mm/memory_hotplug: drop MHP_MEMBLOCK_API
[platform/kernel/linux-rpi.git] / mm / util.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19
20 #include <linux/uaccess.h>
21
22 #include "internal.h"
23
24 /**
25  * kfree_const - conditionally free memory
26  * @x: pointer to the memory
27  *
28  * Function calls kfree only if @x is not in .rodata section.
29  */
30 void kfree_const(const void *x)
31 {
32         if (!is_kernel_rodata((unsigned long)x))
33                 kfree(x);
34 }
35 EXPORT_SYMBOL(kfree_const);
36
37 /**
38  * kstrdup - allocate space for and copy an existing string
39  * @s: the string to duplicate
40  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
41  *
42  * Return: newly allocated copy of @s or %NULL in case of error
43  */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46         size_t len;
47         char *buf;
48
49         if (!s)
50                 return NULL;
51
52         len = strlen(s) + 1;
53         buf = kmalloc_track_caller(len, gfp);
54         if (buf)
55                 memcpy(buf, s, len);
56         return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59
60 /**
61  * kstrdup_const - conditionally duplicate an existing const string
62  * @s: the string to duplicate
63  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64  *
65  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
66  *
67  * Return: source string if it is in .rodata section otherwise
68  * fallback to kstrdup.
69  */
70 const char *kstrdup_const(const char *s, gfp_t gfp)
71 {
72         if (is_kernel_rodata((unsigned long)s))
73                 return s;
74
75         return kstrdup(s, gfp);
76 }
77 EXPORT_SYMBOL(kstrdup_const);
78
79 /**
80  * kstrndup - allocate space for and copy an existing string
81  * @s: the string to duplicate
82  * @max: read at most @max chars from @s
83  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
84  *
85  * Note: Use kmemdup_nul() instead if the size is known exactly.
86  *
87  * Return: newly allocated copy of @s or %NULL in case of error
88  */
89 char *kstrndup(const char *s, size_t max, gfp_t gfp)
90 {
91         size_t len;
92         char *buf;
93
94         if (!s)
95                 return NULL;
96
97         len = strnlen(s, max);
98         buf = kmalloc_track_caller(len+1, gfp);
99         if (buf) {
100                 memcpy(buf, s, len);
101                 buf[len] = '\0';
102         }
103         return buf;
104 }
105 EXPORT_SYMBOL(kstrndup);
106
107 /**
108  * kmemdup - duplicate region of memory
109  *
110  * @src: memory region to duplicate
111  * @len: memory region length
112  * @gfp: GFP mask to use
113  *
114  * Return: newly allocated copy of @src or %NULL in case of error
115  */
116 void *kmemdup(const void *src, size_t len, gfp_t gfp)
117 {
118         void *p;
119
120         p = kmalloc_track_caller(len, gfp);
121         if (p)
122                 memcpy(p, src, len);
123         return p;
124 }
125 EXPORT_SYMBOL(kmemdup);
126
127 /**
128  * kmemdup_nul - Create a NUL-terminated string from unterminated data
129  * @s: The data to stringify
130  * @len: The size of the data
131  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
132  *
133  * Return: newly allocated copy of @s with NUL-termination or %NULL in
134  * case of error
135  */
136 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
137 {
138         char *buf;
139
140         if (!s)
141                 return NULL;
142
143         buf = kmalloc_track_caller(len + 1, gfp);
144         if (buf) {
145                 memcpy(buf, s, len);
146                 buf[len] = '\0';
147         }
148         return buf;
149 }
150 EXPORT_SYMBOL(kmemdup_nul);
151
152 /**
153  * memdup_user - duplicate memory region from user space
154  *
155  * @src: source address in user space
156  * @len: number of bytes to copy
157  *
158  * Return: an ERR_PTR() on failure.  Result is physically
159  * contiguous, to be freed by kfree().
160  */
161 void *memdup_user(const void __user *src, size_t len)
162 {
163         void *p;
164
165         p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
166         if (!p)
167                 return ERR_PTR(-ENOMEM);
168
169         if (copy_from_user(p, src, len)) {
170                 kfree(p);
171                 return ERR_PTR(-EFAULT);
172         }
173
174         return p;
175 }
176 EXPORT_SYMBOL(memdup_user);
177
178 /**
179  * vmemdup_user - duplicate memory region from user space
180  *
181  * @src: source address in user space
182  * @len: number of bytes to copy
183  *
184  * Return: an ERR_PTR() on failure.  Result may be not
185  * physically contiguous.  Use kvfree() to free.
186  */
187 void *vmemdup_user(const void __user *src, size_t len)
188 {
189         void *p;
190
191         p = kvmalloc(len, GFP_USER);
192         if (!p)
193                 return ERR_PTR(-ENOMEM);
194
195         if (copy_from_user(p, src, len)) {
196                 kvfree(p);
197                 return ERR_PTR(-EFAULT);
198         }
199
200         return p;
201 }
202 EXPORT_SYMBOL(vmemdup_user);
203
204 /**
205  * strndup_user - duplicate an existing string from user space
206  * @s: The string to duplicate
207  * @n: Maximum number of bytes to copy, including the trailing NUL.
208  *
209  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
210  */
211 char *strndup_user(const char __user *s, long n)
212 {
213         char *p;
214         long length;
215
216         length = strnlen_user(s, n);
217
218         if (!length)
219                 return ERR_PTR(-EFAULT);
220
221         if (length > n)
222                 return ERR_PTR(-EINVAL);
223
224         p = memdup_user(s, length);
225
226         if (IS_ERR(p))
227                 return p;
228
229         p[length - 1] = '\0';
230
231         return p;
232 }
233 EXPORT_SYMBOL(strndup_user);
234
235 /**
236  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
237  *
238  * @src: source address in user space
239  * @len: number of bytes to copy
240  *
241  * Return: an ERR_PTR() on failure.
242  */
243 void *memdup_user_nul(const void __user *src, size_t len)
244 {
245         char *p;
246
247         /*
248          * Always use GFP_KERNEL, since copy_from_user() can sleep and
249          * cause pagefault, which makes it pointless to use GFP_NOFS
250          * or GFP_ATOMIC.
251          */
252         p = kmalloc_track_caller(len + 1, GFP_KERNEL);
253         if (!p)
254                 return ERR_PTR(-ENOMEM);
255
256         if (copy_from_user(p, src, len)) {
257                 kfree(p);
258                 return ERR_PTR(-EFAULT);
259         }
260         p[len] = '\0';
261
262         return p;
263 }
264 EXPORT_SYMBOL(memdup_user_nul);
265
266 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
267                 struct vm_area_struct *prev, struct rb_node *rb_parent)
268 {
269         struct vm_area_struct *next;
270
271         vma->vm_prev = prev;
272         if (prev) {
273                 next = prev->vm_next;
274                 prev->vm_next = vma;
275         } else {
276                 mm->mmap = vma;
277                 if (rb_parent)
278                         next = rb_entry(rb_parent,
279                                         struct vm_area_struct, vm_rb);
280                 else
281                         next = NULL;
282         }
283         vma->vm_next = next;
284         if (next)
285                 next->vm_prev = vma;
286 }
287
288 /* Check if the vma is being used as a stack by this task */
289 int vma_is_stack_for_current(struct vm_area_struct *vma)
290 {
291         struct task_struct * __maybe_unused t = current;
292
293         return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
294 }
295
296 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
297 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
298 {
299         mm->mmap_base = TASK_UNMAPPED_BASE;
300         mm->get_unmapped_area = arch_get_unmapped_area;
301 }
302 #endif
303
304 /**
305  * __account_locked_vm - account locked pages to an mm's locked_vm
306  * @mm:          mm to account against
307  * @pages:       number of pages to account
308  * @inc:         %true if @pages should be considered positive, %false if not
309  * @task:        task used to check RLIMIT_MEMLOCK
310  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
311  *
312  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
313  * that mmap_sem is held as writer.
314  *
315  * Return:
316  * * 0       on success
317  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
318  */
319 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
320                         struct task_struct *task, bool bypass_rlim)
321 {
322         unsigned long locked_vm, limit;
323         int ret = 0;
324
325         lockdep_assert_held_write(&mm->mmap_sem);
326
327         locked_vm = mm->locked_vm;
328         if (inc) {
329                 if (!bypass_rlim) {
330                         limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
331                         if (locked_vm + pages > limit)
332                                 ret = -ENOMEM;
333                 }
334                 if (!ret)
335                         mm->locked_vm = locked_vm + pages;
336         } else {
337                 WARN_ON_ONCE(pages > locked_vm);
338                 mm->locked_vm = locked_vm - pages;
339         }
340
341         pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
342                  (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
343                  locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
344                  ret ? " - exceeded" : "");
345
346         return ret;
347 }
348 EXPORT_SYMBOL_GPL(__account_locked_vm);
349
350 /**
351  * account_locked_vm - account locked pages to an mm's locked_vm
352  * @mm:          mm to account against, may be NULL
353  * @pages:       number of pages to account
354  * @inc:         %true if @pages should be considered positive, %false if not
355  *
356  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
357  *
358  * Return:
359  * * 0       on success, or if mm is NULL
360  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
361  */
362 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
363 {
364         int ret;
365
366         if (pages == 0 || !mm)
367                 return 0;
368
369         down_write(&mm->mmap_sem);
370         ret = __account_locked_vm(mm, pages, inc, current,
371                                   capable(CAP_IPC_LOCK));
372         up_write(&mm->mmap_sem);
373
374         return ret;
375 }
376 EXPORT_SYMBOL_GPL(account_locked_vm);
377
378 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
379         unsigned long len, unsigned long prot,
380         unsigned long flag, unsigned long pgoff)
381 {
382         unsigned long ret;
383         struct mm_struct *mm = current->mm;
384         unsigned long populate;
385         LIST_HEAD(uf);
386
387         ret = security_mmap_file(file, prot, flag);
388         if (!ret) {
389                 if (down_write_killable(&mm->mmap_sem))
390                         return -EINTR;
391                 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
392                                     &populate, &uf);
393                 up_write(&mm->mmap_sem);
394                 userfaultfd_unmap_complete(mm, &uf);
395                 if (populate)
396                         mm_populate(ret, populate);
397         }
398         return ret;
399 }
400
401 unsigned long vm_mmap(struct file *file, unsigned long addr,
402         unsigned long len, unsigned long prot,
403         unsigned long flag, unsigned long offset)
404 {
405         if (unlikely(offset + PAGE_ALIGN(len) < offset))
406                 return -EINVAL;
407         if (unlikely(offset_in_page(offset)))
408                 return -EINVAL;
409
410         return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
411 }
412 EXPORT_SYMBOL(vm_mmap);
413
414 /**
415  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
416  * failure, fall back to non-contiguous (vmalloc) allocation.
417  * @size: size of the request.
418  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
419  * @node: numa node to allocate from
420  *
421  * Uses kmalloc to get the memory but if the allocation fails then falls back
422  * to the vmalloc allocator. Use kvfree for freeing the memory.
423  *
424  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
425  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
426  * preferable to the vmalloc fallback, due to visible performance drawbacks.
427  *
428  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
429  * fall back to vmalloc.
430  *
431  * Return: pointer to the allocated memory of %NULL in case of failure
432  */
433 void *kvmalloc_node(size_t size, gfp_t flags, int node)
434 {
435         gfp_t kmalloc_flags = flags;
436         void *ret;
437
438         /*
439          * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
440          * so the given set of flags has to be compatible.
441          */
442         if ((flags & GFP_KERNEL) != GFP_KERNEL)
443                 return kmalloc_node(size, flags, node);
444
445         /*
446          * We want to attempt a large physically contiguous block first because
447          * it is less likely to fragment multiple larger blocks and therefore
448          * contribute to a long term fragmentation less than vmalloc fallback.
449          * However make sure that larger requests are not too disruptive - no
450          * OOM killer and no allocation failure warnings as we have a fallback.
451          */
452         if (size > PAGE_SIZE) {
453                 kmalloc_flags |= __GFP_NOWARN;
454
455                 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
456                         kmalloc_flags |= __GFP_NORETRY;
457         }
458
459         ret = kmalloc_node(size, kmalloc_flags, node);
460
461         /*
462          * It doesn't really make sense to fallback to vmalloc for sub page
463          * requests
464          */
465         if (ret || size <= PAGE_SIZE)
466                 return ret;
467
468         return __vmalloc_node_flags_caller(size, node, flags,
469                         __builtin_return_address(0));
470 }
471 EXPORT_SYMBOL(kvmalloc_node);
472
473 /**
474  * kvfree() - Free memory.
475  * @addr: Pointer to allocated memory.
476  *
477  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
478  * It is slightly more efficient to use kfree() or vfree() if you are certain
479  * that you know which one to use.
480  *
481  * Context: Either preemptible task context or not-NMI interrupt.
482  */
483 void kvfree(const void *addr)
484 {
485         if (is_vmalloc_addr(addr))
486                 vfree(addr);
487         else
488                 kfree(addr);
489 }
490 EXPORT_SYMBOL(kvfree);
491
492 static inline void *__page_rmapping(struct page *page)
493 {
494         unsigned long mapping;
495
496         mapping = (unsigned long)page->mapping;
497         mapping &= ~PAGE_MAPPING_FLAGS;
498
499         return (void *)mapping;
500 }
501
502 /* Neutral page->mapping pointer to address_space or anon_vma or other */
503 void *page_rmapping(struct page *page)
504 {
505         page = compound_head(page);
506         return __page_rmapping(page);
507 }
508
509 /*
510  * Return true if this page is mapped into pagetables.
511  * For compound page it returns true if any subpage of compound page is mapped.
512  */
513 bool page_mapped(struct page *page)
514 {
515         int i;
516
517         if (likely(!PageCompound(page)))
518                 return atomic_read(&page->_mapcount) >= 0;
519         page = compound_head(page);
520         if (atomic_read(compound_mapcount_ptr(page)) >= 0)
521                 return true;
522         if (PageHuge(page))
523                 return false;
524         for (i = 0; i < (1 << compound_order(page)); i++) {
525                 if (atomic_read(&page[i]._mapcount) >= 0)
526                         return true;
527         }
528         return false;
529 }
530 EXPORT_SYMBOL(page_mapped);
531
532 struct anon_vma *page_anon_vma(struct page *page)
533 {
534         unsigned long mapping;
535
536         page = compound_head(page);
537         mapping = (unsigned long)page->mapping;
538         if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
539                 return NULL;
540         return __page_rmapping(page);
541 }
542
543 struct address_space *page_mapping(struct page *page)
544 {
545         struct address_space *mapping;
546
547         page = compound_head(page);
548
549         /* This happens if someone calls flush_dcache_page on slab page */
550         if (unlikely(PageSlab(page)))
551                 return NULL;
552
553         if (unlikely(PageSwapCache(page))) {
554                 swp_entry_t entry;
555
556                 entry.val = page_private(page);
557                 return swap_address_space(entry);
558         }
559
560         mapping = page->mapping;
561         if ((unsigned long)mapping & PAGE_MAPPING_ANON)
562                 return NULL;
563
564         return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
565 }
566 EXPORT_SYMBOL(page_mapping);
567
568 /*
569  * For file cache pages, return the address_space, otherwise return NULL
570  */
571 struct address_space *page_mapping_file(struct page *page)
572 {
573         if (unlikely(PageSwapCache(page)))
574                 return NULL;
575         return page_mapping(page);
576 }
577
578 /* Slow path of page_mapcount() for compound pages */
579 int __page_mapcount(struct page *page)
580 {
581         int ret;
582
583         ret = atomic_read(&page->_mapcount) + 1;
584         /*
585          * For file THP page->_mapcount contains total number of mapping
586          * of the page: no need to look into compound_mapcount.
587          */
588         if (!PageAnon(page) && !PageHuge(page))
589                 return ret;
590         page = compound_head(page);
591         ret += atomic_read(compound_mapcount_ptr(page)) + 1;
592         if (PageDoubleMap(page))
593                 ret--;
594         return ret;
595 }
596 EXPORT_SYMBOL_GPL(__page_mapcount);
597
598 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
599 int sysctl_overcommit_ratio __read_mostly = 50;
600 unsigned long sysctl_overcommit_kbytes __read_mostly;
601 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
602 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
603 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
604
605 int overcommit_ratio_handler(struct ctl_table *table, int write,
606                              void __user *buffer, size_t *lenp,
607                              loff_t *ppos)
608 {
609         int ret;
610
611         ret = proc_dointvec(table, write, buffer, lenp, ppos);
612         if (ret == 0 && write)
613                 sysctl_overcommit_kbytes = 0;
614         return ret;
615 }
616
617 int overcommit_kbytes_handler(struct ctl_table *table, int write,
618                              void __user *buffer, size_t *lenp,
619                              loff_t *ppos)
620 {
621         int ret;
622
623         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
624         if (ret == 0 && write)
625                 sysctl_overcommit_ratio = 0;
626         return ret;
627 }
628
629 /*
630  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
631  */
632 unsigned long vm_commit_limit(void)
633 {
634         unsigned long allowed;
635
636         if (sysctl_overcommit_kbytes)
637                 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
638         else
639                 allowed = ((totalram_pages() - hugetlb_total_pages())
640                            * sysctl_overcommit_ratio / 100);
641         allowed += total_swap_pages;
642
643         return allowed;
644 }
645
646 /*
647  * Make sure vm_committed_as in one cacheline and not cacheline shared with
648  * other variables. It can be updated by several CPUs frequently.
649  */
650 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
651
652 /*
653  * The global memory commitment made in the system can be a metric
654  * that can be used to drive ballooning decisions when Linux is hosted
655  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
656  * balancing memory across competing virtual machines that are hosted.
657  * Several metrics drive this policy engine including the guest reported
658  * memory commitment.
659  */
660 unsigned long vm_memory_committed(void)
661 {
662         return percpu_counter_read_positive(&vm_committed_as);
663 }
664 EXPORT_SYMBOL_GPL(vm_memory_committed);
665
666 /*
667  * Check that a process has enough memory to allocate a new virtual
668  * mapping. 0 means there is enough memory for the allocation to
669  * succeed and -ENOMEM implies there is not.
670  *
671  * We currently support three overcommit policies, which are set via the
672  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
673  *
674  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
675  * Additional code 2002 Jul 20 by Robert Love.
676  *
677  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
678  *
679  * Note this is a helper function intended to be used by LSMs which
680  * wish to use this logic.
681  */
682 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
683 {
684         long allowed;
685
686         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
687                         -(s64)vm_committed_as_batch * num_online_cpus(),
688                         "memory commitment underflow");
689
690         vm_acct_memory(pages);
691
692         /*
693          * Sometimes we want to use more memory than we have
694          */
695         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
696                 return 0;
697
698         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
699                 if (pages > totalram_pages() + total_swap_pages)
700                         goto error;
701                 return 0;
702         }
703
704         allowed = vm_commit_limit();
705         /*
706          * Reserve some for root
707          */
708         if (!cap_sys_admin)
709                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
710
711         /*
712          * Don't let a single process grow so big a user can't recover
713          */
714         if (mm) {
715                 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
716
717                 allowed -= min_t(long, mm->total_vm / 32, reserve);
718         }
719
720         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
721                 return 0;
722 error:
723         vm_unacct_memory(pages);
724
725         return -ENOMEM;
726 }
727
728 /**
729  * get_cmdline() - copy the cmdline value to a buffer.
730  * @task:     the task whose cmdline value to copy.
731  * @buffer:   the buffer to copy to.
732  * @buflen:   the length of the buffer. Larger cmdline values are truncated
733  *            to this length.
734  *
735  * Return: the size of the cmdline field copied. Note that the copy does
736  * not guarantee an ending NULL byte.
737  */
738 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
739 {
740         int res = 0;
741         unsigned int len;
742         struct mm_struct *mm = get_task_mm(task);
743         unsigned long arg_start, arg_end, env_start, env_end;
744         if (!mm)
745                 goto out;
746         if (!mm->arg_end)
747                 goto out_mm;    /* Shh! No looking before we're done */
748
749         spin_lock(&mm->arg_lock);
750         arg_start = mm->arg_start;
751         arg_end = mm->arg_end;
752         env_start = mm->env_start;
753         env_end = mm->env_end;
754         spin_unlock(&mm->arg_lock);
755
756         len = arg_end - arg_start;
757
758         if (len > buflen)
759                 len = buflen;
760
761         res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
762
763         /*
764          * If the nul at the end of args has been overwritten, then
765          * assume application is using setproctitle(3).
766          */
767         if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
768                 len = strnlen(buffer, res);
769                 if (len < res) {
770                         res = len;
771                 } else {
772                         len = env_end - env_start;
773                         if (len > buflen - res)
774                                 len = buflen - res;
775                         res += access_process_vm(task, env_start,
776                                                  buffer+res, len,
777                                                  FOLL_FORCE);
778                         res = strnlen(buffer, res);
779                 }
780         }
781 out_mm:
782         mmput(mm);
783 out:
784         return res;
785 }