RISC-V: Fix wrong use of CONFIG_HAVE_SOFTIRQ_ON_OWN_STACK
[platform/kernel/linux-rpi.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53                                  unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55
56 static DEFINE_SPINLOCK(swap_lock);
57 static unsigned int nr_swapfiles;
58 atomic_long_t nr_swap_pages;
59 /*
60  * Some modules use swappable objects and may try to swap them out under
61  * memory pressure (via the shrinker). Before doing so, they may wish to
62  * check to see if any swap space is available.
63  */
64 EXPORT_SYMBOL_GPL(nr_swap_pages);
65 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
66 long total_swap_pages;
67 static int least_priority = -1;
68 unsigned long swapfile_maximum_size;
69 #ifdef CONFIG_MIGRATION
70 bool swap_migration_ad_supported;
71 #endif  /* CONFIG_MIGRATION */
72
73 static const char Bad_file[] = "Bad swap file entry ";
74 static const char Unused_file[] = "Unused swap file entry ";
75 static const char Bad_offset[] = "Bad swap offset entry ";
76 static const char Unused_offset[] = "Unused swap offset entry ";
77
78 /*
79  * all active swap_info_structs
80  * protected with swap_lock, and ordered by priority.
81  */
82 static PLIST_HEAD(swap_active_head);
83
84 /*
85  * all available (active, not full) swap_info_structs
86  * protected with swap_avail_lock, ordered by priority.
87  * This is used by folio_alloc_swap() instead of swap_active_head
88  * because swap_active_head includes all swap_info_structs,
89  * but folio_alloc_swap() doesn't need to look at full ones.
90  * This uses its own lock instead of swap_lock because when a
91  * swap_info_struct changes between not-full/full, it needs to
92  * add/remove itself to/from this list, but the swap_info_struct->lock
93  * is held and the locking order requires swap_lock to be taken
94  * before any swap_info_struct->lock.
95  */
96 static struct plist_head *swap_avail_heads;
97 static DEFINE_SPINLOCK(swap_avail_lock);
98
99 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
100
101 static DEFINE_MUTEX(swapon_mutex);
102
103 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
104 /* Activity counter to indicate that a swapon or swapoff has occurred */
105 static atomic_t proc_poll_event = ATOMIC_INIT(0);
106
107 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
108
109 static struct swap_info_struct *swap_type_to_swap_info(int type)
110 {
111         if (type >= MAX_SWAPFILES)
112                 return NULL;
113
114         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
115 }
116
117 static inline unsigned char swap_count(unsigned char ent)
118 {
119         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
120 }
121
122 /* Reclaim the swap entry anyway if possible */
123 #define TTRS_ANYWAY             0x1
124 /*
125  * Reclaim the swap entry if there are no more mappings of the
126  * corresponding page
127  */
128 #define TTRS_UNMAPPED           0x2
129 /* Reclaim the swap entry if swap is getting full*/
130 #define TTRS_FULL               0x4
131
132 /* returns 1 if swap entry is freed */
133 static int __try_to_reclaim_swap(struct swap_info_struct *si,
134                                  unsigned long offset, unsigned long flags)
135 {
136         swp_entry_t entry = swp_entry(si->type, offset);
137         struct folio *folio;
138         int ret = 0;
139
140         folio = filemap_get_folio(swap_address_space(entry), offset);
141         if (IS_ERR(folio))
142                 return 0;
143         /*
144          * When this function is called from scan_swap_map_slots() and it's
145          * called by vmscan.c at reclaiming folios. So we hold a folio lock
146          * here. We have to use trylock for avoiding deadlock. This is a special
147          * case and you should use folio_free_swap() with explicit folio_lock()
148          * in usual operations.
149          */
150         if (folio_trylock(folio)) {
151                 if ((flags & TTRS_ANYWAY) ||
152                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
153                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
154                         ret = folio_free_swap(folio);
155                 folio_unlock(folio);
156         }
157         folio_put(folio);
158         return ret;
159 }
160
161 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
162 {
163         struct rb_node *rb = rb_first(&sis->swap_extent_root);
164         return rb_entry(rb, struct swap_extent, rb_node);
165 }
166
167 static inline struct swap_extent *next_se(struct swap_extent *se)
168 {
169         struct rb_node *rb = rb_next(&se->rb_node);
170         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
171 }
172
173 /*
174  * swapon tell device that all the old swap contents can be discarded,
175  * to allow the swap device to optimize its wear-levelling.
176  */
177 static int discard_swap(struct swap_info_struct *si)
178 {
179         struct swap_extent *se;
180         sector_t start_block;
181         sector_t nr_blocks;
182         int err = 0;
183
184         /* Do not discard the swap header page! */
185         se = first_se(si);
186         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
187         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
188         if (nr_blocks) {
189                 err = blkdev_issue_discard(si->bdev, start_block,
190                                 nr_blocks, GFP_KERNEL);
191                 if (err)
192                         return err;
193                 cond_resched();
194         }
195
196         for (se = next_se(se); se; se = next_se(se)) {
197                 start_block = se->start_block << (PAGE_SHIFT - 9);
198                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
199
200                 err = blkdev_issue_discard(si->bdev, start_block,
201                                 nr_blocks, GFP_KERNEL);
202                 if (err)
203                         break;
204
205                 cond_resched();
206         }
207         return err;             /* That will often be -EOPNOTSUPP */
208 }
209
210 static struct swap_extent *
211 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
212 {
213         struct swap_extent *se;
214         struct rb_node *rb;
215
216         rb = sis->swap_extent_root.rb_node;
217         while (rb) {
218                 se = rb_entry(rb, struct swap_extent, rb_node);
219                 if (offset < se->start_page)
220                         rb = rb->rb_left;
221                 else if (offset >= se->start_page + se->nr_pages)
222                         rb = rb->rb_right;
223                 else
224                         return se;
225         }
226         /* It *must* be present */
227         BUG();
228 }
229
230 sector_t swap_page_sector(struct page *page)
231 {
232         struct swap_info_struct *sis = page_swap_info(page);
233         struct swap_extent *se;
234         sector_t sector;
235         pgoff_t offset;
236
237         offset = __page_file_index(page);
238         se = offset_to_swap_extent(sis, offset);
239         sector = se->start_block + (offset - se->start_page);
240         return sector << (PAGE_SHIFT - 9);
241 }
242
243 /*
244  * swap allocation tell device that a cluster of swap can now be discarded,
245  * to allow the swap device to optimize its wear-levelling.
246  */
247 static void discard_swap_cluster(struct swap_info_struct *si,
248                                  pgoff_t start_page, pgoff_t nr_pages)
249 {
250         struct swap_extent *se = offset_to_swap_extent(si, start_page);
251
252         while (nr_pages) {
253                 pgoff_t offset = start_page - se->start_page;
254                 sector_t start_block = se->start_block + offset;
255                 sector_t nr_blocks = se->nr_pages - offset;
256
257                 if (nr_blocks > nr_pages)
258                         nr_blocks = nr_pages;
259                 start_page += nr_blocks;
260                 nr_pages -= nr_blocks;
261
262                 start_block <<= PAGE_SHIFT - 9;
263                 nr_blocks <<= PAGE_SHIFT - 9;
264                 if (blkdev_issue_discard(si->bdev, start_block,
265                                         nr_blocks, GFP_NOIO))
266                         break;
267
268                 se = next_se(se);
269         }
270 }
271
272 #ifdef CONFIG_THP_SWAP
273 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
274
275 #define swap_entry_size(size)   (size)
276 #else
277 #define SWAPFILE_CLUSTER        256
278
279 /*
280  * Define swap_entry_size() as constant to let compiler to optimize
281  * out some code if !CONFIG_THP_SWAP
282  */
283 #define swap_entry_size(size)   1
284 #endif
285 #define LATENCY_LIMIT           256
286
287 static inline void cluster_set_flag(struct swap_cluster_info *info,
288         unsigned int flag)
289 {
290         info->flags = flag;
291 }
292
293 static inline unsigned int cluster_count(struct swap_cluster_info *info)
294 {
295         return info->data;
296 }
297
298 static inline void cluster_set_count(struct swap_cluster_info *info,
299                                      unsigned int c)
300 {
301         info->data = c;
302 }
303
304 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
305                                          unsigned int c, unsigned int f)
306 {
307         info->flags = f;
308         info->data = c;
309 }
310
311 static inline unsigned int cluster_next(struct swap_cluster_info *info)
312 {
313         return info->data;
314 }
315
316 static inline void cluster_set_next(struct swap_cluster_info *info,
317                                     unsigned int n)
318 {
319         info->data = n;
320 }
321
322 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
323                                          unsigned int n, unsigned int f)
324 {
325         info->flags = f;
326         info->data = n;
327 }
328
329 static inline bool cluster_is_free(struct swap_cluster_info *info)
330 {
331         return info->flags & CLUSTER_FLAG_FREE;
332 }
333
334 static inline bool cluster_is_null(struct swap_cluster_info *info)
335 {
336         return info->flags & CLUSTER_FLAG_NEXT_NULL;
337 }
338
339 static inline void cluster_set_null(struct swap_cluster_info *info)
340 {
341         info->flags = CLUSTER_FLAG_NEXT_NULL;
342         info->data = 0;
343 }
344
345 static inline bool cluster_is_huge(struct swap_cluster_info *info)
346 {
347         if (IS_ENABLED(CONFIG_THP_SWAP))
348                 return info->flags & CLUSTER_FLAG_HUGE;
349         return false;
350 }
351
352 static inline void cluster_clear_huge(struct swap_cluster_info *info)
353 {
354         info->flags &= ~CLUSTER_FLAG_HUGE;
355 }
356
357 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
358                                                      unsigned long offset)
359 {
360         struct swap_cluster_info *ci;
361
362         ci = si->cluster_info;
363         if (ci) {
364                 ci += offset / SWAPFILE_CLUSTER;
365                 spin_lock(&ci->lock);
366         }
367         return ci;
368 }
369
370 static inline void unlock_cluster(struct swap_cluster_info *ci)
371 {
372         if (ci)
373                 spin_unlock(&ci->lock);
374 }
375
376 /*
377  * Determine the locking method in use for this device.  Return
378  * swap_cluster_info if SSD-style cluster-based locking is in place.
379  */
380 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
381                 struct swap_info_struct *si, unsigned long offset)
382 {
383         struct swap_cluster_info *ci;
384
385         /* Try to use fine-grained SSD-style locking if available: */
386         ci = lock_cluster(si, offset);
387         /* Otherwise, fall back to traditional, coarse locking: */
388         if (!ci)
389                 spin_lock(&si->lock);
390
391         return ci;
392 }
393
394 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
395                                                struct swap_cluster_info *ci)
396 {
397         if (ci)
398                 unlock_cluster(ci);
399         else
400                 spin_unlock(&si->lock);
401 }
402
403 static inline bool cluster_list_empty(struct swap_cluster_list *list)
404 {
405         return cluster_is_null(&list->head);
406 }
407
408 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
409 {
410         return cluster_next(&list->head);
411 }
412
413 static void cluster_list_init(struct swap_cluster_list *list)
414 {
415         cluster_set_null(&list->head);
416         cluster_set_null(&list->tail);
417 }
418
419 static void cluster_list_add_tail(struct swap_cluster_list *list,
420                                   struct swap_cluster_info *ci,
421                                   unsigned int idx)
422 {
423         if (cluster_list_empty(list)) {
424                 cluster_set_next_flag(&list->head, idx, 0);
425                 cluster_set_next_flag(&list->tail, idx, 0);
426         } else {
427                 struct swap_cluster_info *ci_tail;
428                 unsigned int tail = cluster_next(&list->tail);
429
430                 /*
431                  * Nested cluster lock, but both cluster locks are
432                  * only acquired when we held swap_info_struct->lock
433                  */
434                 ci_tail = ci + tail;
435                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
436                 cluster_set_next(ci_tail, idx);
437                 spin_unlock(&ci_tail->lock);
438                 cluster_set_next_flag(&list->tail, idx, 0);
439         }
440 }
441
442 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
443                                            struct swap_cluster_info *ci)
444 {
445         unsigned int idx;
446
447         idx = cluster_next(&list->head);
448         if (cluster_next(&list->tail) == idx) {
449                 cluster_set_null(&list->head);
450                 cluster_set_null(&list->tail);
451         } else
452                 cluster_set_next_flag(&list->head,
453                                       cluster_next(&ci[idx]), 0);
454
455         return idx;
456 }
457
458 /* Add a cluster to discard list and schedule it to do discard */
459 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
460                 unsigned int idx)
461 {
462         /*
463          * If scan_swap_map_slots() can't find a free cluster, it will check
464          * si->swap_map directly. To make sure the discarding cluster isn't
465          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
466          * It will be cleared after discard
467          */
468         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
469                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
470
471         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
472
473         schedule_work(&si->discard_work);
474 }
475
476 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
477 {
478         struct swap_cluster_info *ci = si->cluster_info;
479
480         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
481         cluster_list_add_tail(&si->free_clusters, ci, idx);
482 }
483
484 /*
485  * Doing discard actually. After a cluster discard is finished, the cluster
486  * will be added to free cluster list. caller should hold si->lock.
487 */
488 static void swap_do_scheduled_discard(struct swap_info_struct *si)
489 {
490         struct swap_cluster_info *info, *ci;
491         unsigned int idx;
492
493         info = si->cluster_info;
494
495         while (!cluster_list_empty(&si->discard_clusters)) {
496                 idx = cluster_list_del_first(&si->discard_clusters, info);
497                 spin_unlock(&si->lock);
498
499                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
500                                 SWAPFILE_CLUSTER);
501
502                 spin_lock(&si->lock);
503                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
504                 __free_cluster(si, idx);
505                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
506                                 0, SWAPFILE_CLUSTER);
507                 unlock_cluster(ci);
508         }
509 }
510
511 static void swap_discard_work(struct work_struct *work)
512 {
513         struct swap_info_struct *si;
514
515         si = container_of(work, struct swap_info_struct, discard_work);
516
517         spin_lock(&si->lock);
518         swap_do_scheduled_discard(si);
519         spin_unlock(&si->lock);
520 }
521
522 static void swap_users_ref_free(struct percpu_ref *ref)
523 {
524         struct swap_info_struct *si;
525
526         si = container_of(ref, struct swap_info_struct, users);
527         complete(&si->comp);
528 }
529
530 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
531 {
532         struct swap_cluster_info *ci = si->cluster_info;
533
534         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
535         cluster_list_del_first(&si->free_clusters, ci);
536         cluster_set_count_flag(ci + idx, 0, 0);
537 }
538
539 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
540 {
541         struct swap_cluster_info *ci = si->cluster_info + idx;
542
543         VM_BUG_ON(cluster_count(ci) != 0);
544         /*
545          * If the swap is discardable, prepare discard the cluster
546          * instead of free it immediately. The cluster will be freed
547          * after discard.
548          */
549         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
550             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
551                 swap_cluster_schedule_discard(si, idx);
552                 return;
553         }
554
555         __free_cluster(si, idx);
556 }
557
558 /*
559  * The cluster corresponding to page_nr will be used. The cluster will be
560  * removed from free cluster list and its usage counter will be increased.
561  */
562 static void inc_cluster_info_page(struct swap_info_struct *p,
563         struct swap_cluster_info *cluster_info, unsigned long page_nr)
564 {
565         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
566
567         if (!cluster_info)
568                 return;
569         if (cluster_is_free(&cluster_info[idx]))
570                 alloc_cluster(p, idx);
571
572         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
573         cluster_set_count(&cluster_info[idx],
574                 cluster_count(&cluster_info[idx]) + 1);
575 }
576
577 /*
578  * The cluster corresponding to page_nr decreases one usage. If the usage
579  * counter becomes 0, which means no page in the cluster is in using, we can
580  * optionally discard the cluster and add it to free cluster list.
581  */
582 static void dec_cluster_info_page(struct swap_info_struct *p,
583         struct swap_cluster_info *cluster_info, unsigned long page_nr)
584 {
585         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
586
587         if (!cluster_info)
588                 return;
589
590         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
591         cluster_set_count(&cluster_info[idx],
592                 cluster_count(&cluster_info[idx]) - 1);
593
594         if (cluster_count(&cluster_info[idx]) == 0)
595                 free_cluster(p, idx);
596 }
597
598 /*
599  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
600  * cluster list. Avoiding such abuse to avoid list corruption.
601  */
602 static bool
603 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
604         unsigned long offset)
605 {
606         struct percpu_cluster *percpu_cluster;
607         bool conflict;
608
609         offset /= SWAPFILE_CLUSTER;
610         conflict = !cluster_list_empty(&si->free_clusters) &&
611                 offset != cluster_list_first(&si->free_clusters) &&
612                 cluster_is_free(&si->cluster_info[offset]);
613
614         if (!conflict)
615                 return false;
616
617         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
618         cluster_set_null(&percpu_cluster->index);
619         return true;
620 }
621
622 /*
623  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
624  * might involve allocating a new cluster for current CPU too.
625  */
626 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
627         unsigned long *offset, unsigned long *scan_base)
628 {
629         struct percpu_cluster *cluster;
630         struct swap_cluster_info *ci;
631         unsigned long tmp, max;
632
633 new_cluster:
634         cluster = this_cpu_ptr(si->percpu_cluster);
635         if (cluster_is_null(&cluster->index)) {
636                 if (!cluster_list_empty(&si->free_clusters)) {
637                         cluster->index = si->free_clusters.head;
638                         cluster->next = cluster_next(&cluster->index) *
639                                         SWAPFILE_CLUSTER;
640                 } else if (!cluster_list_empty(&si->discard_clusters)) {
641                         /*
642                          * we don't have free cluster but have some clusters in
643                          * discarding, do discard now and reclaim them, then
644                          * reread cluster_next_cpu since we dropped si->lock
645                          */
646                         swap_do_scheduled_discard(si);
647                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
648                         *offset = *scan_base;
649                         goto new_cluster;
650                 } else
651                         return false;
652         }
653
654         /*
655          * Other CPUs can use our cluster if they can't find a free cluster,
656          * check if there is still free entry in the cluster
657          */
658         tmp = cluster->next;
659         max = min_t(unsigned long, si->max,
660                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
661         if (tmp < max) {
662                 ci = lock_cluster(si, tmp);
663                 while (tmp < max) {
664                         if (!si->swap_map[tmp])
665                                 break;
666                         tmp++;
667                 }
668                 unlock_cluster(ci);
669         }
670         if (tmp >= max) {
671                 cluster_set_null(&cluster->index);
672                 goto new_cluster;
673         }
674         cluster->next = tmp + 1;
675         *offset = tmp;
676         *scan_base = tmp;
677         return true;
678 }
679
680 static void __del_from_avail_list(struct swap_info_struct *p)
681 {
682         int nid;
683
684         assert_spin_locked(&p->lock);
685         for_each_node(nid)
686                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
687 }
688
689 static void del_from_avail_list(struct swap_info_struct *p)
690 {
691         spin_lock(&swap_avail_lock);
692         __del_from_avail_list(p);
693         spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
697                              unsigned int nr_entries)
698 {
699         unsigned int end = offset + nr_entries - 1;
700
701         if (offset == si->lowest_bit)
702                 si->lowest_bit += nr_entries;
703         if (end == si->highest_bit)
704                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
705         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
706         if (si->inuse_pages == si->pages) {
707                 si->lowest_bit = si->max;
708                 si->highest_bit = 0;
709                 del_from_avail_list(si);
710         }
711 }
712
713 static void add_to_avail_list(struct swap_info_struct *p)
714 {
715         int nid;
716
717         spin_lock(&swap_avail_lock);
718         for_each_node(nid)
719                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720         spin_unlock(&swap_avail_lock);
721 }
722
723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724                             unsigned int nr_entries)
725 {
726         unsigned long begin = offset;
727         unsigned long end = offset + nr_entries - 1;
728         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729
730         if (offset < si->lowest_bit)
731                 si->lowest_bit = offset;
732         if (end > si->highest_bit) {
733                 bool was_full = !si->highest_bit;
734
735                 WRITE_ONCE(si->highest_bit, end);
736                 if (was_full && (si->flags & SWP_WRITEOK))
737                         add_to_avail_list(si);
738         }
739         atomic_long_add(nr_entries, &nr_swap_pages);
740         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741         if (si->flags & SWP_BLKDEV)
742                 swap_slot_free_notify =
743                         si->bdev->bd_disk->fops->swap_slot_free_notify;
744         else
745                 swap_slot_free_notify = NULL;
746         while (offset <= end) {
747                 arch_swap_invalidate_page(si->type, offset);
748                 zswap_invalidate(si->type, offset);
749                 if (swap_slot_free_notify)
750                         swap_slot_free_notify(si->bdev, offset);
751                 offset++;
752         }
753         clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755
756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758         unsigned long prev;
759
760         if (!(si->flags & SWP_SOLIDSTATE)) {
761                 si->cluster_next = next;
762                 return;
763         }
764
765         prev = this_cpu_read(*si->cluster_next_cpu);
766         /*
767          * Cross the swap address space size aligned trunk, choose
768          * another trunk randomly to avoid lock contention on swap
769          * address space if possible.
770          */
771         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773                 /* No free swap slots available */
774                 if (si->highest_bit <= si->lowest_bit)
775                         return;
776                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
777                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778                 next = max_t(unsigned int, next, si->lowest_bit);
779         }
780         this_cpu_write(*si->cluster_next_cpu, next);
781 }
782
783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784                                              unsigned long offset)
785 {
786         if (data_race(!si->swap_map[offset])) {
787                 spin_lock(&si->lock);
788                 return true;
789         }
790
791         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792                 spin_lock(&si->lock);
793                 return true;
794         }
795
796         return false;
797 }
798
799 static int scan_swap_map_slots(struct swap_info_struct *si,
800                                unsigned char usage, int nr,
801                                swp_entry_t slots[])
802 {
803         struct swap_cluster_info *ci;
804         unsigned long offset;
805         unsigned long scan_base;
806         unsigned long last_in_cluster = 0;
807         int latency_ration = LATENCY_LIMIT;
808         int n_ret = 0;
809         bool scanned_many = false;
810
811         /*
812          * We try to cluster swap pages by allocating them sequentially
813          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
814          * way, however, we resort to first-free allocation, starting
815          * a new cluster.  This prevents us from scattering swap pages
816          * all over the entire swap partition, so that we reduce
817          * overall disk seek times between swap pages.  -- sct
818          * But we do now try to find an empty cluster.  -Andrea
819          * And we let swap pages go all over an SSD partition.  Hugh
820          */
821
822         si->flags += SWP_SCANNING;
823         /*
824          * Use percpu scan base for SSD to reduce lock contention on
825          * cluster and swap cache.  For HDD, sequential access is more
826          * important.
827          */
828         if (si->flags & SWP_SOLIDSTATE)
829                 scan_base = this_cpu_read(*si->cluster_next_cpu);
830         else
831                 scan_base = si->cluster_next;
832         offset = scan_base;
833
834         /* SSD algorithm */
835         if (si->cluster_info) {
836                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837                         goto scan;
838         } else if (unlikely(!si->cluster_nr--)) {
839                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
841                         goto checks;
842                 }
843
844                 spin_unlock(&si->lock);
845
846                 /*
847                  * If seek is expensive, start searching for new cluster from
848                  * start of partition, to minimize the span of allocated swap.
849                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
851                  */
852                 scan_base = offset = si->lowest_bit;
853                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854
855                 /* Locate the first empty (unaligned) cluster */
856                 for (; last_in_cluster <= si->highest_bit; offset++) {
857                         if (si->swap_map[offset])
858                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
859                         else if (offset == last_in_cluster) {
860                                 spin_lock(&si->lock);
861                                 offset -= SWAPFILE_CLUSTER - 1;
862                                 si->cluster_next = offset;
863                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
864                                 goto checks;
865                         }
866                         if (unlikely(--latency_ration < 0)) {
867                                 cond_resched();
868                                 latency_ration = LATENCY_LIMIT;
869                         }
870                 }
871
872                 offset = scan_base;
873                 spin_lock(&si->lock);
874                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
875         }
876
877 checks:
878         if (si->cluster_info) {
879                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880                 /* take a break if we already got some slots */
881                         if (n_ret)
882                                 goto done;
883                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
884                                                         &scan_base))
885                                 goto scan;
886                 }
887         }
888         if (!(si->flags & SWP_WRITEOK))
889                 goto no_page;
890         if (!si->highest_bit)
891                 goto no_page;
892         if (offset > si->highest_bit)
893                 scan_base = offset = si->lowest_bit;
894
895         ci = lock_cluster(si, offset);
896         /* reuse swap entry of cache-only swap if not busy. */
897         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898                 int swap_was_freed;
899                 unlock_cluster(ci);
900                 spin_unlock(&si->lock);
901                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902                 spin_lock(&si->lock);
903                 /* entry was freed successfully, try to use this again */
904                 if (swap_was_freed)
905                         goto checks;
906                 goto scan; /* check next one */
907         }
908
909         if (si->swap_map[offset]) {
910                 unlock_cluster(ci);
911                 if (!n_ret)
912                         goto scan;
913                 else
914                         goto done;
915         }
916         WRITE_ONCE(si->swap_map[offset], usage);
917         inc_cluster_info_page(si, si->cluster_info, offset);
918         unlock_cluster(ci);
919
920         swap_range_alloc(si, offset, 1);
921         slots[n_ret++] = swp_entry(si->type, offset);
922
923         /* got enough slots or reach max slots? */
924         if ((n_ret == nr) || (offset >= si->highest_bit))
925                 goto done;
926
927         /* search for next available slot */
928
929         /* time to take a break? */
930         if (unlikely(--latency_ration < 0)) {
931                 if (n_ret)
932                         goto done;
933                 spin_unlock(&si->lock);
934                 cond_resched();
935                 spin_lock(&si->lock);
936                 latency_ration = LATENCY_LIMIT;
937         }
938
939         /* try to get more slots in cluster */
940         if (si->cluster_info) {
941                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942                         goto checks;
943         } else if (si->cluster_nr && !si->swap_map[++offset]) {
944                 /* non-ssd case, still more slots in cluster? */
945                 --si->cluster_nr;
946                 goto checks;
947         }
948
949         /*
950          * Even if there's no free clusters available (fragmented),
951          * try to scan a little more quickly with lock held unless we
952          * have scanned too many slots already.
953          */
954         if (!scanned_many) {
955                 unsigned long scan_limit;
956
957                 if (offset < scan_base)
958                         scan_limit = scan_base;
959                 else
960                         scan_limit = si->highest_bit;
961                 for (; offset <= scan_limit && --latency_ration > 0;
962                      offset++) {
963                         if (!si->swap_map[offset])
964                                 goto checks;
965                 }
966         }
967
968 done:
969         set_cluster_next(si, offset + 1);
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972
973 scan:
974         spin_unlock(&si->lock);
975         while (++offset <= READ_ONCE(si->highest_bit)) {
976                 if (unlikely(--latency_ration < 0)) {
977                         cond_resched();
978                         latency_ration = LATENCY_LIMIT;
979                         scanned_many = true;
980                 }
981                 if (swap_offset_available_and_locked(si, offset))
982                         goto checks;
983         }
984         offset = si->lowest_bit;
985         while (offset < scan_base) {
986                 if (unlikely(--latency_ration < 0)) {
987                         cond_resched();
988                         latency_ration = LATENCY_LIMIT;
989                         scanned_many = true;
990                 }
991                 if (swap_offset_available_and_locked(si, offset))
992                         goto checks;
993                 offset++;
994         }
995         spin_lock(&si->lock);
996
997 no_page:
998         si->flags -= SWP_SCANNING;
999         return n_ret;
1000 }
1001
1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004         unsigned long idx;
1005         struct swap_cluster_info *ci;
1006         unsigned long offset;
1007
1008         /*
1009          * Should not even be attempting cluster allocations when huge
1010          * page swap is disabled.  Warn and fail the allocation.
1011          */
1012         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013                 VM_WARN_ON_ONCE(1);
1014                 return 0;
1015         }
1016
1017         if (cluster_list_empty(&si->free_clusters))
1018                 return 0;
1019
1020         idx = cluster_list_first(&si->free_clusters);
1021         offset = idx * SWAPFILE_CLUSTER;
1022         ci = lock_cluster(si, offset);
1023         alloc_cluster(si, idx);
1024         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025
1026         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027         unlock_cluster(ci);
1028         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029         *slot = swp_entry(si->type, offset);
1030
1031         return 1;
1032 }
1033
1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036         unsigned long offset = idx * SWAPFILE_CLUSTER;
1037         struct swap_cluster_info *ci;
1038
1039         ci = lock_cluster(si, offset);
1040         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041         cluster_set_count_flag(ci, 0, 0);
1042         free_cluster(si, idx);
1043         unlock_cluster(ci);
1044         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049         unsigned long size = swap_entry_size(entry_size);
1050         struct swap_info_struct *si, *next;
1051         long avail_pgs;
1052         int n_ret = 0;
1053         int node;
1054
1055         /* Only single cluster request supported */
1056         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057
1058         spin_lock(&swap_avail_lock);
1059
1060         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061         if (avail_pgs <= 0) {
1062                 spin_unlock(&swap_avail_lock);
1063                 goto noswap;
1064         }
1065
1066         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067
1068         atomic_long_sub(n_goal * size, &nr_swap_pages);
1069
1070 start_over:
1071         node = numa_node_id();
1072         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073                 /* requeue si to after same-priority siblings */
1074                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075                 spin_unlock(&swap_avail_lock);
1076                 spin_lock(&si->lock);
1077                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078                         spin_lock(&swap_avail_lock);
1079                         if (plist_node_empty(&si->avail_lists[node])) {
1080                                 spin_unlock(&si->lock);
1081                                 goto nextsi;
1082                         }
1083                         WARN(!si->highest_bit,
1084                              "swap_info %d in list but !highest_bit\n",
1085                              si->type);
1086                         WARN(!(si->flags & SWP_WRITEOK),
1087                              "swap_info %d in list but !SWP_WRITEOK\n",
1088                              si->type);
1089                         __del_from_avail_list(si);
1090                         spin_unlock(&si->lock);
1091                         goto nextsi;
1092                 }
1093                 if (size == SWAPFILE_CLUSTER) {
1094                         if (si->flags & SWP_BLKDEV)
1095                                 n_ret = swap_alloc_cluster(si, swp_entries);
1096                 } else
1097                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098                                                     n_goal, swp_entries);
1099                 spin_unlock(&si->lock);
1100                 if (n_ret || size == SWAPFILE_CLUSTER)
1101                         goto check_out;
1102                 cond_resched();
1103
1104                 spin_lock(&swap_avail_lock);
1105 nextsi:
1106                 /*
1107                  * if we got here, it's likely that si was almost full before,
1108                  * and since scan_swap_map_slots() can drop the si->lock,
1109                  * multiple callers probably all tried to get a page from the
1110                  * same si and it filled up before we could get one; or, the si
1111                  * filled up between us dropping swap_avail_lock and taking
1112                  * si->lock. Since we dropped the swap_avail_lock, the
1113                  * swap_avail_head list may have been modified; so if next is
1114                  * still in the swap_avail_head list then try it, otherwise
1115                  * start over if we have not gotten any slots.
1116                  */
1117                 if (plist_node_empty(&next->avail_lists[node]))
1118                         goto start_over;
1119         }
1120
1121         spin_unlock(&swap_avail_lock);
1122
1123 check_out:
1124         if (n_ret < n_goal)
1125                 atomic_long_add((long)(n_goal - n_ret) * size,
1126                                 &nr_swap_pages);
1127 noswap:
1128         return n_ret;
1129 }
1130
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133         struct swap_info_struct *p;
1134         unsigned long offset;
1135
1136         if (!entry.val)
1137                 goto out;
1138         p = swp_swap_info(entry);
1139         if (!p)
1140                 goto bad_nofile;
1141         if (data_race(!(p->flags & SWP_USED)))
1142                 goto bad_device;
1143         offset = swp_offset(entry);
1144         if (offset >= p->max)
1145                 goto bad_offset;
1146         if (data_race(!p->swap_map[swp_offset(entry)]))
1147                 goto bad_free;
1148         return p;
1149
1150 bad_free:
1151         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1152         goto out;
1153 bad_offset:
1154         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1155         goto out;
1156 bad_device:
1157         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1158         goto out;
1159 bad_nofile:
1160         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1161 out:
1162         return NULL;
1163 }
1164
1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1166                                         struct swap_info_struct *q)
1167 {
1168         struct swap_info_struct *p;
1169
1170         p = _swap_info_get(entry);
1171
1172         if (p != q) {
1173                 if (q != NULL)
1174                         spin_unlock(&q->lock);
1175                 if (p != NULL)
1176                         spin_lock(&p->lock);
1177         }
1178         return p;
1179 }
1180
1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1182                                               unsigned long offset,
1183                                               unsigned char usage)
1184 {
1185         unsigned char count;
1186         unsigned char has_cache;
1187
1188         count = p->swap_map[offset];
1189
1190         has_cache = count & SWAP_HAS_CACHE;
1191         count &= ~SWAP_HAS_CACHE;
1192
1193         if (usage == SWAP_HAS_CACHE) {
1194                 VM_BUG_ON(!has_cache);
1195                 has_cache = 0;
1196         } else if (count == SWAP_MAP_SHMEM) {
1197                 /*
1198                  * Or we could insist on shmem.c using a special
1199                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1200                  */
1201                 count = 0;
1202         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1203                 if (count == COUNT_CONTINUED) {
1204                         if (swap_count_continued(p, offset, count))
1205                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1206                         else
1207                                 count = SWAP_MAP_MAX;
1208                 } else
1209                         count--;
1210         }
1211
1212         usage = count | has_cache;
1213         if (usage)
1214                 WRITE_ONCE(p->swap_map[offset], usage);
1215         else
1216                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1217
1218         return usage;
1219 }
1220
1221 /*
1222  * When we get a swap entry, if there aren't some other ways to
1223  * prevent swapoff, such as the folio in swap cache is locked, page
1224  * table lock is held, etc., the swap entry may become invalid because
1225  * of swapoff.  Then, we need to enclose all swap related functions
1226  * with get_swap_device() and put_swap_device(), unless the swap
1227  * functions call get/put_swap_device() by themselves.
1228  *
1229  * Check whether swap entry is valid in the swap device.  If so,
1230  * return pointer to swap_info_struct, and keep the swap entry valid
1231  * via preventing the swap device from being swapoff, until
1232  * put_swap_device() is called.  Otherwise return NULL.
1233  *
1234  * Notice that swapoff or swapoff+swapon can still happen before the
1235  * percpu_ref_tryget_live() in get_swap_device() or after the
1236  * percpu_ref_put() in put_swap_device() if there isn't any other way
1237  * to prevent swapoff.  The caller must be prepared for that.  For
1238  * example, the following situation is possible.
1239  *
1240  *   CPU1                               CPU2
1241  *   do_swap_page()
1242  *     ...                              swapoff+swapon
1243  *     __read_swap_cache_async()
1244  *       swapcache_prepare()
1245  *         __swap_duplicate()
1246  *           // check swap_map
1247  *     // verify PTE not changed
1248  *
1249  * In __swap_duplicate(), the swap_map need to be checked before
1250  * changing partly because the specified swap entry may be for another
1251  * swap device which has been swapoff.  And in do_swap_page(), after
1252  * the page is read from the swap device, the PTE is verified not
1253  * changed with the page table locked to check whether the swap device
1254  * has been swapoff or swapoff+swapon.
1255  */
1256 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1257 {
1258         struct swap_info_struct *si;
1259         unsigned long offset;
1260
1261         if (!entry.val)
1262                 goto out;
1263         si = swp_swap_info(entry);
1264         if (!si)
1265                 goto bad_nofile;
1266         if (!percpu_ref_tryget_live(&si->users))
1267                 goto out;
1268         /*
1269          * Guarantee the si->users are checked before accessing other
1270          * fields of swap_info_struct.
1271          *
1272          * Paired with the spin_unlock() after setup_swap_info() in
1273          * enable_swap_info().
1274          */
1275         smp_rmb();
1276         offset = swp_offset(entry);
1277         if (offset >= si->max)
1278                 goto put_out;
1279
1280         return si;
1281 bad_nofile:
1282         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284         return NULL;
1285 put_out:
1286         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1287         percpu_ref_put(&si->users);
1288         return NULL;
1289 }
1290
1291 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1292                                        swp_entry_t entry)
1293 {
1294         struct swap_cluster_info *ci;
1295         unsigned long offset = swp_offset(entry);
1296         unsigned char usage;
1297
1298         ci = lock_cluster_or_swap_info(p, offset);
1299         usage = __swap_entry_free_locked(p, offset, 1);
1300         unlock_cluster_or_swap_info(p, ci);
1301         if (!usage)
1302                 free_swap_slot(entry);
1303
1304         return usage;
1305 }
1306
1307 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1308 {
1309         struct swap_cluster_info *ci;
1310         unsigned long offset = swp_offset(entry);
1311         unsigned char count;
1312
1313         ci = lock_cluster(p, offset);
1314         count = p->swap_map[offset];
1315         VM_BUG_ON(count != SWAP_HAS_CACHE);
1316         p->swap_map[offset] = 0;
1317         dec_cluster_info_page(p, p->cluster_info, offset);
1318         unlock_cluster(ci);
1319
1320         mem_cgroup_uncharge_swap(entry, 1);
1321         swap_range_free(p, offset, 1);
1322 }
1323
1324 /*
1325  * Caller has made sure that the swap device corresponding to entry
1326  * is still around or has not been recycled.
1327  */
1328 void swap_free(swp_entry_t entry)
1329 {
1330         struct swap_info_struct *p;
1331
1332         p = _swap_info_get(entry);
1333         if (p)
1334                 __swap_entry_free(p, entry);
1335 }
1336
1337 /*
1338  * Called after dropping swapcache to decrease refcnt to swap entries.
1339  */
1340 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1341 {
1342         unsigned long offset = swp_offset(entry);
1343         unsigned long idx = offset / SWAPFILE_CLUSTER;
1344         struct swap_cluster_info *ci;
1345         struct swap_info_struct *si;
1346         unsigned char *map;
1347         unsigned int i, free_entries = 0;
1348         unsigned char val;
1349         int size = swap_entry_size(folio_nr_pages(folio));
1350
1351         si = _swap_info_get(entry);
1352         if (!si)
1353                 return;
1354
1355         ci = lock_cluster_or_swap_info(si, offset);
1356         if (size == SWAPFILE_CLUSTER) {
1357                 VM_BUG_ON(!cluster_is_huge(ci));
1358                 map = si->swap_map + offset;
1359                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1360                         val = map[i];
1361                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1362                         if (val == SWAP_HAS_CACHE)
1363                                 free_entries++;
1364                 }
1365                 cluster_clear_huge(ci);
1366                 if (free_entries == SWAPFILE_CLUSTER) {
1367                         unlock_cluster_or_swap_info(si, ci);
1368                         spin_lock(&si->lock);
1369                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1370                         swap_free_cluster(si, idx);
1371                         spin_unlock(&si->lock);
1372                         return;
1373                 }
1374         }
1375         for (i = 0; i < size; i++, entry.val++) {
1376                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1377                         unlock_cluster_or_swap_info(si, ci);
1378                         free_swap_slot(entry);
1379                         if (i == size - 1)
1380                                 return;
1381                         lock_cluster_or_swap_info(si, offset);
1382                 }
1383         }
1384         unlock_cluster_or_swap_info(si, ci);
1385 }
1386
1387 #ifdef CONFIG_THP_SWAP
1388 int split_swap_cluster(swp_entry_t entry)
1389 {
1390         struct swap_info_struct *si;
1391         struct swap_cluster_info *ci;
1392         unsigned long offset = swp_offset(entry);
1393
1394         si = _swap_info_get(entry);
1395         if (!si)
1396                 return -EBUSY;
1397         ci = lock_cluster(si, offset);
1398         cluster_clear_huge(ci);
1399         unlock_cluster(ci);
1400         return 0;
1401 }
1402 #endif
1403
1404 static int swp_entry_cmp(const void *ent1, const void *ent2)
1405 {
1406         const swp_entry_t *e1 = ent1, *e2 = ent2;
1407
1408         return (int)swp_type(*e1) - (int)swp_type(*e2);
1409 }
1410
1411 void swapcache_free_entries(swp_entry_t *entries, int n)
1412 {
1413         struct swap_info_struct *p, *prev;
1414         int i;
1415
1416         if (n <= 0)
1417                 return;
1418
1419         prev = NULL;
1420         p = NULL;
1421
1422         /*
1423          * Sort swap entries by swap device, so each lock is only taken once.
1424          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1425          * so low that it isn't necessary to optimize further.
1426          */
1427         if (nr_swapfiles > 1)
1428                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1429         for (i = 0; i < n; ++i) {
1430                 p = swap_info_get_cont(entries[i], prev);
1431                 if (p)
1432                         swap_entry_free(p, entries[i]);
1433                 prev = p;
1434         }
1435         if (p)
1436                 spin_unlock(&p->lock);
1437 }
1438
1439 int __swap_count(swp_entry_t entry)
1440 {
1441         struct swap_info_struct *si = swp_swap_info(entry);
1442         pgoff_t offset = swp_offset(entry);
1443
1444         return swap_count(si->swap_map[offset]);
1445 }
1446
1447 /*
1448  * How many references to @entry are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1453 {
1454         pgoff_t offset = swp_offset(entry);
1455         struct swap_cluster_info *ci;
1456         int count;
1457
1458         ci = lock_cluster_or_swap_info(si, offset);
1459         count = swap_count(si->swap_map[offset]);
1460         unlock_cluster_or_swap_info(si, ci);
1461         return count;
1462 }
1463
1464 /*
1465  * How many references to @entry are currently swapped out?
1466  * This considers COUNT_CONTINUED so it returns exact answer.
1467  */
1468 int swp_swapcount(swp_entry_t entry)
1469 {
1470         int count, tmp_count, n;
1471         struct swap_info_struct *p;
1472         struct swap_cluster_info *ci;
1473         struct page *page;
1474         pgoff_t offset;
1475         unsigned char *map;
1476
1477         p = _swap_info_get(entry);
1478         if (!p)
1479                 return 0;
1480
1481         offset = swp_offset(entry);
1482
1483         ci = lock_cluster_or_swap_info(p, offset);
1484
1485         count = swap_count(p->swap_map[offset]);
1486         if (!(count & COUNT_CONTINUED))
1487                 goto out;
1488
1489         count &= ~COUNT_CONTINUED;
1490         n = SWAP_MAP_MAX + 1;
1491
1492         page = vmalloc_to_page(p->swap_map + offset);
1493         offset &= ~PAGE_MASK;
1494         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1495
1496         do {
1497                 page = list_next_entry(page, lru);
1498                 map = kmap_atomic(page);
1499                 tmp_count = map[offset];
1500                 kunmap_atomic(map);
1501
1502                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1503                 n *= (SWAP_CONT_MAX + 1);
1504         } while (tmp_count & COUNT_CONTINUED);
1505 out:
1506         unlock_cluster_or_swap_info(p, ci);
1507         return count;
1508 }
1509
1510 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1511                                          swp_entry_t entry)
1512 {
1513         struct swap_cluster_info *ci;
1514         unsigned char *map = si->swap_map;
1515         unsigned long roffset = swp_offset(entry);
1516         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1517         int i;
1518         bool ret = false;
1519
1520         ci = lock_cluster_or_swap_info(si, offset);
1521         if (!ci || !cluster_is_huge(ci)) {
1522                 if (swap_count(map[roffset]))
1523                         ret = true;
1524                 goto unlock_out;
1525         }
1526         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1527                 if (swap_count(map[offset + i])) {
1528                         ret = true;
1529                         break;
1530                 }
1531         }
1532 unlock_out:
1533         unlock_cluster_or_swap_info(si, ci);
1534         return ret;
1535 }
1536
1537 static bool folio_swapped(struct folio *folio)
1538 {
1539         swp_entry_t entry = folio->swap;
1540         struct swap_info_struct *si = _swap_info_get(entry);
1541
1542         if (!si)
1543                 return false;
1544
1545         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1546                 return swap_swapcount(si, entry) != 0;
1547
1548         return swap_page_trans_huge_swapped(si, entry);
1549 }
1550
1551 /**
1552  * folio_free_swap() - Free the swap space used for this folio.
1553  * @folio: The folio to remove.
1554  *
1555  * If swap is getting full, or if there are no more mappings of this folio,
1556  * then call folio_free_swap to free its swap space.
1557  *
1558  * Return: true if we were able to release the swap space.
1559  */
1560 bool folio_free_swap(struct folio *folio)
1561 {
1562         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1563
1564         if (!folio_test_swapcache(folio))
1565                 return false;
1566         if (folio_test_writeback(folio))
1567                 return false;
1568         if (folio_swapped(folio))
1569                 return false;
1570
1571         /*
1572          * Once hibernation has begun to create its image of memory,
1573          * there's a danger that one of the calls to folio_free_swap()
1574          * - most probably a call from __try_to_reclaim_swap() while
1575          * hibernation is allocating its own swap pages for the image,
1576          * but conceivably even a call from memory reclaim - will free
1577          * the swap from a folio which has already been recorded in the
1578          * image as a clean swapcache folio, and then reuse its swap for
1579          * another page of the image.  On waking from hibernation, the
1580          * original folio might be freed under memory pressure, then
1581          * later read back in from swap, now with the wrong data.
1582          *
1583          * Hibernation suspends storage while it is writing the image
1584          * to disk so check that here.
1585          */
1586         if (pm_suspended_storage())
1587                 return false;
1588
1589         delete_from_swap_cache(folio);
1590         folio_set_dirty(folio);
1591         return true;
1592 }
1593
1594 /*
1595  * Free the swap entry like above, but also try to
1596  * free the page cache entry if it is the last user.
1597  */
1598 int free_swap_and_cache(swp_entry_t entry)
1599 {
1600         struct swap_info_struct *p;
1601         unsigned char count;
1602
1603         if (non_swap_entry(entry))
1604                 return 1;
1605
1606         p = _swap_info_get(entry);
1607         if (p) {
1608                 count = __swap_entry_free(p, entry);
1609                 if (count == SWAP_HAS_CACHE &&
1610                     !swap_page_trans_huge_swapped(p, entry))
1611                         __try_to_reclaim_swap(p, swp_offset(entry),
1612                                               TTRS_UNMAPPED | TTRS_FULL);
1613         }
1614         return p != NULL;
1615 }
1616
1617 #ifdef CONFIG_HIBERNATION
1618
1619 swp_entry_t get_swap_page_of_type(int type)
1620 {
1621         struct swap_info_struct *si = swap_type_to_swap_info(type);
1622         swp_entry_t entry = {0};
1623
1624         if (!si)
1625                 goto fail;
1626
1627         /* This is called for allocating swap entry, not cache */
1628         spin_lock(&si->lock);
1629         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1630                 atomic_long_dec(&nr_swap_pages);
1631         spin_unlock(&si->lock);
1632 fail:
1633         return entry;
1634 }
1635
1636 /*
1637  * Find the swap type that corresponds to given device (if any).
1638  *
1639  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1640  * from 0, in which the swap header is expected to be located.
1641  *
1642  * This is needed for the suspend to disk (aka swsusp).
1643  */
1644 int swap_type_of(dev_t device, sector_t offset)
1645 {
1646         int type;
1647
1648         if (!device)
1649                 return -1;
1650
1651         spin_lock(&swap_lock);
1652         for (type = 0; type < nr_swapfiles; type++) {
1653                 struct swap_info_struct *sis = swap_info[type];
1654
1655                 if (!(sis->flags & SWP_WRITEOK))
1656                         continue;
1657
1658                 if (device == sis->bdev->bd_dev) {
1659                         struct swap_extent *se = first_se(sis);
1660
1661                         if (se->start_block == offset) {
1662                                 spin_unlock(&swap_lock);
1663                                 return type;
1664                         }
1665                 }
1666         }
1667         spin_unlock(&swap_lock);
1668         return -ENODEV;
1669 }
1670
1671 int find_first_swap(dev_t *device)
1672 {
1673         int type;
1674
1675         spin_lock(&swap_lock);
1676         for (type = 0; type < nr_swapfiles; type++) {
1677                 struct swap_info_struct *sis = swap_info[type];
1678
1679                 if (!(sis->flags & SWP_WRITEOK))
1680                         continue;
1681                 *device = sis->bdev->bd_dev;
1682                 spin_unlock(&swap_lock);
1683                 return type;
1684         }
1685         spin_unlock(&swap_lock);
1686         return -ENODEV;
1687 }
1688
1689 /*
1690  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1691  * corresponding to given index in swap_info (swap type).
1692  */
1693 sector_t swapdev_block(int type, pgoff_t offset)
1694 {
1695         struct swap_info_struct *si = swap_type_to_swap_info(type);
1696         struct swap_extent *se;
1697
1698         if (!si || !(si->flags & SWP_WRITEOK))
1699                 return 0;
1700         se = offset_to_swap_extent(si, offset);
1701         return se->start_block + (offset - se->start_page);
1702 }
1703
1704 /*
1705  * Return either the total number of swap pages of given type, or the number
1706  * of free pages of that type (depending on @free)
1707  *
1708  * This is needed for software suspend
1709  */
1710 unsigned int count_swap_pages(int type, int free)
1711 {
1712         unsigned int n = 0;
1713
1714         spin_lock(&swap_lock);
1715         if ((unsigned int)type < nr_swapfiles) {
1716                 struct swap_info_struct *sis = swap_info[type];
1717
1718                 spin_lock(&sis->lock);
1719                 if (sis->flags & SWP_WRITEOK) {
1720                         n = sis->pages;
1721                         if (free)
1722                                 n -= sis->inuse_pages;
1723                 }
1724                 spin_unlock(&sis->lock);
1725         }
1726         spin_unlock(&swap_lock);
1727         return n;
1728 }
1729 #endif /* CONFIG_HIBERNATION */
1730
1731 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1732 {
1733         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1734 }
1735
1736 /*
1737  * No need to decide whether this PTE shares the swap entry with others,
1738  * just let do_wp_page work it out if a write is requested later - to
1739  * force COW, vm_page_prot omits write permission from any private vma.
1740  */
1741 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1742                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1743 {
1744         struct page *page = folio_file_page(folio, swp_offset(entry));
1745         struct page *swapcache;
1746         spinlock_t *ptl;
1747         pte_t *pte, new_pte, old_pte;
1748         bool hwpoisoned = PageHWPoison(page);
1749         int ret = 1;
1750
1751         swapcache = page;
1752         page = ksm_might_need_to_copy(page, vma, addr);
1753         if (unlikely(!page))
1754                 return -ENOMEM;
1755         else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1756                 hwpoisoned = true;
1757
1758         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1759         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1760                                                 swp_entry_to_pte(entry)))) {
1761                 ret = 0;
1762                 goto out;
1763         }
1764
1765         old_pte = ptep_get(pte);
1766
1767         if (unlikely(hwpoisoned || !PageUptodate(page))) {
1768                 swp_entry_t swp_entry;
1769
1770                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1771                 if (hwpoisoned) {
1772                         swp_entry = make_hwpoison_entry(swapcache);
1773                         page = swapcache;
1774                 } else {
1775                         swp_entry = make_poisoned_swp_entry();
1776                 }
1777                 new_pte = swp_entry_to_pte(swp_entry);
1778                 ret = 0;
1779                 goto setpte;
1780         }
1781
1782         /*
1783          * Some architectures may have to restore extra metadata to the page
1784          * when reading from swap. This metadata may be indexed by swap entry
1785          * so this must be called before swap_free().
1786          */
1787         arch_swap_restore(entry, page_folio(page));
1788
1789         /* See do_swap_page() */
1790         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1791         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1792
1793         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1795         get_page(page);
1796         if (page == swapcache) {
1797                 rmap_t rmap_flags = RMAP_NONE;
1798
1799                 /*
1800                  * See do_swap_page(): PageWriteback() would be problematic.
1801                  * However, we do a wait_on_page_writeback() just before this
1802                  * call and have the page locked.
1803                  */
1804                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1805                 if (pte_swp_exclusive(old_pte))
1806                         rmap_flags |= RMAP_EXCLUSIVE;
1807
1808                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1809         } else { /* ksm created a completely new copy */
1810                 page_add_new_anon_rmap(page, vma, addr);
1811                 lru_cache_add_inactive_or_unevictable(page, vma);
1812         }
1813         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1814         if (pte_swp_soft_dirty(old_pte))
1815                 new_pte = pte_mksoft_dirty(new_pte);
1816         if (pte_swp_uffd_wp(old_pte))
1817                 new_pte = pte_mkuffd_wp(new_pte);
1818 setpte:
1819         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1820         swap_free(entry);
1821 out:
1822         if (pte)
1823                 pte_unmap_unlock(pte, ptl);
1824         if (page != swapcache) {
1825                 unlock_page(page);
1826                 put_page(page);
1827         }
1828         return ret;
1829 }
1830
1831 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1832                         unsigned long addr, unsigned long end,
1833                         unsigned int type)
1834 {
1835         pte_t *pte = NULL;
1836         struct swap_info_struct *si;
1837
1838         si = swap_info[type];
1839         do {
1840                 struct folio *folio;
1841                 unsigned long offset;
1842                 unsigned char swp_count;
1843                 swp_entry_t entry;
1844                 int ret;
1845                 pte_t ptent;
1846
1847                 if (!pte++) {
1848                         pte = pte_offset_map(pmd, addr);
1849                         if (!pte)
1850                                 break;
1851                 }
1852
1853                 ptent = ptep_get_lockless(pte);
1854
1855                 if (!is_swap_pte(ptent))
1856                         continue;
1857
1858                 entry = pte_to_swp_entry(ptent);
1859                 if (swp_type(entry) != type)
1860                         continue;
1861
1862                 offset = swp_offset(entry);
1863                 pte_unmap(pte);
1864                 pte = NULL;
1865
1866                 folio = swap_cache_get_folio(entry, vma, addr);
1867                 if (!folio) {
1868                         struct page *page;
1869                         struct vm_fault vmf = {
1870                                 .vma = vma,
1871                                 .address = addr,
1872                                 .real_address = addr,
1873                                 .pmd = pmd,
1874                         };
1875
1876                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1877                                                 &vmf);
1878                         if (page)
1879                                 folio = page_folio(page);
1880                 }
1881                 if (!folio) {
1882                         swp_count = READ_ONCE(si->swap_map[offset]);
1883                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1884                                 continue;
1885                         return -ENOMEM;
1886                 }
1887
1888                 folio_lock(folio);
1889                 folio_wait_writeback(folio);
1890                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1891                 if (ret < 0) {
1892                         folio_unlock(folio);
1893                         folio_put(folio);
1894                         return ret;
1895                 }
1896
1897                 folio_free_swap(folio);
1898                 folio_unlock(folio);
1899                 folio_put(folio);
1900         } while (addr += PAGE_SIZE, addr != end);
1901
1902         if (pte)
1903                 pte_unmap(pte);
1904         return 0;
1905 }
1906
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908                                 unsigned long addr, unsigned long end,
1909                                 unsigned int type)
1910 {
1911         pmd_t *pmd;
1912         unsigned long next;
1913         int ret;
1914
1915         pmd = pmd_offset(pud, addr);
1916         do {
1917                 cond_resched();
1918                 next = pmd_addr_end(addr, end);
1919                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1920                 if (ret)
1921                         return ret;
1922         } while (pmd++, addr = next, addr != end);
1923         return 0;
1924 }
1925
1926 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1927                                 unsigned long addr, unsigned long end,
1928                                 unsigned int type)
1929 {
1930         pud_t *pud;
1931         unsigned long next;
1932         int ret;
1933
1934         pud = pud_offset(p4d, addr);
1935         do {
1936                 next = pud_addr_end(addr, end);
1937                 if (pud_none_or_clear_bad(pud))
1938                         continue;
1939                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1940                 if (ret)
1941                         return ret;
1942         } while (pud++, addr = next, addr != end);
1943         return 0;
1944 }
1945
1946 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1947                                 unsigned long addr, unsigned long end,
1948                                 unsigned int type)
1949 {
1950         p4d_t *p4d;
1951         unsigned long next;
1952         int ret;
1953
1954         p4d = p4d_offset(pgd, addr);
1955         do {
1956                 next = p4d_addr_end(addr, end);
1957                 if (p4d_none_or_clear_bad(p4d))
1958                         continue;
1959                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1960                 if (ret)
1961                         return ret;
1962         } while (p4d++, addr = next, addr != end);
1963         return 0;
1964 }
1965
1966 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1967 {
1968         pgd_t *pgd;
1969         unsigned long addr, end, next;
1970         int ret;
1971
1972         addr = vma->vm_start;
1973         end = vma->vm_end;
1974
1975         pgd = pgd_offset(vma->vm_mm, addr);
1976         do {
1977                 next = pgd_addr_end(addr, end);
1978                 if (pgd_none_or_clear_bad(pgd))
1979                         continue;
1980                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1981                 if (ret)
1982                         return ret;
1983         } while (pgd++, addr = next, addr != end);
1984         return 0;
1985 }
1986
1987 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1988 {
1989         struct vm_area_struct *vma;
1990         int ret = 0;
1991         VMA_ITERATOR(vmi, mm, 0);
1992
1993         mmap_read_lock(mm);
1994         for_each_vma(vmi, vma) {
1995                 if (vma->anon_vma) {
1996                         ret = unuse_vma(vma, type);
1997                         if (ret)
1998                                 break;
1999                 }
2000
2001                 cond_resched();
2002         }
2003         mmap_read_unlock(mm);
2004         return ret;
2005 }
2006
2007 /*
2008  * Scan swap_map from current position to next entry still in use.
2009  * Return 0 if there are no inuse entries after prev till end of
2010  * the map.
2011  */
2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2013                                         unsigned int prev)
2014 {
2015         unsigned int i;
2016         unsigned char count;
2017
2018         /*
2019          * No need for swap_lock here: we're just looking
2020          * for whether an entry is in use, not modifying it; false
2021          * hits are okay, and sys_swapoff() has already prevented new
2022          * allocations from this area (while holding swap_lock).
2023          */
2024         for (i = prev + 1; i < si->max; i++) {
2025                 count = READ_ONCE(si->swap_map[i]);
2026                 if (count && swap_count(count) != SWAP_MAP_BAD)
2027                         break;
2028                 if ((i % LATENCY_LIMIT) == 0)
2029                         cond_resched();
2030         }
2031
2032         if (i == si->max)
2033                 i = 0;
2034
2035         return i;
2036 }
2037
2038 static int try_to_unuse(unsigned int type)
2039 {
2040         struct mm_struct *prev_mm;
2041         struct mm_struct *mm;
2042         struct list_head *p;
2043         int retval = 0;
2044         struct swap_info_struct *si = swap_info[type];
2045         struct folio *folio;
2046         swp_entry_t entry;
2047         unsigned int i;
2048
2049         if (!READ_ONCE(si->inuse_pages))
2050                 return 0;
2051
2052 retry:
2053         retval = shmem_unuse(type);
2054         if (retval)
2055                 return retval;
2056
2057         prev_mm = &init_mm;
2058         mmget(prev_mm);
2059
2060         spin_lock(&mmlist_lock);
2061         p = &init_mm.mmlist;
2062         while (READ_ONCE(si->inuse_pages) &&
2063                !signal_pending(current) &&
2064                (p = p->next) != &init_mm.mmlist) {
2065
2066                 mm = list_entry(p, struct mm_struct, mmlist);
2067                 if (!mmget_not_zero(mm))
2068                         continue;
2069                 spin_unlock(&mmlist_lock);
2070                 mmput(prev_mm);
2071                 prev_mm = mm;
2072                 retval = unuse_mm(mm, type);
2073                 if (retval) {
2074                         mmput(prev_mm);
2075                         return retval;
2076                 }
2077
2078                 /*
2079                  * Make sure that we aren't completely killing
2080                  * interactive performance.
2081                  */
2082                 cond_resched();
2083                 spin_lock(&mmlist_lock);
2084         }
2085         spin_unlock(&mmlist_lock);
2086
2087         mmput(prev_mm);
2088
2089         i = 0;
2090         while (READ_ONCE(si->inuse_pages) &&
2091                !signal_pending(current) &&
2092                (i = find_next_to_unuse(si, i)) != 0) {
2093
2094                 entry = swp_entry(type, i);
2095                 folio = filemap_get_folio(swap_address_space(entry), i);
2096                 if (IS_ERR(folio))
2097                         continue;
2098
2099                 /*
2100                  * It is conceivable that a racing task removed this folio from
2101                  * swap cache just before we acquired the page lock. The folio
2102                  * might even be back in swap cache on another swap area. But
2103                  * that is okay, folio_free_swap() only removes stale folios.
2104                  */
2105                 folio_lock(folio);
2106                 folio_wait_writeback(folio);
2107                 folio_free_swap(folio);
2108                 folio_unlock(folio);
2109                 folio_put(folio);
2110         }
2111
2112         /*
2113          * Lets check again to see if there are still swap entries in the map.
2114          * If yes, we would need to do retry the unuse logic again.
2115          * Under global memory pressure, swap entries can be reinserted back
2116          * into process space after the mmlist loop above passes over them.
2117          *
2118          * Limit the number of retries? No: when mmget_not_zero()
2119          * above fails, that mm is likely to be freeing swap from
2120          * exit_mmap(), which proceeds at its own independent pace;
2121          * and even shmem_writepage() could have been preempted after
2122          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2123          * and robust (though cpu-intensive) just to keep retrying.
2124          */
2125         if (READ_ONCE(si->inuse_pages)) {
2126                 if (!signal_pending(current))
2127                         goto retry;
2128                 return -EINTR;
2129         }
2130
2131         return 0;
2132 }
2133
2134 /*
2135  * After a successful try_to_unuse, if no swap is now in use, we know
2136  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2137  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138  * added to the mmlist just after page_duplicate - before would be racy.
2139  */
2140 static void drain_mmlist(void)
2141 {
2142         struct list_head *p, *next;
2143         unsigned int type;
2144
2145         for (type = 0; type < nr_swapfiles; type++)
2146                 if (swap_info[type]->inuse_pages)
2147                         return;
2148         spin_lock(&mmlist_lock);
2149         list_for_each_safe(p, next, &init_mm.mmlist)
2150                 list_del_init(p);
2151         spin_unlock(&mmlist_lock);
2152 }
2153
2154 /*
2155  * Free all of a swapdev's extent information
2156  */
2157 static void destroy_swap_extents(struct swap_info_struct *sis)
2158 {
2159         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2161                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2162
2163                 rb_erase(rb, &sis->swap_extent_root);
2164                 kfree(se);
2165         }
2166
2167         if (sis->flags & SWP_ACTIVATED) {
2168                 struct file *swap_file = sis->swap_file;
2169                 struct address_space *mapping = swap_file->f_mapping;
2170
2171                 sis->flags &= ~SWP_ACTIVATED;
2172                 if (mapping->a_ops->swap_deactivate)
2173                         mapping->a_ops->swap_deactivate(swap_file);
2174         }
2175 }
2176
2177 /*
2178  * Add a block range (and the corresponding page range) into this swapdev's
2179  * extent tree.
2180  *
2181  * This function rather assumes that it is called in ascending page order.
2182  */
2183 int
2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185                 unsigned long nr_pages, sector_t start_block)
2186 {
2187         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2188         struct swap_extent *se;
2189         struct swap_extent *new_se;
2190
2191         /*
2192          * place the new node at the right most since the
2193          * function is called in ascending page order.
2194          */
2195         while (*link) {
2196                 parent = *link;
2197                 link = &parent->rb_right;
2198         }
2199
2200         if (parent) {
2201                 se = rb_entry(parent, struct swap_extent, rb_node);
2202                 BUG_ON(se->start_page + se->nr_pages != start_page);
2203                 if (se->start_block + se->nr_pages == start_block) {
2204                         /* Merge it */
2205                         se->nr_pages += nr_pages;
2206                         return 0;
2207                 }
2208         }
2209
2210         /* No merge, insert a new extent. */
2211         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2212         if (new_se == NULL)
2213                 return -ENOMEM;
2214         new_se->start_page = start_page;
2215         new_se->nr_pages = nr_pages;
2216         new_se->start_block = start_block;
2217
2218         rb_link_node(&new_se->rb_node, parent, link);
2219         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2220         return 1;
2221 }
2222 EXPORT_SYMBOL_GPL(add_swap_extent);
2223
2224 /*
2225  * A `swap extent' is a simple thing which maps a contiguous range of pages
2226  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2227  * built at swapon time and is then used at swap_writepage/swap_readpage
2228  * time for locating where on disk a page belongs.
2229  *
2230  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232  * swap files identically.
2233  *
2234  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2235  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2236  * swapfiles are handled *identically* after swapon time.
2237  *
2238  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2239  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2240  * blocks are found which do not fall within the PAGE_SIZE alignment
2241  * requirements, they are simply tossed out - we will never use those blocks
2242  * for swapping.
2243  *
2244  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2245  * prevents users from writing to the swap device, which will corrupt memory.
2246  *
2247  * The amount of disk space which a single swap extent represents varies.
2248  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2249  * extents in the rbtree. - akpm.
2250  */
2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2252 {
2253         struct file *swap_file = sis->swap_file;
2254         struct address_space *mapping = swap_file->f_mapping;
2255         struct inode *inode = mapping->host;
2256         int ret;
2257
2258         if (S_ISBLK(inode->i_mode)) {
2259                 ret = add_swap_extent(sis, 0, sis->max, 0);
2260                 *span = sis->pages;
2261                 return ret;
2262         }
2263
2264         if (mapping->a_ops->swap_activate) {
2265                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2266                 if (ret < 0)
2267                         return ret;
2268                 sis->flags |= SWP_ACTIVATED;
2269                 if ((sis->flags & SWP_FS_OPS) &&
2270                     sio_pool_init() != 0) {
2271                         destroy_swap_extents(sis);
2272                         return -ENOMEM;
2273                 }
2274                 return ret;
2275         }
2276
2277         return generic_swapfile_activate(sis, swap_file, span);
2278 }
2279
2280 static int swap_node(struct swap_info_struct *p)
2281 {
2282         struct block_device *bdev;
2283
2284         if (p->bdev)
2285                 bdev = p->bdev;
2286         else
2287                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2288
2289         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2290 }
2291
2292 static void setup_swap_info(struct swap_info_struct *p, int prio,
2293                             unsigned char *swap_map,
2294                             struct swap_cluster_info *cluster_info)
2295 {
2296         int i;
2297
2298         if (prio >= 0)
2299                 p->prio = prio;
2300         else
2301                 p->prio = --least_priority;
2302         /*
2303          * the plist prio is negated because plist ordering is
2304          * low-to-high, while swap ordering is high-to-low
2305          */
2306         p->list.prio = -p->prio;
2307         for_each_node(i) {
2308                 if (p->prio >= 0)
2309                         p->avail_lists[i].prio = -p->prio;
2310                 else {
2311                         if (swap_node(p) == i)
2312                                 p->avail_lists[i].prio = 1;
2313                         else
2314                                 p->avail_lists[i].prio = -p->prio;
2315                 }
2316         }
2317         p->swap_map = swap_map;
2318         p->cluster_info = cluster_info;
2319 }
2320
2321 static void _enable_swap_info(struct swap_info_struct *p)
2322 {
2323         p->flags |= SWP_WRITEOK;
2324         atomic_long_add(p->pages, &nr_swap_pages);
2325         total_swap_pages += p->pages;
2326
2327         assert_spin_locked(&swap_lock);
2328         /*
2329          * both lists are plists, and thus priority ordered.
2330          * swap_active_head needs to be priority ordered for swapoff(),
2331          * which on removal of any swap_info_struct with an auto-assigned
2332          * (i.e. negative) priority increments the auto-assigned priority
2333          * of any lower-priority swap_info_structs.
2334          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2335          * which allocates swap pages from the highest available priority
2336          * swap_info_struct.
2337          */
2338         plist_add(&p->list, &swap_active_head);
2339
2340         /* add to available list iff swap device is not full */
2341         if (p->highest_bit)
2342                 add_to_avail_list(p);
2343 }
2344
2345 static void enable_swap_info(struct swap_info_struct *p, int prio,
2346                                 unsigned char *swap_map,
2347                                 struct swap_cluster_info *cluster_info)
2348 {
2349         zswap_swapon(p->type);
2350
2351         spin_lock(&swap_lock);
2352         spin_lock(&p->lock);
2353         setup_swap_info(p, prio, swap_map, cluster_info);
2354         spin_unlock(&p->lock);
2355         spin_unlock(&swap_lock);
2356         /*
2357          * Finished initializing swap device, now it's safe to reference it.
2358          */
2359         percpu_ref_resurrect(&p->users);
2360         spin_lock(&swap_lock);
2361         spin_lock(&p->lock);
2362         _enable_swap_info(p);
2363         spin_unlock(&p->lock);
2364         spin_unlock(&swap_lock);
2365 }
2366
2367 static void reinsert_swap_info(struct swap_info_struct *p)
2368 {
2369         spin_lock(&swap_lock);
2370         spin_lock(&p->lock);
2371         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2372         _enable_swap_info(p);
2373         spin_unlock(&p->lock);
2374         spin_unlock(&swap_lock);
2375 }
2376
2377 bool has_usable_swap(void)
2378 {
2379         bool ret = true;
2380
2381         spin_lock(&swap_lock);
2382         if (plist_head_empty(&swap_active_head))
2383                 ret = false;
2384         spin_unlock(&swap_lock);
2385         return ret;
2386 }
2387
2388 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2389 {
2390         struct swap_info_struct *p = NULL;
2391         unsigned char *swap_map;
2392         struct swap_cluster_info *cluster_info;
2393         struct file *swap_file, *victim;
2394         struct address_space *mapping;
2395         struct inode *inode;
2396         struct filename *pathname;
2397         int err, found = 0;
2398         unsigned int old_block_size;
2399
2400         if (!capable(CAP_SYS_ADMIN))
2401                 return -EPERM;
2402
2403         BUG_ON(!current->mm);
2404
2405         pathname = getname(specialfile);
2406         if (IS_ERR(pathname))
2407                 return PTR_ERR(pathname);
2408
2409         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2410         err = PTR_ERR(victim);
2411         if (IS_ERR(victim))
2412                 goto out;
2413
2414         mapping = victim->f_mapping;
2415         spin_lock(&swap_lock);
2416         plist_for_each_entry(p, &swap_active_head, list) {
2417                 if (p->flags & SWP_WRITEOK) {
2418                         if (p->swap_file->f_mapping == mapping) {
2419                                 found = 1;
2420                                 break;
2421                         }
2422                 }
2423         }
2424         if (!found) {
2425                 err = -EINVAL;
2426                 spin_unlock(&swap_lock);
2427                 goto out_dput;
2428         }
2429         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2430                 vm_unacct_memory(p->pages);
2431         else {
2432                 err = -ENOMEM;
2433                 spin_unlock(&swap_lock);
2434                 goto out_dput;
2435         }
2436         spin_lock(&p->lock);
2437         del_from_avail_list(p);
2438         if (p->prio < 0) {
2439                 struct swap_info_struct *si = p;
2440                 int nid;
2441
2442                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2443                         si->prio++;
2444                         si->list.prio--;
2445                         for_each_node(nid) {
2446                                 if (si->avail_lists[nid].prio != 1)
2447                                         si->avail_lists[nid].prio--;
2448                         }
2449                 }
2450                 least_priority++;
2451         }
2452         plist_del(&p->list, &swap_active_head);
2453         atomic_long_sub(p->pages, &nr_swap_pages);
2454         total_swap_pages -= p->pages;
2455         p->flags &= ~SWP_WRITEOK;
2456         spin_unlock(&p->lock);
2457         spin_unlock(&swap_lock);
2458
2459         disable_swap_slots_cache_lock();
2460
2461         set_current_oom_origin();
2462         err = try_to_unuse(p->type);
2463         clear_current_oom_origin();
2464
2465         if (err) {
2466                 /* re-insert swap space back into swap_list */
2467                 reinsert_swap_info(p);
2468                 reenable_swap_slots_cache_unlock();
2469                 goto out_dput;
2470         }
2471
2472         reenable_swap_slots_cache_unlock();
2473
2474         /*
2475          * Wait for swap operations protected by get/put_swap_device()
2476          * to complete.
2477          *
2478          * We need synchronize_rcu() here to protect the accessing to
2479          * the swap cache data structure.
2480          */
2481         percpu_ref_kill(&p->users);
2482         synchronize_rcu();
2483         wait_for_completion(&p->comp);
2484
2485         flush_work(&p->discard_work);
2486
2487         destroy_swap_extents(p);
2488         if (p->flags & SWP_CONTINUED)
2489                 free_swap_count_continuations(p);
2490
2491         if (!p->bdev || !bdev_nonrot(p->bdev))
2492                 atomic_dec(&nr_rotate_swap);
2493
2494         mutex_lock(&swapon_mutex);
2495         spin_lock(&swap_lock);
2496         spin_lock(&p->lock);
2497         drain_mmlist();
2498
2499         /* wait for anyone still in scan_swap_map_slots */
2500         p->highest_bit = 0;             /* cuts scans short */
2501         while (p->flags >= SWP_SCANNING) {
2502                 spin_unlock(&p->lock);
2503                 spin_unlock(&swap_lock);
2504                 schedule_timeout_uninterruptible(1);
2505                 spin_lock(&swap_lock);
2506                 spin_lock(&p->lock);
2507         }
2508
2509         swap_file = p->swap_file;
2510         old_block_size = p->old_block_size;
2511         p->swap_file = NULL;
2512         p->max = 0;
2513         swap_map = p->swap_map;
2514         p->swap_map = NULL;
2515         cluster_info = p->cluster_info;
2516         p->cluster_info = NULL;
2517         spin_unlock(&p->lock);
2518         spin_unlock(&swap_lock);
2519         arch_swap_invalidate_area(p->type);
2520         zswap_swapoff(p->type);
2521         mutex_unlock(&swapon_mutex);
2522         free_percpu(p->percpu_cluster);
2523         p->percpu_cluster = NULL;
2524         free_percpu(p->cluster_next_cpu);
2525         p->cluster_next_cpu = NULL;
2526         vfree(swap_map);
2527         kvfree(cluster_info);
2528         /* Destroy swap account information */
2529         swap_cgroup_swapoff(p->type);
2530         exit_swap_address_space(p->type);
2531
2532         inode = mapping->host;
2533         if (S_ISBLK(inode->i_mode)) {
2534                 struct block_device *bdev = I_BDEV(inode);
2535
2536                 set_blocksize(bdev, old_block_size);
2537                 blkdev_put(bdev, p);
2538         }
2539
2540         inode_lock(inode);
2541         inode->i_flags &= ~S_SWAPFILE;
2542         inode_unlock(inode);
2543         filp_close(swap_file, NULL);
2544
2545         /*
2546          * Clear the SWP_USED flag after all resources are freed so that swapon
2547          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2548          * not hold p->lock after we cleared its SWP_WRITEOK.
2549          */
2550         spin_lock(&swap_lock);
2551         p->flags = 0;
2552         spin_unlock(&swap_lock);
2553
2554         err = 0;
2555         atomic_inc(&proc_poll_event);
2556         wake_up_interruptible(&proc_poll_wait);
2557
2558 out_dput:
2559         filp_close(victim, NULL);
2560 out:
2561         putname(pathname);
2562         return err;
2563 }
2564
2565 #ifdef CONFIG_PROC_FS
2566 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2567 {
2568         struct seq_file *seq = file->private_data;
2569
2570         poll_wait(file, &proc_poll_wait, wait);
2571
2572         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2573                 seq->poll_event = atomic_read(&proc_poll_event);
2574                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2575         }
2576
2577         return EPOLLIN | EPOLLRDNORM;
2578 }
2579
2580 /* iterator */
2581 static void *swap_start(struct seq_file *swap, loff_t *pos)
2582 {
2583         struct swap_info_struct *si;
2584         int type;
2585         loff_t l = *pos;
2586
2587         mutex_lock(&swapon_mutex);
2588
2589         if (!l)
2590                 return SEQ_START_TOKEN;
2591
2592         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2593                 if (!(si->flags & SWP_USED) || !si->swap_map)
2594                         continue;
2595                 if (!--l)
2596                         return si;
2597         }
2598
2599         return NULL;
2600 }
2601
2602 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2603 {
2604         struct swap_info_struct *si = v;
2605         int type;
2606
2607         if (v == SEQ_START_TOKEN)
2608                 type = 0;
2609         else
2610                 type = si->type + 1;
2611
2612         ++(*pos);
2613         for (; (si = swap_type_to_swap_info(type)); type++) {
2614                 if (!(si->flags & SWP_USED) || !si->swap_map)
2615                         continue;
2616                 return si;
2617         }
2618
2619         return NULL;
2620 }
2621
2622 static void swap_stop(struct seq_file *swap, void *v)
2623 {
2624         mutex_unlock(&swapon_mutex);
2625 }
2626
2627 static int swap_show(struct seq_file *swap, void *v)
2628 {
2629         struct swap_info_struct *si = v;
2630         struct file *file;
2631         int len;
2632         unsigned long bytes, inuse;
2633
2634         if (si == SEQ_START_TOKEN) {
2635                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2636                 return 0;
2637         }
2638
2639         bytes = K(si->pages);
2640         inuse = K(READ_ONCE(si->inuse_pages));
2641
2642         file = si->swap_file;
2643         len = seq_file_path(swap, file, " \t\n\\");
2644         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2645                         len < 40 ? 40 - len : 1, " ",
2646                         S_ISBLK(file_inode(file)->i_mode) ?
2647                                 "partition" : "file\t",
2648                         bytes, bytes < 10000000 ? "\t" : "",
2649                         inuse, inuse < 10000000 ? "\t" : "",
2650                         si->prio);
2651         return 0;
2652 }
2653
2654 static const struct seq_operations swaps_op = {
2655         .start =        swap_start,
2656         .next =         swap_next,
2657         .stop =         swap_stop,
2658         .show =         swap_show
2659 };
2660
2661 static int swaps_open(struct inode *inode, struct file *file)
2662 {
2663         struct seq_file *seq;
2664         int ret;
2665
2666         ret = seq_open(file, &swaps_op);
2667         if (ret)
2668                 return ret;
2669
2670         seq = file->private_data;
2671         seq->poll_event = atomic_read(&proc_poll_event);
2672         return 0;
2673 }
2674
2675 static const struct proc_ops swaps_proc_ops = {
2676         .proc_flags     = PROC_ENTRY_PERMANENT,
2677         .proc_open      = swaps_open,
2678         .proc_read      = seq_read,
2679         .proc_lseek     = seq_lseek,
2680         .proc_release   = seq_release,
2681         .proc_poll      = swaps_poll,
2682 };
2683
2684 static int __init procswaps_init(void)
2685 {
2686         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2687         return 0;
2688 }
2689 __initcall(procswaps_init);
2690 #endif /* CONFIG_PROC_FS */
2691
2692 #ifdef MAX_SWAPFILES_CHECK
2693 static int __init max_swapfiles_check(void)
2694 {
2695         MAX_SWAPFILES_CHECK();
2696         return 0;
2697 }
2698 late_initcall(max_swapfiles_check);
2699 #endif
2700
2701 static struct swap_info_struct *alloc_swap_info(void)
2702 {
2703         struct swap_info_struct *p;
2704         struct swap_info_struct *defer = NULL;
2705         unsigned int type;
2706         int i;
2707
2708         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2709         if (!p)
2710                 return ERR_PTR(-ENOMEM);
2711
2712         if (percpu_ref_init(&p->users, swap_users_ref_free,
2713                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2714                 kvfree(p);
2715                 return ERR_PTR(-ENOMEM);
2716         }
2717
2718         spin_lock(&swap_lock);
2719         for (type = 0; type < nr_swapfiles; type++) {
2720                 if (!(swap_info[type]->flags & SWP_USED))
2721                         break;
2722         }
2723         if (type >= MAX_SWAPFILES) {
2724                 spin_unlock(&swap_lock);
2725                 percpu_ref_exit(&p->users);
2726                 kvfree(p);
2727                 return ERR_PTR(-EPERM);
2728         }
2729         if (type >= nr_swapfiles) {
2730                 p->type = type;
2731                 /*
2732                  * Publish the swap_info_struct after initializing it.
2733                  * Note that kvzalloc() above zeroes all its fields.
2734                  */
2735                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2736                 nr_swapfiles++;
2737         } else {
2738                 defer = p;
2739                 p = swap_info[type];
2740                 /*
2741                  * Do not memset this entry: a racing procfs swap_next()
2742                  * would be relying on p->type to remain valid.
2743                  */
2744         }
2745         p->swap_extent_root = RB_ROOT;
2746         plist_node_init(&p->list, 0);
2747         for_each_node(i)
2748                 plist_node_init(&p->avail_lists[i], 0);
2749         p->flags = SWP_USED;
2750         spin_unlock(&swap_lock);
2751         if (defer) {
2752                 percpu_ref_exit(&defer->users);
2753                 kvfree(defer);
2754         }
2755         spin_lock_init(&p->lock);
2756         spin_lock_init(&p->cont_lock);
2757         init_completion(&p->comp);
2758
2759         return p;
2760 }
2761
2762 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2763 {
2764         int error;
2765
2766         if (S_ISBLK(inode->i_mode)) {
2767                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2768                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2769                 if (IS_ERR(p->bdev)) {
2770                         error = PTR_ERR(p->bdev);
2771                         p->bdev = NULL;
2772                         return error;
2773                 }
2774                 p->old_block_size = block_size(p->bdev);
2775                 error = set_blocksize(p->bdev, PAGE_SIZE);
2776                 if (error < 0)
2777                         return error;
2778                 /*
2779                  * Zoned block devices contain zones that have a sequential
2780                  * write only restriction.  Hence zoned block devices are not
2781                  * suitable for swapping.  Disallow them here.
2782                  */
2783                 if (bdev_is_zoned(p->bdev))
2784                         return -EINVAL;
2785                 p->flags |= SWP_BLKDEV;
2786         } else if (S_ISREG(inode->i_mode)) {
2787                 p->bdev = inode->i_sb->s_bdev;
2788         }
2789
2790         return 0;
2791 }
2792
2793
2794 /*
2795  * Find out how many pages are allowed for a single swap device. There
2796  * are two limiting factors:
2797  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2798  * 2) the number of bits in the swap pte, as defined by the different
2799  * architectures.
2800  *
2801  * In order to find the largest possible bit mask, a swap entry with
2802  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2803  * decoded to a swp_entry_t again, and finally the swap offset is
2804  * extracted.
2805  *
2806  * This will mask all the bits from the initial ~0UL mask that can't
2807  * be encoded in either the swp_entry_t or the architecture definition
2808  * of a swap pte.
2809  */
2810 unsigned long generic_max_swapfile_size(void)
2811 {
2812         return swp_offset(pte_to_swp_entry(
2813                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2814 }
2815
2816 /* Can be overridden by an architecture for additional checks. */
2817 __weak unsigned long arch_max_swapfile_size(void)
2818 {
2819         return generic_max_swapfile_size();
2820 }
2821
2822 static unsigned long read_swap_header(struct swap_info_struct *p,
2823                                         union swap_header *swap_header,
2824                                         struct inode *inode)
2825 {
2826         int i;
2827         unsigned long maxpages;
2828         unsigned long swapfilepages;
2829         unsigned long last_page;
2830
2831         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2832                 pr_err("Unable to find swap-space signature\n");
2833                 return 0;
2834         }
2835
2836         /* swap partition endianness hack... */
2837         if (swab32(swap_header->info.version) == 1) {
2838                 swab32s(&swap_header->info.version);
2839                 swab32s(&swap_header->info.last_page);
2840                 swab32s(&swap_header->info.nr_badpages);
2841                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2842                         return 0;
2843                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2844                         swab32s(&swap_header->info.badpages[i]);
2845         }
2846         /* Check the swap header's sub-version */
2847         if (swap_header->info.version != 1) {
2848                 pr_warn("Unable to handle swap header version %d\n",
2849                         swap_header->info.version);
2850                 return 0;
2851         }
2852
2853         p->lowest_bit  = 1;
2854         p->cluster_next = 1;
2855         p->cluster_nr = 0;
2856
2857         maxpages = swapfile_maximum_size;
2858         last_page = swap_header->info.last_page;
2859         if (!last_page) {
2860                 pr_warn("Empty swap-file\n");
2861                 return 0;
2862         }
2863         if (last_page > maxpages) {
2864                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2865                         K(maxpages), K(last_page));
2866         }
2867         if (maxpages > last_page) {
2868                 maxpages = last_page + 1;
2869                 /* p->max is an unsigned int: don't overflow it */
2870                 if ((unsigned int)maxpages == 0)
2871                         maxpages = UINT_MAX;
2872         }
2873         p->highest_bit = maxpages - 1;
2874
2875         if (!maxpages)
2876                 return 0;
2877         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878         if (swapfilepages && maxpages > swapfilepages) {
2879                 pr_warn("Swap area shorter than signature indicates\n");
2880                 return 0;
2881         }
2882         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883                 return 0;
2884         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885                 return 0;
2886
2887         return maxpages;
2888 }
2889
2890 #define SWAP_CLUSTER_INFO_COLS                                          \
2891         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS                                         \
2893         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS                                               \
2895         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898                                         union swap_header *swap_header,
2899                                         unsigned char *swap_map,
2900                                         struct swap_cluster_info *cluster_info,
2901                                         unsigned long maxpages,
2902                                         sector_t *span)
2903 {
2904         unsigned int j, k;
2905         unsigned int nr_good_pages;
2906         int nr_extents;
2907         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909         unsigned long i, idx;
2910
2911         nr_good_pages = maxpages - 1;   /* omit header page */
2912
2913         cluster_list_init(&p->free_clusters);
2914         cluster_list_init(&p->discard_clusters);
2915
2916         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917                 unsigned int page_nr = swap_header->info.badpages[i];
2918                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919                         return -EINVAL;
2920                 if (page_nr < maxpages) {
2921                         swap_map[page_nr] = SWAP_MAP_BAD;
2922                         nr_good_pages--;
2923                         /*
2924                          * Haven't marked the cluster free yet, no list
2925                          * operation involved
2926                          */
2927                         inc_cluster_info_page(p, cluster_info, page_nr);
2928                 }
2929         }
2930
2931         /* Haven't marked the cluster free yet, no list operation involved */
2932         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933                 inc_cluster_info_page(p, cluster_info, i);
2934
2935         if (nr_good_pages) {
2936                 swap_map[0] = SWAP_MAP_BAD;
2937                 /*
2938                  * Not mark the cluster free yet, no list
2939                  * operation involved
2940                  */
2941                 inc_cluster_info_page(p, cluster_info, 0);
2942                 p->max = maxpages;
2943                 p->pages = nr_good_pages;
2944                 nr_extents = setup_swap_extents(p, span);
2945                 if (nr_extents < 0)
2946                         return nr_extents;
2947                 nr_good_pages = p->pages;
2948         }
2949         if (!nr_good_pages) {
2950                 pr_warn("Empty swap-file\n");
2951                 return -EINVAL;
2952         }
2953
2954         if (!cluster_info)
2955                 return nr_extents;
2956
2957
2958         /*
2959          * Reduce false cache line sharing between cluster_info and
2960          * sharing same address space.
2961          */
2962         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963                 j = (k + col) % SWAP_CLUSTER_COLS;
2964                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965                         idx = i * SWAP_CLUSTER_COLS + j;
2966                         if (idx >= nr_clusters)
2967                                 continue;
2968                         if (cluster_count(&cluster_info[idx]))
2969                                 continue;
2970                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2972                                               idx);
2973                 }
2974         }
2975         return nr_extents;
2976 }
2977
2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2979 {
2980         struct swap_info_struct *p;
2981         struct filename *name;
2982         struct file *swap_file = NULL;
2983         struct address_space *mapping;
2984         struct dentry *dentry;
2985         int prio;
2986         int error;
2987         union swap_header *swap_header;
2988         int nr_extents;
2989         sector_t span;
2990         unsigned long maxpages;
2991         unsigned char *swap_map = NULL;
2992         struct swap_cluster_info *cluster_info = NULL;
2993         struct page *page = NULL;
2994         struct inode *inode = NULL;
2995         bool inced_nr_rotate_swap = false;
2996
2997         if (swap_flags & ~SWAP_FLAGS_VALID)
2998                 return -EINVAL;
2999
3000         if (!capable(CAP_SYS_ADMIN))
3001                 return -EPERM;
3002
3003         if (!swap_avail_heads)
3004                 return -ENOMEM;
3005
3006         p = alloc_swap_info();
3007         if (IS_ERR(p))
3008                 return PTR_ERR(p);
3009
3010         INIT_WORK(&p->discard_work, swap_discard_work);
3011
3012         name = getname(specialfile);
3013         if (IS_ERR(name)) {
3014                 error = PTR_ERR(name);
3015                 name = NULL;
3016                 goto bad_swap;
3017         }
3018         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3019         if (IS_ERR(swap_file)) {
3020                 error = PTR_ERR(swap_file);
3021                 swap_file = NULL;
3022                 goto bad_swap;
3023         }
3024
3025         p->swap_file = swap_file;
3026         mapping = swap_file->f_mapping;
3027         dentry = swap_file->f_path.dentry;
3028         inode = mapping->host;
3029
3030         error = claim_swapfile(p, inode);
3031         if (unlikely(error))
3032                 goto bad_swap;
3033
3034         inode_lock(inode);
3035         if (d_unlinked(dentry) || cant_mount(dentry)) {
3036                 error = -ENOENT;
3037                 goto bad_swap_unlock_inode;
3038         }
3039         if (IS_SWAPFILE(inode)) {
3040                 error = -EBUSY;
3041                 goto bad_swap_unlock_inode;
3042         }
3043
3044         /*
3045          * Read the swap header.
3046          */
3047         if (!mapping->a_ops->read_folio) {
3048                 error = -EINVAL;
3049                 goto bad_swap_unlock_inode;
3050         }
3051         page = read_mapping_page(mapping, 0, swap_file);
3052         if (IS_ERR(page)) {
3053                 error = PTR_ERR(page);
3054                 goto bad_swap_unlock_inode;
3055         }
3056         swap_header = kmap(page);
3057
3058         maxpages = read_swap_header(p, swap_header, inode);
3059         if (unlikely(!maxpages)) {
3060                 error = -EINVAL;
3061                 goto bad_swap_unlock_inode;
3062         }
3063
3064         /* OK, set up the swap map and apply the bad block list */
3065         swap_map = vzalloc(maxpages);
3066         if (!swap_map) {
3067                 error = -ENOMEM;
3068                 goto bad_swap_unlock_inode;
3069         }
3070
3071         if (p->bdev && bdev_stable_writes(p->bdev))
3072                 p->flags |= SWP_STABLE_WRITES;
3073
3074         if (p->bdev && bdev_synchronous(p->bdev))
3075                 p->flags |= SWP_SYNCHRONOUS_IO;
3076
3077         if (p->bdev && bdev_nonrot(p->bdev)) {
3078                 int cpu;
3079                 unsigned long ci, nr_cluster;
3080
3081                 p->flags |= SWP_SOLIDSTATE;
3082                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3083                 if (!p->cluster_next_cpu) {
3084                         error = -ENOMEM;
3085                         goto bad_swap_unlock_inode;
3086                 }
3087                 /*
3088                  * select a random position to start with to help wear leveling
3089                  * SSD
3090                  */
3091                 for_each_possible_cpu(cpu) {
3092                         per_cpu(*p->cluster_next_cpu, cpu) =
3093                                 get_random_u32_inclusive(1, p->highest_bit);
3094                 }
3095                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3096
3097                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3098                                         GFP_KERNEL);
3099                 if (!cluster_info) {
3100                         error = -ENOMEM;
3101                         goto bad_swap_unlock_inode;
3102                 }
3103
3104                 for (ci = 0; ci < nr_cluster; ci++)
3105                         spin_lock_init(&((cluster_info + ci)->lock));
3106
3107                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3108                 if (!p->percpu_cluster) {
3109                         error = -ENOMEM;
3110                         goto bad_swap_unlock_inode;
3111                 }
3112                 for_each_possible_cpu(cpu) {
3113                         struct percpu_cluster *cluster;
3114                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3115                         cluster_set_null(&cluster->index);
3116                 }
3117         } else {
3118                 atomic_inc(&nr_rotate_swap);
3119                 inced_nr_rotate_swap = true;
3120         }
3121
3122         error = swap_cgroup_swapon(p->type, maxpages);
3123         if (error)
3124                 goto bad_swap_unlock_inode;
3125
3126         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3127                 cluster_info, maxpages, &span);
3128         if (unlikely(nr_extents < 0)) {
3129                 error = nr_extents;
3130                 goto bad_swap_unlock_inode;
3131         }
3132
3133         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3134             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3135                 /*
3136                  * When discard is enabled for swap with no particular
3137                  * policy flagged, we set all swap discard flags here in
3138                  * order to sustain backward compatibility with older
3139                  * swapon(8) releases.
3140                  */
3141                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142                              SWP_PAGE_DISCARD);
3143
3144                 /*
3145                  * By flagging sys_swapon, a sysadmin can tell us to
3146                  * either do single-time area discards only, or to just
3147                  * perform discards for released swap page-clusters.
3148                  * Now it's time to adjust the p->flags accordingly.
3149                  */
3150                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151                         p->flags &= ~SWP_PAGE_DISCARD;
3152                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153                         p->flags &= ~SWP_AREA_DISCARD;
3154
3155                 /* issue a swapon-time discard if it's still required */
3156                 if (p->flags & SWP_AREA_DISCARD) {
3157                         int err = discard_swap(p);
3158                         if (unlikely(err))
3159                                 pr_err("swapon: discard_swap(%p): %d\n",
3160                                         p, err);
3161                 }
3162         }
3163
3164         error = init_swap_address_space(p->type, maxpages);
3165         if (error)
3166                 goto bad_swap_unlock_inode;
3167
3168         /*
3169          * Flush any pending IO and dirty mappings before we start using this
3170          * swap device.
3171          */
3172         inode->i_flags |= S_SWAPFILE;
3173         error = inode_drain_writes(inode);
3174         if (error) {
3175                 inode->i_flags &= ~S_SWAPFILE;
3176                 goto free_swap_address_space;
3177         }
3178
3179         mutex_lock(&swapon_mutex);
3180         prio = -1;
3181         if (swap_flags & SWAP_FLAG_PREFER)
3182                 prio =
3183                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3184         enable_swap_info(p, prio, swap_map, cluster_info);
3185
3186         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3187                 K(p->pages), name->name, p->prio, nr_extents,
3188                 K((unsigned long long)span),
3189                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3190                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3191                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3192                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3193
3194         mutex_unlock(&swapon_mutex);
3195         atomic_inc(&proc_poll_event);
3196         wake_up_interruptible(&proc_poll_wait);
3197
3198         error = 0;
3199         goto out;
3200 free_swap_address_space:
3201         exit_swap_address_space(p->type);
3202 bad_swap_unlock_inode:
3203         inode_unlock(inode);
3204 bad_swap:
3205         free_percpu(p->percpu_cluster);
3206         p->percpu_cluster = NULL;
3207         free_percpu(p->cluster_next_cpu);
3208         p->cluster_next_cpu = NULL;
3209         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3210                 set_blocksize(p->bdev, p->old_block_size);
3211                 blkdev_put(p->bdev, p);
3212         }
3213         inode = NULL;
3214         destroy_swap_extents(p);
3215         swap_cgroup_swapoff(p->type);
3216         spin_lock(&swap_lock);
3217         p->swap_file = NULL;
3218         p->flags = 0;
3219         spin_unlock(&swap_lock);
3220         vfree(swap_map);
3221         kvfree(cluster_info);
3222         if (inced_nr_rotate_swap)
3223                 atomic_dec(&nr_rotate_swap);
3224         if (swap_file)
3225                 filp_close(swap_file, NULL);
3226 out:
3227         if (page && !IS_ERR(page)) {
3228                 kunmap(page);
3229                 put_page(page);
3230         }
3231         if (name)
3232                 putname(name);
3233         if (inode)
3234                 inode_unlock(inode);
3235         if (!error)
3236                 enable_swap_slots_cache();
3237         return error;
3238 }
3239
3240 void si_swapinfo(struct sysinfo *val)
3241 {
3242         unsigned int type;
3243         unsigned long nr_to_be_unused = 0;
3244
3245         spin_lock(&swap_lock);
3246         for (type = 0; type < nr_swapfiles; type++) {
3247                 struct swap_info_struct *si = swap_info[type];
3248
3249                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3250                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3251         }
3252         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3253         val->totalswap = total_swap_pages + nr_to_be_unused;
3254         spin_unlock(&swap_lock);
3255 }
3256
3257 /*
3258  * Verify that a swap entry is valid and increment its swap map count.
3259  *
3260  * Returns error code in following case.
3261  * - success -> 0
3262  * - swp_entry is invalid -> EINVAL
3263  * - swp_entry is migration entry -> EINVAL
3264  * - swap-cache reference is requested but there is already one. -> EEXIST
3265  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3266  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3267  */
3268 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3269 {
3270         struct swap_info_struct *p;
3271         struct swap_cluster_info *ci;
3272         unsigned long offset;
3273         unsigned char count;
3274         unsigned char has_cache;
3275         int err;
3276
3277         p = swp_swap_info(entry);
3278
3279         offset = swp_offset(entry);
3280         ci = lock_cluster_or_swap_info(p, offset);
3281
3282         count = p->swap_map[offset];
3283
3284         /*
3285          * swapin_readahead() doesn't check if a swap entry is valid, so the
3286          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3287          */
3288         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3289                 err = -ENOENT;
3290                 goto unlock_out;
3291         }
3292
3293         has_cache = count & SWAP_HAS_CACHE;
3294         count &= ~SWAP_HAS_CACHE;
3295         err = 0;
3296
3297         if (usage == SWAP_HAS_CACHE) {
3298
3299                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3300                 if (!has_cache && count)
3301                         has_cache = SWAP_HAS_CACHE;
3302                 else if (has_cache)             /* someone else added cache */
3303                         err = -EEXIST;
3304                 else                            /* no users remaining */
3305                         err = -ENOENT;
3306
3307         } else if (count || has_cache) {
3308
3309                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3310                         count += usage;
3311                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3312                         err = -EINVAL;
3313                 else if (swap_count_continued(p, offset, count))
3314                         count = COUNT_CONTINUED;
3315                 else
3316                         err = -ENOMEM;
3317         } else
3318                 err = -ENOENT;                  /* unused swap entry */
3319
3320         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3321
3322 unlock_out:
3323         unlock_cluster_or_swap_info(p, ci);
3324         return err;
3325 }
3326
3327 /*
3328  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3329  * (in which case its reference count is never incremented).
3330  */
3331 void swap_shmem_alloc(swp_entry_t entry)
3332 {
3333         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3334 }
3335
3336 /*
3337  * Increase reference count of swap entry by 1.
3338  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3339  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3340  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3341  * might occur if a page table entry has got corrupted.
3342  */
3343 int swap_duplicate(swp_entry_t entry)
3344 {
3345         int err = 0;
3346
3347         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3348                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3349         return err;
3350 }
3351
3352 /*
3353  * @entry: swap entry for which we allocate swap cache.
3354  *
3355  * Called when allocating swap cache for existing swap entry,
3356  * This can return error codes. Returns 0 at success.
3357  * -EEXIST means there is a swap cache.
3358  * Note: return code is different from swap_duplicate().
3359  */
3360 int swapcache_prepare(swp_entry_t entry)
3361 {
3362         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3363 }
3364
3365 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3366 {
3367         return swap_type_to_swap_info(swp_type(entry));
3368 }
3369
3370 struct swap_info_struct *page_swap_info(struct page *page)
3371 {
3372         swp_entry_t entry = page_swap_entry(page);
3373         return swp_swap_info(entry);
3374 }
3375
3376 /*
3377  * out-of-line methods to avoid include hell.
3378  */
3379 struct address_space *swapcache_mapping(struct folio *folio)
3380 {
3381         return page_swap_info(&folio->page)->swap_file->f_mapping;
3382 }
3383 EXPORT_SYMBOL_GPL(swapcache_mapping);
3384
3385 pgoff_t __page_file_index(struct page *page)
3386 {
3387         swp_entry_t swap = page_swap_entry(page);
3388         return swp_offset(swap);
3389 }
3390 EXPORT_SYMBOL_GPL(__page_file_index);
3391
3392 /*
3393  * add_swap_count_continuation - called when a swap count is duplicated
3394  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3395  * page of the original vmalloc'ed swap_map, to hold the continuation count
3396  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3397  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3398  *
3399  * These continuation pages are seldom referenced: the common paths all work
3400  * on the original swap_map, only referring to a continuation page when the
3401  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3402  *
3403  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3404  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3405  * can be called after dropping locks.
3406  */
3407 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3408 {
3409         struct swap_info_struct *si;
3410         struct swap_cluster_info *ci;
3411         struct page *head;
3412         struct page *page;
3413         struct page *list_page;
3414         pgoff_t offset;
3415         unsigned char count;
3416         int ret = 0;
3417
3418         /*
3419          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3420          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3421          */
3422         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3423
3424         si = get_swap_device(entry);
3425         if (!si) {
3426                 /*
3427                  * An acceptable race has occurred since the failing
3428                  * __swap_duplicate(): the swap device may be swapoff
3429                  */
3430                 goto outer;
3431         }
3432         spin_lock(&si->lock);
3433
3434         offset = swp_offset(entry);
3435
3436         ci = lock_cluster(si, offset);
3437
3438         count = swap_count(si->swap_map[offset]);
3439
3440         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3441                 /*
3442                  * The higher the swap count, the more likely it is that tasks
3443                  * will race to add swap count continuation: we need to avoid
3444                  * over-provisioning.
3445                  */
3446                 goto out;
3447         }
3448
3449         if (!page) {
3450                 ret = -ENOMEM;
3451                 goto out;
3452         }
3453
3454         head = vmalloc_to_page(si->swap_map + offset);
3455         offset &= ~PAGE_MASK;
3456
3457         spin_lock(&si->cont_lock);
3458         /*
3459          * Page allocation does not initialize the page's lru field,
3460          * but it does always reset its private field.
3461          */
3462         if (!page_private(head)) {
3463                 BUG_ON(count & COUNT_CONTINUED);
3464                 INIT_LIST_HEAD(&head->lru);
3465                 set_page_private(head, SWP_CONTINUED);
3466                 si->flags |= SWP_CONTINUED;
3467         }
3468
3469         list_for_each_entry(list_page, &head->lru, lru) {
3470                 unsigned char *map;
3471
3472                 /*
3473                  * If the previous map said no continuation, but we've found
3474                  * a continuation page, free our allocation and use this one.
3475                  */
3476                 if (!(count & COUNT_CONTINUED))
3477                         goto out_unlock_cont;
3478
3479                 map = kmap_atomic(list_page) + offset;
3480                 count = *map;
3481                 kunmap_atomic(map);
3482
3483                 /*
3484                  * If this continuation count now has some space in it,
3485                  * free our allocation and use this one.
3486                  */
3487                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3488                         goto out_unlock_cont;
3489         }
3490
3491         list_add_tail(&page->lru, &head->lru);
3492         page = NULL;                    /* now it's attached, don't free it */
3493 out_unlock_cont:
3494         spin_unlock(&si->cont_lock);
3495 out:
3496         unlock_cluster(ci);
3497         spin_unlock(&si->lock);
3498         put_swap_device(si);
3499 outer:
3500         if (page)
3501                 __free_page(page);
3502         return ret;
3503 }
3504
3505 /*
3506  * swap_count_continued - when the original swap_map count is incremented
3507  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3508  * into, carry if so, or else fail until a new continuation page is allocated;
3509  * when the original swap_map count is decremented from 0 with continuation,
3510  * borrow from the continuation and report whether it still holds more.
3511  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3512  * lock.
3513  */
3514 static bool swap_count_continued(struct swap_info_struct *si,
3515                                  pgoff_t offset, unsigned char count)
3516 {
3517         struct page *head;
3518         struct page *page;
3519         unsigned char *map;
3520         bool ret;
3521
3522         head = vmalloc_to_page(si->swap_map + offset);
3523         if (page_private(head) != SWP_CONTINUED) {
3524                 BUG_ON(count & COUNT_CONTINUED);
3525                 return false;           /* need to add count continuation */
3526         }
3527
3528         spin_lock(&si->cont_lock);
3529         offset &= ~PAGE_MASK;
3530         page = list_next_entry(head, lru);
3531         map = kmap_atomic(page) + offset;
3532
3533         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3534                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3535
3536         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3537                 /*
3538                  * Think of how you add 1 to 999
3539                  */
3540                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3541                         kunmap_atomic(map);
3542                         page = list_next_entry(page, lru);
3543                         BUG_ON(page == head);
3544                         map = kmap_atomic(page) + offset;
3545                 }
3546                 if (*map == SWAP_CONT_MAX) {
3547                         kunmap_atomic(map);
3548                         page = list_next_entry(page, lru);
3549                         if (page == head) {
3550                                 ret = false;    /* add count continuation */
3551                                 goto out;
3552                         }
3553                         map = kmap_atomic(page) + offset;
3554 init_map:               *map = 0;               /* we didn't zero the page */
3555                 }
3556                 *map += 1;
3557                 kunmap_atomic(map);
3558                 while ((page = list_prev_entry(page, lru)) != head) {
3559                         map = kmap_atomic(page) + offset;
3560                         *map = COUNT_CONTINUED;
3561                         kunmap_atomic(map);
3562                 }
3563                 ret = true;                     /* incremented */
3564
3565         } else {                                /* decrementing */
3566                 /*
3567                  * Think of how you subtract 1 from 1000
3568                  */
3569                 BUG_ON(count != COUNT_CONTINUED);
3570                 while (*map == COUNT_CONTINUED) {
3571                         kunmap_atomic(map);
3572                         page = list_next_entry(page, lru);
3573                         BUG_ON(page == head);
3574                         map = kmap_atomic(page) + offset;
3575                 }
3576                 BUG_ON(*map == 0);
3577                 *map -= 1;
3578                 if (*map == 0)
3579                         count = 0;
3580                 kunmap_atomic(map);
3581                 while ((page = list_prev_entry(page, lru)) != head) {
3582                         map = kmap_atomic(page) + offset;
3583                         *map = SWAP_CONT_MAX | count;
3584                         count = COUNT_CONTINUED;
3585                         kunmap_atomic(map);
3586                 }
3587                 ret = count == COUNT_CONTINUED;
3588         }
3589 out:
3590         spin_unlock(&si->cont_lock);
3591         return ret;
3592 }
3593
3594 /*
3595  * free_swap_count_continuations - swapoff free all the continuation pages
3596  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3597  */
3598 static void free_swap_count_continuations(struct swap_info_struct *si)
3599 {
3600         pgoff_t offset;
3601
3602         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3603                 struct page *head;
3604                 head = vmalloc_to_page(si->swap_map + offset);
3605                 if (page_private(head)) {
3606                         struct page *page, *next;
3607
3608                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3609                                 list_del(&page->lru);
3610                                 __free_page(page);
3611                         }
3612                 }
3613         }
3614 }
3615
3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3617 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3618 {
3619         struct swap_info_struct *si, *next;
3620         int nid = folio_nid(folio);
3621
3622         if (!(gfp & __GFP_IO))
3623                 return;
3624
3625         if (!blk_cgroup_congested())
3626                 return;
3627
3628         /*
3629          * We've already scheduled a throttle, avoid taking the global swap
3630          * lock.
3631          */
3632         if (current->throttle_disk)
3633                 return;
3634
3635         spin_lock(&swap_avail_lock);
3636         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3637                                   avail_lists[nid]) {
3638                 if (si->bdev) {
3639                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3640                         break;
3641                 }
3642         }
3643         spin_unlock(&swap_avail_lock);
3644 }
3645 #endif
3646
3647 static int __init swapfile_init(void)
3648 {
3649         int nid;
3650
3651         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3652                                          GFP_KERNEL);
3653         if (!swap_avail_heads) {
3654                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3655                 return -ENOMEM;
3656         }
3657
3658         for_each_node(nid)
3659                 plist_head_init(&swap_avail_heads[nid]);
3660
3661         swapfile_maximum_size = arch_max_swapfile_size();
3662
3663 #ifdef CONFIG_MIGRATION
3664         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3665                 swap_migration_ad_supported = true;
3666 #endif  /* CONFIG_MIGRATION */
3667
3668         return 0;
3669 }
3670 subsys_initcall(swapfile_init);