Merge tag 'char-misc-6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[platform/kernel/linux-starfive.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44 #include <linux/suspend.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "swap.h"
50
51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
52                                  unsigned char);
53 static void free_swap_count_continuations(struct swap_info_struct *);
54
55 static DEFINE_SPINLOCK(swap_lock);
56 static unsigned int nr_swapfiles;
57 atomic_long_t nr_swap_pages;
58 /*
59  * Some modules use swappable objects and may try to swap them out under
60  * memory pressure (via the shrinker). Before doing so, they may wish to
61  * check to see if any swap space is available.
62  */
63 EXPORT_SYMBOL_GPL(nr_swap_pages);
64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
65 long total_swap_pages;
66 static int least_priority = -1;
67 unsigned long swapfile_maximum_size;
68 #ifdef CONFIG_MIGRATION
69 bool swap_migration_ad_supported;
70 #endif  /* CONFIG_MIGRATION */
71
72 static const char Bad_file[] = "Bad swap file entry ";
73 static const char Unused_file[] = "Unused swap file entry ";
74 static const char Bad_offset[] = "Bad swap offset entry ";
75 static const char Unused_offset[] = "Unused swap offset entry ";
76
77 /*
78  * all active swap_info_structs
79  * protected with swap_lock, and ordered by priority.
80  */
81 static PLIST_HEAD(swap_active_head);
82
83 /*
84  * all available (active, not full) swap_info_structs
85  * protected with swap_avail_lock, ordered by priority.
86  * This is used by folio_alloc_swap() instead of swap_active_head
87  * because swap_active_head includes all swap_info_structs,
88  * but folio_alloc_swap() doesn't need to look at full ones.
89  * This uses its own lock instead of swap_lock because when a
90  * swap_info_struct changes between not-full/full, it needs to
91  * add/remove itself to/from this list, but the swap_info_struct->lock
92  * is held and the locking order requires swap_lock to be taken
93  * before any swap_info_struct->lock.
94  */
95 static struct plist_head *swap_avail_heads;
96 static DEFINE_SPINLOCK(swap_avail_lock);
97
98 struct swap_info_struct *swap_info[MAX_SWAPFILES];
99
100 static DEFINE_MUTEX(swapon_mutex);
101
102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
103 /* Activity counter to indicate that a swapon or swapoff has occurred */
104 static atomic_t proc_poll_event = ATOMIC_INIT(0);
105
106 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
107
108 static struct swap_info_struct *swap_type_to_swap_info(int type)
109 {
110         if (type >= MAX_SWAPFILES)
111                 return NULL;
112
113         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
114 }
115
116 static inline unsigned char swap_count(unsigned char ent)
117 {
118         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
119 }
120
121 /* Reclaim the swap entry anyway if possible */
122 #define TTRS_ANYWAY             0x1
123 /*
124  * Reclaim the swap entry if there are no more mappings of the
125  * corresponding page
126  */
127 #define TTRS_UNMAPPED           0x2
128 /* Reclaim the swap entry if swap is getting full*/
129 #define TTRS_FULL               0x4
130
131 /* returns 1 if swap entry is freed */
132 static int __try_to_reclaim_swap(struct swap_info_struct *si,
133                                  unsigned long offset, unsigned long flags)
134 {
135         swp_entry_t entry = swp_entry(si->type, offset);
136         struct folio *folio;
137         int ret = 0;
138
139         folio = filemap_get_folio(swap_address_space(entry), offset);
140         if (IS_ERR(folio))
141                 return 0;
142         /*
143          * When this function is called from scan_swap_map_slots() and it's
144          * called by vmscan.c at reclaiming folios. So we hold a folio lock
145          * here. We have to use trylock for avoiding deadlock. This is a special
146          * case and you should use folio_free_swap() with explicit folio_lock()
147          * in usual operations.
148          */
149         if (folio_trylock(folio)) {
150                 if ((flags & TTRS_ANYWAY) ||
151                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
152                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
153                         ret = folio_free_swap(folio);
154                 folio_unlock(folio);
155         }
156         folio_put(folio);
157         return ret;
158 }
159
160 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
161 {
162         struct rb_node *rb = rb_first(&sis->swap_extent_root);
163         return rb_entry(rb, struct swap_extent, rb_node);
164 }
165
166 static inline struct swap_extent *next_se(struct swap_extent *se)
167 {
168         struct rb_node *rb = rb_next(&se->rb_node);
169         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
170 }
171
172 /*
173  * swapon tell device that all the old swap contents can be discarded,
174  * to allow the swap device to optimize its wear-levelling.
175  */
176 static int discard_swap(struct swap_info_struct *si)
177 {
178         struct swap_extent *se;
179         sector_t start_block;
180         sector_t nr_blocks;
181         int err = 0;
182
183         /* Do not discard the swap header page! */
184         se = first_se(si);
185         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
186         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
187         if (nr_blocks) {
188                 err = blkdev_issue_discard(si->bdev, start_block,
189                                 nr_blocks, GFP_KERNEL);
190                 if (err)
191                         return err;
192                 cond_resched();
193         }
194
195         for (se = next_se(se); se; se = next_se(se)) {
196                 start_block = se->start_block << (PAGE_SHIFT - 9);
197                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
198
199                 err = blkdev_issue_discard(si->bdev, start_block,
200                                 nr_blocks, GFP_KERNEL);
201                 if (err)
202                         break;
203
204                 cond_resched();
205         }
206         return err;             /* That will often be -EOPNOTSUPP */
207 }
208
209 static struct swap_extent *
210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
211 {
212         struct swap_extent *se;
213         struct rb_node *rb;
214
215         rb = sis->swap_extent_root.rb_node;
216         while (rb) {
217                 se = rb_entry(rb, struct swap_extent, rb_node);
218                 if (offset < se->start_page)
219                         rb = rb->rb_left;
220                 else if (offset >= se->start_page + se->nr_pages)
221                         rb = rb->rb_right;
222                 else
223                         return se;
224         }
225         /* It *must* be present */
226         BUG();
227 }
228
229 sector_t swap_page_sector(struct page *page)
230 {
231         struct swap_info_struct *sis = page_swap_info(page);
232         struct swap_extent *se;
233         sector_t sector;
234         pgoff_t offset;
235
236         offset = __page_file_index(page);
237         se = offset_to_swap_extent(sis, offset);
238         sector = se->start_block + (offset - se->start_page);
239         return sector << (PAGE_SHIFT - 9);
240 }
241
242 /*
243  * swap allocation tell device that a cluster of swap can now be discarded,
244  * to allow the swap device to optimize its wear-levelling.
245  */
246 static void discard_swap_cluster(struct swap_info_struct *si,
247                                  pgoff_t start_page, pgoff_t nr_pages)
248 {
249         struct swap_extent *se = offset_to_swap_extent(si, start_page);
250
251         while (nr_pages) {
252                 pgoff_t offset = start_page - se->start_page;
253                 sector_t start_block = se->start_block + offset;
254                 sector_t nr_blocks = se->nr_pages - offset;
255
256                 if (nr_blocks > nr_pages)
257                         nr_blocks = nr_pages;
258                 start_page += nr_blocks;
259                 nr_pages -= nr_blocks;
260
261                 start_block <<= PAGE_SHIFT - 9;
262                 nr_blocks <<= PAGE_SHIFT - 9;
263                 if (blkdev_issue_discard(si->bdev, start_block,
264                                         nr_blocks, GFP_NOIO))
265                         break;
266
267                 se = next_se(se);
268         }
269 }
270
271 #ifdef CONFIG_THP_SWAP
272 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
273
274 #define swap_entry_size(size)   (size)
275 #else
276 #define SWAPFILE_CLUSTER        256
277
278 /*
279  * Define swap_entry_size() as constant to let compiler to optimize
280  * out some code if !CONFIG_THP_SWAP
281  */
282 #define swap_entry_size(size)   1
283 #endif
284 #define LATENCY_LIMIT           256
285
286 static inline void cluster_set_flag(struct swap_cluster_info *info,
287         unsigned int flag)
288 {
289         info->flags = flag;
290 }
291
292 static inline unsigned int cluster_count(struct swap_cluster_info *info)
293 {
294         return info->data;
295 }
296
297 static inline void cluster_set_count(struct swap_cluster_info *info,
298                                      unsigned int c)
299 {
300         info->data = c;
301 }
302
303 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
304                                          unsigned int c, unsigned int f)
305 {
306         info->flags = f;
307         info->data = c;
308 }
309
310 static inline unsigned int cluster_next(struct swap_cluster_info *info)
311 {
312         return info->data;
313 }
314
315 static inline void cluster_set_next(struct swap_cluster_info *info,
316                                     unsigned int n)
317 {
318         info->data = n;
319 }
320
321 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
322                                          unsigned int n, unsigned int f)
323 {
324         info->flags = f;
325         info->data = n;
326 }
327
328 static inline bool cluster_is_free(struct swap_cluster_info *info)
329 {
330         return info->flags & CLUSTER_FLAG_FREE;
331 }
332
333 static inline bool cluster_is_null(struct swap_cluster_info *info)
334 {
335         return info->flags & CLUSTER_FLAG_NEXT_NULL;
336 }
337
338 static inline void cluster_set_null(struct swap_cluster_info *info)
339 {
340         info->flags = CLUSTER_FLAG_NEXT_NULL;
341         info->data = 0;
342 }
343
344 static inline bool cluster_is_huge(struct swap_cluster_info *info)
345 {
346         if (IS_ENABLED(CONFIG_THP_SWAP))
347                 return info->flags & CLUSTER_FLAG_HUGE;
348         return false;
349 }
350
351 static inline void cluster_clear_huge(struct swap_cluster_info *info)
352 {
353         info->flags &= ~CLUSTER_FLAG_HUGE;
354 }
355
356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
357                                                      unsigned long offset)
358 {
359         struct swap_cluster_info *ci;
360
361         ci = si->cluster_info;
362         if (ci) {
363                 ci += offset / SWAPFILE_CLUSTER;
364                 spin_lock(&ci->lock);
365         }
366         return ci;
367 }
368
369 static inline void unlock_cluster(struct swap_cluster_info *ci)
370 {
371         if (ci)
372                 spin_unlock(&ci->lock);
373 }
374
375 /*
376  * Determine the locking method in use for this device.  Return
377  * swap_cluster_info if SSD-style cluster-based locking is in place.
378  */
379 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
380                 struct swap_info_struct *si, unsigned long offset)
381 {
382         struct swap_cluster_info *ci;
383
384         /* Try to use fine-grained SSD-style locking if available: */
385         ci = lock_cluster(si, offset);
386         /* Otherwise, fall back to traditional, coarse locking: */
387         if (!ci)
388                 spin_lock(&si->lock);
389
390         return ci;
391 }
392
393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
394                                                struct swap_cluster_info *ci)
395 {
396         if (ci)
397                 unlock_cluster(ci);
398         else
399                 spin_unlock(&si->lock);
400 }
401
402 static inline bool cluster_list_empty(struct swap_cluster_list *list)
403 {
404         return cluster_is_null(&list->head);
405 }
406
407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
408 {
409         return cluster_next(&list->head);
410 }
411
412 static void cluster_list_init(struct swap_cluster_list *list)
413 {
414         cluster_set_null(&list->head);
415         cluster_set_null(&list->tail);
416 }
417
418 static void cluster_list_add_tail(struct swap_cluster_list *list,
419                                   struct swap_cluster_info *ci,
420                                   unsigned int idx)
421 {
422         if (cluster_list_empty(list)) {
423                 cluster_set_next_flag(&list->head, idx, 0);
424                 cluster_set_next_flag(&list->tail, idx, 0);
425         } else {
426                 struct swap_cluster_info *ci_tail;
427                 unsigned int tail = cluster_next(&list->tail);
428
429                 /*
430                  * Nested cluster lock, but both cluster locks are
431                  * only acquired when we held swap_info_struct->lock
432                  */
433                 ci_tail = ci + tail;
434                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
435                 cluster_set_next(ci_tail, idx);
436                 spin_unlock(&ci_tail->lock);
437                 cluster_set_next_flag(&list->tail, idx, 0);
438         }
439 }
440
441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
442                                            struct swap_cluster_info *ci)
443 {
444         unsigned int idx;
445
446         idx = cluster_next(&list->head);
447         if (cluster_next(&list->tail) == idx) {
448                 cluster_set_null(&list->head);
449                 cluster_set_null(&list->tail);
450         } else
451                 cluster_set_next_flag(&list->head,
452                                       cluster_next(&ci[idx]), 0);
453
454         return idx;
455 }
456
457 /* Add a cluster to discard list and schedule it to do discard */
458 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
459                 unsigned int idx)
460 {
461         /*
462          * If scan_swap_map_slots() can't find a free cluster, it will check
463          * si->swap_map directly. To make sure the discarding cluster isn't
464          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
465          * It will be cleared after discard
466          */
467         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
468                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
469
470         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
471
472         schedule_work(&si->discard_work);
473 }
474
475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
476 {
477         struct swap_cluster_info *ci = si->cluster_info;
478
479         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
480         cluster_list_add_tail(&si->free_clusters, ci, idx);
481 }
482
483 /*
484  * Doing discard actually. After a cluster discard is finished, the cluster
485  * will be added to free cluster list. caller should hold si->lock.
486 */
487 static void swap_do_scheduled_discard(struct swap_info_struct *si)
488 {
489         struct swap_cluster_info *info, *ci;
490         unsigned int idx;
491
492         info = si->cluster_info;
493
494         while (!cluster_list_empty(&si->discard_clusters)) {
495                 idx = cluster_list_del_first(&si->discard_clusters, info);
496                 spin_unlock(&si->lock);
497
498                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
499                                 SWAPFILE_CLUSTER);
500
501                 spin_lock(&si->lock);
502                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
503                 __free_cluster(si, idx);
504                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
505                                 0, SWAPFILE_CLUSTER);
506                 unlock_cluster(ci);
507         }
508 }
509
510 static void swap_discard_work(struct work_struct *work)
511 {
512         struct swap_info_struct *si;
513
514         si = container_of(work, struct swap_info_struct, discard_work);
515
516         spin_lock(&si->lock);
517         swap_do_scheduled_discard(si);
518         spin_unlock(&si->lock);
519 }
520
521 static void swap_users_ref_free(struct percpu_ref *ref)
522 {
523         struct swap_info_struct *si;
524
525         si = container_of(ref, struct swap_info_struct, users);
526         complete(&si->comp);
527 }
528
529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
530 {
531         struct swap_cluster_info *ci = si->cluster_info;
532
533         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
534         cluster_list_del_first(&si->free_clusters, ci);
535         cluster_set_count_flag(ci + idx, 0, 0);
536 }
537
538 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
539 {
540         struct swap_cluster_info *ci = si->cluster_info + idx;
541
542         VM_BUG_ON(cluster_count(ci) != 0);
543         /*
544          * If the swap is discardable, prepare discard the cluster
545          * instead of free it immediately. The cluster will be freed
546          * after discard.
547          */
548         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
549             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
550                 swap_cluster_schedule_discard(si, idx);
551                 return;
552         }
553
554         __free_cluster(si, idx);
555 }
556
557 /*
558  * The cluster corresponding to page_nr will be used. The cluster will be
559  * removed from free cluster list and its usage counter will be increased.
560  */
561 static void inc_cluster_info_page(struct swap_info_struct *p,
562         struct swap_cluster_info *cluster_info, unsigned long page_nr)
563 {
564         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
565
566         if (!cluster_info)
567                 return;
568         if (cluster_is_free(&cluster_info[idx]))
569                 alloc_cluster(p, idx);
570
571         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
572         cluster_set_count(&cluster_info[idx],
573                 cluster_count(&cluster_info[idx]) + 1);
574 }
575
576 /*
577  * The cluster corresponding to page_nr decreases one usage. If the usage
578  * counter becomes 0, which means no page in the cluster is in using, we can
579  * optionally discard the cluster and add it to free cluster list.
580  */
581 static void dec_cluster_info_page(struct swap_info_struct *p,
582         struct swap_cluster_info *cluster_info, unsigned long page_nr)
583 {
584         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
585
586         if (!cluster_info)
587                 return;
588
589         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
590         cluster_set_count(&cluster_info[idx],
591                 cluster_count(&cluster_info[idx]) - 1);
592
593         if (cluster_count(&cluster_info[idx]) == 0)
594                 free_cluster(p, idx);
595 }
596
597 /*
598  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
599  * cluster list. Avoiding such abuse to avoid list corruption.
600  */
601 static bool
602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
603         unsigned long offset)
604 {
605         struct percpu_cluster *percpu_cluster;
606         bool conflict;
607
608         offset /= SWAPFILE_CLUSTER;
609         conflict = !cluster_list_empty(&si->free_clusters) &&
610                 offset != cluster_list_first(&si->free_clusters) &&
611                 cluster_is_free(&si->cluster_info[offset]);
612
613         if (!conflict)
614                 return false;
615
616         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
617         cluster_set_null(&percpu_cluster->index);
618         return true;
619 }
620
621 /*
622  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
623  * might involve allocating a new cluster for current CPU too.
624  */
625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
626         unsigned long *offset, unsigned long *scan_base)
627 {
628         struct percpu_cluster *cluster;
629         struct swap_cluster_info *ci;
630         unsigned long tmp, max;
631
632 new_cluster:
633         cluster = this_cpu_ptr(si->percpu_cluster);
634         if (cluster_is_null(&cluster->index)) {
635                 if (!cluster_list_empty(&si->free_clusters)) {
636                         cluster->index = si->free_clusters.head;
637                         cluster->next = cluster_next(&cluster->index) *
638                                         SWAPFILE_CLUSTER;
639                 } else if (!cluster_list_empty(&si->discard_clusters)) {
640                         /*
641                          * we don't have free cluster but have some clusters in
642                          * discarding, do discard now and reclaim them, then
643                          * reread cluster_next_cpu since we dropped si->lock
644                          */
645                         swap_do_scheduled_discard(si);
646                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
647                         *offset = *scan_base;
648                         goto new_cluster;
649                 } else
650                         return false;
651         }
652
653         /*
654          * Other CPUs can use our cluster if they can't find a free cluster,
655          * check if there is still free entry in the cluster
656          */
657         tmp = cluster->next;
658         max = min_t(unsigned long, si->max,
659                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
660         if (tmp < max) {
661                 ci = lock_cluster(si, tmp);
662                 while (tmp < max) {
663                         if (!si->swap_map[tmp])
664                                 break;
665                         tmp++;
666                 }
667                 unlock_cluster(ci);
668         }
669         if (tmp >= max) {
670                 cluster_set_null(&cluster->index);
671                 goto new_cluster;
672         }
673         cluster->next = tmp + 1;
674         *offset = tmp;
675         *scan_base = tmp;
676         return true;
677 }
678
679 static void __del_from_avail_list(struct swap_info_struct *p)
680 {
681         int nid;
682
683         assert_spin_locked(&p->lock);
684         for_each_node(nid)
685                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
686 }
687
688 static void del_from_avail_list(struct swap_info_struct *p)
689 {
690         spin_lock(&swap_avail_lock);
691         __del_from_avail_list(p);
692         spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
696                              unsigned int nr_entries)
697 {
698         unsigned int end = offset + nr_entries - 1;
699
700         if (offset == si->lowest_bit)
701                 si->lowest_bit += nr_entries;
702         if (end == si->highest_bit)
703                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
704         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
705         if (si->inuse_pages == si->pages) {
706                 si->lowest_bit = si->max;
707                 si->highest_bit = 0;
708                 del_from_avail_list(si);
709         }
710 }
711
712 static void add_to_avail_list(struct swap_info_struct *p)
713 {
714         int nid;
715
716         spin_lock(&swap_avail_lock);
717         for_each_node(nid) {
718                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
719                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720         }
721         spin_unlock(&swap_avail_lock);
722 }
723
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725                             unsigned int nr_entries)
726 {
727         unsigned long begin = offset;
728         unsigned long end = offset + nr_entries - 1;
729         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730
731         if (offset < si->lowest_bit)
732                 si->lowest_bit = offset;
733         if (end > si->highest_bit) {
734                 bool was_full = !si->highest_bit;
735
736                 WRITE_ONCE(si->highest_bit, end);
737                 if (was_full && (si->flags & SWP_WRITEOK))
738                         add_to_avail_list(si);
739         }
740         atomic_long_add(nr_entries, &nr_swap_pages);
741         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742         if (si->flags & SWP_BLKDEV)
743                 swap_slot_free_notify =
744                         si->bdev->bd_disk->fops->swap_slot_free_notify;
745         else
746                 swap_slot_free_notify = NULL;
747         while (offset <= end) {
748                 arch_swap_invalidate_page(si->type, offset);
749                 frontswap_invalidate_page(si->type, offset);
750                 if (swap_slot_free_notify)
751                         swap_slot_free_notify(si->bdev, offset);
752                 offset++;
753         }
754         clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756
757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759         unsigned long prev;
760
761         if (!(si->flags & SWP_SOLIDSTATE)) {
762                 si->cluster_next = next;
763                 return;
764         }
765
766         prev = this_cpu_read(*si->cluster_next_cpu);
767         /*
768          * Cross the swap address space size aligned trunk, choose
769          * another trunk randomly to avoid lock contention on swap
770          * address space if possible.
771          */
772         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774                 /* No free swap slots available */
775                 if (si->highest_bit <= si->lowest_bit)
776                         return;
777                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779                 next = max_t(unsigned int, next, si->lowest_bit);
780         }
781         this_cpu_write(*si->cluster_next_cpu, next);
782 }
783
784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785                                              unsigned long offset)
786 {
787         if (data_race(!si->swap_map[offset])) {
788                 spin_lock(&si->lock);
789                 return true;
790         }
791
792         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793                 spin_lock(&si->lock);
794                 return true;
795         }
796
797         return false;
798 }
799
800 static int scan_swap_map_slots(struct swap_info_struct *si,
801                                unsigned char usage, int nr,
802                                swp_entry_t slots[])
803 {
804         struct swap_cluster_info *ci;
805         unsigned long offset;
806         unsigned long scan_base;
807         unsigned long last_in_cluster = 0;
808         int latency_ration = LATENCY_LIMIT;
809         int n_ret = 0;
810         bool scanned_many = false;
811
812         /*
813          * We try to cluster swap pages by allocating them sequentially
814          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
815          * way, however, we resort to first-free allocation, starting
816          * a new cluster.  This prevents us from scattering swap pages
817          * all over the entire swap partition, so that we reduce
818          * overall disk seek times between swap pages.  -- sct
819          * But we do now try to find an empty cluster.  -Andrea
820          * And we let swap pages go all over an SSD partition.  Hugh
821          */
822
823         si->flags += SWP_SCANNING;
824         /*
825          * Use percpu scan base for SSD to reduce lock contention on
826          * cluster and swap cache.  For HDD, sequential access is more
827          * important.
828          */
829         if (si->flags & SWP_SOLIDSTATE)
830                 scan_base = this_cpu_read(*si->cluster_next_cpu);
831         else
832                 scan_base = si->cluster_next;
833         offset = scan_base;
834
835         /* SSD algorithm */
836         if (si->cluster_info) {
837                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838                         goto scan;
839         } else if (unlikely(!si->cluster_nr--)) {
840                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                         goto checks;
843                 }
844
845                 spin_unlock(&si->lock);
846
847                 /*
848                  * If seek is expensive, start searching for new cluster from
849                  * start of partition, to minimize the span of allocated swap.
850                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
852                  */
853                 scan_base = offset = si->lowest_bit;
854                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855
856                 /* Locate the first empty (unaligned) cluster */
857                 for (; last_in_cluster <= si->highest_bit; offset++) {
858                         if (si->swap_map[offset])
859                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
860                         else if (offset == last_in_cluster) {
861                                 spin_lock(&si->lock);
862                                 offset -= SWAPFILE_CLUSTER - 1;
863                                 si->cluster_next = offset;
864                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
865                                 goto checks;
866                         }
867                         if (unlikely(--latency_ration < 0)) {
868                                 cond_resched();
869                                 latency_ration = LATENCY_LIMIT;
870                         }
871                 }
872
873                 offset = scan_base;
874                 spin_lock(&si->lock);
875                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
876         }
877
878 checks:
879         if (si->cluster_info) {
880                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881                 /* take a break if we already got some slots */
882                         if (n_ret)
883                                 goto done;
884                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
885                                                         &scan_base))
886                                 goto scan;
887                 }
888         }
889         if (!(si->flags & SWP_WRITEOK))
890                 goto no_page;
891         if (!si->highest_bit)
892                 goto no_page;
893         if (offset > si->highest_bit)
894                 scan_base = offset = si->lowest_bit;
895
896         ci = lock_cluster(si, offset);
897         /* reuse swap entry of cache-only swap if not busy. */
898         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899                 int swap_was_freed;
900                 unlock_cluster(ci);
901                 spin_unlock(&si->lock);
902                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903                 spin_lock(&si->lock);
904                 /* entry was freed successfully, try to use this again */
905                 if (swap_was_freed)
906                         goto checks;
907                 goto scan; /* check next one */
908         }
909
910         if (si->swap_map[offset]) {
911                 unlock_cluster(ci);
912                 if (!n_ret)
913                         goto scan;
914                 else
915                         goto done;
916         }
917         WRITE_ONCE(si->swap_map[offset], usage);
918         inc_cluster_info_page(si, si->cluster_info, offset);
919         unlock_cluster(ci);
920
921         swap_range_alloc(si, offset, 1);
922         slots[n_ret++] = swp_entry(si->type, offset);
923
924         /* got enough slots or reach max slots? */
925         if ((n_ret == nr) || (offset >= si->highest_bit))
926                 goto done;
927
928         /* search for next available slot */
929
930         /* time to take a break? */
931         if (unlikely(--latency_ration < 0)) {
932                 if (n_ret)
933                         goto done;
934                 spin_unlock(&si->lock);
935                 cond_resched();
936                 spin_lock(&si->lock);
937                 latency_ration = LATENCY_LIMIT;
938         }
939
940         /* try to get more slots in cluster */
941         if (si->cluster_info) {
942                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943                         goto checks;
944         } else if (si->cluster_nr && !si->swap_map[++offset]) {
945                 /* non-ssd case, still more slots in cluster? */
946                 --si->cluster_nr;
947                 goto checks;
948         }
949
950         /*
951          * Even if there's no free clusters available (fragmented),
952          * try to scan a little more quickly with lock held unless we
953          * have scanned too many slots already.
954          */
955         if (!scanned_many) {
956                 unsigned long scan_limit;
957
958                 if (offset < scan_base)
959                         scan_limit = scan_base;
960                 else
961                         scan_limit = si->highest_bit;
962                 for (; offset <= scan_limit && --latency_ration > 0;
963                      offset++) {
964                         if (!si->swap_map[offset])
965                                 goto checks;
966                 }
967         }
968
969 done:
970         set_cluster_next(si, offset + 1);
971         si->flags -= SWP_SCANNING;
972         return n_ret;
973
974 scan:
975         spin_unlock(&si->lock);
976         while (++offset <= READ_ONCE(si->highest_bit)) {
977                 if (unlikely(--latency_ration < 0)) {
978                         cond_resched();
979                         latency_ration = LATENCY_LIMIT;
980                         scanned_many = true;
981                 }
982                 if (swap_offset_available_and_locked(si, offset))
983                         goto checks;
984         }
985         offset = si->lowest_bit;
986         while (offset < scan_base) {
987                 if (unlikely(--latency_ration < 0)) {
988                         cond_resched();
989                         latency_ration = LATENCY_LIMIT;
990                         scanned_many = true;
991                 }
992                 if (swap_offset_available_and_locked(si, offset))
993                         goto checks;
994                 offset++;
995         }
996         spin_lock(&si->lock);
997
998 no_page:
999         si->flags -= SWP_SCANNING;
1000         return n_ret;
1001 }
1002
1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005         unsigned long idx;
1006         struct swap_cluster_info *ci;
1007         unsigned long offset;
1008
1009         /*
1010          * Should not even be attempting cluster allocations when huge
1011          * page swap is disabled.  Warn and fail the allocation.
1012          */
1013         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014                 VM_WARN_ON_ONCE(1);
1015                 return 0;
1016         }
1017
1018         if (cluster_list_empty(&si->free_clusters))
1019                 return 0;
1020
1021         idx = cluster_list_first(&si->free_clusters);
1022         offset = idx * SWAPFILE_CLUSTER;
1023         ci = lock_cluster(si, offset);
1024         alloc_cluster(si, idx);
1025         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028         unlock_cluster(ci);
1029         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030         *slot = swp_entry(si->type, offset);
1031
1032         return 1;
1033 }
1034
1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037         unsigned long offset = idx * SWAPFILE_CLUSTER;
1038         struct swap_cluster_info *ci;
1039
1040         ci = lock_cluster(si, offset);
1041         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042         cluster_set_count_flag(ci, 0, 0);
1043         free_cluster(si, idx);
1044         unlock_cluster(ci);
1045         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047
1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050         unsigned long size = swap_entry_size(entry_size);
1051         struct swap_info_struct *si, *next;
1052         long avail_pgs;
1053         int n_ret = 0;
1054         int node;
1055
1056         /* Only single cluster request supported */
1057         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059         spin_lock(&swap_avail_lock);
1060
1061         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062         if (avail_pgs <= 0) {
1063                 spin_unlock(&swap_avail_lock);
1064                 goto noswap;
1065         }
1066
1067         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069         atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
1071 start_over:
1072         node = numa_node_id();
1073         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074                 /* requeue si to after same-priority siblings */
1075                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076                 spin_unlock(&swap_avail_lock);
1077                 spin_lock(&si->lock);
1078                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079                         spin_lock(&swap_avail_lock);
1080                         if (plist_node_empty(&si->avail_lists[node])) {
1081                                 spin_unlock(&si->lock);
1082                                 goto nextsi;
1083                         }
1084                         WARN(!si->highest_bit,
1085                              "swap_info %d in list but !highest_bit\n",
1086                              si->type);
1087                         WARN(!(si->flags & SWP_WRITEOK),
1088                              "swap_info %d in list but !SWP_WRITEOK\n",
1089                              si->type);
1090                         __del_from_avail_list(si);
1091                         spin_unlock(&si->lock);
1092                         goto nextsi;
1093                 }
1094                 if (size == SWAPFILE_CLUSTER) {
1095                         if (si->flags & SWP_BLKDEV)
1096                                 n_ret = swap_alloc_cluster(si, swp_entries);
1097                 } else
1098                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099                                                     n_goal, swp_entries);
1100                 spin_unlock(&si->lock);
1101                 if (n_ret || size == SWAPFILE_CLUSTER)
1102                         goto check_out;
1103                 cond_resched();
1104
1105                 spin_lock(&swap_avail_lock);
1106 nextsi:
1107                 /*
1108                  * if we got here, it's likely that si was almost full before,
1109                  * and since scan_swap_map_slots() can drop the si->lock,
1110                  * multiple callers probably all tried to get a page from the
1111                  * same si and it filled up before we could get one; or, the si
1112                  * filled up between us dropping swap_avail_lock and taking
1113                  * si->lock. Since we dropped the swap_avail_lock, the
1114                  * swap_avail_head list may have been modified; so if next is
1115                  * still in the swap_avail_head list then try it, otherwise
1116                  * start over if we have not gotten any slots.
1117                  */
1118                 if (plist_node_empty(&next->avail_lists[node]))
1119                         goto start_over;
1120         }
1121
1122         spin_unlock(&swap_avail_lock);
1123
1124 check_out:
1125         if (n_ret < n_goal)
1126                 atomic_long_add((long)(n_goal - n_ret) * size,
1127                                 &nr_swap_pages);
1128 noswap:
1129         return n_ret;
1130 }
1131
1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134         struct swap_info_struct *p;
1135         unsigned long offset;
1136
1137         if (!entry.val)
1138                 goto out;
1139         p = swp_swap_info(entry);
1140         if (!p)
1141                 goto bad_nofile;
1142         if (data_race(!(p->flags & SWP_USED)))
1143                 goto bad_device;
1144         offset = swp_offset(entry);
1145         if (offset >= p->max)
1146                 goto bad_offset;
1147         if (data_race(!p->swap_map[swp_offset(entry)]))
1148                 goto bad_free;
1149         return p;
1150
1151 bad_free:
1152         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153         goto out;
1154 bad_offset:
1155         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156         goto out;
1157 bad_device:
1158         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159         goto out;
1160 bad_nofile:
1161         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163         return NULL;
1164 }
1165
1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167                                         struct swap_info_struct *q)
1168 {
1169         struct swap_info_struct *p;
1170
1171         p = _swap_info_get(entry);
1172
1173         if (p != q) {
1174                 if (q != NULL)
1175                         spin_unlock(&q->lock);
1176                 if (p != NULL)
1177                         spin_lock(&p->lock);
1178         }
1179         return p;
1180 }
1181
1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183                                               unsigned long offset,
1184                                               unsigned char usage)
1185 {
1186         unsigned char count;
1187         unsigned char has_cache;
1188
1189         count = p->swap_map[offset];
1190
1191         has_cache = count & SWAP_HAS_CACHE;
1192         count &= ~SWAP_HAS_CACHE;
1193
1194         if (usage == SWAP_HAS_CACHE) {
1195                 VM_BUG_ON(!has_cache);
1196                 has_cache = 0;
1197         } else if (count == SWAP_MAP_SHMEM) {
1198                 /*
1199                  * Or we could insist on shmem.c using a special
1200                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1201                  */
1202                 count = 0;
1203         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204                 if (count == COUNT_CONTINUED) {
1205                         if (swap_count_continued(p, offset, count))
1206                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207                         else
1208                                 count = SWAP_MAP_MAX;
1209                 } else
1210                         count--;
1211         }
1212
1213         usage = count | has_cache;
1214         if (usage)
1215                 WRITE_ONCE(p->swap_map[offset], usage);
1216         else
1217                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219         return usage;
1220 }
1221
1222 /*
1223  * When we get a swap entry, if there aren't some other ways to
1224  * prevent swapoff, such as the folio in swap cache is locked, page
1225  * table lock is held, etc., the swap entry may become invalid because
1226  * of swapoff.  Then, we need to enclose all swap related functions
1227  * with get_swap_device() and put_swap_device(), unless the swap
1228  * functions call get/put_swap_device() by themselves.
1229  *
1230  * Check whether swap entry is valid in the swap device.  If so,
1231  * return pointer to swap_info_struct, and keep the swap entry valid
1232  * via preventing the swap device from being swapoff, until
1233  * put_swap_device() is called.  Otherwise return NULL.
1234  *
1235  * Notice that swapoff or swapoff+swapon can still happen before the
1236  * percpu_ref_tryget_live() in get_swap_device() or after the
1237  * percpu_ref_put() in put_swap_device() if there isn't any other way
1238  * to prevent swapoff.  The caller must be prepared for that.  For
1239  * example, the following situation is possible.
1240  *
1241  *   CPU1                               CPU2
1242  *   do_swap_page()
1243  *     ...                              swapoff+swapon
1244  *     __read_swap_cache_async()
1245  *       swapcache_prepare()
1246  *         __swap_duplicate()
1247  *           // check swap_map
1248  *     // verify PTE not changed
1249  *
1250  * In __swap_duplicate(), the swap_map need to be checked before
1251  * changing partly because the specified swap entry may be for another
1252  * swap device which has been swapoff.  And in do_swap_page(), after
1253  * the page is read from the swap device, the PTE is verified not
1254  * changed with the page table locked to check whether the swap device
1255  * has been swapoff or swapoff+swapon.
1256  */
1257 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1258 {
1259         struct swap_info_struct *si;
1260         unsigned long offset;
1261
1262         if (!entry.val)
1263                 goto out;
1264         si = swp_swap_info(entry);
1265         if (!si)
1266                 goto bad_nofile;
1267         if (!percpu_ref_tryget_live(&si->users))
1268                 goto out;
1269         /*
1270          * Guarantee the si->users are checked before accessing other
1271          * fields of swap_info_struct.
1272          *
1273          * Paired with the spin_unlock() after setup_swap_info() in
1274          * enable_swap_info().
1275          */
1276         smp_rmb();
1277         offset = swp_offset(entry);
1278         if (offset >= si->max)
1279                 goto put_out;
1280
1281         return si;
1282 bad_nofile:
1283         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1284 out:
1285         return NULL;
1286 put_out:
1287         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1288         percpu_ref_put(&si->users);
1289         return NULL;
1290 }
1291
1292 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293                                        swp_entry_t entry)
1294 {
1295         struct swap_cluster_info *ci;
1296         unsigned long offset = swp_offset(entry);
1297         unsigned char usage;
1298
1299         ci = lock_cluster_or_swap_info(p, offset);
1300         usage = __swap_entry_free_locked(p, offset, 1);
1301         unlock_cluster_or_swap_info(p, ci);
1302         if (!usage)
1303                 free_swap_slot(entry);
1304
1305         return usage;
1306 }
1307
1308 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1309 {
1310         struct swap_cluster_info *ci;
1311         unsigned long offset = swp_offset(entry);
1312         unsigned char count;
1313
1314         ci = lock_cluster(p, offset);
1315         count = p->swap_map[offset];
1316         VM_BUG_ON(count != SWAP_HAS_CACHE);
1317         p->swap_map[offset] = 0;
1318         dec_cluster_info_page(p, p->cluster_info, offset);
1319         unlock_cluster(ci);
1320
1321         mem_cgroup_uncharge_swap(entry, 1);
1322         swap_range_free(p, offset, 1);
1323 }
1324
1325 /*
1326  * Caller has made sure that the swap device corresponding to entry
1327  * is still around or has not been recycled.
1328  */
1329 void swap_free(swp_entry_t entry)
1330 {
1331         struct swap_info_struct *p;
1332
1333         p = _swap_info_get(entry);
1334         if (p)
1335                 __swap_entry_free(p, entry);
1336 }
1337
1338 /*
1339  * Called after dropping swapcache to decrease refcnt to swap entries.
1340  */
1341 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1342 {
1343         unsigned long offset = swp_offset(entry);
1344         unsigned long idx = offset / SWAPFILE_CLUSTER;
1345         struct swap_cluster_info *ci;
1346         struct swap_info_struct *si;
1347         unsigned char *map;
1348         unsigned int i, free_entries = 0;
1349         unsigned char val;
1350         int size = swap_entry_size(folio_nr_pages(folio));
1351
1352         si = _swap_info_get(entry);
1353         if (!si)
1354                 return;
1355
1356         ci = lock_cluster_or_swap_info(si, offset);
1357         if (size == SWAPFILE_CLUSTER) {
1358                 VM_BUG_ON(!cluster_is_huge(ci));
1359                 map = si->swap_map + offset;
1360                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1361                         val = map[i];
1362                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1363                         if (val == SWAP_HAS_CACHE)
1364                                 free_entries++;
1365                 }
1366                 cluster_clear_huge(ci);
1367                 if (free_entries == SWAPFILE_CLUSTER) {
1368                         unlock_cluster_or_swap_info(si, ci);
1369                         spin_lock(&si->lock);
1370                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1371                         swap_free_cluster(si, idx);
1372                         spin_unlock(&si->lock);
1373                         return;
1374                 }
1375         }
1376         for (i = 0; i < size; i++, entry.val++) {
1377                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1378                         unlock_cluster_or_swap_info(si, ci);
1379                         free_swap_slot(entry);
1380                         if (i == size - 1)
1381                                 return;
1382                         lock_cluster_or_swap_info(si, offset);
1383                 }
1384         }
1385         unlock_cluster_or_swap_info(si, ci);
1386 }
1387
1388 #ifdef CONFIG_THP_SWAP
1389 int split_swap_cluster(swp_entry_t entry)
1390 {
1391         struct swap_info_struct *si;
1392         struct swap_cluster_info *ci;
1393         unsigned long offset = swp_offset(entry);
1394
1395         si = _swap_info_get(entry);
1396         if (!si)
1397                 return -EBUSY;
1398         ci = lock_cluster(si, offset);
1399         cluster_clear_huge(ci);
1400         unlock_cluster(ci);
1401         return 0;
1402 }
1403 #endif
1404
1405 static int swp_entry_cmp(const void *ent1, const void *ent2)
1406 {
1407         const swp_entry_t *e1 = ent1, *e2 = ent2;
1408
1409         return (int)swp_type(*e1) - (int)swp_type(*e2);
1410 }
1411
1412 void swapcache_free_entries(swp_entry_t *entries, int n)
1413 {
1414         struct swap_info_struct *p, *prev;
1415         int i;
1416
1417         if (n <= 0)
1418                 return;
1419
1420         prev = NULL;
1421         p = NULL;
1422
1423         /*
1424          * Sort swap entries by swap device, so each lock is only taken once.
1425          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1426          * so low that it isn't necessary to optimize further.
1427          */
1428         if (nr_swapfiles > 1)
1429                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1430         for (i = 0; i < n; ++i) {
1431                 p = swap_info_get_cont(entries[i], prev);
1432                 if (p)
1433                         swap_entry_free(p, entries[i]);
1434                 prev = p;
1435         }
1436         if (p)
1437                 spin_unlock(&p->lock);
1438 }
1439
1440 int __swap_count(swp_entry_t entry)
1441 {
1442         struct swap_info_struct *si = swp_swap_info(entry);
1443         pgoff_t offset = swp_offset(entry);
1444
1445         return swap_count(si->swap_map[offset]);
1446 }
1447
1448 /*
1449  * How many references to @entry are currently swapped out?
1450  * This does not give an exact answer when swap count is continued,
1451  * but does include the high COUNT_CONTINUED flag to allow for that.
1452  */
1453 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454 {
1455         pgoff_t offset = swp_offset(entry);
1456         struct swap_cluster_info *ci;
1457         int count;
1458
1459         ci = lock_cluster_or_swap_info(si, offset);
1460         count = swap_count(si->swap_map[offset]);
1461         unlock_cluster_or_swap_info(si, ci);
1462         return count;
1463 }
1464
1465 /*
1466  * How many references to @entry are currently swapped out?
1467  * This considers COUNT_CONTINUED so it returns exact answer.
1468  */
1469 int swp_swapcount(swp_entry_t entry)
1470 {
1471         int count, tmp_count, n;
1472         struct swap_info_struct *p;
1473         struct swap_cluster_info *ci;
1474         struct page *page;
1475         pgoff_t offset;
1476         unsigned char *map;
1477
1478         p = _swap_info_get(entry);
1479         if (!p)
1480                 return 0;
1481
1482         offset = swp_offset(entry);
1483
1484         ci = lock_cluster_or_swap_info(p, offset);
1485
1486         count = swap_count(p->swap_map[offset]);
1487         if (!(count & COUNT_CONTINUED))
1488                 goto out;
1489
1490         count &= ~COUNT_CONTINUED;
1491         n = SWAP_MAP_MAX + 1;
1492
1493         page = vmalloc_to_page(p->swap_map + offset);
1494         offset &= ~PAGE_MASK;
1495         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1496
1497         do {
1498                 page = list_next_entry(page, lru);
1499                 map = kmap_atomic(page);
1500                 tmp_count = map[offset];
1501                 kunmap_atomic(map);
1502
1503                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1504                 n *= (SWAP_CONT_MAX + 1);
1505         } while (tmp_count & COUNT_CONTINUED);
1506 out:
1507         unlock_cluster_or_swap_info(p, ci);
1508         return count;
1509 }
1510
1511 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1512                                          swp_entry_t entry)
1513 {
1514         struct swap_cluster_info *ci;
1515         unsigned char *map = si->swap_map;
1516         unsigned long roffset = swp_offset(entry);
1517         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1518         int i;
1519         bool ret = false;
1520
1521         ci = lock_cluster_or_swap_info(si, offset);
1522         if (!ci || !cluster_is_huge(ci)) {
1523                 if (swap_count(map[roffset]))
1524                         ret = true;
1525                 goto unlock_out;
1526         }
1527         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1528                 if (swap_count(map[offset + i])) {
1529                         ret = true;
1530                         break;
1531                 }
1532         }
1533 unlock_out:
1534         unlock_cluster_or_swap_info(si, ci);
1535         return ret;
1536 }
1537
1538 static bool folio_swapped(struct folio *folio)
1539 {
1540         swp_entry_t entry = folio_swap_entry(folio);
1541         struct swap_info_struct *si = _swap_info_get(entry);
1542
1543         if (!si)
1544                 return false;
1545
1546         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1547                 return swap_swapcount(si, entry) != 0;
1548
1549         return swap_page_trans_huge_swapped(si, entry);
1550 }
1551
1552 /**
1553  * folio_free_swap() - Free the swap space used for this folio.
1554  * @folio: The folio to remove.
1555  *
1556  * If swap is getting full, or if there are no more mappings of this folio,
1557  * then call folio_free_swap to free its swap space.
1558  *
1559  * Return: true if we were able to release the swap space.
1560  */
1561 bool folio_free_swap(struct folio *folio)
1562 {
1563         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564
1565         if (!folio_test_swapcache(folio))
1566                 return false;
1567         if (folio_test_writeback(folio))
1568                 return false;
1569         if (folio_swapped(folio))
1570                 return false;
1571
1572         /*
1573          * Once hibernation has begun to create its image of memory,
1574          * there's a danger that one of the calls to folio_free_swap()
1575          * - most probably a call from __try_to_reclaim_swap() while
1576          * hibernation is allocating its own swap pages for the image,
1577          * but conceivably even a call from memory reclaim - will free
1578          * the swap from a folio which has already been recorded in the
1579          * image as a clean swapcache folio, and then reuse its swap for
1580          * another page of the image.  On waking from hibernation, the
1581          * original folio might be freed under memory pressure, then
1582          * later read back in from swap, now with the wrong data.
1583          *
1584          * Hibernation suspends storage while it is writing the image
1585          * to disk so check that here.
1586          */
1587         if (pm_suspended_storage())
1588                 return false;
1589
1590         delete_from_swap_cache(folio);
1591         folio_set_dirty(folio);
1592         return true;
1593 }
1594
1595 /*
1596  * Free the swap entry like above, but also try to
1597  * free the page cache entry if it is the last user.
1598  */
1599 int free_swap_and_cache(swp_entry_t entry)
1600 {
1601         struct swap_info_struct *p;
1602         unsigned char count;
1603
1604         if (non_swap_entry(entry))
1605                 return 1;
1606
1607         p = _swap_info_get(entry);
1608         if (p) {
1609                 count = __swap_entry_free(p, entry);
1610                 if (count == SWAP_HAS_CACHE &&
1611                     !swap_page_trans_huge_swapped(p, entry))
1612                         __try_to_reclaim_swap(p, swp_offset(entry),
1613                                               TTRS_UNMAPPED | TTRS_FULL);
1614         }
1615         return p != NULL;
1616 }
1617
1618 #ifdef CONFIG_HIBERNATION
1619
1620 swp_entry_t get_swap_page_of_type(int type)
1621 {
1622         struct swap_info_struct *si = swap_type_to_swap_info(type);
1623         swp_entry_t entry = {0};
1624
1625         if (!si)
1626                 goto fail;
1627
1628         /* This is called for allocating swap entry, not cache */
1629         spin_lock(&si->lock);
1630         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1631                 atomic_long_dec(&nr_swap_pages);
1632         spin_unlock(&si->lock);
1633 fail:
1634         return entry;
1635 }
1636
1637 /*
1638  * Find the swap type that corresponds to given device (if any).
1639  *
1640  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1641  * from 0, in which the swap header is expected to be located.
1642  *
1643  * This is needed for the suspend to disk (aka swsusp).
1644  */
1645 int swap_type_of(dev_t device, sector_t offset)
1646 {
1647         int type;
1648
1649         if (!device)
1650                 return -1;
1651
1652         spin_lock(&swap_lock);
1653         for (type = 0; type < nr_swapfiles; type++) {
1654                 struct swap_info_struct *sis = swap_info[type];
1655
1656                 if (!(sis->flags & SWP_WRITEOK))
1657                         continue;
1658
1659                 if (device == sis->bdev->bd_dev) {
1660                         struct swap_extent *se = first_se(sis);
1661
1662                         if (se->start_block == offset) {
1663                                 spin_unlock(&swap_lock);
1664                                 return type;
1665                         }
1666                 }
1667         }
1668         spin_unlock(&swap_lock);
1669         return -ENODEV;
1670 }
1671
1672 int find_first_swap(dev_t *device)
1673 {
1674         int type;
1675
1676         spin_lock(&swap_lock);
1677         for (type = 0; type < nr_swapfiles; type++) {
1678                 struct swap_info_struct *sis = swap_info[type];
1679
1680                 if (!(sis->flags & SWP_WRITEOK))
1681                         continue;
1682                 *device = sis->bdev->bd_dev;
1683                 spin_unlock(&swap_lock);
1684                 return type;
1685         }
1686         spin_unlock(&swap_lock);
1687         return -ENODEV;
1688 }
1689
1690 /*
1691  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692  * corresponding to given index in swap_info (swap type).
1693  */
1694 sector_t swapdev_block(int type, pgoff_t offset)
1695 {
1696         struct swap_info_struct *si = swap_type_to_swap_info(type);
1697         struct swap_extent *se;
1698
1699         if (!si || !(si->flags & SWP_WRITEOK))
1700                 return 0;
1701         se = offset_to_swap_extent(si, offset);
1702         return se->start_block + (offset - se->start_page);
1703 }
1704
1705 /*
1706  * Return either the total number of swap pages of given type, or the number
1707  * of free pages of that type (depending on @free)
1708  *
1709  * This is needed for software suspend
1710  */
1711 unsigned int count_swap_pages(int type, int free)
1712 {
1713         unsigned int n = 0;
1714
1715         spin_lock(&swap_lock);
1716         if ((unsigned int)type < nr_swapfiles) {
1717                 struct swap_info_struct *sis = swap_info[type];
1718
1719                 spin_lock(&sis->lock);
1720                 if (sis->flags & SWP_WRITEOK) {
1721                         n = sis->pages;
1722                         if (free)
1723                                 n -= sis->inuse_pages;
1724                 }
1725                 spin_unlock(&sis->lock);
1726         }
1727         spin_unlock(&swap_lock);
1728         return n;
1729 }
1730 #endif /* CONFIG_HIBERNATION */
1731
1732 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733 {
1734         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1735 }
1736
1737 /*
1738  * No need to decide whether this PTE shares the swap entry with others,
1739  * just let do_wp_page work it out if a write is requested later - to
1740  * force COW, vm_page_prot omits write permission from any private vma.
1741  */
1742 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1744 {
1745         struct page *page = folio_file_page(folio, swp_offset(entry));
1746         struct page *swapcache;
1747         spinlock_t *ptl;
1748         pte_t *pte, new_pte, old_pte;
1749         bool hwposioned = false;
1750         int ret = 1;
1751
1752         swapcache = page;
1753         page = ksm_might_need_to_copy(page, vma, addr);
1754         if (unlikely(!page))
1755                 return -ENOMEM;
1756         else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1757                 hwposioned = true;
1758
1759         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1760         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1761                                                 swp_entry_to_pte(entry)))) {
1762                 ret = 0;
1763                 goto out;
1764         }
1765
1766         old_pte = ptep_get(pte);
1767
1768         if (unlikely(hwposioned || !PageUptodate(page))) {
1769                 swp_entry_t swp_entry;
1770
1771                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1772                 if (hwposioned) {
1773                         swp_entry = make_hwpoison_entry(swapcache);
1774                         page = swapcache;
1775                 } else {
1776                         swp_entry = make_swapin_error_entry();
1777                 }
1778                 new_pte = swp_entry_to_pte(swp_entry);
1779                 ret = 0;
1780                 goto setpte;
1781         }
1782
1783         /* See do_swap_page() */
1784         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1785         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1786
1787         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1788         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1789         get_page(page);
1790         if (page == swapcache) {
1791                 rmap_t rmap_flags = RMAP_NONE;
1792
1793                 /*
1794                  * See do_swap_page(): PageWriteback() would be problematic.
1795                  * However, we do a wait_on_page_writeback() just before this
1796                  * call and have the page locked.
1797                  */
1798                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1799                 if (pte_swp_exclusive(old_pte))
1800                         rmap_flags |= RMAP_EXCLUSIVE;
1801
1802                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1803         } else { /* ksm created a completely new copy */
1804                 page_add_new_anon_rmap(page, vma, addr);
1805                 lru_cache_add_inactive_or_unevictable(page, vma);
1806         }
1807         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1808         if (pte_swp_soft_dirty(old_pte))
1809                 new_pte = pte_mksoft_dirty(new_pte);
1810         if (pte_swp_uffd_wp(old_pte))
1811                 new_pte = pte_mkuffd_wp(new_pte);
1812 setpte:
1813         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1814         swap_free(entry);
1815 out:
1816         if (pte)
1817                 pte_unmap_unlock(pte, ptl);
1818         if (page != swapcache) {
1819                 unlock_page(page);
1820                 put_page(page);
1821         }
1822         return ret;
1823 }
1824
1825 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1826                         unsigned long addr, unsigned long end,
1827                         unsigned int type)
1828 {
1829         pte_t *pte = NULL;
1830         struct swap_info_struct *si;
1831
1832         si = swap_info[type];
1833         do {
1834                 struct folio *folio;
1835                 unsigned long offset;
1836                 unsigned char swp_count;
1837                 swp_entry_t entry;
1838                 int ret;
1839                 pte_t ptent;
1840
1841                 if (!pte++) {
1842                         pte = pte_offset_map(pmd, addr);
1843                         if (!pte)
1844                                 break;
1845                 }
1846
1847                 ptent = ptep_get_lockless(pte);
1848
1849                 if (!is_swap_pte(ptent))
1850                         continue;
1851
1852                 entry = pte_to_swp_entry(ptent);
1853                 if (swp_type(entry) != type)
1854                         continue;
1855
1856                 offset = swp_offset(entry);
1857                 pte_unmap(pte);
1858                 pte = NULL;
1859
1860                 folio = swap_cache_get_folio(entry, vma, addr);
1861                 if (!folio) {
1862                         struct page *page;
1863                         struct vm_fault vmf = {
1864                                 .vma = vma,
1865                                 .address = addr,
1866                                 .real_address = addr,
1867                                 .pmd = pmd,
1868                         };
1869
1870                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1871                                                 &vmf);
1872                         if (page)
1873                                 folio = page_folio(page);
1874                 }
1875                 if (!folio) {
1876                         swp_count = READ_ONCE(si->swap_map[offset]);
1877                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1878                                 continue;
1879                         return -ENOMEM;
1880                 }
1881
1882                 folio_lock(folio);
1883                 folio_wait_writeback(folio);
1884                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1885                 if (ret < 0) {
1886                         folio_unlock(folio);
1887                         folio_put(folio);
1888                         return ret;
1889                 }
1890
1891                 folio_free_swap(folio);
1892                 folio_unlock(folio);
1893                 folio_put(folio);
1894         } while (addr += PAGE_SIZE, addr != end);
1895
1896         if (pte)
1897                 pte_unmap(pte);
1898         return 0;
1899 }
1900
1901 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1902                                 unsigned long addr, unsigned long end,
1903                                 unsigned int type)
1904 {
1905         pmd_t *pmd;
1906         unsigned long next;
1907         int ret;
1908
1909         pmd = pmd_offset(pud, addr);
1910         do {
1911                 cond_resched();
1912                 next = pmd_addr_end(addr, end);
1913                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1914                 if (ret)
1915                         return ret;
1916         } while (pmd++, addr = next, addr != end);
1917         return 0;
1918 }
1919
1920 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1921                                 unsigned long addr, unsigned long end,
1922                                 unsigned int type)
1923 {
1924         pud_t *pud;
1925         unsigned long next;
1926         int ret;
1927
1928         pud = pud_offset(p4d, addr);
1929         do {
1930                 next = pud_addr_end(addr, end);
1931                 if (pud_none_or_clear_bad(pud))
1932                         continue;
1933                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1934                 if (ret)
1935                         return ret;
1936         } while (pud++, addr = next, addr != end);
1937         return 0;
1938 }
1939
1940 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1941                                 unsigned long addr, unsigned long end,
1942                                 unsigned int type)
1943 {
1944         p4d_t *p4d;
1945         unsigned long next;
1946         int ret;
1947
1948         p4d = p4d_offset(pgd, addr);
1949         do {
1950                 next = p4d_addr_end(addr, end);
1951                 if (p4d_none_or_clear_bad(p4d))
1952                         continue;
1953                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1954                 if (ret)
1955                         return ret;
1956         } while (p4d++, addr = next, addr != end);
1957         return 0;
1958 }
1959
1960 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1961 {
1962         pgd_t *pgd;
1963         unsigned long addr, end, next;
1964         int ret;
1965
1966         addr = vma->vm_start;
1967         end = vma->vm_end;
1968
1969         pgd = pgd_offset(vma->vm_mm, addr);
1970         do {
1971                 next = pgd_addr_end(addr, end);
1972                 if (pgd_none_or_clear_bad(pgd))
1973                         continue;
1974                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1975                 if (ret)
1976                         return ret;
1977         } while (pgd++, addr = next, addr != end);
1978         return 0;
1979 }
1980
1981 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1982 {
1983         struct vm_area_struct *vma;
1984         int ret = 0;
1985         VMA_ITERATOR(vmi, mm, 0);
1986
1987         mmap_read_lock(mm);
1988         for_each_vma(vmi, vma) {
1989                 if (vma->anon_vma) {
1990                         ret = unuse_vma(vma, type);
1991                         if (ret)
1992                                 break;
1993                 }
1994
1995                 cond_resched();
1996         }
1997         mmap_read_unlock(mm);
1998         return ret;
1999 }
2000
2001 /*
2002  * Scan swap_map from current position to next entry still in use.
2003  * Return 0 if there are no inuse entries after prev till end of
2004  * the map.
2005  */
2006 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2007                                         unsigned int prev)
2008 {
2009         unsigned int i;
2010         unsigned char count;
2011
2012         /*
2013          * No need for swap_lock here: we're just looking
2014          * for whether an entry is in use, not modifying it; false
2015          * hits are okay, and sys_swapoff() has already prevented new
2016          * allocations from this area (while holding swap_lock).
2017          */
2018         for (i = prev + 1; i < si->max; i++) {
2019                 count = READ_ONCE(si->swap_map[i]);
2020                 if (count && swap_count(count) != SWAP_MAP_BAD)
2021                         break;
2022                 if ((i % LATENCY_LIMIT) == 0)
2023                         cond_resched();
2024         }
2025
2026         if (i == si->max)
2027                 i = 0;
2028
2029         return i;
2030 }
2031
2032 static int try_to_unuse(unsigned int type)
2033 {
2034         struct mm_struct *prev_mm;
2035         struct mm_struct *mm;
2036         struct list_head *p;
2037         int retval = 0;
2038         struct swap_info_struct *si = swap_info[type];
2039         struct folio *folio;
2040         swp_entry_t entry;
2041         unsigned int i;
2042
2043         if (!READ_ONCE(si->inuse_pages))
2044                 return 0;
2045
2046 retry:
2047         retval = shmem_unuse(type);
2048         if (retval)
2049                 return retval;
2050
2051         prev_mm = &init_mm;
2052         mmget(prev_mm);
2053
2054         spin_lock(&mmlist_lock);
2055         p = &init_mm.mmlist;
2056         while (READ_ONCE(si->inuse_pages) &&
2057                !signal_pending(current) &&
2058                (p = p->next) != &init_mm.mmlist) {
2059
2060                 mm = list_entry(p, struct mm_struct, mmlist);
2061                 if (!mmget_not_zero(mm))
2062                         continue;
2063                 spin_unlock(&mmlist_lock);
2064                 mmput(prev_mm);
2065                 prev_mm = mm;
2066                 retval = unuse_mm(mm, type);
2067                 if (retval) {
2068                         mmput(prev_mm);
2069                         return retval;
2070                 }
2071
2072                 /*
2073                  * Make sure that we aren't completely killing
2074                  * interactive performance.
2075                  */
2076                 cond_resched();
2077                 spin_lock(&mmlist_lock);
2078         }
2079         spin_unlock(&mmlist_lock);
2080
2081         mmput(prev_mm);
2082
2083         i = 0;
2084         while (READ_ONCE(si->inuse_pages) &&
2085                !signal_pending(current) &&
2086                (i = find_next_to_unuse(si, i)) != 0) {
2087
2088                 entry = swp_entry(type, i);
2089                 folio = filemap_get_folio(swap_address_space(entry), i);
2090                 if (IS_ERR(folio))
2091                         continue;
2092
2093                 /*
2094                  * It is conceivable that a racing task removed this folio from
2095                  * swap cache just before we acquired the page lock. The folio
2096                  * might even be back in swap cache on another swap area. But
2097                  * that is okay, folio_free_swap() only removes stale folios.
2098                  */
2099                 folio_lock(folio);
2100                 folio_wait_writeback(folio);
2101                 folio_free_swap(folio);
2102                 folio_unlock(folio);
2103                 folio_put(folio);
2104         }
2105
2106         /*
2107          * Lets check again to see if there are still swap entries in the map.
2108          * If yes, we would need to do retry the unuse logic again.
2109          * Under global memory pressure, swap entries can be reinserted back
2110          * into process space after the mmlist loop above passes over them.
2111          *
2112          * Limit the number of retries? No: when mmget_not_zero()
2113          * above fails, that mm is likely to be freeing swap from
2114          * exit_mmap(), which proceeds at its own independent pace;
2115          * and even shmem_writepage() could have been preempted after
2116          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2117          * and robust (though cpu-intensive) just to keep retrying.
2118          */
2119         if (READ_ONCE(si->inuse_pages)) {
2120                 if (!signal_pending(current))
2121                         goto retry;
2122                 return -EINTR;
2123         }
2124
2125         return 0;
2126 }
2127
2128 /*
2129  * After a successful try_to_unuse, if no swap is now in use, we know
2130  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2131  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2132  * added to the mmlist just after page_duplicate - before would be racy.
2133  */
2134 static void drain_mmlist(void)
2135 {
2136         struct list_head *p, *next;
2137         unsigned int type;
2138
2139         for (type = 0; type < nr_swapfiles; type++)
2140                 if (swap_info[type]->inuse_pages)
2141                         return;
2142         spin_lock(&mmlist_lock);
2143         list_for_each_safe(p, next, &init_mm.mmlist)
2144                 list_del_init(p);
2145         spin_unlock(&mmlist_lock);
2146 }
2147
2148 /*
2149  * Free all of a swapdev's extent information
2150  */
2151 static void destroy_swap_extents(struct swap_info_struct *sis)
2152 {
2153         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2154                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2155                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2156
2157                 rb_erase(rb, &sis->swap_extent_root);
2158                 kfree(se);
2159         }
2160
2161         if (sis->flags & SWP_ACTIVATED) {
2162                 struct file *swap_file = sis->swap_file;
2163                 struct address_space *mapping = swap_file->f_mapping;
2164
2165                 sis->flags &= ~SWP_ACTIVATED;
2166                 if (mapping->a_ops->swap_deactivate)
2167                         mapping->a_ops->swap_deactivate(swap_file);
2168         }
2169 }
2170
2171 /*
2172  * Add a block range (and the corresponding page range) into this swapdev's
2173  * extent tree.
2174  *
2175  * This function rather assumes that it is called in ascending page order.
2176  */
2177 int
2178 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2179                 unsigned long nr_pages, sector_t start_block)
2180 {
2181         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2182         struct swap_extent *se;
2183         struct swap_extent *new_se;
2184
2185         /*
2186          * place the new node at the right most since the
2187          * function is called in ascending page order.
2188          */
2189         while (*link) {
2190                 parent = *link;
2191                 link = &parent->rb_right;
2192         }
2193
2194         if (parent) {
2195                 se = rb_entry(parent, struct swap_extent, rb_node);
2196                 BUG_ON(se->start_page + se->nr_pages != start_page);
2197                 if (se->start_block + se->nr_pages == start_block) {
2198                         /* Merge it */
2199                         se->nr_pages += nr_pages;
2200                         return 0;
2201                 }
2202         }
2203
2204         /* No merge, insert a new extent. */
2205         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2206         if (new_se == NULL)
2207                 return -ENOMEM;
2208         new_se->start_page = start_page;
2209         new_se->nr_pages = nr_pages;
2210         new_se->start_block = start_block;
2211
2212         rb_link_node(&new_se->rb_node, parent, link);
2213         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2214         return 1;
2215 }
2216 EXPORT_SYMBOL_GPL(add_swap_extent);
2217
2218 /*
2219  * A `swap extent' is a simple thing which maps a contiguous range of pages
2220  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2221  * built at swapon time and is then used at swap_writepage/swap_readpage
2222  * time for locating where on disk a page belongs.
2223  *
2224  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2225  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2226  * swap files identically.
2227  *
2228  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2229  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2230  * swapfiles are handled *identically* after swapon time.
2231  *
2232  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2233  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2234  * blocks are found which do not fall within the PAGE_SIZE alignment
2235  * requirements, they are simply tossed out - we will never use those blocks
2236  * for swapping.
2237  *
2238  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2239  * prevents users from writing to the swap device, which will corrupt memory.
2240  *
2241  * The amount of disk space which a single swap extent represents varies.
2242  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2243  * extents in the rbtree. - akpm.
2244  */
2245 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2246 {
2247         struct file *swap_file = sis->swap_file;
2248         struct address_space *mapping = swap_file->f_mapping;
2249         struct inode *inode = mapping->host;
2250         int ret;
2251
2252         if (S_ISBLK(inode->i_mode)) {
2253                 ret = add_swap_extent(sis, 0, sis->max, 0);
2254                 *span = sis->pages;
2255                 return ret;
2256         }
2257
2258         if (mapping->a_ops->swap_activate) {
2259                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2260                 if (ret < 0)
2261                         return ret;
2262                 sis->flags |= SWP_ACTIVATED;
2263                 if ((sis->flags & SWP_FS_OPS) &&
2264                     sio_pool_init() != 0) {
2265                         destroy_swap_extents(sis);
2266                         return -ENOMEM;
2267                 }
2268                 return ret;
2269         }
2270
2271         return generic_swapfile_activate(sis, swap_file, span);
2272 }
2273
2274 static int swap_node(struct swap_info_struct *p)
2275 {
2276         struct block_device *bdev;
2277
2278         if (p->bdev)
2279                 bdev = p->bdev;
2280         else
2281                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2282
2283         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2284 }
2285
2286 static void setup_swap_info(struct swap_info_struct *p, int prio,
2287                             unsigned char *swap_map,
2288                             struct swap_cluster_info *cluster_info)
2289 {
2290         int i;
2291
2292         if (prio >= 0)
2293                 p->prio = prio;
2294         else
2295                 p->prio = --least_priority;
2296         /*
2297          * the plist prio is negated because plist ordering is
2298          * low-to-high, while swap ordering is high-to-low
2299          */
2300         p->list.prio = -p->prio;
2301         for_each_node(i) {
2302                 if (p->prio >= 0)
2303                         p->avail_lists[i].prio = -p->prio;
2304                 else {
2305                         if (swap_node(p) == i)
2306                                 p->avail_lists[i].prio = 1;
2307                         else
2308                                 p->avail_lists[i].prio = -p->prio;
2309                 }
2310         }
2311         p->swap_map = swap_map;
2312         p->cluster_info = cluster_info;
2313 }
2314
2315 static void _enable_swap_info(struct swap_info_struct *p)
2316 {
2317         p->flags |= SWP_WRITEOK;
2318         atomic_long_add(p->pages, &nr_swap_pages);
2319         total_swap_pages += p->pages;
2320
2321         assert_spin_locked(&swap_lock);
2322         /*
2323          * both lists are plists, and thus priority ordered.
2324          * swap_active_head needs to be priority ordered for swapoff(),
2325          * which on removal of any swap_info_struct with an auto-assigned
2326          * (i.e. negative) priority increments the auto-assigned priority
2327          * of any lower-priority swap_info_structs.
2328          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2329          * which allocates swap pages from the highest available priority
2330          * swap_info_struct.
2331          */
2332         plist_add(&p->list, &swap_active_head);
2333         add_to_avail_list(p);
2334 }
2335
2336 static void enable_swap_info(struct swap_info_struct *p, int prio,
2337                                 unsigned char *swap_map,
2338                                 struct swap_cluster_info *cluster_info,
2339                                 unsigned long *frontswap_map)
2340 {
2341         if (IS_ENABLED(CONFIG_FRONTSWAP))
2342                 frontswap_init(p->type, frontswap_map);
2343         spin_lock(&swap_lock);
2344         spin_lock(&p->lock);
2345         setup_swap_info(p, prio, swap_map, cluster_info);
2346         spin_unlock(&p->lock);
2347         spin_unlock(&swap_lock);
2348         /*
2349          * Finished initializing swap device, now it's safe to reference it.
2350          */
2351         percpu_ref_resurrect(&p->users);
2352         spin_lock(&swap_lock);
2353         spin_lock(&p->lock);
2354         _enable_swap_info(p);
2355         spin_unlock(&p->lock);
2356         spin_unlock(&swap_lock);
2357 }
2358
2359 static void reinsert_swap_info(struct swap_info_struct *p)
2360 {
2361         spin_lock(&swap_lock);
2362         spin_lock(&p->lock);
2363         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2364         _enable_swap_info(p);
2365         spin_unlock(&p->lock);
2366         spin_unlock(&swap_lock);
2367 }
2368
2369 bool has_usable_swap(void)
2370 {
2371         bool ret = true;
2372
2373         spin_lock(&swap_lock);
2374         if (plist_head_empty(&swap_active_head))
2375                 ret = false;
2376         spin_unlock(&swap_lock);
2377         return ret;
2378 }
2379
2380 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2381 {
2382         struct swap_info_struct *p = NULL;
2383         unsigned char *swap_map;
2384         struct swap_cluster_info *cluster_info;
2385         unsigned long *frontswap_map;
2386         struct file *swap_file, *victim;
2387         struct address_space *mapping;
2388         struct inode *inode;
2389         struct filename *pathname;
2390         int err, found = 0;
2391         unsigned int old_block_size;
2392
2393         if (!capable(CAP_SYS_ADMIN))
2394                 return -EPERM;
2395
2396         BUG_ON(!current->mm);
2397
2398         pathname = getname(specialfile);
2399         if (IS_ERR(pathname))
2400                 return PTR_ERR(pathname);
2401
2402         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2403         err = PTR_ERR(victim);
2404         if (IS_ERR(victim))
2405                 goto out;
2406
2407         mapping = victim->f_mapping;
2408         spin_lock(&swap_lock);
2409         plist_for_each_entry(p, &swap_active_head, list) {
2410                 if (p->flags & SWP_WRITEOK) {
2411                         if (p->swap_file->f_mapping == mapping) {
2412                                 found = 1;
2413                                 break;
2414                         }
2415                 }
2416         }
2417         if (!found) {
2418                 err = -EINVAL;
2419                 spin_unlock(&swap_lock);
2420                 goto out_dput;
2421         }
2422         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2423                 vm_unacct_memory(p->pages);
2424         else {
2425                 err = -ENOMEM;
2426                 spin_unlock(&swap_lock);
2427                 goto out_dput;
2428         }
2429         spin_lock(&p->lock);
2430         del_from_avail_list(p);
2431         if (p->prio < 0) {
2432                 struct swap_info_struct *si = p;
2433                 int nid;
2434
2435                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2436                         si->prio++;
2437                         si->list.prio--;
2438                         for_each_node(nid) {
2439                                 if (si->avail_lists[nid].prio != 1)
2440                                         si->avail_lists[nid].prio--;
2441                         }
2442                 }
2443                 least_priority++;
2444         }
2445         plist_del(&p->list, &swap_active_head);
2446         atomic_long_sub(p->pages, &nr_swap_pages);
2447         total_swap_pages -= p->pages;
2448         p->flags &= ~SWP_WRITEOK;
2449         spin_unlock(&p->lock);
2450         spin_unlock(&swap_lock);
2451
2452         disable_swap_slots_cache_lock();
2453
2454         set_current_oom_origin();
2455         err = try_to_unuse(p->type);
2456         clear_current_oom_origin();
2457
2458         if (err) {
2459                 /* re-insert swap space back into swap_list */
2460                 reinsert_swap_info(p);
2461                 reenable_swap_slots_cache_unlock();
2462                 goto out_dput;
2463         }
2464
2465         reenable_swap_slots_cache_unlock();
2466
2467         /*
2468          * Wait for swap operations protected by get/put_swap_device()
2469          * to complete.
2470          *
2471          * We need synchronize_rcu() here to protect the accessing to
2472          * the swap cache data structure.
2473          */
2474         percpu_ref_kill(&p->users);
2475         synchronize_rcu();
2476         wait_for_completion(&p->comp);
2477
2478         flush_work(&p->discard_work);
2479
2480         destroy_swap_extents(p);
2481         if (p->flags & SWP_CONTINUED)
2482                 free_swap_count_continuations(p);
2483
2484         if (!p->bdev || !bdev_nonrot(p->bdev))
2485                 atomic_dec(&nr_rotate_swap);
2486
2487         mutex_lock(&swapon_mutex);
2488         spin_lock(&swap_lock);
2489         spin_lock(&p->lock);
2490         drain_mmlist();
2491
2492         /* wait for anyone still in scan_swap_map_slots */
2493         p->highest_bit = 0;             /* cuts scans short */
2494         while (p->flags >= SWP_SCANNING) {
2495                 spin_unlock(&p->lock);
2496                 spin_unlock(&swap_lock);
2497                 schedule_timeout_uninterruptible(1);
2498                 spin_lock(&swap_lock);
2499                 spin_lock(&p->lock);
2500         }
2501
2502         swap_file = p->swap_file;
2503         old_block_size = p->old_block_size;
2504         p->swap_file = NULL;
2505         p->max = 0;
2506         swap_map = p->swap_map;
2507         p->swap_map = NULL;
2508         cluster_info = p->cluster_info;
2509         p->cluster_info = NULL;
2510         frontswap_map = frontswap_map_get(p);
2511         spin_unlock(&p->lock);
2512         spin_unlock(&swap_lock);
2513         arch_swap_invalidate_area(p->type);
2514         frontswap_invalidate_area(p->type);
2515         frontswap_map_set(p, NULL);
2516         mutex_unlock(&swapon_mutex);
2517         free_percpu(p->percpu_cluster);
2518         p->percpu_cluster = NULL;
2519         free_percpu(p->cluster_next_cpu);
2520         p->cluster_next_cpu = NULL;
2521         vfree(swap_map);
2522         kvfree(cluster_info);
2523         kvfree(frontswap_map);
2524         /* Destroy swap account information */
2525         swap_cgroup_swapoff(p->type);
2526         exit_swap_address_space(p->type);
2527
2528         inode = mapping->host;
2529         if (S_ISBLK(inode->i_mode)) {
2530                 struct block_device *bdev = I_BDEV(inode);
2531
2532                 set_blocksize(bdev, old_block_size);
2533                 blkdev_put(bdev, p);
2534         }
2535
2536         inode_lock(inode);
2537         inode->i_flags &= ~S_SWAPFILE;
2538         inode_unlock(inode);
2539         filp_close(swap_file, NULL);
2540
2541         /*
2542          * Clear the SWP_USED flag after all resources are freed so that swapon
2543          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2544          * not hold p->lock after we cleared its SWP_WRITEOK.
2545          */
2546         spin_lock(&swap_lock);
2547         p->flags = 0;
2548         spin_unlock(&swap_lock);
2549
2550         err = 0;
2551         atomic_inc(&proc_poll_event);
2552         wake_up_interruptible(&proc_poll_wait);
2553
2554 out_dput:
2555         filp_close(victim, NULL);
2556 out:
2557         putname(pathname);
2558         return err;
2559 }
2560
2561 #ifdef CONFIG_PROC_FS
2562 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2563 {
2564         struct seq_file *seq = file->private_data;
2565
2566         poll_wait(file, &proc_poll_wait, wait);
2567
2568         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2569                 seq->poll_event = atomic_read(&proc_poll_event);
2570                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2571         }
2572
2573         return EPOLLIN | EPOLLRDNORM;
2574 }
2575
2576 /* iterator */
2577 static void *swap_start(struct seq_file *swap, loff_t *pos)
2578 {
2579         struct swap_info_struct *si;
2580         int type;
2581         loff_t l = *pos;
2582
2583         mutex_lock(&swapon_mutex);
2584
2585         if (!l)
2586                 return SEQ_START_TOKEN;
2587
2588         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2589                 if (!(si->flags & SWP_USED) || !si->swap_map)
2590                         continue;
2591                 if (!--l)
2592                         return si;
2593         }
2594
2595         return NULL;
2596 }
2597
2598 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2599 {
2600         struct swap_info_struct *si = v;
2601         int type;
2602
2603         if (v == SEQ_START_TOKEN)
2604                 type = 0;
2605         else
2606                 type = si->type + 1;
2607
2608         ++(*pos);
2609         for (; (si = swap_type_to_swap_info(type)); type++) {
2610                 if (!(si->flags & SWP_USED) || !si->swap_map)
2611                         continue;
2612                 return si;
2613         }
2614
2615         return NULL;
2616 }
2617
2618 static void swap_stop(struct seq_file *swap, void *v)
2619 {
2620         mutex_unlock(&swapon_mutex);
2621 }
2622
2623 static int swap_show(struct seq_file *swap, void *v)
2624 {
2625         struct swap_info_struct *si = v;
2626         struct file *file;
2627         int len;
2628         unsigned long bytes, inuse;
2629
2630         if (si == SEQ_START_TOKEN) {
2631                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2632                 return 0;
2633         }
2634
2635         bytes = si->pages << (PAGE_SHIFT - 10);
2636         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2637
2638         file = si->swap_file;
2639         len = seq_file_path(swap, file, " \t\n\\");
2640         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2641                         len < 40 ? 40 - len : 1, " ",
2642                         S_ISBLK(file_inode(file)->i_mode) ?
2643                                 "partition" : "file\t",
2644                         bytes, bytes < 10000000 ? "\t" : "",
2645                         inuse, inuse < 10000000 ? "\t" : "",
2646                         si->prio);
2647         return 0;
2648 }
2649
2650 static const struct seq_operations swaps_op = {
2651         .start =        swap_start,
2652         .next =         swap_next,
2653         .stop =         swap_stop,
2654         .show =         swap_show
2655 };
2656
2657 static int swaps_open(struct inode *inode, struct file *file)
2658 {
2659         struct seq_file *seq;
2660         int ret;
2661
2662         ret = seq_open(file, &swaps_op);
2663         if (ret)
2664                 return ret;
2665
2666         seq = file->private_data;
2667         seq->poll_event = atomic_read(&proc_poll_event);
2668         return 0;
2669 }
2670
2671 static const struct proc_ops swaps_proc_ops = {
2672         .proc_flags     = PROC_ENTRY_PERMANENT,
2673         .proc_open      = swaps_open,
2674         .proc_read      = seq_read,
2675         .proc_lseek     = seq_lseek,
2676         .proc_release   = seq_release,
2677         .proc_poll      = swaps_poll,
2678 };
2679
2680 static int __init procswaps_init(void)
2681 {
2682         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2683         return 0;
2684 }
2685 __initcall(procswaps_init);
2686 #endif /* CONFIG_PROC_FS */
2687
2688 #ifdef MAX_SWAPFILES_CHECK
2689 static int __init max_swapfiles_check(void)
2690 {
2691         MAX_SWAPFILES_CHECK();
2692         return 0;
2693 }
2694 late_initcall(max_swapfiles_check);
2695 #endif
2696
2697 static struct swap_info_struct *alloc_swap_info(void)
2698 {
2699         struct swap_info_struct *p;
2700         struct swap_info_struct *defer = NULL;
2701         unsigned int type;
2702         int i;
2703
2704         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2705         if (!p)
2706                 return ERR_PTR(-ENOMEM);
2707
2708         if (percpu_ref_init(&p->users, swap_users_ref_free,
2709                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2710                 kvfree(p);
2711                 return ERR_PTR(-ENOMEM);
2712         }
2713
2714         spin_lock(&swap_lock);
2715         for (type = 0; type < nr_swapfiles; type++) {
2716                 if (!(swap_info[type]->flags & SWP_USED))
2717                         break;
2718         }
2719         if (type >= MAX_SWAPFILES) {
2720                 spin_unlock(&swap_lock);
2721                 percpu_ref_exit(&p->users);
2722                 kvfree(p);
2723                 return ERR_PTR(-EPERM);
2724         }
2725         if (type >= nr_swapfiles) {
2726                 p->type = type;
2727                 /*
2728                  * Publish the swap_info_struct after initializing it.
2729                  * Note that kvzalloc() above zeroes all its fields.
2730                  */
2731                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2732                 nr_swapfiles++;
2733         } else {
2734                 defer = p;
2735                 p = swap_info[type];
2736                 /*
2737                  * Do not memset this entry: a racing procfs swap_next()
2738                  * would be relying on p->type to remain valid.
2739                  */
2740         }
2741         p->swap_extent_root = RB_ROOT;
2742         plist_node_init(&p->list, 0);
2743         for_each_node(i)
2744                 plist_node_init(&p->avail_lists[i], 0);
2745         p->flags = SWP_USED;
2746         spin_unlock(&swap_lock);
2747         if (defer) {
2748                 percpu_ref_exit(&defer->users);
2749                 kvfree(defer);
2750         }
2751         spin_lock_init(&p->lock);
2752         spin_lock_init(&p->cont_lock);
2753         init_completion(&p->comp);
2754
2755         return p;
2756 }
2757
2758 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2759 {
2760         int error;
2761
2762         if (S_ISBLK(inode->i_mode)) {
2763                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2764                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2765                 if (IS_ERR(p->bdev)) {
2766                         error = PTR_ERR(p->bdev);
2767                         p->bdev = NULL;
2768                         return error;
2769                 }
2770                 p->old_block_size = block_size(p->bdev);
2771                 error = set_blocksize(p->bdev, PAGE_SIZE);
2772                 if (error < 0)
2773                         return error;
2774                 /*
2775                  * Zoned block devices contain zones that have a sequential
2776                  * write only restriction.  Hence zoned block devices are not
2777                  * suitable for swapping.  Disallow them here.
2778                  */
2779                 if (bdev_is_zoned(p->bdev))
2780                         return -EINVAL;
2781                 p->flags |= SWP_BLKDEV;
2782         } else if (S_ISREG(inode->i_mode)) {
2783                 p->bdev = inode->i_sb->s_bdev;
2784         }
2785
2786         return 0;
2787 }
2788
2789
2790 /*
2791  * Find out how many pages are allowed for a single swap device. There
2792  * are two limiting factors:
2793  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2794  * 2) the number of bits in the swap pte, as defined by the different
2795  * architectures.
2796  *
2797  * In order to find the largest possible bit mask, a swap entry with
2798  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2799  * decoded to a swp_entry_t again, and finally the swap offset is
2800  * extracted.
2801  *
2802  * This will mask all the bits from the initial ~0UL mask that can't
2803  * be encoded in either the swp_entry_t or the architecture definition
2804  * of a swap pte.
2805  */
2806 unsigned long generic_max_swapfile_size(void)
2807 {
2808         return swp_offset(pte_to_swp_entry(
2809                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2810 }
2811
2812 /* Can be overridden by an architecture for additional checks. */
2813 __weak unsigned long arch_max_swapfile_size(void)
2814 {
2815         return generic_max_swapfile_size();
2816 }
2817
2818 static unsigned long read_swap_header(struct swap_info_struct *p,
2819                                         union swap_header *swap_header,
2820                                         struct inode *inode)
2821 {
2822         int i;
2823         unsigned long maxpages;
2824         unsigned long swapfilepages;
2825         unsigned long last_page;
2826
2827         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2828                 pr_err("Unable to find swap-space signature\n");
2829                 return 0;
2830         }
2831
2832         /* swap partition endianness hack... */
2833         if (swab32(swap_header->info.version) == 1) {
2834                 swab32s(&swap_header->info.version);
2835                 swab32s(&swap_header->info.last_page);
2836                 swab32s(&swap_header->info.nr_badpages);
2837                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2838                         return 0;
2839                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2840                         swab32s(&swap_header->info.badpages[i]);
2841         }
2842         /* Check the swap header's sub-version */
2843         if (swap_header->info.version != 1) {
2844                 pr_warn("Unable to handle swap header version %d\n",
2845                         swap_header->info.version);
2846                 return 0;
2847         }
2848
2849         p->lowest_bit  = 1;
2850         p->cluster_next = 1;
2851         p->cluster_nr = 0;
2852
2853         maxpages = swapfile_maximum_size;
2854         last_page = swap_header->info.last_page;
2855         if (!last_page) {
2856                 pr_warn("Empty swap-file\n");
2857                 return 0;
2858         }
2859         if (last_page > maxpages) {
2860                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2861                         maxpages << (PAGE_SHIFT - 10),
2862                         last_page << (PAGE_SHIFT - 10));
2863         }
2864         if (maxpages > last_page) {
2865                 maxpages = last_page + 1;
2866                 /* p->max is an unsigned int: don't overflow it */
2867                 if ((unsigned int)maxpages == 0)
2868                         maxpages = UINT_MAX;
2869         }
2870         p->highest_bit = maxpages - 1;
2871
2872         if (!maxpages)
2873                 return 0;
2874         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2875         if (swapfilepages && maxpages > swapfilepages) {
2876                 pr_warn("Swap area shorter than signature indicates\n");
2877                 return 0;
2878         }
2879         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2880                 return 0;
2881         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2882                 return 0;
2883
2884         return maxpages;
2885 }
2886
2887 #define SWAP_CLUSTER_INFO_COLS                                          \
2888         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2889 #define SWAP_CLUSTER_SPACE_COLS                                         \
2890         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2891 #define SWAP_CLUSTER_COLS                                               \
2892         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2893
2894 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2895                                         union swap_header *swap_header,
2896                                         unsigned char *swap_map,
2897                                         struct swap_cluster_info *cluster_info,
2898                                         unsigned long maxpages,
2899                                         sector_t *span)
2900 {
2901         unsigned int j, k;
2902         unsigned int nr_good_pages;
2903         int nr_extents;
2904         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2905         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2906         unsigned long i, idx;
2907
2908         nr_good_pages = maxpages - 1;   /* omit header page */
2909
2910         cluster_list_init(&p->free_clusters);
2911         cluster_list_init(&p->discard_clusters);
2912
2913         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2914                 unsigned int page_nr = swap_header->info.badpages[i];
2915                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2916                         return -EINVAL;
2917                 if (page_nr < maxpages) {
2918                         swap_map[page_nr] = SWAP_MAP_BAD;
2919                         nr_good_pages--;
2920                         /*
2921                          * Haven't marked the cluster free yet, no list
2922                          * operation involved
2923                          */
2924                         inc_cluster_info_page(p, cluster_info, page_nr);
2925                 }
2926         }
2927
2928         /* Haven't marked the cluster free yet, no list operation involved */
2929         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2930                 inc_cluster_info_page(p, cluster_info, i);
2931
2932         if (nr_good_pages) {
2933                 swap_map[0] = SWAP_MAP_BAD;
2934                 /*
2935                  * Not mark the cluster free yet, no list
2936                  * operation involved
2937                  */
2938                 inc_cluster_info_page(p, cluster_info, 0);
2939                 p->max = maxpages;
2940                 p->pages = nr_good_pages;
2941                 nr_extents = setup_swap_extents(p, span);
2942                 if (nr_extents < 0)
2943                         return nr_extents;
2944                 nr_good_pages = p->pages;
2945         }
2946         if (!nr_good_pages) {
2947                 pr_warn("Empty swap-file\n");
2948                 return -EINVAL;
2949         }
2950
2951         if (!cluster_info)
2952                 return nr_extents;
2953
2954
2955         /*
2956          * Reduce false cache line sharing between cluster_info and
2957          * sharing same address space.
2958          */
2959         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2960                 j = (k + col) % SWAP_CLUSTER_COLS;
2961                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2962                         idx = i * SWAP_CLUSTER_COLS + j;
2963                         if (idx >= nr_clusters)
2964                                 continue;
2965                         if (cluster_count(&cluster_info[idx]))
2966                                 continue;
2967                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2968                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2969                                               idx);
2970                 }
2971         }
2972         return nr_extents;
2973 }
2974
2975 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2976 {
2977         struct swap_info_struct *p;
2978         struct filename *name;
2979         struct file *swap_file = NULL;
2980         struct address_space *mapping;
2981         struct dentry *dentry;
2982         int prio;
2983         int error;
2984         union swap_header *swap_header;
2985         int nr_extents;
2986         sector_t span;
2987         unsigned long maxpages;
2988         unsigned char *swap_map = NULL;
2989         struct swap_cluster_info *cluster_info = NULL;
2990         unsigned long *frontswap_map = NULL;
2991         struct page *page = NULL;
2992         struct inode *inode = NULL;
2993         bool inced_nr_rotate_swap = false;
2994
2995         if (swap_flags & ~SWAP_FLAGS_VALID)
2996                 return -EINVAL;
2997
2998         if (!capable(CAP_SYS_ADMIN))
2999                 return -EPERM;
3000
3001         if (!swap_avail_heads)
3002                 return -ENOMEM;
3003
3004         p = alloc_swap_info();
3005         if (IS_ERR(p))
3006                 return PTR_ERR(p);
3007
3008         INIT_WORK(&p->discard_work, swap_discard_work);
3009
3010         name = getname(specialfile);
3011         if (IS_ERR(name)) {
3012                 error = PTR_ERR(name);
3013                 name = NULL;
3014                 goto bad_swap;
3015         }
3016         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3017         if (IS_ERR(swap_file)) {
3018                 error = PTR_ERR(swap_file);
3019                 swap_file = NULL;
3020                 goto bad_swap;
3021         }
3022
3023         p->swap_file = swap_file;
3024         mapping = swap_file->f_mapping;
3025         dentry = swap_file->f_path.dentry;
3026         inode = mapping->host;
3027
3028         error = claim_swapfile(p, inode);
3029         if (unlikely(error))
3030                 goto bad_swap;
3031
3032         inode_lock(inode);
3033         if (d_unlinked(dentry) || cant_mount(dentry)) {
3034                 error = -ENOENT;
3035                 goto bad_swap_unlock_inode;
3036         }
3037         if (IS_SWAPFILE(inode)) {
3038                 error = -EBUSY;
3039                 goto bad_swap_unlock_inode;
3040         }
3041
3042         /*
3043          * Read the swap header.
3044          */
3045         if (!mapping->a_ops->read_folio) {
3046                 error = -EINVAL;
3047                 goto bad_swap_unlock_inode;
3048         }
3049         page = read_mapping_page(mapping, 0, swap_file);
3050         if (IS_ERR(page)) {
3051                 error = PTR_ERR(page);
3052                 goto bad_swap_unlock_inode;
3053         }
3054         swap_header = kmap(page);
3055
3056         maxpages = read_swap_header(p, swap_header, inode);
3057         if (unlikely(!maxpages)) {
3058                 error = -EINVAL;
3059                 goto bad_swap_unlock_inode;
3060         }
3061
3062         /* OK, set up the swap map and apply the bad block list */
3063         swap_map = vzalloc(maxpages);
3064         if (!swap_map) {
3065                 error = -ENOMEM;
3066                 goto bad_swap_unlock_inode;
3067         }
3068
3069         if (p->bdev && bdev_stable_writes(p->bdev))
3070                 p->flags |= SWP_STABLE_WRITES;
3071
3072         if (p->bdev && bdev_synchronous(p->bdev))
3073                 p->flags |= SWP_SYNCHRONOUS_IO;
3074
3075         if (p->bdev && bdev_nonrot(p->bdev)) {
3076                 int cpu;
3077                 unsigned long ci, nr_cluster;
3078
3079                 p->flags |= SWP_SOLIDSTATE;
3080                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3081                 if (!p->cluster_next_cpu) {
3082                         error = -ENOMEM;
3083                         goto bad_swap_unlock_inode;
3084                 }
3085                 /*
3086                  * select a random position to start with to help wear leveling
3087                  * SSD
3088                  */
3089                 for_each_possible_cpu(cpu) {
3090                         per_cpu(*p->cluster_next_cpu, cpu) =
3091                                 get_random_u32_inclusive(1, p->highest_bit);
3092                 }
3093                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3094
3095                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3096                                         GFP_KERNEL);
3097                 if (!cluster_info) {
3098                         error = -ENOMEM;
3099                         goto bad_swap_unlock_inode;
3100                 }
3101
3102                 for (ci = 0; ci < nr_cluster; ci++)
3103                         spin_lock_init(&((cluster_info + ci)->lock));
3104
3105                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3106                 if (!p->percpu_cluster) {
3107                         error = -ENOMEM;
3108                         goto bad_swap_unlock_inode;
3109                 }
3110                 for_each_possible_cpu(cpu) {
3111                         struct percpu_cluster *cluster;
3112                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3113                         cluster_set_null(&cluster->index);
3114                 }
3115         } else {
3116                 atomic_inc(&nr_rotate_swap);
3117                 inced_nr_rotate_swap = true;
3118         }
3119
3120         error = swap_cgroup_swapon(p->type, maxpages);
3121         if (error)
3122                 goto bad_swap_unlock_inode;
3123
3124         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3125                 cluster_info, maxpages, &span);
3126         if (unlikely(nr_extents < 0)) {
3127                 error = nr_extents;
3128                 goto bad_swap_unlock_inode;
3129         }
3130         /* frontswap enabled? set up bit-per-page map for frontswap */
3131         if (IS_ENABLED(CONFIG_FRONTSWAP))
3132                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3133                                          sizeof(long),
3134                                          GFP_KERNEL);
3135
3136         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3137             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3138                 /*
3139                  * When discard is enabled for swap with no particular
3140                  * policy flagged, we set all swap discard flags here in
3141                  * order to sustain backward compatibility with older
3142                  * swapon(8) releases.
3143                  */
3144                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3145                              SWP_PAGE_DISCARD);
3146
3147                 /*
3148                  * By flagging sys_swapon, a sysadmin can tell us to
3149                  * either do single-time area discards only, or to just
3150                  * perform discards for released swap page-clusters.
3151                  * Now it's time to adjust the p->flags accordingly.
3152                  */
3153                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3154                         p->flags &= ~SWP_PAGE_DISCARD;
3155                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3156                         p->flags &= ~SWP_AREA_DISCARD;
3157
3158                 /* issue a swapon-time discard if it's still required */
3159                 if (p->flags & SWP_AREA_DISCARD) {
3160                         int err = discard_swap(p);
3161                         if (unlikely(err))
3162                                 pr_err("swapon: discard_swap(%p): %d\n",
3163                                         p, err);
3164                 }
3165         }
3166
3167         error = init_swap_address_space(p->type, maxpages);
3168         if (error)
3169                 goto bad_swap_unlock_inode;
3170
3171         /*
3172          * Flush any pending IO and dirty mappings before we start using this
3173          * swap device.
3174          */
3175         inode->i_flags |= S_SWAPFILE;
3176         error = inode_drain_writes(inode);
3177         if (error) {
3178                 inode->i_flags &= ~S_SWAPFILE;
3179                 goto free_swap_address_space;
3180         }
3181
3182         mutex_lock(&swapon_mutex);
3183         prio = -1;
3184         if (swap_flags & SWAP_FLAG_PREFER)
3185                 prio =
3186                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3187         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3188
3189         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3190                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3191                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3192                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3193                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3194                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3195                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3196                 (frontswap_map) ? "FS" : "");
3197
3198         mutex_unlock(&swapon_mutex);
3199         atomic_inc(&proc_poll_event);
3200         wake_up_interruptible(&proc_poll_wait);
3201
3202         error = 0;
3203         goto out;
3204 free_swap_address_space:
3205         exit_swap_address_space(p->type);
3206 bad_swap_unlock_inode:
3207         inode_unlock(inode);
3208 bad_swap:
3209         free_percpu(p->percpu_cluster);
3210         p->percpu_cluster = NULL;
3211         free_percpu(p->cluster_next_cpu);
3212         p->cluster_next_cpu = NULL;
3213         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3214                 set_blocksize(p->bdev, p->old_block_size);
3215                 blkdev_put(p->bdev, p);
3216         }
3217         inode = NULL;
3218         destroy_swap_extents(p);
3219         swap_cgroup_swapoff(p->type);
3220         spin_lock(&swap_lock);
3221         p->swap_file = NULL;
3222         p->flags = 0;
3223         spin_unlock(&swap_lock);
3224         vfree(swap_map);
3225         kvfree(cluster_info);
3226         kvfree(frontswap_map);
3227         if (inced_nr_rotate_swap)
3228                 atomic_dec(&nr_rotate_swap);
3229         if (swap_file)
3230                 filp_close(swap_file, NULL);
3231 out:
3232         if (page && !IS_ERR(page)) {
3233                 kunmap(page);
3234                 put_page(page);
3235         }
3236         if (name)
3237                 putname(name);
3238         if (inode)
3239                 inode_unlock(inode);
3240         if (!error)
3241                 enable_swap_slots_cache();
3242         return error;
3243 }
3244
3245 void si_swapinfo(struct sysinfo *val)
3246 {
3247         unsigned int type;
3248         unsigned long nr_to_be_unused = 0;
3249
3250         spin_lock(&swap_lock);
3251         for (type = 0; type < nr_swapfiles; type++) {
3252                 struct swap_info_struct *si = swap_info[type];
3253
3254                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3255                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3256         }
3257         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3258         val->totalswap = total_swap_pages + nr_to_be_unused;
3259         spin_unlock(&swap_lock);
3260 }
3261
3262 /*
3263  * Verify that a swap entry is valid and increment its swap map count.
3264  *
3265  * Returns error code in following case.
3266  * - success -> 0
3267  * - swp_entry is invalid -> EINVAL
3268  * - swp_entry is migration entry -> EINVAL
3269  * - swap-cache reference is requested but there is already one. -> EEXIST
3270  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3271  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3272  */
3273 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3274 {
3275         struct swap_info_struct *p;
3276         struct swap_cluster_info *ci;
3277         unsigned long offset;
3278         unsigned char count;
3279         unsigned char has_cache;
3280         int err;
3281
3282         p = swp_swap_info(entry);
3283
3284         offset = swp_offset(entry);
3285         ci = lock_cluster_or_swap_info(p, offset);
3286
3287         count = p->swap_map[offset];
3288
3289         /*
3290          * swapin_readahead() doesn't check if a swap entry is valid, so the
3291          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3292          */
3293         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3294                 err = -ENOENT;
3295                 goto unlock_out;
3296         }
3297
3298         has_cache = count & SWAP_HAS_CACHE;
3299         count &= ~SWAP_HAS_CACHE;
3300         err = 0;
3301
3302         if (usage == SWAP_HAS_CACHE) {
3303
3304                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3305                 if (!has_cache && count)
3306                         has_cache = SWAP_HAS_CACHE;
3307                 else if (has_cache)             /* someone else added cache */
3308                         err = -EEXIST;
3309                 else                            /* no users remaining */
3310                         err = -ENOENT;
3311
3312         } else if (count || has_cache) {
3313
3314                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3315                         count += usage;
3316                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3317                         err = -EINVAL;
3318                 else if (swap_count_continued(p, offset, count))
3319                         count = COUNT_CONTINUED;
3320                 else
3321                         err = -ENOMEM;
3322         } else
3323                 err = -ENOENT;                  /* unused swap entry */
3324
3325         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3326
3327 unlock_out:
3328         unlock_cluster_or_swap_info(p, ci);
3329         return err;
3330 }
3331
3332 /*
3333  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3334  * (in which case its reference count is never incremented).
3335  */
3336 void swap_shmem_alloc(swp_entry_t entry)
3337 {
3338         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3339 }
3340
3341 /*
3342  * Increase reference count of swap entry by 1.
3343  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3344  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3345  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3346  * might occur if a page table entry has got corrupted.
3347  */
3348 int swap_duplicate(swp_entry_t entry)
3349 {
3350         int err = 0;
3351
3352         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3353                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3354         return err;
3355 }
3356
3357 /*
3358  * @entry: swap entry for which we allocate swap cache.
3359  *
3360  * Called when allocating swap cache for existing swap entry,
3361  * This can return error codes. Returns 0 at success.
3362  * -EEXIST means there is a swap cache.
3363  * Note: return code is different from swap_duplicate().
3364  */
3365 int swapcache_prepare(swp_entry_t entry)
3366 {
3367         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3368 }
3369
3370 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3371 {
3372         return swap_type_to_swap_info(swp_type(entry));
3373 }
3374
3375 struct swap_info_struct *page_swap_info(struct page *page)
3376 {
3377         swp_entry_t entry = { .val = page_private(page) };
3378         return swp_swap_info(entry);
3379 }
3380
3381 /*
3382  * out-of-line methods to avoid include hell.
3383  */
3384 struct address_space *swapcache_mapping(struct folio *folio)
3385 {
3386         return page_swap_info(&folio->page)->swap_file->f_mapping;
3387 }
3388 EXPORT_SYMBOL_GPL(swapcache_mapping);
3389
3390 pgoff_t __page_file_index(struct page *page)
3391 {
3392         swp_entry_t swap = { .val = page_private(page) };
3393         return swp_offset(swap);
3394 }
3395 EXPORT_SYMBOL_GPL(__page_file_index);
3396
3397 /*
3398  * add_swap_count_continuation - called when a swap count is duplicated
3399  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3400  * page of the original vmalloc'ed swap_map, to hold the continuation count
3401  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3402  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3403  *
3404  * These continuation pages are seldom referenced: the common paths all work
3405  * on the original swap_map, only referring to a continuation page when the
3406  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3407  *
3408  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3409  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3410  * can be called after dropping locks.
3411  */
3412 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3413 {
3414         struct swap_info_struct *si;
3415         struct swap_cluster_info *ci;
3416         struct page *head;
3417         struct page *page;
3418         struct page *list_page;
3419         pgoff_t offset;
3420         unsigned char count;
3421         int ret = 0;
3422
3423         /*
3424          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3425          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3426          */
3427         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3428
3429         si = get_swap_device(entry);
3430         if (!si) {
3431                 /*
3432                  * An acceptable race has occurred since the failing
3433                  * __swap_duplicate(): the swap device may be swapoff
3434                  */
3435                 goto outer;
3436         }
3437         spin_lock(&si->lock);
3438
3439         offset = swp_offset(entry);
3440
3441         ci = lock_cluster(si, offset);
3442
3443         count = swap_count(si->swap_map[offset]);
3444
3445         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3446                 /*
3447                  * The higher the swap count, the more likely it is that tasks
3448                  * will race to add swap count continuation: we need to avoid
3449                  * over-provisioning.
3450                  */
3451                 goto out;
3452         }
3453
3454         if (!page) {
3455                 ret = -ENOMEM;
3456                 goto out;
3457         }
3458
3459         head = vmalloc_to_page(si->swap_map + offset);
3460         offset &= ~PAGE_MASK;
3461
3462         spin_lock(&si->cont_lock);
3463         /*
3464          * Page allocation does not initialize the page's lru field,
3465          * but it does always reset its private field.
3466          */
3467         if (!page_private(head)) {
3468                 BUG_ON(count & COUNT_CONTINUED);
3469                 INIT_LIST_HEAD(&head->lru);
3470                 set_page_private(head, SWP_CONTINUED);
3471                 si->flags |= SWP_CONTINUED;
3472         }
3473
3474         list_for_each_entry(list_page, &head->lru, lru) {
3475                 unsigned char *map;
3476
3477                 /*
3478                  * If the previous map said no continuation, but we've found
3479                  * a continuation page, free our allocation and use this one.
3480                  */
3481                 if (!(count & COUNT_CONTINUED))
3482                         goto out_unlock_cont;
3483
3484                 map = kmap_atomic(list_page) + offset;
3485                 count = *map;
3486                 kunmap_atomic(map);
3487
3488                 /*
3489                  * If this continuation count now has some space in it,
3490                  * free our allocation and use this one.
3491                  */
3492                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3493                         goto out_unlock_cont;
3494         }
3495
3496         list_add_tail(&page->lru, &head->lru);
3497         page = NULL;                    /* now it's attached, don't free it */
3498 out_unlock_cont:
3499         spin_unlock(&si->cont_lock);
3500 out:
3501         unlock_cluster(ci);
3502         spin_unlock(&si->lock);
3503         put_swap_device(si);
3504 outer:
3505         if (page)
3506                 __free_page(page);
3507         return ret;
3508 }
3509
3510 /*
3511  * swap_count_continued - when the original swap_map count is incremented
3512  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3513  * into, carry if so, or else fail until a new continuation page is allocated;
3514  * when the original swap_map count is decremented from 0 with continuation,
3515  * borrow from the continuation and report whether it still holds more.
3516  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3517  * lock.
3518  */
3519 static bool swap_count_continued(struct swap_info_struct *si,
3520                                  pgoff_t offset, unsigned char count)
3521 {
3522         struct page *head;
3523         struct page *page;
3524         unsigned char *map;
3525         bool ret;
3526
3527         head = vmalloc_to_page(si->swap_map + offset);
3528         if (page_private(head) != SWP_CONTINUED) {
3529                 BUG_ON(count & COUNT_CONTINUED);
3530                 return false;           /* need to add count continuation */
3531         }
3532
3533         spin_lock(&si->cont_lock);
3534         offset &= ~PAGE_MASK;
3535         page = list_next_entry(head, lru);
3536         map = kmap_atomic(page) + offset;
3537
3538         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3539                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3540
3541         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3542                 /*
3543                  * Think of how you add 1 to 999
3544                  */
3545                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3546                         kunmap_atomic(map);
3547                         page = list_next_entry(page, lru);
3548                         BUG_ON(page == head);
3549                         map = kmap_atomic(page) + offset;
3550                 }
3551                 if (*map == SWAP_CONT_MAX) {
3552                         kunmap_atomic(map);
3553                         page = list_next_entry(page, lru);
3554                         if (page == head) {
3555                                 ret = false;    /* add count continuation */
3556                                 goto out;
3557                         }
3558                         map = kmap_atomic(page) + offset;
3559 init_map:               *map = 0;               /* we didn't zero the page */
3560                 }
3561                 *map += 1;
3562                 kunmap_atomic(map);
3563                 while ((page = list_prev_entry(page, lru)) != head) {
3564                         map = kmap_atomic(page) + offset;
3565                         *map = COUNT_CONTINUED;
3566                         kunmap_atomic(map);
3567                 }
3568                 ret = true;                     /* incremented */
3569
3570         } else {                                /* decrementing */
3571                 /*
3572                  * Think of how you subtract 1 from 1000
3573                  */
3574                 BUG_ON(count != COUNT_CONTINUED);
3575                 while (*map == COUNT_CONTINUED) {
3576                         kunmap_atomic(map);
3577                         page = list_next_entry(page, lru);
3578                         BUG_ON(page == head);
3579                         map = kmap_atomic(page) + offset;
3580                 }
3581                 BUG_ON(*map == 0);
3582                 *map -= 1;
3583                 if (*map == 0)
3584                         count = 0;
3585                 kunmap_atomic(map);
3586                 while ((page = list_prev_entry(page, lru)) != head) {
3587                         map = kmap_atomic(page) + offset;
3588                         *map = SWAP_CONT_MAX | count;
3589                         count = COUNT_CONTINUED;
3590                         kunmap_atomic(map);
3591                 }
3592                 ret = count == COUNT_CONTINUED;
3593         }
3594 out:
3595         spin_unlock(&si->cont_lock);
3596         return ret;
3597 }
3598
3599 /*
3600  * free_swap_count_continuations - swapoff free all the continuation pages
3601  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3602  */
3603 static void free_swap_count_continuations(struct swap_info_struct *si)
3604 {
3605         pgoff_t offset;
3606
3607         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3608                 struct page *head;
3609                 head = vmalloc_to_page(si->swap_map + offset);
3610                 if (page_private(head)) {
3611                         struct page *page, *next;
3612
3613                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3614                                 list_del(&page->lru);
3615                                 __free_page(page);
3616                         }
3617                 }
3618         }
3619 }
3620
3621 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3622 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3623 {
3624         struct swap_info_struct *si, *next;
3625         int nid = folio_nid(folio);
3626
3627         if (!(gfp & __GFP_IO))
3628                 return;
3629
3630         if (!blk_cgroup_congested())
3631                 return;
3632
3633         /*
3634          * We've already scheduled a throttle, avoid taking the global swap
3635          * lock.
3636          */
3637         if (current->throttle_disk)
3638                 return;
3639
3640         spin_lock(&swap_avail_lock);
3641         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3642                                   avail_lists[nid]) {
3643                 if (si->bdev) {
3644                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3645                         break;
3646                 }
3647         }
3648         spin_unlock(&swap_avail_lock);
3649 }
3650 #endif
3651
3652 static int __init swapfile_init(void)
3653 {
3654         int nid;
3655
3656         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3657                                          GFP_KERNEL);
3658         if (!swap_avail_heads) {
3659                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3660                 return -ENOMEM;
3661         }
3662
3663         for_each_node(nid)
3664                 plist_head_init(&swap_avail_heads[nid]);
3665
3666         swapfile_maximum_size = arch_max_swapfile_size();
3667
3668 #ifdef CONFIG_MIGRATION
3669         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3670                 swap_migration_ad_supported = true;
3671 #endif  /* CONFIG_MIGRATION */
3672
3673         return 0;
3674 }
3675 subsys_initcall(swapfile_init);