packaging: fix not to provide kernel-headers
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 #include <linux/debugfs.h>
47
48 #include <asm/tlbflush.h>
49 #include <asm/div64.h>
50
51 #include <linux/swapops.h>
52 #include <linux/balloon_compaction.h>
53 #include <linux/suspend.h>
54 #include "internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/vmscan.h>
58
59 #ifdef CONFIG_RUNTIME_COMPCACHE
60 struct rtcc_control {
61         int nr_anon;
62         int nr_file;
63         int swappiness;
64         int nr_swapped;
65 };
66 #endif /* CONFIG_RUNTIME_COMPCACHE */
67
68 struct scan_control {
69         /* Incremented by the number of inactive pages that were scanned */
70         unsigned long nr_scanned;
71
72         /* Number of pages freed so far during a call to shrink_zones() */
73         unsigned long nr_reclaimed;
74
75         /* How many pages shrink_list() should reclaim */
76         unsigned long nr_to_reclaim;
77
78         unsigned long hibernation_mode;
79
80         /* This context's GFP mask */
81         gfp_t gfp_mask;
82
83         int may_writepage;
84
85         /* Can mapped pages be reclaimed? */
86         int may_unmap;
87
88         /* Can pages be swapped as part of reclaim? */
89         int may_swap;
90
91         int order;
92
93         /* Scan (total_size >> priority) pages at once */
94         int priority;
95
96         /*
97          * The memory cgroup that hit its limit and as a result is the
98          * primary target of this reclaim invocation.
99          */
100         struct mem_cgroup *target_mem_cgroup;
101
102         /*
103          * Nodemask of nodes allowed by the caller. If NULL, all nodes
104          * are scanned.
105          */
106         nodemask_t      *nodemask;
107
108 #ifdef CONFIG_RUNTIME_COMPCACHE
109         struct rtcc_control *rc;
110 #endif /* CONFIG_RUNTIME_COMPCACHE */
111 };
112
113 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
114
115 #ifdef ARCH_HAS_PREFETCH
116 #define prefetch_prev_lru_page(_page, _base, _field)                    \
117         do {                                                            \
118                 if ((_page)->lru.prev != _base) {                       \
119                         struct page *prev;                              \
120                                                                         \
121                         prev = lru_to_page(&(_page->lru));              \
122                         prefetch(&prev->_field);                        \
123                 }                                                       \
124         } while (0)
125 #else
126 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 #ifdef ARCH_HAS_PREFETCHW
130 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
131         do {                                                            \
132                 if ((_page)->lru.prev != _base) {                       \
133                         struct page *prev;                              \
134                                                                         \
135                         prev = lru_to_page(&(_page->lru));              \
136                         prefetchw(&prev->_field);                       \
137                 }                                                       \
138         } while (0)
139 #else
140 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
141 #endif
142
143 /*
144  * From 0 .. 100.  Higher means more swappy.
145  */
146 int vm_swappiness = 60;
147 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
148
149 #ifdef CONFIG_RUNTIME_COMPCACHE
150 extern int get_rtcc_status(void);
151 long nr_kswapd_swapped = 0;
152
153 static bool rtcc_reclaim(struct scan_control *sc)
154 {
155         return (sc->rc != NULL);
156 }
157 #endif /* CONFIG_RUNTIME_COMPCACHE */
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165         return !sc->target_mem_cgroup;
166 }
167 #else
168 static bool global_reclaim(struct scan_control *sc)
169 {
170         return true;
171 }
172 #endif
173
174 bool zone_reclaimable(struct zone *zone)
175 {
176         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
177 }
178
179 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
180 {
181         if (!mem_cgroup_disabled())
182                 return mem_cgroup_get_lru_size(lruvec, lru);
183
184         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
185 }
186
187 struct dentry *debug_file;
188
189 static int debug_shrinker_show(struct seq_file *s, void *unused)
190 {
191         struct shrinker *shrinker;
192         struct shrink_control sc;
193
194         sc.gfp_mask = -1;
195         sc.nr_to_scan = 0;
196
197         down_read(&shrinker_rwsem);
198         list_for_each_entry(shrinker, &shrinker_list, list) {
199                 int num_objs;
200
201                 num_objs = shrinker->shrink(shrinker, &sc);
202                 seq_printf(s, "%pf %d\n", shrinker->shrink, num_objs);
203         }
204         up_read(&shrinker_rwsem);
205         return 0;
206 }
207
208 static int debug_shrinker_open(struct inode *inode, struct file *file)
209 {
210         return single_open(file, debug_shrinker_show, inode->i_private);
211 }
212
213 static const struct file_operations debug_shrinker_fops = {
214         .open = debug_shrinker_open,
215         .read = seq_read,
216         .llseek = seq_lseek,
217         .release = single_release,
218 };
219
220 /*
221  * Add a shrinker callback to be called from the vm
222  */
223 void register_shrinker(struct shrinker *shrinker)
224 {
225         atomic_long_set(&shrinker->nr_in_batch, 0);
226         down_write(&shrinker_rwsem);
227         list_add_tail(&shrinker->list, &shrinker_list);
228         up_write(&shrinker_rwsem);
229 }
230 EXPORT_SYMBOL(register_shrinker);
231
232 static int __init add_shrinker_debug(void)
233 {
234         debugfs_create_file("shrinker", 0644, NULL, NULL,
235                             &debug_shrinker_fops);
236         return 0;
237 }
238
239 late_initcall(add_shrinker_debug);
240
241 /*
242  * Remove one
243  */
244 void unregister_shrinker(struct shrinker *shrinker)
245 {
246         down_write(&shrinker_rwsem);
247         list_del(&shrinker->list);
248         up_write(&shrinker_rwsem);
249 }
250 EXPORT_SYMBOL(unregister_shrinker);
251
252 static inline int do_shrinker_shrink(struct shrinker *shrinker,
253                                      struct shrink_control *sc,
254                                      unsigned long nr_to_scan)
255 {
256         sc->nr_to_scan = nr_to_scan;
257         return (*shrinker->shrink)(shrinker, sc);
258 }
259
260 #define SHRINK_BATCH 128
261 /*
262  * Call the shrink functions to age shrinkable caches
263  *
264  * Here we assume it costs one seek to replace a lru page and that it also
265  * takes a seek to recreate a cache object.  With this in mind we age equal
266  * percentages of the lru and ageable caches.  This should balance the seeks
267  * generated by these structures.
268  *
269  * If the vm encountered mapped pages on the LRU it increase the pressure on
270  * slab to avoid swapping.
271  *
272  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
273  *
274  * `lru_pages' represents the number of on-LRU pages in all the zones which
275  * are eligible for the caller's allocation attempt.  It is used for balancing
276  * slab reclaim versus page reclaim.
277  *
278  * Returns the number of slab objects which we shrunk.
279  */
280 unsigned long shrink_slab(struct shrink_control *shrink,
281                           unsigned long nr_pages_scanned,
282                           unsigned long lru_pages)
283 {
284         struct shrinker *shrinker;
285         unsigned long ret = 0;
286
287         if (nr_pages_scanned == 0)
288                 nr_pages_scanned = SWAP_CLUSTER_MAX;
289
290         if (!down_read_trylock(&shrinker_rwsem)) {
291                 /* Assume we'll be able to shrink next time */
292                 ret = 1;
293                 goto out;
294         }
295
296         list_for_each_entry(shrinker, &shrinker_list, list) {
297                 unsigned long long delta;
298                 long total_scan;
299                 long max_pass;
300                 int shrink_ret = 0;
301                 long nr;
302                 long new_nr;
303                 long batch_size = shrinker->batch ? shrinker->batch
304                                                   : SHRINK_BATCH;
305
306                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
307                 if (max_pass <= 0)
308                         continue;
309
310                 /*
311                  * copy the current shrinker scan count into a local variable
312                  * and zero it so that other concurrent shrinker invocations
313                  * don't also do this scanning work.
314                  */
315                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
316
317                 total_scan = nr;
318                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
319                 delta *= max_pass;
320                 do_div(delta, lru_pages + 1);
321                 total_scan += delta;
322                 if (total_scan < 0) {
323                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
324                                "delete nr=%ld\n",
325                                shrinker->shrink, total_scan);
326                         total_scan = max_pass;
327                 }
328
329                 /*
330                  * We need to avoid excessive windup on filesystem shrinkers
331                  * due to large numbers of GFP_NOFS allocations causing the
332                  * shrinkers to return -1 all the time. This results in a large
333                  * nr being built up so when a shrink that can do some work
334                  * comes along it empties the entire cache due to nr >>>
335                  * max_pass.  This is bad for sustaining a working set in
336                  * memory.
337                  *
338                  * Hence only allow the shrinker to scan the entire cache when
339                  * a large delta change is calculated directly.
340                  */
341                 if (delta < max_pass / 4)
342                         total_scan = min(total_scan, max_pass / 2);
343
344                 /*
345                  * Avoid risking looping forever due to too large nr value:
346                  * never try to free more than twice the estimate number of
347                  * freeable entries.
348                  */
349                 if (total_scan > max_pass * 2)
350                         total_scan = max_pass * 2;
351
352                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
353                                         nr_pages_scanned, lru_pages,
354                                         max_pass, delta, total_scan);
355
356                 while (total_scan >= batch_size) {
357                         int nr_before;
358
359                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
360                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
361                                                         batch_size);
362                         if (shrink_ret == -1)
363                                 break;
364                         if (shrink_ret < nr_before)
365                                 ret += nr_before - shrink_ret;
366                         count_vm_events(SLABS_SCANNED, batch_size);
367                         total_scan -= batch_size;
368
369                         cond_resched();
370                 }
371
372                 /*
373                  * move the unused scan count back into the shrinker in a
374                  * manner that handles concurrent updates. If we exhausted the
375                  * scan, there is no need to do an update.
376                  */
377                 if (total_scan > 0)
378                         new_nr = atomic_long_add_return(total_scan,
379                                         &shrinker->nr_in_batch);
380                 else
381                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
382
383                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
384         }
385         up_read(&shrinker_rwsem);
386 out:
387         cond_resched();
388         return ret;
389 }
390
391 static inline int is_page_cache_freeable(struct page *page)
392 {
393         /*
394          * A freeable page cache page is referenced only by the caller
395          * that isolated the page, the page cache radix tree and
396          * optional buffer heads at page->private.
397          */
398         return page_count(page) - page_has_private(page) == 2;
399 }
400
401 static int may_write_to_queue(struct backing_dev_info *bdi,
402                               struct scan_control *sc)
403 {
404         if (current->flags & PF_SWAPWRITE)
405                 return 1;
406         if (!bdi_write_congested(bdi))
407                 return 1;
408         if (bdi == current->backing_dev_info)
409                 return 1;
410         return 0;
411 }
412
413 /*
414  * We detected a synchronous write error writing a page out.  Probably
415  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
416  * fsync(), msync() or close().
417  *
418  * The tricky part is that after writepage we cannot touch the mapping: nothing
419  * prevents it from being freed up.  But we have a ref on the page and once
420  * that page is locked, the mapping is pinned.
421  *
422  * We're allowed to run sleeping lock_page() here because we know the caller has
423  * __GFP_FS.
424  */
425 static void handle_write_error(struct address_space *mapping,
426                                 struct page *page, int error)
427 {
428         lock_page(page);
429         if (page_mapping(page) == mapping)
430                 mapping_set_error(mapping, error);
431         unlock_page(page);
432 }
433
434 /* possible outcome of pageout() */
435 typedef enum {
436         /* failed to write page out, page is locked */
437         PAGE_KEEP,
438         /* move page to the active list, page is locked */
439         PAGE_ACTIVATE,
440         /* page has been sent to the disk successfully, page is unlocked */
441         PAGE_SUCCESS,
442         /* page is clean and locked */
443         PAGE_CLEAN,
444 } pageout_t;
445
446 /*
447  * pageout is called by shrink_page_list() for each dirty page.
448  * Calls ->writepage().
449  */
450 static pageout_t pageout(struct page *page, struct address_space *mapping,
451                          struct scan_control *sc)
452 {
453         /*
454          * If the page is dirty, only perform writeback if that write
455          * will be non-blocking.  To prevent this allocation from being
456          * stalled by pagecache activity.  But note that there may be
457          * stalls if we need to run get_block().  We could test
458          * PagePrivate for that.
459          *
460          * If this process is currently in __generic_file_aio_write() against
461          * this page's queue, we can perform writeback even if that
462          * will block.
463          *
464          * If the page is swapcache, write it back even if that would
465          * block, for some throttling. This happens by accident, because
466          * swap_backing_dev_info is bust: it doesn't reflect the
467          * congestion state of the swapdevs.  Easy to fix, if needed.
468          */
469         if (!is_page_cache_freeable(page))
470                 return PAGE_KEEP;
471         if (!mapping) {
472                 /*
473                  * Some data journaling orphaned pages can have
474                  * page->mapping == NULL while being dirty with clean buffers.
475                  */
476                 if (page_has_private(page)) {
477                         if (try_to_free_buffers(page)) {
478                                 ClearPageDirty(page);
479                                 printk("%s: orphaned page\n", __func__);
480                                 return PAGE_CLEAN;
481                         }
482                 }
483                 return PAGE_KEEP;
484         }
485         if (mapping->a_ops->writepage == NULL)
486                 return PAGE_ACTIVATE;
487         if (!may_write_to_queue(mapping->backing_dev_info, sc))
488                 return PAGE_KEEP;
489
490 #ifdef CONFIG_CMA_RMQUEUE
491         if(IS_ENABLED(CONFIG_CMA) &&
492                 !zone_watermark_ok_safe(page_zone(page), 0, SWAP_CLUSTER_MAX, 0, 0))
493         {
494                 return PAGE_KEEP;
495         }
496 #endif
497         if (clear_page_dirty_for_io(page)) {
498                 int res;
499                 struct writeback_control wbc = {
500                         .sync_mode = WB_SYNC_NONE,
501                         .nr_to_write = SWAP_CLUSTER_MAX,
502                         .range_start = 0,
503                         .range_end = LLONG_MAX,
504                         .for_reclaim = 1,
505                 };
506
507                 SetPageReclaim(page);
508                 res = mapping->a_ops->writepage(page, &wbc);
509                 if (res < 0)
510                         handle_write_error(mapping, page, res);
511                 if (res == AOP_WRITEPAGE_ACTIVATE) {
512                         ClearPageReclaim(page);
513                         return PAGE_ACTIVATE;
514                 }
515
516                 if (!PageWriteback(page)) {
517                         /* synchronous write or broken a_ops? */
518                         ClearPageReclaim(page);
519                 }
520                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
521                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
522                 return PAGE_SUCCESS;
523         }
524
525         return PAGE_CLEAN;
526 }
527
528 /*
529  * Same as remove_mapping, but if the page is removed from the mapping, it
530  * gets returned with a refcount of 0.
531  */
532 static int __remove_mapping(struct address_space *mapping, struct page *page)
533 {
534         BUG_ON(!PageLocked(page));
535         BUG_ON(mapping != page_mapping(page));
536
537         spin_lock_irq(&mapping->tree_lock);
538         /*
539          * The non racy check for a busy page.
540          *
541          * Must be careful with the order of the tests. When someone has
542          * a ref to the page, it may be possible that they dirty it then
543          * drop the reference. So if PageDirty is tested before page_count
544          * here, then the following race may occur:
545          *
546          * get_user_pages(&page);
547          * [user mapping goes away]
548          * write_to(page);
549          *                              !PageDirty(page)    [good]
550          * SetPageDirty(page);
551          * put_page(page);
552          *                              !page_count(page)   [good, discard it]
553          *
554          * [oops, our write_to data is lost]
555          *
556          * Reversing the order of the tests ensures such a situation cannot
557          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
558          * load is not satisfied before that of page->_count.
559          *
560          * Note that if SetPageDirty is always performed via set_page_dirty,
561          * and thus under tree_lock, then this ordering is not required.
562          */
563         if (!page_freeze_refs(page, 2))
564                 goto cannot_free;
565         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
566         if (unlikely(PageDirty(page))) {
567                 page_unfreeze_refs(page, 2);
568                 goto cannot_free;
569         }
570
571         if (PageSwapCache(page)) {
572                 swp_entry_t swap = { .val = page_private(page) };
573                 __delete_from_swap_cache(page);
574                 spin_unlock_irq(&mapping->tree_lock);
575                 swapcache_free(swap, page);
576         } else {
577                 void (*freepage)(struct page *);
578
579                 freepage = mapping->a_ops->freepage;
580
581                 __delete_from_page_cache(page);
582                 spin_unlock_irq(&mapping->tree_lock);
583                 mem_cgroup_uncharge_cache_page(page);
584
585                 if (freepage != NULL)
586                         freepage(page);
587         }
588
589         return 1;
590
591 cannot_free:
592         spin_unlock_irq(&mapping->tree_lock);
593         return 0;
594 }
595
596 /*
597  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
598  * someone else has a ref on the page, abort and return 0.  If it was
599  * successfully detached, return 1.  Assumes the caller has a single ref on
600  * this page.
601  */
602 int remove_mapping(struct address_space *mapping, struct page *page)
603 {
604         if (__remove_mapping(mapping, page)) {
605                 /*
606                  * Unfreezing the refcount with 1 rather than 2 effectively
607                  * drops the pagecache ref for us without requiring another
608                  * atomic operation.
609                  */
610                 page_unfreeze_refs(page, 1);
611                 return 1;
612         }
613         return 0;
614 }
615
616 /**
617  * putback_lru_page - put previously isolated page onto appropriate LRU list
618  * @page: page to be put back to appropriate lru list
619  *
620  * Add previously isolated @page to appropriate LRU list.
621  * Page may still be unevictable for other reasons.
622  *
623  * lru_lock must not be held, interrupts must be enabled.
624  */
625 void putback_lru_page(struct page *page)
626 {
627         int lru;
628         int active = !!TestClearPageActive(page);
629         int was_unevictable = PageUnevictable(page);
630
631         VM_BUG_ON(PageLRU(page));
632
633 redo:
634         ClearPageUnevictable(page);
635
636         if (page_evictable(page)) {
637                 /*
638                  * For evictable pages, we can use the cache.
639                  * In event of a race, worst case is we end up with an
640                  * unevictable page on [in]active list.
641                  * We know how to handle that.
642                  */
643                 lru = active + page_lru_base_type(page);
644                 lru_cache_add_lru(page, lru);
645         } else {
646                 /*
647                  * Put unevictable pages directly on zone's unevictable
648                  * list.
649                  */
650                 lru = LRU_UNEVICTABLE;
651                 add_page_to_unevictable_list(page);
652                 /*
653                  * When racing with an mlock or AS_UNEVICTABLE clearing
654                  * (page is unlocked) make sure that if the other thread
655                  * does not observe our setting of PG_lru and fails
656                  * isolation/check_move_unevictable_pages,
657                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
658                  * the page back to the evictable list.
659                  *
660                  * The other side is TestClearPageMlocked() or shmem_lock().
661                  */
662                 smp_mb();
663         }
664
665         /*
666          * page's status can change while we move it among lru. If an evictable
667          * page is on unevictable list, it never be freed. To avoid that,
668          * check after we added it to the list, again.
669          */
670         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
671                 if (!isolate_lru_page(page)) {
672                         put_page(page);
673                         goto redo;
674                 }
675                 /* This means someone else dropped this page from LRU
676                  * So, it will be freed or putback to LRU again. There is
677                  * nothing to do here.
678                  */
679         }
680
681         if (was_unevictable && lru != LRU_UNEVICTABLE)
682                 count_vm_event(UNEVICTABLE_PGRESCUED);
683         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
684                 count_vm_event(UNEVICTABLE_PGCULLED);
685
686         put_page(page);         /* drop ref from isolate */
687 }
688
689 enum page_references {
690         PAGEREF_RECLAIM,
691         PAGEREF_RECLAIM_CLEAN,
692         PAGEREF_KEEP,
693         PAGEREF_ACTIVATE,
694 };
695
696 static enum page_references page_check_references(struct page *page,
697                                                   struct scan_control *sc)
698 {
699         int referenced_ptes, referenced_page;
700         unsigned long vm_flags;
701
702         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
703                                           &vm_flags);
704         referenced_page = TestClearPageReferenced(page);
705
706         /*
707          * Mlock lost the isolation race with us.  Let try_to_unmap()
708          * move the page to the unevictable list.
709          */
710         if (vm_flags & VM_LOCKED)
711                 return PAGEREF_RECLAIM;
712
713         if (referenced_ptes) {
714                 if (PageSwapBacked(page))
715                         return PAGEREF_ACTIVATE;
716                 /*
717                  * All mapped pages start out with page table
718                  * references from the instantiating fault, so we need
719                  * to look twice if a mapped file page is used more
720                  * than once.
721                  *
722                  * Mark it and spare it for another trip around the
723                  * inactive list.  Another page table reference will
724                  * lead to its activation.
725                  *
726                  * Note: the mark is set for activated pages as well
727                  * so that recently deactivated but used pages are
728                  * quickly recovered.
729                  */
730                 SetPageReferenced(page);
731
732                 if (referenced_page || referenced_ptes > 1)
733                         return PAGEREF_ACTIVATE;
734
735                 /*
736                  * Activate file-backed executable pages after first usage.
737                  */
738                 if (vm_flags & VM_EXEC)
739                         return PAGEREF_ACTIVATE;
740
741                 return PAGEREF_KEEP;
742         }
743
744         /* Reclaim if clean, defer dirty pages to writeback */
745         if (referenced_page && !PageSwapBacked(page))
746                 return PAGEREF_RECLAIM_CLEAN;
747
748         return PAGEREF_RECLAIM;
749 }
750
751 /*
752  * shrink_page_list() returns the number of reclaimed pages
753  */
754 static unsigned long shrink_page_list(struct list_head *page_list,
755                                       struct zone *zone,
756                                       struct scan_control *sc,
757                                       enum ttu_flags ttu_flags,
758                                       unsigned long *ret_nr_dirty,
759                                       unsigned long *ret_nr_writeback,
760                                       bool force_reclaim)
761 {
762         LIST_HEAD(ret_pages);
763         LIST_HEAD(free_pages);
764         int pgactivate = 0;
765         unsigned long nr_dirty = 0;
766         unsigned long nr_congested = 0;
767         unsigned long nr_reclaimed = 0;
768         unsigned long nr_writeback = 0;
769
770         cond_resched();
771
772         mem_cgroup_uncharge_start();
773         while (!list_empty(page_list)) {
774                 struct address_space *mapping;
775                 struct page *page;
776                 int may_enter_fs;
777                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
778
779                 cond_resched();
780
781                 page = lru_to_page(page_list);
782                 list_del(&page->lru);
783
784                 if (!trylock_page(page))
785                         goto keep;
786
787                 VM_BUG_ON(PageActive(page));
788                 VM_BUG_ON(page_zone(page) != zone);
789
790                 sc->nr_scanned++;
791
792                 if (unlikely(!page_evictable(page)))
793                         goto cull_mlocked;
794
795                 if (!sc->may_unmap && page_mapped(page))
796                         goto keep_locked;
797
798                 /* Double the slab pressure for mapped and swapcache pages */
799                 if (page_mapped(page) || PageSwapCache(page))
800                         sc->nr_scanned++;
801
802                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805                 if (PageWriteback(page)) {
806                         /*
807                          * memcg doesn't have any dirty pages throttling so we
808                          * could easily OOM just because too many pages are in
809                          * writeback and there is nothing else to reclaim.
810                          *
811                          * Check __GFP_IO, certainly because a loop driver
812                          * thread might enter reclaim, and deadlock if it waits
813                          * on a page for which it is needed to do the write
814                          * (loop masks off __GFP_IO|__GFP_FS for this reason);
815                          * but more thought would probably show more reasons.
816                          *
817                          * Don't require __GFP_FS, since we're not going into
818                          * the FS, just waiting on its writeback completion.
819                          * Worryingly, ext4 gfs2 and xfs allocate pages with
820                          * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
821                          * testing may_enter_fs here is liable to OOM on them.
822                          */
823                         if (global_reclaim(sc) ||
824                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
825                                 /*
826                                  * This is slightly racy - end_page_writeback()
827                                  * might have just cleared PageReclaim, then
828                                  * setting PageReclaim here end up interpreted
829                                  * as PageReadahead - but that does not matter
830                                  * enough to care.  What we do want is for this
831                                  * page to have PageReclaim set next time memcg
832                                  * reclaim reaches the tests above, so it will
833                                  * then wait_on_page_writeback() to avoid OOM;
834                                  * and it's also appropriate in global reclaim.
835                                  */
836                                 SetPageReclaim(page);
837                                 nr_writeback++;
838                                 goto keep_locked;
839                         }
840                         wait_on_page_writeback(page);
841                 }
842
843                 if (!force_reclaim)
844                         references = page_check_references(page, sc);
845
846                 switch (references) {
847                 case PAGEREF_ACTIVATE:
848                         goto activate_locked;
849                 case PAGEREF_KEEP:
850                         goto keep_locked;
851                 case PAGEREF_RECLAIM:
852                 case PAGEREF_RECLAIM_CLEAN:
853                         ; /* try to reclaim the page below */
854                 }
855
856                 /*
857                  * Anonymous process memory has backing store?
858                  * Try to allocate it some swap space here.
859                  */
860                 if (PageAnon(page) && !PageSwapCache(page)) {
861                         if (!(sc->gfp_mask & __GFP_IO))
862                                 goto keep_locked;
863                         if (!add_to_swap(page, page_list))
864                                 goto activate_locked;
865                         may_enter_fs = 1;
866                 }
867
868                 mapping = page_mapping(page);
869
870                 /*
871                  * The page is mapped into the page tables of one or more
872                  * processes. Try to unmap it here.
873                  */
874                 if (page_mapped(page) && mapping) {
875                         switch (try_to_unmap(page, ttu_flags)) {
876                         case SWAP_FAIL:
877                                 goto activate_locked;
878                         case SWAP_AGAIN:
879                                 goto keep_locked;
880                         case SWAP_MLOCK:
881                                 goto cull_mlocked;
882                         case SWAP_SUCCESS:
883                                 ; /* try to free the page below */
884                         }
885                 }
886
887                 if (PageDirty(page)) {
888                         nr_dirty++;
889
890                         /*
891                          * Only kswapd can writeback filesystem pages to
892                          * avoid risk of stack overflow but do not writeback
893                          * unless under significant pressure.
894                          */
895                         if (page_is_file_cache(page) &&
896                                         (!current_is_kswapd() ||
897                                          sc->priority >= DEF_PRIORITY - 2)) {
898                                 /*
899                                  * Immediately reclaim when written back.
900                                  * Similar in principal to deactivate_page()
901                                  * except we already have the page isolated
902                                  * and know it's dirty
903                                  */
904                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
905                                 SetPageReclaim(page);
906
907                                 goto keep_locked;
908                         }
909
910                         if (references == PAGEREF_RECLAIM_CLEAN)
911                                 goto keep_locked;
912                         if (!may_enter_fs)
913                                 goto keep_locked;
914                         if (!sc->may_writepage)
915                                 goto keep_locked;
916
917                         /* Page is dirty, try to write it out here */
918                         switch (pageout(page, mapping, sc)) {
919                         case PAGE_KEEP:
920                                 nr_congested++;
921                                 goto keep_locked;
922                         case PAGE_ACTIVATE:
923                                 goto activate_locked;
924                         case PAGE_SUCCESS:
925                                 if (PageWriteback(page))
926                                         goto keep;
927                                 if (PageDirty(page))
928                                         goto keep;
929
930                                 /*
931                                  * A synchronous write - probably a ramdisk.  Go
932                                  * ahead and try to reclaim the page.
933                                  */
934                                 if (!trylock_page(page))
935                                         goto keep;
936                                 if (PageDirty(page) || PageWriteback(page))
937                                         goto keep_locked;
938                                 mapping = page_mapping(page);
939                         case PAGE_CLEAN:
940                                 ; /* try to free the page below */
941                         }
942                 }
943
944                 /*
945                  * If the page has buffers, try to free the buffer mappings
946                  * associated with this page. If we succeed we try to free
947                  * the page as well.
948                  *
949                  * We do this even if the page is PageDirty().
950                  * try_to_release_page() does not perform I/O, but it is
951                  * possible for a page to have PageDirty set, but it is actually
952                  * clean (all its buffers are clean).  This happens if the
953                  * buffers were written out directly, with submit_bh(). ext3
954                  * will do this, as well as the blockdev mapping.
955                  * try_to_release_page() will discover that cleanness and will
956                  * drop the buffers and mark the page clean - it can be freed.
957                  *
958                  * Rarely, pages can have buffers and no ->mapping.  These are
959                  * the pages which were not successfully invalidated in
960                  * truncate_complete_page().  We try to drop those buffers here
961                  * and if that worked, and the page is no longer mapped into
962                  * process address space (page_count == 1) it can be freed.
963                  * Otherwise, leave the page on the LRU so it is swappable.
964                  */
965                 if (page_has_private(page)) {
966                         if (!try_to_release_page(page, sc->gfp_mask))
967                                 goto activate_locked;
968                         if (!mapping && page_count(page) == 1) {
969                                 unlock_page(page);
970                                 if (put_page_testzero(page))
971                                         goto free_it;
972                                 else {
973                                         /*
974                                          * rare race with speculative reference.
975                                          * the speculative reference will free
976                                          * this page shortly, so we may
977                                          * increment nr_reclaimed here (and
978                                          * leave it off the LRU).
979                                          */
980                                         nr_reclaimed++;
981                                         continue;
982                                 }
983                         }
984                 }
985
986                 if (!mapping || !__remove_mapping(mapping, page))
987                         goto keep_locked;
988
989                 /*
990                  * At this point, we have no other references and there is
991                  * no way to pick any more up (removed from LRU, removed
992                  * from pagecache). Can use non-atomic bitops now (and
993                  * we obviously don't have to worry about waking up a process
994                  * waiting on the page lock, because there are no references.
995                  */
996                 __clear_page_locked(page);
997 free_it:
998                 nr_reclaimed++;
999
1000                 /*
1001                  * Is there need to periodically free_page_list? It would
1002                  * appear not as the counts should be low
1003                  */
1004                 list_add(&page->lru, &free_pages);
1005                 continue;
1006
1007 cull_mlocked:
1008                 if (PageSwapCache(page))
1009                         try_to_free_swap(page);
1010                 unlock_page(page);
1011                 putback_lru_page(page);
1012                 continue;
1013
1014 activate_locked:
1015                 /* Not a candidate for swapping, so reclaim swap space. */
1016                 if (PageSwapCache(page) && vm_swap_full())
1017                         try_to_free_swap(page);
1018                 VM_BUG_ON(PageActive(page));
1019                 SetPageActive(page);
1020                 pgactivate++;
1021 keep_locked:
1022                 unlock_page(page);
1023 keep:
1024                 list_add(&page->lru, &ret_pages);
1025                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1026         }
1027
1028         /*
1029          * Tag a zone as congested if all the dirty pages encountered were
1030          * backed by a congested BDI. In this case, reclaimers should just
1031          * back off and wait for congestion to clear because further reclaim
1032          * will encounter the same problem
1033          */
1034         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1035                 zone_set_flag(zone, ZONE_CONGESTED);
1036
1037         free_hot_cold_page_list(&free_pages, 1);
1038
1039         list_splice(&ret_pages, page_list);
1040         count_vm_events(PGACTIVATE, pgactivate);
1041         mem_cgroup_uncharge_end();
1042         *ret_nr_dirty += nr_dirty;
1043         *ret_nr_writeback += nr_writeback;
1044         return nr_reclaimed;
1045 }
1046
1047 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1048                                             struct list_head *page_list)
1049 {
1050         struct scan_control sc = {
1051                 .gfp_mask = GFP_KERNEL,
1052                 .priority = DEF_PRIORITY,
1053                 .may_unmap = 1,
1054         };
1055         unsigned long ret, dummy1, dummy2;
1056         struct page *page, *next;
1057         LIST_HEAD(clean_pages);
1058
1059         list_for_each_entry_safe(page, next, page_list, lru) {
1060                 if (page_is_file_cache(page) && !PageDirty(page) &&
1061                     !isolated_balloon_page(page)) {
1062                         ClearPageActive(page);
1063                         list_move(&page->lru, &clean_pages);
1064                 }
1065         }
1066
1067         ret = shrink_page_list(&clean_pages, zone, &sc,
1068                                 TTU_UNMAP|TTU_IGNORE_ACCESS,
1069                                 &dummy1, &dummy2, true);
1070         list_splice(&clean_pages, page_list);
1071         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1072         return ret;
1073 }
1074
1075 /*
1076  * Attempt to remove the specified page from its LRU.  Only take this page
1077  * if it is of the appropriate PageActive status.  Pages which are being
1078  * freed elsewhere are also ignored.
1079  *
1080  * page:        page to consider
1081  * mode:        one of the LRU isolation modes defined above
1082  *
1083  * returns 0 on success, -ve errno on failure.
1084  */
1085 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1086 {
1087         int ret = -EINVAL;
1088
1089         /* Only take pages on the LRU. */
1090         if (!PageLRU(page))
1091                 return ret;
1092
1093         /* Compaction should not handle unevictable pages but CMA can do so */
1094         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1095                 return ret;
1096
1097         ret = -EBUSY;
1098
1099 #ifdef CONFIG_CMA
1100         if ((mode & ISOLATE_NO_CMA) && is_cma_pageblock(page))
1101                 return ret;
1102 #endif
1103         /*
1104          * To minimise LRU disruption, the caller can indicate that it only
1105          * wants to isolate pages it will be able to operate on without
1106          * blocking - clean pages for the most part.
1107          *
1108          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1109          * is used by reclaim when it is cannot write to backing storage
1110          *
1111          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1112          * that it is possible to migrate without blocking
1113          */
1114         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1115                 /* All the caller can do on PageWriteback is block */
1116                 if (PageWriteback(page))
1117                         return ret;
1118
1119                 if (PageDirty(page)) {
1120                         struct address_space *mapping;
1121
1122                         /* ISOLATE_CLEAN means only clean pages */
1123                         if (mode & ISOLATE_CLEAN)
1124                                 return ret;
1125
1126                         /*
1127                          * Only pages without mappings or that have a
1128                          * ->migratepage callback are possible to migrate
1129                          * without blocking
1130                          */
1131                         mapping = page_mapping(page);
1132                         if (mapping && !mapping->a_ops->migratepage)
1133                                 return ret;
1134                 }
1135         }
1136
1137         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1138                 return ret;
1139
1140         if (likely(get_page_unless_zero(page))) {
1141                 /*
1142                  * Be careful not to clear PageLRU until after we're
1143                  * sure the page is not being freed elsewhere -- the
1144                  * page release code relies on it.
1145                  */
1146                 ClearPageLRU(page);
1147                 ret = 0;
1148         }
1149
1150         return ret;
1151 }
1152
1153 /*
1154  * zone->lru_lock is heavily contended.  Some of the functions that
1155  * shrink the lists perform better by taking out a batch of pages
1156  * and working on them outside the LRU lock.
1157  *
1158  * For pagecache intensive workloads, this function is the hottest
1159  * spot in the kernel (apart from copy_*_user functions).
1160  *
1161  * Appropriate locks must be held before calling this function.
1162  *
1163  * @nr_to_scan: The number of pages to look through on the list.
1164  * @lruvec:     The LRU vector to pull pages from.
1165  * @dst:        The temp list to put pages on to.
1166  * @nr_scanned: The number of pages that were scanned.
1167  * @sc:         The scan_control struct for this reclaim session
1168  * @mode:       One of the LRU isolation modes
1169  * @lru:        LRU list id for isolating
1170  *
1171  * returns how many pages were moved onto *@dst.
1172  */
1173 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1174                 struct lruvec *lruvec, struct list_head *dst,
1175                 unsigned long *nr_scanned, struct scan_control *sc,
1176                 isolate_mode_t mode, enum lru_list lru)
1177 {
1178         struct list_head *src = &lruvec->lists[lru];
1179         unsigned long nr_taken = 0;
1180         unsigned long scan;
1181
1182         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1183                 struct page *page;
1184                 int nr_pages;
1185
1186                 page = lru_to_page(src);
1187                 prefetchw_prev_lru_page(page, src, flags);
1188
1189                 VM_BUG_ON(!PageLRU(page));
1190
1191                 switch (__isolate_lru_page(page, mode)) {
1192                 case 0:
1193                         nr_pages = hpage_nr_pages(page);
1194                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1195                         list_move(&page->lru, dst);
1196                         nr_taken += nr_pages;
1197                         break;
1198
1199                 case -EBUSY:
1200                         /* else it is being freed elsewhere */
1201                         list_move(&page->lru, src);
1202                         continue;
1203
1204                 default:
1205                         BUG();
1206                 }
1207         }
1208
1209         *nr_scanned = scan;
1210         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1211                                     nr_taken, mode, is_file_lru(lru));
1212         return nr_taken;
1213 }
1214
1215 /**
1216  * isolate_lru_page - tries to isolate a page from its LRU list
1217  * @page: page to isolate from its LRU list
1218  *
1219  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1220  * vmstat statistic corresponding to whatever LRU list the page was on.
1221  *
1222  * Returns 0 if the page was removed from an LRU list.
1223  * Returns -EBUSY if the page was not on an LRU list.
1224  *
1225  * The returned page will have PageLRU() cleared.  If it was found on
1226  * the active list, it will have PageActive set.  If it was found on
1227  * the unevictable list, it will have the PageUnevictable bit set. That flag
1228  * may need to be cleared by the caller before letting the page go.
1229  *
1230  * The vmstat statistic corresponding to the list on which the page was
1231  * found will be decremented.
1232  *
1233  * Restrictions:
1234  * (1) Must be called with an elevated refcount on the page. This is a
1235  *     fundamentnal difference from isolate_lru_pages (which is called
1236  *     without a stable reference).
1237  * (2) the lru_lock must not be held.
1238  * (3) interrupts must be enabled.
1239  */
1240 int isolate_lru_page(struct page *page)
1241 {
1242         int ret = -EBUSY;
1243
1244         VM_BUG_ON(!page_count(page));
1245
1246         if (PageLRU(page)) {
1247                 struct zone *zone = page_zone(page);
1248                 struct lruvec *lruvec;
1249
1250                 spin_lock_irq(&zone->lru_lock);
1251                 lruvec = mem_cgroup_page_lruvec(page, zone);
1252                 if (PageLRU(page)) {
1253                         int lru = page_lru(page);
1254                         get_page(page);
1255                         ClearPageLRU(page);
1256                         del_page_from_lru_list(page, lruvec, lru);
1257                         ret = 0;
1258                 }
1259                 spin_unlock_irq(&zone->lru_lock);
1260         }
1261         return ret;
1262 }
1263
1264 /*
1265  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1266  * then get resheduled. When there are massive number of tasks doing page
1267  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1268  * the LRU list will go small and be scanned faster than necessary, leading to
1269  * unnecessary swapping, thrashing and OOM.
1270  */
1271 static int too_many_isolated(struct zone *zone, int file,
1272                 struct scan_control *sc)
1273 {
1274         unsigned long inactive, isolated;
1275
1276 #ifdef CONFIG_RUNTIME_COMPCACHE
1277         if (get_rtcc_status() == 1)
1278                 return 0;
1279 #endif /* CONFIG_RUNTIME_COMPCACHE */
1280
1281         if (current_is_kswapd())
1282                 return 0;
1283
1284         if (!global_reclaim(sc))
1285                 return 0;
1286
1287         if (file) {
1288                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1289                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1290         } else {
1291                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1292                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1293         }
1294
1295         /*
1296          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1297          * won't get blocked by normal direct-reclaimers, forming a circular
1298          * deadlock.
1299          */
1300         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1301                 inactive >>= 3;
1302
1303         return isolated > inactive;
1304 }
1305
1306 static noinline_for_stack void
1307 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1308 {
1309         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1310         struct zone *zone = lruvec_zone(lruvec);
1311         LIST_HEAD(pages_to_free);
1312
1313         /*
1314          * Put back any unfreeable pages.
1315          */
1316         while (!list_empty(page_list)) {
1317                 struct page *page = lru_to_page(page_list);
1318                 int lru;
1319
1320                 VM_BUG_ON(PageLRU(page));
1321                 list_del(&page->lru);
1322                 if (unlikely(!page_evictable(page))) {
1323                         spin_unlock_irq(&zone->lru_lock);
1324                         putback_lru_page(page);
1325                         spin_lock_irq(&zone->lru_lock);
1326                         continue;
1327                 }
1328
1329                 lruvec = mem_cgroup_page_lruvec(page, zone);
1330
1331                 SetPageLRU(page);
1332                 lru = page_lru(page);
1333                 add_page_to_lru_list(page, lruvec, lru);
1334
1335                 if (is_active_lru(lru)) {
1336                         int file = is_file_lru(lru);
1337                         int numpages = hpage_nr_pages(page);
1338                         reclaim_stat->recent_rotated[file] += numpages;
1339                 }
1340                 if (put_page_testzero(page)) {
1341                         __ClearPageLRU(page);
1342                         __ClearPageActive(page);
1343                         del_page_from_lru_list(page, lruvec, lru);
1344
1345                         if (unlikely(PageCompound(page))) {
1346                                 spin_unlock_irq(&zone->lru_lock);
1347                                 (*get_compound_page_dtor(page))(page);
1348                                 spin_lock_irq(&zone->lru_lock);
1349                         } else
1350                                 list_add(&page->lru, &pages_to_free);
1351                 }
1352         }
1353
1354         /*
1355          * To save our caller's stack, now use input list for pages to free.
1356          */
1357         list_splice(&pages_to_free, page_list);
1358 }
1359
1360 /*
1361  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1362  * of reclaimed pages
1363  */
1364 static noinline_for_stack unsigned long
1365 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1366                      struct scan_control *sc, enum lru_list lru)
1367 {
1368         LIST_HEAD(page_list);
1369         unsigned long nr_scanned;
1370         unsigned long nr_reclaimed = 0;
1371         unsigned long nr_taken;
1372         unsigned long nr_dirty = 0;
1373         unsigned long nr_writeback = 0;
1374         isolate_mode_t isolate_mode = 0;
1375         int file = is_file_lru(lru);
1376         struct zone *zone = lruvec_zone(lruvec);
1377         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1378
1379         while (unlikely(too_many_isolated(zone, file, sc))) {
1380                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1381
1382                 /* We are about to die and free our memory. Return now. */
1383                 if (fatal_signal_pending(current))
1384                         return SWAP_CLUSTER_MAX;
1385         }
1386
1387         lru_add_drain();
1388
1389         if (!sc->may_unmap)
1390                 isolate_mode |= ISOLATE_UNMAPPED;
1391         if (!sc->may_writepage)
1392                 isolate_mode |= ISOLATE_CLEAN;
1393 #ifdef CONFIG_CMA
1394         if (allocflags_to_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE)
1395                 isolate_mode |= ISOLATE_NO_CMA;
1396 #endif
1397
1398         spin_lock_irq(&zone->lru_lock);
1399
1400         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1401                                      &nr_scanned, sc, isolate_mode, lru);
1402
1403         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1404         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1405
1406         if (global_reclaim(sc)) {
1407                 zone->pages_scanned += nr_scanned;
1408                 if (current_is_kswapd())
1409                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1410                 else
1411                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1412         }
1413         spin_unlock_irq(&zone->lru_lock);
1414
1415         if (nr_taken == 0)
1416                 return 0;
1417
1418         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1419                                         &nr_dirty, &nr_writeback, false);
1420
1421         spin_lock_irq(&zone->lru_lock);
1422
1423         reclaim_stat->recent_scanned[file] += nr_taken;
1424
1425         if (global_reclaim(sc)) {
1426                 if (current_is_kswapd())
1427                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1428                                                nr_reclaimed);
1429                 else
1430                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1431                                                nr_reclaimed);
1432         }
1433
1434         putback_inactive_pages(lruvec, &page_list);
1435
1436         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1437
1438         spin_unlock_irq(&zone->lru_lock);
1439
1440         free_hot_cold_page_list(&page_list, 1);
1441
1442         /*
1443          * If reclaim is isolating dirty pages under writeback, it implies
1444          * that the long-lived page allocation rate is exceeding the page
1445          * laundering rate. Either the global limits are not being effective
1446          * at throttling processes due to the page distribution throughout
1447          * zones or there is heavy usage of a slow backing device. The
1448          * only option is to throttle from reclaim context which is not ideal
1449          * as there is no guarantee the dirtying process is throttled in the
1450          * same way balance_dirty_pages() manages.
1451          *
1452          * This scales the number of dirty pages that must be under writeback
1453          * before throttling depending on priority. It is a simple backoff
1454          * function that has the most effect in the range DEF_PRIORITY to
1455          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1456          * in trouble and reclaim is considered to be in trouble.
1457          *
1458          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1459          * DEF_PRIORITY-1  50% must be PageWriteback
1460          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1461          * ...
1462          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1463          *                     isolated page is PageWriteback
1464          */
1465         if (nr_writeback && nr_writeback >=
1466                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1467                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1468
1469 #ifdef CONFIG_RUNTIME_COMPCACHE
1470         if (!file) {
1471                 if (rtcc_reclaim(sc))
1472                         sc->rc->nr_swapped += nr_reclaimed;
1473                 else
1474                         nr_kswapd_swapped += nr_reclaimed;
1475         }
1476 #endif /* CONFIG_RUNTIME_COMPCACHE */
1477
1478         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1479                 zone_idx(zone),
1480                 nr_scanned, nr_reclaimed,
1481                 sc->priority,
1482                 trace_shrink_flags(file));
1483         return nr_reclaimed;
1484 }
1485
1486 /*
1487  * This moves pages from the active list to the inactive list.
1488  *
1489  * We move them the other way if the page is referenced by one or more
1490  * processes, from rmap.
1491  *
1492  * If the pages are mostly unmapped, the processing is fast and it is
1493  * appropriate to hold zone->lru_lock across the whole operation.  But if
1494  * the pages are mapped, the processing is slow (page_referenced()) so we
1495  * should drop zone->lru_lock around each page.  It's impossible to balance
1496  * this, so instead we remove the pages from the LRU while processing them.
1497  * It is safe to rely on PG_active against the non-LRU pages in here because
1498  * nobody will play with that bit on a non-LRU page.
1499  *
1500  * The downside is that we have to touch page->_count against each page.
1501  * But we had to alter page->flags anyway.
1502  */
1503
1504 static void move_active_pages_to_lru(struct lruvec *lruvec,
1505                                      struct list_head *list,
1506                                      struct list_head *pages_to_free,
1507                                      enum lru_list lru)
1508 {
1509         struct zone *zone = lruvec_zone(lruvec);
1510         unsigned long pgmoved = 0;
1511         struct page *page;
1512         int nr_pages;
1513
1514         while (!list_empty(list)) {
1515                 page = lru_to_page(list);
1516                 lruvec = mem_cgroup_page_lruvec(page, zone);
1517
1518                 VM_BUG_ON(PageLRU(page));
1519                 SetPageLRU(page);
1520
1521                 nr_pages = hpage_nr_pages(page);
1522                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1523                 list_move(&page->lru, &lruvec->lists[lru]);
1524                 pgmoved += nr_pages;
1525
1526                 if (put_page_testzero(page)) {
1527                         __ClearPageLRU(page);
1528                         __ClearPageActive(page);
1529                         del_page_from_lru_list(page, lruvec, lru);
1530
1531                         if (unlikely(PageCompound(page))) {
1532                                 spin_unlock_irq(&zone->lru_lock);
1533                                 (*get_compound_page_dtor(page))(page);
1534                                 spin_lock_irq(&zone->lru_lock);
1535                         } else
1536                                 list_add(&page->lru, pages_to_free);
1537                 }
1538         }
1539         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1540         if (!is_active_lru(lru))
1541                 __count_vm_events(PGDEACTIVATE, pgmoved);
1542 }
1543
1544 static void shrink_active_list(unsigned long nr_to_scan,
1545                                struct lruvec *lruvec,
1546                                struct scan_control *sc,
1547                                enum lru_list lru)
1548 {
1549         unsigned long nr_taken;
1550         unsigned long nr_scanned;
1551         unsigned long vm_flags;
1552         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1553         LIST_HEAD(l_active);
1554         LIST_HEAD(l_inactive);
1555         struct page *page;
1556         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1557         unsigned long nr_rotated = 0;
1558         isolate_mode_t isolate_mode = 0;
1559         int file = is_file_lru(lru);
1560         struct zone *zone = lruvec_zone(lruvec);
1561
1562         lru_add_drain();
1563
1564         if (!sc->may_unmap)
1565                 isolate_mode |= ISOLATE_UNMAPPED;
1566         if (!sc->may_writepage)
1567                 isolate_mode |= ISOLATE_CLEAN;
1568
1569         spin_lock_irq(&zone->lru_lock);
1570
1571         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1572                                      &nr_scanned, sc, isolate_mode, lru);
1573         if (global_reclaim(sc))
1574                 zone->pages_scanned += nr_scanned;
1575
1576         reclaim_stat->recent_scanned[file] += nr_taken;
1577
1578         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1579         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1580         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1581         spin_unlock_irq(&zone->lru_lock);
1582
1583         while (!list_empty(&l_hold)) {
1584                 cond_resched();
1585                 page = lru_to_page(&l_hold);
1586                 list_del(&page->lru);
1587
1588                 if (unlikely(!page_evictable(page))) {
1589                         putback_lru_page(page);
1590                         continue;
1591                 }
1592
1593                 if (unlikely(buffer_heads_over_limit)) {
1594                         if (page_has_private(page) && trylock_page(page)) {
1595                                 if (page_has_private(page))
1596                                         try_to_release_page(page, 0);
1597                                 unlock_page(page);
1598                         }
1599                 }
1600
1601                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1602                                     &vm_flags)) {
1603                         nr_rotated += hpage_nr_pages(page);
1604                         /*
1605                          * Identify referenced, file-backed active pages and
1606                          * give them one more trip around the active list. So
1607                          * that executable code get better chances to stay in
1608                          * memory under moderate memory pressure.  Anon pages
1609                          * are not likely to be evicted by use-once streaming
1610                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1611                          * so we ignore them here.
1612                          */
1613                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1614                                 list_add(&page->lru, &l_active);
1615                                 continue;
1616                         }
1617                 }
1618
1619                 ClearPageActive(page);  /* we are de-activating */
1620                 list_add(&page->lru, &l_inactive);
1621         }
1622
1623         /*
1624          * Move pages back to the lru list.
1625          */
1626         spin_lock_irq(&zone->lru_lock);
1627         /*
1628          * Count referenced pages from currently used mappings as rotated,
1629          * even though only some of them are actually re-activated.  This
1630          * helps balance scan pressure between file and anonymous pages in
1631          * get_scan_ratio.
1632          */
1633         reclaim_stat->recent_rotated[file] += nr_rotated;
1634
1635         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1636         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1637         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1638         spin_unlock_irq(&zone->lru_lock);
1639
1640         free_hot_cold_page_list(&l_hold, 1);
1641 }
1642
1643 #ifdef CONFIG_SWAP
1644 static int inactive_anon_is_low_global(struct zone *zone)
1645 {
1646         unsigned long active, inactive;
1647
1648         active = zone_page_state(zone, NR_ACTIVE_ANON);
1649         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1650
1651         if (inactive * zone->inactive_ratio < active)
1652                 return 1;
1653
1654         return 0;
1655 }
1656
1657 /**
1658  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1659  * @lruvec: LRU vector to check
1660  *
1661  * Returns true if the zone does not have enough inactive anon pages,
1662  * meaning some active anon pages need to be deactivated.
1663  */
1664 static int inactive_anon_is_low(struct lruvec *lruvec)
1665 {
1666         /*
1667          * If we don't have swap space, anonymous page deactivation
1668          * is pointless.
1669          */
1670         if (!total_swap_pages)
1671                 return 0;
1672
1673         if (!mem_cgroup_disabled())
1674                 return mem_cgroup_inactive_anon_is_low(lruvec);
1675
1676         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1677 }
1678 #else
1679 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1680 {
1681         return 0;
1682 }
1683 #endif
1684
1685 /**
1686  * inactive_file_is_low - check if file pages need to be deactivated
1687  * @lruvec: LRU vector to check
1688  *
1689  * When the system is doing streaming IO, memory pressure here
1690  * ensures that active file pages get deactivated, until more
1691  * than half of the file pages are on the inactive list.
1692  *
1693  * Once we get to that situation, protect the system's working
1694  * set from being evicted by disabling active file page aging.
1695  *
1696  * This uses a different ratio than the anonymous pages, because
1697  * the page cache uses a use-once replacement algorithm.
1698  */
1699 static int inactive_file_is_low(struct lruvec *lruvec)
1700 {
1701         unsigned long inactive;
1702         unsigned long active;
1703
1704         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1705         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1706
1707         return active > inactive;
1708 }
1709
1710 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1711 {
1712         if (is_file_lru(lru))
1713                 return inactive_file_is_low(lruvec);
1714         else
1715                 return inactive_anon_is_low(lruvec);
1716 }
1717
1718 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1719                                  struct lruvec *lruvec, struct scan_control *sc)
1720 {
1721         if (is_active_lru(lru)) {
1722                 if (inactive_list_is_low(lruvec, lru))
1723                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1724                 return 0;
1725         }
1726
1727         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1728 }
1729
1730 static int vmscan_swappiness(struct scan_control *sc)
1731 {
1732 #ifdef CONFIG_RUNTIME_COMPCACHE
1733         if (rtcc_reclaim(sc))
1734                 return sc->rc->swappiness;
1735 #endif /* CONFIG_RUNTIME_COMPCACHE */
1736         if (global_reclaim(sc))
1737                 return vm_swappiness;
1738         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1739 }
1740
1741 enum scan_balance {
1742         SCAN_EQUAL,
1743         SCAN_FRACT,
1744         SCAN_ANON,
1745         SCAN_FILE,
1746 };
1747
1748 /*
1749  * Determine how aggressively the anon and file LRU lists should be
1750  * scanned.  The relative value of each set of LRU lists is determined
1751  * by looking at the fraction of the pages scanned we did rotate back
1752  * onto the active list instead of evict.
1753  *
1754  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1755  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1756  */
1757 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1758                            unsigned long *nr)
1759 {
1760         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1761         u64 fraction[2];
1762         u64 denominator = 0;    /* gcc */
1763         struct zone *zone = lruvec_zone(lruvec);
1764         unsigned long anon_prio, file_prio;
1765         enum scan_balance scan_balance;
1766         unsigned long anon, file, free;
1767         bool force_scan = false;
1768         unsigned long ap, fp;
1769         enum lru_list lru;
1770
1771         /*
1772          * If the zone or memcg is small, nr[l] can be 0.  This
1773          * results in no scanning on this priority and a potential
1774          * priority drop.  Global direct reclaim can go to the next
1775          * zone and tends to have no problems. Global kswapd is for
1776          * zone balancing and it needs to scan a minimum amount. When
1777          * reclaiming for a memcg, a priority drop can cause high
1778          * latencies, so it's better to scan a minimum amount there as
1779          * well.
1780          */
1781         if (current_is_kswapd() && !zone_reclaimable(zone))
1782                 force_scan = true;
1783         if (!global_reclaim(sc))
1784                 force_scan = true;
1785
1786         /* If we have no swap space, do not bother scanning anon pages. */
1787         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1788                 scan_balance = SCAN_FILE;
1789                 goto out;
1790         }
1791
1792         /*
1793          * Global reclaim will swap to prevent OOM even with no
1794          * swappiness, but memcg users want to use this knob to
1795          * disable swapping for individual groups completely when
1796          * using the memory controller's swap limit feature would be
1797          * too expensive.
1798          */
1799         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1800                 scan_balance = SCAN_FILE;
1801                 goto out;
1802         }
1803
1804         /*
1805          * Do not apply any pressure balancing cleverness when the
1806          * system is close to OOM, scan both anon and file equally
1807          * (unless the swappiness setting disagrees with swapping).
1808          */
1809         if (!sc->priority && vmscan_swappiness(sc)) {
1810                 scan_balance = SCAN_EQUAL;
1811                 goto out;
1812         }
1813
1814         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1815                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1816         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1817                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1818
1819         /*
1820          * If it's foreseeable that reclaiming the file cache won't be
1821          * enough to get the zone back into a desirable shape, we have
1822          * to swap.  Better start now and leave the - probably heavily
1823          * thrashing - remaining file pages alone.
1824          */
1825         if (global_reclaim(sc)) {
1826                 free = zone_page_state(zone, NR_FREE_PAGES);
1827                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1828                         scan_balance = SCAN_ANON;
1829                         goto out;
1830                 }
1831         }
1832
1833         /*
1834          * There is enough inactive page cache, do not reclaim
1835          * anything from the anonymous working set right now.
1836          */
1837         if (!IS_ENABLED(CONFIG_ZRAM) &&
1838                         !inactive_file_is_low(lruvec)) {
1839                 scan_balance = SCAN_FILE;
1840                 goto out;
1841         }
1842
1843         scan_balance = SCAN_FRACT;
1844
1845         /*
1846          * With swappiness at 100, anonymous and file have the same priority.
1847          * This scanning priority is essentially the inverse of IO cost.
1848          */
1849 #if defined(CONFIG_ZRAM) && defined(CONFIG_RUNTIME_COMPCACHE)
1850         if (rtcc_reclaim(sc)) {
1851                 anon_prio = vmscan_swappiness(sc);
1852                 file_prio = 200 - anon_prio;
1853         } else {
1854                 anon_prio = (vmscan_swappiness(sc) * anon) / (anon + file + 1);
1855                 file_prio = (200 - vmscan_swappiness(sc)) * file / (anon + file + 1);
1856         }
1857 #else
1858         anon_prio = vmscan_swappiness(sc);
1859         file_prio = 200 - anon_prio;
1860 #endif
1861         /*
1862          * OK, so we have swap space and a fair amount of page cache
1863          * pages.  We use the recently rotated / recently scanned
1864          * ratios to determine how valuable each cache is.
1865          *
1866          * Because workloads change over time (and to avoid overflow)
1867          * we keep these statistics as a floating average, which ends
1868          * up weighing recent references more than old ones.
1869          *
1870          * anon in [0], file in [1]
1871          */
1872         spin_lock_irq(&zone->lru_lock);
1873         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1874                 reclaim_stat->recent_scanned[0] /= 2;
1875                 reclaim_stat->recent_rotated[0] /= 2;
1876         }
1877
1878         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1879                 reclaim_stat->recent_scanned[1] /= 2;
1880                 reclaim_stat->recent_rotated[1] /= 2;
1881         }
1882
1883         /*
1884          * The amount of pressure on anon vs file pages is inversely
1885          * proportional to the fraction of recently scanned pages on
1886          * each list that were recently referenced and in active use.
1887          */
1888         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1889         ap /= reclaim_stat->recent_rotated[0] + 1;
1890
1891         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1892         fp /= reclaim_stat->recent_rotated[1] + 1;
1893         spin_unlock_irq(&zone->lru_lock);
1894
1895         fraction[0] = ap;
1896         fraction[1] = fp;
1897         denominator = ap + fp + 1;
1898 out:
1899         for_each_evictable_lru(lru) {
1900                 int file = is_file_lru(lru);
1901                 unsigned long size;
1902                 unsigned long scan;
1903
1904                 size = get_lru_size(lruvec, lru);
1905                 scan = size >> sc->priority;
1906
1907                 if (!scan && force_scan)
1908                         scan = min(size, SWAP_CLUSTER_MAX);
1909
1910                 switch (scan_balance) {
1911                 case SCAN_EQUAL:
1912                         /* Scan lists relative to size */
1913                         break;
1914                 case SCAN_FRACT:
1915                         /*
1916                          * Scan types proportional to swappiness and
1917                          * their relative recent reclaim efficiency.
1918                          */
1919                         scan = div64_u64(scan * fraction[file], denominator);
1920                         break;
1921                 case SCAN_FILE:
1922                 case SCAN_ANON:
1923                         /* Scan one type exclusively */
1924                         if ((scan_balance == SCAN_FILE) != file)
1925                                 scan = 0;
1926                         break;
1927                 default:
1928                         /* Look ma, no brain */
1929                         BUG();
1930                 }
1931                 nr[lru] = scan;
1932         }
1933 }
1934
1935 #ifdef CONFIG_RUNTIME_COMPCACHE
1936 /* reserve 512 pages when allocate memory for swap */
1937 static int swap_reserve = 512;
1938 module_param_named(swap_reserve, swap_reserve, int, S_IRUGO | S_IWUSR);
1939 #endif
1940
1941 /*
1942  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1943  */
1944 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1945 {
1946         unsigned long nr[NR_LRU_LISTS];
1947         unsigned long nr_to_scan;
1948         enum lru_list lru;
1949         unsigned long nr_reclaimed = 0;
1950         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1951         struct blk_plug plug;
1952 #ifdef CONFIG_RUNTIME_COMPCACHE
1953         struct rtcc_control *rc = sc->rc;
1954         unsigned long mem_available;
1955         struct zone *zone = lruvec_zone(lruvec);
1956         unsigned long file_pages;
1957 #endif /* CONFIG_RUNTIME_COMPCACHE */
1958
1959         get_scan_count(lruvec, sc, nr);
1960
1961         blk_start_plug(&plug);
1962         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1963                                         nr[LRU_INACTIVE_FILE]) {
1964 #ifdef CONFIG_RUNTIME_COMPCACHE
1965                 if (rtcc_reclaim(sc)) {
1966                         if (rc->nr_swapped >= rc->nr_anon)
1967                                 nr[LRU_INACTIVE_ANON] = nr[LRU_ACTIVE_ANON] = 0;
1968
1969                         if ((sc->nr_reclaimed + nr_reclaimed - rc->nr_swapped) >= rc->nr_file)
1970                                 nr[LRU_INACTIVE_FILE] = nr[LRU_ACTIVE_FILE] = 0;
1971                 }
1972                 /* Stop swap out when there are not enough available memory */
1973                 mem_available = global_page_state(NR_FREE_PAGES) - global_page_state(NR_FREE_CMA_PAGES);
1974                 if(mem_available < swap_reserve)
1975                         nr[LRU_INACTIVE_ANON] = nr[LRU_ACTIVE_ANON] = 0;
1976
1977                 /* Stop dropping file caches when there are too little left */
1978                 file_pages = global_page_state(NR_ACTIVE_FILE) + global_page_state(NR_INACTIVE_FILE);
1979                 if(file_pages < min_wmark_pages(zone))
1980                         nr[LRU_INACTIVE_FILE] = nr[LRU_ACTIVE_FILE] = 0;
1981 #endif /* CONFIG_RUNTIME_COMPCACHE */
1982
1983                 for_each_evictable_lru(lru) {
1984                         if (nr[lru]) {
1985                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1986                                 nr[lru] -= nr_to_scan;
1987
1988                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1989                                                             lruvec, sc);
1990                         }
1991                 }
1992                 /*
1993                  * On large memory systems, scan >> priority can become
1994                  * really large. This is fine for the starting priority;
1995                  * we want to put equal scanning pressure on each zone.
1996                  * However, if the VM has a harder time of freeing pages,
1997                  * with multiple processes reclaiming pages, the total
1998                  * freeing target can get unreasonably large.
1999                  */
2000                 if (nr_reclaimed >= nr_to_reclaim &&
2001                     sc->priority < DEF_PRIORITY)
2002                         break;
2003         }
2004         blk_finish_plug(&plug);
2005         sc->nr_reclaimed += nr_reclaimed;
2006
2007         /*
2008          * Even if we did not try to evict anon pages at all, we want to
2009          * rebalance the anon lru active/inactive ratio.
2010          */
2011         if (inactive_anon_is_low(lruvec))
2012                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2013                                    sc, LRU_ACTIVE_ANON);
2014
2015         throttle_vm_writeout(sc->gfp_mask);
2016 }
2017
2018 /* Use reclaim/compaction for costly allocs or under memory pressure */
2019 static bool in_reclaim_compaction(struct scan_control *sc)
2020 {
2021         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2022                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2023                          sc->priority < DEF_PRIORITY - 2))
2024                 return true;
2025
2026         return false;
2027 }
2028
2029 /*
2030  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2031  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2032  * true if more pages should be reclaimed such that when the page allocator
2033  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2034  * It will give up earlier than that if there is difficulty reclaiming pages.
2035  */
2036 static inline bool should_continue_reclaim(struct zone *zone,
2037                                         unsigned long nr_reclaimed,
2038                                         unsigned long nr_scanned,
2039                                         struct scan_control *sc)
2040 {
2041         unsigned long pages_for_compaction;
2042         unsigned long inactive_lru_pages;
2043
2044         /* If not in reclaim/compaction mode, stop */
2045         if (!in_reclaim_compaction(sc))
2046                 return false;
2047
2048         /* Consider stopping depending on scan and reclaim activity */
2049         if (sc->gfp_mask & __GFP_REPEAT) {
2050                 /*
2051                  * For __GFP_REPEAT allocations, stop reclaiming if the
2052                  * full LRU list has been scanned and we are still failing
2053                  * to reclaim pages. This full LRU scan is potentially
2054                  * expensive but a __GFP_REPEAT caller really wants to succeed
2055                  */
2056                 if (!nr_reclaimed && !nr_scanned)
2057                         return false;
2058         } else {
2059                 /*
2060                  * For non-__GFP_REPEAT allocations which can presumably
2061                  * fail without consequence, stop if we failed to reclaim
2062                  * any pages from the last SWAP_CLUSTER_MAX number of
2063                  * pages that were scanned. This will return to the
2064                  * caller faster at the risk reclaim/compaction and
2065                  * the resulting allocation attempt fails
2066                  */
2067                 if (!nr_reclaimed)
2068                         return false;
2069         }
2070
2071         /*
2072          * If we have not reclaimed enough pages for compaction and the
2073          * inactive lists are large enough, continue reclaiming
2074          */
2075         pages_for_compaction = (2UL << sc->order);
2076         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2077         if (get_nr_swap_pages() > 0)
2078                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2079         if (sc->nr_reclaimed < pages_for_compaction &&
2080                         inactive_lru_pages > pages_for_compaction)
2081                 return true;
2082
2083         /* If compaction would go ahead or the allocation would succeed, stop */
2084         switch (compaction_suitable(zone, sc->order)) {
2085         case COMPACT_PARTIAL:
2086         case COMPACT_CONTINUE:
2087                 return false;
2088         default:
2089                 return true;
2090         }
2091 }
2092
2093 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2094 {
2095         unsigned long nr_reclaimed, nr_scanned;
2096
2097         do {
2098                 struct mem_cgroup *root = sc->target_mem_cgroup;
2099                 struct mem_cgroup_reclaim_cookie reclaim = {
2100                         .zone = zone,
2101                         .priority = sc->priority,
2102                 };
2103                 struct mem_cgroup *memcg;
2104
2105                 nr_reclaimed = sc->nr_reclaimed;
2106                 nr_scanned = sc->nr_scanned;
2107
2108                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2109                 do {
2110                         struct lruvec *lruvec;
2111
2112                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2113
2114                         shrink_lruvec(lruvec, sc);
2115
2116                         /*
2117                          * Direct reclaim and kswapd have to scan all memory
2118                          * cgroups to fulfill the overall scan target for the
2119                          * zone.
2120                          *
2121                          * Limit reclaim, on the other hand, only cares about
2122                          * nr_to_reclaim pages to be reclaimed and it will
2123                          * retry with decreasing priority if one round over the
2124                          * whole hierarchy is not sufficient.
2125                          */
2126                         if (!global_reclaim(sc) &&
2127                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2128                                 mem_cgroup_iter_break(root, memcg);
2129                                 break;
2130                         }
2131                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2132                 } while (memcg);
2133
2134                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2135                            sc->nr_scanned - nr_scanned,
2136                            sc->nr_reclaimed - nr_reclaimed);
2137
2138         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2139                                          sc->nr_scanned - nr_scanned, sc));
2140 }
2141
2142 /* Returns true if compaction should go ahead for a high-order request */
2143 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2144 {
2145         unsigned long balance_gap, watermark;
2146         bool watermark_ok;
2147
2148         /* Do not consider compaction for orders reclaim is meant to satisfy */
2149         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2150                 return false;
2151
2152         /*
2153          * Compaction takes time to run and there are potentially other
2154          * callers using the pages just freed. Continue reclaiming until
2155          * there is a buffer of free pages available to give compaction
2156          * a reasonable chance of completing and allocating the page
2157          */
2158         balance_gap = min(low_wmark_pages(zone),
2159                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2160                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2161         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2162         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2163
2164         /*
2165          * If compaction is deferred, reclaim up to a point where
2166          * compaction will have a chance of success when re-enabled
2167          */
2168         if (compaction_deferred(zone, sc->order))
2169                 return watermark_ok;
2170
2171         /* If compaction is not ready to start, keep reclaiming */
2172         if (!compaction_suitable(zone, sc->order))
2173                 return false;
2174
2175         return watermark_ok;
2176 }
2177
2178 /*
2179  * This is the direct reclaim path, for page-allocating processes.  We only
2180  * try to reclaim pages from zones which will satisfy the caller's allocation
2181  * request.
2182  *
2183  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2184  * Because:
2185  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2186  *    allocation or
2187  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2188  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2189  *    zone defense algorithm.
2190  *
2191  * If a zone is deemed to be full of pinned pages then just give it a light
2192  * scan then give up on it.
2193  *
2194  * This function returns true if a zone is being reclaimed for a costly
2195  * high-order allocation and compaction is ready to begin. This indicates to
2196  * the caller that it should consider retrying the allocation instead of
2197  * further reclaim.
2198  */
2199 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2200 {
2201         struct zoneref *z;
2202         struct zone *zone;
2203         unsigned long nr_soft_reclaimed;
2204         unsigned long nr_soft_scanned;
2205         bool aborted_reclaim = false;
2206
2207         /*
2208          * If the number of buffer_heads in the machine exceeds the maximum
2209          * allowed level, force direct reclaim to scan the highmem zone as
2210          * highmem pages could be pinning lowmem pages storing buffer_heads
2211          */
2212         if (buffer_heads_over_limit)
2213                 sc->gfp_mask |= __GFP_HIGHMEM;
2214
2215         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2216                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2217                 if (!populated_zone(zone))
2218                         continue;
2219                 /*
2220                  * Take care memory controller reclaiming has small influence
2221                  * to global LRU.
2222                  */
2223                 if (global_reclaim(sc)) {
2224                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2225                                 continue;
2226                         if (sc->priority != DEF_PRIORITY &&
2227                             !zone_reclaimable(zone))
2228                                 continue;       /* Let kswapd poll it */
2229                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2230                                 /*
2231                                  * If we already have plenty of memory free for
2232                                  * compaction in this zone, don't free any more.
2233                                  * Even though compaction is invoked for any
2234                                  * non-zero order, only frequent costly order
2235                                  * reclamation is disruptive enough to become a
2236                                  * noticeable problem, like transparent huge
2237                                  * page allocations.
2238                                  */
2239                                 if (compaction_ready(zone, sc)) {
2240                                         aborted_reclaim = true;
2241                                         continue;
2242                                 }
2243                         }
2244                         /*
2245                          * This steals pages from memory cgroups over softlimit
2246                          * and returns the number of reclaimed pages and
2247                          * scanned pages. This works for global memory pressure
2248                          * and balancing, not for a memcg's limit.
2249                          */
2250                         nr_soft_scanned = 0;
2251                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2252                                                 sc->order, sc->gfp_mask,
2253                                                 &nr_soft_scanned);
2254                         sc->nr_reclaimed += nr_soft_reclaimed;
2255                         sc->nr_scanned += nr_soft_scanned;
2256                         /* need some check for avoid more shrink_zone() */
2257                 }
2258
2259                 shrink_zone(zone, sc);
2260         }
2261
2262         return aborted_reclaim;
2263 }
2264
2265 /* All zones in zonelist are unreclaimable? */
2266 static bool all_unreclaimable(struct zonelist *zonelist,
2267                 struct scan_control *sc)
2268 {
2269         struct zoneref *z;
2270         struct zone *zone;
2271
2272         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2273                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2274                 if (!populated_zone(zone))
2275                         continue;
2276                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2277                         continue;
2278                 if (zone_reclaimable(zone))
2279                         return false;
2280         }
2281
2282         return true;
2283 }
2284
2285 /*
2286  * This is the main entry point to direct page reclaim.
2287  *
2288  * If a full scan of the inactive list fails to free enough memory then we
2289  * are "out of memory" and something needs to be killed.
2290  *
2291  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2292  * high - the zone may be full of dirty or under-writeback pages, which this
2293  * caller can't do much about.  We kick the writeback threads and take explicit
2294  * naps in the hope that some of these pages can be written.  But if the
2295  * allocating task holds filesystem locks which prevent writeout this might not
2296  * work, and the allocation attempt will fail.
2297  *
2298  * returns:     0, if no pages reclaimed
2299  *              else, the number of pages reclaimed
2300  */
2301 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2302                                         struct scan_control *sc,
2303                                         struct shrink_control *shrink)
2304 {
2305         unsigned long total_scanned = 0;
2306         struct reclaim_state *reclaim_state = current->reclaim_state;
2307         struct zoneref *z;
2308         struct zone *zone;
2309         unsigned long writeback_threshold;
2310         bool aborted_reclaim;
2311
2312         delayacct_freepages_start();
2313
2314         if (global_reclaim(sc))
2315                 count_vm_event(ALLOCSTALL);
2316
2317         do {
2318                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2319                                 sc->priority);
2320                 sc->nr_scanned = 0;
2321                 aborted_reclaim = shrink_zones(zonelist, sc);
2322
2323                 /*
2324                  * Don't shrink slabs when reclaiming memory from
2325                  * over limit cgroups
2326                  */
2327                 if (global_reclaim(sc)) {
2328                         unsigned long lru_pages = 0;
2329                         for_each_zone_zonelist(zone, z, zonelist,
2330                                         gfp_zone(sc->gfp_mask)) {
2331                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2332                                         continue;
2333
2334                                 lru_pages += zone_reclaimable_pages(zone);
2335                         }
2336
2337                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2338                         if (reclaim_state) {
2339                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2340                                 reclaim_state->reclaimed_slab = 0;
2341                         }
2342                 }
2343                 total_scanned += sc->nr_scanned;
2344                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2345                         goto out;
2346
2347                 /*
2348                  * If we're getting trouble reclaiming, start doing
2349                  * writepage even in laptop mode.
2350                  */
2351                 if (sc->priority < DEF_PRIORITY - 2)
2352                         sc->may_writepage = 1;
2353
2354                 /*
2355                  * Try to write back as many pages as we just scanned.  This
2356                  * tends to cause slow streaming writers to write data to the
2357                  * disk smoothly, at the dirtying rate, which is nice.   But
2358                  * that's undesirable in laptop mode, where we *want* lumpy
2359                  * writeout.  So in laptop mode, write out the whole world.
2360                  */
2361                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2362                 if (total_scanned > writeback_threshold) {
2363                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2364                                                 WB_REASON_TRY_TO_FREE_PAGES);
2365                         sc->may_writepage = 1;
2366                 }
2367
2368                 /* Take a nap, wait for some writeback to complete */
2369                 if (!sc->hibernation_mode && sc->nr_scanned &&
2370                     sc->priority < DEF_PRIORITY - 2) {
2371                         struct zone *preferred_zone;
2372
2373                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2374                                                 &cpuset_current_mems_allowed,
2375                                                 &preferred_zone);
2376                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2377                 }
2378         } while (--sc->priority >= 0);
2379
2380 out:
2381         delayacct_freepages_end();
2382
2383         if (sc->nr_reclaimed)
2384                 return sc->nr_reclaimed;
2385
2386         /*
2387          * As hibernation is going on, kswapd is freezed so that it can't mark
2388          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2389          * check.
2390          */
2391         if (oom_killer_disabled)
2392                 return 0;
2393
2394         /* Aborted reclaim to try compaction? don't OOM, then */
2395         if (aborted_reclaim)
2396                 return 1;
2397
2398         /* top priority shrink_zones still had more to do? don't OOM, then */
2399         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2400                 return 1;
2401
2402         return 0;
2403 }
2404
2405 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2406 {
2407         struct zone *zone;
2408         unsigned long pfmemalloc_reserve = 0;
2409         unsigned long free_pages = 0;
2410         int i;
2411         bool wmark_ok;
2412
2413         for (i = 0; i <= ZONE_NORMAL; i++) {
2414                 zone = &pgdat->node_zones[i];
2415                 if (!populated_zone(zone))
2416                         continue;
2417
2418                 pfmemalloc_reserve += min_wmark_pages(zone);
2419                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2420         }
2421
2422         /* If there are no reserves (unexpected config) then do not throttle */
2423         if (!pfmemalloc_reserve)
2424                 return true;
2425
2426         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2427
2428         /* kswapd must be awake if processes are being throttled */
2429         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2430                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2431                                                 (enum zone_type)ZONE_NORMAL);
2432                 wake_up_interruptible(&pgdat->kswapd_wait);
2433         }
2434
2435         return wmark_ok;
2436 }
2437
2438 /*
2439  * Throttle direct reclaimers if backing storage is backed by the network
2440  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2441  * depleted. kswapd will continue to make progress and wake the processes
2442  * when the low watermark is reached.
2443  *
2444  * Returns true if a fatal signal was delivered during throttling. If this
2445  * happens, the page allocator should not consider triggering the OOM killer.
2446  */
2447 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2448                                         nodemask_t *nodemask)
2449 {
2450         struct zoneref *z;
2451         struct zone *zone;
2452         pg_data_t *pgdat = NULL;
2453
2454         /*
2455          * Kernel threads should not be throttled as they may be indirectly
2456          * responsible for cleaning pages necessary for reclaim to make forward
2457          * progress. kjournald for example may enter direct reclaim while
2458          * committing a transaction where throttling it could forcing other
2459          * processes to block on log_wait_commit().
2460          */
2461         if (current->flags & PF_KTHREAD)
2462                 goto out;
2463
2464         /*
2465          * If a fatal signal is pending, this process should not throttle.
2466          * It should return quickly so it can exit and free its memory
2467          */
2468         if (fatal_signal_pending(current))
2469                 goto out;
2470
2471         /*
2472          * Check if the pfmemalloc reserves are ok by finding the first node
2473          * with a usable ZONE_NORMAL or lower zone. The expectation is that
2474          * GFP_KERNEL will be required for allocating network buffers when
2475          * swapping over the network so ZONE_HIGHMEM is unusable.
2476          *
2477          * Throttling is based on the first usable node and throttled processes
2478          * wait on a queue until kswapd makes progress and wakes them. There
2479          * is an affinity then between processes waking up and where reclaim
2480          * progress has been made assuming the process wakes on the same node.
2481          * More importantly, processes running on remote nodes will not compete
2482          * for remote pfmemalloc reserves and processes on different nodes
2483          * should make reasonable progress.
2484          */
2485         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2486                                         gfp_mask, nodemask) {
2487                 if (zone_idx(zone) > ZONE_NORMAL)
2488                         continue;
2489
2490                 /* Throttle based on the first usable node */
2491                 pgdat = zone->zone_pgdat;
2492                 if (pfmemalloc_watermark_ok(pgdat))
2493                         goto out;
2494                 break;
2495         }
2496
2497         /* If no zone was usable by the allocation flags then do not throttle */
2498         if (!pgdat)
2499                 goto out;
2500
2501         /* Account for the throttling */
2502         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2503
2504         /*
2505          * If the caller cannot enter the filesystem, it's possible that it
2506          * is due to the caller holding an FS lock or performing a journal
2507          * transaction in the case of a filesystem like ext[3|4]. In this case,
2508          * it is not safe to block on pfmemalloc_wait as kswapd could be
2509          * blocked waiting on the same lock. Instead, throttle for up to a
2510          * second before continuing.
2511          */
2512         if (!(gfp_mask & __GFP_FS)) {
2513                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2514                         pfmemalloc_watermark_ok(pgdat), HZ);
2515
2516                 goto check_pending;
2517         }
2518
2519         /* Throttle until kswapd wakes the process */
2520         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2521                 pfmemalloc_watermark_ok(pgdat));
2522
2523 check_pending:
2524         if (fatal_signal_pending(current))
2525                 return true;
2526
2527 out:
2528         return false;
2529 }
2530
2531 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2532                                 gfp_t gfp_mask, nodemask_t *nodemask)
2533 {
2534         unsigned long nr_reclaimed;
2535         struct scan_control sc = {
2536                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2537                 .may_writepage = !laptop_mode,
2538                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2539                 .may_unmap = 1,
2540 #ifdef CONFIG_RUNTIME_COMPCACHE
2541                 .may_swap = 0,
2542 #else
2543                 .may_swap = 1,
2544 #endif /* CONFIG_RUNTIME_COMPCACHE */
2545                 .order = order,
2546                 .priority = DEF_PRIORITY,
2547                 .target_mem_cgroup = NULL,
2548                 .nodemask = nodemask,
2549         };
2550         struct shrink_control shrink = {
2551                 .gfp_mask = sc.gfp_mask,
2552         };
2553
2554         /*
2555          * Do not enter reclaim if fatal signal was delivered while throttled.
2556          * 1 is returned so that the page allocator does not OOM kill at this
2557          * point.
2558          */
2559         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2560                 return 1;
2561
2562         trace_mm_vmscan_direct_reclaim_begin(order,
2563                                 sc.may_writepage,
2564                                 gfp_mask);
2565
2566         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2567
2568         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2569
2570         return nr_reclaimed;
2571 }
2572
2573 #ifdef CONFIG_MEMCG
2574
2575 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2576                                                 gfp_t gfp_mask, bool noswap,
2577                                                 struct zone *zone,
2578                                                 unsigned long *nr_scanned)
2579 {
2580         struct scan_control sc = {
2581                 .nr_scanned = 0,
2582                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2583                 .may_writepage = !laptop_mode,
2584                 .may_unmap = 1,
2585                 .may_swap = !noswap,
2586                 .order = 0,
2587                 .priority = 0,
2588                 .target_mem_cgroup = memcg,
2589         };
2590         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2591
2592         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2593                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2594
2595         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2596                                                       sc.may_writepage,
2597                                                       sc.gfp_mask);
2598
2599         /*
2600          * NOTE: Although we can get the priority field, using it
2601          * here is not a good idea, since it limits the pages we can scan.
2602          * if we don't reclaim here, the shrink_zone from balance_pgdat
2603          * will pick up pages from other mem cgroup's as well. We hack
2604          * the priority and make it zero.
2605          */
2606         shrink_lruvec(lruvec, &sc);
2607
2608         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2609
2610         *nr_scanned = sc.nr_scanned;
2611         return sc.nr_reclaimed;
2612 }
2613
2614 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2615                                            gfp_t gfp_mask,
2616                                            bool noswap)
2617 {
2618         struct zonelist *zonelist;
2619         unsigned long nr_reclaimed;
2620         int nid;
2621         struct scan_control sc = {
2622                 .may_writepage = !laptop_mode,
2623                 .may_unmap = 1,
2624                 .may_swap = !noswap,
2625                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2626                 .order = 0,
2627                 .priority = DEF_PRIORITY,
2628                 .target_mem_cgroup = memcg,
2629                 .nodemask = NULL, /* we don't care the placement */
2630                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2631                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2632         };
2633         struct shrink_control shrink = {
2634                 .gfp_mask = sc.gfp_mask,
2635         };
2636
2637         /*
2638          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2639          * take care of from where we get pages. So the node where we start the
2640          * scan does not need to be the current node.
2641          */
2642         nid = mem_cgroup_select_victim_node(memcg);
2643
2644         zonelist = NODE_DATA(nid)->node_zonelists;
2645
2646         trace_mm_vmscan_memcg_reclaim_begin(0,
2647                                             sc.may_writepage,
2648                                             sc.gfp_mask);
2649
2650         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2651
2652         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2653
2654         return nr_reclaimed;
2655 }
2656 #endif
2657
2658 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2659 {
2660         struct mem_cgroup *memcg;
2661
2662         if (!total_swap_pages)
2663                 return;
2664
2665         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2666         do {
2667                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2668
2669                 if (inactive_anon_is_low(lruvec))
2670                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2671                                            sc, LRU_ACTIVE_ANON);
2672
2673                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2674         } while (memcg);
2675 }
2676
2677 static bool zone_balanced(struct zone *zone, int order,
2678                           unsigned long balance_gap, int classzone_idx)
2679 {
2680         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2681                                     balance_gap, classzone_idx, 0))
2682                 return false;
2683
2684         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2685             !compaction_suitable(zone, order))
2686                 return false;
2687
2688         return true;
2689 }
2690
2691 /*
2692  * pgdat_balanced() is used when checking if a node is balanced.
2693  *
2694  * For order-0, all zones must be balanced!
2695  *
2696  * For high-order allocations only zones that meet watermarks and are in a
2697  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2698  * total of balanced pages must be at least 25% of the zones allowed by
2699  * classzone_idx for the node to be considered balanced. Forcing all zones to
2700  * be balanced for high orders can cause excessive reclaim when there are
2701  * imbalanced zones.
2702  * The choice of 25% is due to
2703  *   o a 16M DMA zone that is balanced will not balance a zone on any
2704  *     reasonable sized machine
2705  *   o On all other machines, the top zone must be at least a reasonable
2706  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2707  *     would need to be at least 256M for it to be balance a whole node.
2708  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2709  *     to balance a node on its own. These seemed like reasonable ratios.
2710  */
2711 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2712 {
2713         unsigned long managed_pages = 0;
2714         unsigned long balanced_pages = 0;
2715         int i;
2716
2717         /* Check the watermark levels */
2718         for (i = 0; i <= classzone_idx; i++) {
2719                 struct zone *zone = pgdat->node_zones + i;
2720
2721                 if (!populated_zone(zone))
2722                         continue;
2723
2724                 managed_pages += zone->managed_pages;
2725
2726                 /*
2727                  * A special case here:
2728                  *
2729                  * balance_pgdat() skips over all_unreclaimable after
2730                  * DEF_PRIORITY. Effectively, it considers them balanced so
2731                  * they must be considered balanced here as well!
2732                  */
2733                 if (!zone_reclaimable(zone)) {
2734                         balanced_pages += zone->managed_pages;
2735                         continue;
2736                 }
2737
2738                 if (zone_balanced(zone, order, 0, i))
2739                         balanced_pages += zone->managed_pages;
2740                 else if (!order)
2741                         return false;
2742         }
2743
2744         if (order)
2745                 return balanced_pages >= (managed_pages >> 2);
2746         else
2747                 return true;
2748 }
2749
2750 /*
2751  * Prepare kswapd for sleeping. This verifies that there are no processes
2752  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2753  *
2754  * Returns true if kswapd is ready to sleep
2755  */
2756 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2757                                         int classzone_idx)
2758 {
2759         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2760         if (remaining)
2761                 return false;
2762
2763         /*
2764          * The throttled processes are normally woken up in balance_pgdat() as
2765          * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2766          * race between when kswapd checks the watermarks and a process gets
2767          * throttled. There is also a potential race if processes get
2768          * throttled, kswapd wakes, a large process exits thereby balancing the
2769          * zones, which causes kswapd to exit balance_pgdat() before reaching
2770          * the wake up checks. If kswapd is going to sleep, no process should
2771          * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2772          * the wake up is premature, processes will wake kswapd and get
2773          * throttled again. The difference from wake ups in balance_pgdat() is
2774          * that here we are under prepare_to_wait().
2775          */
2776         if (waitqueue_active(&pgdat->pfmemalloc_wait))
2777                 wake_up_all(&pgdat->pfmemalloc_wait);
2778
2779         return pgdat_balanced(pgdat, order, classzone_idx);
2780 }
2781
2782 /*
2783  * For kswapd, balance_pgdat() will work across all this node's zones until
2784  * they are all at high_wmark_pages(zone).
2785  *
2786  * Returns the final order kswapd was reclaiming at
2787  *
2788  * There is special handling here for zones which are full of pinned pages.
2789  * This can happen if the pages are all mlocked, or if they are all used by
2790  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2791  * What we do is to detect the case where all pages in the zone have been
2792  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2793  * dead and from now on, only perform a short scan.  Basically we're polling
2794  * the zone for when the problem goes away.
2795  *
2796  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2797  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2798  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2799  * lower zones regardless of the number of free pages in the lower zones. This
2800  * interoperates with the page allocator fallback scheme to ensure that aging
2801  * of pages is balanced across the zones.
2802  */
2803 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2804                                                         int *classzone_idx)
2805 {
2806         bool pgdat_is_balanced = false;
2807         int i;
2808         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2809         struct reclaim_state *reclaim_state = current->reclaim_state;
2810         unsigned long nr_soft_reclaimed;
2811         unsigned long nr_soft_scanned;
2812         struct scan_control sc = {
2813                 .gfp_mask = GFP_KERNEL,
2814                 .may_unmap = 1,
2815 #ifndef CONFIG_KSWAPD_NOSWAP
2816                 .may_swap = 1,
2817 #else
2818                 .may_swap = 0,
2819 #endif /* CONFIG_KSWAPD_NOSWAP */
2820                 /*
2821                  * kswapd doesn't want to be bailed out while reclaim. because
2822                  * we want to put equal scanning pressure on each zone.
2823                  */
2824                 .nr_to_reclaim = ULONG_MAX,
2825                 .order = order,
2826                 .target_mem_cgroup = NULL,
2827         };
2828         struct shrink_control shrink = {
2829                 .gfp_mask = sc.gfp_mask,
2830         };
2831 loop_again:
2832         sc.priority = DEF_PRIORITY;
2833         sc.nr_reclaimed = 0;
2834         sc.may_writepage = !laptop_mode;
2835         count_vm_event(PAGEOUTRUN);
2836
2837         do {
2838                 unsigned long lru_pages = 0;
2839
2840                 /*
2841                  * Scan in the highmem->dma direction for the highest
2842                  * zone which needs scanning
2843                  */
2844                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2845                         struct zone *zone = pgdat->node_zones + i;
2846
2847                         if (!populated_zone(zone))
2848                                 continue;
2849
2850                         if (sc.priority != DEF_PRIORITY &&
2851                             !zone_reclaimable(zone))
2852                                 continue;
2853
2854                         /*
2855                          * Do some background aging of the anon list, to give
2856                          * pages a chance to be referenced before reclaiming.
2857                          */
2858                         age_active_anon(zone, &sc);
2859
2860                         /*
2861                          * If the number of buffer_heads in the machine
2862                          * exceeds the maximum allowed level and this node
2863                          * has a highmem zone, force kswapd to reclaim from
2864                          * it to relieve lowmem pressure.
2865                          */
2866                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2867                                 end_zone = i;
2868                                 break;
2869                         }
2870
2871                         if (!zone_balanced(zone, order, 0, 0)) {
2872                                 end_zone = i;
2873                                 break;
2874                         } else {
2875                                 /* If balanced, clear the congested flag */
2876                                 zone_clear_flag(zone, ZONE_CONGESTED);
2877                         }
2878                 }
2879
2880                 if (i < 0) {
2881                         pgdat_is_balanced = true;
2882                         goto out;
2883                 }
2884
2885                 for (i = 0; i <= end_zone; i++) {
2886                         struct zone *zone = pgdat->node_zones + i;
2887
2888                         lru_pages += zone_reclaimable_pages(zone);
2889                 }
2890
2891                 /*
2892                  * Now scan the zone in the dma->highmem direction, stopping
2893                  * at the last zone which needs scanning.
2894                  *
2895                  * We do this because the page allocator works in the opposite
2896                  * direction.  This prevents the page allocator from allocating
2897                  * pages behind kswapd's direction of progress, which would
2898                  * cause too much scanning of the lower zones.
2899                  */
2900                 for (i = 0; i <= end_zone; i++) {
2901                         struct zone *zone = pgdat->node_zones + i;
2902                         int testorder;
2903                         unsigned long balance_gap;
2904
2905                         if (!populated_zone(zone))
2906                                 continue;
2907
2908                         if (sc.priority != DEF_PRIORITY &&
2909                             !zone_reclaimable(zone))
2910                                 continue;
2911
2912                         sc.nr_scanned = 0;
2913
2914                         nr_soft_scanned = 0;
2915                         /*
2916                          * Call soft limit reclaim before calling shrink_zone.
2917                          */
2918                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2919                                                         order, sc.gfp_mask,
2920                                                         &nr_soft_scanned);
2921                         sc.nr_reclaimed += nr_soft_reclaimed;
2922
2923                         /*
2924                          * We put equal pressure on every zone, unless
2925                          * one zone has way too many pages free
2926                          * already. The "too many pages" is defined
2927                          * as the high wmark plus a "gap" where the
2928                          * gap is either the low watermark or 1%
2929                          * of the zone, whichever is smaller.
2930                          */
2931                         balance_gap = min(low_wmark_pages(zone),
2932                                 (zone->managed_pages +
2933                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2934                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2935                         /*
2936                          * Kswapd reclaims only single pages with compaction
2937                          * enabled. Trying too hard to reclaim until contiguous
2938                          * free pages have become available can hurt performance
2939                          * by evicting too much useful data from memory.
2940                          * Do not reclaim more than needed for compaction.
2941                          */
2942                         testorder = order;
2943                         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2944                                         compaction_suitable(zone, order) !=
2945                                                 COMPACT_SKIPPED)
2946                                 testorder = 0;
2947
2948                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2949                             !zone_balanced(zone, testorder,
2950                                            balance_gap, end_zone)) {
2951                                 shrink_zone(zone, &sc);
2952
2953                                 reclaim_state->reclaimed_slab = 0;
2954                                 shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2955                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2956                         }
2957
2958                         /*
2959                          * If we're getting trouble reclaiming, start doing
2960                          * writepage even in laptop mode.
2961                          */
2962                         if (sc.priority < DEF_PRIORITY - 2)
2963                                 sc.may_writepage = 1;
2964
2965                         if (!zone_reclaimable(zone)) {
2966                                 if (end_zone && end_zone == i)
2967                                         end_zone--;
2968                                 continue;
2969                         }
2970
2971                         if (zone_balanced(zone, testorder, 0, end_zone))
2972                                 /*
2973                                  * If a zone reaches its high watermark,
2974                                  * consider it to be no longer congested. It's
2975                                  * possible there are dirty pages backed by
2976                                  * congested BDIs but as pressure is relieved,
2977                                  * speculatively avoid congestion waits
2978                                  */
2979                                 zone_clear_flag(zone, ZONE_CONGESTED);
2980                 }
2981
2982                 /*
2983                  * If the low watermark is met there is no need for processes
2984                  * to be throttled on pfmemalloc_wait as they should not be
2985                  * able to safely make forward progress. Wake them
2986                  */
2987                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2988                                 pfmemalloc_watermark_ok(pgdat))
2989                         wake_up(&pgdat->pfmemalloc_wait);
2990
2991                 if (pgdat_balanced(pgdat, order, *classzone_idx)) {
2992                         pgdat_is_balanced = true;
2993                         break;          /* kswapd: all done */
2994                 }
2995
2996                 /*
2997                  * We do this so kswapd doesn't build up large priorities for
2998                  * example when it is freeing in parallel with allocators. It
2999                  * matches the direct reclaim path behaviour in terms of impact
3000                  * on zone->*_priority.
3001                  */
3002                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
3003                         break;
3004         } while (--sc.priority >= 0);
3005
3006 out:
3007         if (!pgdat_is_balanced) {
3008                 cond_resched();
3009
3010                 try_to_freeze();
3011
3012                 /*
3013                  * Fragmentation may mean that the system cannot be
3014                  * rebalanced for high-order allocations in all zones.
3015                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
3016                  * it means the zones have been fully scanned and are still
3017                  * not balanced. For high-order allocations, there is
3018                  * little point trying all over again as kswapd may
3019                  * infinite loop.
3020                  *
3021                  * Instead, recheck all watermarks at order-0 as they
3022                  * are the most important. If watermarks are ok, kswapd will go
3023                  * back to sleep. High-order users can still perform direct
3024                  * reclaim if they wish.
3025                  */
3026                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
3027                         order = sc.order = 0;
3028
3029                 goto loop_again;
3030         }
3031
3032         /*
3033          * If kswapd was reclaiming at a higher order, it has the option of
3034          * sleeping without all zones being balanced. Before it does, it must
3035          * ensure that the watermarks for order-0 on *all* zones are met and
3036          * that the congestion flags are cleared. The congestion flag must
3037          * be cleared as kswapd is the only mechanism that clears the flag
3038          * and it is potentially going to sleep here.
3039          */
3040         if (order) {
3041                 int zones_need_compaction = 1;
3042
3043                 for (i = 0; i <= end_zone; i++) {
3044                         struct zone *zone = pgdat->node_zones + i;
3045
3046                         if (!populated_zone(zone))
3047                                 continue;
3048
3049                         /* Check if the memory needs to be defragmented. */
3050                         if (zone_watermark_ok(zone, order,
3051                                     low_wmark_pages(zone), *classzone_idx, 0))
3052                                 zones_need_compaction = 0;
3053                 }
3054
3055                 if (zones_need_compaction)
3056                         compact_pgdat(pgdat, order);
3057         }
3058
3059         /*
3060          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3061          * makes a decision on the order we were last reclaiming at. However,
3062          * if another caller entered the allocator slow path while kswapd
3063          * was awake, order will remain at the higher level
3064          */
3065         *classzone_idx = end_zone;
3066         return order;
3067 }
3068
3069 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3070 {
3071         long remaining = 0;
3072         DEFINE_WAIT(wait);
3073
3074         if (freezing(current) || kthread_should_stop())
3075                 return;
3076
3077         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3078
3079         /* Try to sleep for a short interval */
3080         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3081                 remaining = schedule_timeout(HZ/10);
3082                 finish_wait(&pgdat->kswapd_wait, &wait);
3083                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3084         }
3085
3086         /*
3087          * After a short sleep, check if it was a premature sleep. If not, then
3088          * go fully to sleep until explicitly woken up.
3089          */
3090         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3091                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3092
3093                 /*
3094                  * vmstat counters are not perfectly accurate and the estimated
3095                  * value for counters such as NR_FREE_PAGES can deviate from the
3096                  * true value by nr_online_cpus * threshold. To avoid the zone
3097                  * watermarks being breached while under pressure, we reduce the
3098                  * per-cpu vmstat threshold while kswapd is awake and restore
3099                  * them before going back to sleep.
3100                  */
3101                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3102
3103                 /*
3104                  * Compaction records what page blocks it recently failed to
3105                  * isolate pages from and skips them in the future scanning.
3106                  * When kswapd is going to sleep, it is reasonable to assume
3107                  * that pages and compaction may succeed so reset the cache.
3108                  */
3109                 reset_isolation_suitable(pgdat);
3110
3111                 if (!kthread_should_stop())
3112                         schedule();
3113
3114                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3115         } else {
3116                 if (remaining)
3117                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3118                 else
3119                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3120         }
3121         finish_wait(&pgdat->kswapd_wait, &wait);
3122 }
3123
3124 /*
3125  * The background pageout daemon, started as a kernel thread
3126  * from the init process.
3127  *
3128  * This basically trickles out pages so that we have _some_
3129  * free memory available even if there is no other activity
3130  * that frees anything up. This is needed for things like routing
3131  * etc, where we otherwise might have all activity going on in
3132  * asynchronous contexts that cannot page things out.
3133  *
3134  * If there are applications that are active memory-allocators
3135  * (most normal use), this basically shouldn't matter.
3136  */
3137 static int kswapd(void *p)
3138 {
3139         unsigned long order, new_order;
3140         unsigned balanced_order;
3141         int classzone_idx, new_classzone_idx;
3142         int balanced_classzone_idx;
3143         pg_data_t *pgdat = (pg_data_t*)p;
3144         struct task_struct *tsk = current;
3145
3146         struct reclaim_state reclaim_state = {
3147                 .reclaimed_slab = 0,
3148         };
3149         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3150
3151         lockdep_set_current_reclaim_state(GFP_KERNEL);
3152
3153         if (!cpumask_empty(cpumask))
3154                 set_cpus_allowed_ptr(tsk, cpumask);
3155         current->reclaim_state = &reclaim_state;
3156
3157         /*
3158          * Tell the memory management that we're a "memory allocator",
3159          * and that if we need more memory we should get access to it
3160          * regardless (see "__alloc_pages()"). "kswapd" should
3161          * never get caught in the normal page freeing logic.
3162          *
3163          * (Kswapd normally doesn't need memory anyway, but sometimes
3164          * you need a small amount of memory in order to be able to
3165          * page out something else, and this flag essentially protects
3166          * us from recursively trying to free more memory as we're
3167          * trying to free the first piece of memory in the first place).
3168          */
3169         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3170         set_freezable();
3171
3172         order = new_order = 0;
3173         balanced_order = 0;
3174         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3175         balanced_classzone_idx = classzone_idx;
3176         for ( ; ; ) {
3177                 bool ret;
3178
3179                 /*
3180                  * If the last balance_pgdat was unsuccessful it's unlikely a
3181                  * new request of a similar or harder type will succeed soon
3182                  * so consider going to sleep on the basis we reclaimed at
3183                  */
3184                 if (balanced_classzone_idx >= new_classzone_idx &&
3185                                         balanced_order == new_order) {
3186                         new_order = pgdat->kswapd_max_order;
3187                         new_classzone_idx = pgdat->classzone_idx;
3188                         pgdat->kswapd_max_order =  0;
3189                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3190                 }
3191
3192                 if (order < new_order || classzone_idx > new_classzone_idx) {
3193                         /*
3194                          * Don't sleep if someone wants a larger 'order'
3195                          * allocation or has tigher zone constraints
3196                          */
3197                         order = new_order;
3198                         classzone_idx = new_classzone_idx;
3199                 } else {
3200                         kswapd_try_to_sleep(pgdat, balanced_order,
3201                                                 balanced_classzone_idx);
3202                         order = pgdat->kswapd_max_order;
3203                         classzone_idx = pgdat->classzone_idx;
3204                         new_order = order;
3205                         new_classzone_idx = classzone_idx;
3206                         pgdat->kswapd_max_order = 0;
3207                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3208                 }
3209
3210                 ret = try_to_freeze();
3211                 if (kthread_should_stop())
3212                         break;
3213
3214                 /*
3215                  * We can speed up thawing tasks if we don't call balance_pgdat
3216                  * after returning from the refrigerator
3217                  */
3218                 if (!ret) {
3219                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3220                         balanced_classzone_idx = classzone_idx;
3221                         balanced_order = balance_pgdat(pgdat, order,
3222                                                 &balanced_classzone_idx);
3223                 }
3224         }
3225
3226         tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3227         current->reclaim_state = NULL;
3228         lockdep_clear_current_reclaim_state();
3229
3230         return 0;
3231 }
3232
3233
3234
3235 static uint  debug_kswapd_wakeup = 0;
3236
3237 module_param_named(debug_kswapd_wakeup, debug_kswapd_wakeup, uint, S_IRUGO | S_IWUSR);
3238
3239
3240 /*
3241  * A zone is low on free memory, so wake its kswapd task to service it.
3242  */
3243 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3244 {
3245         pg_data_t *pgdat;
3246
3247         if (!populated_zone(zone))
3248                 return;
3249
3250         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3251                 return;
3252         pgdat = zone->zone_pgdat;
3253         if (pgdat->kswapd_max_order < order) {
3254                 pgdat->kswapd_max_order = order;
3255                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3256         }
3257         if (!waitqueue_active(&pgdat->kswapd_wait))
3258                 return;
3259         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3260                 return;
3261
3262         if(debug_kswapd_wakeup &&
3263                  zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + min_wmark_pages(zone), 0, 0))
3264         {
3265                 printk("%s(pages): free:%d, free_cma:%d, high:%d, low:%d,  min:%d, order:%d\r\n",
3266                            __func__, global_page_state(NR_FREE_PAGES), global_page_state(NR_FREE_CMA_PAGES), high_wmark_pages(zone), low_wmark_pages(zone) , min_wmark_pages(zone) ,order);
3267                 WARN_ON(1);
3268         }
3269
3270         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3271         wake_up_interruptible(&pgdat->kswapd_wait);
3272 }
3273
3274 /*
3275  * The reclaimable count would be mostly accurate.
3276  * The less reclaimable pages may be
3277  * - mlocked pages, which will be moved to unevictable list when encountered
3278  * - mapped pages, which may require several travels to be reclaimed
3279  * - dirty pages, which is not "instantly" reclaimable
3280  */
3281 unsigned long global_reclaimable_pages(void)
3282 {
3283         int nr;
3284
3285         nr = global_page_state(NR_ACTIVE_FILE) +
3286              global_page_state(NR_INACTIVE_FILE);
3287
3288 #ifndef CONFIG_KSWAPD_NOSWAP
3289         if (get_nr_swap_pages() > 0)
3290                 nr += global_page_state(NR_ACTIVE_ANON) +
3291                       global_page_state(NR_INACTIVE_ANON);
3292 #endif /* CONFIG_KSWAPD_NOSWAP */
3293
3294         return nr;
3295 }
3296
3297 unsigned long zone_reclaimable_pages(struct zone *zone)
3298 {
3299         int nr;
3300
3301         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3302              zone_page_state(zone, NR_INACTIVE_FILE);
3303
3304 #ifndef CONFIG_KSWAPD_NOSWAP
3305         if (get_nr_swap_pages() > 0)
3306                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3307                       zone_page_state(zone, NR_INACTIVE_ANON);
3308 #endif /* CONFIG_KSWAPD_NOSWAP */
3309
3310         return nr;
3311 }
3312
3313 #ifdef CONFIG_RUNTIME_COMPCACHE
3314 /*
3315  * This is the main entry point to direct page reclaim for RTCC.
3316  *
3317  * If a full scan of the inactive list fails to free enough memory then we
3318  * are "out of memory" and something needs to be killed.
3319  *
3320  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3321  * high - the zone may be full of dirty or under-writeback pages, which this
3322  * caller can't do much about.  We kick the writeback threads and take explicit
3323  * naps in the hope that some of these pages can be written.  But if the
3324  * allocating task holds filesystem locks which prevent writeout this might not
3325  * work, and the allocation attempt will fail.
3326  *
3327  * returns:     0, if no pages reclaimed
3328  *              else, the number of pages reclaimed
3329  */
3330 static unsigned long rtcc_do_try_to_free_pages(struct zonelist *zonelist,
3331                                         struct scan_control *sc,
3332                                         struct shrink_control *shrink)
3333 {
3334         unsigned long total_scanned = 0;
3335         unsigned long writeback_threshold;
3336         bool aborted_reclaim;
3337
3338         delayacct_freepages_start();
3339
3340         if (global_reclaim(sc))
3341                 count_vm_event(ALLOCSTALL);
3342
3343         do {
3344                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3345                                 sc->priority);
3346                 sc->nr_scanned = 0;
3347                 aborted_reclaim = shrink_zones(zonelist, sc);
3348
3349                 total_scanned += sc->nr_scanned;
3350                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3351                         goto out;
3352
3353                 /*
3354                  * If we're getting trouble reclaiming, start doing
3355                  * writepage even in laptop mode.
3356                  */
3357                 if (sc->priority < DEF_PRIORITY - 2)
3358                         sc->may_writepage = 1;
3359
3360                 /*
3361                  * Try to write back as many pages as we just scanned.  This
3362                  * tends to cause slow streaming writers to write data to the
3363                  * disk smoothly, at the dirtying rate, which is nice.   But
3364                  * that's undesirable in laptop mode, where we *want* lumpy
3365                  * writeout.  So in laptop mode, write out the whole world.
3366                  */
3367                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
3368                 if (total_scanned > writeback_threshold) {
3369                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
3370                                                 WB_REASON_TRY_TO_FREE_PAGES);
3371                         sc->may_writepage = 1;
3372                 }
3373
3374                 /* Take a nap, wait for some writeback to complete */
3375                 if (!sc->hibernation_mode && sc->nr_scanned &&
3376                     sc->priority < DEF_PRIORITY - 2) {
3377                         struct zone *preferred_zone;
3378
3379                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
3380                                                 &cpuset_current_mems_allowed,
3381                                                 &preferred_zone);
3382                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
3383                 }
3384         } while (--sc->priority >= 0);
3385
3386 out:
3387         delayacct_freepages_end();
3388
3389         if (sc->nr_reclaimed)
3390                 return sc->nr_reclaimed;
3391
3392         /*
3393          * As hibernation is going on, kswapd is freezed so that it can't mark
3394          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
3395          * check.
3396          */
3397         if (oom_killer_disabled)
3398                 return 0;
3399
3400         /* Aborted reclaim to try compaction? don't OOM, then */
3401         if (aborted_reclaim)
3402                 return 1;
3403
3404         /* top priority shrink_zones still had more to do? don't OOM, then */
3405         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
3406                 return 1;
3407
3408         return 0;
3409 }
3410
3411 unsigned long rtcc_reclaim_pages(unsigned long nr_to_reclaim, int swappiness, unsigned long *nr_swapped)
3412 {
3413         struct reclaim_state reclaim_state;
3414         struct scan_control sc = {
3415                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3416                 .may_swap = 1,
3417                 .may_unmap = 1,
3418                 .may_writepage = 1,
3419                 .nr_to_reclaim = nr_to_reclaim,
3420                 .order = 0,
3421                 .priority = DEF_PRIORITY/2,
3422         };
3423         struct shrink_control shrink = {
3424                 .gfp_mask = sc.gfp_mask,
3425         };
3426         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3427         struct task_struct *p = current;
3428         unsigned long nr_reclaimed;
3429         struct rtcc_control rc;
3430
3431         rc.swappiness = swappiness;
3432         rc.nr_anon = nr_to_reclaim * swappiness / 200;
3433         rc.nr_file = nr_to_reclaim - rc.nr_anon;
3434         rc.nr_swapped = 0;
3435         sc.rc = &rc;
3436
3437         if (swappiness <= 1)
3438                 sc.may_swap = 0;
3439
3440         p->flags |= PF_MEMALLOC;
3441         lockdep_set_current_reclaim_state(sc.gfp_mask);
3442         reclaim_state.reclaimed_slab = 0;
3443         p->reclaim_state = &reclaim_state;
3444
3445         nr_reclaimed = rtcc_do_try_to_free_pages(zonelist, &sc, &shrink);
3446         *nr_swapped = rc.nr_swapped;
3447
3448         p->reclaim_state = NULL;
3449         lockdep_clear_current_reclaim_state();
3450         p->flags &= ~PF_MEMALLOC;
3451
3452         return nr_reclaimed;
3453 }
3454 #endif /* CONFIG_RUNTIME_COMPCACHE */
3455
3456 #if defined CONFIG_HIBERNATION || CONFIG_SHRINK_MEMORY
3457 /*
3458  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3459  * freed pages.
3460  *
3461  * Rather than trying to age LRUs the aim is to preserve the overall
3462  * LRU order by reclaiming preferentially
3463  * inactive > active > active referenced > active mapped
3464  */
3465 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3466 {
3467         struct reclaim_state reclaim_state;
3468         struct scan_control sc = {
3469                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3470                 .may_swap = 1,
3471                 .may_unmap = 1,
3472                 .may_writepage = 1,
3473                 .nr_to_reclaim = nr_to_reclaim,
3474                 .hibernation_mode = 1,
3475                 .order = 0,
3476                 .priority = DEF_PRIORITY,
3477         };
3478         struct shrink_control shrink = {
3479                 .gfp_mask = sc.gfp_mask,
3480         };
3481         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3482         struct task_struct *p = current;
3483         unsigned long nr_reclaimed;
3484
3485         if (system_entering_hibernation())
3486                 sc.hibernation_mode = 1;
3487         else
3488                 sc.hibernation_mode = 0;
3489
3490         p->flags |= PF_MEMALLOC;
3491         lockdep_set_current_reclaim_state(sc.gfp_mask);
3492         reclaim_state.reclaimed_slab = 0;
3493         p->reclaim_state = &reclaim_state;
3494
3495         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3496
3497         p->reclaim_state = NULL;
3498         lockdep_clear_current_reclaim_state();
3499         p->flags &= ~PF_MEMALLOC;
3500
3501         return nr_reclaimed;
3502 }
3503 #endif /* CONFIG_HIBERNATION */
3504
3505 #ifdef CONFIG_SHRINK_MEMORY
3506 int sysctl_shrink_memory;
3507 /* This is the entry point for system-wide shrink memory
3508 via /proc/sys/vm/shrink_memory */
3509 int sysctl_shrinkmem_handler(struct ctl_table *table, int write,
3510         void __user *buffer, size_t *length, loff_t *ppos)
3511 {
3512         if (write)
3513                 shrink_all_memory(totalram_pages);
3514
3515         return 0;
3516 }
3517 #endif
3518
3519 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3520    not required for correctness.  So if the last cpu in a node goes
3521    away, we get changed to run anywhere: as the first one comes back,
3522    restore their cpu bindings. */
3523 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3524                         void *hcpu)
3525 {
3526         int nid;
3527
3528         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3529                 for_each_node_state(nid, N_MEMORY) {
3530                         pg_data_t *pgdat = NODE_DATA(nid);
3531                         const struct cpumask *mask;
3532
3533                         mask = cpumask_of_node(pgdat->node_id);
3534
3535                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3536                                 /* One of our CPUs online: restore mask */
3537                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3538                 }
3539         }
3540         return NOTIFY_OK;
3541 }
3542
3543 /*
3544  * This kswapd start function will be called by init and node-hot-add.
3545  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3546  */
3547 int kswapd_run(int nid)
3548 {
3549         pg_data_t *pgdat = NODE_DATA(nid);
3550         int ret = 0;
3551
3552         if (pgdat->kswapd)
3553                 return 0;
3554
3555         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3556         if (IS_ERR(pgdat->kswapd)) {
3557                 /* failure at boot is fatal */
3558                 BUG_ON(system_state == SYSTEM_BOOTING);
3559                 pr_err("Failed to start kswapd on node %d\n", nid);
3560                 ret = PTR_ERR(pgdat->kswapd);
3561                 pgdat->kswapd = NULL;
3562         }
3563         return ret;
3564 }
3565
3566 /*
3567  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3568  * hold lock_memory_hotplug().
3569  */
3570 void kswapd_stop(int nid)
3571 {
3572         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3573
3574         if (kswapd) {
3575                 kthread_stop(kswapd);
3576                 NODE_DATA(nid)->kswapd = NULL;
3577         }
3578 }
3579
3580 static int __init kswapd_init(void)
3581 {
3582         int nid;
3583
3584         swap_setup();
3585         for_each_node_state(nid, N_MEMORY)
3586                 kswapd_run(nid);
3587         hotcpu_notifier(cpu_callback, 0);
3588         return 0;
3589 }
3590
3591 module_init(kswapd_init)
3592
3593 #ifdef CONFIG_NUMA
3594 /*
3595  * Zone reclaim mode
3596  *
3597  * If non-zero call zone_reclaim when the number of free pages falls below
3598  * the watermarks.
3599  */
3600 int zone_reclaim_mode __read_mostly;
3601
3602 #define RECLAIM_OFF 0
3603 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3604 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3605 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3606
3607 /*
3608  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3609  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3610  * a zone.
3611  */
3612 #define ZONE_RECLAIM_PRIORITY 4
3613
3614 /*
3615  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3616  * occur.
3617  */
3618 int sysctl_min_unmapped_ratio = 1;
3619
3620 /*
3621  * If the number of slab pages in a zone grows beyond this percentage then
3622  * slab reclaim needs to occur.
3623  */
3624 int sysctl_min_slab_ratio = 5;
3625
3626 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3627 {
3628         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3629         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3630                 zone_page_state(zone, NR_ACTIVE_FILE);
3631
3632         /*
3633          * It's possible for there to be more file mapped pages than
3634          * accounted for by the pages on the file LRU lists because
3635          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3636          */
3637         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3638 }
3639
3640 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3641 static long zone_pagecache_reclaimable(struct zone *zone)
3642 {
3643         long nr_pagecache_reclaimable;
3644         long delta = 0;
3645
3646         /*
3647          * If RECLAIM_SWAP is set, then all file pages are considered
3648          * potentially reclaimable. Otherwise, we have to worry about
3649          * pages like swapcache and zone_unmapped_file_pages() provides
3650          * a better estimate
3651          */
3652         if (zone_reclaim_mode & RECLAIM_SWAP)
3653                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3654         else
3655                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3656
3657         /* If we can't clean pages, remove dirty pages from consideration */
3658         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3659                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3660
3661         /* Watch for any possible underflows due to delta */
3662         if (unlikely(delta > nr_pagecache_reclaimable))
3663                 delta = nr_pagecache_reclaimable;
3664
3665         return nr_pagecache_reclaimable - delta;
3666 }
3667
3668 /*
3669  * Try to free up some pages from this zone through reclaim.
3670  */
3671 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3672 {
3673         /* Minimum pages needed in order to stay on node */
3674         const unsigned long nr_pages = 1 << order;
3675         struct task_struct *p = current;
3676         struct reclaim_state reclaim_state;
3677         struct scan_control sc = {
3678                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3679                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3680 #ifdef CONFIG_RUNTIME_COMPCACHE
3681                 .may_swap = 0,
3682 #else
3683                 .may_swap = 1,
3684 #endif /* CONFIG_RUNTIME_COMPCACHE */
3685                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3686                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3687                 .order = order,
3688                 .priority = ZONE_RECLAIM_PRIORITY,
3689         };
3690         struct shrink_control shrink = {
3691                 .gfp_mask = sc.gfp_mask,
3692         };
3693         unsigned long nr_slab_pages0, nr_slab_pages1;
3694
3695         cond_resched();
3696         /*
3697          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3698          * and we also need to be able to write out pages for RECLAIM_WRITE
3699          * and RECLAIM_SWAP.
3700          */
3701         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3702         lockdep_set_current_reclaim_state(gfp_mask);
3703         reclaim_state.reclaimed_slab = 0;
3704         p->reclaim_state = &reclaim_state;
3705
3706         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3707                 /*
3708                  * Free memory by calling shrink zone with increasing
3709                  * priorities until we have enough memory freed.
3710                  */
3711                 do {
3712                         shrink_zone(zone, &sc);
3713                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3714         }
3715
3716         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3717         if (nr_slab_pages0 > zone->min_slab_pages) {
3718                 /*
3719                  * shrink_slab() does not currently allow us to determine how
3720                  * many pages were freed in this zone. So we take the current
3721                  * number of slab pages and shake the slab until it is reduced
3722                  * by the same nr_pages that we used for reclaiming unmapped
3723                  * pages.
3724                  *
3725                  * Note that shrink_slab will free memory on all zones and may
3726                  * take a long time.
3727                  */
3728                 for (;;) {
3729                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3730
3731                         /* No reclaimable slab or very low memory pressure */
3732                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3733                                 break;
3734
3735                         /* Freed enough memory */
3736                         nr_slab_pages1 = zone_page_state(zone,
3737                                                         NR_SLAB_RECLAIMABLE);
3738                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3739                                 break;
3740                 }
3741
3742                 /*
3743                  * Update nr_reclaimed by the number of slab pages we
3744                  * reclaimed from this zone.
3745                  */
3746                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3747                 if (nr_slab_pages1 < nr_slab_pages0)
3748                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3749         }
3750
3751         p->reclaim_state = NULL;
3752         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3753         lockdep_clear_current_reclaim_state();
3754         return sc.nr_reclaimed >= nr_pages;
3755 }
3756
3757 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3758 {
3759         int node_id;
3760         int ret;
3761
3762         /*
3763          * Zone reclaim reclaims unmapped file backed pages and
3764          * slab pages if we are over the defined limits.
3765          *
3766          * A small portion of unmapped file backed pages is needed for
3767          * file I/O otherwise pages read by file I/O will be immediately
3768          * thrown out if the zone is overallocated. So we do not reclaim
3769          * if less than a specified percentage of the zone is used by
3770          * unmapped file backed pages.
3771          */
3772         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3773             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3774                 return ZONE_RECLAIM_FULL;
3775
3776         if (!zone_reclaimable(zone))
3777                 return ZONE_RECLAIM_FULL;
3778
3779         /*
3780          * Do not scan if the allocation should not be delayed.
3781          */
3782         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3783                 return ZONE_RECLAIM_NOSCAN;
3784
3785         /*
3786          * Only run zone reclaim on the local zone or on zones that do not
3787          * have associated processors. This will favor the local processor
3788          * over remote processors and spread off node memory allocations
3789          * as wide as possible.
3790          */
3791         node_id = zone_to_nid(zone);
3792         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3793                 return ZONE_RECLAIM_NOSCAN;
3794
3795         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3796                 return ZONE_RECLAIM_NOSCAN;
3797
3798         ret = __zone_reclaim(zone, gfp_mask, order);
3799         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3800
3801         if (!ret)
3802                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3803
3804         return ret;
3805 }
3806 #endif
3807
3808 /*
3809  * page_evictable - test whether a page is evictable
3810  * @page: the page to test
3811  *
3812  * Test whether page is evictable--i.e., should be placed on active/inactive
3813  * lists vs unevictable list.
3814  *
3815  * Reasons page might not be evictable:
3816  * (1) page's mapping marked unevictable
3817  * (2) page is part of an mlocked VMA
3818  *
3819  */
3820 int page_evictable(struct page *page)
3821 {
3822         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3823 }
3824
3825 #ifdef CONFIG_SHMEM
3826 /**
3827  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3828  * @pages:      array of pages to check
3829  * @nr_pages:   number of pages to check
3830  *
3831  * Checks pages for evictability and moves them to the appropriate lru list.
3832  *
3833  * This function is only used for SysV IPC SHM_UNLOCK.
3834  */
3835 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3836 {
3837         struct lruvec *lruvec;
3838         struct zone *zone = NULL;
3839         int pgscanned = 0;
3840         int pgrescued = 0;
3841         int i;
3842
3843         for (i = 0; i < nr_pages; i++) {
3844                 struct page *page = pages[i];
3845                 struct zone *pagezone;
3846
3847                 pgscanned++;
3848                 pagezone = page_zone(page);
3849                 if (pagezone != zone) {
3850                         if (zone)
3851                                 spin_unlock_irq(&zone->lru_lock);
3852                         zone = pagezone;
3853                         spin_lock_irq(&zone->lru_lock);
3854                 }
3855                 lruvec = mem_cgroup_page_lruvec(page, zone);
3856
3857                 if (!PageLRU(page) || !PageUnevictable(page))
3858                         continue;
3859
3860                 if (page_evictable(page)) {
3861                         enum lru_list lru = page_lru_base_type(page);
3862
3863                         VM_BUG_ON(PageActive(page));
3864                         ClearPageUnevictable(page);
3865                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3866                         add_page_to_lru_list(page, lruvec, lru);
3867                         pgrescued++;
3868                 }
3869         }
3870
3871         if (zone) {
3872                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3873                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3874                 spin_unlock_irq(&zone->lru_lock);
3875         }
3876 }
3877 #endif /* CONFIG_SHMEM */
3878
3879 static void warn_scan_unevictable_pages(void)
3880 {
3881         printk_once(KERN_WARNING
3882                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3883                     "disabled for lack of a legitimate use case.  If you have "
3884                     "one, please send an email to linux-mm@kvack.org.\n",
3885                     current->comm);
3886 }
3887
3888 /*
3889  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3890  * all nodes' unevictable lists for evictable pages
3891  */
3892 unsigned long scan_unevictable_pages;
3893
3894 int scan_unevictable_handler(struct ctl_table *table, int write,
3895                            void __user *buffer,
3896                            size_t *length, loff_t *ppos)
3897 {
3898         warn_scan_unevictable_pages();
3899         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3900         scan_unevictable_pages = 0;
3901         return 0;
3902 }
3903
3904 #ifdef CONFIG_NUMA
3905 /*
3906  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3907  * a specified node's per zone unevictable lists for evictable pages.
3908  */
3909
3910 static ssize_t read_scan_unevictable_node(struct device *dev,
3911                                           struct device_attribute *attr,
3912                                           char *buf)
3913 {
3914         warn_scan_unevictable_pages();
3915         return sprintf(buf, "0\n");     /* always zero; should fit... */
3916 }
3917
3918 static ssize_t write_scan_unevictable_node(struct device *dev,
3919                                            struct device_attribute *attr,
3920                                         const char *buf, size_t count)
3921 {
3922         warn_scan_unevictable_pages();
3923         return 1;
3924 }
3925
3926
3927 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3928                         read_scan_unevictable_node,
3929                         write_scan_unevictable_node);
3930
3931 int scan_unevictable_register_node(struct node *node)
3932 {
3933         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3934 }
3935
3936 void scan_unevictable_unregister_node(struct node *node)
3937 {
3938         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3939 }
3940 #endif