1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 #include <linux/pgtable.h>
39 #include <linux/uaccess.h>
40 #include <linux/hugetlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/shmparam.h>
45 #include "pgalloc-track.h"
47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
48 static bool __ro_after_init vmap_allow_huge = true;
50 static int __init set_nohugevmalloc(char *str)
52 vmap_allow_huge = false;
55 early_param("nohugevmalloc", set_nohugevmalloc);
56 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
57 static const bool vmap_allow_huge = false;
58 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
60 bool is_vmalloc_addr(const void *x)
62 unsigned long addr = (unsigned long)x;
64 return addr >= VMALLOC_START && addr < VMALLOC_END;
66 EXPORT_SYMBOL(is_vmalloc_addr);
68 struct vfree_deferred {
69 struct llist_head list;
70 struct work_struct wq;
72 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
74 static void __vunmap(const void *, int);
76 static void free_work(struct work_struct *w)
78 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
79 struct llist_node *t, *llnode;
81 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
82 __vunmap((void *)llnode, 1);
85 /*** Page table manipulation functions ***/
86 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
87 phys_addr_t phys_addr, pgprot_t prot,
88 unsigned int max_page_shift, pgtbl_mod_mask *mask)
92 unsigned long size = PAGE_SIZE;
94 pfn = phys_addr >> PAGE_SHIFT;
95 pte = pte_alloc_kernel_track(pmd, addr, mask);
99 BUG_ON(!pte_none(*pte));
101 #ifdef CONFIG_HUGETLB_PAGE
102 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
103 if (size != PAGE_SIZE) {
104 pte_t entry = pfn_pte(pfn, prot);
106 entry = pte_mkhuge(entry);
107 entry = arch_make_huge_pte(entry, ilog2(size), 0);
108 set_huge_pte_at(&init_mm, addr, pte, entry);
109 pfn += PFN_DOWN(size);
113 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
115 } while (pte += PFN_DOWN(size), addr += size, addr != end);
116 *mask |= PGTBL_PTE_MODIFIED;
120 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
121 phys_addr_t phys_addr, pgprot_t prot,
122 unsigned int max_page_shift)
124 if (max_page_shift < PMD_SHIFT)
127 if (!arch_vmap_pmd_supported(prot))
130 if ((end - addr) != PMD_SIZE)
133 if (!IS_ALIGNED(addr, PMD_SIZE))
136 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
139 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
142 return pmd_set_huge(pmd, phys_addr, prot);
145 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
146 phys_addr_t phys_addr, pgprot_t prot,
147 unsigned int max_page_shift, pgtbl_mod_mask *mask)
152 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
156 next = pmd_addr_end(addr, end);
158 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
160 *mask |= PGTBL_PMD_MODIFIED;
164 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
166 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
170 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
171 phys_addr_t phys_addr, pgprot_t prot,
172 unsigned int max_page_shift)
174 if (max_page_shift < PUD_SHIFT)
177 if (!arch_vmap_pud_supported(prot))
180 if ((end - addr) != PUD_SIZE)
183 if (!IS_ALIGNED(addr, PUD_SIZE))
186 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
189 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
192 return pud_set_huge(pud, phys_addr, prot);
195 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
196 phys_addr_t phys_addr, pgprot_t prot,
197 unsigned int max_page_shift, pgtbl_mod_mask *mask)
202 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
206 next = pud_addr_end(addr, end);
208 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
210 *mask |= PGTBL_PUD_MODIFIED;
214 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
215 max_page_shift, mask))
217 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
221 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
222 phys_addr_t phys_addr, pgprot_t prot,
223 unsigned int max_page_shift)
225 if (max_page_shift < P4D_SHIFT)
228 if (!arch_vmap_p4d_supported(prot))
231 if ((end - addr) != P4D_SIZE)
234 if (!IS_ALIGNED(addr, P4D_SIZE))
237 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
240 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
243 return p4d_set_huge(p4d, phys_addr, prot);
246 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
247 phys_addr_t phys_addr, pgprot_t prot,
248 unsigned int max_page_shift, pgtbl_mod_mask *mask)
253 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
257 next = p4d_addr_end(addr, end);
259 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
261 *mask |= PGTBL_P4D_MODIFIED;
265 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
266 max_page_shift, mask))
268 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
272 static int vmap_range_noflush(unsigned long addr, unsigned long end,
273 phys_addr_t phys_addr, pgprot_t prot,
274 unsigned int max_page_shift)
280 pgtbl_mod_mask mask = 0;
286 pgd = pgd_offset_k(addr);
288 next = pgd_addr_end(addr, end);
289 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
290 max_page_shift, &mask);
293 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
295 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
296 arch_sync_kernel_mappings(start, end);
301 int vmap_range(unsigned long addr, unsigned long end,
302 phys_addr_t phys_addr, pgprot_t prot,
303 unsigned int max_page_shift)
307 err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift);
308 flush_cache_vmap(addr, end);
313 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
314 pgtbl_mod_mask *mask)
318 pte = pte_offset_kernel(pmd, addr);
320 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
321 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
322 } while (pte++, addr += PAGE_SIZE, addr != end);
323 *mask |= PGTBL_PTE_MODIFIED;
326 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
327 pgtbl_mod_mask *mask)
333 pmd = pmd_offset(pud, addr);
335 next = pmd_addr_end(addr, end);
337 cleared = pmd_clear_huge(pmd);
338 if (cleared || pmd_bad(*pmd))
339 *mask |= PGTBL_PMD_MODIFIED;
343 if (pmd_none_or_clear_bad(pmd))
345 vunmap_pte_range(pmd, addr, next, mask);
348 } while (pmd++, addr = next, addr != end);
351 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
352 pgtbl_mod_mask *mask)
358 pud = pud_offset(p4d, addr);
360 next = pud_addr_end(addr, end);
362 cleared = pud_clear_huge(pud);
363 if (cleared || pud_bad(*pud))
364 *mask |= PGTBL_PUD_MODIFIED;
368 if (pud_none_or_clear_bad(pud))
370 vunmap_pmd_range(pud, addr, next, mask);
371 } while (pud++, addr = next, addr != end);
374 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
375 pgtbl_mod_mask *mask)
381 p4d = p4d_offset(pgd, addr);
383 next = p4d_addr_end(addr, end);
385 cleared = p4d_clear_huge(p4d);
386 if (cleared || p4d_bad(*p4d))
387 *mask |= PGTBL_P4D_MODIFIED;
391 if (p4d_none_or_clear_bad(p4d))
393 vunmap_pud_range(p4d, addr, next, mask);
394 } while (p4d++, addr = next, addr != end);
398 * vunmap_range_noflush is similar to vunmap_range, but does not
399 * flush caches or TLBs.
401 * The caller is responsible for calling flush_cache_vmap() before calling
402 * this function, and flush_tlb_kernel_range after it has returned
403 * successfully (and before the addresses are expected to cause a page fault
404 * or be re-mapped for something else, if TLB flushes are being delayed or
407 * This is an internal function only. Do not use outside mm/.
409 void vunmap_range_noflush(unsigned long start, unsigned long end)
413 unsigned long addr = start;
414 pgtbl_mod_mask mask = 0;
417 pgd = pgd_offset_k(addr);
419 next = pgd_addr_end(addr, end);
421 mask |= PGTBL_PGD_MODIFIED;
422 if (pgd_none_or_clear_bad(pgd))
424 vunmap_p4d_range(pgd, addr, next, &mask);
425 } while (pgd++, addr = next, addr != end);
427 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
428 arch_sync_kernel_mappings(start, end);
432 * vunmap_range - unmap kernel virtual addresses
433 * @addr: start of the VM area to unmap
434 * @end: end of the VM area to unmap (non-inclusive)
436 * Clears any present PTEs in the virtual address range, flushes TLBs and
437 * caches. Any subsequent access to the address before it has been re-mapped
440 void vunmap_range(unsigned long addr, unsigned long end)
442 flush_cache_vunmap(addr, end);
443 vunmap_range_noflush(addr, end);
444 flush_tlb_kernel_range(addr, end);
447 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
448 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
449 pgtbl_mod_mask *mask)
454 * nr is a running index into the array which helps higher level
455 * callers keep track of where we're up to.
458 pte = pte_alloc_kernel_track(pmd, addr, mask);
462 struct page *page = pages[*nr];
464 if (WARN_ON(!pte_none(*pte)))
468 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
470 } while (pte++, addr += PAGE_SIZE, addr != end);
471 *mask |= PGTBL_PTE_MODIFIED;
475 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
476 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
477 pgtbl_mod_mask *mask)
482 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
486 next = pmd_addr_end(addr, end);
487 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
489 } while (pmd++, addr = next, addr != end);
493 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
494 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
495 pgtbl_mod_mask *mask)
500 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
504 next = pud_addr_end(addr, end);
505 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
507 } while (pud++, addr = next, addr != end);
511 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
512 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
513 pgtbl_mod_mask *mask)
518 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
522 next = p4d_addr_end(addr, end);
523 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
525 } while (p4d++, addr = next, addr != end);
529 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
530 pgprot_t prot, struct page **pages)
532 unsigned long start = addr;
537 pgtbl_mod_mask mask = 0;
540 pgd = pgd_offset_k(addr);
542 next = pgd_addr_end(addr, end);
544 mask |= PGTBL_PGD_MODIFIED;
545 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
548 } while (pgd++, addr = next, addr != end);
550 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
551 arch_sync_kernel_mappings(start, end);
557 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
560 * The caller is responsible for calling flush_cache_vmap() after this
561 * function returns successfully and before the addresses are accessed.
563 * This is an internal function only. Do not use outside mm/.
565 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
566 pgprot_t prot, struct page **pages, unsigned int page_shift)
568 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
570 WARN_ON(page_shift < PAGE_SHIFT);
572 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
573 page_shift == PAGE_SHIFT)
574 return vmap_small_pages_range_noflush(addr, end, prot, pages);
576 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
579 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
580 __pa(page_address(pages[i])), prot,
585 addr += 1UL << page_shift;
592 * vmap_pages_range - map pages to a kernel virtual address
593 * @addr: start of the VM area to map
594 * @end: end of the VM area to map (non-inclusive)
595 * @prot: page protection flags to use
596 * @pages: pages to map (always PAGE_SIZE pages)
597 * @page_shift: maximum shift that the pages may be mapped with, @pages must
598 * be aligned and contiguous up to at least this shift.
601 * 0 on success, -errno on failure.
603 static int vmap_pages_range(unsigned long addr, unsigned long end,
604 pgprot_t prot, struct page **pages, unsigned int page_shift)
608 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
609 flush_cache_vmap(addr, end);
613 int is_vmalloc_or_module_addr(const void *x)
616 * ARM, x86-64 and sparc64 put modules in a special place,
617 * and fall back on vmalloc() if that fails. Others
618 * just put it in the vmalloc space.
620 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
621 unsigned long addr = (unsigned long)x;
622 if (addr >= MODULES_VADDR && addr < MODULES_END)
625 return is_vmalloc_addr(x);
629 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
630 * return the tail page that corresponds to the base page address, which
631 * matches small vmap mappings.
633 struct page *vmalloc_to_page(const void *vmalloc_addr)
635 unsigned long addr = (unsigned long) vmalloc_addr;
636 struct page *page = NULL;
637 pgd_t *pgd = pgd_offset_k(addr);
644 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
645 * architectures that do not vmalloc module space
647 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
651 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
652 return NULL; /* XXX: no allowance for huge pgd */
653 if (WARN_ON_ONCE(pgd_bad(*pgd)))
656 p4d = p4d_offset(pgd, addr);
660 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
661 if (WARN_ON_ONCE(p4d_bad(*p4d)))
664 pud = pud_offset(p4d, addr);
668 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
669 if (WARN_ON_ONCE(pud_bad(*pud)))
672 pmd = pmd_offset(pud, addr);
676 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
677 if (WARN_ON_ONCE(pmd_bad(*pmd)))
680 ptep = pte_offset_map(pmd, addr);
682 if (pte_present(pte))
683 page = pte_page(pte);
688 EXPORT_SYMBOL(vmalloc_to_page);
691 * Map a vmalloc()-space virtual address to the physical page frame number.
693 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
695 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
697 EXPORT_SYMBOL(vmalloc_to_pfn);
700 /*** Global kva allocator ***/
702 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
703 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
706 static DEFINE_SPINLOCK(vmap_area_lock);
707 static DEFINE_SPINLOCK(free_vmap_area_lock);
708 /* Export for kexec only */
709 LIST_HEAD(vmap_area_list);
710 static struct rb_root vmap_area_root = RB_ROOT;
711 static bool vmap_initialized __read_mostly;
713 static struct rb_root purge_vmap_area_root = RB_ROOT;
714 static LIST_HEAD(purge_vmap_area_list);
715 static DEFINE_SPINLOCK(purge_vmap_area_lock);
718 * This kmem_cache is used for vmap_area objects. Instead of
719 * allocating from slab we reuse an object from this cache to
720 * make things faster. Especially in "no edge" splitting of
723 static struct kmem_cache *vmap_area_cachep;
726 * This linked list is used in pair with free_vmap_area_root.
727 * It gives O(1) access to prev/next to perform fast coalescing.
729 static LIST_HEAD(free_vmap_area_list);
732 * This augment red-black tree represents the free vmap space.
733 * All vmap_area objects in this tree are sorted by va->va_start
734 * address. It is used for allocation and merging when a vmap
735 * object is released.
737 * Each vmap_area node contains a maximum available free block
738 * of its sub-tree, right or left. Therefore it is possible to
739 * find a lowest match of free area.
741 static struct rb_root free_vmap_area_root = RB_ROOT;
744 * Preload a CPU with one object for "no edge" split case. The
745 * aim is to get rid of allocations from the atomic context, thus
746 * to use more permissive allocation masks.
748 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
750 static __always_inline unsigned long
751 va_size(struct vmap_area *va)
753 return (va->va_end - va->va_start);
756 static __always_inline unsigned long
757 get_subtree_max_size(struct rb_node *node)
759 struct vmap_area *va;
761 va = rb_entry_safe(node, struct vmap_area, rb_node);
762 return va ? va->subtree_max_size : 0;
766 * Gets called when remove the node and rotate.
768 static __always_inline unsigned long
769 compute_subtree_max_size(struct vmap_area *va)
771 return max3(va_size(va),
772 get_subtree_max_size(va->rb_node.rb_left),
773 get_subtree_max_size(va->rb_node.rb_right));
776 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
777 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
779 static void purge_vmap_area_lazy(void);
780 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
781 static unsigned long lazy_max_pages(void);
783 static atomic_long_t nr_vmalloc_pages;
785 unsigned long vmalloc_nr_pages(void)
787 return atomic_long_read(&nr_vmalloc_pages);
790 static struct vmap_area *__find_vmap_area(unsigned long addr)
792 struct rb_node *n = vmap_area_root.rb_node;
795 struct vmap_area *va;
797 va = rb_entry(n, struct vmap_area, rb_node);
798 if (addr < va->va_start)
800 else if (addr >= va->va_end)
810 * This function returns back addresses of parent node
811 * and its left or right link for further processing.
813 * Otherwise NULL is returned. In that case all further
814 * steps regarding inserting of conflicting overlap range
815 * have to be declined and actually considered as a bug.
817 static __always_inline struct rb_node **
818 find_va_links(struct vmap_area *va,
819 struct rb_root *root, struct rb_node *from,
820 struct rb_node **parent)
822 struct vmap_area *tmp_va;
823 struct rb_node **link;
826 link = &root->rb_node;
827 if (unlikely(!*link)) {
836 * Go to the bottom of the tree. When we hit the last point
837 * we end up with parent rb_node and correct direction, i name
838 * it link, where the new va->rb_node will be attached to.
841 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
844 * During the traversal we also do some sanity check.
845 * Trigger the BUG() if there are sides(left/right)
848 if (va->va_start < tmp_va->va_end &&
849 va->va_end <= tmp_va->va_start)
850 link = &(*link)->rb_left;
851 else if (va->va_end > tmp_va->va_start &&
852 va->va_start >= tmp_va->va_end)
853 link = &(*link)->rb_right;
855 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
856 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
862 *parent = &tmp_va->rb_node;
866 static __always_inline struct list_head *
867 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
869 struct list_head *list;
871 if (unlikely(!parent))
873 * The red-black tree where we try to find VA neighbors
874 * before merging or inserting is empty, i.e. it means
875 * there is no free vmap space. Normally it does not
876 * happen but we handle this case anyway.
880 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
881 return (&parent->rb_right == link ? list->next : list);
884 static __always_inline void
885 link_va(struct vmap_area *va, struct rb_root *root,
886 struct rb_node *parent, struct rb_node **link, struct list_head *head)
889 * VA is still not in the list, but we can
890 * identify its future previous list_head node.
892 if (likely(parent)) {
893 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
894 if (&parent->rb_right != link)
898 /* Insert to the rb-tree */
899 rb_link_node(&va->rb_node, parent, link);
900 if (root == &free_vmap_area_root) {
902 * Some explanation here. Just perform simple insertion
903 * to the tree. We do not set va->subtree_max_size to
904 * its current size before calling rb_insert_augmented().
905 * It is because of we populate the tree from the bottom
906 * to parent levels when the node _is_ in the tree.
908 * Therefore we set subtree_max_size to zero after insertion,
909 * to let __augment_tree_propagate_from() puts everything to
910 * the correct order later on.
912 rb_insert_augmented(&va->rb_node,
913 root, &free_vmap_area_rb_augment_cb);
914 va->subtree_max_size = 0;
916 rb_insert_color(&va->rb_node, root);
919 /* Address-sort this list */
920 list_add(&va->list, head);
923 static __always_inline void
924 unlink_va(struct vmap_area *va, struct rb_root *root)
926 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
929 if (root == &free_vmap_area_root)
930 rb_erase_augmented(&va->rb_node,
931 root, &free_vmap_area_rb_augment_cb);
933 rb_erase(&va->rb_node, root);
936 RB_CLEAR_NODE(&va->rb_node);
939 #if DEBUG_AUGMENT_PROPAGATE_CHECK
941 augment_tree_propagate_check(void)
943 struct vmap_area *va;
944 unsigned long computed_size;
946 list_for_each_entry(va, &free_vmap_area_list, list) {
947 computed_size = compute_subtree_max_size(va);
948 if (computed_size != va->subtree_max_size)
949 pr_emerg("tree is corrupted: %lu, %lu\n",
950 va_size(va), va->subtree_max_size);
956 * This function populates subtree_max_size from bottom to upper
957 * levels starting from VA point. The propagation must be done
958 * when VA size is modified by changing its va_start/va_end. Or
959 * in case of newly inserting of VA to the tree.
961 * It means that __augment_tree_propagate_from() must be called:
962 * - After VA has been inserted to the tree(free path);
963 * - After VA has been shrunk(allocation path);
964 * - After VA has been increased(merging path).
966 * Please note that, it does not mean that upper parent nodes
967 * and their subtree_max_size are recalculated all the time up
976 * For example if we modify the node 4, shrinking it to 2, then
977 * no any modification is required. If we shrink the node 2 to 1
978 * its subtree_max_size is updated only, and set to 1. If we shrink
979 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
982 static __always_inline void
983 augment_tree_propagate_from(struct vmap_area *va)
986 * Populate the tree from bottom towards the root until
987 * the calculated maximum available size of checked node
988 * is equal to its current one.
990 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
992 #if DEBUG_AUGMENT_PROPAGATE_CHECK
993 augment_tree_propagate_check();
998 insert_vmap_area(struct vmap_area *va,
999 struct rb_root *root, struct list_head *head)
1001 struct rb_node **link;
1002 struct rb_node *parent;
1004 link = find_va_links(va, root, NULL, &parent);
1006 link_va(va, root, parent, link, head);
1010 insert_vmap_area_augment(struct vmap_area *va,
1011 struct rb_node *from, struct rb_root *root,
1012 struct list_head *head)
1014 struct rb_node **link;
1015 struct rb_node *parent;
1018 link = find_va_links(va, NULL, from, &parent);
1020 link = find_va_links(va, root, NULL, &parent);
1023 link_va(va, root, parent, link, head);
1024 augment_tree_propagate_from(va);
1029 * Merge de-allocated chunk of VA memory with previous
1030 * and next free blocks. If coalesce is not done a new
1031 * free area is inserted. If VA has been merged, it is
1034 * Please note, it can return NULL in case of overlap
1035 * ranges, followed by WARN() report. Despite it is a
1036 * buggy behaviour, a system can be alive and keep
1039 static __always_inline struct vmap_area *
1040 merge_or_add_vmap_area(struct vmap_area *va,
1041 struct rb_root *root, struct list_head *head)
1043 struct vmap_area *sibling;
1044 struct list_head *next;
1045 struct rb_node **link;
1046 struct rb_node *parent;
1047 bool merged = false;
1050 * Find a place in the tree where VA potentially will be
1051 * inserted, unless it is merged with its sibling/siblings.
1053 link = find_va_links(va, root, NULL, &parent);
1058 * Get next node of VA to check if merging can be done.
1060 next = get_va_next_sibling(parent, link);
1061 if (unlikely(next == NULL))
1067 * |<------VA------>|<-----Next----->|
1072 sibling = list_entry(next, struct vmap_area, list);
1073 if (sibling->va_start == va->va_end) {
1074 sibling->va_start = va->va_start;
1076 /* Free vmap_area object. */
1077 kmem_cache_free(vmap_area_cachep, va);
1079 /* Point to the new merged area. */
1088 * |<-----Prev----->|<------VA------>|
1092 if (next->prev != head) {
1093 sibling = list_entry(next->prev, struct vmap_area, list);
1094 if (sibling->va_end == va->va_start) {
1096 * If both neighbors are coalesced, it is important
1097 * to unlink the "next" node first, followed by merging
1098 * with "previous" one. Otherwise the tree might not be
1099 * fully populated if a sibling's augmented value is
1100 * "normalized" because of rotation operations.
1103 unlink_va(va, root);
1105 sibling->va_end = va->va_end;
1107 /* Free vmap_area object. */
1108 kmem_cache_free(vmap_area_cachep, va);
1110 /* Point to the new merged area. */
1118 link_va(va, root, parent, link, head);
1123 static __always_inline struct vmap_area *
1124 merge_or_add_vmap_area_augment(struct vmap_area *va,
1125 struct rb_root *root, struct list_head *head)
1127 va = merge_or_add_vmap_area(va, root, head);
1129 augment_tree_propagate_from(va);
1134 static __always_inline bool
1135 is_within_this_va(struct vmap_area *va, unsigned long size,
1136 unsigned long align, unsigned long vstart)
1138 unsigned long nva_start_addr;
1140 if (va->va_start > vstart)
1141 nva_start_addr = ALIGN(va->va_start, align);
1143 nva_start_addr = ALIGN(vstart, align);
1145 /* Can be overflowed due to big size or alignment. */
1146 if (nva_start_addr + size < nva_start_addr ||
1147 nva_start_addr < vstart)
1150 return (nva_start_addr + size <= va->va_end);
1154 * Find the first free block(lowest start address) in the tree,
1155 * that will accomplish the request corresponding to passing
1158 static __always_inline struct vmap_area *
1159 find_vmap_lowest_match(unsigned long size,
1160 unsigned long align, unsigned long vstart)
1162 struct vmap_area *va;
1163 struct rb_node *node;
1164 unsigned long length;
1166 /* Start from the root. */
1167 node = free_vmap_area_root.rb_node;
1169 /* Adjust the search size for alignment overhead. */
1170 length = size + align - 1;
1173 va = rb_entry(node, struct vmap_area, rb_node);
1175 if (get_subtree_max_size(node->rb_left) >= length &&
1176 vstart < va->va_start) {
1177 node = node->rb_left;
1179 if (is_within_this_va(va, size, align, vstart))
1183 * Does not make sense to go deeper towards the right
1184 * sub-tree if it does not have a free block that is
1185 * equal or bigger to the requested search length.
1187 if (get_subtree_max_size(node->rb_right) >= length) {
1188 node = node->rb_right;
1193 * OK. We roll back and find the first right sub-tree,
1194 * that will satisfy the search criteria. It can happen
1195 * only once due to "vstart" restriction.
1197 while ((node = rb_parent(node))) {
1198 va = rb_entry(node, struct vmap_area, rb_node);
1199 if (is_within_this_va(va, size, align, vstart))
1202 if (get_subtree_max_size(node->rb_right) >= length &&
1203 vstart <= va->va_start) {
1204 node = node->rb_right;
1214 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1215 #include <linux/random.h>
1217 static struct vmap_area *
1218 find_vmap_lowest_linear_match(unsigned long size,
1219 unsigned long align, unsigned long vstart)
1221 struct vmap_area *va;
1223 list_for_each_entry(va, &free_vmap_area_list, list) {
1224 if (!is_within_this_va(va, size, align, vstart))
1234 find_vmap_lowest_match_check(unsigned long size)
1236 struct vmap_area *va_1, *va_2;
1237 unsigned long vstart;
1240 get_random_bytes(&rnd, sizeof(rnd));
1241 vstart = VMALLOC_START + rnd;
1243 va_1 = find_vmap_lowest_match(size, 1, vstart);
1244 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1247 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1248 va_1, va_2, vstart);
1254 FL_FIT_TYPE = 1, /* full fit */
1255 LE_FIT_TYPE = 2, /* left edge fit */
1256 RE_FIT_TYPE = 3, /* right edge fit */
1257 NE_FIT_TYPE = 4 /* no edge fit */
1260 static __always_inline enum fit_type
1261 classify_va_fit_type(struct vmap_area *va,
1262 unsigned long nva_start_addr, unsigned long size)
1266 /* Check if it is within VA. */
1267 if (nva_start_addr < va->va_start ||
1268 nva_start_addr + size > va->va_end)
1272 if (va->va_start == nva_start_addr) {
1273 if (va->va_end == nva_start_addr + size)
1277 } else if (va->va_end == nva_start_addr + size) {
1286 static __always_inline int
1287 adjust_va_to_fit_type(struct vmap_area *va,
1288 unsigned long nva_start_addr, unsigned long size,
1291 struct vmap_area *lva = NULL;
1293 if (type == FL_FIT_TYPE) {
1295 * No need to split VA, it fully fits.
1301 unlink_va(va, &free_vmap_area_root);
1302 kmem_cache_free(vmap_area_cachep, va);
1303 } else if (type == LE_FIT_TYPE) {
1305 * Split left edge of fit VA.
1311 va->va_start += size;
1312 } else if (type == RE_FIT_TYPE) {
1314 * Split right edge of fit VA.
1320 va->va_end = nva_start_addr;
1321 } else if (type == NE_FIT_TYPE) {
1323 * Split no edge of fit VA.
1329 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1330 if (unlikely(!lva)) {
1332 * For percpu allocator we do not do any pre-allocation
1333 * and leave it as it is. The reason is it most likely
1334 * never ends up with NE_FIT_TYPE splitting. In case of
1335 * percpu allocations offsets and sizes are aligned to
1336 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1337 * are its main fitting cases.
1339 * There are a few exceptions though, as an example it is
1340 * a first allocation (early boot up) when we have "one"
1341 * big free space that has to be split.
1343 * Also we can hit this path in case of regular "vmap"
1344 * allocations, if "this" current CPU was not preloaded.
1345 * See the comment in alloc_vmap_area() why. If so, then
1346 * GFP_NOWAIT is used instead to get an extra object for
1347 * split purpose. That is rare and most time does not
1350 * What happens if an allocation gets failed. Basically,
1351 * an "overflow" path is triggered to purge lazily freed
1352 * areas to free some memory, then, the "retry" path is
1353 * triggered to repeat one more time. See more details
1354 * in alloc_vmap_area() function.
1356 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1362 * Build the remainder.
1364 lva->va_start = va->va_start;
1365 lva->va_end = nva_start_addr;
1368 * Shrink this VA to remaining size.
1370 va->va_start = nva_start_addr + size;
1375 if (type != FL_FIT_TYPE) {
1376 augment_tree_propagate_from(va);
1378 if (lva) /* type == NE_FIT_TYPE */
1379 insert_vmap_area_augment(lva, &va->rb_node,
1380 &free_vmap_area_root, &free_vmap_area_list);
1387 * Returns a start address of the newly allocated area, if success.
1388 * Otherwise a vend is returned that indicates failure.
1390 static __always_inline unsigned long
1391 __alloc_vmap_area(unsigned long size, unsigned long align,
1392 unsigned long vstart, unsigned long vend)
1394 unsigned long nva_start_addr;
1395 struct vmap_area *va;
1399 va = find_vmap_lowest_match(size, align, vstart);
1403 if (va->va_start > vstart)
1404 nva_start_addr = ALIGN(va->va_start, align);
1406 nva_start_addr = ALIGN(vstart, align);
1408 /* Check the "vend" restriction. */
1409 if (nva_start_addr + size > vend)
1412 /* Classify what we have found. */
1413 type = classify_va_fit_type(va, nva_start_addr, size);
1414 if (WARN_ON_ONCE(type == NOTHING_FIT))
1417 /* Update the free vmap_area. */
1418 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1422 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1423 find_vmap_lowest_match_check(size);
1426 return nva_start_addr;
1430 * Free a region of KVA allocated by alloc_vmap_area
1432 static void free_vmap_area(struct vmap_area *va)
1435 * Remove from the busy tree/list.
1437 spin_lock(&vmap_area_lock);
1438 unlink_va(va, &vmap_area_root);
1439 spin_unlock(&vmap_area_lock);
1442 * Insert/Merge it back to the free tree/list.
1444 spin_lock(&free_vmap_area_lock);
1445 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1446 spin_unlock(&free_vmap_area_lock);
1450 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1452 struct vmap_area *va = NULL;
1455 * Preload this CPU with one extra vmap_area object. It is used
1456 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1457 * a CPU that does an allocation is preloaded.
1459 * We do it in non-atomic context, thus it allows us to use more
1460 * permissive allocation masks to be more stable under low memory
1461 * condition and high memory pressure.
1463 if (!this_cpu_read(ne_fit_preload_node))
1464 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1468 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1469 kmem_cache_free(vmap_area_cachep, va);
1473 * Allocate a region of KVA of the specified size and alignment, within the
1476 static struct vmap_area *alloc_vmap_area(unsigned long size,
1477 unsigned long align,
1478 unsigned long vstart, unsigned long vend,
1479 int node, gfp_t gfp_mask)
1481 struct vmap_area *va;
1487 BUG_ON(offset_in_page(size));
1488 BUG_ON(!is_power_of_2(align));
1490 if (unlikely(!vmap_initialized))
1491 return ERR_PTR(-EBUSY);
1494 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1496 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1498 return ERR_PTR(-ENOMEM);
1501 * Only scan the relevant parts containing pointers to other objects
1502 * to avoid false negatives.
1504 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1507 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1508 addr = __alloc_vmap_area(size, align, vstart, vend);
1509 spin_unlock(&free_vmap_area_lock);
1512 * If an allocation fails, the "vend" address is
1513 * returned. Therefore trigger the overflow path.
1515 if (unlikely(addr == vend))
1518 va->va_start = addr;
1519 va->va_end = addr + size;
1522 spin_lock(&vmap_area_lock);
1523 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1524 spin_unlock(&vmap_area_lock);
1526 BUG_ON(!IS_ALIGNED(va->va_start, align));
1527 BUG_ON(va->va_start < vstart);
1528 BUG_ON(va->va_end > vend);
1530 ret = kasan_populate_vmalloc(addr, size);
1533 return ERR_PTR(ret);
1540 purge_vmap_area_lazy();
1545 if (gfpflags_allow_blocking(gfp_mask)) {
1546 unsigned long freed = 0;
1547 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1554 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1555 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1558 kmem_cache_free(vmap_area_cachep, va);
1559 return ERR_PTR(-EBUSY);
1562 int register_vmap_purge_notifier(struct notifier_block *nb)
1564 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1566 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1568 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1570 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1572 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1575 * lazy_max_pages is the maximum amount of virtual address space we gather up
1576 * before attempting to purge with a TLB flush.
1578 * There is a tradeoff here: a larger number will cover more kernel page tables
1579 * and take slightly longer to purge, but it will linearly reduce the number of
1580 * global TLB flushes that must be performed. It would seem natural to scale
1581 * this number up linearly with the number of CPUs (because vmapping activity
1582 * could also scale linearly with the number of CPUs), however it is likely
1583 * that in practice, workloads might be constrained in other ways that mean
1584 * vmap activity will not scale linearly with CPUs. Also, I want to be
1585 * conservative and not introduce a big latency on huge systems, so go with
1586 * a less aggressive log scale. It will still be an improvement over the old
1587 * code, and it will be simple to change the scale factor if we find that it
1588 * becomes a problem on bigger systems.
1590 static unsigned long lazy_max_pages(void)
1594 log = fls(num_online_cpus());
1596 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1599 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1602 * Serialize vmap purging. There is no actual critical section protected
1603 * by this look, but we want to avoid concurrent calls for performance
1604 * reasons and to make the pcpu_get_vm_areas more deterministic.
1606 static DEFINE_MUTEX(vmap_purge_lock);
1608 /* for per-CPU blocks */
1609 static void purge_fragmented_blocks_allcpus(void);
1611 #ifdef CONFIG_X86_64
1613 * called before a call to iounmap() if the caller wants vm_area_struct's
1614 * immediately freed.
1616 void set_iounmap_nonlazy(void)
1618 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1620 #endif /* CONFIG_X86_64 */
1623 * Purges all lazily-freed vmap areas.
1625 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1627 unsigned long resched_threshold;
1628 struct list_head local_pure_list;
1629 struct vmap_area *va, *n_va;
1631 lockdep_assert_held(&vmap_purge_lock);
1633 spin_lock(&purge_vmap_area_lock);
1634 purge_vmap_area_root = RB_ROOT;
1635 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1636 spin_unlock(&purge_vmap_area_lock);
1638 if (unlikely(list_empty(&local_pure_list)))
1642 list_first_entry(&local_pure_list,
1643 struct vmap_area, list)->va_start);
1646 list_last_entry(&local_pure_list,
1647 struct vmap_area, list)->va_end);
1649 flush_tlb_kernel_range(start, end);
1650 resched_threshold = lazy_max_pages() << 1;
1652 spin_lock(&free_vmap_area_lock);
1653 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1654 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1655 unsigned long orig_start = va->va_start;
1656 unsigned long orig_end = va->va_end;
1659 * Finally insert or merge lazily-freed area. It is
1660 * detached and there is no need to "unlink" it from
1663 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1664 &free_vmap_area_list);
1669 if (is_vmalloc_or_module_addr((void *)orig_start))
1670 kasan_release_vmalloc(orig_start, orig_end,
1671 va->va_start, va->va_end);
1673 atomic_long_sub(nr, &vmap_lazy_nr);
1675 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1676 cond_resched_lock(&free_vmap_area_lock);
1678 spin_unlock(&free_vmap_area_lock);
1683 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1684 * is already purging.
1686 static void try_purge_vmap_area_lazy(void)
1688 if (mutex_trylock(&vmap_purge_lock)) {
1689 __purge_vmap_area_lazy(ULONG_MAX, 0);
1690 mutex_unlock(&vmap_purge_lock);
1695 * Kick off a purge of the outstanding lazy areas.
1697 static void purge_vmap_area_lazy(void)
1699 mutex_lock(&vmap_purge_lock);
1700 purge_fragmented_blocks_allcpus();
1701 __purge_vmap_area_lazy(ULONG_MAX, 0);
1702 mutex_unlock(&vmap_purge_lock);
1706 * Free a vmap area, caller ensuring that the area has been unmapped
1707 * and flush_cache_vunmap had been called for the correct range
1710 static void free_vmap_area_noflush(struct vmap_area *va)
1712 unsigned long nr_lazy;
1714 spin_lock(&vmap_area_lock);
1715 unlink_va(va, &vmap_area_root);
1716 spin_unlock(&vmap_area_lock);
1718 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1719 PAGE_SHIFT, &vmap_lazy_nr);
1722 * Merge or place it to the purge tree/list.
1724 spin_lock(&purge_vmap_area_lock);
1725 merge_or_add_vmap_area(va,
1726 &purge_vmap_area_root, &purge_vmap_area_list);
1727 spin_unlock(&purge_vmap_area_lock);
1729 /* After this point, we may free va at any time */
1730 if (unlikely(nr_lazy > lazy_max_pages()))
1731 try_purge_vmap_area_lazy();
1735 * Free and unmap a vmap area
1737 static void free_unmap_vmap_area(struct vmap_area *va)
1739 flush_cache_vunmap(va->va_start, va->va_end);
1740 vunmap_range_noflush(va->va_start, va->va_end);
1741 if (debug_pagealloc_enabled_static())
1742 flush_tlb_kernel_range(va->va_start, va->va_end);
1744 free_vmap_area_noflush(va);
1747 static struct vmap_area *find_vmap_area(unsigned long addr)
1749 struct vmap_area *va;
1751 spin_lock(&vmap_area_lock);
1752 va = __find_vmap_area(addr);
1753 spin_unlock(&vmap_area_lock);
1758 /*** Per cpu kva allocator ***/
1761 * vmap space is limited especially on 32 bit architectures. Ensure there is
1762 * room for at least 16 percpu vmap blocks per CPU.
1765 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1766 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1767 * instead (we just need a rough idea)
1769 #if BITS_PER_LONG == 32
1770 #define VMALLOC_SPACE (128UL*1024*1024)
1772 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1775 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1776 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1777 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1778 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1779 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1780 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1781 #define VMAP_BBMAP_BITS \
1782 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1783 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1784 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1786 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1788 struct vmap_block_queue {
1790 struct list_head free;
1795 struct vmap_area *va;
1796 unsigned long free, dirty;
1797 unsigned long dirty_min, dirty_max; /*< dirty range */
1798 struct list_head free_list;
1799 struct rcu_head rcu_head;
1800 struct list_head purge;
1803 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1804 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1807 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1808 * in the free path. Could get rid of this if we change the API to return a
1809 * "cookie" from alloc, to be passed to free. But no big deal yet.
1811 static DEFINE_XARRAY(vmap_blocks);
1814 * We should probably have a fallback mechanism to allocate virtual memory
1815 * out of partially filled vmap blocks. However vmap block sizing should be
1816 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1820 static unsigned long addr_to_vb_idx(unsigned long addr)
1822 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1823 addr /= VMAP_BLOCK_SIZE;
1827 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1831 addr = va_start + (pages_off << PAGE_SHIFT);
1832 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1833 return (void *)addr;
1837 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1838 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1839 * @order: how many 2^order pages should be occupied in newly allocated block
1840 * @gfp_mask: flags for the page level allocator
1842 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1844 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1846 struct vmap_block_queue *vbq;
1847 struct vmap_block *vb;
1848 struct vmap_area *va;
1849 unsigned long vb_idx;
1853 node = numa_node_id();
1855 vb = kmalloc_node(sizeof(struct vmap_block),
1856 gfp_mask & GFP_RECLAIM_MASK, node);
1858 return ERR_PTR(-ENOMEM);
1860 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1861 VMALLOC_START, VMALLOC_END,
1865 return ERR_CAST(va);
1868 vaddr = vmap_block_vaddr(va->va_start, 0);
1869 spin_lock_init(&vb->lock);
1871 /* At least something should be left free */
1872 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1873 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1875 vb->dirty_min = VMAP_BBMAP_BITS;
1877 INIT_LIST_HEAD(&vb->free_list);
1879 vb_idx = addr_to_vb_idx(va->va_start);
1880 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1884 return ERR_PTR(err);
1887 vbq = &get_cpu_var(vmap_block_queue);
1888 spin_lock(&vbq->lock);
1889 list_add_tail_rcu(&vb->free_list, &vbq->free);
1890 spin_unlock(&vbq->lock);
1891 put_cpu_var(vmap_block_queue);
1896 static void free_vmap_block(struct vmap_block *vb)
1898 struct vmap_block *tmp;
1900 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1903 free_vmap_area_noflush(vb->va);
1904 kfree_rcu(vb, rcu_head);
1907 static void purge_fragmented_blocks(int cpu)
1910 struct vmap_block *vb;
1911 struct vmap_block *n_vb;
1912 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1915 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1917 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1920 spin_lock(&vb->lock);
1921 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1922 vb->free = 0; /* prevent further allocs after releasing lock */
1923 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1925 vb->dirty_max = VMAP_BBMAP_BITS;
1926 spin_lock(&vbq->lock);
1927 list_del_rcu(&vb->free_list);
1928 spin_unlock(&vbq->lock);
1929 spin_unlock(&vb->lock);
1930 list_add_tail(&vb->purge, &purge);
1932 spin_unlock(&vb->lock);
1936 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1937 list_del(&vb->purge);
1938 free_vmap_block(vb);
1942 static void purge_fragmented_blocks_allcpus(void)
1946 for_each_possible_cpu(cpu)
1947 purge_fragmented_blocks(cpu);
1950 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1952 struct vmap_block_queue *vbq;
1953 struct vmap_block *vb;
1957 BUG_ON(offset_in_page(size));
1958 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1959 if (WARN_ON(size == 0)) {
1961 * Allocating 0 bytes isn't what caller wants since
1962 * get_order(0) returns funny result. Just warn and terminate
1967 order = get_order(size);
1970 vbq = &get_cpu_var(vmap_block_queue);
1971 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1972 unsigned long pages_off;
1974 spin_lock(&vb->lock);
1975 if (vb->free < (1UL << order)) {
1976 spin_unlock(&vb->lock);
1980 pages_off = VMAP_BBMAP_BITS - vb->free;
1981 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1982 vb->free -= 1UL << order;
1983 if (vb->free == 0) {
1984 spin_lock(&vbq->lock);
1985 list_del_rcu(&vb->free_list);
1986 spin_unlock(&vbq->lock);
1989 spin_unlock(&vb->lock);
1993 put_cpu_var(vmap_block_queue);
1996 /* Allocate new block if nothing was found */
1998 vaddr = new_vmap_block(order, gfp_mask);
2003 static void vb_free(unsigned long addr, unsigned long size)
2005 unsigned long offset;
2007 struct vmap_block *vb;
2009 BUG_ON(offset_in_page(size));
2010 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2012 flush_cache_vunmap(addr, addr + size);
2014 order = get_order(size);
2015 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2016 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2018 vunmap_range_noflush(addr, addr + size);
2020 if (debug_pagealloc_enabled_static())
2021 flush_tlb_kernel_range(addr, addr + size);
2023 spin_lock(&vb->lock);
2025 /* Expand dirty range */
2026 vb->dirty_min = min(vb->dirty_min, offset);
2027 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2029 vb->dirty += 1UL << order;
2030 if (vb->dirty == VMAP_BBMAP_BITS) {
2032 spin_unlock(&vb->lock);
2033 free_vmap_block(vb);
2035 spin_unlock(&vb->lock);
2038 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2042 if (unlikely(!vmap_initialized))
2047 for_each_possible_cpu(cpu) {
2048 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2049 struct vmap_block *vb;
2052 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2053 spin_lock(&vb->lock);
2054 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2055 unsigned long va_start = vb->va->va_start;
2058 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2059 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2061 start = min(s, start);
2066 spin_unlock(&vb->lock);
2071 mutex_lock(&vmap_purge_lock);
2072 purge_fragmented_blocks_allcpus();
2073 if (!__purge_vmap_area_lazy(start, end) && flush)
2074 flush_tlb_kernel_range(start, end);
2075 mutex_unlock(&vmap_purge_lock);
2079 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2081 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2082 * to amortize TLB flushing overheads. What this means is that any page you
2083 * have now, may, in a former life, have been mapped into kernel virtual
2084 * address by the vmap layer and so there might be some CPUs with TLB entries
2085 * still referencing that page (additional to the regular 1:1 kernel mapping).
2087 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2088 * be sure that none of the pages we have control over will have any aliases
2089 * from the vmap layer.
2091 void vm_unmap_aliases(void)
2093 unsigned long start = ULONG_MAX, end = 0;
2096 _vm_unmap_aliases(start, end, flush);
2098 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2101 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2102 * @mem: the pointer returned by vm_map_ram
2103 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2105 void vm_unmap_ram(const void *mem, unsigned int count)
2107 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2108 unsigned long addr = (unsigned long)mem;
2109 struct vmap_area *va;
2113 BUG_ON(addr < VMALLOC_START);
2114 BUG_ON(addr > VMALLOC_END);
2115 BUG_ON(!PAGE_ALIGNED(addr));
2117 kasan_poison_vmalloc(mem, size);
2119 if (likely(count <= VMAP_MAX_ALLOC)) {
2120 debug_check_no_locks_freed(mem, size);
2121 vb_free(addr, size);
2125 va = find_vmap_area(addr);
2127 debug_check_no_locks_freed((void *)va->va_start,
2128 (va->va_end - va->va_start));
2129 free_unmap_vmap_area(va);
2131 EXPORT_SYMBOL(vm_unmap_ram);
2134 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2135 * @pages: an array of pointers to the pages to be mapped
2136 * @count: number of pages
2137 * @node: prefer to allocate data structures on this node
2139 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2140 * faster than vmap so it's good. But if you mix long-life and short-life
2141 * objects with vm_map_ram(), it could consume lots of address space through
2142 * fragmentation (especially on a 32bit machine). You could see failures in
2143 * the end. Please use this function for short-lived objects.
2145 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2147 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2149 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2153 if (likely(count <= VMAP_MAX_ALLOC)) {
2154 mem = vb_alloc(size, GFP_KERNEL);
2157 addr = (unsigned long)mem;
2159 struct vmap_area *va;
2160 va = alloc_vmap_area(size, PAGE_SIZE,
2161 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2165 addr = va->va_start;
2169 kasan_unpoison_vmalloc(mem, size);
2171 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2172 pages, PAGE_SHIFT) < 0) {
2173 vm_unmap_ram(mem, count);
2179 EXPORT_SYMBOL(vm_map_ram);
2181 static struct vm_struct *vmlist __initdata;
2183 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2185 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2186 return vm->page_order;
2192 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2194 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2195 vm->page_order = order;
2202 * vm_area_add_early - add vmap area early during boot
2203 * @vm: vm_struct to add
2205 * This function is used to add fixed kernel vm area to vmlist before
2206 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2207 * should contain proper values and the other fields should be zero.
2209 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2211 void __init vm_area_add_early(struct vm_struct *vm)
2213 struct vm_struct *tmp, **p;
2215 BUG_ON(vmap_initialized);
2216 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2217 if (tmp->addr >= vm->addr) {
2218 BUG_ON(tmp->addr < vm->addr + vm->size);
2221 BUG_ON(tmp->addr + tmp->size > vm->addr);
2228 * vm_area_register_early - register vmap area early during boot
2229 * @vm: vm_struct to register
2230 * @align: requested alignment
2232 * This function is used to register kernel vm area before
2233 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2234 * proper values on entry and other fields should be zero. On return,
2235 * vm->addr contains the allocated address.
2237 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2239 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2241 static size_t vm_init_off __initdata;
2244 addr = ALIGN(VMALLOC_START + vm_init_off, align);
2245 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
2247 vm->addr = (void *)addr;
2249 vm_area_add_early(vm);
2252 static void vmap_init_free_space(void)
2254 unsigned long vmap_start = 1;
2255 const unsigned long vmap_end = ULONG_MAX;
2256 struct vmap_area *busy, *free;
2260 * -|-----|.....|-----|-----|-----|.....|-
2262 * |<--------------------------------->|
2264 list_for_each_entry(busy, &vmap_area_list, list) {
2265 if (busy->va_start - vmap_start > 0) {
2266 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2267 if (!WARN_ON_ONCE(!free)) {
2268 free->va_start = vmap_start;
2269 free->va_end = busy->va_start;
2271 insert_vmap_area_augment(free, NULL,
2272 &free_vmap_area_root,
2273 &free_vmap_area_list);
2277 vmap_start = busy->va_end;
2280 if (vmap_end - vmap_start > 0) {
2281 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2282 if (!WARN_ON_ONCE(!free)) {
2283 free->va_start = vmap_start;
2284 free->va_end = vmap_end;
2286 insert_vmap_area_augment(free, NULL,
2287 &free_vmap_area_root,
2288 &free_vmap_area_list);
2293 void __init vmalloc_init(void)
2295 struct vmap_area *va;
2296 struct vm_struct *tmp;
2300 * Create the cache for vmap_area objects.
2302 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2304 for_each_possible_cpu(i) {
2305 struct vmap_block_queue *vbq;
2306 struct vfree_deferred *p;
2308 vbq = &per_cpu(vmap_block_queue, i);
2309 spin_lock_init(&vbq->lock);
2310 INIT_LIST_HEAD(&vbq->free);
2311 p = &per_cpu(vfree_deferred, i);
2312 init_llist_head(&p->list);
2313 INIT_WORK(&p->wq, free_work);
2316 /* Import existing vmlist entries. */
2317 for (tmp = vmlist; tmp; tmp = tmp->next) {
2318 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2319 if (WARN_ON_ONCE(!va))
2322 va->va_start = (unsigned long)tmp->addr;
2323 va->va_end = va->va_start + tmp->size;
2325 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2329 * Now we can initialize a free vmap space.
2331 vmap_init_free_space();
2332 vmap_initialized = true;
2335 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2336 struct vmap_area *va, unsigned long flags, const void *caller)
2339 vm->addr = (void *)va->va_start;
2340 vm->size = va->va_end - va->va_start;
2341 vm->caller = caller;
2345 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2346 unsigned long flags, const void *caller)
2348 spin_lock(&vmap_area_lock);
2349 setup_vmalloc_vm_locked(vm, va, flags, caller);
2350 spin_unlock(&vmap_area_lock);
2353 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2356 * Before removing VM_UNINITIALIZED,
2357 * we should make sure that vm has proper values.
2358 * Pair with smp_rmb() in show_numa_info().
2361 vm->flags &= ~VM_UNINITIALIZED;
2364 static struct vm_struct *__get_vm_area_node(unsigned long size,
2365 unsigned long align, unsigned long shift, unsigned long flags,
2366 unsigned long start, unsigned long end, int node,
2367 gfp_t gfp_mask, const void *caller)
2369 struct vmap_area *va;
2370 struct vm_struct *area;
2371 unsigned long requested_size = size;
2373 BUG_ON(in_interrupt());
2374 size = ALIGN(size, 1ul << shift);
2375 if (unlikely(!size))
2378 if (flags & VM_IOREMAP)
2379 align = 1ul << clamp_t(int, get_count_order_long(size),
2380 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2382 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2383 if (unlikely(!area))
2386 if (!(flags & VM_NO_GUARD))
2389 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2395 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2397 setup_vmalloc_vm(area, va, flags, caller);
2402 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2403 unsigned long start, unsigned long end,
2406 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2407 NUMA_NO_NODE, GFP_KERNEL, caller);
2411 * get_vm_area - reserve a contiguous kernel virtual area
2412 * @size: size of the area
2413 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2415 * Search an area of @size in the kernel virtual mapping area,
2416 * and reserved it for out purposes. Returns the area descriptor
2417 * on success or %NULL on failure.
2419 * Return: the area descriptor on success or %NULL on failure.
2421 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2423 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2424 VMALLOC_START, VMALLOC_END,
2425 NUMA_NO_NODE, GFP_KERNEL,
2426 __builtin_return_address(0));
2429 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2432 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2433 VMALLOC_START, VMALLOC_END,
2434 NUMA_NO_NODE, GFP_KERNEL, caller);
2438 * find_vm_area - find a continuous kernel virtual area
2439 * @addr: base address
2441 * Search for the kernel VM area starting at @addr, and return it.
2442 * It is up to the caller to do all required locking to keep the returned
2445 * Return: the area descriptor on success or %NULL on failure.
2447 struct vm_struct *find_vm_area(const void *addr)
2449 struct vmap_area *va;
2451 va = find_vmap_area((unsigned long)addr);
2459 * remove_vm_area - find and remove a continuous kernel virtual area
2460 * @addr: base address
2462 * Search for the kernel VM area starting at @addr, and remove it.
2463 * This function returns the found VM area, but using it is NOT safe
2464 * on SMP machines, except for its size or flags.
2466 * Return: the area descriptor on success or %NULL on failure.
2468 struct vm_struct *remove_vm_area(const void *addr)
2470 struct vmap_area *va;
2474 spin_lock(&vmap_area_lock);
2475 va = __find_vmap_area((unsigned long)addr);
2477 struct vm_struct *vm = va->vm;
2480 spin_unlock(&vmap_area_lock);
2482 kasan_free_shadow(vm);
2483 free_unmap_vmap_area(va);
2488 spin_unlock(&vmap_area_lock);
2492 static inline void set_area_direct_map(const struct vm_struct *area,
2493 int (*set_direct_map)(struct page *page))
2497 /* HUGE_VMALLOC passes small pages to set_direct_map */
2498 for (i = 0; i < area->nr_pages; i++)
2499 if (page_address(area->pages[i]))
2500 set_direct_map(area->pages[i]);
2503 /* Handle removing and resetting vm mappings related to the vm_struct. */
2504 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2506 unsigned long start = ULONG_MAX, end = 0;
2507 unsigned int page_order = vm_area_page_order(area);
2508 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2512 remove_vm_area(area->addr);
2514 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2519 * If not deallocating pages, just do the flush of the VM area and
2522 if (!deallocate_pages) {
2528 * If execution gets here, flush the vm mapping and reset the direct
2529 * map. Find the start and end range of the direct mappings to make sure
2530 * the vm_unmap_aliases() flush includes the direct map.
2532 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2533 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2535 unsigned long page_size;
2537 page_size = PAGE_SIZE << page_order;
2538 start = min(addr, start);
2539 end = max(addr + page_size, end);
2545 * Set direct map to something invalid so that it won't be cached if
2546 * there are any accesses after the TLB flush, then flush the TLB and
2547 * reset the direct map permissions to the default.
2549 set_area_direct_map(area, set_direct_map_invalid_noflush);
2550 _vm_unmap_aliases(start, end, flush_dmap);
2551 set_area_direct_map(area, set_direct_map_default_noflush);
2554 static void __vunmap(const void *addr, int deallocate_pages)
2556 struct vm_struct *area;
2561 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2565 area = find_vm_area(addr);
2566 if (unlikely(!area)) {
2567 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2572 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2573 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2575 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2577 vm_remove_mappings(area, deallocate_pages);
2579 if (deallocate_pages) {
2580 unsigned int page_order = vm_area_page_order(area);
2583 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2584 struct page *page = area->pages[i];
2587 __free_pages(page, page_order);
2590 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2592 kvfree(area->pages);
2598 static inline void __vfree_deferred(const void *addr)
2601 * Use raw_cpu_ptr() because this can be called from preemptible
2602 * context. Preemption is absolutely fine here, because the llist_add()
2603 * implementation is lockless, so it works even if we are adding to
2604 * another cpu's list. schedule_work() should be fine with this too.
2606 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2608 if (llist_add((struct llist_node *)addr, &p->list))
2609 schedule_work(&p->wq);
2613 * vfree_atomic - release memory allocated by vmalloc()
2614 * @addr: memory base address
2616 * This one is just like vfree() but can be called in any atomic context
2619 void vfree_atomic(const void *addr)
2623 kmemleak_free(addr);
2627 __vfree_deferred(addr);
2630 static void __vfree(const void *addr)
2632 if (unlikely(in_interrupt()))
2633 __vfree_deferred(addr);
2639 * vfree - Release memory allocated by vmalloc()
2640 * @addr: Memory base address
2642 * Free the virtually continuous memory area starting at @addr, as obtained
2643 * from one of the vmalloc() family of APIs. This will usually also free the
2644 * physical memory underlying the virtual allocation, but that memory is
2645 * reference counted, so it will not be freed until the last user goes away.
2647 * If @addr is NULL, no operation is performed.
2650 * May sleep if called *not* from interrupt context.
2651 * Must not be called in NMI context (strictly speaking, it could be
2652 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2653 * conventions for vfree() arch-dependent would be a really bad idea).
2655 void vfree(const void *addr)
2659 kmemleak_free(addr);
2661 might_sleep_if(!in_interrupt());
2668 EXPORT_SYMBOL(vfree);
2671 * vunmap - release virtual mapping obtained by vmap()
2672 * @addr: memory base address
2674 * Free the virtually contiguous memory area starting at @addr,
2675 * which was created from the page array passed to vmap().
2677 * Must not be called in interrupt context.
2679 void vunmap(const void *addr)
2681 BUG_ON(in_interrupt());
2686 EXPORT_SYMBOL(vunmap);
2689 * vmap - map an array of pages into virtually contiguous space
2690 * @pages: array of page pointers
2691 * @count: number of pages to map
2692 * @flags: vm_area->flags
2693 * @prot: page protection for the mapping
2695 * Maps @count pages from @pages into contiguous kernel virtual space.
2696 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2697 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2698 * are transferred from the caller to vmap(), and will be freed / dropped when
2699 * vfree() is called on the return value.
2701 * Return: the address of the area or %NULL on failure
2703 void *vmap(struct page **pages, unsigned int count,
2704 unsigned long flags, pgprot_t prot)
2706 struct vm_struct *area;
2708 unsigned long size; /* In bytes */
2712 if (count > totalram_pages())
2715 size = (unsigned long)count << PAGE_SHIFT;
2716 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2720 addr = (unsigned long)area->addr;
2721 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2722 pages, PAGE_SHIFT) < 0) {
2727 if (flags & VM_MAP_PUT_PAGES) {
2728 area->pages = pages;
2729 area->nr_pages = count;
2733 EXPORT_SYMBOL(vmap);
2735 #ifdef CONFIG_VMAP_PFN
2736 struct vmap_pfn_data {
2737 unsigned long *pfns;
2742 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2744 struct vmap_pfn_data *data = private;
2746 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2748 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2753 * vmap_pfn - map an array of PFNs into virtually contiguous space
2754 * @pfns: array of PFNs
2755 * @count: number of pages to map
2756 * @prot: page protection for the mapping
2758 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2759 * the start address of the mapping.
2761 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2763 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2764 struct vm_struct *area;
2766 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2767 __builtin_return_address(0));
2770 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2771 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2777 EXPORT_SYMBOL_GPL(vmap_pfn);
2778 #endif /* CONFIG_VMAP_PFN */
2780 static inline unsigned int
2781 vm_area_alloc_pages(gfp_t gfp, int nid,
2782 unsigned int order, unsigned long nr_pages, struct page **pages)
2784 unsigned int nr_allocated = 0;
2787 * For order-0 pages we make use of bulk allocator, if
2788 * the page array is partly or not at all populated due
2789 * to fails, fallback to a single page allocator that is
2793 nr_allocated = alloc_pages_bulk_array_node(
2794 gfp, nid, nr_pages, pages);
2797 * Compound pages required for remap_vmalloc_page if
2802 /* High-order pages or fallback path if "bulk" fails. */
2803 while (nr_allocated < nr_pages) {
2807 page = alloc_pages_node(nid, gfp, order);
2808 if (unlikely(!page))
2812 * Careful, we allocate and map page-order pages, but
2813 * tracking is done per PAGE_SIZE page so as to keep the
2814 * vm_struct APIs independent of the physical/mapped size.
2816 for (i = 0; i < (1U << order); i++)
2817 pages[nr_allocated + i] = page + i;
2819 if (gfpflags_allow_blocking(gfp))
2822 nr_allocated += 1U << order;
2825 return nr_allocated;
2828 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2829 pgprot_t prot, unsigned int page_shift,
2832 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2833 unsigned long addr = (unsigned long)area->addr;
2834 unsigned long size = get_vm_area_size(area);
2835 unsigned long array_size;
2836 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2837 unsigned int page_order;
2839 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2840 gfp_mask |= __GFP_NOWARN;
2841 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2842 gfp_mask |= __GFP_HIGHMEM;
2844 /* Please note that the recursion is strictly bounded. */
2845 if (array_size > PAGE_SIZE) {
2846 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2849 area->pages = kmalloc_node(array_size, nested_gfp, node);
2853 warn_alloc(gfp_mask, NULL,
2854 "vmalloc error: size %lu, failed to allocated page array size %lu",
2855 nr_small_pages * PAGE_SIZE, array_size);
2860 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2861 page_order = vm_area_page_order(area);
2863 area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2864 page_order, nr_small_pages, area->pages);
2866 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2869 * If not enough pages were obtained to accomplish an
2870 * allocation request, free them via __vfree() if any.
2872 if (area->nr_pages != nr_small_pages) {
2873 warn_alloc(gfp_mask, NULL,
2874 "vmalloc error: size %lu, page order %u, failed to allocate pages",
2875 area->nr_pages * PAGE_SIZE, page_order);
2879 if (vmap_pages_range(addr, addr + size, prot, area->pages,
2881 warn_alloc(gfp_mask, NULL,
2882 "vmalloc error: size %lu, failed to map pages",
2883 area->nr_pages * PAGE_SIZE);
2890 __vfree(area->addr);
2895 * __vmalloc_node_range - allocate virtually contiguous memory
2896 * @size: allocation size
2897 * @align: desired alignment
2898 * @start: vm area range start
2899 * @end: vm area range end
2900 * @gfp_mask: flags for the page level allocator
2901 * @prot: protection mask for the allocated pages
2902 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2903 * @node: node to use for allocation or NUMA_NO_NODE
2904 * @caller: caller's return address
2906 * Allocate enough pages to cover @size from the page level
2907 * allocator with @gfp_mask flags. Map them into contiguous
2908 * kernel virtual space, using a pagetable protection of @prot.
2910 * Return: the address of the area or %NULL on failure
2912 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2913 unsigned long start, unsigned long end, gfp_t gfp_mask,
2914 pgprot_t prot, unsigned long vm_flags, int node,
2917 struct vm_struct *area;
2919 unsigned long real_size = size;
2920 unsigned long real_align = align;
2921 unsigned int shift = PAGE_SHIFT;
2923 if (WARN_ON_ONCE(!size))
2926 if ((size >> PAGE_SHIFT) > totalram_pages()) {
2927 warn_alloc(gfp_mask, NULL,
2928 "vmalloc error: size %lu, exceeds total pages",
2933 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
2934 unsigned long size_per_node;
2937 * Try huge pages. Only try for PAGE_KERNEL allocations,
2938 * others like modules don't yet expect huge pages in
2939 * their allocations due to apply_to_page_range not
2943 size_per_node = size;
2944 if (node == NUMA_NO_NODE)
2945 size_per_node /= num_online_nodes();
2946 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
2949 shift = arch_vmap_pte_supported_shift(size_per_node);
2951 align = max(real_align, 1UL << shift);
2952 size = ALIGN(real_size, 1UL << shift);
2956 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
2957 VM_UNINITIALIZED | vm_flags, start, end, node,
2960 warn_alloc(gfp_mask, NULL,
2961 "vmalloc error: size %lu, vm_struct allocation failed",
2966 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
2971 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2972 * flag. It means that vm_struct is not fully initialized.
2973 * Now, it is fully initialized, so remove this flag here.
2975 clear_vm_uninitialized_flag(area);
2977 size = PAGE_ALIGN(size);
2978 kmemleak_vmalloc(area, size, gfp_mask);
2983 if (shift > PAGE_SHIFT) {
2994 * __vmalloc_node - allocate virtually contiguous memory
2995 * @size: allocation size
2996 * @align: desired alignment
2997 * @gfp_mask: flags for the page level allocator
2998 * @node: node to use for allocation or NUMA_NO_NODE
2999 * @caller: caller's return address
3001 * Allocate enough pages to cover @size from the page level allocator with
3002 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3004 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3005 * and __GFP_NOFAIL are not supported
3007 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3010 * Return: pointer to the allocated memory or %NULL on error
3012 void *__vmalloc_node(unsigned long size, unsigned long align,
3013 gfp_t gfp_mask, int node, const void *caller)
3015 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3016 gfp_mask, PAGE_KERNEL, 0, node, caller);
3019 * This is only for performance analysis of vmalloc and stress purpose.
3020 * It is required by vmalloc test module, therefore do not use it other
3023 #ifdef CONFIG_TEST_VMALLOC_MODULE
3024 EXPORT_SYMBOL_GPL(__vmalloc_node);
3027 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3029 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3030 __builtin_return_address(0));
3032 EXPORT_SYMBOL(__vmalloc);
3035 * vmalloc - allocate virtually contiguous memory
3036 * @size: allocation size
3038 * Allocate enough pages to cover @size from the page level
3039 * allocator and map them into contiguous kernel virtual space.
3041 * For tight control over page level allocator and protection flags
3042 * use __vmalloc() instead.
3044 * Return: pointer to the allocated memory or %NULL on error
3046 void *vmalloc(unsigned long size)
3048 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3049 __builtin_return_address(0));
3051 EXPORT_SYMBOL(vmalloc);
3054 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3055 * @size: allocation size
3057 * Allocate enough non-huge pages to cover @size from the page level
3058 * allocator and map them into contiguous kernel virtual space.
3060 * Return: pointer to the allocated memory or %NULL on error
3062 void *vmalloc_no_huge(unsigned long size)
3064 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3065 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3066 NUMA_NO_NODE, __builtin_return_address(0));
3068 EXPORT_SYMBOL(vmalloc_no_huge);
3071 * vzalloc - allocate virtually contiguous memory with zero fill
3072 * @size: allocation size
3074 * Allocate enough pages to cover @size from the page level
3075 * allocator and map them into contiguous kernel virtual space.
3076 * The memory allocated is set to zero.
3078 * For tight control over page level allocator and protection flags
3079 * use __vmalloc() instead.
3081 * Return: pointer to the allocated memory or %NULL on error
3083 void *vzalloc(unsigned long size)
3085 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3086 __builtin_return_address(0));
3088 EXPORT_SYMBOL(vzalloc);
3091 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3092 * @size: allocation size
3094 * The resulting memory area is zeroed so it can be mapped to userspace
3095 * without leaking data.
3097 * Return: pointer to the allocated memory or %NULL on error
3099 void *vmalloc_user(unsigned long size)
3101 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3102 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3103 VM_USERMAP, NUMA_NO_NODE,
3104 __builtin_return_address(0));
3106 EXPORT_SYMBOL(vmalloc_user);
3109 * vmalloc_node - allocate memory on a specific node
3110 * @size: allocation size
3113 * Allocate enough pages to cover @size from the page level
3114 * allocator and map them into contiguous kernel virtual space.
3116 * For tight control over page level allocator and protection flags
3117 * use __vmalloc() instead.
3119 * Return: pointer to the allocated memory or %NULL on error
3121 void *vmalloc_node(unsigned long size, int node)
3123 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3124 __builtin_return_address(0));
3126 EXPORT_SYMBOL(vmalloc_node);
3129 * vzalloc_node - allocate memory on a specific node with zero fill
3130 * @size: allocation size
3133 * Allocate enough pages to cover @size from the page level
3134 * allocator and map them into contiguous kernel virtual space.
3135 * The memory allocated is set to zero.
3137 * Return: pointer to the allocated memory or %NULL on error
3139 void *vzalloc_node(unsigned long size, int node)
3141 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3142 __builtin_return_address(0));
3144 EXPORT_SYMBOL(vzalloc_node);
3146 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3147 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3148 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3149 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3152 * 64b systems should always have either DMA or DMA32 zones. For others
3153 * GFP_DMA32 should do the right thing and use the normal zone.
3155 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3159 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3160 * @size: allocation size
3162 * Allocate enough 32bit PA addressable pages to cover @size from the
3163 * page level allocator and map them into contiguous kernel virtual space.
3165 * Return: pointer to the allocated memory or %NULL on error
3167 void *vmalloc_32(unsigned long size)
3169 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3170 __builtin_return_address(0));
3172 EXPORT_SYMBOL(vmalloc_32);
3175 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3176 * @size: allocation size
3178 * The resulting memory area is 32bit addressable and zeroed so it can be
3179 * mapped to userspace without leaking data.
3181 * Return: pointer to the allocated memory or %NULL on error
3183 void *vmalloc_32_user(unsigned long size)
3185 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3186 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3187 VM_USERMAP, NUMA_NO_NODE,
3188 __builtin_return_address(0));
3190 EXPORT_SYMBOL(vmalloc_32_user);
3193 * small helper routine , copy contents to buf from addr.
3194 * If the page is not present, fill zero.
3197 static int aligned_vread(char *buf, char *addr, unsigned long count)
3203 unsigned long offset, length;
3205 offset = offset_in_page(addr);
3206 length = PAGE_SIZE - offset;
3209 p = vmalloc_to_page(addr);
3211 * To do safe access to this _mapped_ area, we need
3212 * lock. But adding lock here means that we need to add
3213 * overhead of vmalloc()/vfree() calls for this _debug_
3214 * interface, rarely used. Instead of that, we'll use
3215 * kmap() and get small overhead in this access function.
3218 /* We can expect USER0 is not used -- see vread() */
3219 void *map = kmap_atomic(p);
3220 memcpy(buf, map + offset, length);
3223 memset(buf, 0, length);
3234 * vread() - read vmalloc area in a safe way.
3235 * @buf: buffer for reading data
3236 * @addr: vm address.
3237 * @count: number of bytes to be read.
3239 * This function checks that addr is a valid vmalloc'ed area, and
3240 * copy data from that area to a given buffer. If the given memory range
3241 * of [addr...addr+count) includes some valid address, data is copied to
3242 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3243 * IOREMAP area is treated as memory hole and no copy is done.
3245 * If [addr...addr+count) doesn't includes any intersects with alive
3246 * vm_struct area, returns 0. @buf should be kernel's buffer.
3248 * Note: In usual ops, vread() is never necessary because the caller
3249 * should know vmalloc() area is valid and can use memcpy().
3250 * This is for routines which have to access vmalloc area without
3251 * any information, as /proc/kcore.
3253 * Return: number of bytes for which addr and buf should be increased
3254 * (same number as @count) or %0 if [addr...addr+count) doesn't
3255 * include any intersection with valid vmalloc area
3257 long vread(char *buf, char *addr, unsigned long count)
3259 struct vmap_area *va;
3260 struct vm_struct *vm;
3261 char *vaddr, *buf_start = buf;
3262 unsigned long buflen = count;
3265 /* Don't allow overflow */
3266 if ((unsigned long) addr + count < count)
3267 count = -(unsigned long) addr;
3269 spin_lock(&vmap_area_lock);
3270 va = __find_vmap_area((unsigned long)addr);
3273 list_for_each_entry_from(va, &vmap_area_list, list) {
3281 vaddr = (char *) vm->addr;
3282 if (addr >= vaddr + get_vm_area_size(vm))
3284 while (addr < vaddr) {
3292 n = vaddr + get_vm_area_size(vm) - addr;
3295 if (!(vm->flags & VM_IOREMAP))
3296 aligned_vread(buf, addr, n);
3297 else /* IOREMAP area is treated as memory hole */
3304 spin_unlock(&vmap_area_lock);
3306 if (buf == buf_start)
3308 /* zero-fill memory holes */
3309 if (buf != buf_start + buflen)
3310 memset(buf, 0, buflen - (buf - buf_start));
3316 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3317 * @vma: vma to cover
3318 * @uaddr: target user address to start at
3319 * @kaddr: virtual address of vmalloc kernel memory
3320 * @pgoff: offset from @kaddr to start at
3321 * @size: size of map area
3323 * Returns: 0 for success, -Exxx on failure
3325 * This function checks that @kaddr is a valid vmalloc'ed area,
3326 * and that it is big enough to cover the range starting at
3327 * @uaddr in @vma. Will return failure if that criteria isn't
3330 * Similar to remap_pfn_range() (see mm/memory.c)
3332 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3333 void *kaddr, unsigned long pgoff,
3336 struct vm_struct *area;
3338 unsigned long end_index;
3340 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3343 size = PAGE_ALIGN(size);
3345 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3348 area = find_vm_area(kaddr);
3352 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3355 if (check_add_overflow(size, off, &end_index) ||
3356 end_index > get_vm_area_size(area))
3361 struct page *page = vmalloc_to_page(kaddr);
3364 ret = vm_insert_page(vma, uaddr, page);
3373 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3379 * remap_vmalloc_range - map vmalloc pages to userspace
3380 * @vma: vma to cover (map full range of vma)
3381 * @addr: vmalloc memory
3382 * @pgoff: number of pages into addr before first page to map
3384 * Returns: 0 for success, -Exxx on failure
3386 * This function checks that addr is a valid vmalloc'ed area, and
3387 * that it is big enough to cover the vma. Will return failure if
3388 * that criteria isn't met.
3390 * Similar to remap_pfn_range() (see mm/memory.c)
3392 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3393 unsigned long pgoff)
3395 return remap_vmalloc_range_partial(vma, vma->vm_start,
3397 vma->vm_end - vma->vm_start);
3399 EXPORT_SYMBOL(remap_vmalloc_range);
3401 void free_vm_area(struct vm_struct *area)
3403 struct vm_struct *ret;
3404 ret = remove_vm_area(area->addr);
3405 BUG_ON(ret != area);
3408 EXPORT_SYMBOL_GPL(free_vm_area);
3411 static struct vmap_area *node_to_va(struct rb_node *n)
3413 return rb_entry_safe(n, struct vmap_area, rb_node);
3417 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3418 * @addr: target address
3420 * Returns: vmap_area if it is found. If there is no such area
3421 * the first highest(reverse order) vmap_area is returned
3422 * i.e. va->va_start < addr && va->va_end < addr or NULL
3423 * if there are no any areas before @addr.
3425 static struct vmap_area *
3426 pvm_find_va_enclose_addr(unsigned long addr)
3428 struct vmap_area *va, *tmp;
3431 n = free_vmap_area_root.rb_node;
3435 tmp = rb_entry(n, struct vmap_area, rb_node);
3436 if (tmp->va_start <= addr) {
3438 if (tmp->va_end >= addr)
3451 * pvm_determine_end_from_reverse - find the highest aligned address
3452 * of free block below VMALLOC_END
3454 * in - the VA we start the search(reverse order);
3455 * out - the VA with the highest aligned end address.
3456 * @align: alignment for required highest address
3458 * Returns: determined end address within vmap_area
3460 static unsigned long
3461 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3463 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3467 list_for_each_entry_from_reverse((*va),
3468 &free_vmap_area_list, list) {
3469 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3470 if ((*va)->va_start < addr)
3479 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3480 * @offsets: array containing offset of each area
3481 * @sizes: array containing size of each area
3482 * @nr_vms: the number of areas to allocate
3483 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3485 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3486 * vm_structs on success, %NULL on failure
3488 * Percpu allocator wants to use congruent vm areas so that it can
3489 * maintain the offsets among percpu areas. This function allocates
3490 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3491 * be scattered pretty far, distance between two areas easily going up
3492 * to gigabytes. To avoid interacting with regular vmallocs, these
3493 * areas are allocated from top.
3495 * Despite its complicated look, this allocator is rather simple. It
3496 * does everything top-down and scans free blocks from the end looking
3497 * for matching base. While scanning, if any of the areas do not fit the
3498 * base address is pulled down to fit the area. Scanning is repeated till
3499 * all the areas fit and then all necessary data structures are inserted
3500 * and the result is returned.
3502 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3503 const size_t *sizes, int nr_vms,
3506 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3507 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3508 struct vmap_area **vas, *va;
3509 struct vm_struct **vms;
3510 int area, area2, last_area, term_area;
3511 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3512 bool purged = false;
3515 /* verify parameters and allocate data structures */
3516 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3517 for (last_area = 0, area = 0; area < nr_vms; area++) {
3518 start = offsets[area];
3519 end = start + sizes[area];
3521 /* is everything aligned properly? */
3522 BUG_ON(!IS_ALIGNED(offsets[area], align));
3523 BUG_ON(!IS_ALIGNED(sizes[area], align));
3525 /* detect the area with the highest address */
3526 if (start > offsets[last_area])
3529 for (area2 = area + 1; area2 < nr_vms; area2++) {
3530 unsigned long start2 = offsets[area2];
3531 unsigned long end2 = start2 + sizes[area2];
3533 BUG_ON(start2 < end && start < end2);
3536 last_end = offsets[last_area] + sizes[last_area];
3538 if (vmalloc_end - vmalloc_start < last_end) {
3543 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3544 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3548 for (area = 0; area < nr_vms; area++) {
3549 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3550 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3551 if (!vas[area] || !vms[area])
3555 spin_lock(&free_vmap_area_lock);
3557 /* start scanning - we scan from the top, begin with the last area */
3558 area = term_area = last_area;
3559 start = offsets[area];
3560 end = start + sizes[area];
3562 va = pvm_find_va_enclose_addr(vmalloc_end);
3563 base = pvm_determine_end_from_reverse(&va, align) - end;
3567 * base might have underflowed, add last_end before
3570 if (base + last_end < vmalloc_start + last_end)
3574 * Fitting base has not been found.
3580 * If required width exceeds current VA block, move
3581 * base downwards and then recheck.
3583 if (base + end > va->va_end) {
3584 base = pvm_determine_end_from_reverse(&va, align) - end;
3590 * If this VA does not fit, move base downwards and recheck.
3592 if (base + start < va->va_start) {
3593 va = node_to_va(rb_prev(&va->rb_node));
3594 base = pvm_determine_end_from_reverse(&va, align) - end;
3600 * This area fits, move on to the previous one. If
3601 * the previous one is the terminal one, we're done.
3603 area = (area + nr_vms - 1) % nr_vms;
3604 if (area == term_area)
3607 start = offsets[area];
3608 end = start + sizes[area];
3609 va = pvm_find_va_enclose_addr(base + end);
3612 /* we've found a fitting base, insert all va's */
3613 for (area = 0; area < nr_vms; area++) {
3616 start = base + offsets[area];
3619 va = pvm_find_va_enclose_addr(start);
3620 if (WARN_ON_ONCE(va == NULL))
3621 /* It is a BUG(), but trigger recovery instead. */
3624 type = classify_va_fit_type(va, start, size);
3625 if (WARN_ON_ONCE(type == NOTHING_FIT))
3626 /* It is a BUG(), but trigger recovery instead. */
3629 ret = adjust_va_to_fit_type(va, start, size, type);
3633 /* Allocated area. */
3635 va->va_start = start;
3636 va->va_end = start + size;
3639 spin_unlock(&free_vmap_area_lock);
3641 /* populate the kasan shadow space */
3642 for (area = 0; area < nr_vms; area++) {
3643 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3644 goto err_free_shadow;
3646 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3650 /* insert all vm's */
3651 spin_lock(&vmap_area_lock);
3652 for (area = 0; area < nr_vms; area++) {
3653 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3655 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3658 spin_unlock(&vmap_area_lock);
3665 * Remove previously allocated areas. There is no
3666 * need in removing these areas from the busy tree,
3667 * because they are inserted only on the final step
3668 * and when pcpu_get_vm_areas() is success.
3671 orig_start = vas[area]->va_start;
3672 orig_end = vas[area]->va_end;
3673 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3674 &free_vmap_area_list);
3676 kasan_release_vmalloc(orig_start, orig_end,
3677 va->va_start, va->va_end);
3682 spin_unlock(&free_vmap_area_lock);
3684 purge_vmap_area_lazy();
3687 /* Before "retry", check if we recover. */
3688 for (area = 0; area < nr_vms; area++) {
3692 vas[area] = kmem_cache_zalloc(
3693 vmap_area_cachep, GFP_KERNEL);
3702 for (area = 0; area < nr_vms; area++) {
3704 kmem_cache_free(vmap_area_cachep, vas[area]);
3714 spin_lock(&free_vmap_area_lock);
3716 * We release all the vmalloc shadows, even the ones for regions that
3717 * hadn't been successfully added. This relies on kasan_release_vmalloc
3718 * being able to tolerate this case.
3720 for (area = 0; area < nr_vms; area++) {
3721 orig_start = vas[area]->va_start;
3722 orig_end = vas[area]->va_end;
3723 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3724 &free_vmap_area_list);
3726 kasan_release_vmalloc(orig_start, orig_end,
3727 va->va_start, va->va_end);
3731 spin_unlock(&free_vmap_area_lock);
3738 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3739 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3740 * @nr_vms: the number of allocated areas
3742 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3744 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3748 for (i = 0; i < nr_vms; i++)
3749 free_vm_area(vms[i]);
3752 #endif /* CONFIG_SMP */
3754 #ifdef CONFIG_PRINTK
3755 bool vmalloc_dump_obj(void *object)
3757 struct vm_struct *vm;
3758 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3760 vm = find_vm_area(objp);
3763 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3764 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3769 #ifdef CONFIG_PROC_FS
3770 static void *s_start(struct seq_file *m, loff_t *pos)
3771 __acquires(&vmap_purge_lock)
3772 __acquires(&vmap_area_lock)
3774 mutex_lock(&vmap_purge_lock);
3775 spin_lock(&vmap_area_lock);
3777 return seq_list_start(&vmap_area_list, *pos);
3780 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3782 return seq_list_next(p, &vmap_area_list, pos);
3785 static void s_stop(struct seq_file *m, void *p)
3786 __releases(&vmap_area_lock)
3787 __releases(&vmap_purge_lock)
3789 spin_unlock(&vmap_area_lock);
3790 mutex_unlock(&vmap_purge_lock);
3793 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3795 if (IS_ENABLED(CONFIG_NUMA)) {
3796 unsigned int nr, *counters = m->private;
3801 if (v->flags & VM_UNINITIALIZED)
3803 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3806 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3808 for (nr = 0; nr < v->nr_pages; nr++)
3809 counters[page_to_nid(v->pages[nr])]++;
3811 for_each_node_state(nr, N_HIGH_MEMORY)
3813 seq_printf(m, " N%u=%u", nr, counters[nr]);
3817 static void show_purge_info(struct seq_file *m)
3819 struct vmap_area *va;
3821 spin_lock(&purge_vmap_area_lock);
3822 list_for_each_entry(va, &purge_vmap_area_list, list) {
3823 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3824 (void *)va->va_start, (void *)va->va_end,
3825 va->va_end - va->va_start);
3827 spin_unlock(&purge_vmap_area_lock);
3830 static int s_show(struct seq_file *m, void *p)
3832 struct vmap_area *va;
3833 struct vm_struct *v;
3835 va = list_entry(p, struct vmap_area, list);
3838 * s_show can encounter race with remove_vm_area, !vm on behalf
3839 * of vmap area is being tear down or vm_map_ram allocation.
3842 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3843 (void *)va->va_start, (void *)va->va_end,
3844 va->va_end - va->va_start);
3851 seq_printf(m, "0x%pK-0x%pK %7ld",
3852 v->addr, v->addr + v->size, v->size);
3855 seq_printf(m, " %pS", v->caller);
3858 seq_printf(m, " pages=%d", v->nr_pages);
3861 seq_printf(m, " phys=%pa", &v->phys_addr);
3863 if (v->flags & VM_IOREMAP)
3864 seq_puts(m, " ioremap");
3866 if (v->flags & VM_ALLOC)
3867 seq_puts(m, " vmalloc");
3869 if (v->flags & VM_MAP)
3870 seq_puts(m, " vmap");
3872 if (v->flags & VM_USERMAP)
3873 seq_puts(m, " user");
3875 if (v->flags & VM_DMA_COHERENT)
3876 seq_puts(m, " dma-coherent");
3878 if (is_vmalloc_addr(v->pages))
3879 seq_puts(m, " vpages");
3881 show_numa_info(m, v);
3885 * As a final step, dump "unpurged" areas.
3887 if (list_is_last(&va->list, &vmap_area_list))
3893 static const struct seq_operations vmalloc_op = {
3900 static int __init proc_vmalloc_init(void)
3902 if (IS_ENABLED(CONFIG_NUMA))
3903 proc_create_seq_private("vmallocinfo", 0400, NULL,
3905 nr_node_ids * sizeof(unsigned int), NULL);
3907 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3910 module_init(proc_vmalloc_init);