mm/vmalloc.c: move 'area->pages' after if statement
[platform/kernel/linux-rpi.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43
44 struct vfree_deferred {
45         struct llist_head list;
46         struct work_struct wq;
47 };
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50 static void __vunmap(const void *, int);
51
52 static void free_work(struct work_struct *w)
53 {
54         struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55         struct llist_node *t, *llnode;
56
57         llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58                 __vunmap((void *)llnode, 1);
59 }
60
61 /*** Page table manipulation functions ***/
62
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 {
65         pte_t *pte;
66
67         pte = pte_offset_kernel(pmd, addr);
68         do {
69                 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70                 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71         } while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 {
76         pmd_t *pmd;
77         unsigned long next;
78
79         pmd = pmd_offset(pud, addr);
80         do {
81                 next = pmd_addr_end(addr, end);
82                 if (pmd_clear_huge(pmd))
83                         continue;
84                 if (pmd_none_or_clear_bad(pmd))
85                         continue;
86                 vunmap_pte_range(pmd, addr, next);
87         } while (pmd++, addr = next, addr != end);
88 }
89
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 {
92         pud_t *pud;
93         unsigned long next;
94
95         pud = pud_offset(p4d, addr);
96         do {
97                 next = pud_addr_end(addr, end);
98                 if (pud_clear_huge(pud))
99                         continue;
100                 if (pud_none_or_clear_bad(pud))
101                         continue;
102                 vunmap_pmd_range(pud, addr, next);
103         } while (pud++, addr = next, addr != end);
104 }
105
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 {
108         p4d_t *p4d;
109         unsigned long next;
110
111         p4d = p4d_offset(pgd, addr);
112         do {
113                 next = p4d_addr_end(addr, end);
114                 if (p4d_clear_huge(p4d))
115                         continue;
116                 if (p4d_none_or_clear_bad(p4d))
117                         continue;
118                 vunmap_pud_range(p4d, addr, next);
119         } while (p4d++, addr = next, addr != end);
120 }
121
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 {
124         pgd_t *pgd;
125         unsigned long next;
126
127         BUG_ON(addr >= end);
128         pgd = pgd_offset_k(addr);
129         do {
130                 next = pgd_addr_end(addr, end);
131                 if (pgd_none_or_clear_bad(pgd))
132                         continue;
133                 vunmap_p4d_range(pgd, addr, next);
134         } while (pgd++, addr = next, addr != end);
135 }
136
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138                 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 {
140         pte_t *pte;
141
142         /*
143          * nr is a running index into the array which helps higher level
144          * callers keep track of where we're up to.
145          */
146
147         pte = pte_alloc_kernel(pmd, addr);
148         if (!pte)
149                 return -ENOMEM;
150         do {
151                 struct page *page = pages[*nr];
152
153                 if (WARN_ON(!pte_none(*pte)))
154                         return -EBUSY;
155                 if (WARN_ON(!page))
156                         return -ENOMEM;
157                 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158                 (*nr)++;
159         } while (pte++, addr += PAGE_SIZE, addr != end);
160         return 0;
161 }
162
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164                 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166         pmd_t *pmd;
167         unsigned long next;
168
169         pmd = pmd_alloc(&init_mm, pud, addr);
170         if (!pmd)
171                 return -ENOMEM;
172         do {
173                 next = pmd_addr_end(addr, end);
174                 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175                         return -ENOMEM;
176         } while (pmd++, addr = next, addr != end);
177         return 0;
178 }
179
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181                 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 {
183         pud_t *pud;
184         unsigned long next;
185
186         pud = pud_alloc(&init_mm, p4d, addr);
187         if (!pud)
188                 return -ENOMEM;
189         do {
190                 next = pud_addr_end(addr, end);
191                 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192                         return -ENOMEM;
193         } while (pud++, addr = next, addr != end);
194         return 0;
195 }
196
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198                 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 {
200         p4d_t *p4d;
201         unsigned long next;
202
203         p4d = p4d_alloc(&init_mm, pgd, addr);
204         if (!p4d)
205                 return -ENOMEM;
206         do {
207                 next = p4d_addr_end(addr, end);
208                 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209                         return -ENOMEM;
210         } while (p4d++, addr = next, addr != end);
211         return 0;
212 }
213
214 /*
215  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216  * will have pfns corresponding to the "pages" array.
217  *
218  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219  */
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221                                    pgprot_t prot, struct page **pages)
222 {
223         pgd_t *pgd;
224         unsigned long next;
225         unsigned long addr = start;
226         int err = 0;
227         int nr = 0;
228
229         BUG_ON(addr >= end);
230         pgd = pgd_offset_k(addr);
231         do {
232                 next = pgd_addr_end(addr, end);
233                 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234                 if (err)
235                         return err;
236         } while (pgd++, addr = next, addr != end);
237
238         return nr;
239 }
240
241 static int vmap_page_range(unsigned long start, unsigned long end,
242                            pgprot_t prot, struct page **pages)
243 {
244         int ret;
245
246         ret = vmap_page_range_noflush(start, end, prot, pages);
247         flush_cache_vmap(start, end);
248         return ret;
249 }
250
251 int is_vmalloc_or_module_addr(const void *x)
252 {
253         /*
254          * ARM, x86-64 and sparc64 put modules in a special place,
255          * and fall back on vmalloc() if that fails. Others
256          * just put it in the vmalloc space.
257          */
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259         unsigned long addr = (unsigned long)x;
260         if (addr >= MODULES_VADDR && addr < MODULES_END)
261                 return 1;
262 #endif
263         return is_vmalloc_addr(x);
264 }
265
266 /*
267  * Walk a vmap address to the struct page it maps.
268  */
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 {
271         unsigned long addr = (unsigned long) vmalloc_addr;
272         struct page *page = NULL;
273         pgd_t *pgd = pgd_offset_k(addr);
274         p4d_t *p4d;
275         pud_t *pud;
276         pmd_t *pmd;
277         pte_t *ptep, pte;
278
279         /*
280          * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281          * architectures that do not vmalloc module space
282          */
283         VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284
285         if (pgd_none(*pgd))
286                 return NULL;
287         p4d = p4d_offset(pgd, addr);
288         if (p4d_none(*p4d))
289                 return NULL;
290         pud = pud_offset(p4d, addr);
291
292         /*
293          * Don't dereference bad PUD or PMD (below) entries. This will also
294          * identify huge mappings, which we may encounter on architectures
295          * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296          * identified as vmalloc addresses by is_vmalloc_addr(), but are
297          * not [unambiguously] associated with a struct page, so there is
298          * no correct value to return for them.
299          */
300         WARN_ON_ONCE(pud_bad(*pud));
301         if (pud_none(*pud) || pud_bad(*pud))
302                 return NULL;
303         pmd = pmd_offset(pud, addr);
304         WARN_ON_ONCE(pmd_bad(*pmd));
305         if (pmd_none(*pmd) || pmd_bad(*pmd))
306                 return NULL;
307
308         ptep = pte_offset_map(pmd, addr);
309         pte = *ptep;
310         if (pte_present(pte))
311                 page = pte_page(pte);
312         pte_unmap(ptep);
313         return page;
314 }
315 EXPORT_SYMBOL(vmalloc_to_page);
316
317 /*
318  * Map a vmalloc()-space virtual address to the physical page frame number.
319  */
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 {
322         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 }
324 EXPORT_SYMBOL(vmalloc_to_pfn);
325
326
327 /*** Global kva allocator ***/
328
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331
332
333 static DEFINE_SPINLOCK(vmap_area_lock);
334 /* Export for kexec only */
335 LIST_HEAD(vmap_area_list);
336 static LLIST_HEAD(vmap_purge_list);
337 static struct rb_root vmap_area_root = RB_ROOT;
338 static bool vmap_initialized __read_mostly;
339
340 /*
341  * This kmem_cache is used for vmap_area objects. Instead of
342  * allocating from slab we reuse an object from this cache to
343  * make things faster. Especially in "no edge" splitting of
344  * free block.
345  */
346 static struct kmem_cache *vmap_area_cachep;
347
348 /*
349  * This linked list is used in pair with free_vmap_area_root.
350  * It gives O(1) access to prev/next to perform fast coalescing.
351  */
352 static LIST_HEAD(free_vmap_area_list);
353
354 /*
355  * This augment red-black tree represents the free vmap space.
356  * All vmap_area objects in this tree are sorted by va->va_start
357  * address. It is used for allocation and merging when a vmap
358  * object is released.
359  *
360  * Each vmap_area node contains a maximum available free block
361  * of its sub-tree, right or left. Therefore it is possible to
362  * find a lowest match of free area.
363  */
364 static struct rb_root free_vmap_area_root = RB_ROOT;
365
366 /*
367  * Preload a CPU with one object for "no edge" split case. The
368  * aim is to get rid of allocations from the atomic context, thus
369  * to use more permissive allocation masks.
370  */
371 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
372
373 static __always_inline unsigned long
374 va_size(struct vmap_area *va)
375 {
376         return (va->va_end - va->va_start);
377 }
378
379 static __always_inline unsigned long
380 get_subtree_max_size(struct rb_node *node)
381 {
382         struct vmap_area *va;
383
384         va = rb_entry_safe(node, struct vmap_area, rb_node);
385         return va ? va->subtree_max_size : 0;
386 }
387
388 /*
389  * Gets called when remove the node and rotate.
390  */
391 static __always_inline unsigned long
392 compute_subtree_max_size(struct vmap_area *va)
393 {
394         return max3(va_size(va),
395                 get_subtree_max_size(va->rb_node.rb_left),
396                 get_subtree_max_size(va->rb_node.rb_right));
397 }
398
399 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
400         struct vmap_area, rb_node, unsigned long, subtree_max_size,
401         compute_subtree_max_size)
402
403 static void purge_vmap_area_lazy(void);
404 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405 static unsigned long lazy_max_pages(void);
406
407 static atomic_long_t nr_vmalloc_pages;
408
409 unsigned long vmalloc_nr_pages(void)
410 {
411         return atomic_long_read(&nr_vmalloc_pages);
412 }
413
414 static struct vmap_area *__find_vmap_area(unsigned long addr)
415 {
416         struct rb_node *n = vmap_area_root.rb_node;
417
418         while (n) {
419                 struct vmap_area *va;
420
421                 va = rb_entry(n, struct vmap_area, rb_node);
422                 if (addr < va->va_start)
423                         n = n->rb_left;
424                 else if (addr >= va->va_end)
425                         n = n->rb_right;
426                 else
427                         return va;
428         }
429
430         return NULL;
431 }
432
433 /*
434  * This function returns back addresses of parent node
435  * and its left or right link for further processing.
436  */
437 static __always_inline struct rb_node **
438 find_va_links(struct vmap_area *va,
439         struct rb_root *root, struct rb_node *from,
440         struct rb_node **parent)
441 {
442         struct vmap_area *tmp_va;
443         struct rb_node **link;
444
445         if (root) {
446                 link = &root->rb_node;
447                 if (unlikely(!*link)) {
448                         *parent = NULL;
449                         return link;
450                 }
451         } else {
452                 link = &from;
453         }
454
455         /*
456          * Go to the bottom of the tree. When we hit the last point
457          * we end up with parent rb_node and correct direction, i name
458          * it link, where the new va->rb_node will be attached to.
459          */
460         do {
461                 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
462
463                 /*
464                  * During the traversal we also do some sanity check.
465                  * Trigger the BUG() if there are sides(left/right)
466                  * or full overlaps.
467                  */
468                 if (va->va_start < tmp_va->va_end &&
469                                 va->va_end <= tmp_va->va_start)
470                         link = &(*link)->rb_left;
471                 else if (va->va_end > tmp_va->va_start &&
472                                 va->va_start >= tmp_va->va_end)
473                         link = &(*link)->rb_right;
474                 else
475                         BUG();
476         } while (*link);
477
478         *parent = &tmp_va->rb_node;
479         return link;
480 }
481
482 static __always_inline struct list_head *
483 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
484 {
485         struct list_head *list;
486
487         if (unlikely(!parent))
488                 /*
489                  * The red-black tree where we try to find VA neighbors
490                  * before merging or inserting is empty, i.e. it means
491                  * there is no free vmap space. Normally it does not
492                  * happen but we handle this case anyway.
493                  */
494                 return NULL;
495
496         list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497         return (&parent->rb_right == link ? list->next : list);
498 }
499
500 static __always_inline void
501 link_va(struct vmap_area *va, struct rb_root *root,
502         struct rb_node *parent, struct rb_node **link, struct list_head *head)
503 {
504         /*
505          * VA is still not in the list, but we can
506          * identify its future previous list_head node.
507          */
508         if (likely(parent)) {
509                 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510                 if (&parent->rb_right != link)
511                         head = head->prev;
512         }
513
514         /* Insert to the rb-tree */
515         rb_link_node(&va->rb_node, parent, link);
516         if (root == &free_vmap_area_root) {
517                 /*
518                  * Some explanation here. Just perform simple insertion
519                  * to the tree. We do not set va->subtree_max_size to
520                  * its current size before calling rb_insert_augmented().
521                  * It is because of we populate the tree from the bottom
522                  * to parent levels when the node _is_ in the tree.
523                  *
524                  * Therefore we set subtree_max_size to zero after insertion,
525                  * to let __augment_tree_propagate_from() puts everything to
526                  * the correct order later on.
527                  */
528                 rb_insert_augmented(&va->rb_node,
529                         root, &free_vmap_area_rb_augment_cb);
530                 va->subtree_max_size = 0;
531         } else {
532                 rb_insert_color(&va->rb_node, root);
533         }
534
535         /* Address-sort this list */
536         list_add(&va->list, head);
537 }
538
539 static __always_inline void
540 unlink_va(struct vmap_area *va, struct rb_root *root)
541 {
542         if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
543                 return;
544
545         if (root == &free_vmap_area_root)
546                 rb_erase_augmented(&va->rb_node,
547                         root, &free_vmap_area_rb_augment_cb);
548         else
549                 rb_erase(&va->rb_node, root);
550
551         list_del(&va->list);
552         RB_CLEAR_NODE(&va->rb_node);
553 }
554
555 #if DEBUG_AUGMENT_PROPAGATE_CHECK
556 static void
557 augment_tree_propagate_check(struct rb_node *n)
558 {
559         struct vmap_area *va;
560         struct rb_node *node;
561         unsigned long size;
562         bool found = false;
563
564         if (n == NULL)
565                 return;
566
567         va = rb_entry(n, struct vmap_area, rb_node);
568         size = va->subtree_max_size;
569         node = n;
570
571         while (node) {
572                 va = rb_entry(node, struct vmap_area, rb_node);
573
574                 if (get_subtree_max_size(node->rb_left) == size) {
575                         node = node->rb_left;
576                 } else {
577                         if (va_size(va) == size) {
578                                 found = true;
579                                 break;
580                         }
581
582                         node = node->rb_right;
583                 }
584         }
585
586         if (!found) {
587                 va = rb_entry(n, struct vmap_area, rb_node);
588                 pr_emerg("tree is corrupted: %lu, %lu\n",
589                         va_size(va), va->subtree_max_size);
590         }
591
592         augment_tree_propagate_check(n->rb_left);
593         augment_tree_propagate_check(n->rb_right);
594 }
595 #endif
596
597 /*
598  * This function populates subtree_max_size from bottom to upper
599  * levels starting from VA point. The propagation must be done
600  * when VA size is modified by changing its va_start/va_end. Or
601  * in case of newly inserting of VA to the tree.
602  *
603  * It means that __augment_tree_propagate_from() must be called:
604  * - After VA has been inserted to the tree(free path);
605  * - After VA has been shrunk(allocation path);
606  * - After VA has been increased(merging path).
607  *
608  * Please note that, it does not mean that upper parent nodes
609  * and their subtree_max_size are recalculated all the time up
610  * to the root node.
611  *
612  *       4--8
613  *        /\
614  *       /  \
615  *      /    \
616  *    2--2  8--8
617  *
618  * For example if we modify the node 4, shrinking it to 2, then
619  * no any modification is required. If we shrink the node 2 to 1
620  * its subtree_max_size is updated only, and set to 1. If we shrink
621  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
622  * node becomes 4--6.
623  */
624 static __always_inline void
625 augment_tree_propagate_from(struct vmap_area *va)
626 {
627         struct rb_node *node = &va->rb_node;
628         unsigned long new_va_sub_max_size;
629
630         while (node) {
631                 va = rb_entry(node, struct vmap_area, rb_node);
632                 new_va_sub_max_size = compute_subtree_max_size(va);
633
634                 /*
635                  * If the newly calculated maximum available size of the
636                  * subtree is equal to the current one, then it means that
637                  * the tree is propagated correctly. So we have to stop at
638                  * this point to save cycles.
639                  */
640                 if (va->subtree_max_size == new_va_sub_max_size)
641                         break;
642
643                 va->subtree_max_size = new_va_sub_max_size;
644                 node = rb_parent(&va->rb_node);
645         }
646
647 #if DEBUG_AUGMENT_PROPAGATE_CHECK
648         augment_tree_propagate_check(free_vmap_area_root.rb_node);
649 #endif
650 }
651
652 static void
653 insert_vmap_area(struct vmap_area *va,
654         struct rb_root *root, struct list_head *head)
655 {
656         struct rb_node **link;
657         struct rb_node *parent;
658
659         link = find_va_links(va, root, NULL, &parent);
660         link_va(va, root, parent, link, head);
661 }
662
663 static void
664 insert_vmap_area_augment(struct vmap_area *va,
665         struct rb_node *from, struct rb_root *root,
666         struct list_head *head)
667 {
668         struct rb_node **link;
669         struct rb_node *parent;
670
671         if (from)
672                 link = find_va_links(va, NULL, from, &parent);
673         else
674                 link = find_va_links(va, root, NULL, &parent);
675
676         link_va(va, root, parent, link, head);
677         augment_tree_propagate_from(va);
678 }
679
680 /*
681  * Merge de-allocated chunk of VA memory with previous
682  * and next free blocks. If coalesce is not done a new
683  * free area is inserted. If VA has been merged, it is
684  * freed.
685  */
686 static __always_inline void
687 merge_or_add_vmap_area(struct vmap_area *va,
688         struct rb_root *root, struct list_head *head)
689 {
690         struct vmap_area *sibling;
691         struct list_head *next;
692         struct rb_node **link;
693         struct rb_node *parent;
694         bool merged = false;
695
696         /*
697          * Find a place in the tree where VA potentially will be
698          * inserted, unless it is merged with its sibling/siblings.
699          */
700         link = find_va_links(va, root, NULL, &parent);
701
702         /*
703          * Get next node of VA to check if merging can be done.
704          */
705         next = get_va_next_sibling(parent, link);
706         if (unlikely(next == NULL))
707                 goto insert;
708
709         /*
710          * start            end
711          * |                |
712          * |<------VA------>|<-----Next----->|
713          *                  |                |
714          *                  start            end
715          */
716         if (next != head) {
717                 sibling = list_entry(next, struct vmap_area, list);
718                 if (sibling->va_start == va->va_end) {
719                         sibling->va_start = va->va_start;
720
721                         /* Check and update the tree if needed. */
722                         augment_tree_propagate_from(sibling);
723
724                         /* Free vmap_area object. */
725                         kmem_cache_free(vmap_area_cachep, va);
726
727                         /* Point to the new merged area. */
728                         va = sibling;
729                         merged = true;
730                 }
731         }
732
733         /*
734          * start            end
735          * |                |
736          * |<-----Prev----->|<------VA------>|
737          *                  |                |
738          *                  start            end
739          */
740         if (next->prev != head) {
741                 sibling = list_entry(next->prev, struct vmap_area, list);
742                 if (sibling->va_end == va->va_start) {
743                         sibling->va_end = va->va_end;
744
745                         /* Check and update the tree if needed. */
746                         augment_tree_propagate_from(sibling);
747
748                         if (merged)
749                                 unlink_va(va, root);
750
751                         /* Free vmap_area object. */
752                         kmem_cache_free(vmap_area_cachep, va);
753                         return;
754                 }
755         }
756
757 insert:
758         if (!merged) {
759                 link_va(va, root, parent, link, head);
760                 augment_tree_propagate_from(va);
761         }
762 }
763
764 static __always_inline bool
765 is_within_this_va(struct vmap_area *va, unsigned long size,
766         unsigned long align, unsigned long vstart)
767 {
768         unsigned long nva_start_addr;
769
770         if (va->va_start > vstart)
771                 nva_start_addr = ALIGN(va->va_start, align);
772         else
773                 nva_start_addr = ALIGN(vstart, align);
774
775         /* Can be overflowed due to big size or alignment. */
776         if (nva_start_addr + size < nva_start_addr ||
777                         nva_start_addr < vstart)
778                 return false;
779
780         return (nva_start_addr + size <= va->va_end);
781 }
782
783 /*
784  * Find the first free block(lowest start address) in the tree,
785  * that will accomplish the request corresponding to passing
786  * parameters.
787  */
788 static __always_inline struct vmap_area *
789 find_vmap_lowest_match(unsigned long size,
790         unsigned long align, unsigned long vstart)
791 {
792         struct vmap_area *va;
793         struct rb_node *node;
794         unsigned long length;
795
796         /* Start from the root. */
797         node = free_vmap_area_root.rb_node;
798
799         /* Adjust the search size for alignment overhead. */
800         length = size + align - 1;
801
802         while (node) {
803                 va = rb_entry(node, struct vmap_area, rb_node);
804
805                 if (get_subtree_max_size(node->rb_left) >= length &&
806                                 vstart < va->va_start) {
807                         node = node->rb_left;
808                 } else {
809                         if (is_within_this_va(va, size, align, vstart))
810                                 return va;
811
812                         /*
813                          * Does not make sense to go deeper towards the right
814                          * sub-tree if it does not have a free block that is
815                          * equal or bigger to the requested search length.
816                          */
817                         if (get_subtree_max_size(node->rb_right) >= length) {
818                                 node = node->rb_right;
819                                 continue;
820                         }
821
822                         /*
823                          * OK. We roll back and find the first right sub-tree,
824                          * that will satisfy the search criteria. It can happen
825                          * only once due to "vstart" restriction.
826                          */
827                         while ((node = rb_parent(node))) {
828                                 va = rb_entry(node, struct vmap_area, rb_node);
829                                 if (is_within_this_va(va, size, align, vstart))
830                                         return va;
831
832                                 if (get_subtree_max_size(node->rb_right) >= length &&
833                                                 vstart <= va->va_start) {
834                                         node = node->rb_right;
835                                         break;
836                                 }
837                         }
838                 }
839         }
840
841         return NULL;
842 }
843
844 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
845 #include <linux/random.h>
846
847 static struct vmap_area *
848 find_vmap_lowest_linear_match(unsigned long size,
849         unsigned long align, unsigned long vstart)
850 {
851         struct vmap_area *va;
852
853         list_for_each_entry(va, &free_vmap_area_list, list) {
854                 if (!is_within_this_va(va, size, align, vstart))
855                         continue;
856
857                 return va;
858         }
859
860         return NULL;
861 }
862
863 static void
864 find_vmap_lowest_match_check(unsigned long size)
865 {
866         struct vmap_area *va_1, *va_2;
867         unsigned long vstart;
868         unsigned int rnd;
869
870         get_random_bytes(&rnd, sizeof(rnd));
871         vstart = VMALLOC_START + rnd;
872
873         va_1 = find_vmap_lowest_match(size, 1, vstart);
874         va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
875
876         if (va_1 != va_2)
877                 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
878                         va_1, va_2, vstart);
879 }
880 #endif
881
882 enum fit_type {
883         NOTHING_FIT = 0,
884         FL_FIT_TYPE = 1,        /* full fit */
885         LE_FIT_TYPE = 2,        /* left edge fit */
886         RE_FIT_TYPE = 3,        /* right edge fit */
887         NE_FIT_TYPE = 4         /* no edge fit */
888 };
889
890 static __always_inline enum fit_type
891 classify_va_fit_type(struct vmap_area *va,
892         unsigned long nva_start_addr, unsigned long size)
893 {
894         enum fit_type type;
895
896         /* Check if it is within VA. */
897         if (nva_start_addr < va->va_start ||
898                         nva_start_addr + size > va->va_end)
899                 return NOTHING_FIT;
900
901         /* Now classify. */
902         if (va->va_start == nva_start_addr) {
903                 if (va->va_end == nva_start_addr + size)
904                         type = FL_FIT_TYPE;
905                 else
906                         type = LE_FIT_TYPE;
907         } else if (va->va_end == nva_start_addr + size) {
908                 type = RE_FIT_TYPE;
909         } else {
910                 type = NE_FIT_TYPE;
911         }
912
913         return type;
914 }
915
916 static __always_inline int
917 adjust_va_to_fit_type(struct vmap_area *va,
918         unsigned long nva_start_addr, unsigned long size,
919         enum fit_type type)
920 {
921         struct vmap_area *lva = NULL;
922
923         if (type == FL_FIT_TYPE) {
924                 /*
925                  * No need to split VA, it fully fits.
926                  *
927                  * |               |
928                  * V      NVA      V
929                  * |---------------|
930                  */
931                 unlink_va(va, &free_vmap_area_root);
932                 kmem_cache_free(vmap_area_cachep, va);
933         } else if (type == LE_FIT_TYPE) {
934                 /*
935                  * Split left edge of fit VA.
936                  *
937                  * |       |
938                  * V  NVA  V   R
939                  * |-------|-------|
940                  */
941                 va->va_start += size;
942         } else if (type == RE_FIT_TYPE) {
943                 /*
944                  * Split right edge of fit VA.
945                  *
946                  *         |       |
947                  *     L   V  NVA  V
948                  * |-------|-------|
949                  */
950                 va->va_end = nva_start_addr;
951         } else if (type == NE_FIT_TYPE) {
952                 /*
953                  * Split no edge of fit VA.
954                  *
955                  *     |       |
956                  *   L V  NVA  V R
957                  * |---|-------|---|
958                  */
959                 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
960                 if (unlikely(!lva)) {
961                         /*
962                          * For percpu allocator we do not do any pre-allocation
963                          * and leave it as it is. The reason is it most likely
964                          * never ends up with NE_FIT_TYPE splitting. In case of
965                          * percpu allocations offsets and sizes are aligned to
966                          * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
967                          * are its main fitting cases.
968                          *
969                          * There are a few exceptions though, as an example it is
970                          * a first allocation (early boot up) when we have "one"
971                          * big free space that has to be split.
972                          */
973                         lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
974                         if (!lva)
975                                 return -1;
976                 }
977
978                 /*
979                  * Build the remainder.
980                  */
981                 lva->va_start = va->va_start;
982                 lva->va_end = nva_start_addr;
983
984                 /*
985                  * Shrink this VA to remaining size.
986                  */
987                 va->va_start = nva_start_addr + size;
988         } else {
989                 return -1;
990         }
991
992         if (type != FL_FIT_TYPE) {
993                 augment_tree_propagate_from(va);
994
995                 if (lva)        /* type == NE_FIT_TYPE */
996                         insert_vmap_area_augment(lva, &va->rb_node,
997                                 &free_vmap_area_root, &free_vmap_area_list);
998         }
999
1000         return 0;
1001 }
1002
1003 /*
1004  * Returns a start address of the newly allocated area, if success.
1005  * Otherwise a vend is returned that indicates failure.
1006  */
1007 static __always_inline unsigned long
1008 __alloc_vmap_area(unsigned long size, unsigned long align,
1009         unsigned long vstart, unsigned long vend)
1010 {
1011         unsigned long nva_start_addr;
1012         struct vmap_area *va;
1013         enum fit_type type;
1014         int ret;
1015
1016         va = find_vmap_lowest_match(size, align, vstart);
1017         if (unlikely(!va))
1018                 return vend;
1019
1020         if (va->va_start > vstart)
1021                 nva_start_addr = ALIGN(va->va_start, align);
1022         else
1023                 nva_start_addr = ALIGN(vstart, align);
1024
1025         /* Check the "vend" restriction. */
1026         if (nva_start_addr + size > vend)
1027                 return vend;
1028
1029         /* Classify what we have found. */
1030         type = classify_va_fit_type(va, nva_start_addr, size);
1031         if (WARN_ON_ONCE(type == NOTHING_FIT))
1032                 return vend;
1033
1034         /* Update the free vmap_area. */
1035         ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1036         if (ret)
1037                 return vend;
1038
1039 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1040         find_vmap_lowest_match_check(size);
1041 #endif
1042
1043         return nva_start_addr;
1044 }
1045
1046 /*
1047  * Allocate a region of KVA of the specified size and alignment, within the
1048  * vstart and vend.
1049  */
1050 static struct vmap_area *alloc_vmap_area(unsigned long size,
1051                                 unsigned long align,
1052                                 unsigned long vstart, unsigned long vend,
1053                                 int node, gfp_t gfp_mask)
1054 {
1055         struct vmap_area *va, *pva;
1056         unsigned long addr;
1057         int purged = 0;
1058
1059         BUG_ON(!size);
1060         BUG_ON(offset_in_page(size));
1061         BUG_ON(!is_power_of_2(align));
1062
1063         if (unlikely(!vmap_initialized))
1064                 return ERR_PTR(-EBUSY);
1065
1066         might_sleep();
1067
1068         va = kmem_cache_alloc_node(vmap_area_cachep,
1069                         gfp_mask & GFP_RECLAIM_MASK, node);
1070         if (unlikely(!va))
1071                 return ERR_PTR(-ENOMEM);
1072
1073         /*
1074          * Only scan the relevant parts containing pointers to other objects
1075          * to avoid false negatives.
1076          */
1077         kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1078
1079 retry:
1080         /*
1081          * Preload this CPU with one extra vmap_area object to ensure
1082          * that we have it available when fit type of free area is
1083          * NE_FIT_TYPE.
1084          *
1085          * The preload is done in non-atomic context, thus it allows us
1086          * to use more permissive allocation masks to be more stable under
1087          * low memory condition and high memory pressure.
1088          *
1089          * Even if it fails we do not really care about that. Just proceed
1090          * as it is. "overflow" path will refill the cache we allocate from.
1091          */
1092         preempt_disable();
1093         if (!__this_cpu_read(ne_fit_preload_node)) {
1094                 preempt_enable();
1095                 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1096                 preempt_disable();
1097
1098                 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1099                         if (pva)
1100                                 kmem_cache_free(vmap_area_cachep, pva);
1101                 }
1102         }
1103
1104         spin_lock(&vmap_area_lock);
1105         preempt_enable();
1106
1107         /*
1108          * If an allocation fails, the "vend" address is
1109          * returned. Therefore trigger the overflow path.
1110          */
1111         addr = __alloc_vmap_area(size, align, vstart, vend);
1112         if (unlikely(addr == vend))
1113                 goto overflow;
1114
1115         va->va_start = addr;
1116         va->va_end = addr + size;
1117         va->vm = NULL;
1118         insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1119
1120         spin_unlock(&vmap_area_lock);
1121
1122         BUG_ON(!IS_ALIGNED(va->va_start, align));
1123         BUG_ON(va->va_start < vstart);
1124         BUG_ON(va->va_end > vend);
1125
1126         return va;
1127
1128 overflow:
1129         spin_unlock(&vmap_area_lock);
1130         if (!purged) {
1131                 purge_vmap_area_lazy();
1132                 purged = 1;
1133                 goto retry;
1134         }
1135
1136         if (gfpflags_allow_blocking(gfp_mask)) {
1137                 unsigned long freed = 0;
1138                 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1139                 if (freed > 0) {
1140                         purged = 0;
1141                         goto retry;
1142                 }
1143         }
1144
1145         if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1146                 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1147                         size);
1148
1149         kmem_cache_free(vmap_area_cachep, va);
1150         return ERR_PTR(-EBUSY);
1151 }
1152
1153 int register_vmap_purge_notifier(struct notifier_block *nb)
1154 {
1155         return blocking_notifier_chain_register(&vmap_notify_list, nb);
1156 }
1157 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1158
1159 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1160 {
1161         return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1162 }
1163 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1164
1165 static void __free_vmap_area(struct vmap_area *va)
1166 {
1167         /*
1168          * Remove from the busy tree/list.
1169          */
1170         unlink_va(va, &vmap_area_root);
1171
1172         /*
1173          * Merge VA with its neighbors, otherwise just add it.
1174          */
1175         merge_or_add_vmap_area(va,
1176                 &free_vmap_area_root, &free_vmap_area_list);
1177 }
1178
1179 /*
1180  * Free a region of KVA allocated by alloc_vmap_area
1181  */
1182 static void free_vmap_area(struct vmap_area *va)
1183 {
1184         spin_lock(&vmap_area_lock);
1185         __free_vmap_area(va);
1186         spin_unlock(&vmap_area_lock);
1187 }
1188
1189 /*
1190  * Clear the pagetable entries of a given vmap_area
1191  */
1192 static void unmap_vmap_area(struct vmap_area *va)
1193 {
1194         vunmap_page_range(va->va_start, va->va_end);
1195 }
1196
1197 /*
1198  * lazy_max_pages is the maximum amount of virtual address space we gather up
1199  * before attempting to purge with a TLB flush.
1200  *
1201  * There is a tradeoff here: a larger number will cover more kernel page tables
1202  * and take slightly longer to purge, but it will linearly reduce the number of
1203  * global TLB flushes that must be performed. It would seem natural to scale
1204  * this number up linearly with the number of CPUs (because vmapping activity
1205  * could also scale linearly with the number of CPUs), however it is likely
1206  * that in practice, workloads might be constrained in other ways that mean
1207  * vmap activity will not scale linearly with CPUs. Also, I want to be
1208  * conservative and not introduce a big latency on huge systems, so go with
1209  * a less aggressive log scale. It will still be an improvement over the old
1210  * code, and it will be simple to change the scale factor if we find that it
1211  * becomes a problem on bigger systems.
1212  */
1213 static unsigned long lazy_max_pages(void)
1214 {
1215         unsigned int log;
1216
1217         log = fls(num_online_cpus());
1218
1219         return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1220 }
1221
1222 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1223
1224 /*
1225  * Serialize vmap purging.  There is no actual criticial section protected
1226  * by this look, but we want to avoid concurrent calls for performance
1227  * reasons and to make the pcpu_get_vm_areas more deterministic.
1228  */
1229 static DEFINE_MUTEX(vmap_purge_lock);
1230
1231 /* for per-CPU blocks */
1232 static void purge_fragmented_blocks_allcpus(void);
1233
1234 /*
1235  * called before a call to iounmap() if the caller wants vm_area_struct's
1236  * immediately freed.
1237  */
1238 void set_iounmap_nonlazy(void)
1239 {
1240         atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1241 }
1242
1243 /*
1244  * Purges all lazily-freed vmap areas.
1245  */
1246 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1247 {
1248         unsigned long resched_threshold;
1249         struct llist_node *valist;
1250         struct vmap_area *va;
1251         struct vmap_area *n_va;
1252
1253         lockdep_assert_held(&vmap_purge_lock);
1254
1255         valist = llist_del_all(&vmap_purge_list);
1256         if (unlikely(valist == NULL))
1257                 return false;
1258
1259         /*
1260          * First make sure the mappings are removed from all page-tables
1261          * before they are freed.
1262          */
1263         vmalloc_sync_all();
1264
1265         /*
1266          * TODO: to calculate a flush range without looping.
1267          * The list can be up to lazy_max_pages() elements.
1268          */
1269         llist_for_each_entry(va, valist, purge_list) {
1270                 if (va->va_start < start)
1271                         start = va->va_start;
1272                 if (va->va_end > end)
1273                         end = va->va_end;
1274         }
1275
1276         flush_tlb_kernel_range(start, end);
1277         resched_threshold = lazy_max_pages() << 1;
1278
1279         spin_lock(&vmap_area_lock);
1280         llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1281                 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1282
1283                 /*
1284                  * Finally insert or merge lazily-freed area. It is
1285                  * detached and there is no need to "unlink" it from
1286                  * anything.
1287                  */
1288                 merge_or_add_vmap_area(va,
1289                         &free_vmap_area_root, &free_vmap_area_list);
1290
1291                 atomic_long_sub(nr, &vmap_lazy_nr);
1292
1293                 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1294                         cond_resched_lock(&vmap_area_lock);
1295         }
1296         spin_unlock(&vmap_area_lock);
1297         return true;
1298 }
1299
1300 /*
1301  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1302  * is already purging.
1303  */
1304 static void try_purge_vmap_area_lazy(void)
1305 {
1306         if (mutex_trylock(&vmap_purge_lock)) {
1307                 __purge_vmap_area_lazy(ULONG_MAX, 0);
1308                 mutex_unlock(&vmap_purge_lock);
1309         }
1310 }
1311
1312 /*
1313  * Kick off a purge of the outstanding lazy areas.
1314  */
1315 static void purge_vmap_area_lazy(void)
1316 {
1317         mutex_lock(&vmap_purge_lock);
1318         purge_fragmented_blocks_allcpus();
1319         __purge_vmap_area_lazy(ULONG_MAX, 0);
1320         mutex_unlock(&vmap_purge_lock);
1321 }
1322
1323 /*
1324  * Free a vmap area, caller ensuring that the area has been unmapped
1325  * and flush_cache_vunmap had been called for the correct range
1326  * previously.
1327  */
1328 static void free_vmap_area_noflush(struct vmap_area *va)
1329 {
1330         unsigned long nr_lazy;
1331
1332         spin_lock(&vmap_area_lock);
1333         unlink_va(va, &vmap_area_root);
1334         spin_unlock(&vmap_area_lock);
1335
1336         nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1337                                 PAGE_SHIFT, &vmap_lazy_nr);
1338
1339         /* After this point, we may free va at any time */
1340         llist_add(&va->purge_list, &vmap_purge_list);
1341
1342         if (unlikely(nr_lazy > lazy_max_pages()))
1343                 try_purge_vmap_area_lazy();
1344 }
1345
1346 /*
1347  * Free and unmap a vmap area
1348  */
1349 static void free_unmap_vmap_area(struct vmap_area *va)
1350 {
1351         flush_cache_vunmap(va->va_start, va->va_end);
1352         unmap_vmap_area(va);
1353         if (debug_pagealloc_enabled())
1354                 flush_tlb_kernel_range(va->va_start, va->va_end);
1355
1356         free_vmap_area_noflush(va);
1357 }
1358
1359 static struct vmap_area *find_vmap_area(unsigned long addr)
1360 {
1361         struct vmap_area *va;
1362
1363         spin_lock(&vmap_area_lock);
1364         va = __find_vmap_area(addr);
1365         spin_unlock(&vmap_area_lock);
1366
1367         return va;
1368 }
1369
1370 /*** Per cpu kva allocator ***/
1371
1372 /*
1373  * vmap space is limited especially on 32 bit architectures. Ensure there is
1374  * room for at least 16 percpu vmap blocks per CPU.
1375  */
1376 /*
1377  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1378  * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
1379  * instead (we just need a rough idea)
1380  */
1381 #if BITS_PER_LONG == 32
1382 #define VMALLOC_SPACE           (128UL*1024*1024)
1383 #else
1384 #define VMALLOC_SPACE           (128UL*1024*1024*1024)
1385 #endif
1386
1387 #define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
1388 #define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
1389 #define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
1390 #define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
1391 #define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
1392 #define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
1393 #define VMAP_BBMAP_BITS         \
1394                 VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
1395                 VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
1396                         VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1397
1398 #define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
1399
1400 struct vmap_block_queue {
1401         spinlock_t lock;
1402         struct list_head free;
1403 };
1404
1405 struct vmap_block {
1406         spinlock_t lock;
1407         struct vmap_area *va;
1408         unsigned long free, dirty;
1409         unsigned long dirty_min, dirty_max; /*< dirty range */
1410         struct list_head free_list;
1411         struct rcu_head rcu_head;
1412         struct list_head purge;
1413 };
1414
1415 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1416 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1417
1418 /*
1419  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1420  * in the free path. Could get rid of this if we change the API to return a
1421  * "cookie" from alloc, to be passed to free. But no big deal yet.
1422  */
1423 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1424 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1425
1426 /*
1427  * We should probably have a fallback mechanism to allocate virtual memory
1428  * out of partially filled vmap blocks. However vmap block sizing should be
1429  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1430  * big problem.
1431  */
1432
1433 static unsigned long addr_to_vb_idx(unsigned long addr)
1434 {
1435         addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1436         addr /= VMAP_BLOCK_SIZE;
1437         return addr;
1438 }
1439
1440 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1441 {
1442         unsigned long addr;
1443
1444         addr = va_start + (pages_off << PAGE_SHIFT);
1445         BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1446         return (void *)addr;
1447 }
1448
1449 /**
1450  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1451  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1452  * @order:    how many 2^order pages should be occupied in newly allocated block
1453  * @gfp_mask: flags for the page level allocator
1454  *
1455  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1456  */
1457 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1458 {
1459         struct vmap_block_queue *vbq;
1460         struct vmap_block *vb;
1461         struct vmap_area *va;
1462         unsigned long vb_idx;
1463         int node, err;
1464         void *vaddr;
1465
1466         node = numa_node_id();
1467
1468         vb = kmalloc_node(sizeof(struct vmap_block),
1469                         gfp_mask & GFP_RECLAIM_MASK, node);
1470         if (unlikely(!vb))
1471                 return ERR_PTR(-ENOMEM);
1472
1473         va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1474                                         VMALLOC_START, VMALLOC_END,
1475                                         node, gfp_mask);
1476         if (IS_ERR(va)) {
1477                 kfree(vb);
1478                 return ERR_CAST(va);
1479         }
1480
1481         err = radix_tree_preload(gfp_mask);
1482         if (unlikely(err)) {
1483                 kfree(vb);
1484                 free_vmap_area(va);
1485                 return ERR_PTR(err);
1486         }
1487
1488         vaddr = vmap_block_vaddr(va->va_start, 0);
1489         spin_lock_init(&vb->lock);
1490         vb->va = va;
1491         /* At least something should be left free */
1492         BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1493         vb->free = VMAP_BBMAP_BITS - (1UL << order);
1494         vb->dirty = 0;
1495         vb->dirty_min = VMAP_BBMAP_BITS;
1496         vb->dirty_max = 0;
1497         INIT_LIST_HEAD(&vb->free_list);
1498
1499         vb_idx = addr_to_vb_idx(va->va_start);
1500         spin_lock(&vmap_block_tree_lock);
1501         err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1502         spin_unlock(&vmap_block_tree_lock);
1503         BUG_ON(err);
1504         radix_tree_preload_end();
1505
1506         vbq = &get_cpu_var(vmap_block_queue);
1507         spin_lock(&vbq->lock);
1508         list_add_tail_rcu(&vb->free_list, &vbq->free);
1509         spin_unlock(&vbq->lock);
1510         put_cpu_var(vmap_block_queue);
1511
1512         return vaddr;
1513 }
1514
1515 static void free_vmap_block(struct vmap_block *vb)
1516 {
1517         struct vmap_block *tmp;
1518         unsigned long vb_idx;
1519
1520         vb_idx = addr_to_vb_idx(vb->va->va_start);
1521         spin_lock(&vmap_block_tree_lock);
1522         tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1523         spin_unlock(&vmap_block_tree_lock);
1524         BUG_ON(tmp != vb);
1525
1526         free_vmap_area_noflush(vb->va);
1527         kfree_rcu(vb, rcu_head);
1528 }
1529
1530 static void purge_fragmented_blocks(int cpu)
1531 {
1532         LIST_HEAD(purge);
1533         struct vmap_block *vb;
1534         struct vmap_block *n_vb;
1535         struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1536
1537         rcu_read_lock();
1538         list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1539
1540                 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1541                         continue;
1542
1543                 spin_lock(&vb->lock);
1544                 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1545                         vb->free = 0; /* prevent further allocs after releasing lock */
1546                         vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1547                         vb->dirty_min = 0;
1548                         vb->dirty_max = VMAP_BBMAP_BITS;
1549                         spin_lock(&vbq->lock);
1550                         list_del_rcu(&vb->free_list);
1551                         spin_unlock(&vbq->lock);
1552                         spin_unlock(&vb->lock);
1553                         list_add_tail(&vb->purge, &purge);
1554                 } else
1555                         spin_unlock(&vb->lock);
1556         }
1557         rcu_read_unlock();
1558
1559         list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1560                 list_del(&vb->purge);
1561                 free_vmap_block(vb);
1562         }
1563 }
1564
1565 static void purge_fragmented_blocks_allcpus(void)
1566 {
1567         int cpu;
1568
1569         for_each_possible_cpu(cpu)
1570                 purge_fragmented_blocks(cpu);
1571 }
1572
1573 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1574 {
1575         struct vmap_block_queue *vbq;
1576         struct vmap_block *vb;
1577         void *vaddr = NULL;
1578         unsigned int order;
1579
1580         BUG_ON(offset_in_page(size));
1581         BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1582         if (WARN_ON(size == 0)) {
1583                 /*
1584                  * Allocating 0 bytes isn't what caller wants since
1585                  * get_order(0) returns funny result. Just warn and terminate
1586                  * early.
1587                  */
1588                 return NULL;
1589         }
1590         order = get_order(size);
1591
1592         rcu_read_lock();
1593         vbq = &get_cpu_var(vmap_block_queue);
1594         list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1595                 unsigned long pages_off;
1596
1597                 spin_lock(&vb->lock);
1598                 if (vb->free < (1UL << order)) {
1599                         spin_unlock(&vb->lock);
1600                         continue;
1601                 }
1602
1603                 pages_off = VMAP_BBMAP_BITS - vb->free;
1604                 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1605                 vb->free -= 1UL << order;
1606                 if (vb->free == 0) {
1607                         spin_lock(&vbq->lock);
1608                         list_del_rcu(&vb->free_list);
1609                         spin_unlock(&vbq->lock);
1610                 }
1611
1612                 spin_unlock(&vb->lock);
1613                 break;
1614         }
1615
1616         put_cpu_var(vmap_block_queue);
1617         rcu_read_unlock();
1618
1619         /* Allocate new block if nothing was found */
1620         if (!vaddr)
1621                 vaddr = new_vmap_block(order, gfp_mask);
1622
1623         return vaddr;
1624 }
1625
1626 static void vb_free(const void *addr, unsigned long size)
1627 {
1628         unsigned long offset;
1629         unsigned long vb_idx;
1630         unsigned int order;
1631         struct vmap_block *vb;
1632
1633         BUG_ON(offset_in_page(size));
1634         BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1635
1636         flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1637
1638         order = get_order(size);
1639
1640         offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1641         offset >>= PAGE_SHIFT;
1642
1643         vb_idx = addr_to_vb_idx((unsigned long)addr);
1644         rcu_read_lock();
1645         vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1646         rcu_read_unlock();
1647         BUG_ON(!vb);
1648
1649         vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1650
1651         if (debug_pagealloc_enabled())
1652                 flush_tlb_kernel_range((unsigned long)addr,
1653                                         (unsigned long)addr + size);
1654
1655         spin_lock(&vb->lock);
1656
1657         /* Expand dirty range */
1658         vb->dirty_min = min(vb->dirty_min, offset);
1659         vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1660
1661         vb->dirty += 1UL << order;
1662         if (vb->dirty == VMAP_BBMAP_BITS) {
1663                 BUG_ON(vb->free);
1664                 spin_unlock(&vb->lock);
1665                 free_vmap_block(vb);
1666         } else
1667                 spin_unlock(&vb->lock);
1668 }
1669
1670 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1671 {
1672         int cpu;
1673
1674         if (unlikely(!vmap_initialized))
1675                 return;
1676
1677         might_sleep();
1678
1679         for_each_possible_cpu(cpu) {
1680                 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1681                 struct vmap_block *vb;
1682
1683                 rcu_read_lock();
1684                 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1685                         spin_lock(&vb->lock);
1686                         if (vb->dirty) {
1687                                 unsigned long va_start = vb->va->va_start;
1688                                 unsigned long s, e;
1689
1690                                 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1691                                 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1692
1693                                 start = min(s, start);
1694                                 end   = max(e, end);
1695
1696                                 flush = 1;
1697                         }
1698                         spin_unlock(&vb->lock);
1699                 }
1700                 rcu_read_unlock();
1701         }
1702
1703         mutex_lock(&vmap_purge_lock);
1704         purge_fragmented_blocks_allcpus();
1705         if (!__purge_vmap_area_lazy(start, end) && flush)
1706                 flush_tlb_kernel_range(start, end);
1707         mutex_unlock(&vmap_purge_lock);
1708 }
1709
1710 /**
1711  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1712  *
1713  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1714  * to amortize TLB flushing overheads. What this means is that any page you
1715  * have now, may, in a former life, have been mapped into kernel virtual
1716  * address by the vmap layer and so there might be some CPUs with TLB entries
1717  * still referencing that page (additional to the regular 1:1 kernel mapping).
1718  *
1719  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1720  * be sure that none of the pages we have control over will have any aliases
1721  * from the vmap layer.
1722  */
1723 void vm_unmap_aliases(void)
1724 {
1725         unsigned long start = ULONG_MAX, end = 0;
1726         int flush = 0;
1727
1728         _vm_unmap_aliases(start, end, flush);
1729 }
1730 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1731
1732 /**
1733  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1734  * @mem: the pointer returned by vm_map_ram
1735  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1736  */
1737 void vm_unmap_ram(const void *mem, unsigned int count)
1738 {
1739         unsigned long size = (unsigned long)count << PAGE_SHIFT;
1740         unsigned long addr = (unsigned long)mem;
1741         struct vmap_area *va;
1742
1743         might_sleep();
1744         BUG_ON(!addr);
1745         BUG_ON(addr < VMALLOC_START);
1746         BUG_ON(addr > VMALLOC_END);
1747         BUG_ON(!PAGE_ALIGNED(addr));
1748
1749         if (likely(count <= VMAP_MAX_ALLOC)) {
1750                 debug_check_no_locks_freed(mem, size);
1751                 vb_free(mem, size);
1752                 return;
1753         }
1754
1755         va = find_vmap_area(addr);
1756         BUG_ON(!va);
1757         debug_check_no_locks_freed((void *)va->va_start,
1758                                     (va->va_end - va->va_start));
1759         free_unmap_vmap_area(va);
1760 }
1761 EXPORT_SYMBOL(vm_unmap_ram);
1762
1763 /**
1764  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1765  * @pages: an array of pointers to the pages to be mapped
1766  * @count: number of pages
1767  * @node: prefer to allocate data structures on this node
1768  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1769  *
1770  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1771  * faster than vmap so it's good.  But if you mix long-life and short-life
1772  * objects with vm_map_ram(), it could consume lots of address space through
1773  * fragmentation (especially on a 32bit machine).  You could see failures in
1774  * the end.  Please use this function for short-lived objects.
1775  *
1776  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1777  */
1778 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1779 {
1780         unsigned long size = (unsigned long)count << PAGE_SHIFT;
1781         unsigned long addr;
1782         void *mem;
1783
1784         if (likely(count <= VMAP_MAX_ALLOC)) {
1785                 mem = vb_alloc(size, GFP_KERNEL);
1786                 if (IS_ERR(mem))
1787                         return NULL;
1788                 addr = (unsigned long)mem;
1789         } else {
1790                 struct vmap_area *va;
1791                 va = alloc_vmap_area(size, PAGE_SIZE,
1792                                 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1793                 if (IS_ERR(va))
1794                         return NULL;
1795
1796                 addr = va->va_start;
1797                 mem = (void *)addr;
1798         }
1799         if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1800                 vm_unmap_ram(mem, count);
1801                 return NULL;
1802         }
1803         return mem;
1804 }
1805 EXPORT_SYMBOL(vm_map_ram);
1806
1807 static struct vm_struct *vmlist __initdata;
1808
1809 /**
1810  * vm_area_add_early - add vmap area early during boot
1811  * @vm: vm_struct to add
1812  *
1813  * This function is used to add fixed kernel vm area to vmlist before
1814  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1815  * should contain proper values and the other fields should be zero.
1816  *
1817  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1818  */
1819 void __init vm_area_add_early(struct vm_struct *vm)
1820 {
1821         struct vm_struct *tmp, **p;
1822
1823         BUG_ON(vmap_initialized);
1824         for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1825                 if (tmp->addr >= vm->addr) {
1826                         BUG_ON(tmp->addr < vm->addr + vm->size);
1827                         break;
1828                 } else
1829                         BUG_ON(tmp->addr + tmp->size > vm->addr);
1830         }
1831         vm->next = *p;
1832         *p = vm;
1833 }
1834
1835 /**
1836  * vm_area_register_early - register vmap area early during boot
1837  * @vm: vm_struct to register
1838  * @align: requested alignment
1839  *
1840  * This function is used to register kernel vm area before
1841  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1842  * proper values on entry and other fields should be zero.  On return,
1843  * vm->addr contains the allocated address.
1844  *
1845  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1846  */
1847 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1848 {
1849         static size_t vm_init_off __initdata;
1850         unsigned long addr;
1851
1852         addr = ALIGN(VMALLOC_START + vm_init_off, align);
1853         vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1854
1855         vm->addr = (void *)addr;
1856
1857         vm_area_add_early(vm);
1858 }
1859
1860 static void vmap_init_free_space(void)
1861 {
1862         unsigned long vmap_start = 1;
1863         const unsigned long vmap_end = ULONG_MAX;
1864         struct vmap_area *busy, *free;
1865
1866         /*
1867          *     B     F     B     B     B     F
1868          * -|-----|.....|-----|-----|-----|.....|-
1869          *  |           The KVA space           |
1870          *  |<--------------------------------->|
1871          */
1872         list_for_each_entry(busy, &vmap_area_list, list) {
1873                 if (busy->va_start - vmap_start > 0) {
1874                         free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1875                         if (!WARN_ON_ONCE(!free)) {
1876                                 free->va_start = vmap_start;
1877                                 free->va_end = busy->va_start;
1878
1879                                 insert_vmap_area_augment(free, NULL,
1880                                         &free_vmap_area_root,
1881                                                 &free_vmap_area_list);
1882                         }
1883                 }
1884
1885                 vmap_start = busy->va_end;
1886         }
1887
1888         if (vmap_end - vmap_start > 0) {
1889                 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1890                 if (!WARN_ON_ONCE(!free)) {
1891                         free->va_start = vmap_start;
1892                         free->va_end = vmap_end;
1893
1894                         insert_vmap_area_augment(free, NULL,
1895                                 &free_vmap_area_root,
1896                                         &free_vmap_area_list);
1897                 }
1898         }
1899 }
1900
1901 void __init vmalloc_init(void)
1902 {
1903         struct vmap_area *va;
1904         struct vm_struct *tmp;
1905         int i;
1906
1907         /*
1908          * Create the cache for vmap_area objects.
1909          */
1910         vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1911
1912         for_each_possible_cpu(i) {
1913                 struct vmap_block_queue *vbq;
1914                 struct vfree_deferred *p;
1915
1916                 vbq = &per_cpu(vmap_block_queue, i);
1917                 spin_lock_init(&vbq->lock);
1918                 INIT_LIST_HEAD(&vbq->free);
1919                 p = &per_cpu(vfree_deferred, i);
1920                 init_llist_head(&p->list);
1921                 INIT_WORK(&p->wq, free_work);
1922         }
1923
1924         /* Import existing vmlist entries. */
1925         for (tmp = vmlist; tmp; tmp = tmp->next) {
1926                 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1927                 if (WARN_ON_ONCE(!va))
1928                         continue;
1929
1930                 va->va_start = (unsigned long)tmp->addr;
1931                 va->va_end = va->va_start + tmp->size;
1932                 va->vm = tmp;
1933                 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1934         }
1935
1936         /*
1937          * Now we can initialize a free vmap space.
1938          */
1939         vmap_init_free_space();
1940         vmap_initialized = true;
1941 }
1942
1943 /**
1944  * map_kernel_range_noflush - map kernel VM area with the specified pages
1945  * @addr: start of the VM area to map
1946  * @size: size of the VM area to map
1947  * @prot: page protection flags to use
1948  * @pages: pages to map
1949  *
1950  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1951  * specify should have been allocated using get_vm_area() and its
1952  * friends.
1953  *
1954  * NOTE:
1955  * This function does NOT do any cache flushing.  The caller is
1956  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1957  * before calling this function.
1958  *
1959  * RETURNS:
1960  * The number of pages mapped on success, -errno on failure.
1961  */
1962 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1963                              pgprot_t prot, struct page **pages)
1964 {
1965         return vmap_page_range_noflush(addr, addr + size, prot, pages);
1966 }
1967
1968 /**
1969  * unmap_kernel_range_noflush - unmap kernel VM area
1970  * @addr: start of the VM area to unmap
1971  * @size: size of the VM area to unmap
1972  *
1973  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1974  * specify should have been allocated using get_vm_area() and its
1975  * friends.
1976  *
1977  * NOTE:
1978  * This function does NOT do any cache flushing.  The caller is
1979  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1980  * before calling this function and flush_tlb_kernel_range() after.
1981  */
1982 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1983 {
1984         vunmap_page_range(addr, addr + size);
1985 }
1986 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1987
1988 /**
1989  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1990  * @addr: start of the VM area to unmap
1991  * @size: size of the VM area to unmap
1992  *
1993  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1994  * the unmapping and tlb after.
1995  */
1996 void unmap_kernel_range(unsigned long addr, unsigned long size)
1997 {
1998         unsigned long end = addr + size;
1999
2000         flush_cache_vunmap(addr, end);
2001         vunmap_page_range(addr, end);
2002         flush_tlb_kernel_range(addr, end);
2003 }
2004 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2005
2006 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2007 {
2008         unsigned long addr = (unsigned long)area->addr;
2009         unsigned long end = addr + get_vm_area_size(area);
2010         int err;
2011
2012         err = vmap_page_range(addr, end, prot, pages);
2013
2014         return err > 0 ? 0 : err;
2015 }
2016 EXPORT_SYMBOL_GPL(map_vm_area);
2017
2018 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2019                               unsigned long flags, const void *caller)
2020 {
2021         spin_lock(&vmap_area_lock);
2022         vm->flags = flags;
2023         vm->addr = (void *)va->va_start;
2024         vm->size = va->va_end - va->va_start;
2025         vm->caller = caller;
2026         va->vm = vm;
2027         spin_unlock(&vmap_area_lock);
2028 }
2029
2030 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2031 {
2032         /*
2033          * Before removing VM_UNINITIALIZED,
2034          * we should make sure that vm has proper values.
2035          * Pair with smp_rmb() in show_numa_info().
2036          */
2037         smp_wmb();
2038         vm->flags &= ~VM_UNINITIALIZED;
2039 }
2040
2041 static struct vm_struct *__get_vm_area_node(unsigned long size,
2042                 unsigned long align, unsigned long flags, unsigned long start,
2043                 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2044 {
2045         struct vmap_area *va;
2046         struct vm_struct *area;
2047
2048         BUG_ON(in_interrupt());
2049         size = PAGE_ALIGN(size);
2050         if (unlikely(!size))
2051                 return NULL;
2052
2053         if (flags & VM_IOREMAP)
2054                 align = 1ul << clamp_t(int, get_count_order_long(size),
2055                                        PAGE_SHIFT, IOREMAP_MAX_ORDER);
2056
2057         area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2058         if (unlikely(!area))
2059                 return NULL;
2060
2061         if (!(flags & VM_NO_GUARD))
2062                 size += PAGE_SIZE;
2063
2064         va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2065         if (IS_ERR(va)) {
2066                 kfree(area);
2067                 return NULL;
2068         }
2069
2070         setup_vmalloc_vm(area, va, flags, caller);
2071
2072         return area;
2073 }
2074
2075 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2076                                 unsigned long start, unsigned long end)
2077 {
2078         return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2079                                   GFP_KERNEL, __builtin_return_address(0));
2080 }
2081 EXPORT_SYMBOL_GPL(__get_vm_area);
2082
2083 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2084                                        unsigned long start, unsigned long end,
2085                                        const void *caller)
2086 {
2087         return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2088                                   GFP_KERNEL, caller);
2089 }
2090
2091 /**
2092  * get_vm_area - reserve a contiguous kernel virtual area
2093  * @size:        size of the area
2094  * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
2095  *
2096  * Search an area of @size in the kernel virtual mapping area,
2097  * and reserved it for out purposes.  Returns the area descriptor
2098  * on success or %NULL on failure.
2099  *
2100  * Return: the area descriptor on success or %NULL on failure.
2101  */
2102 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2103 {
2104         return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2105                                   NUMA_NO_NODE, GFP_KERNEL,
2106                                   __builtin_return_address(0));
2107 }
2108
2109 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2110                                 const void *caller)
2111 {
2112         return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2113                                   NUMA_NO_NODE, GFP_KERNEL, caller);
2114 }
2115
2116 /**
2117  * find_vm_area - find a continuous kernel virtual area
2118  * @addr:         base address
2119  *
2120  * Search for the kernel VM area starting at @addr, and return it.
2121  * It is up to the caller to do all required locking to keep the returned
2122  * pointer valid.
2123  *
2124  * Return: pointer to the found area or %NULL on faulure
2125  */
2126 struct vm_struct *find_vm_area(const void *addr)
2127 {
2128         struct vmap_area *va;
2129
2130         va = find_vmap_area((unsigned long)addr);
2131         if (!va)
2132                 return NULL;
2133
2134         return va->vm;
2135 }
2136
2137 /**
2138  * remove_vm_area - find and remove a continuous kernel virtual area
2139  * @addr:           base address
2140  *
2141  * Search for the kernel VM area starting at @addr, and remove it.
2142  * This function returns the found VM area, but using it is NOT safe
2143  * on SMP machines, except for its size or flags.
2144  *
2145  * Return: pointer to the found area or %NULL on faulure
2146  */
2147 struct vm_struct *remove_vm_area(const void *addr)
2148 {
2149         struct vmap_area *va;
2150
2151         might_sleep();
2152
2153         spin_lock(&vmap_area_lock);
2154         va = __find_vmap_area((unsigned long)addr);
2155         if (va && va->vm) {
2156                 struct vm_struct *vm = va->vm;
2157
2158                 va->vm = NULL;
2159                 spin_unlock(&vmap_area_lock);
2160
2161                 kasan_free_shadow(vm);
2162                 free_unmap_vmap_area(va);
2163
2164                 return vm;
2165         }
2166
2167         spin_unlock(&vmap_area_lock);
2168         return NULL;
2169 }
2170
2171 static inline void set_area_direct_map(const struct vm_struct *area,
2172                                        int (*set_direct_map)(struct page *page))
2173 {
2174         int i;
2175
2176         for (i = 0; i < area->nr_pages; i++)
2177                 if (page_address(area->pages[i]))
2178                         set_direct_map(area->pages[i]);
2179 }
2180
2181 /* Handle removing and resetting vm mappings related to the vm_struct. */
2182 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2183 {
2184         unsigned long start = ULONG_MAX, end = 0;
2185         int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2186         int flush_dmap = 0;
2187         int i;
2188
2189         remove_vm_area(area->addr);
2190
2191         /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2192         if (!flush_reset)
2193                 return;
2194
2195         /*
2196          * If not deallocating pages, just do the flush of the VM area and
2197          * return.
2198          */
2199         if (!deallocate_pages) {
2200                 vm_unmap_aliases();
2201                 return;
2202         }
2203
2204         /*
2205          * If execution gets here, flush the vm mapping and reset the direct
2206          * map. Find the start and end range of the direct mappings to make sure
2207          * the vm_unmap_aliases() flush includes the direct map.
2208          */
2209         for (i = 0; i < area->nr_pages; i++) {
2210                 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2211                 if (addr) {
2212                         start = min(addr, start);
2213                         end = max(addr + PAGE_SIZE, end);
2214                         flush_dmap = 1;
2215                 }
2216         }
2217
2218         /*
2219          * Set direct map to something invalid so that it won't be cached if
2220          * there are any accesses after the TLB flush, then flush the TLB and
2221          * reset the direct map permissions to the default.
2222          */
2223         set_area_direct_map(area, set_direct_map_invalid_noflush);
2224         _vm_unmap_aliases(start, end, flush_dmap);
2225         set_area_direct_map(area, set_direct_map_default_noflush);
2226 }
2227
2228 static void __vunmap(const void *addr, int deallocate_pages)
2229 {
2230         struct vm_struct *area;
2231
2232         if (!addr)
2233                 return;
2234
2235         if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2236                         addr))
2237                 return;
2238
2239         area = find_vm_area(addr);
2240         if (unlikely(!area)) {
2241                 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2242                                 addr);
2243                 return;
2244         }
2245
2246         debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2247         debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2248
2249         vm_remove_mappings(area, deallocate_pages);
2250
2251         if (deallocate_pages) {
2252                 int i;
2253
2254                 for (i = 0; i < area->nr_pages; i++) {
2255                         struct page *page = area->pages[i];
2256
2257                         BUG_ON(!page);
2258                         __free_pages(page, 0);
2259                 }
2260                 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2261
2262                 kvfree(area->pages);
2263         }
2264
2265         kfree(area);
2266         return;
2267 }
2268
2269 static inline void __vfree_deferred(const void *addr)
2270 {
2271         /*
2272          * Use raw_cpu_ptr() because this can be called from preemptible
2273          * context. Preemption is absolutely fine here, because the llist_add()
2274          * implementation is lockless, so it works even if we are adding to
2275          * nother cpu's list.  schedule_work() should be fine with this too.
2276          */
2277         struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2278
2279         if (llist_add((struct llist_node *)addr, &p->list))
2280                 schedule_work(&p->wq);
2281 }
2282
2283 /**
2284  * vfree_atomic - release memory allocated by vmalloc()
2285  * @addr:         memory base address
2286  *
2287  * This one is just like vfree() but can be called in any atomic context
2288  * except NMIs.
2289  */
2290 void vfree_atomic(const void *addr)
2291 {
2292         BUG_ON(in_nmi());
2293
2294         kmemleak_free(addr);
2295
2296         if (!addr)
2297                 return;
2298         __vfree_deferred(addr);
2299 }
2300
2301 static void __vfree(const void *addr)
2302 {
2303         if (unlikely(in_interrupt()))
2304                 __vfree_deferred(addr);
2305         else
2306                 __vunmap(addr, 1);
2307 }
2308
2309 /**
2310  * vfree - release memory allocated by vmalloc()
2311  * @addr:  memory base address
2312  *
2313  * Free the virtually continuous memory area starting at @addr, as
2314  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2315  * NULL, no operation is performed.
2316  *
2317  * Must not be called in NMI context (strictly speaking, only if we don't
2318  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2319  * conventions for vfree() arch-depenedent would be a really bad idea)
2320  *
2321  * May sleep if called *not* from interrupt context.
2322  *
2323  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2324  */
2325 void vfree(const void *addr)
2326 {
2327         BUG_ON(in_nmi());
2328
2329         kmemleak_free(addr);
2330
2331         might_sleep_if(!in_interrupt());
2332
2333         if (!addr)
2334                 return;
2335
2336         __vfree(addr);
2337 }
2338 EXPORT_SYMBOL(vfree);
2339
2340 /**
2341  * vunmap - release virtual mapping obtained by vmap()
2342  * @addr:   memory base address
2343  *
2344  * Free the virtually contiguous memory area starting at @addr,
2345  * which was created from the page array passed to vmap().
2346  *
2347  * Must not be called in interrupt context.
2348  */
2349 void vunmap(const void *addr)
2350 {
2351         BUG_ON(in_interrupt());
2352         might_sleep();
2353         if (addr)
2354                 __vunmap(addr, 0);
2355 }
2356 EXPORT_SYMBOL(vunmap);
2357
2358 /**
2359  * vmap - map an array of pages into virtually contiguous space
2360  * @pages: array of page pointers
2361  * @count: number of pages to map
2362  * @flags: vm_area->flags
2363  * @prot: page protection for the mapping
2364  *
2365  * Maps @count pages from @pages into contiguous kernel virtual
2366  * space.
2367  *
2368  * Return: the address of the area or %NULL on failure
2369  */
2370 void *vmap(struct page **pages, unsigned int count,
2371            unsigned long flags, pgprot_t prot)
2372 {
2373         struct vm_struct *area;
2374         unsigned long size;             /* In bytes */
2375
2376         might_sleep();
2377
2378         if (count > totalram_pages())
2379                 return NULL;
2380
2381         size = (unsigned long)count << PAGE_SHIFT;
2382         area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2383         if (!area)
2384                 return NULL;
2385
2386         if (map_vm_area(area, prot, pages)) {
2387                 vunmap(area->addr);
2388                 return NULL;
2389         }
2390
2391         return area->addr;
2392 }
2393 EXPORT_SYMBOL(vmap);
2394
2395 static void *__vmalloc_node(unsigned long size, unsigned long align,
2396                             gfp_t gfp_mask, pgprot_t prot,
2397                             int node, const void *caller);
2398 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2399                                  pgprot_t prot, int node)
2400 {
2401         struct page **pages;
2402         unsigned int nr_pages, array_size, i;
2403         const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2404         const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2405         const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2406                                         0 :
2407                                         __GFP_HIGHMEM;
2408
2409         nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2410         array_size = (nr_pages * sizeof(struct page *));
2411
2412         /* Please note that the recursion is strictly bounded. */
2413         if (array_size > PAGE_SIZE) {
2414                 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2415                                 PAGE_KERNEL, node, area->caller);
2416         } else {
2417                 pages = kmalloc_node(array_size, nested_gfp, node);
2418         }
2419
2420         if (!pages) {
2421                 remove_vm_area(area->addr);
2422                 kfree(area);
2423                 return NULL;
2424         }
2425
2426         area->pages = pages;
2427         area->nr_pages = nr_pages;
2428
2429         for (i = 0; i < area->nr_pages; i++) {
2430                 struct page *page;
2431
2432                 if (node == NUMA_NO_NODE)
2433                         page = alloc_page(alloc_mask|highmem_mask);
2434                 else
2435                         page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2436
2437                 if (unlikely(!page)) {
2438                         /* Successfully allocated i pages, free them in __vunmap() */
2439                         area->nr_pages = i;
2440                         atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2441                         goto fail;
2442                 }
2443                 area->pages[i] = page;
2444                 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2445                         cond_resched();
2446         }
2447         atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2448
2449         if (map_vm_area(area, prot, pages))
2450                 goto fail;
2451         return area->addr;
2452
2453 fail:
2454         warn_alloc(gfp_mask, NULL,
2455                           "vmalloc: allocation failure, allocated %ld of %ld bytes",
2456                           (area->nr_pages*PAGE_SIZE), area->size);
2457         __vfree(area->addr);
2458         return NULL;
2459 }
2460
2461 /**
2462  * __vmalloc_node_range - allocate virtually contiguous memory
2463  * @size:                 allocation size
2464  * @align:                desired alignment
2465  * @start:                vm area range start
2466  * @end:                  vm area range end
2467  * @gfp_mask:             flags for the page level allocator
2468  * @prot:                 protection mask for the allocated pages
2469  * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
2470  * @node:                 node to use for allocation or NUMA_NO_NODE
2471  * @caller:               caller's return address
2472  *
2473  * Allocate enough pages to cover @size from the page level
2474  * allocator with @gfp_mask flags.  Map them into contiguous
2475  * kernel virtual space, using a pagetable protection of @prot.
2476  *
2477  * Return: the address of the area or %NULL on failure
2478  */
2479 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2480                         unsigned long start, unsigned long end, gfp_t gfp_mask,
2481                         pgprot_t prot, unsigned long vm_flags, int node,
2482                         const void *caller)
2483 {
2484         struct vm_struct *area;
2485         void *addr;
2486         unsigned long real_size = size;
2487
2488         size = PAGE_ALIGN(size);
2489         if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2490                 goto fail;
2491
2492         area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2493                                 vm_flags, start, end, node, gfp_mask, caller);
2494         if (!area)
2495                 goto fail;
2496
2497         addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2498         if (!addr)
2499                 return NULL;
2500
2501         /*
2502          * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2503          * flag. It means that vm_struct is not fully initialized.
2504          * Now, it is fully initialized, so remove this flag here.
2505          */
2506         clear_vm_uninitialized_flag(area);
2507
2508         kmemleak_vmalloc(area, size, gfp_mask);
2509
2510         return addr;
2511
2512 fail:
2513         warn_alloc(gfp_mask, NULL,
2514                           "vmalloc: allocation failure: %lu bytes", real_size);
2515         return NULL;
2516 }
2517
2518 /*
2519  * This is only for performance analysis of vmalloc and stress purpose.
2520  * It is required by vmalloc test module, therefore do not use it other
2521  * than that.
2522  */
2523 #ifdef CONFIG_TEST_VMALLOC_MODULE
2524 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2525 #endif
2526
2527 /**
2528  * __vmalloc_node - allocate virtually contiguous memory
2529  * @size:           allocation size
2530  * @align:          desired alignment
2531  * @gfp_mask:       flags for the page level allocator
2532  * @prot:           protection mask for the allocated pages
2533  * @node:           node to use for allocation or NUMA_NO_NODE
2534  * @caller:         caller's return address
2535  *
2536  * Allocate enough pages to cover @size from the page level
2537  * allocator with @gfp_mask flags.  Map them into contiguous
2538  * kernel virtual space, using a pagetable protection of @prot.
2539  *
2540  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2541  * and __GFP_NOFAIL are not supported
2542  *
2543  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2544  * with mm people.
2545  *
2546  * Return: pointer to the allocated memory or %NULL on error
2547  */
2548 static void *__vmalloc_node(unsigned long size, unsigned long align,
2549                             gfp_t gfp_mask, pgprot_t prot,
2550                             int node, const void *caller)
2551 {
2552         return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2553                                 gfp_mask, prot, 0, node, caller);
2554 }
2555
2556 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2557 {
2558         return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2559                                 __builtin_return_address(0));
2560 }
2561 EXPORT_SYMBOL(__vmalloc);
2562
2563 static inline void *__vmalloc_node_flags(unsigned long size,
2564                                         int node, gfp_t flags)
2565 {
2566         return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2567                                         node, __builtin_return_address(0));
2568 }
2569
2570
2571 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2572                                   void *caller)
2573 {
2574         return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2575 }
2576
2577 /**
2578  * vmalloc - allocate virtually contiguous memory
2579  * @size:    allocation size
2580  *
2581  * Allocate enough pages to cover @size from the page level
2582  * allocator and map them into contiguous kernel virtual space.
2583  *
2584  * For tight control over page level allocator and protection flags
2585  * use __vmalloc() instead.
2586  *
2587  * Return: pointer to the allocated memory or %NULL on error
2588  */
2589 void *vmalloc(unsigned long size)
2590 {
2591         return __vmalloc_node_flags(size, NUMA_NO_NODE,
2592                                     GFP_KERNEL);
2593 }
2594 EXPORT_SYMBOL(vmalloc);
2595
2596 /**
2597  * vzalloc - allocate virtually contiguous memory with zero fill
2598  * @size:    allocation size
2599  *
2600  * Allocate enough pages to cover @size from the page level
2601  * allocator and map them into contiguous kernel virtual space.
2602  * The memory allocated is set to zero.
2603  *
2604  * For tight control over page level allocator and protection flags
2605  * use __vmalloc() instead.
2606  *
2607  * Return: pointer to the allocated memory or %NULL on error
2608  */
2609 void *vzalloc(unsigned long size)
2610 {
2611         return __vmalloc_node_flags(size, NUMA_NO_NODE,
2612                                 GFP_KERNEL | __GFP_ZERO);
2613 }
2614 EXPORT_SYMBOL(vzalloc);
2615
2616 /**
2617  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2618  * @size: allocation size
2619  *
2620  * The resulting memory area is zeroed so it can be mapped to userspace
2621  * without leaking data.
2622  *
2623  * Return: pointer to the allocated memory or %NULL on error
2624  */
2625 void *vmalloc_user(unsigned long size)
2626 {
2627         return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2628                                     GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2629                                     VM_USERMAP, NUMA_NO_NODE,
2630                                     __builtin_return_address(0));
2631 }
2632 EXPORT_SYMBOL(vmalloc_user);
2633
2634 /**
2635  * vmalloc_node - allocate memory on a specific node
2636  * @size:         allocation size
2637  * @node:         numa node
2638  *
2639  * Allocate enough pages to cover @size from the page level
2640  * allocator and map them into contiguous kernel virtual space.
2641  *
2642  * For tight control over page level allocator and protection flags
2643  * use __vmalloc() instead.
2644  *
2645  * Return: pointer to the allocated memory or %NULL on error
2646  */
2647 void *vmalloc_node(unsigned long size, int node)
2648 {
2649         return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2650                                         node, __builtin_return_address(0));
2651 }
2652 EXPORT_SYMBOL(vmalloc_node);
2653
2654 /**
2655  * vzalloc_node - allocate memory on a specific node with zero fill
2656  * @size:       allocation size
2657  * @node:       numa node
2658  *
2659  * Allocate enough pages to cover @size from the page level
2660  * allocator and map them into contiguous kernel virtual space.
2661  * The memory allocated is set to zero.
2662  *
2663  * For tight control over page level allocator and protection flags
2664  * use __vmalloc_node() instead.
2665  *
2666  * Return: pointer to the allocated memory or %NULL on error
2667  */
2668 void *vzalloc_node(unsigned long size, int node)
2669 {
2670         return __vmalloc_node_flags(size, node,
2671                          GFP_KERNEL | __GFP_ZERO);
2672 }
2673 EXPORT_SYMBOL(vzalloc_node);
2674
2675 /**
2676  * vmalloc_exec - allocate virtually contiguous, executable memory
2677  * @size:         allocation size
2678  *
2679  * Kernel-internal function to allocate enough pages to cover @size
2680  * the page level allocator and map them into contiguous and
2681  * executable kernel virtual space.
2682  *
2683  * For tight control over page level allocator and protection flags
2684  * use __vmalloc() instead.
2685  *
2686  * Return: pointer to the allocated memory or %NULL on error
2687  */
2688 void *vmalloc_exec(unsigned long size)
2689 {
2690         return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2691                         GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2692                         NUMA_NO_NODE, __builtin_return_address(0));
2693 }
2694
2695 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2696 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2697 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2698 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2699 #else
2700 /*
2701  * 64b systems should always have either DMA or DMA32 zones. For others
2702  * GFP_DMA32 should do the right thing and use the normal zone.
2703  */
2704 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2705 #endif
2706
2707 /**
2708  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2709  * @size:       allocation size
2710  *
2711  * Allocate enough 32bit PA addressable pages to cover @size from the
2712  * page level allocator and map them into contiguous kernel virtual space.
2713  *
2714  * Return: pointer to the allocated memory or %NULL on error
2715  */
2716 void *vmalloc_32(unsigned long size)
2717 {
2718         return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2719                               NUMA_NO_NODE, __builtin_return_address(0));
2720 }
2721 EXPORT_SYMBOL(vmalloc_32);
2722
2723 /**
2724  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2725  * @size:            allocation size
2726  *
2727  * The resulting memory area is 32bit addressable and zeroed so it can be
2728  * mapped to userspace without leaking data.
2729  *
2730  * Return: pointer to the allocated memory or %NULL on error
2731  */
2732 void *vmalloc_32_user(unsigned long size)
2733 {
2734         return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2735                                     GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2736                                     VM_USERMAP, NUMA_NO_NODE,
2737                                     __builtin_return_address(0));
2738 }
2739 EXPORT_SYMBOL(vmalloc_32_user);
2740
2741 /*
2742  * small helper routine , copy contents to buf from addr.
2743  * If the page is not present, fill zero.
2744  */
2745
2746 static int aligned_vread(char *buf, char *addr, unsigned long count)
2747 {
2748         struct page *p;
2749         int copied = 0;
2750
2751         while (count) {
2752                 unsigned long offset, length;
2753
2754                 offset = offset_in_page(addr);
2755                 length = PAGE_SIZE - offset;
2756                 if (length > count)
2757                         length = count;
2758                 p = vmalloc_to_page(addr);
2759                 /*
2760                  * To do safe access to this _mapped_ area, we need
2761                  * lock. But adding lock here means that we need to add
2762                  * overhead of vmalloc()/vfree() calles for this _debug_
2763                  * interface, rarely used. Instead of that, we'll use
2764                  * kmap() and get small overhead in this access function.
2765                  */
2766                 if (p) {
2767                         /*
2768                          * we can expect USER0 is not used (see vread/vwrite's
2769                          * function description)
2770                          */
2771                         void *map = kmap_atomic(p);
2772                         memcpy(buf, map + offset, length);
2773                         kunmap_atomic(map);
2774                 } else
2775                         memset(buf, 0, length);
2776
2777                 addr += length;
2778                 buf += length;
2779                 copied += length;
2780                 count -= length;
2781         }
2782         return copied;
2783 }
2784
2785 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2786 {
2787         struct page *p;
2788         int copied = 0;
2789
2790         while (count) {
2791                 unsigned long offset, length;
2792
2793                 offset = offset_in_page(addr);
2794                 length = PAGE_SIZE - offset;
2795                 if (length > count)
2796                         length = count;
2797                 p = vmalloc_to_page(addr);
2798                 /*
2799                  * To do safe access to this _mapped_ area, we need
2800                  * lock. But adding lock here means that we need to add
2801                  * overhead of vmalloc()/vfree() calles for this _debug_
2802                  * interface, rarely used. Instead of that, we'll use
2803                  * kmap() and get small overhead in this access function.
2804                  */
2805                 if (p) {
2806                         /*
2807                          * we can expect USER0 is not used (see vread/vwrite's
2808                          * function description)
2809                          */
2810                         void *map = kmap_atomic(p);
2811                         memcpy(map + offset, buf, length);
2812                         kunmap_atomic(map);
2813                 }
2814                 addr += length;
2815                 buf += length;
2816                 copied += length;
2817                 count -= length;
2818         }
2819         return copied;
2820 }
2821
2822 /**
2823  * vread() - read vmalloc area in a safe way.
2824  * @buf:     buffer for reading data
2825  * @addr:    vm address.
2826  * @count:   number of bytes to be read.
2827  *
2828  * This function checks that addr is a valid vmalloc'ed area, and
2829  * copy data from that area to a given buffer. If the given memory range
2830  * of [addr...addr+count) includes some valid address, data is copied to
2831  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2832  * IOREMAP area is treated as memory hole and no copy is done.
2833  *
2834  * If [addr...addr+count) doesn't includes any intersects with alive
2835  * vm_struct area, returns 0. @buf should be kernel's buffer.
2836  *
2837  * Note: In usual ops, vread() is never necessary because the caller
2838  * should know vmalloc() area is valid and can use memcpy().
2839  * This is for routines which have to access vmalloc area without
2840  * any information, as /dev/kmem.
2841  *
2842  * Return: number of bytes for which addr and buf should be increased
2843  * (same number as @count) or %0 if [addr...addr+count) doesn't
2844  * include any intersection with valid vmalloc area
2845  */
2846 long vread(char *buf, char *addr, unsigned long count)
2847 {
2848         struct vmap_area *va;
2849         struct vm_struct *vm;
2850         char *vaddr, *buf_start = buf;
2851         unsigned long buflen = count;
2852         unsigned long n;
2853
2854         /* Don't allow overflow */
2855         if ((unsigned long) addr + count < count)
2856                 count = -(unsigned long) addr;
2857
2858         spin_lock(&vmap_area_lock);
2859         list_for_each_entry(va, &vmap_area_list, list) {
2860                 if (!count)
2861                         break;
2862
2863                 if (!va->vm)
2864                         continue;
2865
2866                 vm = va->vm;
2867                 vaddr = (char *) vm->addr;
2868                 if (addr >= vaddr + get_vm_area_size(vm))
2869                         continue;
2870                 while (addr < vaddr) {
2871                         if (count == 0)
2872                                 goto finished;
2873                         *buf = '\0';
2874                         buf++;
2875                         addr++;
2876                         count--;
2877                 }
2878                 n = vaddr + get_vm_area_size(vm) - addr;
2879                 if (n > count)
2880                         n = count;
2881                 if (!(vm->flags & VM_IOREMAP))
2882                         aligned_vread(buf, addr, n);
2883                 else /* IOREMAP area is treated as memory hole */
2884                         memset(buf, 0, n);
2885                 buf += n;
2886                 addr += n;
2887                 count -= n;
2888         }
2889 finished:
2890         spin_unlock(&vmap_area_lock);
2891
2892         if (buf == buf_start)
2893                 return 0;
2894         /* zero-fill memory holes */
2895         if (buf != buf_start + buflen)
2896                 memset(buf, 0, buflen - (buf - buf_start));
2897
2898         return buflen;
2899 }
2900
2901 /**
2902  * vwrite() - write vmalloc area in a safe way.
2903  * @buf:      buffer for source data
2904  * @addr:     vm address.
2905  * @count:    number of bytes to be read.
2906  *
2907  * This function checks that addr is a valid vmalloc'ed area, and
2908  * copy data from a buffer to the given addr. If specified range of
2909  * [addr...addr+count) includes some valid address, data is copied from
2910  * proper area of @buf. If there are memory holes, no copy to hole.
2911  * IOREMAP area is treated as memory hole and no copy is done.
2912  *
2913  * If [addr...addr+count) doesn't includes any intersects with alive
2914  * vm_struct area, returns 0. @buf should be kernel's buffer.
2915  *
2916  * Note: In usual ops, vwrite() is never necessary because the caller
2917  * should know vmalloc() area is valid and can use memcpy().
2918  * This is for routines which have to access vmalloc area without
2919  * any information, as /dev/kmem.
2920  *
2921  * Return: number of bytes for which addr and buf should be
2922  * increased (same number as @count) or %0 if [addr...addr+count)
2923  * doesn't include any intersection with valid vmalloc area
2924  */
2925 long vwrite(char *buf, char *addr, unsigned long count)
2926 {
2927         struct vmap_area *va;
2928         struct vm_struct *vm;
2929         char *vaddr;
2930         unsigned long n, buflen;
2931         int copied = 0;
2932
2933         /* Don't allow overflow */
2934         if ((unsigned long) addr + count < count)
2935                 count = -(unsigned long) addr;
2936         buflen = count;
2937
2938         spin_lock(&vmap_area_lock);
2939         list_for_each_entry(va, &vmap_area_list, list) {
2940                 if (!count)
2941                         break;
2942
2943                 if (!va->vm)
2944                         continue;
2945
2946                 vm = va->vm;
2947                 vaddr = (char *) vm->addr;
2948                 if (addr >= vaddr + get_vm_area_size(vm))
2949                         continue;
2950                 while (addr < vaddr) {
2951                         if (count == 0)
2952                                 goto finished;
2953                         buf++;
2954                         addr++;
2955                         count--;
2956                 }
2957                 n = vaddr + get_vm_area_size(vm) - addr;
2958                 if (n > count)
2959                         n = count;
2960                 if (!(vm->flags & VM_IOREMAP)) {
2961                         aligned_vwrite(buf, addr, n);
2962                         copied++;
2963                 }
2964                 buf += n;
2965                 addr += n;
2966                 count -= n;
2967         }
2968 finished:
2969         spin_unlock(&vmap_area_lock);
2970         if (!copied)
2971                 return 0;
2972         return buflen;
2973 }
2974
2975 /**
2976  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2977  * @vma:                vma to cover
2978  * @uaddr:              target user address to start at
2979  * @kaddr:              virtual address of vmalloc kernel memory
2980  * @size:               size of map area
2981  *
2982  * Returns:     0 for success, -Exxx on failure
2983  *
2984  * This function checks that @kaddr is a valid vmalloc'ed area,
2985  * and that it is big enough to cover the range starting at
2986  * @uaddr in @vma. Will return failure if that criteria isn't
2987  * met.
2988  *
2989  * Similar to remap_pfn_range() (see mm/memory.c)
2990  */
2991 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2992                                 void *kaddr, unsigned long size)
2993 {
2994         struct vm_struct *area;
2995
2996         size = PAGE_ALIGN(size);
2997
2998         if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2999                 return -EINVAL;
3000
3001         area = find_vm_area(kaddr);
3002         if (!area)
3003                 return -EINVAL;
3004
3005         if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3006                 return -EINVAL;
3007
3008         if (kaddr + size > area->addr + get_vm_area_size(area))
3009                 return -EINVAL;
3010
3011         do {
3012                 struct page *page = vmalloc_to_page(kaddr);
3013                 int ret;
3014
3015                 ret = vm_insert_page(vma, uaddr, page);
3016                 if (ret)
3017                         return ret;
3018
3019                 uaddr += PAGE_SIZE;
3020                 kaddr += PAGE_SIZE;
3021                 size -= PAGE_SIZE;
3022         } while (size > 0);
3023
3024         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3025
3026         return 0;
3027 }
3028 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3029
3030 /**
3031  * remap_vmalloc_range - map vmalloc pages to userspace
3032  * @vma:                vma to cover (map full range of vma)
3033  * @addr:               vmalloc memory
3034  * @pgoff:              number of pages into addr before first page to map
3035  *
3036  * Returns:     0 for success, -Exxx on failure
3037  *
3038  * This function checks that addr is a valid vmalloc'ed area, and
3039  * that it is big enough to cover the vma. Will return failure if
3040  * that criteria isn't met.
3041  *
3042  * Similar to remap_pfn_range() (see mm/memory.c)
3043  */
3044 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3045                                                 unsigned long pgoff)
3046 {
3047         return remap_vmalloc_range_partial(vma, vma->vm_start,
3048                                            addr + (pgoff << PAGE_SHIFT),
3049                                            vma->vm_end - vma->vm_start);
3050 }
3051 EXPORT_SYMBOL(remap_vmalloc_range);
3052
3053 /*
3054  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3055  * have one.
3056  *
3057  * The purpose of this function is to make sure the vmalloc area
3058  * mappings are identical in all page-tables in the system.
3059  */
3060 void __weak vmalloc_sync_all(void)
3061 {
3062 }
3063
3064
3065 static int f(pte_t *pte, unsigned long addr, void *data)
3066 {
3067         pte_t ***p = data;
3068
3069         if (p) {
3070                 *(*p) = pte;
3071                 (*p)++;
3072         }
3073         return 0;
3074 }
3075
3076 /**
3077  * alloc_vm_area - allocate a range of kernel address space
3078  * @size:          size of the area
3079  * @ptes:          returns the PTEs for the address space
3080  *
3081  * Returns:     NULL on failure, vm_struct on success
3082  *
3083  * This function reserves a range of kernel address space, and
3084  * allocates pagetables to map that range.  No actual mappings
3085  * are created.
3086  *
3087  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3088  * allocated for the VM area are returned.
3089  */
3090 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3091 {
3092         struct vm_struct *area;
3093
3094         area = get_vm_area_caller(size, VM_IOREMAP,
3095                                 __builtin_return_address(0));
3096         if (area == NULL)
3097                 return NULL;
3098
3099         /*
3100          * This ensures that page tables are constructed for this region
3101          * of kernel virtual address space and mapped into init_mm.
3102          */
3103         if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3104                                 size, f, ptes ? &ptes : NULL)) {
3105                 free_vm_area(area);
3106                 return NULL;
3107         }
3108
3109         return area;
3110 }
3111 EXPORT_SYMBOL_GPL(alloc_vm_area);
3112
3113 void free_vm_area(struct vm_struct *area)
3114 {
3115         struct vm_struct *ret;
3116         ret = remove_vm_area(area->addr);
3117         BUG_ON(ret != area);
3118         kfree(area);
3119 }
3120 EXPORT_SYMBOL_GPL(free_vm_area);
3121
3122 #ifdef CONFIG_SMP
3123 static struct vmap_area *node_to_va(struct rb_node *n)
3124 {
3125         return rb_entry_safe(n, struct vmap_area, rb_node);
3126 }
3127
3128 /**
3129  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3130  * @addr: target address
3131  *
3132  * Returns: vmap_area if it is found. If there is no such area
3133  *   the first highest(reverse order) vmap_area is returned
3134  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3135  *   if there are no any areas before @addr.
3136  */
3137 static struct vmap_area *
3138 pvm_find_va_enclose_addr(unsigned long addr)
3139 {
3140         struct vmap_area *va, *tmp;
3141         struct rb_node *n;
3142
3143         n = free_vmap_area_root.rb_node;
3144         va = NULL;
3145
3146         while (n) {
3147                 tmp = rb_entry(n, struct vmap_area, rb_node);
3148                 if (tmp->va_start <= addr) {
3149                         va = tmp;
3150                         if (tmp->va_end >= addr)
3151                                 break;
3152
3153                         n = n->rb_right;
3154                 } else {
3155                         n = n->rb_left;
3156                 }
3157         }
3158
3159         return va;
3160 }
3161
3162 /**
3163  * pvm_determine_end_from_reverse - find the highest aligned address
3164  * of free block below VMALLOC_END
3165  * @va:
3166  *   in - the VA we start the search(reverse order);
3167  *   out - the VA with the highest aligned end address.
3168  *
3169  * Returns: determined end address within vmap_area
3170  */
3171 static unsigned long
3172 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3173 {
3174         unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3175         unsigned long addr;
3176
3177         if (likely(*va)) {
3178                 list_for_each_entry_from_reverse((*va),
3179                                 &free_vmap_area_list, list) {
3180                         addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3181                         if ((*va)->va_start < addr)
3182                                 return addr;
3183                 }
3184         }
3185
3186         return 0;
3187 }
3188
3189 /**
3190  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3191  * @offsets: array containing offset of each area
3192  * @sizes: array containing size of each area
3193  * @nr_vms: the number of areas to allocate
3194  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3195  *
3196  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3197  *          vm_structs on success, %NULL on failure
3198  *
3199  * Percpu allocator wants to use congruent vm areas so that it can
3200  * maintain the offsets among percpu areas.  This function allocates
3201  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3202  * be scattered pretty far, distance between two areas easily going up
3203  * to gigabytes.  To avoid interacting with regular vmallocs, these
3204  * areas are allocated from top.
3205  *
3206  * Despite its complicated look, this allocator is rather simple. It
3207  * does everything top-down and scans free blocks from the end looking
3208  * for matching base. While scanning, if any of the areas do not fit the
3209  * base address is pulled down to fit the area. Scanning is repeated till
3210  * all the areas fit and then all necessary data structures are inserted
3211  * and the result is returned.
3212  */
3213 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3214                                      const size_t *sizes, int nr_vms,
3215                                      size_t align)
3216 {
3217         const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3218         const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3219         struct vmap_area **vas, *va;
3220         struct vm_struct **vms;
3221         int area, area2, last_area, term_area;
3222         unsigned long base, start, size, end, last_end;
3223         bool purged = false;
3224         enum fit_type type;
3225
3226         /* verify parameters and allocate data structures */
3227         BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3228         for (last_area = 0, area = 0; area < nr_vms; area++) {
3229                 start = offsets[area];
3230                 end = start + sizes[area];
3231
3232                 /* is everything aligned properly? */
3233                 BUG_ON(!IS_ALIGNED(offsets[area], align));
3234                 BUG_ON(!IS_ALIGNED(sizes[area], align));
3235
3236                 /* detect the area with the highest address */
3237                 if (start > offsets[last_area])
3238                         last_area = area;
3239
3240                 for (area2 = area + 1; area2 < nr_vms; area2++) {
3241                         unsigned long start2 = offsets[area2];
3242                         unsigned long end2 = start2 + sizes[area2];
3243
3244                         BUG_ON(start2 < end && start < end2);
3245                 }
3246         }
3247         last_end = offsets[last_area] + sizes[last_area];
3248
3249         if (vmalloc_end - vmalloc_start < last_end) {
3250                 WARN_ON(true);
3251                 return NULL;
3252         }
3253
3254         vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3255         vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3256         if (!vas || !vms)
3257                 goto err_free2;
3258
3259         for (area = 0; area < nr_vms; area++) {
3260                 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3261                 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3262                 if (!vas[area] || !vms[area])
3263                         goto err_free;
3264         }
3265 retry:
3266         spin_lock(&vmap_area_lock);
3267
3268         /* start scanning - we scan from the top, begin with the last area */
3269         area = term_area = last_area;
3270         start = offsets[area];
3271         end = start + sizes[area];
3272
3273         va = pvm_find_va_enclose_addr(vmalloc_end);
3274         base = pvm_determine_end_from_reverse(&va, align) - end;
3275
3276         while (true) {
3277                 /*
3278                  * base might have underflowed, add last_end before
3279                  * comparing.
3280                  */
3281                 if (base + last_end < vmalloc_start + last_end)
3282                         goto overflow;
3283
3284                 /*
3285                  * Fitting base has not been found.
3286                  */
3287                 if (va == NULL)
3288                         goto overflow;
3289
3290                 /*
3291                  * If required width exeeds current VA block, move
3292                  * base downwards and then recheck.
3293                  */
3294                 if (base + end > va->va_end) {
3295                         base = pvm_determine_end_from_reverse(&va, align) - end;
3296                         term_area = area;
3297                         continue;
3298                 }
3299
3300                 /*
3301                  * If this VA does not fit, move base downwards and recheck.
3302                  */
3303                 if (base + start < va->va_start) {
3304                         va = node_to_va(rb_prev(&va->rb_node));
3305                         base = pvm_determine_end_from_reverse(&va, align) - end;
3306                         term_area = area;
3307                         continue;
3308                 }
3309
3310                 /*
3311                  * This area fits, move on to the previous one.  If
3312                  * the previous one is the terminal one, we're done.
3313                  */
3314                 area = (area + nr_vms - 1) % nr_vms;
3315                 if (area == term_area)
3316                         break;
3317
3318                 start = offsets[area];
3319                 end = start + sizes[area];
3320                 va = pvm_find_va_enclose_addr(base + end);
3321         }
3322
3323         /* we've found a fitting base, insert all va's */
3324         for (area = 0; area < nr_vms; area++) {
3325                 int ret;
3326
3327                 start = base + offsets[area];
3328                 size = sizes[area];
3329
3330                 va = pvm_find_va_enclose_addr(start);
3331                 if (WARN_ON_ONCE(va == NULL))
3332                         /* It is a BUG(), but trigger recovery instead. */
3333                         goto recovery;
3334
3335                 type = classify_va_fit_type(va, start, size);
3336                 if (WARN_ON_ONCE(type == NOTHING_FIT))
3337                         /* It is a BUG(), but trigger recovery instead. */
3338                         goto recovery;
3339
3340                 ret = adjust_va_to_fit_type(va, start, size, type);
3341                 if (unlikely(ret))
3342                         goto recovery;
3343
3344                 /* Allocated area. */
3345                 va = vas[area];
3346                 va->va_start = start;
3347                 va->va_end = start + size;
3348
3349                 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3350         }
3351
3352         spin_unlock(&vmap_area_lock);
3353
3354         /* insert all vm's */
3355         for (area = 0; area < nr_vms; area++)
3356                 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3357                                  pcpu_get_vm_areas);
3358
3359         kfree(vas);
3360         return vms;
3361
3362 recovery:
3363         /* Remove previously inserted areas. */
3364         while (area--) {
3365                 __free_vmap_area(vas[area]);
3366                 vas[area] = NULL;
3367         }
3368
3369 overflow:
3370         spin_unlock(&vmap_area_lock);
3371         if (!purged) {
3372                 purge_vmap_area_lazy();
3373                 purged = true;
3374
3375                 /* Before "retry", check if we recover. */
3376                 for (area = 0; area < nr_vms; area++) {
3377                         if (vas[area])
3378                                 continue;
3379
3380                         vas[area] = kmem_cache_zalloc(
3381                                 vmap_area_cachep, GFP_KERNEL);
3382                         if (!vas[area])
3383                                 goto err_free;
3384                 }
3385
3386                 goto retry;
3387         }
3388
3389 err_free:
3390         for (area = 0; area < nr_vms; area++) {
3391                 if (vas[area])
3392                         kmem_cache_free(vmap_area_cachep, vas[area]);
3393
3394                 kfree(vms[area]);
3395         }
3396 err_free2:
3397         kfree(vas);
3398         kfree(vms);
3399         return NULL;
3400 }
3401
3402 /**
3403  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3404  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3405  * @nr_vms: the number of allocated areas
3406  *
3407  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3408  */
3409 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3410 {
3411         int i;
3412
3413         for (i = 0; i < nr_vms; i++)
3414                 free_vm_area(vms[i]);
3415         kfree(vms);
3416 }
3417 #endif  /* CONFIG_SMP */
3418
3419 #ifdef CONFIG_PROC_FS
3420 static void *s_start(struct seq_file *m, loff_t *pos)
3421         __acquires(&vmap_area_lock)
3422 {
3423         spin_lock(&vmap_area_lock);
3424         return seq_list_start(&vmap_area_list, *pos);
3425 }
3426
3427 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3428 {
3429         return seq_list_next(p, &vmap_area_list, pos);
3430 }
3431
3432 static void s_stop(struct seq_file *m, void *p)
3433         __releases(&vmap_area_lock)
3434 {
3435         spin_unlock(&vmap_area_lock);
3436 }
3437
3438 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3439 {
3440         if (IS_ENABLED(CONFIG_NUMA)) {
3441                 unsigned int nr, *counters = m->private;
3442
3443                 if (!counters)
3444                         return;
3445
3446                 if (v->flags & VM_UNINITIALIZED)
3447                         return;
3448                 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3449                 smp_rmb();
3450
3451                 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3452
3453                 for (nr = 0; nr < v->nr_pages; nr++)
3454                         counters[page_to_nid(v->pages[nr])]++;
3455
3456                 for_each_node_state(nr, N_HIGH_MEMORY)
3457                         if (counters[nr])
3458                                 seq_printf(m, " N%u=%u", nr, counters[nr]);
3459         }
3460 }
3461
3462 static void show_purge_info(struct seq_file *m)
3463 {
3464         struct llist_node *head;
3465         struct vmap_area *va;
3466
3467         head = READ_ONCE(vmap_purge_list.first);
3468         if (head == NULL)
3469                 return;
3470
3471         llist_for_each_entry(va, head, purge_list) {
3472                 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3473                         (void *)va->va_start, (void *)va->va_end,
3474                         va->va_end - va->va_start);
3475         }
3476 }
3477
3478 static int s_show(struct seq_file *m, void *p)
3479 {
3480         struct vmap_area *va;
3481         struct vm_struct *v;
3482
3483         va = list_entry(p, struct vmap_area, list);
3484
3485         /*
3486          * s_show can encounter race with remove_vm_area, !vm on behalf
3487          * of vmap area is being tear down or vm_map_ram allocation.
3488          */
3489         if (!va->vm) {
3490                 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3491                         (void *)va->va_start, (void *)va->va_end,
3492                         va->va_end - va->va_start);
3493
3494                 return 0;
3495         }
3496
3497         v = va->vm;
3498
3499         seq_printf(m, "0x%pK-0x%pK %7ld",
3500                 v->addr, v->addr + v->size, v->size);
3501
3502         if (v->caller)
3503                 seq_printf(m, " %pS", v->caller);
3504
3505         if (v->nr_pages)
3506                 seq_printf(m, " pages=%d", v->nr_pages);
3507
3508         if (v->phys_addr)
3509                 seq_printf(m, " phys=%pa", &v->phys_addr);
3510
3511         if (v->flags & VM_IOREMAP)
3512                 seq_puts(m, " ioremap");
3513
3514         if (v->flags & VM_ALLOC)
3515                 seq_puts(m, " vmalloc");
3516
3517         if (v->flags & VM_MAP)
3518                 seq_puts(m, " vmap");
3519
3520         if (v->flags & VM_USERMAP)
3521                 seq_puts(m, " user");
3522
3523         if (v->flags & VM_DMA_COHERENT)
3524                 seq_puts(m, " dma-coherent");
3525
3526         if (is_vmalloc_addr(v->pages))
3527                 seq_puts(m, " vpages");
3528
3529         show_numa_info(m, v);
3530         seq_putc(m, '\n');
3531
3532         /*
3533          * As a final step, dump "unpurged" areas. Note,
3534          * that entire "/proc/vmallocinfo" output will not
3535          * be address sorted, because the purge list is not
3536          * sorted.
3537          */
3538         if (list_is_last(&va->list, &vmap_area_list))
3539                 show_purge_info(m);
3540
3541         return 0;
3542 }
3543
3544 static const struct seq_operations vmalloc_op = {
3545         .start = s_start,
3546         .next = s_next,
3547         .stop = s_stop,
3548         .show = s_show,
3549 };
3550
3551 static int __init proc_vmalloc_init(void)
3552 {
3553         if (IS_ENABLED(CONFIG_NUMA))
3554                 proc_create_seq_private("vmallocinfo", 0400, NULL,
3555                                 &vmalloc_op,
3556                                 nr_node_ids * sizeof(unsigned int), NULL);
3557         else
3558                 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3559         return 0;
3560 }
3561 module_init(proc_vmalloc_init);
3562
3563 #endif