192          */
3193         node_id = zone_to_nid(zone);
3194         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3195                 return ZONE_RECLAIM_NOSCAN;
3196
3197         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3198                 return ZONE_RECLAIM_NOSCAN;
3199
3200         ret = __zone_reclaim(zone, gfp_mask, order);
3201         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3202
3203         if (!ret)
3204                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3205
3206         return ret;
3207 }
3208 #endif
3209
3210 /*
3211  * page_evictable - test whether a page is evictable
3212  * @page: the page to test
3213  * @vma: the VMA in which the page is or will be mapped, may be NULL
3214  *
3215  * Test whether page is evictable--i.e., should be placed on active/inactive
3216  * lists vs unevictable list.  The vma argument is !NULL when called from the
3217  * fault path to determine how to instantate a new page.
3218  *
3219  * Reasons page might not be evictable:
3220  * (1) page's mapping marked unevictable
3221  * (2) page is part of an mlocked VMA
3222  *
3223  */
3224 int page_evictable(struct page *page, struct vm_area_struct *vma)
3225 {
3226
3227         if (mapping_unevictable(page_mapping(page)))
3228                 return 0;
3229
3230         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3231                 return 0;
3232
3233         return 1;
3234 }
3235
3236 #ifdef CONFIG_SHMEM
3237 /**
3238  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3239  * @pages:      array of pages to check
3240  * @nr_pages:   number of pages to check
3241  *
3242  * Checks pages for evictability and moves them to the appropriate lru list.
3243  *
3244  * This function is only used for SysV IPC SHM_UNLOCK.
3245  */
3246 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3247 {
3248         struct lruvec *lruvec;
3249         struct zone *zone = NULL;
3250         int pgscanned = 0;
3251         int pgrescued = 0;
3252         int i;
3253
3254         for (i = 0; i < nr_pages; i++) {
3255                 struct page *page = pages[i];
3256                 struct zone *pagezone;
3257
3258                 pgscanned++;
3259                 pagezone = page_zone(page);
3260                 if (pagezone != zone) {
3261                         if (zone)
3262                                 spin_unlock_irq(&zone->lru_lock);
3263                         zone = pagezone;
3264                         spin_lock_irq(&zone->lru_lock);
3265                 }
3266
3267                 if (!PageLRU(page) || !PageUnevictable(page))
3268                         continue;
3269
3270                 if (page_evictable(page, NULL)) {
3271                         enum lru_list lru = page_lru_base_type(page);
3272
3273                         VM_BUG_ON(PageActive(page));
3274                         ClearPageUnevictable(page);
3275                         __dec_zone_state(zone, NR_UNEVICTABLE);
3276                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3277                                                 LRU_UNEVICTABLE, lru);
3278                         list_move(&page->lru, &lruvec->lists[lru]);
3279                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3280                         pgrescued++;
3281                 }
3282         }
3283
3284         if (zone) {
3285                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3286                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3287                 spin_unlock_irq(&zone->lru_lock);
3288         }
3289 }
3290 #endif /* CONFIG_SHMEM */
3291
3292 static void warn_scan_unevictable_pages(void)
3293 {
3294         printk_once(KERN_WARNING
3295                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3296                     "disabled for lack of a legitimate use case.  If you have "
3297                     "one, please send an email to linux-mm@kvack.org.\n",
3298                     current->comm);
3299 }
3300
3301 /*
3302  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3303  * all nodes' unevictable lists for evictable pages
3304  */
3305 unsigned long scan_unevictable_pages;
3306
3307 int scan_unevictable_handler(struct ctl_table *table, int write,
3308                            void __user *buffer,
3309                            size_t *length, loff_t *ppos)
3310 {
3311         warn_scan_unevictable_pages();
3312         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3313         scan_unevictable_pages = 0;
3314         return 0;
3315 }
3316
3317 #ifdef CONFIG_NUMA
3318 /*
3319  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3320  * a specified node's per zone unevictable lists for evictable pages.
3321  */
3322
3323 static ssize_t read_scan_unevictable_node(struct device *dev,
3324                                           struct device_attribute *attr,
3325                                           char *buf)
3326 {
3327         warn_scan_unevictable_pages();
3328         return sprintf(buf, "0\n");     /* always zero; should fit... */
3329 }
3330
3331 static ssize_t write_scan_unevictable_node(struct device *dev,
3332                                            struct device_attribute *attr,
3333                                         const char *buf, size_t count)
3334 {
3335         warn_scan_unevictable_pages();
3336         return 1;
3337 }
3338
3339
3340 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3341                         read_scan_unevictable_node,
3342                         write_scan_unevictable_node);
3343
3344 int scan_unevictable_register_node(struct node *node)
3345 {
3346         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3347 }
3348
3349 void scan_unevictable_unregister_node(struct node *node)
3350 {
3351         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3352 }
3353 #endif