1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
83 * Scan pressure balancing between anon and file LRUs
85 unsigned long anon_cost;
86 unsigned long file_cost;
88 /* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
96 unsigned int may_writepage:1;
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
105 * Cgroup memory below memory.low is protected as long as we
106 * don't threaten to OOM. If any cgroup is reclaimed at
107 * reduced force or passed over entirely due to its memory.low
108 * setting (memcg_low_skipped), and nothing is reclaimed as a
109 * result, then go back for one more cycle that reclaims the protected
110 * memory (memcg_low_reclaim) to avert OOM.
112 unsigned int memcg_low_reclaim:1;
113 unsigned int memcg_low_skipped:1;
115 unsigned int hibernation_mode:1;
117 /* One of the zones is ready for compaction */
118 unsigned int compaction_ready:1;
120 /* There is easily reclaimable cold cache in the current node */
121 unsigned int cache_trim_mode:1;
123 /* The file pages on the current node are dangerously low */
124 unsigned int file_is_tiny:1;
126 /* Always discard instead of demoting to lower tier memory */
127 unsigned int no_demotion:1;
129 /* Allocation order */
132 /* Scan (total_size >> priority) pages at once */
135 /* The highest zone to isolate pages for reclaim from */
138 /* This context's GFP mask */
141 /* Incremented by the number of inactive pages that were scanned */
142 unsigned long nr_scanned;
144 /* Number of pages freed so far during a call to shrink_zones() */
145 unsigned long nr_reclaimed;
149 unsigned int unqueued_dirty;
150 unsigned int congested;
151 unsigned int writeback;
152 unsigned int immediate;
153 unsigned int file_taken;
157 /* for recording the reclaimed slab by now */
158 struct reclaim_state reclaim_state;
161 #ifdef ARCH_HAS_PREFETCHW
162 #define prefetchw_prev_lru_page(_page, _base, _field) \
164 if ((_page)->lru.prev != _base) { \
167 prev = lru_to_page(&(_page->lru)); \
168 prefetchw(&prev->_field); \
172 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
176 * From 0 .. 200. Higher means more swappy.
178 int vm_swappiness = 60;
180 static void set_task_reclaim_state(struct task_struct *task,
181 struct reclaim_state *rs)
183 /* Check for an overwrite */
184 WARN_ON_ONCE(rs && task->reclaim_state);
186 /* Check for the nulling of an already-nulled member */
187 WARN_ON_ONCE(!rs && !task->reclaim_state);
189 task->reclaim_state = rs;
192 static LIST_HEAD(shrinker_list);
193 static DECLARE_RWSEM(shrinker_rwsem);
196 static int shrinker_nr_max;
198 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
199 static inline int shrinker_map_size(int nr_items)
201 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
204 static inline int shrinker_defer_size(int nr_items)
206 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
209 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
212 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
213 lockdep_is_held(&shrinker_rwsem));
216 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
217 int map_size, int defer_size,
218 int old_map_size, int old_defer_size)
220 struct shrinker_info *new, *old;
221 struct mem_cgroup_per_node *pn;
223 int size = map_size + defer_size;
226 pn = memcg->nodeinfo[nid];
227 old = shrinker_info_protected(memcg, nid);
228 /* Not yet online memcg */
232 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
236 new->nr_deferred = (atomic_long_t *)(new + 1);
237 new->map = (void *)new->nr_deferred + defer_size;
239 /* map: set all old bits, clear all new bits */
240 memset(new->map, (int)0xff, old_map_size);
241 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
242 /* nr_deferred: copy old values, clear all new values */
243 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
244 memset((void *)new->nr_deferred + old_defer_size, 0,
245 defer_size - old_defer_size);
247 rcu_assign_pointer(pn->shrinker_info, new);
248 kvfree_rcu(old, rcu);
254 void free_shrinker_info(struct mem_cgroup *memcg)
256 struct mem_cgroup_per_node *pn;
257 struct shrinker_info *info;
261 pn = memcg->nodeinfo[nid];
262 info = rcu_dereference_protected(pn->shrinker_info, true);
264 rcu_assign_pointer(pn->shrinker_info, NULL);
268 int alloc_shrinker_info(struct mem_cgroup *memcg)
270 struct shrinker_info *info;
271 int nid, size, ret = 0;
272 int map_size, defer_size = 0;
274 down_write(&shrinker_rwsem);
275 map_size = shrinker_map_size(shrinker_nr_max);
276 defer_size = shrinker_defer_size(shrinker_nr_max);
277 size = map_size + defer_size;
279 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 free_shrinker_info(memcg);
285 info->nr_deferred = (atomic_long_t *)(info + 1);
286 info->map = (void *)info->nr_deferred + defer_size;
287 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
289 up_write(&shrinker_rwsem);
294 static inline bool need_expand(int nr_max)
296 return round_up(nr_max, BITS_PER_LONG) >
297 round_up(shrinker_nr_max, BITS_PER_LONG);
300 static int expand_shrinker_info(int new_id)
303 int new_nr_max = new_id + 1;
304 int map_size, defer_size = 0;
305 int old_map_size, old_defer_size = 0;
306 struct mem_cgroup *memcg;
308 if (!need_expand(new_nr_max))
311 if (!root_mem_cgroup)
314 lockdep_assert_held(&shrinker_rwsem);
316 map_size = shrinker_map_size(new_nr_max);
317 defer_size = shrinker_defer_size(new_nr_max);
318 old_map_size = shrinker_map_size(shrinker_nr_max);
319 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
324 old_map_size, old_defer_size);
326 mem_cgroup_iter_break(NULL, memcg);
329 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
332 shrinker_nr_max = new_nr_max;
337 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
340 struct shrinker_info *info;
343 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
344 /* Pairs with smp mb in shrink_slab() */
345 smp_mb__before_atomic();
346 set_bit(shrinker_id, info->map);
351 static DEFINE_IDR(shrinker_idr);
353 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355 int id, ret = -ENOMEM;
357 if (mem_cgroup_disabled())
360 down_write(&shrinker_rwsem);
361 /* This may call shrinker, so it must use down_read_trylock() */
362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
366 if (id >= shrinker_nr_max) {
367 if (expand_shrinker_info(id)) {
368 idr_remove(&shrinker_idr, id);
375 up_write(&shrinker_rwsem);
379 static void unregister_memcg_shrinker(struct shrinker *shrinker)
381 int id = shrinker->id;
385 lockdep_assert_held(&shrinker_rwsem);
387 idr_remove(&shrinker_idr, id);
390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 struct mem_cgroup *memcg)
393 struct shrinker_info *info;
395 info = shrinker_info_protected(memcg, nid);
396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 struct mem_cgroup *memcg)
402 struct shrinker_info *info;
404 info = shrinker_info_protected(memcg, nid);
405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
408 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
412 struct mem_cgroup *parent;
413 struct shrinker_info *child_info, *parent_info;
415 parent = parent_mem_cgroup(memcg);
417 parent = root_mem_cgroup;
419 /* Prevent from concurrent shrinker_info expand */
420 down_read(&shrinker_rwsem);
422 child_info = shrinker_info_protected(memcg, nid);
423 parent_info = shrinker_info_protected(parent, nid);
424 for (i = 0; i < shrinker_nr_max; i++) {
425 nr = atomic_long_read(&child_info->nr_deferred[i]);
426 atomic_long_add(nr, &parent_info->nr_deferred[i]);
429 up_read(&shrinker_rwsem);
432 static bool cgroup_reclaim(struct scan_control *sc)
434 return sc->target_mem_cgroup;
438 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
439 * @sc: scan_control in question
441 * The normal page dirty throttling mechanism in balance_dirty_pages() is
442 * completely broken with the legacy memcg and direct stalling in
443 * shrink_page_list() is used for throttling instead, which lacks all the
444 * niceties such as fairness, adaptive pausing, bandwidth proportional
445 * allocation and configurability.
447 * This function tests whether the vmscan currently in progress can assume
448 * that the normal dirty throttling mechanism is operational.
450 static bool writeback_throttling_sane(struct scan_control *sc)
452 if (!cgroup_reclaim(sc))
454 #ifdef CONFIG_CGROUP_WRITEBACK
455 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
461 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
466 static void unregister_memcg_shrinker(struct shrinker *shrinker)
470 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
471 struct mem_cgroup *memcg)
476 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
477 struct mem_cgroup *memcg)
482 static bool cgroup_reclaim(struct scan_control *sc)
487 static bool writeback_throttling_sane(struct scan_control *sc)
493 static long xchg_nr_deferred(struct shrinker *shrinker,
494 struct shrink_control *sc)
498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 (shrinker->flags & SHRINKER_MEMCG_AWARE))
503 return xchg_nr_deferred_memcg(nid, shrinker,
506 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
510 static long add_nr_deferred(long nr, struct shrinker *shrinker,
511 struct shrink_control *sc)
515 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
519 (shrinker->flags & SHRINKER_MEMCG_AWARE))
520 return add_nr_deferred_memcg(nr, nid, shrinker,
523 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
526 static bool can_demote(int nid, struct scan_control *sc)
528 if (!numa_demotion_enabled)
533 /* It is pointless to do demotion in memcg reclaim */
534 if (cgroup_reclaim(sc))
537 if (next_demotion_node(nid) == NUMA_NO_NODE)
543 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
545 struct scan_control *sc)
549 * For non-memcg reclaim, is there
550 * space in any swap device?
552 if (get_nr_swap_pages() > 0)
555 /* Is the memcg below its swap limit? */
556 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
561 * The page can not be swapped.
563 * Can it be reclaimed from this node via demotion?
565 return can_demote(nid, sc);
569 * This misses isolated pages which are not accounted for to save counters.
570 * As the data only determines if reclaim or compaction continues, it is
571 * not expected that isolated pages will be a dominating factor.
573 unsigned long zone_reclaimable_pages(struct zone *zone)
577 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
578 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
579 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
580 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
581 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
587 * lruvec_lru_size - Returns the number of pages on the given LRU list.
588 * @lruvec: lru vector
590 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
592 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
595 unsigned long size = 0;
598 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
599 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
601 if (!managed_zone(zone))
604 if (!mem_cgroup_disabled())
605 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
607 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
613 * Add a shrinker callback to be called from the vm.
615 int prealloc_shrinker(struct shrinker *shrinker)
620 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
621 err = prealloc_memcg_shrinker(shrinker);
625 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
628 size = sizeof(*shrinker->nr_deferred);
629 if (shrinker->flags & SHRINKER_NUMA_AWARE)
632 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
633 if (!shrinker->nr_deferred)
639 void free_prealloced_shrinker(struct shrinker *shrinker)
641 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
642 down_write(&shrinker_rwsem);
643 unregister_memcg_shrinker(shrinker);
644 up_write(&shrinker_rwsem);
648 kfree(shrinker->nr_deferred);
649 shrinker->nr_deferred = NULL;
652 void register_shrinker_prepared(struct shrinker *shrinker)
654 down_write(&shrinker_rwsem);
655 list_add_tail(&shrinker->list, &shrinker_list);
656 shrinker->flags |= SHRINKER_REGISTERED;
657 up_write(&shrinker_rwsem);
660 int register_shrinker(struct shrinker *shrinker)
662 int err = prealloc_shrinker(shrinker);
666 register_shrinker_prepared(shrinker);
669 EXPORT_SYMBOL(register_shrinker);
674 void unregister_shrinker(struct shrinker *shrinker)
676 if (!(shrinker->flags & SHRINKER_REGISTERED))
679 down_write(&shrinker_rwsem);
680 list_del(&shrinker->list);
681 shrinker->flags &= ~SHRINKER_REGISTERED;
682 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
683 unregister_memcg_shrinker(shrinker);
684 up_write(&shrinker_rwsem);
686 kfree(shrinker->nr_deferred);
687 shrinker->nr_deferred = NULL;
689 EXPORT_SYMBOL(unregister_shrinker);
692 * synchronize_shrinkers - Wait for all running shrinkers to complete.
694 * This is equivalent to calling unregister_shrink() and register_shrinker(),
695 * but atomically and with less overhead. This is useful to guarantee that all
696 * shrinker invocations have seen an update, before freeing memory, similar to
699 void synchronize_shrinkers(void)
701 down_write(&shrinker_rwsem);
702 up_write(&shrinker_rwsem);
704 EXPORT_SYMBOL(synchronize_shrinkers);
706 #define SHRINK_BATCH 128
708 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
709 struct shrinker *shrinker, int priority)
711 unsigned long freed = 0;
712 unsigned long long delta;
717 long batch_size = shrinker->batch ? shrinker->batch
719 long scanned = 0, next_deferred;
721 freeable = shrinker->count_objects(shrinker, shrinkctl);
722 if (freeable == 0 || freeable == SHRINK_EMPTY)
726 * copy the current shrinker scan count into a local variable
727 * and zero it so that other concurrent shrinker invocations
728 * don't also do this scanning work.
730 nr = xchg_nr_deferred(shrinker, shrinkctl);
732 if (shrinker->seeks) {
733 delta = freeable >> priority;
735 do_div(delta, shrinker->seeks);
738 * These objects don't require any IO to create. Trim
739 * them aggressively under memory pressure to keep
740 * them from causing refetches in the IO caches.
742 delta = freeable / 2;
745 total_scan = nr >> priority;
747 total_scan = min(total_scan, (2 * freeable));
749 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
750 freeable, delta, total_scan, priority);
753 * Normally, we should not scan less than batch_size objects in one
754 * pass to avoid too frequent shrinker calls, but if the slab has less
755 * than batch_size objects in total and we are really tight on memory,
756 * we will try to reclaim all available objects, otherwise we can end
757 * up failing allocations although there are plenty of reclaimable
758 * objects spread over several slabs with usage less than the
761 * We detect the "tight on memory" situations by looking at the total
762 * number of objects we want to scan (total_scan). If it is greater
763 * than the total number of objects on slab (freeable), we must be
764 * scanning at high prio and therefore should try to reclaim as much as
767 while (total_scan >= batch_size ||
768 total_scan >= freeable) {
770 unsigned long nr_to_scan = min(batch_size, total_scan);
772 shrinkctl->nr_to_scan = nr_to_scan;
773 shrinkctl->nr_scanned = nr_to_scan;
774 ret = shrinker->scan_objects(shrinker, shrinkctl);
775 if (ret == SHRINK_STOP)
779 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
780 total_scan -= shrinkctl->nr_scanned;
781 scanned += shrinkctl->nr_scanned;
787 * The deferred work is increased by any new work (delta) that wasn't
788 * done, decreased by old deferred work that was done now.
790 * And it is capped to two times of the freeable items.
792 next_deferred = max_t(long, (nr + delta - scanned), 0);
793 next_deferred = min(next_deferred, (2 * freeable));
796 * move the unused scan count back into the shrinker in a
797 * manner that handles concurrent updates.
799 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
801 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
806 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
807 struct mem_cgroup *memcg, int priority)
809 struct shrinker_info *info;
810 unsigned long ret, freed = 0;
813 if (!mem_cgroup_online(memcg))
816 if (!down_read_trylock(&shrinker_rwsem))
819 info = shrinker_info_protected(memcg, nid);
823 for_each_set_bit(i, info->map, shrinker_nr_max) {
824 struct shrink_control sc = {
825 .gfp_mask = gfp_mask,
829 struct shrinker *shrinker;
831 shrinker = idr_find(&shrinker_idr, i);
832 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
834 clear_bit(i, info->map);
838 /* Call non-slab shrinkers even though kmem is disabled */
839 if (!memcg_kmem_enabled() &&
840 !(shrinker->flags & SHRINKER_NONSLAB))
843 ret = do_shrink_slab(&sc, shrinker, priority);
844 if (ret == SHRINK_EMPTY) {
845 clear_bit(i, info->map);
847 * After the shrinker reported that it had no objects to
848 * free, but before we cleared the corresponding bit in
849 * the memcg shrinker map, a new object might have been
850 * added. To make sure, we have the bit set in this
851 * case, we invoke the shrinker one more time and reset
852 * the bit if it reports that it is not empty anymore.
853 * The memory barrier here pairs with the barrier in
854 * set_shrinker_bit():
856 * list_lru_add() shrink_slab_memcg()
857 * list_add_tail() clear_bit()
859 * set_bit() do_shrink_slab()
861 smp_mb__after_atomic();
862 ret = do_shrink_slab(&sc, shrinker, priority);
863 if (ret == SHRINK_EMPTY)
866 set_shrinker_bit(memcg, nid, i);
870 if (rwsem_is_contended(&shrinker_rwsem)) {
876 up_read(&shrinker_rwsem);
879 #else /* CONFIG_MEMCG */
880 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
881 struct mem_cgroup *memcg, int priority)
885 #endif /* CONFIG_MEMCG */
888 * shrink_slab - shrink slab caches
889 * @gfp_mask: allocation context
890 * @nid: node whose slab caches to target
891 * @memcg: memory cgroup whose slab caches to target
892 * @priority: the reclaim priority
894 * Call the shrink functions to age shrinkable caches.
896 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
897 * unaware shrinkers will receive a node id of 0 instead.
899 * @memcg specifies the memory cgroup to target. Unaware shrinkers
900 * are called only if it is the root cgroup.
902 * @priority is sc->priority, we take the number of objects and >> by priority
903 * in order to get the scan target.
905 * Returns the number of reclaimed slab objects.
907 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
908 struct mem_cgroup *memcg,
911 unsigned long ret, freed = 0;
912 struct shrinker *shrinker;
915 * The root memcg might be allocated even though memcg is disabled
916 * via "cgroup_disable=memory" boot parameter. This could make
917 * mem_cgroup_is_root() return false, then just run memcg slab
918 * shrink, but skip global shrink. This may result in premature
921 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
922 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
924 if (!down_read_trylock(&shrinker_rwsem))
927 list_for_each_entry(shrinker, &shrinker_list, list) {
928 struct shrink_control sc = {
929 .gfp_mask = gfp_mask,
934 ret = do_shrink_slab(&sc, shrinker, priority);
935 if (ret == SHRINK_EMPTY)
939 * Bail out if someone want to register a new shrinker to
940 * prevent the registration from being stalled for long periods
941 * by parallel ongoing shrinking.
943 if (rwsem_is_contended(&shrinker_rwsem)) {
949 up_read(&shrinker_rwsem);
955 static void drop_slab_node(int nid)
961 struct mem_cgroup *memcg = NULL;
963 if (fatal_signal_pending(current))
967 memcg = mem_cgroup_iter(NULL, NULL, NULL);
969 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
970 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
971 } while ((freed >> shift++) > 1);
978 for_each_online_node(nid)
982 static inline int is_page_cache_freeable(struct folio *folio)
985 * A freeable page cache page is referenced only by the caller
986 * that isolated the page, the page cache and optional buffer
987 * heads at page->private.
989 return folio_ref_count(folio) - folio_test_private(folio) ==
990 1 + folio_nr_pages(folio);
994 * We detected a synchronous write error writing a folio out. Probably
995 * -ENOSPC. We need to propagate that into the address_space for a subsequent
996 * fsync(), msync() or close().
998 * The tricky part is that after writepage we cannot touch the mapping: nothing
999 * prevents it from being freed up. But we have a ref on the folio and once
1000 * that folio is locked, the mapping is pinned.
1002 * We're allowed to run sleeping folio_lock() here because we know the caller has
1005 static void handle_write_error(struct address_space *mapping,
1006 struct folio *folio, int error)
1009 if (folio_mapping(folio) == mapping)
1010 mapping_set_error(mapping, error);
1011 folio_unlock(folio);
1014 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1016 int reclaimable = 0, write_pending = 0;
1020 * If kswapd is disabled, reschedule if necessary but do not
1021 * throttle as the system is likely near OOM.
1023 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1027 * If there are a lot of dirty/writeback pages then do not
1028 * throttle as throttling will occur when the pages cycle
1029 * towards the end of the LRU if still under writeback.
1031 for (i = 0; i < MAX_NR_ZONES; i++) {
1032 struct zone *zone = pgdat->node_zones + i;
1034 if (!populated_zone(zone))
1037 reclaimable += zone_reclaimable_pages(zone);
1038 write_pending += zone_page_state_snapshot(zone,
1039 NR_ZONE_WRITE_PENDING);
1041 if (2 * write_pending <= reclaimable)
1047 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1049 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1054 * Do not throttle IO workers, kthreads other than kswapd or
1055 * workqueues. They may be required for reclaim to make
1056 * forward progress (e.g. journalling workqueues or kthreads).
1058 if (!current_is_kswapd() &&
1059 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1065 * These figures are pulled out of thin air.
1066 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1067 * parallel reclaimers which is a short-lived event so the timeout is
1068 * short. Failing to make progress or waiting on writeback are
1069 * potentially long-lived events so use a longer timeout. This is shaky
1070 * logic as a failure to make progress could be due to anything from
1071 * writeback to a slow device to excessive references pages at the tail
1072 * of the inactive LRU.
1075 case VMSCAN_THROTTLE_WRITEBACK:
1078 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1079 WRITE_ONCE(pgdat->nr_reclaim_start,
1080 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1084 case VMSCAN_THROTTLE_CONGESTED:
1086 case VMSCAN_THROTTLE_NOPROGRESS:
1087 if (skip_throttle_noprogress(pgdat)) {
1095 case VMSCAN_THROTTLE_ISOLATED:
1104 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1105 ret = schedule_timeout(timeout);
1106 finish_wait(wqh, &wait);
1108 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1109 atomic_dec(&pgdat->nr_writeback_throttled);
1111 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1112 jiffies_to_usecs(timeout - ret),
1117 * Account for pages written if tasks are throttled waiting on dirty
1118 * pages to clean. If enough pages have been cleaned since throttling
1119 * started then wakeup the throttled tasks.
1121 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1124 unsigned long nr_written;
1126 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1129 * This is an inaccurate read as the per-cpu deltas may not
1130 * be synchronised. However, given that the system is
1131 * writeback throttled, it is not worth taking the penalty
1132 * of getting an accurate count. At worst, the throttle
1133 * timeout guarantees forward progress.
1135 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1136 READ_ONCE(pgdat->nr_reclaim_start);
1138 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1139 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1142 /* possible outcome of pageout() */
1144 /* failed to write page out, page is locked */
1146 /* move page to the active list, page is locked */
1148 /* page has been sent to the disk successfully, page is unlocked */
1150 /* page is clean and locked */
1155 * pageout is called by shrink_page_list() for each dirty page.
1156 * Calls ->writepage().
1158 static pageout_t pageout(struct folio *folio, struct address_space *mapping)
1161 * If the folio is dirty, only perform writeback if that write
1162 * will be non-blocking. To prevent this allocation from being
1163 * stalled by pagecache activity. But note that there may be
1164 * stalls if we need to run get_block(). We could test
1165 * PagePrivate for that.
1167 * If this process is currently in __generic_file_write_iter() against
1168 * this folio's queue, we can perform writeback even if that
1171 * If the folio is swapcache, write it back even if that would
1172 * block, for some throttling. This happens by accident, because
1173 * swap_backing_dev_info is bust: it doesn't reflect the
1174 * congestion state of the swapdevs. Easy to fix, if needed.
1176 if (!is_page_cache_freeable(folio))
1180 * Some data journaling orphaned folios can have
1181 * folio->mapping == NULL while being dirty with clean buffers.
1183 if (folio_test_private(folio)) {
1184 if (try_to_free_buffers(&folio->page)) {
1185 folio_clear_dirty(folio);
1186 pr_info("%s: orphaned folio\n", __func__);
1192 if (mapping->a_ops->writepage == NULL)
1193 return PAGE_ACTIVATE;
1195 if (folio_clear_dirty_for_io(folio)) {
1197 struct writeback_control wbc = {
1198 .sync_mode = WB_SYNC_NONE,
1199 .nr_to_write = SWAP_CLUSTER_MAX,
1201 .range_end = LLONG_MAX,
1205 folio_set_reclaim(folio);
1206 res = mapping->a_ops->writepage(&folio->page, &wbc);
1208 handle_write_error(mapping, folio, res);
1209 if (res == AOP_WRITEPAGE_ACTIVATE) {
1210 folio_clear_reclaim(folio);
1211 return PAGE_ACTIVATE;
1214 if (!folio_test_writeback(folio)) {
1215 /* synchronous write or broken a_ops? */
1216 folio_clear_reclaim(folio);
1218 trace_mm_vmscan_write_folio(folio);
1219 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1220 return PAGE_SUCCESS;
1227 * Same as remove_mapping, but if the page is removed from the mapping, it
1228 * gets returned with a refcount of 0.
1230 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1231 bool reclaimed, struct mem_cgroup *target_memcg)
1234 void *shadow = NULL;
1236 BUG_ON(!folio_test_locked(folio));
1237 BUG_ON(mapping != folio_mapping(folio));
1239 if (!folio_test_swapcache(folio))
1240 spin_lock(&mapping->host->i_lock);
1241 xa_lock_irq(&mapping->i_pages);
1243 * The non racy check for a busy page.
1245 * Must be careful with the order of the tests. When someone has
1246 * a ref to the page, it may be possible that they dirty it then
1247 * drop the reference. So if PageDirty is tested before page_count
1248 * here, then the following race may occur:
1250 * get_user_pages(&page);
1251 * [user mapping goes away]
1253 * !PageDirty(page) [good]
1254 * SetPageDirty(page);
1256 * !page_count(page) [good, discard it]
1258 * [oops, our write_to data is lost]
1260 * Reversing the order of the tests ensures such a situation cannot
1261 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1262 * load is not satisfied before that of page->_refcount.
1264 * Note that if SetPageDirty is always performed via set_page_dirty,
1265 * and thus under the i_pages lock, then this ordering is not required.
1267 refcount = 1 + folio_nr_pages(folio);
1268 if (!folio_ref_freeze(folio, refcount))
1270 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1271 if (unlikely(folio_test_dirty(folio))) {
1272 folio_ref_unfreeze(folio, refcount);
1276 if (folio_test_swapcache(folio)) {
1277 swp_entry_t swap = folio_swap_entry(folio);
1278 mem_cgroup_swapout(folio, swap);
1279 if (reclaimed && !mapping_exiting(mapping))
1280 shadow = workingset_eviction(folio, target_memcg);
1281 __delete_from_swap_cache(&folio->page, swap, shadow);
1282 xa_unlock_irq(&mapping->i_pages);
1283 put_swap_page(&folio->page, swap);
1285 void (*freepage)(struct page *);
1287 freepage = mapping->a_ops->freepage;
1289 * Remember a shadow entry for reclaimed file cache in
1290 * order to detect refaults, thus thrashing, later on.
1292 * But don't store shadows in an address space that is
1293 * already exiting. This is not just an optimization,
1294 * inode reclaim needs to empty out the radix tree or
1295 * the nodes are lost. Don't plant shadows behind its
1298 * We also don't store shadows for DAX mappings because the
1299 * only page cache pages found in these are zero pages
1300 * covering holes, and because we don't want to mix DAX
1301 * exceptional entries and shadow exceptional entries in the
1302 * same address_space.
1304 if (reclaimed && folio_is_file_lru(folio) &&
1305 !mapping_exiting(mapping) && !dax_mapping(mapping))
1306 shadow = workingset_eviction(folio, target_memcg);
1307 __filemap_remove_folio(folio, shadow);
1308 xa_unlock_irq(&mapping->i_pages);
1309 if (mapping_shrinkable(mapping))
1310 inode_add_lru(mapping->host);
1311 spin_unlock(&mapping->host->i_lock);
1313 if (freepage != NULL)
1314 freepage(&folio->page);
1320 xa_unlock_irq(&mapping->i_pages);
1321 if (!folio_test_swapcache(folio))
1322 spin_unlock(&mapping->host->i_lock);
1327 * remove_mapping() - Attempt to remove a folio from its mapping.
1328 * @mapping: The address space.
1329 * @folio: The folio to remove.
1331 * If the folio is dirty, under writeback or if someone else has a ref
1332 * on it, removal will fail.
1333 * Return: The number of pages removed from the mapping. 0 if the folio
1334 * could not be removed.
1335 * Context: The caller should have a single refcount on the folio and
1338 long remove_mapping(struct address_space *mapping, struct folio *folio)
1340 if (__remove_mapping(mapping, folio, false, NULL)) {
1342 * Unfreezing the refcount with 1 effectively
1343 * drops the pagecache ref for us without requiring another
1346 folio_ref_unfreeze(folio, 1);
1347 return folio_nr_pages(folio);
1353 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1354 * @folio: Folio to be returned to an LRU list.
1356 * Add previously isolated @folio to appropriate LRU list.
1357 * The folio may still be unevictable for other reasons.
1359 * Context: lru_lock must not be held, interrupts must be enabled.
1361 void folio_putback_lru(struct folio *folio)
1363 folio_add_lru(folio);
1364 folio_put(folio); /* drop ref from isolate */
1367 enum page_references {
1369 PAGEREF_RECLAIM_CLEAN,
1374 static enum page_references folio_check_references(struct folio *folio,
1375 struct scan_control *sc)
1377 int referenced_ptes, referenced_folio;
1378 unsigned long vm_flags;
1380 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1382 referenced_folio = folio_test_clear_referenced(folio);
1385 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1386 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1388 if (vm_flags & VM_LOCKED)
1389 return PAGEREF_ACTIVATE;
1391 if (referenced_ptes) {
1393 * All mapped folios start out with page table
1394 * references from the instantiating fault, so we need
1395 * to look twice if a mapped file/anon folio is used more
1398 * Mark it and spare it for another trip around the
1399 * inactive list. Another page table reference will
1400 * lead to its activation.
1402 * Note: the mark is set for activated folios as well
1403 * so that recently deactivated but used folios are
1404 * quickly recovered.
1406 folio_set_referenced(folio);
1408 if (referenced_folio || referenced_ptes > 1)
1409 return PAGEREF_ACTIVATE;
1412 * Activate file-backed executable folios after first usage.
1414 if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
1415 return PAGEREF_ACTIVATE;
1417 return PAGEREF_KEEP;
1420 /* Reclaim if clean, defer dirty folios to writeback */
1421 if (referenced_folio && !folio_test_swapbacked(folio))
1422 return PAGEREF_RECLAIM_CLEAN;
1424 return PAGEREF_RECLAIM;
1427 /* Check if a page is dirty or under writeback */
1428 static void folio_check_dirty_writeback(struct folio *folio,
1429 bool *dirty, bool *writeback)
1431 struct address_space *mapping;
1434 * Anonymous pages are not handled by flushers and must be written
1435 * from reclaim context. Do not stall reclaim based on them
1437 if (!folio_is_file_lru(folio) ||
1438 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1444 /* By default assume that the folio flags are accurate */
1445 *dirty = folio_test_dirty(folio);
1446 *writeback = folio_test_writeback(folio);
1448 /* Verify dirty/writeback state if the filesystem supports it */
1449 if (!folio_test_private(folio))
1452 mapping = folio_mapping(folio);
1453 if (mapping && mapping->a_ops->is_dirty_writeback)
1454 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
1457 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1459 struct migration_target_control mtc = {
1461 * Allocate from 'node', or fail quickly and quietly.
1462 * When this happens, 'page' will likely just be discarded
1463 * instead of migrated.
1465 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1466 __GFP_THISNODE | __GFP_NOWARN |
1467 __GFP_NOMEMALLOC | GFP_NOWAIT,
1471 return alloc_migration_target(page, (unsigned long)&mtc);
1475 * Take pages on @demote_list and attempt to demote them to
1476 * another node. Pages which are not demoted are left on
1479 static unsigned int demote_page_list(struct list_head *demote_pages,
1480 struct pglist_data *pgdat)
1482 int target_nid = next_demotion_node(pgdat->node_id);
1483 unsigned int nr_succeeded;
1485 if (list_empty(demote_pages))
1488 if (target_nid == NUMA_NO_NODE)
1491 /* Demotion ignores all cpuset and mempolicy settings */
1492 migrate_pages(demote_pages, alloc_demote_page, NULL,
1493 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1496 if (current_is_kswapd())
1497 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1499 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1501 return nr_succeeded;
1505 * shrink_page_list() returns the number of reclaimed pages
1507 static unsigned int shrink_page_list(struct list_head *page_list,
1508 struct pglist_data *pgdat,
1509 struct scan_control *sc,
1510 struct reclaim_stat *stat,
1511 bool ignore_references)
1513 LIST_HEAD(ret_pages);
1514 LIST_HEAD(free_pages);
1515 LIST_HEAD(demote_pages);
1516 unsigned int nr_reclaimed = 0;
1517 unsigned int pgactivate = 0;
1518 bool do_demote_pass;
1520 memset(stat, 0, sizeof(*stat));
1522 do_demote_pass = can_demote(pgdat->node_id, sc);
1525 while (!list_empty(page_list)) {
1526 struct address_space *mapping;
1528 struct folio *folio;
1529 enum page_references references = PAGEREF_RECLAIM;
1530 bool dirty, writeback, may_enter_fs;
1531 unsigned int nr_pages;
1535 folio = lru_to_folio(page_list);
1536 list_del(&folio->lru);
1537 page = &folio->page;
1539 if (!trylock_page(page))
1542 VM_BUG_ON_PAGE(PageActive(page), page);
1544 nr_pages = compound_nr(page);
1546 /* Account the number of base pages even though THP */
1547 sc->nr_scanned += nr_pages;
1549 if (unlikely(!page_evictable(page)))
1550 goto activate_locked;
1552 if (!sc->may_unmap && page_mapped(page))
1555 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1556 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1559 * The number of dirty pages determines if a node is marked
1560 * reclaim_congested. kswapd will stall and start writing
1561 * pages if the tail of the LRU is all dirty unqueued pages.
1563 folio_check_dirty_writeback(folio, &dirty, &writeback);
1564 if (dirty || writeback)
1565 stat->nr_dirty += nr_pages;
1567 if (dirty && !writeback)
1568 stat->nr_unqueued_dirty += nr_pages;
1571 * Treat this page as congested if the underlying BDI is or if
1572 * pages are cycling through the LRU so quickly that the
1573 * pages marked for immediate reclaim are making it to the
1574 * end of the LRU a second time.
1576 mapping = page_mapping(page);
1577 if (writeback && PageReclaim(page))
1578 stat->nr_congested += nr_pages;
1581 * If a page at the tail of the LRU is under writeback, there
1582 * are three cases to consider.
1584 * 1) If reclaim is encountering an excessive number of pages
1585 * under writeback and this page is both under writeback and
1586 * PageReclaim then it indicates that pages are being queued
1587 * for IO but are being recycled through the LRU before the
1588 * IO can complete. Waiting on the page itself risks an
1589 * indefinite stall if it is impossible to writeback the
1590 * page due to IO error or disconnected storage so instead
1591 * note that the LRU is being scanned too quickly and the
1592 * caller can stall after page list has been processed.
1594 * 2) Global or new memcg reclaim encounters a page that is
1595 * not marked for immediate reclaim, or the caller does not
1596 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1597 * not to fs). In this case mark the page for immediate
1598 * reclaim and continue scanning.
1600 * Require may_enter_fs because we would wait on fs, which
1601 * may not have submitted IO yet. And the loop driver might
1602 * enter reclaim, and deadlock if it waits on a page for
1603 * which it is needed to do the write (loop masks off
1604 * __GFP_IO|__GFP_FS for this reason); but more thought
1605 * would probably show more reasons.
1607 * 3) Legacy memcg encounters a page that is already marked
1608 * PageReclaim. memcg does not have any dirty pages
1609 * throttling so we could easily OOM just because too many
1610 * pages are in writeback and there is nothing else to
1611 * reclaim. Wait for the writeback to complete.
1613 * In cases 1) and 2) we activate the pages to get them out of
1614 * the way while we continue scanning for clean pages on the
1615 * inactive list and refilling from the active list. The
1616 * observation here is that waiting for disk writes is more
1617 * expensive than potentially causing reloads down the line.
1618 * Since they're marked for immediate reclaim, they won't put
1619 * memory pressure on the cache working set any longer than it
1620 * takes to write them to disk.
1622 if (PageWriteback(page)) {
1624 if (current_is_kswapd() &&
1625 PageReclaim(page) &&
1626 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1627 stat->nr_immediate += nr_pages;
1628 goto activate_locked;
1631 } else if (writeback_throttling_sane(sc) ||
1632 !PageReclaim(page) || !may_enter_fs) {
1634 * This is slightly racy - end_page_writeback()
1635 * might have just cleared PageReclaim, then
1636 * setting PageReclaim here end up interpreted
1637 * as PageReadahead - but that does not matter
1638 * enough to care. What we do want is for this
1639 * page to have PageReclaim set next time memcg
1640 * reclaim reaches the tests above, so it will
1641 * then wait_on_page_writeback() to avoid OOM;
1642 * and it's also appropriate in global reclaim.
1644 SetPageReclaim(page);
1645 stat->nr_writeback += nr_pages;
1646 goto activate_locked;
1651 wait_on_page_writeback(page);
1652 /* then go back and try same page again */
1653 list_add_tail(&page->lru, page_list);
1658 if (!ignore_references)
1659 references = folio_check_references(folio, sc);
1661 switch (references) {
1662 case PAGEREF_ACTIVATE:
1663 goto activate_locked;
1665 stat->nr_ref_keep += nr_pages;
1667 case PAGEREF_RECLAIM:
1668 case PAGEREF_RECLAIM_CLEAN:
1669 ; /* try to reclaim the page below */
1673 * Before reclaiming the page, try to relocate
1674 * its contents to another node.
1676 if (do_demote_pass &&
1677 (thp_migration_supported() || !PageTransHuge(page))) {
1678 list_add(&page->lru, &demote_pages);
1684 * Anonymous process memory has backing store?
1685 * Try to allocate it some swap space here.
1686 * Lazyfree page could be freed directly
1688 if (PageAnon(page) && PageSwapBacked(page)) {
1689 if (!PageSwapCache(page)) {
1690 if (!(sc->gfp_mask & __GFP_IO))
1692 if (folio_maybe_dma_pinned(folio))
1694 if (PageTransHuge(page)) {
1695 /* cannot split THP, skip it */
1696 if (!can_split_folio(folio, NULL))
1697 goto activate_locked;
1699 * Split pages without a PMD map right
1700 * away. Chances are some or all of the
1701 * tail pages can be freed without IO.
1703 if (!folio_entire_mapcount(folio) &&
1704 split_folio_to_list(folio,
1706 goto activate_locked;
1708 if (!add_to_swap(page)) {
1709 if (!PageTransHuge(page))
1710 goto activate_locked_split;
1711 /* Fallback to swap normal pages */
1712 if (split_folio_to_list(folio,
1714 goto activate_locked;
1715 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1716 count_vm_event(THP_SWPOUT_FALLBACK);
1718 if (!add_to_swap(page))
1719 goto activate_locked_split;
1722 may_enter_fs = true;
1724 /* Adding to swap updated mapping */
1725 mapping = page_mapping(page);
1727 } else if (PageSwapBacked(page) && PageTransHuge(page)) {
1728 /* Split shmem THP */
1729 if (split_folio_to_list(folio, page_list))
1734 * THP may get split above, need minus tail pages and update
1735 * nr_pages to avoid accounting tail pages twice.
1737 * The tail pages that are added into swap cache successfully
1740 if ((nr_pages > 1) && !PageTransHuge(page)) {
1741 sc->nr_scanned -= (nr_pages - 1);
1746 * The page is mapped into the page tables of one or more
1747 * processes. Try to unmap it here.
1749 if (page_mapped(page)) {
1750 enum ttu_flags flags = TTU_BATCH_FLUSH;
1751 bool was_swapbacked = PageSwapBacked(page);
1753 if (PageTransHuge(page) &&
1754 thp_order(page) >= HPAGE_PMD_ORDER)
1755 flags |= TTU_SPLIT_HUGE_PMD;
1757 try_to_unmap(folio, flags);
1758 if (page_mapped(page)) {
1759 stat->nr_unmap_fail += nr_pages;
1760 if (!was_swapbacked && PageSwapBacked(page))
1761 stat->nr_lazyfree_fail += nr_pages;
1762 goto activate_locked;
1766 if (PageDirty(page)) {
1768 * Only kswapd can writeback filesystem pages
1769 * to avoid risk of stack overflow. But avoid
1770 * injecting inefficient single-page IO into
1771 * flusher writeback as much as possible: only
1772 * write pages when we've encountered many
1773 * dirty pages, and when we've already scanned
1774 * the rest of the LRU for clean pages and see
1775 * the same dirty pages again (PageReclaim).
1777 if (page_is_file_lru(page) &&
1778 (!current_is_kswapd() || !PageReclaim(page) ||
1779 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1781 * Immediately reclaim when written back.
1782 * Similar in principal to deactivate_page()
1783 * except we already have the page isolated
1784 * and know it's dirty
1786 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1787 SetPageReclaim(page);
1789 goto activate_locked;
1792 if (references == PAGEREF_RECLAIM_CLEAN)
1796 if (!sc->may_writepage)
1800 * Page is dirty. Flush the TLB if a writable entry
1801 * potentially exists to avoid CPU writes after IO
1802 * starts and then write it out here.
1804 try_to_unmap_flush_dirty();
1805 switch (pageout(folio, mapping)) {
1809 goto activate_locked;
1811 stat->nr_pageout += nr_pages;
1813 if (PageWriteback(page))
1815 if (PageDirty(page))
1819 * A synchronous write - probably a ramdisk. Go
1820 * ahead and try to reclaim the page.
1822 if (!trylock_page(page))
1824 if (PageDirty(page) || PageWriteback(page))
1826 mapping = page_mapping(page);
1829 ; /* try to free the page below */
1834 * If the page has buffers, try to free the buffer mappings
1835 * associated with this page. If we succeed we try to free
1838 * We do this even if the page is PageDirty().
1839 * try_to_release_page() does not perform I/O, but it is
1840 * possible for a page to have PageDirty set, but it is actually
1841 * clean (all its buffers are clean). This happens if the
1842 * buffers were written out directly, with submit_bh(). ext3
1843 * will do this, as well as the blockdev mapping.
1844 * try_to_release_page() will discover that cleanness and will
1845 * drop the buffers and mark the page clean - it can be freed.
1847 * Rarely, pages can have buffers and no ->mapping. These are
1848 * the pages which were not successfully invalidated in
1849 * truncate_cleanup_page(). We try to drop those buffers here
1850 * and if that worked, and the page is no longer mapped into
1851 * process address space (page_count == 1) it can be freed.
1852 * Otherwise, leave the page on the LRU so it is swappable.
1854 if (page_has_private(page)) {
1855 if (!try_to_release_page(page, sc->gfp_mask))
1856 goto activate_locked;
1857 if (!mapping && page_count(page) == 1) {
1859 if (put_page_testzero(page))
1863 * rare race with speculative reference.
1864 * the speculative reference will free
1865 * this page shortly, so we may
1866 * increment nr_reclaimed here (and
1867 * leave it off the LRU).
1875 if (PageAnon(page) && !PageSwapBacked(page)) {
1876 /* follow __remove_mapping for reference */
1877 if (!page_ref_freeze(page, 1))
1880 * The page has only one reference left, which is
1881 * from the isolation. After the caller puts the
1882 * page back on lru and drops the reference, the
1883 * page will be freed anyway. It doesn't matter
1884 * which lru it goes. So we don't bother checking
1887 count_vm_event(PGLAZYFREED);
1888 count_memcg_page_event(page, PGLAZYFREED);
1889 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1890 sc->target_mem_cgroup))
1896 * THP may get swapped out in a whole, need account
1899 nr_reclaimed += nr_pages;
1902 * Is there need to periodically free_page_list? It would
1903 * appear not as the counts should be low
1905 if (unlikely(PageTransHuge(page)))
1906 destroy_compound_page(page);
1908 list_add(&page->lru, &free_pages);
1911 activate_locked_split:
1913 * The tail pages that are failed to add into swap cache
1914 * reach here. Fixup nr_scanned and nr_pages.
1917 sc->nr_scanned -= (nr_pages - 1);
1921 /* Not a candidate for swapping, so reclaim swap space. */
1922 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1924 try_to_free_swap(page);
1925 VM_BUG_ON_PAGE(PageActive(page), page);
1926 if (!PageMlocked(page)) {
1927 int type = page_is_file_lru(page);
1928 SetPageActive(page);
1929 stat->nr_activate[type] += nr_pages;
1930 count_memcg_page_event(page, PGACTIVATE);
1935 list_add(&page->lru, &ret_pages);
1936 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1938 /* 'page_list' is always empty here */
1940 /* Migrate pages selected for demotion */
1941 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1942 /* Pages that could not be demoted are still in @demote_pages */
1943 if (!list_empty(&demote_pages)) {
1944 /* Pages which failed to demoted go back on @page_list for retry: */
1945 list_splice_init(&demote_pages, page_list);
1946 do_demote_pass = false;
1950 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1952 mem_cgroup_uncharge_list(&free_pages);
1953 try_to_unmap_flush();
1954 free_unref_page_list(&free_pages);
1956 list_splice(&ret_pages, page_list);
1957 count_vm_events(PGACTIVATE, pgactivate);
1959 return nr_reclaimed;
1962 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1963 struct list_head *page_list)
1965 struct scan_control sc = {
1966 .gfp_mask = GFP_KERNEL,
1969 struct reclaim_stat stat;
1970 unsigned int nr_reclaimed;
1971 struct page *page, *next;
1972 LIST_HEAD(clean_pages);
1973 unsigned int noreclaim_flag;
1975 list_for_each_entry_safe(page, next, page_list, lru) {
1976 if (!PageHuge(page) && page_is_file_lru(page) &&
1977 !PageDirty(page) && !__PageMovable(page) &&
1978 !PageUnevictable(page)) {
1979 ClearPageActive(page);
1980 list_move(&page->lru, &clean_pages);
1985 * We should be safe here since we are only dealing with file pages and
1986 * we are not kswapd and therefore cannot write dirty file pages. But
1987 * call memalloc_noreclaim_save() anyway, just in case these conditions
1988 * change in the future.
1990 noreclaim_flag = memalloc_noreclaim_save();
1991 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1993 memalloc_noreclaim_restore(noreclaim_flag);
1995 list_splice(&clean_pages, page_list);
1996 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1997 -(long)nr_reclaimed);
1999 * Since lazyfree pages are isolated from file LRU from the beginning,
2000 * they will rotate back to anonymous LRU in the end if it failed to
2001 * discard so isolated count will be mismatched.
2002 * Compensate the isolated count for both LRU lists.
2004 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2005 stat.nr_lazyfree_fail);
2006 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2007 -(long)stat.nr_lazyfree_fail);
2008 return nr_reclaimed;
2012 * Update LRU sizes after isolating pages. The LRU size updates must
2013 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2015 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2016 enum lru_list lru, unsigned long *nr_zone_taken)
2020 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2021 if (!nr_zone_taken[zid])
2024 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2030 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2032 * lruvec->lru_lock is heavily contended. Some of the functions that
2033 * shrink the lists perform better by taking out a batch of pages
2034 * and working on them outside the LRU lock.
2036 * For pagecache intensive workloads, this function is the hottest
2037 * spot in the kernel (apart from copy_*_user functions).
2039 * Lru_lock must be held before calling this function.
2041 * @nr_to_scan: The number of eligible pages to look through on the list.
2042 * @lruvec: The LRU vector to pull pages from.
2043 * @dst: The temp list to put pages on to.
2044 * @nr_scanned: The number of pages that were scanned.
2045 * @sc: The scan_control struct for this reclaim session
2046 * @lru: LRU list id for isolating
2048 * returns how many pages were moved onto *@dst.
2050 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2051 struct lruvec *lruvec, struct list_head *dst,
2052 unsigned long *nr_scanned, struct scan_control *sc,
2055 struct list_head *src = &lruvec->lists[lru];
2056 unsigned long nr_taken = 0;
2057 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2058 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2059 unsigned long skipped = 0;
2060 unsigned long scan, total_scan, nr_pages;
2061 LIST_HEAD(pages_skipped);
2065 while (scan < nr_to_scan && !list_empty(src)) {
2066 struct list_head *move_to = src;
2069 page = lru_to_page(src);
2070 prefetchw_prev_lru_page(page, src, flags);
2072 nr_pages = compound_nr(page);
2073 total_scan += nr_pages;
2075 if (page_zonenum(page) > sc->reclaim_idx) {
2076 nr_skipped[page_zonenum(page)] += nr_pages;
2077 move_to = &pages_skipped;
2082 * Do not count skipped pages because that makes the function
2083 * return with no isolated pages if the LRU mostly contains
2084 * ineligible pages. This causes the VM to not reclaim any
2085 * pages, triggering a premature OOM.
2086 * Account all tail pages of THP.
2092 if (!sc->may_unmap && page_mapped(page))
2096 * Be careful not to clear PageLRU until after we're
2097 * sure the page is not being freed elsewhere -- the
2098 * page release code relies on it.
2100 if (unlikely(!get_page_unless_zero(page)))
2103 if (!TestClearPageLRU(page)) {
2104 /* Another thread is already isolating this page */
2109 nr_taken += nr_pages;
2110 nr_zone_taken[page_zonenum(page)] += nr_pages;
2113 list_move(&page->lru, move_to);
2117 * Splice any skipped pages to the start of the LRU list. Note that
2118 * this disrupts the LRU order when reclaiming for lower zones but
2119 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2120 * scanning would soon rescan the same pages to skip and put the
2121 * system at risk of premature OOM.
2123 if (!list_empty(&pages_skipped)) {
2126 list_splice(&pages_skipped, src);
2127 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2128 if (!nr_skipped[zid])
2131 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2132 skipped += nr_skipped[zid];
2135 *nr_scanned = total_scan;
2136 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2137 total_scan, skipped, nr_taken,
2138 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2139 update_lru_sizes(lruvec, lru, nr_zone_taken);
2144 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2145 * @folio: Folio to isolate from its LRU list.
2147 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2148 * corresponding to whatever LRU list the folio was on.
2150 * The folio will have its LRU flag cleared. If it was found on the
2151 * active list, it will have the Active flag set. If it was found on the
2152 * unevictable list, it will have the Unevictable flag set. These flags
2153 * may need to be cleared by the caller before letting the page go.
2157 * (1) Must be called with an elevated refcount on the page. This is a
2158 * fundamental difference from isolate_lru_pages() (which is called
2159 * without a stable reference).
2160 * (2) The lru_lock must not be held.
2161 * (3) Interrupts must be enabled.
2163 * Return: 0 if the folio was removed from an LRU list.
2164 * -EBUSY if the folio was not on an LRU list.
2166 int folio_isolate_lru(struct folio *folio)
2170 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2172 if (folio_test_clear_lru(folio)) {
2173 struct lruvec *lruvec;
2176 lruvec = folio_lruvec_lock_irq(folio);
2177 lruvec_del_folio(lruvec, folio);
2178 unlock_page_lruvec_irq(lruvec);
2186 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2187 * then get rescheduled. When there are massive number of tasks doing page
2188 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2189 * the LRU list will go small and be scanned faster than necessary, leading to
2190 * unnecessary swapping, thrashing and OOM.
2192 static int too_many_isolated(struct pglist_data *pgdat, int file,
2193 struct scan_control *sc)
2195 unsigned long inactive, isolated;
2198 if (current_is_kswapd())
2201 if (!writeback_throttling_sane(sc))
2205 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2206 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2208 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2209 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2213 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2214 * won't get blocked by normal direct-reclaimers, forming a circular
2217 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2220 too_many = isolated > inactive;
2222 /* Wake up tasks throttled due to too_many_isolated. */
2224 wake_throttle_isolated(pgdat);
2230 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2231 * On return, @list is reused as a list of pages to be freed by the caller.
2233 * Returns the number of pages moved to the given lruvec.
2235 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2236 struct list_head *list)
2238 int nr_pages, nr_moved = 0;
2239 LIST_HEAD(pages_to_free);
2242 while (!list_empty(list)) {
2243 page = lru_to_page(list);
2244 VM_BUG_ON_PAGE(PageLRU(page), page);
2245 list_del(&page->lru);
2246 if (unlikely(!page_evictable(page))) {
2247 spin_unlock_irq(&lruvec->lru_lock);
2248 putback_lru_page(page);
2249 spin_lock_irq(&lruvec->lru_lock);
2254 * The SetPageLRU needs to be kept here for list integrity.
2256 * #0 move_pages_to_lru #1 release_pages
2257 * if !put_page_testzero
2258 * if (put_page_testzero())
2259 * !PageLRU //skip lru_lock
2261 * list_add(&page->lru,)
2262 * list_add(&page->lru,)
2266 if (unlikely(put_page_testzero(page))) {
2267 __clear_page_lru_flags(page);
2269 if (unlikely(PageCompound(page))) {
2270 spin_unlock_irq(&lruvec->lru_lock);
2271 destroy_compound_page(page);
2272 spin_lock_irq(&lruvec->lru_lock);
2274 list_add(&page->lru, &pages_to_free);
2280 * All pages were isolated from the same lruvec (and isolation
2281 * inhibits memcg migration).
2283 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2284 add_page_to_lru_list(page, lruvec);
2285 nr_pages = thp_nr_pages(page);
2286 nr_moved += nr_pages;
2287 if (PageActive(page))
2288 workingset_age_nonresident(lruvec, nr_pages);
2292 * To save our caller's stack, now use input list for pages to free.
2294 list_splice(&pages_to_free, list);
2300 * If a kernel thread (such as nfsd for loop-back mounts) services
2301 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2302 * In that case we should only throttle if the backing device it is
2303 * writing to is congested. In other cases it is safe to throttle.
2305 static int current_may_throttle(void)
2307 return !(current->flags & PF_LOCAL_THROTTLE);
2311 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2312 * of reclaimed pages
2314 static unsigned long
2315 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2316 struct scan_control *sc, enum lru_list lru)
2318 LIST_HEAD(page_list);
2319 unsigned long nr_scanned;
2320 unsigned int nr_reclaimed = 0;
2321 unsigned long nr_taken;
2322 struct reclaim_stat stat;
2323 bool file = is_file_lru(lru);
2324 enum vm_event_item item;
2325 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2326 bool stalled = false;
2328 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2332 /* wait a bit for the reclaimer. */
2334 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2336 /* We are about to die and free our memory. Return now. */
2337 if (fatal_signal_pending(current))
2338 return SWAP_CLUSTER_MAX;
2343 spin_lock_irq(&lruvec->lru_lock);
2345 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2346 &nr_scanned, sc, lru);
2348 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2349 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2350 if (!cgroup_reclaim(sc))
2351 __count_vm_events(item, nr_scanned);
2352 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2353 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2355 spin_unlock_irq(&lruvec->lru_lock);
2360 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2362 spin_lock_irq(&lruvec->lru_lock);
2363 move_pages_to_lru(lruvec, &page_list);
2365 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2366 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2367 if (!cgroup_reclaim(sc))
2368 __count_vm_events(item, nr_reclaimed);
2369 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2370 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2371 spin_unlock_irq(&lruvec->lru_lock);
2373 lru_note_cost(lruvec, file, stat.nr_pageout);
2374 mem_cgroup_uncharge_list(&page_list);
2375 free_unref_page_list(&page_list);
2378 * If dirty pages are scanned that are not queued for IO, it
2379 * implies that flushers are not doing their job. This can
2380 * happen when memory pressure pushes dirty pages to the end of
2381 * the LRU before the dirty limits are breached and the dirty
2382 * data has expired. It can also happen when the proportion of
2383 * dirty pages grows not through writes but through memory
2384 * pressure reclaiming all the clean cache. And in some cases,
2385 * the flushers simply cannot keep up with the allocation
2386 * rate. Nudge the flusher threads in case they are asleep.
2388 if (stat.nr_unqueued_dirty == nr_taken)
2389 wakeup_flusher_threads(WB_REASON_VMSCAN);
2391 sc->nr.dirty += stat.nr_dirty;
2392 sc->nr.congested += stat.nr_congested;
2393 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2394 sc->nr.writeback += stat.nr_writeback;
2395 sc->nr.immediate += stat.nr_immediate;
2396 sc->nr.taken += nr_taken;
2398 sc->nr.file_taken += nr_taken;
2400 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2401 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2402 return nr_reclaimed;
2406 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2408 * We move them the other way if the page is referenced by one or more
2411 * If the pages are mostly unmapped, the processing is fast and it is
2412 * appropriate to hold lru_lock across the whole operation. But if
2413 * the pages are mapped, the processing is slow (folio_referenced()), so
2414 * we should drop lru_lock around each page. It's impossible to balance
2415 * this, so instead we remove the pages from the LRU while processing them.
2416 * It is safe to rely on PG_active against the non-LRU pages in here because
2417 * nobody will play with that bit on a non-LRU page.
2419 * The downside is that we have to touch page->_refcount against each page.
2420 * But we had to alter page->flags anyway.
2422 static void shrink_active_list(unsigned long nr_to_scan,
2423 struct lruvec *lruvec,
2424 struct scan_control *sc,
2427 unsigned long nr_taken;
2428 unsigned long nr_scanned;
2429 unsigned long vm_flags;
2430 LIST_HEAD(l_hold); /* The pages which were snipped off */
2431 LIST_HEAD(l_active);
2432 LIST_HEAD(l_inactive);
2433 unsigned nr_deactivate, nr_activate;
2434 unsigned nr_rotated = 0;
2435 int file = is_file_lru(lru);
2436 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2440 spin_lock_irq(&lruvec->lru_lock);
2442 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2443 &nr_scanned, sc, lru);
2445 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2447 if (!cgroup_reclaim(sc))
2448 __count_vm_events(PGREFILL, nr_scanned);
2449 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2451 spin_unlock_irq(&lruvec->lru_lock);
2453 while (!list_empty(&l_hold)) {
2454 struct folio *folio;
2458 folio = lru_to_folio(&l_hold);
2459 list_del(&folio->lru);
2460 page = &folio->page;
2462 if (unlikely(!page_evictable(page))) {
2463 putback_lru_page(page);
2467 if (unlikely(buffer_heads_over_limit)) {
2468 if (page_has_private(page) && trylock_page(page)) {
2469 if (page_has_private(page))
2470 try_to_release_page(page, 0);
2475 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2478 * Identify referenced, file-backed active pages and
2479 * give them one more trip around the active list. So
2480 * that executable code get better chances to stay in
2481 * memory under moderate memory pressure. Anon pages
2482 * are not likely to be evicted by use-once streaming
2483 * IO, plus JVM can create lots of anon VM_EXEC pages,
2484 * so we ignore them here.
2486 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2487 nr_rotated += thp_nr_pages(page);
2488 list_add(&page->lru, &l_active);
2493 ClearPageActive(page); /* we are de-activating */
2494 SetPageWorkingset(page);
2495 list_add(&page->lru, &l_inactive);
2499 * Move pages back to the lru list.
2501 spin_lock_irq(&lruvec->lru_lock);
2503 nr_activate = move_pages_to_lru(lruvec, &l_active);
2504 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2505 /* Keep all free pages in l_active list */
2506 list_splice(&l_inactive, &l_active);
2508 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2509 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2511 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2512 spin_unlock_irq(&lruvec->lru_lock);
2514 mem_cgroup_uncharge_list(&l_active);
2515 free_unref_page_list(&l_active);
2516 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2517 nr_deactivate, nr_rotated, sc->priority, file);
2520 unsigned long reclaim_pages(struct list_head *page_list)
2522 int nid = NUMA_NO_NODE;
2523 unsigned int nr_reclaimed = 0;
2524 LIST_HEAD(node_page_list);
2525 struct reclaim_stat dummy_stat;
2527 unsigned int noreclaim_flag;
2528 struct scan_control sc = {
2529 .gfp_mask = GFP_KERNEL,
2536 noreclaim_flag = memalloc_noreclaim_save();
2538 while (!list_empty(page_list)) {
2539 page = lru_to_page(page_list);
2540 if (nid == NUMA_NO_NODE) {
2541 nid = page_to_nid(page);
2542 INIT_LIST_HEAD(&node_page_list);
2545 if (nid == page_to_nid(page)) {
2546 ClearPageActive(page);
2547 list_move(&page->lru, &node_page_list);
2551 nr_reclaimed += shrink_page_list(&node_page_list,
2553 &sc, &dummy_stat, false);
2554 while (!list_empty(&node_page_list)) {
2555 page = lru_to_page(&node_page_list);
2556 list_del(&page->lru);
2557 putback_lru_page(page);
2563 if (!list_empty(&node_page_list)) {
2564 nr_reclaimed += shrink_page_list(&node_page_list,
2566 &sc, &dummy_stat, false);
2567 while (!list_empty(&node_page_list)) {
2568 page = lru_to_page(&node_page_list);
2569 list_del(&page->lru);
2570 putback_lru_page(page);
2574 memalloc_noreclaim_restore(noreclaim_flag);
2576 return nr_reclaimed;
2579 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2580 struct lruvec *lruvec, struct scan_control *sc)
2582 if (is_active_lru(lru)) {
2583 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2584 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2586 sc->skipped_deactivate = 1;
2590 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2594 * The inactive anon list should be small enough that the VM never has
2595 * to do too much work.
2597 * The inactive file list should be small enough to leave most memory
2598 * to the established workingset on the scan-resistant active list,
2599 * but large enough to avoid thrashing the aggregate readahead window.
2601 * Both inactive lists should also be large enough that each inactive
2602 * page has a chance to be referenced again before it is reclaimed.
2604 * If that fails and refaulting is observed, the inactive list grows.
2606 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2607 * on this LRU, maintained by the pageout code. An inactive_ratio
2608 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2611 * memory ratio inactive
2612 * -------------------------------------
2621 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2623 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2624 unsigned long inactive, active;
2625 unsigned long inactive_ratio;
2628 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2629 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2631 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2633 inactive_ratio = int_sqrt(10 * gb);
2637 return inactive * inactive_ratio < active;
2648 * Determine how aggressively the anon and file LRU lists should be
2649 * scanned. The relative value of each set of LRU lists is determined
2650 * by looking at the fraction of the pages scanned we did rotate back
2651 * onto the active list instead of evict.
2653 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2654 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2656 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2659 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2660 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2661 unsigned long anon_cost, file_cost, total_cost;
2662 int swappiness = mem_cgroup_swappiness(memcg);
2663 u64 fraction[ANON_AND_FILE];
2664 u64 denominator = 0; /* gcc */
2665 enum scan_balance scan_balance;
2666 unsigned long ap, fp;
2669 /* If we have no swap space, do not bother scanning anon pages. */
2670 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2671 scan_balance = SCAN_FILE;
2676 * Global reclaim will swap to prevent OOM even with no
2677 * swappiness, but memcg users want to use this knob to
2678 * disable swapping for individual groups completely when
2679 * using the memory controller's swap limit feature would be
2682 if (cgroup_reclaim(sc) && !swappiness) {
2683 scan_balance = SCAN_FILE;
2688 * Do not apply any pressure balancing cleverness when the
2689 * system is close to OOM, scan both anon and file equally
2690 * (unless the swappiness setting disagrees with swapping).
2692 if (!sc->priority && swappiness) {
2693 scan_balance = SCAN_EQUAL;
2698 * If the system is almost out of file pages, force-scan anon.
2700 if (sc->file_is_tiny) {
2701 scan_balance = SCAN_ANON;
2706 * If there is enough inactive page cache, we do not reclaim
2707 * anything from the anonymous working right now.
2709 if (sc->cache_trim_mode) {
2710 scan_balance = SCAN_FILE;
2714 scan_balance = SCAN_FRACT;
2716 * Calculate the pressure balance between anon and file pages.
2718 * The amount of pressure we put on each LRU is inversely
2719 * proportional to the cost of reclaiming each list, as
2720 * determined by the share of pages that are refaulting, times
2721 * the relative IO cost of bringing back a swapped out
2722 * anonymous page vs reloading a filesystem page (swappiness).
2724 * Although we limit that influence to ensure no list gets
2725 * left behind completely: at least a third of the pressure is
2726 * applied, before swappiness.
2728 * With swappiness at 100, anon and file have equal IO cost.
2730 total_cost = sc->anon_cost + sc->file_cost;
2731 anon_cost = total_cost + sc->anon_cost;
2732 file_cost = total_cost + sc->file_cost;
2733 total_cost = anon_cost + file_cost;
2735 ap = swappiness * (total_cost + 1);
2736 ap /= anon_cost + 1;
2738 fp = (200 - swappiness) * (total_cost + 1);
2739 fp /= file_cost + 1;
2743 denominator = ap + fp;
2745 for_each_evictable_lru(lru) {
2746 int file = is_file_lru(lru);
2747 unsigned long lruvec_size;
2748 unsigned long low, min;
2751 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2752 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2757 * Scale a cgroup's reclaim pressure by proportioning
2758 * its current usage to its memory.low or memory.min
2761 * This is important, as otherwise scanning aggression
2762 * becomes extremely binary -- from nothing as we
2763 * approach the memory protection threshold, to totally
2764 * nominal as we exceed it. This results in requiring
2765 * setting extremely liberal protection thresholds. It
2766 * also means we simply get no protection at all if we
2767 * set it too low, which is not ideal.
2769 * If there is any protection in place, we reduce scan
2770 * pressure by how much of the total memory used is
2771 * within protection thresholds.
2773 * There is one special case: in the first reclaim pass,
2774 * we skip over all groups that are within their low
2775 * protection. If that fails to reclaim enough pages to
2776 * satisfy the reclaim goal, we come back and override
2777 * the best-effort low protection. However, we still
2778 * ideally want to honor how well-behaved groups are in
2779 * that case instead of simply punishing them all
2780 * equally. As such, we reclaim them based on how much
2781 * memory they are using, reducing the scan pressure
2782 * again by how much of the total memory used is under
2785 unsigned long cgroup_size = mem_cgroup_size(memcg);
2786 unsigned long protection;
2788 /* memory.low scaling, make sure we retry before OOM */
2789 if (!sc->memcg_low_reclaim && low > min) {
2791 sc->memcg_low_skipped = 1;
2796 /* Avoid TOCTOU with earlier protection check */
2797 cgroup_size = max(cgroup_size, protection);
2799 scan = lruvec_size - lruvec_size * protection /
2803 * Minimally target SWAP_CLUSTER_MAX pages to keep
2804 * reclaim moving forwards, avoiding decrementing
2805 * sc->priority further than desirable.
2807 scan = max(scan, SWAP_CLUSTER_MAX);
2812 scan >>= sc->priority;
2815 * If the cgroup's already been deleted, make sure to
2816 * scrape out the remaining cache.
2818 if (!scan && !mem_cgroup_online(memcg))
2819 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2821 switch (scan_balance) {
2823 /* Scan lists relative to size */
2827 * Scan types proportional to swappiness and
2828 * their relative recent reclaim efficiency.
2829 * Make sure we don't miss the last page on
2830 * the offlined memory cgroups because of a
2833 scan = mem_cgroup_online(memcg) ?
2834 div64_u64(scan * fraction[file], denominator) :
2835 DIV64_U64_ROUND_UP(scan * fraction[file],
2840 /* Scan one type exclusively */
2841 if ((scan_balance == SCAN_FILE) != file)
2845 /* Look ma, no brain */
2854 * Anonymous LRU management is a waste if there is
2855 * ultimately no way to reclaim the memory.
2857 static bool can_age_anon_pages(struct pglist_data *pgdat,
2858 struct scan_control *sc)
2860 /* Aging the anon LRU is valuable if swap is present: */
2861 if (total_swap_pages > 0)
2864 /* Also valuable if anon pages can be demoted: */
2865 return can_demote(pgdat->node_id, sc);
2868 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2870 unsigned long nr[NR_LRU_LISTS];
2871 unsigned long targets[NR_LRU_LISTS];
2872 unsigned long nr_to_scan;
2874 unsigned long nr_reclaimed = 0;
2875 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2876 struct blk_plug plug;
2879 get_scan_count(lruvec, sc, nr);
2881 /* Record the original scan target for proportional adjustments later */
2882 memcpy(targets, nr, sizeof(nr));
2885 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2886 * event that can occur when there is little memory pressure e.g.
2887 * multiple streaming readers/writers. Hence, we do not abort scanning
2888 * when the requested number of pages are reclaimed when scanning at
2889 * DEF_PRIORITY on the assumption that the fact we are direct
2890 * reclaiming implies that kswapd is not keeping up and it is best to
2891 * do a batch of work at once. For memcg reclaim one check is made to
2892 * abort proportional reclaim if either the file or anon lru has already
2893 * dropped to zero at the first pass.
2895 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2896 sc->priority == DEF_PRIORITY);
2898 blk_start_plug(&plug);
2899 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2900 nr[LRU_INACTIVE_FILE]) {
2901 unsigned long nr_anon, nr_file, percentage;
2902 unsigned long nr_scanned;
2904 for_each_evictable_lru(lru) {
2906 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2907 nr[lru] -= nr_to_scan;
2909 nr_reclaimed += shrink_list(lru, nr_to_scan,
2916 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2920 * For kswapd and memcg, reclaim at least the number of pages
2921 * requested. Ensure that the anon and file LRUs are scanned
2922 * proportionally what was requested by get_scan_count(). We
2923 * stop reclaiming one LRU and reduce the amount scanning
2924 * proportional to the original scan target.
2926 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2927 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2930 * It's just vindictive to attack the larger once the smaller
2931 * has gone to zero. And given the way we stop scanning the
2932 * smaller below, this makes sure that we only make one nudge
2933 * towards proportionality once we've got nr_to_reclaim.
2935 if (!nr_file || !nr_anon)
2938 if (nr_file > nr_anon) {
2939 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2940 targets[LRU_ACTIVE_ANON] + 1;
2942 percentage = nr_anon * 100 / scan_target;
2944 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2945 targets[LRU_ACTIVE_FILE] + 1;
2947 percentage = nr_file * 100 / scan_target;
2950 /* Stop scanning the smaller of the LRU */
2952 nr[lru + LRU_ACTIVE] = 0;
2955 * Recalculate the other LRU scan count based on its original
2956 * scan target and the percentage scanning already complete
2958 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2959 nr_scanned = targets[lru] - nr[lru];
2960 nr[lru] = targets[lru] * (100 - percentage) / 100;
2961 nr[lru] -= min(nr[lru], nr_scanned);
2964 nr_scanned = targets[lru] - nr[lru];
2965 nr[lru] = targets[lru] * (100 - percentage) / 100;
2966 nr[lru] -= min(nr[lru], nr_scanned);
2968 scan_adjusted = true;
2970 blk_finish_plug(&plug);
2971 sc->nr_reclaimed += nr_reclaimed;
2974 * Even if we did not try to evict anon pages at all, we want to
2975 * rebalance the anon lru active/inactive ratio.
2977 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2978 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2979 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2980 sc, LRU_ACTIVE_ANON);
2983 /* Use reclaim/compaction for costly allocs or under memory pressure */
2984 static bool in_reclaim_compaction(struct scan_control *sc)
2986 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2987 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2988 sc->priority < DEF_PRIORITY - 2))
2995 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2996 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2997 * true if more pages should be reclaimed such that when the page allocator
2998 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2999 * It will give up earlier than that if there is difficulty reclaiming pages.
3001 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3002 unsigned long nr_reclaimed,
3003 struct scan_control *sc)
3005 unsigned long pages_for_compaction;
3006 unsigned long inactive_lru_pages;
3009 /* If not in reclaim/compaction mode, stop */
3010 if (!in_reclaim_compaction(sc))
3014 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3015 * number of pages that were scanned. This will return to the caller
3016 * with the risk reclaim/compaction and the resulting allocation attempt
3017 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3018 * allocations through requiring that the full LRU list has been scanned
3019 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3020 * scan, but that approximation was wrong, and there were corner cases
3021 * where always a non-zero amount of pages were scanned.
3026 /* If compaction would go ahead or the allocation would succeed, stop */
3027 for (z = 0; z <= sc->reclaim_idx; z++) {
3028 struct zone *zone = &pgdat->node_zones[z];
3029 if (!managed_zone(zone))
3032 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3033 case COMPACT_SUCCESS:
3034 case COMPACT_CONTINUE:
3037 /* check next zone */
3043 * If we have not reclaimed enough pages for compaction and the
3044 * inactive lists are large enough, continue reclaiming
3046 pages_for_compaction = compact_gap(sc->order);
3047 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3048 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3049 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3051 return inactive_lru_pages > pages_for_compaction;
3054 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3056 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3057 struct mem_cgroup *memcg;
3059 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3061 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3062 unsigned long reclaimed;
3063 unsigned long scanned;
3066 * This loop can become CPU-bound when target memcgs
3067 * aren't eligible for reclaim - either because they
3068 * don't have any reclaimable pages, or because their
3069 * memory is explicitly protected. Avoid soft lockups.
3073 mem_cgroup_calculate_protection(target_memcg, memcg);
3075 if (mem_cgroup_below_min(memcg)) {
3078 * If there is no reclaimable memory, OOM.
3081 } else if (mem_cgroup_below_low(memcg)) {
3084 * Respect the protection only as long as
3085 * there is an unprotected supply
3086 * of reclaimable memory from other cgroups.
3088 if (!sc->memcg_low_reclaim) {
3089 sc->memcg_low_skipped = 1;
3092 memcg_memory_event(memcg, MEMCG_LOW);
3095 reclaimed = sc->nr_reclaimed;
3096 scanned = sc->nr_scanned;
3098 shrink_lruvec(lruvec, sc);
3100 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3103 /* Record the group's reclaim efficiency */
3104 vmpressure(sc->gfp_mask, memcg, false,
3105 sc->nr_scanned - scanned,
3106 sc->nr_reclaimed - reclaimed);
3108 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3111 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3113 struct reclaim_state *reclaim_state = current->reclaim_state;
3114 unsigned long nr_reclaimed, nr_scanned;
3115 struct lruvec *target_lruvec;
3116 bool reclaimable = false;
3119 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3123 * Flush the memory cgroup stats, so that we read accurate per-memcg
3124 * lruvec stats for heuristics.
3126 mem_cgroup_flush_stats();
3128 memset(&sc->nr, 0, sizeof(sc->nr));
3130 nr_reclaimed = sc->nr_reclaimed;
3131 nr_scanned = sc->nr_scanned;
3134 * Determine the scan balance between anon and file LRUs.
3136 spin_lock_irq(&target_lruvec->lru_lock);
3137 sc->anon_cost = target_lruvec->anon_cost;
3138 sc->file_cost = target_lruvec->file_cost;
3139 spin_unlock_irq(&target_lruvec->lru_lock);
3142 * Target desirable inactive:active list ratios for the anon
3143 * and file LRU lists.
3145 if (!sc->force_deactivate) {
3146 unsigned long refaults;
3148 refaults = lruvec_page_state(target_lruvec,
3149 WORKINGSET_ACTIVATE_ANON);
3150 if (refaults != target_lruvec->refaults[0] ||
3151 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3152 sc->may_deactivate |= DEACTIVATE_ANON;
3154 sc->may_deactivate &= ~DEACTIVATE_ANON;
3157 * When refaults are being observed, it means a new
3158 * workingset is being established. Deactivate to get
3159 * rid of any stale active pages quickly.
3161 refaults = lruvec_page_state(target_lruvec,
3162 WORKINGSET_ACTIVATE_FILE);
3163 if (refaults != target_lruvec->refaults[1] ||
3164 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3165 sc->may_deactivate |= DEACTIVATE_FILE;
3167 sc->may_deactivate &= ~DEACTIVATE_FILE;
3169 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3172 * If we have plenty of inactive file pages that aren't
3173 * thrashing, try to reclaim those first before touching
3176 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3177 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3178 sc->cache_trim_mode = 1;
3180 sc->cache_trim_mode = 0;
3183 * Prevent the reclaimer from falling into the cache trap: as
3184 * cache pages start out inactive, every cache fault will tip
3185 * the scan balance towards the file LRU. And as the file LRU
3186 * shrinks, so does the window for rotation from references.
3187 * This means we have a runaway feedback loop where a tiny
3188 * thrashing file LRU becomes infinitely more attractive than
3189 * anon pages. Try to detect this based on file LRU size.
3191 if (!cgroup_reclaim(sc)) {
3192 unsigned long total_high_wmark = 0;
3193 unsigned long free, anon;
3196 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3197 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3198 node_page_state(pgdat, NR_INACTIVE_FILE);
3200 for (z = 0; z < MAX_NR_ZONES; z++) {
3201 struct zone *zone = &pgdat->node_zones[z];
3202 if (!managed_zone(zone))
3205 total_high_wmark += high_wmark_pages(zone);
3209 * Consider anon: if that's low too, this isn't a
3210 * runaway file reclaim problem, but rather just
3211 * extreme pressure. Reclaim as per usual then.
3213 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3216 file + free <= total_high_wmark &&
3217 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3218 anon >> sc->priority;
3221 shrink_node_memcgs(pgdat, sc);
3223 if (reclaim_state) {
3224 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3225 reclaim_state->reclaimed_slab = 0;
3228 /* Record the subtree's reclaim efficiency */
3229 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3230 sc->nr_scanned - nr_scanned,
3231 sc->nr_reclaimed - nr_reclaimed);
3233 if (sc->nr_reclaimed - nr_reclaimed)
3236 if (current_is_kswapd()) {
3238 * If reclaim is isolating dirty pages under writeback,
3239 * it implies that the long-lived page allocation rate
3240 * is exceeding the page laundering rate. Either the
3241 * global limits are not being effective at throttling
3242 * processes due to the page distribution throughout
3243 * zones or there is heavy usage of a slow backing
3244 * device. The only option is to throttle from reclaim
3245 * context which is not ideal as there is no guarantee
3246 * the dirtying process is throttled in the same way
3247 * balance_dirty_pages() manages.
3249 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3250 * count the number of pages under pages flagged for
3251 * immediate reclaim and stall if any are encountered
3252 * in the nr_immediate check below.
3254 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3255 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3257 /* Allow kswapd to start writing pages during reclaim.*/
3258 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3259 set_bit(PGDAT_DIRTY, &pgdat->flags);
3262 * If kswapd scans pages marked for immediate
3263 * reclaim and under writeback (nr_immediate), it
3264 * implies that pages are cycling through the LRU
3265 * faster than they are written so forcibly stall
3266 * until some pages complete writeback.
3268 if (sc->nr.immediate)
3269 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3273 * Tag a node/memcg as congested if all the dirty pages were marked
3274 * for writeback and immediate reclaim (counted in nr.congested).
3276 * Legacy memcg will stall in page writeback so avoid forcibly
3277 * stalling in reclaim_throttle().
3279 if ((current_is_kswapd() ||
3280 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3281 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3282 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3285 * Stall direct reclaim for IO completions if the lruvec is
3286 * node is congested. Allow kswapd to continue until it
3287 * starts encountering unqueued dirty pages or cycling through
3288 * the LRU too quickly.
3290 if (!current_is_kswapd() && current_may_throttle() &&
3291 !sc->hibernation_mode &&
3292 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3293 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3295 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3300 * Kswapd gives up on balancing particular nodes after too
3301 * many failures to reclaim anything from them and goes to
3302 * sleep. On reclaim progress, reset the failure counter. A
3303 * successful direct reclaim run will revive a dormant kswapd.
3306 pgdat->kswapd_failures = 0;
3310 * Returns true if compaction should go ahead for a costly-order request, or
3311 * the allocation would already succeed without compaction. Return false if we
3312 * should reclaim first.
3314 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3316 unsigned long watermark;
3317 enum compact_result suitable;
3319 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3320 if (suitable == COMPACT_SUCCESS)
3321 /* Allocation should succeed already. Don't reclaim. */
3323 if (suitable == COMPACT_SKIPPED)
3324 /* Compaction cannot yet proceed. Do reclaim. */
3328 * Compaction is already possible, but it takes time to run and there
3329 * are potentially other callers using the pages just freed. So proceed
3330 * with reclaim to make a buffer of free pages available to give
3331 * compaction a reasonable chance of completing and allocating the page.
3332 * Note that we won't actually reclaim the whole buffer in one attempt
3333 * as the target watermark in should_continue_reclaim() is lower. But if
3334 * we are already above the high+gap watermark, don't reclaim at all.
3336 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3338 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3341 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3344 * If reclaim is making progress greater than 12% efficiency then
3345 * wake all the NOPROGRESS throttled tasks.
3347 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3348 wait_queue_head_t *wqh;
3350 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3351 if (waitqueue_active(wqh))
3358 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3359 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3360 * under writeback and marked for immediate reclaim at the tail of the
3363 if (current_is_kswapd() || cgroup_reclaim(sc))
3366 /* Throttle if making no progress at high prioities. */
3367 if (sc->priority == 1 && !sc->nr_reclaimed)
3368 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3372 * This is the direct reclaim path, for page-allocating processes. We only
3373 * try to reclaim pages from zones which will satisfy the caller's allocation
3376 * If a zone is deemed to be full of pinned pages then just give it a light
3377 * scan then give up on it.
3379 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3383 unsigned long nr_soft_reclaimed;
3384 unsigned long nr_soft_scanned;
3386 pg_data_t *last_pgdat = NULL;
3387 pg_data_t *first_pgdat = NULL;
3390 * If the number of buffer_heads in the machine exceeds the maximum
3391 * allowed level, force direct reclaim to scan the highmem zone as
3392 * highmem pages could be pinning lowmem pages storing buffer_heads
3394 orig_mask = sc->gfp_mask;
3395 if (buffer_heads_over_limit) {
3396 sc->gfp_mask |= __GFP_HIGHMEM;
3397 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3400 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3401 sc->reclaim_idx, sc->nodemask) {
3403 * Take care memory controller reclaiming has small influence
3406 if (!cgroup_reclaim(sc)) {
3407 if (!cpuset_zone_allowed(zone,
3408 GFP_KERNEL | __GFP_HARDWALL))
3412 * If we already have plenty of memory free for
3413 * compaction in this zone, don't free any more.
3414 * Even though compaction is invoked for any
3415 * non-zero order, only frequent costly order
3416 * reclamation is disruptive enough to become a
3417 * noticeable problem, like transparent huge
3420 if (IS_ENABLED(CONFIG_COMPACTION) &&
3421 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3422 compaction_ready(zone, sc)) {
3423 sc->compaction_ready = true;
3428 * Shrink each node in the zonelist once. If the
3429 * zonelist is ordered by zone (not the default) then a
3430 * node may be shrunk multiple times but in that case
3431 * the user prefers lower zones being preserved.
3433 if (zone->zone_pgdat == last_pgdat)
3437 * This steals pages from memory cgroups over softlimit
3438 * and returns the number of reclaimed pages and
3439 * scanned pages. This works for global memory pressure
3440 * and balancing, not for a memcg's limit.
3442 nr_soft_scanned = 0;
3443 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3444 sc->order, sc->gfp_mask,
3446 sc->nr_reclaimed += nr_soft_reclaimed;
3447 sc->nr_scanned += nr_soft_scanned;
3448 /* need some check for avoid more shrink_zone() */
3452 first_pgdat = zone->zone_pgdat;
3454 /* See comment about same check for global reclaim above */
3455 if (zone->zone_pgdat == last_pgdat)
3457 last_pgdat = zone->zone_pgdat;
3458 shrink_node(zone->zone_pgdat, sc);
3462 consider_reclaim_throttle(first_pgdat, sc);
3465 * Restore to original mask to avoid the impact on the caller if we
3466 * promoted it to __GFP_HIGHMEM.
3468 sc->gfp_mask = orig_mask;
3471 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3473 struct lruvec *target_lruvec;
3474 unsigned long refaults;
3476 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3477 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3478 target_lruvec->refaults[0] = refaults;
3479 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3480 target_lruvec->refaults[1] = refaults;
3484 * This is the main entry point to direct page reclaim.
3486 * If a full scan of the inactive list fails to free enough memory then we
3487 * are "out of memory" and something needs to be killed.
3489 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3490 * high - the zone may be full of dirty or under-writeback pages, which this
3491 * caller can't do much about. We kick the writeback threads and take explicit
3492 * naps in the hope that some of these pages can be written. But if the
3493 * allocating task holds filesystem locks which prevent writeout this might not
3494 * work, and the allocation attempt will fail.
3496 * returns: 0, if no pages reclaimed
3497 * else, the number of pages reclaimed
3499 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3500 struct scan_control *sc)
3502 int initial_priority = sc->priority;
3503 pg_data_t *last_pgdat;
3507 delayacct_freepages_start();
3509 if (!cgroup_reclaim(sc))
3510 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3513 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3516 shrink_zones(zonelist, sc);
3518 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3521 if (sc->compaction_ready)
3525 * If we're getting trouble reclaiming, start doing
3526 * writepage even in laptop mode.
3528 if (sc->priority < DEF_PRIORITY - 2)
3529 sc->may_writepage = 1;
3530 } while (--sc->priority >= 0);
3533 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3535 if (zone->zone_pgdat == last_pgdat)
3537 last_pgdat = zone->zone_pgdat;
3539 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3541 if (cgroup_reclaim(sc)) {
3542 struct lruvec *lruvec;
3544 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3546 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3550 delayacct_freepages_end();
3552 if (sc->nr_reclaimed)
3553 return sc->nr_reclaimed;
3555 /* Aborted reclaim to try compaction? don't OOM, then */
3556 if (sc->compaction_ready)
3560 * We make inactive:active ratio decisions based on the node's
3561 * composition of memory, but a restrictive reclaim_idx or a
3562 * memory.low cgroup setting can exempt large amounts of
3563 * memory from reclaim. Neither of which are very common, so
3564 * instead of doing costly eligibility calculations of the
3565 * entire cgroup subtree up front, we assume the estimates are
3566 * good, and retry with forcible deactivation if that fails.
3568 if (sc->skipped_deactivate) {
3569 sc->priority = initial_priority;
3570 sc->force_deactivate = 1;
3571 sc->skipped_deactivate = 0;
3575 /* Untapped cgroup reserves? Don't OOM, retry. */
3576 if (sc->memcg_low_skipped) {
3577 sc->priority = initial_priority;
3578 sc->force_deactivate = 0;
3579 sc->memcg_low_reclaim = 1;
3580 sc->memcg_low_skipped = 0;
3587 static bool allow_direct_reclaim(pg_data_t *pgdat)
3590 unsigned long pfmemalloc_reserve = 0;
3591 unsigned long free_pages = 0;
3595 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3598 for (i = 0; i <= ZONE_NORMAL; i++) {
3599 zone = &pgdat->node_zones[i];
3600 if (!managed_zone(zone))
3603 if (!zone_reclaimable_pages(zone))
3606 pfmemalloc_reserve += min_wmark_pages(zone);
3607 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3610 /* If there are no reserves (unexpected config) then do not throttle */
3611 if (!pfmemalloc_reserve)
3614 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3616 /* kswapd must be awake if processes are being throttled */
3617 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3618 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3619 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3621 wake_up_interruptible(&pgdat->kswapd_wait);
3628 * Throttle direct reclaimers if backing storage is backed by the network
3629 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3630 * depleted. kswapd will continue to make progress and wake the processes
3631 * when the low watermark is reached.
3633 * Returns true if a fatal signal was delivered during throttling. If this
3634 * happens, the page allocator should not consider triggering the OOM killer.
3636 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3637 nodemask_t *nodemask)
3641 pg_data_t *pgdat = NULL;
3644 * Kernel threads should not be throttled as they may be indirectly
3645 * responsible for cleaning pages necessary for reclaim to make forward
3646 * progress. kjournald for example may enter direct reclaim while
3647 * committing a transaction where throttling it could forcing other
3648 * processes to block on log_wait_commit().
3650 if (current->flags & PF_KTHREAD)
3654 * If a fatal signal is pending, this process should not throttle.
3655 * It should return quickly so it can exit and free its memory
3657 if (fatal_signal_pending(current))
3661 * Check if the pfmemalloc reserves are ok by finding the first node
3662 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3663 * GFP_KERNEL will be required for allocating network buffers when
3664 * swapping over the network so ZONE_HIGHMEM is unusable.
3666 * Throttling is based on the first usable node and throttled processes
3667 * wait on a queue until kswapd makes progress and wakes them. There
3668 * is an affinity then between processes waking up and where reclaim
3669 * progress has been made assuming the process wakes on the same node.
3670 * More importantly, processes running on remote nodes will not compete
3671 * for remote pfmemalloc reserves and processes on different nodes
3672 * should make reasonable progress.
3674 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3675 gfp_zone(gfp_mask), nodemask) {
3676 if (zone_idx(zone) > ZONE_NORMAL)
3679 /* Throttle based on the first usable node */
3680 pgdat = zone->zone_pgdat;
3681 if (allow_direct_reclaim(pgdat))
3686 /* If no zone was usable by the allocation flags then do not throttle */
3690 /* Account for the throttling */
3691 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3694 * If the caller cannot enter the filesystem, it's possible that it
3695 * is due to the caller holding an FS lock or performing a journal
3696 * transaction in the case of a filesystem like ext[3|4]. In this case,
3697 * it is not safe to block on pfmemalloc_wait as kswapd could be
3698 * blocked waiting on the same lock. Instead, throttle for up to a
3699 * second before continuing.
3701 if (!(gfp_mask & __GFP_FS))
3702 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3703 allow_direct_reclaim(pgdat), HZ);
3705 /* Throttle until kswapd wakes the process */
3706 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3707 allow_direct_reclaim(pgdat));
3709 if (fatal_signal_pending(current))
3716 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3717 gfp_t gfp_mask, nodemask_t *nodemask)
3719 unsigned long nr_reclaimed;
3720 struct scan_control sc = {
3721 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3722 .gfp_mask = current_gfp_context(gfp_mask),
3723 .reclaim_idx = gfp_zone(gfp_mask),
3725 .nodemask = nodemask,
3726 .priority = DEF_PRIORITY,
3727 .may_writepage = !laptop_mode,
3733 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3734 * Confirm they are large enough for max values.
3736 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3737 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3738 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3741 * Do not enter reclaim if fatal signal was delivered while throttled.
3742 * 1 is returned so that the page allocator does not OOM kill at this
3745 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3748 set_task_reclaim_state(current, &sc.reclaim_state);
3749 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3751 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3753 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3754 set_task_reclaim_state(current, NULL);
3756 return nr_reclaimed;
3761 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3762 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3763 gfp_t gfp_mask, bool noswap,
3765 unsigned long *nr_scanned)
3767 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3768 struct scan_control sc = {
3769 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3770 .target_mem_cgroup = memcg,
3771 .may_writepage = !laptop_mode,
3773 .reclaim_idx = MAX_NR_ZONES - 1,
3774 .may_swap = !noswap,
3777 WARN_ON_ONCE(!current->reclaim_state);
3779 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3780 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3782 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3786 * NOTE: Although we can get the priority field, using it
3787 * here is not a good idea, since it limits the pages we can scan.
3788 * if we don't reclaim here, the shrink_node from balance_pgdat
3789 * will pick up pages from other mem cgroup's as well. We hack
3790 * the priority and make it zero.
3792 shrink_lruvec(lruvec, &sc);
3794 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3796 *nr_scanned = sc.nr_scanned;
3798 return sc.nr_reclaimed;
3801 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3802 unsigned long nr_pages,
3806 unsigned long nr_reclaimed;
3807 unsigned int noreclaim_flag;
3808 struct scan_control sc = {
3809 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3810 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3811 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3812 .reclaim_idx = MAX_NR_ZONES - 1,
3813 .target_mem_cgroup = memcg,
3814 .priority = DEF_PRIORITY,
3815 .may_writepage = !laptop_mode,
3817 .may_swap = may_swap,
3820 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3821 * equal pressure on all the nodes. This is based on the assumption that
3822 * the reclaim does not bail out early.
3824 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3826 set_task_reclaim_state(current, &sc.reclaim_state);
3827 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3828 noreclaim_flag = memalloc_noreclaim_save();
3830 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3832 memalloc_noreclaim_restore(noreclaim_flag);
3833 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3834 set_task_reclaim_state(current, NULL);
3836 return nr_reclaimed;
3840 static void age_active_anon(struct pglist_data *pgdat,
3841 struct scan_control *sc)
3843 struct mem_cgroup *memcg;
3844 struct lruvec *lruvec;
3846 if (!can_age_anon_pages(pgdat, sc))
3849 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3850 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3853 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3855 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3856 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3857 sc, LRU_ACTIVE_ANON);
3858 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3862 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3868 * Check for watermark boosts top-down as the higher zones
3869 * are more likely to be boosted. Both watermarks and boosts
3870 * should not be checked at the same time as reclaim would
3871 * start prematurely when there is no boosting and a lower
3874 for (i = highest_zoneidx; i >= 0; i--) {
3875 zone = pgdat->node_zones + i;
3876 if (!managed_zone(zone))
3879 if (zone->watermark_boost)
3887 * Returns true if there is an eligible zone balanced for the request order
3888 * and highest_zoneidx
3890 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3893 unsigned long mark = -1;
3897 * Check watermarks bottom-up as lower zones are more likely to
3900 for (i = 0; i <= highest_zoneidx; i++) {
3901 zone = pgdat->node_zones + i;
3903 if (!managed_zone(zone))
3906 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3907 mark = wmark_pages(zone, WMARK_PROMO);
3909 mark = high_wmark_pages(zone);
3910 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3915 * If a node has no populated zone within highest_zoneidx, it does not
3916 * need balancing by definition. This can happen if a zone-restricted
3917 * allocation tries to wake a remote kswapd.
3925 /* Clear pgdat state for congested, dirty or under writeback. */
3926 static void clear_pgdat_congested(pg_data_t *pgdat)
3928 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3930 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3931 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3932 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3936 * Prepare kswapd for sleeping. This verifies that there are no processes
3937 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3939 * Returns true if kswapd is ready to sleep
3941 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3942 int highest_zoneidx)
3945 * The throttled processes are normally woken up in balance_pgdat() as
3946 * soon as allow_direct_reclaim() is true. But there is a potential
3947 * race between when kswapd checks the watermarks and a process gets
3948 * throttled. There is also a potential race if processes get
3949 * throttled, kswapd wakes, a large process exits thereby balancing the
3950 * zones, which causes kswapd to exit balance_pgdat() before reaching
3951 * the wake up checks. If kswapd is going to sleep, no process should
3952 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3953 * the wake up is premature, processes will wake kswapd and get
3954 * throttled again. The difference from wake ups in balance_pgdat() is
3955 * that here we are under prepare_to_wait().
3957 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3958 wake_up_all(&pgdat->pfmemalloc_wait);
3960 /* Hopeless node, leave it to direct reclaim */
3961 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3964 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3965 clear_pgdat_congested(pgdat);
3973 * kswapd shrinks a node of pages that are at or below the highest usable
3974 * zone that is currently unbalanced.
3976 * Returns true if kswapd scanned at least the requested number of pages to
3977 * reclaim or if the lack of progress was due to pages under writeback.
3978 * This is used to determine if the scanning priority needs to be raised.
3980 static bool kswapd_shrink_node(pg_data_t *pgdat,
3981 struct scan_control *sc)
3986 /* Reclaim a number of pages proportional to the number of zones */
3987 sc->nr_to_reclaim = 0;
3988 for (z = 0; z <= sc->reclaim_idx; z++) {
3989 zone = pgdat->node_zones + z;
3990 if (!managed_zone(zone))
3993 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3997 * Historically care was taken to put equal pressure on all zones but
3998 * now pressure is applied based on node LRU order.
4000 shrink_node(pgdat, sc);
4003 * Fragmentation may mean that the system cannot be rebalanced for
4004 * high-order allocations. If twice the allocation size has been
4005 * reclaimed then recheck watermarks only at order-0 to prevent
4006 * excessive reclaim. Assume that a process requested a high-order
4007 * can direct reclaim/compact.
4009 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4012 return sc->nr_scanned >= sc->nr_to_reclaim;
4015 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4017 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4022 for (i = 0; i <= highest_zoneidx; i++) {
4023 zone = pgdat->node_zones + i;
4025 if (!managed_zone(zone))
4029 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4031 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4036 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4038 update_reclaim_active(pgdat, highest_zoneidx, true);
4042 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4044 update_reclaim_active(pgdat, highest_zoneidx, false);
4048 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4049 * that are eligible for use by the caller until at least one zone is
4052 * Returns the order kswapd finished reclaiming at.
4054 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4055 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4056 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4057 * or lower is eligible for reclaim until at least one usable zone is
4060 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4063 unsigned long nr_soft_reclaimed;
4064 unsigned long nr_soft_scanned;
4065 unsigned long pflags;
4066 unsigned long nr_boost_reclaim;
4067 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4070 struct scan_control sc = {
4071 .gfp_mask = GFP_KERNEL,
4076 set_task_reclaim_state(current, &sc.reclaim_state);
4077 psi_memstall_enter(&pflags);
4078 __fs_reclaim_acquire(_THIS_IP_);
4080 count_vm_event(PAGEOUTRUN);
4083 * Account for the reclaim boost. Note that the zone boost is left in
4084 * place so that parallel allocations that are near the watermark will
4085 * stall or direct reclaim until kswapd is finished.
4087 nr_boost_reclaim = 0;
4088 for (i = 0; i <= highest_zoneidx; i++) {
4089 zone = pgdat->node_zones + i;
4090 if (!managed_zone(zone))
4093 nr_boost_reclaim += zone->watermark_boost;
4094 zone_boosts[i] = zone->watermark_boost;
4096 boosted = nr_boost_reclaim;
4099 set_reclaim_active(pgdat, highest_zoneidx);
4100 sc.priority = DEF_PRIORITY;
4102 unsigned long nr_reclaimed = sc.nr_reclaimed;
4103 bool raise_priority = true;
4107 sc.reclaim_idx = highest_zoneidx;
4110 * If the number of buffer_heads exceeds the maximum allowed
4111 * then consider reclaiming from all zones. This has a dual
4112 * purpose -- on 64-bit systems it is expected that
4113 * buffer_heads are stripped during active rotation. On 32-bit
4114 * systems, highmem pages can pin lowmem memory and shrinking
4115 * buffers can relieve lowmem pressure. Reclaim may still not
4116 * go ahead if all eligible zones for the original allocation
4117 * request are balanced to avoid excessive reclaim from kswapd.
4119 if (buffer_heads_over_limit) {
4120 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4121 zone = pgdat->node_zones + i;
4122 if (!managed_zone(zone))
4131 * If the pgdat is imbalanced then ignore boosting and preserve
4132 * the watermarks for a later time and restart. Note that the
4133 * zone watermarks will be still reset at the end of balancing
4134 * on the grounds that the normal reclaim should be enough to
4135 * re-evaluate if boosting is required when kswapd next wakes.
4137 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4138 if (!balanced && nr_boost_reclaim) {
4139 nr_boost_reclaim = 0;
4144 * If boosting is not active then only reclaim if there are no
4145 * eligible zones. Note that sc.reclaim_idx is not used as
4146 * buffer_heads_over_limit may have adjusted it.
4148 if (!nr_boost_reclaim && balanced)
4151 /* Limit the priority of boosting to avoid reclaim writeback */
4152 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4153 raise_priority = false;
4156 * Do not writeback or swap pages for boosted reclaim. The
4157 * intent is to relieve pressure not issue sub-optimal IO
4158 * from reclaim context. If no pages are reclaimed, the
4159 * reclaim will be aborted.
4161 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4162 sc.may_swap = !nr_boost_reclaim;
4165 * Do some background aging of the anon list, to give
4166 * pages a chance to be referenced before reclaiming. All
4167 * pages are rotated regardless of classzone as this is
4168 * about consistent aging.
4170 age_active_anon(pgdat, &sc);
4173 * If we're getting trouble reclaiming, start doing writepage
4174 * even in laptop mode.
4176 if (sc.priority < DEF_PRIORITY - 2)
4177 sc.may_writepage = 1;
4179 /* Call soft limit reclaim before calling shrink_node. */
4181 nr_soft_scanned = 0;
4182 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4183 sc.gfp_mask, &nr_soft_scanned);
4184 sc.nr_reclaimed += nr_soft_reclaimed;
4187 * There should be no need to raise the scanning priority if
4188 * enough pages are already being scanned that that high
4189 * watermark would be met at 100% efficiency.
4191 if (kswapd_shrink_node(pgdat, &sc))
4192 raise_priority = false;
4195 * If the low watermark is met there is no need for processes
4196 * to be throttled on pfmemalloc_wait as they should not be
4197 * able to safely make forward progress. Wake them
4199 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4200 allow_direct_reclaim(pgdat))
4201 wake_up_all(&pgdat->pfmemalloc_wait);
4203 /* Check if kswapd should be suspending */
4204 __fs_reclaim_release(_THIS_IP_);
4205 ret = try_to_freeze();
4206 __fs_reclaim_acquire(_THIS_IP_);
4207 if (ret || kthread_should_stop())
4211 * Raise priority if scanning rate is too low or there was no
4212 * progress in reclaiming pages
4214 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4215 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4218 * If reclaim made no progress for a boost, stop reclaim as
4219 * IO cannot be queued and it could be an infinite loop in
4220 * extreme circumstances.
4222 if (nr_boost_reclaim && !nr_reclaimed)
4225 if (raise_priority || !nr_reclaimed)
4227 } while (sc.priority >= 1);
4229 if (!sc.nr_reclaimed)
4230 pgdat->kswapd_failures++;
4233 clear_reclaim_active(pgdat, highest_zoneidx);
4235 /* If reclaim was boosted, account for the reclaim done in this pass */
4237 unsigned long flags;
4239 for (i = 0; i <= highest_zoneidx; i++) {
4240 if (!zone_boosts[i])
4243 /* Increments are under the zone lock */
4244 zone = pgdat->node_zones + i;
4245 spin_lock_irqsave(&zone->lock, flags);
4246 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4247 spin_unlock_irqrestore(&zone->lock, flags);
4251 * As there is now likely space, wakeup kcompact to defragment
4254 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4257 snapshot_refaults(NULL, pgdat);
4258 __fs_reclaim_release(_THIS_IP_);
4259 psi_memstall_leave(&pflags);
4260 set_task_reclaim_state(current, NULL);
4263 * Return the order kswapd stopped reclaiming at as
4264 * prepare_kswapd_sleep() takes it into account. If another caller
4265 * entered the allocator slow path while kswapd was awake, order will
4266 * remain at the higher level.
4272 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4273 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4274 * not a valid index then either kswapd runs for first time or kswapd couldn't
4275 * sleep after previous reclaim attempt (node is still unbalanced). In that
4276 * case return the zone index of the previous kswapd reclaim cycle.
4278 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4279 enum zone_type prev_highest_zoneidx)
4281 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4283 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4286 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4287 unsigned int highest_zoneidx)
4292 if (freezing(current) || kthread_should_stop())
4295 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4298 * Try to sleep for a short interval. Note that kcompactd will only be
4299 * woken if it is possible to sleep for a short interval. This is
4300 * deliberate on the assumption that if reclaim cannot keep an
4301 * eligible zone balanced that it's also unlikely that compaction will
4304 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4306 * Compaction records what page blocks it recently failed to
4307 * isolate pages from and skips them in the future scanning.
4308 * When kswapd is going to sleep, it is reasonable to assume
4309 * that pages and compaction may succeed so reset the cache.
4311 reset_isolation_suitable(pgdat);
4314 * We have freed the memory, now we should compact it to make
4315 * allocation of the requested order possible.
4317 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4319 remaining = schedule_timeout(HZ/10);
4322 * If woken prematurely then reset kswapd_highest_zoneidx and
4323 * order. The values will either be from a wakeup request or
4324 * the previous request that slept prematurely.
4327 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4328 kswapd_highest_zoneidx(pgdat,
4331 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4332 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4335 finish_wait(&pgdat->kswapd_wait, &wait);
4336 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4340 * After a short sleep, check if it was a premature sleep. If not, then
4341 * go fully to sleep until explicitly woken up.
4344 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4345 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4348 * vmstat counters are not perfectly accurate and the estimated
4349 * value for counters such as NR_FREE_PAGES can deviate from the
4350 * true value by nr_online_cpus * threshold. To avoid the zone
4351 * watermarks being breached while under pressure, we reduce the
4352 * per-cpu vmstat threshold while kswapd is awake and restore
4353 * them before going back to sleep.
4355 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4357 if (!kthread_should_stop())
4360 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4363 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4365 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4367 finish_wait(&pgdat->kswapd_wait, &wait);
4371 * The background pageout daemon, started as a kernel thread
4372 * from the init process.
4374 * This basically trickles out pages so that we have _some_
4375 * free memory available even if there is no other activity
4376 * that frees anything up. This is needed for things like routing
4377 * etc, where we otherwise might have all activity going on in
4378 * asynchronous contexts that cannot page things out.
4380 * If there are applications that are active memory-allocators
4381 * (most normal use), this basically shouldn't matter.
4383 static int kswapd(void *p)
4385 unsigned int alloc_order, reclaim_order;
4386 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4387 pg_data_t *pgdat = (pg_data_t *)p;
4388 struct task_struct *tsk = current;
4389 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4391 if (!cpumask_empty(cpumask))
4392 set_cpus_allowed_ptr(tsk, cpumask);
4395 * Tell the memory management that we're a "memory allocator",
4396 * and that if we need more memory we should get access to it
4397 * regardless (see "__alloc_pages()"). "kswapd" should
4398 * never get caught in the normal page freeing logic.
4400 * (Kswapd normally doesn't need memory anyway, but sometimes
4401 * you need a small amount of memory in order to be able to
4402 * page out something else, and this flag essentially protects
4403 * us from recursively trying to free more memory as we're
4404 * trying to free the first piece of memory in the first place).
4406 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4409 WRITE_ONCE(pgdat->kswapd_order, 0);
4410 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4411 atomic_set(&pgdat->nr_writeback_throttled, 0);
4415 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4416 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4420 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4423 /* Read the new order and highest_zoneidx */
4424 alloc_order = READ_ONCE(pgdat->kswapd_order);
4425 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4427 WRITE_ONCE(pgdat->kswapd_order, 0);
4428 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4430 ret = try_to_freeze();
4431 if (kthread_should_stop())
4435 * We can speed up thawing tasks if we don't call balance_pgdat
4436 * after returning from the refrigerator
4442 * Reclaim begins at the requested order but if a high-order
4443 * reclaim fails then kswapd falls back to reclaiming for
4444 * order-0. If that happens, kswapd will consider sleeping
4445 * for the order it finished reclaiming at (reclaim_order)
4446 * but kcompactd is woken to compact for the original
4447 * request (alloc_order).
4449 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4451 reclaim_order = balance_pgdat(pgdat, alloc_order,
4453 if (reclaim_order < alloc_order)
4454 goto kswapd_try_sleep;
4457 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4463 * A zone is low on free memory or too fragmented for high-order memory. If
4464 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4465 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4466 * has failed or is not needed, still wake up kcompactd if only compaction is
4469 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4470 enum zone_type highest_zoneidx)
4473 enum zone_type curr_idx;
4475 if (!managed_zone(zone))
4478 if (!cpuset_zone_allowed(zone, gfp_flags))
4481 pgdat = zone->zone_pgdat;
4482 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4484 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4485 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4487 if (READ_ONCE(pgdat->kswapd_order) < order)
4488 WRITE_ONCE(pgdat->kswapd_order, order);
4490 if (!waitqueue_active(&pgdat->kswapd_wait))
4493 /* Hopeless node, leave it to direct reclaim if possible */
4494 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4495 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4496 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4498 * There may be plenty of free memory available, but it's too
4499 * fragmented for high-order allocations. Wake up kcompactd
4500 * and rely on compaction_suitable() to determine if it's
4501 * needed. If it fails, it will defer subsequent attempts to
4502 * ratelimit its work.
4504 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4505 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4509 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4511 wake_up_interruptible(&pgdat->kswapd_wait);
4514 #ifdef CONFIG_HIBERNATION
4516 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4519 * Rather than trying to age LRUs the aim is to preserve the overall
4520 * LRU order by reclaiming preferentially
4521 * inactive > active > active referenced > active mapped
4523 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4525 struct scan_control sc = {
4526 .nr_to_reclaim = nr_to_reclaim,
4527 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4528 .reclaim_idx = MAX_NR_ZONES - 1,
4529 .priority = DEF_PRIORITY,
4533 .hibernation_mode = 1,
4535 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4536 unsigned long nr_reclaimed;
4537 unsigned int noreclaim_flag;
4539 fs_reclaim_acquire(sc.gfp_mask);
4540 noreclaim_flag = memalloc_noreclaim_save();
4541 set_task_reclaim_state(current, &sc.reclaim_state);
4543 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4545 set_task_reclaim_state(current, NULL);
4546 memalloc_noreclaim_restore(noreclaim_flag);
4547 fs_reclaim_release(sc.gfp_mask);
4549 return nr_reclaimed;
4551 #endif /* CONFIG_HIBERNATION */
4554 * This kswapd start function will be called by init and node-hot-add.
4555 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4557 void kswapd_run(int nid)
4559 pg_data_t *pgdat = NODE_DATA(nid);
4564 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4565 if (IS_ERR(pgdat->kswapd)) {
4566 /* failure at boot is fatal */
4567 BUG_ON(system_state < SYSTEM_RUNNING);
4568 pr_err("Failed to start kswapd on node %d\n", nid);
4569 pgdat->kswapd = NULL;
4574 * Called by memory hotplug when all memory in a node is offlined. Caller must
4575 * hold mem_hotplug_begin/end().
4577 void kswapd_stop(int nid)
4579 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4582 kthread_stop(kswapd);
4583 NODE_DATA(nid)->kswapd = NULL;
4587 static int __init kswapd_init(void)
4592 for_each_node_state(nid, N_MEMORY)
4597 module_init(kswapd_init)
4603 * If non-zero call node_reclaim when the number of free pages falls below
4606 int node_reclaim_mode __read_mostly;
4609 * Priority for NODE_RECLAIM. This determines the fraction of pages
4610 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4613 #define NODE_RECLAIM_PRIORITY 4
4616 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4619 int sysctl_min_unmapped_ratio = 1;
4622 * If the number of slab pages in a zone grows beyond this percentage then
4623 * slab reclaim needs to occur.
4625 int sysctl_min_slab_ratio = 5;
4627 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4629 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4630 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4631 node_page_state(pgdat, NR_ACTIVE_FILE);
4634 * It's possible for there to be more file mapped pages than
4635 * accounted for by the pages on the file LRU lists because
4636 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4638 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4641 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4642 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4644 unsigned long nr_pagecache_reclaimable;
4645 unsigned long delta = 0;
4648 * If RECLAIM_UNMAP is set, then all file pages are considered
4649 * potentially reclaimable. Otherwise, we have to worry about
4650 * pages like swapcache and node_unmapped_file_pages() provides
4653 if (node_reclaim_mode & RECLAIM_UNMAP)
4654 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4656 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4658 /* If we can't clean pages, remove dirty pages from consideration */
4659 if (!(node_reclaim_mode & RECLAIM_WRITE))
4660 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4662 /* Watch for any possible underflows due to delta */
4663 if (unlikely(delta > nr_pagecache_reclaimable))
4664 delta = nr_pagecache_reclaimable;
4666 return nr_pagecache_reclaimable - delta;
4670 * Try to free up some pages from this node through reclaim.
4672 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4674 /* Minimum pages needed in order to stay on node */
4675 const unsigned long nr_pages = 1 << order;
4676 struct task_struct *p = current;
4677 unsigned int noreclaim_flag;
4678 struct scan_control sc = {
4679 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4680 .gfp_mask = current_gfp_context(gfp_mask),
4682 .priority = NODE_RECLAIM_PRIORITY,
4683 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4684 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4686 .reclaim_idx = gfp_zone(gfp_mask),
4688 unsigned long pflags;
4690 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4694 psi_memstall_enter(&pflags);
4695 fs_reclaim_acquire(sc.gfp_mask);
4697 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4699 noreclaim_flag = memalloc_noreclaim_save();
4700 set_task_reclaim_state(p, &sc.reclaim_state);
4702 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4704 * Free memory by calling shrink node with increasing
4705 * priorities until we have enough memory freed.
4708 shrink_node(pgdat, &sc);
4709 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4712 set_task_reclaim_state(p, NULL);
4713 memalloc_noreclaim_restore(noreclaim_flag);
4714 fs_reclaim_release(sc.gfp_mask);
4715 psi_memstall_leave(&pflags);
4717 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4719 return sc.nr_reclaimed >= nr_pages;
4722 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4727 * Node reclaim reclaims unmapped file backed pages and
4728 * slab pages if we are over the defined limits.
4730 * A small portion of unmapped file backed pages is needed for
4731 * file I/O otherwise pages read by file I/O will be immediately
4732 * thrown out if the node is overallocated. So we do not reclaim
4733 * if less than a specified percentage of the node is used by
4734 * unmapped file backed pages.
4736 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4737 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4738 pgdat->min_slab_pages)
4739 return NODE_RECLAIM_FULL;
4742 * Do not scan if the allocation should not be delayed.
4744 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4745 return NODE_RECLAIM_NOSCAN;
4748 * Only run node reclaim on the local node or on nodes that do not
4749 * have associated processors. This will favor the local processor
4750 * over remote processors and spread off node memory allocations
4751 * as wide as possible.
4753 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4754 return NODE_RECLAIM_NOSCAN;
4756 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4757 return NODE_RECLAIM_NOSCAN;
4759 ret = __node_reclaim(pgdat, gfp_mask, order);
4760 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4763 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4770 * check_move_unevictable_pages - check pages for evictability and move to
4771 * appropriate zone lru list
4772 * @pvec: pagevec with lru pages to check
4774 * Checks pages for evictability, if an evictable page is in the unevictable
4775 * lru list, moves it to the appropriate evictable lru list. This function
4776 * should be only used for lru pages.
4778 void check_move_unevictable_pages(struct pagevec *pvec)
4780 struct lruvec *lruvec = NULL;
4785 for (i = 0; i < pvec->nr; i++) {
4786 struct page *page = pvec->pages[i];
4787 struct folio *folio = page_folio(page);
4790 if (PageTransTail(page))
4793 nr_pages = thp_nr_pages(page);
4794 pgscanned += nr_pages;
4796 /* block memcg migration during page moving between lru */
4797 if (!TestClearPageLRU(page))
4800 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4801 if (page_evictable(page) && PageUnevictable(page)) {
4802 del_page_from_lru_list(page, lruvec);
4803 ClearPageUnevictable(page);
4804 add_page_to_lru_list(page, lruvec);
4805 pgrescued += nr_pages;
4811 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4812 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4813 unlock_page_lruvec_irq(lruvec);
4814 } else if (pgscanned) {
4815 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4818 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);