thp: fix huge zero page logic for page with pfn == 0
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / vmpressure.c
1 /*
2  * Linux VM pressure
3  *
4  * Copyright 2012 Linaro Ltd.
5  *                Anton Vorontsov <anton.vorontsov@linaro.org>
6  *
7  * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
8  * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  */
14
15 #include <linux/cgroup.h>
16 #include <linux/fs.h>
17 #include <linux/log2.h>
18 #include <linux/sched.h>
19 #include <linux/mm.h>
20 #include <linux/vmstat.h>
21 #include <linux/eventfd.h>
22 #include <linux/swap.h>
23 #include <linux/printk.h>
24 #include <linux/vmpressure.h>
25
26 /*
27  * The window size (vmpressure_win) is the number of scanned pages before
28  * we try to analyze scanned/reclaimed ratio. So the window is used as a
29  * rate-limit tunable for the "low" level notification, and also for
30  * averaging the ratio for medium/critical levels. Using small window
31  * sizes can cause lot of false positives, but too big window size will
32  * delay the notifications.
33  *
34  * As the vmscan reclaimer logic works with chunks which are multiple of
35  * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
36  *
37  * TODO: Make the window size depend on machine size, as we do for vmstat
38  * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
39  */
40 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
41
42 /*
43  * These thresholds are used when we account memory pressure through
44  * scanned/reclaimed ratio. The current values were chosen empirically. In
45  * essence, they are percents: the higher the value, the more number
46  * unsuccessful reclaims there were.
47  */
48 static const unsigned int vmpressure_level_med = 60;
49 static const unsigned int vmpressure_level_critical = 95;
50
51 /*
52  * When there are too little pages left to scan, vmpressure() may miss the
53  * critical pressure as number of pages will be less than "window size".
54  * However, in that case the vmscan priority will raise fast as the
55  * reclaimer will try to scan LRUs more deeply.
56  *
57  * The vmscan logic considers these special priorities:
58  *
59  * prio == DEF_PRIORITY (12): reclaimer starts with that value
60  * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
61  * prio == 0                : close to OOM, kernel scans every page in an lru
62  *
63  * Any value in this range is acceptable for this tunable (i.e. from 12 to
64  * 0). Current value for the vmpressure_level_critical_prio is chosen
65  * empirically, but the number, in essence, means that we consider
66  * critical level when scanning depth is ~10% of the lru size (vmscan
67  * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
68  * eights).
69  */
70 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
71
72 static struct vmpressure *work_to_vmpressure(struct work_struct *work)
73 {
74         return container_of(work, struct vmpressure, work);
75 }
76
77 static struct vmpressure *cg_to_vmpressure(struct cgroup *cg)
78 {
79         return css_to_vmpressure(cgroup_subsys_state(cg, mem_cgroup_subsys_id));
80 }
81
82 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
83 {
84         struct cgroup *cg = vmpressure_to_css(vmpr)->cgroup;
85         struct mem_cgroup *memcg = mem_cgroup_from_cont(cg);
86
87         memcg = parent_mem_cgroup(memcg);
88         if (!memcg)
89                 return NULL;
90         return memcg_to_vmpressure(memcg);
91 }
92
93 enum vmpressure_levels {
94         VMPRESSURE_LOW = 0,
95         VMPRESSURE_MEDIUM,
96         VMPRESSURE_CRITICAL,
97         VMPRESSURE_NUM_LEVELS,
98 };
99
100 static const char * const vmpressure_str_levels[] = {
101         [VMPRESSURE_LOW] = "low",
102         [VMPRESSURE_MEDIUM] = "medium",
103         [VMPRESSURE_CRITICAL] = "critical",
104 };
105
106 static enum vmpressure_levels vmpressure_level(unsigned long pressure)
107 {
108         if (pressure >= vmpressure_level_critical)
109                 return VMPRESSURE_CRITICAL;
110         else if (pressure >= vmpressure_level_med)
111                 return VMPRESSURE_MEDIUM;
112         return VMPRESSURE_LOW;
113 }
114
115 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
116                                                     unsigned long reclaimed)
117 {
118         unsigned long scale = scanned + reclaimed;
119         unsigned long pressure;
120
121         /*
122          * We calculate the ratio (in percents) of how many pages were
123          * scanned vs. reclaimed in a given time frame (window). Note that
124          * time is in VM reclaimer's "ticks", i.e. number of pages
125          * scanned. This makes it possible to set desired reaction time
126          * and serves as a ratelimit.
127          */
128         pressure = scale - (reclaimed * scale / scanned);
129         pressure = pressure * 100 / scale;
130
131         pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
132                  scanned, reclaimed);
133
134         return vmpressure_level(pressure);
135 }
136
137 struct vmpressure_event {
138         struct eventfd_ctx *efd;
139         enum vmpressure_levels level;
140         struct list_head node;
141 };
142
143 static bool vmpressure_event(struct vmpressure *vmpr,
144                              unsigned long scanned, unsigned long reclaimed)
145 {
146         struct vmpressure_event *ev;
147         enum vmpressure_levels level;
148         bool signalled = false;
149
150         level = vmpressure_calc_level(scanned, reclaimed);
151
152         mutex_lock(&vmpr->events_lock);
153
154         list_for_each_entry(ev, &vmpr->events, node) {
155                 if (level >= ev->level) {
156                         eventfd_signal(ev->efd, 1);
157                         signalled = true;
158                 }
159         }
160
161         mutex_unlock(&vmpr->events_lock);
162
163         return signalled;
164 }
165
166 static void vmpressure_work_fn(struct work_struct *work)
167 {
168         struct vmpressure *vmpr = work_to_vmpressure(work);
169         unsigned long scanned;
170         unsigned long reclaimed;
171
172         /*
173          * Several contexts might be calling vmpressure(), so it is
174          * possible that the work was rescheduled again before the old
175          * work context cleared the counters. In that case we will run
176          * just after the old work returns, but then scanned might be zero
177          * here. No need for any locks here since we don't care if
178          * vmpr->reclaimed is in sync.
179          */
180         if (!vmpr->scanned)
181                 return;
182
183         mutex_lock(&vmpr->sr_lock);
184         scanned = vmpr->scanned;
185         reclaimed = vmpr->reclaimed;
186         vmpr->scanned = 0;
187         vmpr->reclaimed = 0;
188         mutex_unlock(&vmpr->sr_lock);
189
190         do {
191                 if (vmpressure_event(vmpr, scanned, reclaimed))
192                         break;
193                 /*
194                  * If not handled, propagate the event upward into the
195                  * hierarchy.
196                  */
197         } while ((vmpr = vmpressure_parent(vmpr)));
198 }
199
200 /**
201  * vmpressure() - Account memory pressure through scanned/reclaimed ratio
202  * @gfp:        reclaimer's gfp mask
203  * @memcg:      cgroup memory controller handle
204  * @scanned:    number of pages scanned
205  * @reclaimed:  number of pages reclaimed
206  *
207  * This function should be called from the vmscan reclaim path to account
208  * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
209  * pressure index is then further refined and averaged over time.
210  *
211  * This function does not return any value.
212  */
213 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg,
214                 unsigned long scanned, unsigned long reclaimed)
215 {
216         struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
217
218         /*
219          * Here we only want to account pressure that userland is able to
220          * help us with. For example, suppose that DMA zone is under
221          * pressure; if we notify userland about that kind of pressure,
222          * then it will be mostly a waste as it will trigger unnecessary
223          * freeing of memory by userland (since userland is more likely to
224          * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
225          * is why we include only movable, highmem and FS/IO pages.
226          * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
227          * we account it too.
228          */
229         if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
230                 return;
231
232         /*
233          * If we got here with no pages scanned, then that is an indicator
234          * that reclaimer was unable to find any shrinkable LRUs at the
235          * current scanning depth. But it does not mean that we should
236          * report the critical pressure, yet. If the scanning priority
237          * (scanning depth) goes too high (deep), we will be notified
238          * through vmpressure_prio(). But so far, keep calm.
239          */
240         if (!scanned)
241                 return;
242
243         mutex_lock(&vmpr->sr_lock);
244         vmpr->scanned += scanned;
245         vmpr->reclaimed += reclaimed;
246         scanned = vmpr->scanned;
247         mutex_unlock(&vmpr->sr_lock);
248
249         if (scanned < vmpressure_win || work_pending(&vmpr->work))
250                 return;
251         schedule_work(&vmpr->work);
252 }
253
254 /**
255  * vmpressure_prio() - Account memory pressure through reclaimer priority level
256  * @gfp:        reclaimer's gfp mask
257  * @memcg:      cgroup memory controller handle
258  * @prio:       reclaimer's priority
259  *
260  * This function should be called from the reclaim path every time when
261  * the vmscan's reclaiming priority (scanning depth) changes.
262  *
263  * This function does not return any value.
264  */
265 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
266 {
267         /*
268          * We only use prio for accounting critical level. For more info
269          * see comment for vmpressure_level_critical_prio variable above.
270          */
271         if (prio > vmpressure_level_critical_prio)
272                 return;
273
274         /*
275          * OK, the prio is below the threshold, updating vmpressure
276          * information before shrinker dives into long shrinking of long
277          * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
278          * to the vmpressure() basically means that we signal 'critical'
279          * level.
280          */
281         vmpressure(gfp, memcg, vmpressure_win, 0);
282 }
283
284 /**
285  * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
286  * @cg:         cgroup that is interested in vmpressure notifications
287  * @cft:        cgroup control files handle
288  * @eventfd:    eventfd context to link notifications with
289  * @args:       event arguments (used to set up a pressure level threshold)
290  *
291  * This function associates eventfd context with the vmpressure
292  * infrastructure, so that the notifications will be delivered to the
293  * @eventfd. The @args parameter is a string that denotes pressure level
294  * threshold (one of vmpressure_str_levels, i.e. "low", "medium", or
295  * "critical").
296  *
297  * This function should not be used directly, just pass it to (struct
298  * cftype).register_event, and then cgroup core will handle everything by
299  * itself.
300  */
301 int vmpressure_register_event(struct cgroup *cg, struct cftype *cft,
302                               struct eventfd_ctx *eventfd, const char *args)
303 {
304         struct vmpressure *vmpr = cg_to_vmpressure(cg);
305         struct vmpressure_event *ev;
306         int level;
307
308         for (level = 0; level < VMPRESSURE_NUM_LEVELS; level++) {
309                 if (!strcmp(vmpressure_str_levels[level], args))
310                         break;
311         }
312
313         if (level >= VMPRESSURE_NUM_LEVELS)
314                 return -EINVAL;
315
316         ev = kzalloc(sizeof(*ev), GFP_KERNEL);
317         if (!ev)
318                 return -ENOMEM;
319
320         ev->efd = eventfd;
321         ev->level = level;
322
323         mutex_lock(&vmpr->events_lock);
324         list_add(&ev->node, &vmpr->events);
325         mutex_unlock(&vmpr->events_lock);
326
327         return 0;
328 }
329
330 /**
331  * vmpressure_unregister_event() - Unbind eventfd from vmpressure
332  * @cg:         cgroup handle
333  * @cft:        cgroup control files handle
334  * @eventfd:    eventfd context that was used to link vmpressure with the @cg
335  *
336  * This function does internal manipulations to detach the @eventfd from
337  * the vmpressure notifications, and then frees internal resources
338  * associated with the @eventfd (but the @eventfd itself is not freed).
339  *
340  * This function should not be used directly, just pass it to (struct
341  * cftype).unregister_event, and then cgroup core will handle everything
342  * by itself.
343  */
344 void vmpressure_unregister_event(struct cgroup *cg, struct cftype *cft,
345                                  struct eventfd_ctx *eventfd)
346 {
347         struct vmpressure *vmpr = cg_to_vmpressure(cg);
348         struct vmpressure_event *ev;
349
350         mutex_lock(&vmpr->events_lock);
351         list_for_each_entry(ev, &vmpr->events, node) {
352                 if (ev->efd != eventfd)
353                         continue;
354                 list_del(&ev->node);
355                 kfree(ev);
356                 break;
357         }
358         mutex_unlock(&vmpr->events_lock);
359 }
360
361 /**
362  * vmpressure_init() - Initialize vmpressure control structure
363  * @vmpr:       Structure to be initialized
364  *
365  * This function should be called on every allocated vmpressure structure
366  * before any usage.
367  */
368 void vmpressure_init(struct vmpressure *vmpr)
369 {
370         mutex_init(&vmpr->sr_lock);
371         mutex_init(&vmpr->events_lock);
372         INIT_LIST_HEAD(&vmpr->events);
373         INIT_WORK(&vmpr->work, vmpressure_work_fn);
374 }