Merge branch 'akpm' (patches from Andrew)
[platform/kernel/linux-rpi.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110         swp_entry_t entry = swp_entry(si->type, offset);
111         struct page *page;
112         int ret = 0;
113
114         page = find_get_page(swap_address_space(entry), swp_offset(entry));
115         if (!page)
116                 return 0;
117         /*
118          * This function is called from scan_swap_map() and it's called
119          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120          * We have to use trylock for avoiding deadlock. This is a special
121          * case and you should use try_to_free_swap() with explicit lock_page()
122          * in usual operations.
123          */
124         if (trylock_page(page)) {
125                 ret = try_to_free_swap(page);
126                 unlock_page(page);
127         }
128         put_page(page);
129         return ret;
130 }
131
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138         struct swap_extent *se;
139         sector_t start_block;
140         sector_t nr_blocks;
141         int err = 0;
142
143         /* Do not discard the swap header page! */
144         se = &si->first_swap_extent;
145         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147         if (nr_blocks) {
148                 err = blkdev_issue_discard(si->bdev, start_block,
149                                 nr_blocks, GFP_KERNEL, 0);
150                 if (err)
151                         return err;
152                 cond_resched();
153         }
154
155         list_for_each_entry(se, &si->first_swap_extent.list, list) {
156                 start_block = se->start_block << (PAGE_SHIFT - 9);
157                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159                 err = blkdev_issue_discard(si->bdev, start_block,
160                                 nr_blocks, GFP_KERNEL, 0);
161                 if (err)
162                         break;
163
164                 cond_resched();
165         }
166         return err;             /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174                                  pgoff_t start_page, pgoff_t nr_pages)
175 {
176         struct swap_extent *se = si->curr_swap_extent;
177         int found_extent = 0;
178
179         while (nr_pages) {
180                 if (se->start_page <= start_page &&
181                     start_page < se->start_page + se->nr_pages) {
182                         pgoff_t offset = start_page - se->start_page;
183                         sector_t start_block = se->start_block + offset;
184                         sector_t nr_blocks = se->nr_pages - offset;
185
186                         if (nr_blocks > nr_pages)
187                                 nr_blocks = nr_pages;
188                         start_page += nr_blocks;
189                         nr_pages -= nr_blocks;
190
191                         if (!found_extent++)
192                                 si->curr_swap_extent = se;
193
194                         start_block <<= PAGE_SHIFT - 9;
195                         nr_blocks <<= PAGE_SHIFT - 9;
196                         if (blkdev_issue_discard(si->bdev, start_block,
197                                     nr_blocks, GFP_NOIO, 0))
198                                 break;
199                 }
200
201                 se = list_next_entry(se, list);
202         }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
207
208 #define swap_entry_size(size)   (size)
209 #else
210 #define SWAPFILE_CLUSTER        256
211
212 /*
213  * Define swap_entry_size() as constant to let compiler to optimize
214  * out some code if !CONFIG_THP_SWAP
215  */
216 #define swap_entry_size(size)   1
217 #endif
218 #define LATENCY_LIMIT           256
219
220 static inline void cluster_set_flag(struct swap_cluster_info *info,
221         unsigned int flag)
222 {
223         info->flags = flag;
224 }
225
226 static inline unsigned int cluster_count(struct swap_cluster_info *info)
227 {
228         return info->data;
229 }
230
231 static inline void cluster_set_count(struct swap_cluster_info *info,
232                                      unsigned int c)
233 {
234         info->data = c;
235 }
236
237 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
238                                          unsigned int c, unsigned int f)
239 {
240         info->flags = f;
241         info->data = c;
242 }
243
244 static inline unsigned int cluster_next(struct swap_cluster_info *info)
245 {
246         return info->data;
247 }
248
249 static inline void cluster_set_next(struct swap_cluster_info *info,
250                                     unsigned int n)
251 {
252         info->data = n;
253 }
254
255 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
256                                          unsigned int n, unsigned int f)
257 {
258         info->flags = f;
259         info->data = n;
260 }
261
262 static inline bool cluster_is_free(struct swap_cluster_info *info)
263 {
264         return info->flags & CLUSTER_FLAG_FREE;
265 }
266
267 static inline bool cluster_is_null(struct swap_cluster_info *info)
268 {
269         return info->flags & CLUSTER_FLAG_NEXT_NULL;
270 }
271
272 static inline void cluster_set_null(struct swap_cluster_info *info)
273 {
274         info->flags = CLUSTER_FLAG_NEXT_NULL;
275         info->data = 0;
276 }
277
278 static inline bool cluster_is_huge(struct swap_cluster_info *info)
279 {
280         if (IS_ENABLED(CONFIG_THP_SWAP))
281                 return info->flags & CLUSTER_FLAG_HUGE;
282         return false;
283 }
284
285 static inline void cluster_clear_huge(struct swap_cluster_info *info)
286 {
287         info->flags &= ~CLUSTER_FLAG_HUGE;
288 }
289
290 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
291                                                      unsigned long offset)
292 {
293         struct swap_cluster_info *ci;
294
295         ci = si->cluster_info;
296         if (ci) {
297                 ci += offset / SWAPFILE_CLUSTER;
298                 spin_lock(&ci->lock);
299         }
300         return ci;
301 }
302
303 static inline void unlock_cluster(struct swap_cluster_info *ci)
304 {
305         if (ci)
306                 spin_unlock(&ci->lock);
307 }
308
309 /*
310  * Determine the locking method in use for this device.  Return
311  * swap_cluster_info if SSD-style cluster-based locking is in place.
312  */
313 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
314                 struct swap_info_struct *si, unsigned long offset)
315 {
316         struct swap_cluster_info *ci;
317
318         /* Try to use fine-grained SSD-style locking if available: */
319         ci = lock_cluster(si, offset);
320         /* Otherwise, fall back to traditional, coarse locking: */
321         if (!ci)
322                 spin_lock(&si->lock);
323
324         return ci;
325 }
326
327 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
328                                                struct swap_cluster_info *ci)
329 {
330         if (ci)
331                 unlock_cluster(ci);
332         else
333                 spin_unlock(&si->lock);
334 }
335
336 static inline bool cluster_list_empty(struct swap_cluster_list *list)
337 {
338         return cluster_is_null(&list->head);
339 }
340
341 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
342 {
343         return cluster_next(&list->head);
344 }
345
346 static void cluster_list_init(struct swap_cluster_list *list)
347 {
348         cluster_set_null(&list->head);
349         cluster_set_null(&list->tail);
350 }
351
352 static void cluster_list_add_tail(struct swap_cluster_list *list,
353                                   struct swap_cluster_info *ci,
354                                   unsigned int idx)
355 {
356         if (cluster_list_empty(list)) {
357                 cluster_set_next_flag(&list->head, idx, 0);
358                 cluster_set_next_flag(&list->tail, idx, 0);
359         } else {
360                 struct swap_cluster_info *ci_tail;
361                 unsigned int tail = cluster_next(&list->tail);
362
363                 /*
364                  * Nested cluster lock, but both cluster locks are
365                  * only acquired when we held swap_info_struct->lock
366                  */
367                 ci_tail = ci + tail;
368                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
369                 cluster_set_next(ci_tail, idx);
370                 spin_unlock(&ci_tail->lock);
371                 cluster_set_next_flag(&list->tail, idx, 0);
372         }
373 }
374
375 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
376                                            struct swap_cluster_info *ci)
377 {
378         unsigned int idx;
379
380         idx = cluster_next(&list->head);
381         if (cluster_next(&list->tail) == idx) {
382                 cluster_set_null(&list->head);
383                 cluster_set_null(&list->tail);
384         } else
385                 cluster_set_next_flag(&list->head,
386                                       cluster_next(&ci[idx]), 0);
387
388         return idx;
389 }
390
391 /* Add a cluster to discard list and schedule it to do discard */
392 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
393                 unsigned int idx)
394 {
395         /*
396          * If scan_swap_map() can't find a free cluster, it will check
397          * si->swap_map directly. To make sure the discarding cluster isn't
398          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
399          * will be cleared after discard
400          */
401         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
403
404         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
405
406         schedule_work(&si->discard_work);
407 }
408
409 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
410 {
411         struct swap_cluster_info *ci = si->cluster_info;
412
413         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
414         cluster_list_add_tail(&si->free_clusters, ci, idx);
415 }
416
417 /*
418  * Doing discard actually. After a cluster discard is finished, the cluster
419  * will be added to free cluster list. caller should hold si->lock.
420 */
421 static void swap_do_scheduled_discard(struct swap_info_struct *si)
422 {
423         struct swap_cluster_info *info, *ci;
424         unsigned int idx;
425
426         info = si->cluster_info;
427
428         while (!cluster_list_empty(&si->discard_clusters)) {
429                 idx = cluster_list_del_first(&si->discard_clusters, info);
430                 spin_unlock(&si->lock);
431
432                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
433                                 SWAPFILE_CLUSTER);
434
435                 spin_lock(&si->lock);
436                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
437                 __free_cluster(si, idx);
438                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
439                                 0, SWAPFILE_CLUSTER);
440                 unlock_cluster(ci);
441         }
442 }
443
444 static void swap_discard_work(struct work_struct *work)
445 {
446         struct swap_info_struct *si;
447
448         si = container_of(work, struct swap_info_struct, discard_work);
449
450         spin_lock(&si->lock);
451         swap_do_scheduled_discard(si);
452         spin_unlock(&si->lock);
453 }
454
455 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
456 {
457         struct swap_cluster_info *ci = si->cluster_info;
458
459         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
460         cluster_list_del_first(&si->free_clusters, ci);
461         cluster_set_count_flag(ci + idx, 0, 0);
462 }
463
464 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
465 {
466         struct swap_cluster_info *ci = si->cluster_info + idx;
467
468         VM_BUG_ON(cluster_count(ci) != 0);
469         /*
470          * If the swap is discardable, prepare discard the cluster
471          * instead of free it immediately. The cluster will be freed
472          * after discard.
473          */
474         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
475             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
476                 swap_cluster_schedule_discard(si, idx);
477                 return;
478         }
479
480         __free_cluster(si, idx);
481 }
482
483 /*
484  * The cluster corresponding to page_nr will be used. The cluster will be
485  * removed from free cluster list and its usage counter will be increased.
486  */
487 static void inc_cluster_info_page(struct swap_info_struct *p,
488         struct swap_cluster_info *cluster_info, unsigned long page_nr)
489 {
490         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
491
492         if (!cluster_info)
493                 return;
494         if (cluster_is_free(&cluster_info[idx]))
495                 alloc_cluster(p, idx);
496
497         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
498         cluster_set_count(&cluster_info[idx],
499                 cluster_count(&cluster_info[idx]) + 1);
500 }
501
502 /*
503  * The cluster corresponding to page_nr decreases one usage. If the usage
504  * counter becomes 0, which means no page in the cluster is in using, we can
505  * optionally discard the cluster and add it to free cluster list.
506  */
507 static void dec_cluster_info_page(struct swap_info_struct *p,
508         struct swap_cluster_info *cluster_info, unsigned long page_nr)
509 {
510         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
511
512         if (!cluster_info)
513                 return;
514
515         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
516         cluster_set_count(&cluster_info[idx],
517                 cluster_count(&cluster_info[idx]) - 1);
518
519         if (cluster_count(&cluster_info[idx]) == 0)
520                 free_cluster(p, idx);
521 }
522
523 /*
524  * It's possible scan_swap_map() uses a free cluster in the middle of free
525  * cluster list. Avoiding such abuse to avoid list corruption.
526  */
527 static bool
528 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
529         unsigned long offset)
530 {
531         struct percpu_cluster *percpu_cluster;
532         bool conflict;
533
534         offset /= SWAPFILE_CLUSTER;
535         conflict = !cluster_list_empty(&si->free_clusters) &&
536                 offset != cluster_list_first(&si->free_clusters) &&
537                 cluster_is_free(&si->cluster_info[offset]);
538
539         if (!conflict)
540                 return false;
541
542         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
543         cluster_set_null(&percpu_cluster->index);
544         return true;
545 }
546
547 /*
548  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
549  * might involve allocating a new cluster for current CPU too.
550  */
551 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
552         unsigned long *offset, unsigned long *scan_base)
553 {
554         struct percpu_cluster *cluster;
555         struct swap_cluster_info *ci;
556         bool found_free;
557         unsigned long tmp, max;
558
559 new_cluster:
560         cluster = this_cpu_ptr(si->percpu_cluster);
561         if (cluster_is_null(&cluster->index)) {
562                 if (!cluster_list_empty(&si->free_clusters)) {
563                         cluster->index = si->free_clusters.head;
564                         cluster->next = cluster_next(&cluster->index) *
565                                         SWAPFILE_CLUSTER;
566                 } else if (!cluster_list_empty(&si->discard_clusters)) {
567                         /*
568                          * we don't have free cluster but have some clusters in
569                          * discarding, do discard now and reclaim them
570                          */
571                         swap_do_scheduled_discard(si);
572                         *scan_base = *offset = si->cluster_next;
573                         goto new_cluster;
574                 } else
575                         return false;
576         }
577
578         found_free = false;
579
580         /*
581          * Other CPUs can use our cluster if they can't find a free cluster,
582          * check if there is still free entry in the cluster
583          */
584         tmp = cluster->next;
585         max = min_t(unsigned long, si->max,
586                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
587         if (tmp >= max) {
588                 cluster_set_null(&cluster->index);
589                 goto new_cluster;
590         }
591         ci = lock_cluster(si, tmp);
592         while (tmp < max) {
593                 if (!si->swap_map[tmp]) {
594                         found_free = true;
595                         break;
596                 }
597                 tmp++;
598         }
599         unlock_cluster(ci);
600         if (!found_free) {
601                 cluster_set_null(&cluster->index);
602                 goto new_cluster;
603         }
604         cluster->next = tmp + 1;
605         *offset = tmp;
606         *scan_base = tmp;
607         return found_free;
608 }
609
610 static void __del_from_avail_list(struct swap_info_struct *p)
611 {
612         int nid;
613
614         for_each_node(nid)
615                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
616 }
617
618 static void del_from_avail_list(struct swap_info_struct *p)
619 {
620         spin_lock(&swap_avail_lock);
621         __del_from_avail_list(p);
622         spin_unlock(&swap_avail_lock);
623 }
624
625 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
626                              unsigned int nr_entries)
627 {
628         unsigned int end = offset + nr_entries - 1;
629
630         if (offset == si->lowest_bit)
631                 si->lowest_bit += nr_entries;
632         if (end == si->highest_bit)
633                 si->highest_bit -= nr_entries;
634         si->inuse_pages += nr_entries;
635         if (si->inuse_pages == si->pages) {
636                 si->lowest_bit = si->max;
637                 si->highest_bit = 0;
638                 del_from_avail_list(si);
639         }
640 }
641
642 static void add_to_avail_list(struct swap_info_struct *p)
643 {
644         int nid;
645
646         spin_lock(&swap_avail_lock);
647         for_each_node(nid) {
648                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
649                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
650         }
651         spin_unlock(&swap_avail_lock);
652 }
653
654 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
655                             unsigned int nr_entries)
656 {
657         unsigned long end = offset + nr_entries - 1;
658         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
659
660         if (offset < si->lowest_bit)
661                 si->lowest_bit = offset;
662         if (end > si->highest_bit) {
663                 bool was_full = !si->highest_bit;
664
665                 si->highest_bit = end;
666                 if (was_full && (si->flags & SWP_WRITEOK))
667                         add_to_avail_list(si);
668         }
669         atomic_long_add(nr_entries, &nr_swap_pages);
670         si->inuse_pages -= nr_entries;
671         if (si->flags & SWP_BLKDEV)
672                 swap_slot_free_notify =
673                         si->bdev->bd_disk->fops->swap_slot_free_notify;
674         else
675                 swap_slot_free_notify = NULL;
676         while (offset <= end) {
677                 frontswap_invalidate_page(si->type, offset);
678                 if (swap_slot_free_notify)
679                         swap_slot_free_notify(si->bdev, offset);
680                 offset++;
681         }
682 }
683
684 static int scan_swap_map_slots(struct swap_info_struct *si,
685                                unsigned char usage, int nr,
686                                swp_entry_t slots[])
687 {
688         struct swap_cluster_info *ci;
689         unsigned long offset;
690         unsigned long scan_base;
691         unsigned long last_in_cluster = 0;
692         int latency_ration = LATENCY_LIMIT;
693         int n_ret = 0;
694
695         if (nr > SWAP_BATCH)
696                 nr = SWAP_BATCH;
697
698         /*
699          * We try to cluster swap pages by allocating them sequentially
700          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
701          * way, however, we resort to first-free allocation, starting
702          * a new cluster.  This prevents us from scattering swap pages
703          * all over the entire swap partition, so that we reduce
704          * overall disk seek times between swap pages.  -- sct
705          * But we do now try to find an empty cluster.  -Andrea
706          * And we let swap pages go all over an SSD partition.  Hugh
707          */
708
709         si->flags += SWP_SCANNING;
710         scan_base = offset = si->cluster_next;
711
712         /* SSD algorithm */
713         if (si->cluster_info) {
714                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
715                         goto checks;
716                 else
717                         goto scan;
718         }
719
720         if (unlikely(!si->cluster_nr--)) {
721                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
722                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
723                         goto checks;
724                 }
725
726                 spin_unlock(&si->lock);
727
728                 /*
729                  * If seek is expensive, start searching for new cluster from
730                  * start of partition, to minimize the span of allocated swap.
731                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
732                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
733                  */
734                 scan_base = offset = si->lowest_bit;
735                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
736
737                 /* Locate the first empty (unaligned) cluster */
738                 for (; last_in_cluster <= si->highest_bit; offset++) {
739                         if (si->swap_map[offset])
740                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
741                         else if (offset == last_in_cluster) {
742                                 spin_lock(&si->lock);
743                                 offset -= SWAPFILE_CLUSTER - 1;
744                                 si->cluster_next = offset;
745                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
746                                 goto checks;
747                         }
748                         if (unlikely(--latency_ration < 0)) {
749                                 cond_resched();
750                                 latency_ration = LATENCY_LIMIT;
751                         }
752                 }
753
754                 offset = scan_base;
755                 spin_lock(&si->lock);
756                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
757         }
758
759 checks:
760         if (si->cluster_info) {
761                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
762                 /* take a break if we already got some slots */
763                         if (n_ret)
764                                 goto done;
765                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
766                                                         &scan_base))
767                                 goto scan;
768                 }
769         }
770         if (!(si->flags & SWP_WRITEOK))
771                 goto no_page;
772         if (!si->highest_bit)
773                 goto no_page;
774         if (offset > si->highest_bit)
775                 scan_base = offset = si->lowest_bit;
776
777         ci = lock_cluster(si, offset);
778         /* reuse swap entry of cache-only swap if not busy. */
779         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
780                 int swap_was_freed;
781                 unlock_cluster(ci);
782                 spin_unlock(&si->lock);
783                 swap_was_freed = __try_to_reclaim_swap(si, offset);
784                 spin_lock(&si->lock);
785                 /* entry was freed successfully, try to use this again */
786                 if (swap_was_freed)
787                         goto checks;
788                 goto scan; /* check next one */
789         }
790
791         if (si->swap_map[offset]) {
792                 unlock_cluster(ci);
793                 if (!n_ret)
794                         goto scan;
795                 else
796                         goto done;
797         }
798         si->swap_map[offset] = usage;
799         inc_cluster_info_page(si, si->cluster_info, offset);
800         unlock_cluster(ci);
801
802         swap_range_alloc(si, offset, 1);
803         si->cluster_next = offset + 1;
804         slots[n_ret++] = swp_entry(si->type, offset);
805
806         /* got enough slots or reach max slots? */
807         if ((n_ret == nr) || (offset >= si->highest_bit))
808                 goto done;
809
810         /* search for next available slot */
811
812         /* time to take a break? */
813         if (unlikely(--latency_ration < 0)) {
814                 if (n_ret)
815                         goto done;
816                 spin_unlock(&si->lock);
817                 cond_resched();
818                 spin_lock(&si->lock);
819                 latency_ration = LATENCY_LIMIT;
820         }
821
822         /* try to get more slots in cluster */
823         if (si->cluster_info) {
824                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
825                         goto checks;
826                 else
827                         goto done;
828         }
829         /* non-ssd case */
830         ++offset;
831
832         /* non-ssd case, still more slots in cluster? */
833         if (si->cluster_nr && !si->swap_map[offset]) {
834                 --si->cluster_nr;
835                 goto checks;
836         }
837
838 done:
839         si->flags -= SWP_SCANNING;
840         return n_ret;
841
842 scan:
843         spin_unlock(&si->lock);
844         while (++offset <= si->highest_bit) {
845                 if (!si->swap_map[offset]) {
846                         spin_lock(&si->lock);
847                         goto checks;
848                 }
849                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850                         spin_lock(&si->lock);
851                         goto checks;
852                 }
853                 if (unlikely(--latency_ration < 0)) {
854                         cond_resched();
855                         latency_ration = LATENCY_LIMIT;
856                 }
857         }
858         offset = si->lowest_bit;
859         while (offset < scan_base) {
860                 if (!si->swap_map[offset]) {
861                         spin_lock(&si->lock);
862                         goto checks;
863                 }
864                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
865                         spin_lock(&si->lock);
866                         goto checks;
867                 }
868                 if (unlikely(--latency_ration < 0)) {
869                         cond_resched();
870                         latency_ration = LATENCY_LIMIT;
871                 }
872                 offset++;
873         }
874         spin_lock(&si->lock);
875
876 no_page:
877         si->flags -= SWP_SCANNING;
878         return n_ret;
879 }
880
881 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
882 {
883         unsigned long idx;
884         struct swap_cluster_info *ci;
885         unsigned long offset, i;
886         unsigned char *map;
887
888         /*
889          * Should not even be attempting cluster allocations when huge
890          * page swap is disabled.  Warn and fail the allocation.
891          */
892         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
893                 VM_WARN_ON_ONCE(1);
894                 return 0;
895         }
896
897         if (cluster_list_empty(&si->free_clusters))
898                 return 0;
899
900         idx = cluster_list_first(&si->free_clusters);
901         offset = idx * SWAPFILE_CLUSTER;
902         ci = lock_cluster(si, offset);
903         alloc_cluster(si, idx);
904         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
905
906         map = si->swap_map + offset;
907         for (i = 0; i < SWAPFILE_CLUSTER; i++)
908                 map[i] = SWAP_HAS_CACHE;
909         unlock_cluster(ci);
910         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
911         *slot = swp_entry(si->type, offset);
912
913         return 1;
914 }
915
916 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
917 {
918         unsigned long offset = idx * SWAPFILE_CLUSTER;
919         struct swap_cluster_info *ci;
920
921         ci = lock_cluster(si, offset);
922         cluster_set_count_flag(ci, 0, 0);
923         free_cluster(si, idx);
924         unlock_cluster(ci);
925         swap_range_free(si, offset, SWAPFILE_CLUSTER);
926 }
927
928 static unsigned long scan_swap_map(struct swap_info_struct *si,
929                                    unsigned char usage)
930 {
931         swp_entry_t entry;
932         int n_ret;
933
934         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
935
936         if (n_ret)
937                 return swp_offset(entry);
938         else
939                 return 0;
940
941 }
942
943 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
944 {
945         unsigned long size = swap_entry_size(entry_size);
946         struct swap_info_struct *si, *next;
947         long avail_pgs;
948         int n_ret = 0;
949         int node;
950
951         /* Only single cluster request supported */
952         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
953
954         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
955         if (avail_pgs <= 0)
956                 goto noswap;
957
958         if (n_goal > SWAP_BATCH)
959                 n_goal = SWAP_BATCH;
960
961         if (n_goal > avail_pgs)
962                 n_goal = avail_pgs;
963
964         atomic_long_sub(n_goal * size, &nr_swap_pages);
965
966         spin_lock(&swap_avail_lock);
967
968 start_over:
969         node = numa_node_id();
970         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
971                 /* requeue si to after same-priority siblings */
972                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
973                 spin_unlock(&swap_avail_lock);
974                 spin_lock(&si->lock);
975                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
976                         spin_lock(&swap_avail_lock);
977                         if (plist_node_empty(&si->avail_lists[node])) {
978                                 spin_unlock(&si->lock);
979                                 goto nextsi;
980                         }
981                         WARN(!si->highest_bit,
982                              "swap_info %d in list but !highest_bit\n",
983                              si->type);
984                         WARN(!(si->flags & SWP_WRITEOK),
985                              "swap_info %d in list but !SWP_WRITEOK\n",
986                              si->type);
987                         __del_from_avail_list(si);
988                         spin_unlock(&si->lock);
989                         goto nextsi;
990                 }
991                 if (size == SWAPFILE_CLUSTER) {
992                         if (!(si->flags & SWP_FILE))
993                                 n_ret = swap_alloc_cluster(si, swp_entries);
994                 } else
995                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
996                                                     n_goal, swp_entries);
997                 spin_unlock(&si->lock);
998                 if (n_ret || size == SWAPFILE_CLUSTER)
999                         goto check_out;
1000                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1001                         si->type);
1002
1003                 spin_lock(&swap_avail_lock);
1004 nextsi:
1005                 /*
1006                  * if we got here, it's likely that si was almost full before,
1007                  * and since scan_swap_map() can drop the si->lock, multiple
1008                  * callers probably all tried to get a page from the same si
1009                  * and it filled up before we could get one; or, the si filled
1010                  * up between us dropping swap_avail_lock and taking si->lock.
1011                  * Since we dropped the swap_avail_lock, the swap_avail_head
1012                  * list may have been modified; so if next is still in the
1013                  * swap_avail_head list then try it, otherwise start over
1014                  * if we have not gotten any slots.
1015                  */
1016                 if (plist_node_empty(&next->avail_lists[node]))
1017                         goto start_over;
1018         }
1019
1020         spin_unlock(&swap_avail_lock);
1021
1022 check_out:
1023         if (n_ret < n_goal)
1024                 atomic_long_add((long)(n_goal - n_ret) * size,
1025                                 &nr_swap_pages);
1026 noswap:
1027         return n_ret;
1028 }
1029
1030 /* The only caller of this function is now suspend routine */
1031 swp_entry_t get_swap_page_of_type(int type)
1032 {
1033         struct swap_info_struct *si;
1034         pgoff_t offset;
1035
1036         si = swap_info[type];
1037         spin_lock(&si->lock);
1038         if (si && (si->flags & SWP_WRITEOK)) {
1039                 atomic_long_dec(&nr_swap_pages);
1040                 /* This is called for allocating swap entry, not cache */
1041                 offset = scan_swap_map(si, 1);
1042                 if (offset) {
1043                         spin_unlock(&si->lock);
1044                         return swp_entry(type, offset);
1045                 }
1046                 atomic_long_inc(&nr_swap_pages);
1047         }
1048         spin_unlock(&si->lock);
1049         return (swp_entry_t) {0};
1050 }
1051
1052 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1053 {
1054         struct swap_info_struct *p;
1055         unsigned long offset, type;
1056
1057         if (!entry.val)
1058                 goto out;
1059         type = swp_type(entry);
1060         if (type >= nr_swapfiles)
1061                 goto bad_nofile;
1062         p = swap_info[type];
1063         if (!(p->flags & SWP_USED))
1064                 goto bad_device;
1065         offset = swp_offset(entry);
1066         if (offset >= p->max)
1067                 goto bad_offset;
1068         return p;
1069
1070 bad_offset:
1071         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1072         goto out;
1073 bad_device:
1074         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1075         goto out;
1076 bad_nofile:
1077         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1078 out:
1079         return NULL;
1080 }
1081
1082 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1083 {
1084         struct swap_info_struct *p;
1085
1086         p = __swap_info_get(entry);
1087         if (!p)
1088                 goto out;
1089         if (!p->swap_map[swp_offset(entry)])
1090                 goto bad_free;
1091         return p;
1092
1093 bad_free:
1094         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1095         goto out;
1096 out:
1097         return NULL;
1098 }
1099
1100 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1101 {
1102         struct swap_info_struct *p;
1103
1104         p = _swap_info_get(entry);
1105         if (p)
1106                 spin_lock(&p->lock);
1107         return p;
1108 }
1109
1110 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1111                                         struct swap_info_struct *q)
1112 {
1113         struct swap_info_struct *p;
1114
1115         p = _swap_info_get(entry);
1116
1117         if (p != q) {
1118                 if (q != NULL)
1119                         spin_unlock(&q->lock);
1120                 if (p != NULL)
1121                         spin_lock(&p->lock);
1122         }
1123         return p;
1124 }
1125
1126 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1127                                               unsigned long offset,
1128                                               unsigned char usage)
1129 {
1130         unsigned char count;
1131         unsigned char has_cache;
1132
1133         count = p->swap_map[offset];
1134
1135         has_cache = count & SWAP_HAS_CACHE;
1136         count &= ~SWAP_HAS_CACHE;
1137
1138         if (usage == SWAP_HAS_CACHE) {
1139                 VM_BUG_ON(!has_cache);
1140                 has_cache = 0;
1141         } else if (count == SWAP_MAP_SHMEM) {
1142                 /*
1143                  * Or we could insist on shmem.c using a special
1144                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1145                  */
1146                 count = 0;
1147         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1148                 if (count == COUNT_CONTINUED) {
1149                         if (swap_count_continued(p, offset, count))
1150                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1151                         else
1152                                 count = SWAP_MAP_MAX;
1153                 } else
1154                         count--;
1155         }
1156
1157         usage = count | has_cache;
1158         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1159
1160         return usage;
1161 }
1162
1163 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1164                                        swp_entry_t entry, unsigned char usage)
1165 {
1166         struct swap_cluster_info *ci;
1167         unsigned long offset = swp_offset(entry);
1168
1169         ci = lock_cluster_or_swap_info(p, offset);
1170         usage = __swap_entry_free_locked(p, offset, usage);
1171         unlock_cluster_or_swap_info(p, ci);
1172
1173         return usage;
1174 }
1175
1176 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1177 {
1178         struct swap_cluster_info *ci;
1179         unsigned long offset = swp_offset(entry);
1180         unsigned char count;
1181
1182         ci = lock_cluster(p, offset);
1183         count = p->swap_map[offset];
1184         VM_BUG_ON(count != SWAP_HAS_CACHE);
1185         p->swap_map[offset] = 0;
1186         dec_cluster_info_page(p, p->cluster_info, offset);
1187         unlock_cluster(ci);
1188
1189         mem_cgroup_uncharge_swap(entry, 1);
1190         swap_range_free(p, offset, 1);
1191 }
1192
1193 /*
1194  * Caller has made sure that the swap device corresponding to entry
1195  * is still around or has not been recycled.
1196  */
1197 void swap_free(swp_entry_t entry)
1198 {
1199         struct swap_info_struct *p;
1200
1201         p = _swap_info_get(entry);
1202         if (p) {
1203                 if (!__swap_entry_free(p, entry, 1))
1204                         free_swap_slot(entry);
1205         }
1206 }
1207
1208 /*
1209  * Called after dropping swapcache to decrease refcnt to swap entries.
1210  */
1211 void put_swap_page(struct page *page, swp_entry_t entry)
1212 {
1213         unsigned long offset = swp_offset(entry);
1214         unsigned long idx = offset / SWAPFILE_CLUSTER;
1215         struct swap_cluster_info *ci;
1216         struct swap_info_struct *si;
1217         unsigned char *map;
1218         unsigned int i, free_entries = 0;
1219         unsigned char val;
1220         int size = swap_entry_size(hpage_nr_pages(page));
1221
1222         si = _swap_info_get(entry);
1223         if (!si)
1224                 return;
1225
1226         ci = lock_cluster_or_swap_info(si, offset);
1227         if (size == SWAPFILE_CLUSTER) {
1228                 VM_BUG_ON(!cluster_is_huge(ci));
1229                 map = si->swap_map + offset;
1230                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1231                         val = map[i];
1232                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1233                         if (val == SWAP_HAS_CACHE)
1234                                 free_entries++;
1235                 }
1236                 cluster_clear_huge(ci);
1237                 if (free_entries == SWAPFILE_CLUSTER) {
1238                         unlock_cluster_or_swap_info(si, ci);
1239                         spin_lock(&si->lock);
1240                         ci = lock_cluster(si, offset);
1241                         memset(map, 0, SWAPFILE_CLUSTER);
1242                         unlock_cluster(ci);
1243                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1244                         swap_free_cluster(si, idx);
1245                         spin_unlock(&si->lock);
1246                         return;
1247                 }
1248         }
1249         for (i = 0; i < size; i++, entry.val++) {
1250                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1251                         unlock_cluster_or_swap_info(si, ci);
1252                         free_swap_slot(entry);
1253                         if (i == size - 1)
1254                                 return;
1255                         lock_cluster_or_swap_info(si, offset);
1256                 }
1257         }
1258         unlock_cluster_or_swap_info(si, ci);
1259 }
1260
1261 #ifdef CONFIG_THP_SWAP
1262 int split_swap_cluster(swp_entry_t entry)
1263 {
1264         struct swap_info_struct *si;
1265         struct swap_cluster_info *ci;
1266         unsigned long offset = swp_offset(entry);
1267
1268         si = _swap_info_get(entry);
1269         if (!si)
1270                 return -EBUSY;
1271         ci = lock_cluster(si, offset);
1272         cluster_clear_huge(ci);
1273         unlock_cluster(ci);
1274         return 0;
1275 }
1276 #endif
1277
1278 static int swp_entry_cmp(const void *ent1, const void *ent2)
1279 {
1280         const swp_entry_t *e1 = ent1, *e2 = ent2;
1281
1282         return (int)swp_type(*e1) - (int)swp_type(*e2);
1283 }
1284
1285 void swapcache_free_entries(swp_entry_t *entries, int n)
1286 {
1287         struct swap_info_struct *p, *prev;
1288         int i;
1289
1290         if (n <= 0)
1291                 return;
1292
1293         prev = NULL;
1294         p = NULL;
1295
1296         /*
1297          * Sort swap entries by swap device, so each lock is only taken once.
1298          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1299          * so low that it isn't necessary to optimize further.
1300          */
1301         if (nr_swapfiles > 1)
1302                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1303         for (i = 0; i < n; ++i) {
1304                 p = swap_info_get_cont(entries[i], prev);
1305                 if (p)
1306                         swap_entry_free(p, entries[i]);
1307                 prev = p;
1308         }
1309         if (p)
1310                 spin_unlock(&p->lock);
1311 }
1312
1313 /*
1314  * How many references to page are currently swapped out?
1315  * This does not give an exact answer when swap count is continued,
1316  * but does include the high COUNT_CONTINUED flag to allow for that.
1317  */
1318 int page_swapcount(struct page *page)
1319 {
1320         int count = 0;
1321         struct swap_info_struct *p;
1322         struct swap_cluster_info *ci;
1323         swp_entry_t entry;
1324         unsigned long offset;
1325
1326         entry.val = page_private(page);
1327         p = _swap_info_get(entry);
1328         if (p) {
1329                 offset = swp_offset(entry);
1330                 ci = lock_cluster_or_swap_info(p, offset);
1331                 count = swap_count(p->swap_map[offset]);
1332                 unlock_cluster_or_swap_info(p, ci);
1333         }
1334         return count;
1335 }
1336
1337 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1338 {
1339         pgoff_t offset = swp_offset(entry);
1340
1341         return swap_count(si->swap_map[offset]);
1342 }
1343
1344 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1345 {
1346         int count = 0;
1347         pgoff_t offset = swp_offset(entry);
1348         struct swap_cluster_info *ci;
1349
1350         ci = lock_cluster_or_swap_info(si, offset);
1351         count = swap_count(si->swap_map[offset]);
1352         unlock_cluster_or_swap_info(si, ci);
1353         return count;
1354 }
1355
1356 /*
1357  * How many references to @entry are currently swapped out?
1358  * This does not give an exact answer when swap count is continued,
1359  * but does include the high COUNT_CONTINUED flag to allow for that.
1360  */
1361 int __swp_swapcount(swp_entry_t entry)
1362 {
1363         int count = 0;
1364         struct swap_info_struct *si;
1365
1366         si = __swap_info_get(entry);
1367         if (si)
1368                 count = swap_swapcount(si, entry);
1369         return count;
1370 }
1371
1372 /*
1373  * How many references to @entry are currently swapped out?
1374  * This considers COUNT_CONTINUED so it returns exact answer.
1375  */
1376 int swp_swapcount(swp_entry_t entry)
1377 {
1378         int count, tmp_count, n;
1379         struct swap_info_struct *p;
1380         struct swap_cluster_info *ci;
1381         struct page *page;
1382         pgoff_t offset;
1383         unsigned char *map;
1384
1385         p = _swap_info_get(entry);
1386         if (!p)
1387                 return 0;
1388
1389         offset = swp_offset(entry);
1390
1391         ci = lock_cluster_or_swap_info(p, offset);
1392
1393         count = swap_count(p->swap_map[offset]);
1394         if (!(count & COUNT_CONTINUED))
1395                 goto out;
1396
1397         count &= ~COUNT_CONTINUED;
1398         n = SWAP_MAP_MAX + 1;
1399
1400         page = vmalloc_to_page(p->swap_map + offset);
1401         offset &= ~PAGE_MASK;
1402         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1403
1404         do {
1405                 page = list_next_entry(page, lru);
1406                 map = kmap_atomic(page);
1407                 tmp_count = map[offset];
1408                 kunmap_atomic(map);
1409
1410                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1411                 n *= (SWAP_CONT_MAX + 1);
1412         } while (tmp_count & COUNT_CONTINUED);
1413 out:
1414         unlock_cluster_or_swap_info(p, ci);
1415         return count;
1416 }
1417
1418 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1419                                          swp_entry_t entry)
1420 {
1421         struct swap_cluster_info *ci;
1422         unsigned char *map = si->swap_map;
1423         unsigned long roffset = swp_offset(entry);
1424         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1425         int i;
1426         bool ret = false;
1427
1428         ci = lock_cluster_or_swap_info(si, offset);
1429         if (!ci || !cluster_is_huge(ci)) {
1430                 if (swap_count(map[roffset]))
1431                         ret = true;
1432                 goto unlock_out;
1433         }
1434         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1435                 if (swap_count(map[offset + i])) {
1436                         ret = true;
1437                         break;
1438                 }
1439         }
1440 unlock_out:
1441         unlock_cluster_or_swap_info(si, ci);
1442         return ret;
1443 }
1444
1445 static bool page_swapped(struct page *page)
1446 {
1447         swp_entry_t entry;
1448         struct swap_info_struct *si;
1449
1450         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1451                 return page_swapcount(page) != 0;
1452
1453         page = compound_head(page);
1454         entry.val = page_private(page);
1455         si = _swap_info_get(entry);
1456         if (si)
1457                 return swap_page_trans_huge_swapped(si, entry);
1458         return false;
1459 }
1460
1461 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1462                                          int *total_swapcount)
1463 {
1464         int i, map_swapcount, _total_mapcount, _total_swapcount;
1465         unsigned long offset = 0;
1466         struct swap_info_struct *si;
1467         struct swap_cluster_info *ci = NULL;
1468         unsigned char *map = NULL;
1469         int mapcount, swapcount = 0;
1470
1471         /* hugetlbfs shouldn't call it */
1472         VM_BUG_ON_PAGE(PageHuge(page), page);
1473
1474         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1475                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1476                 if (PageSwapCache(page))
1477                         swapcount = page_swapcount(page);
1478                 if (total_swapcount)
1479                         *total_swapcount = swapcount;
1480                 return mapcount + swapcount;
1481         }
1482
1483         page = compound_head(page);
1484
1485         _total_mapcount = _total_swapcount = map_swapcount = 0;
1486         if (PageSwapCache(page)) {
1487                 swp_entry_t entry;
1488
1489                 entry.val = page_private(page);
1490                 si = _swap_info_get(entry);
1491                 if (si) {
1492                         map = si->swap_map;
1493                         offset = swp_offset(entry);
1494                 }
1495         }
1496         if (map)
1497                 ci = lock_cluster(si, offset);
1498         for (i = 0; i < HPAGE_PMD_NR; i++) {
1499                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1500                 _total_mapcount += mapcount;
1501                 if (map) {
1502                         swapcount = swap_count(map[offset + i]);
1503                         _total_swapcount += swapcount;
1504                 }
1505                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1506         }
1507         unlock_cluster(ci);
1508         if (PageDoubleMap(page)) {
1509                 map_swapcount -= 1;
1510                 _total_mapcount -= HPAGE_PMD_NR;
1511         }
1512         mapcount = compound_mapcount(page);
1513         map_swapcount += mapcount;
1514         _total_mapcount += mapcount;
1515         if (total_mapcount)
1516                 *total_mapcount = _total_mapcount;
1517         if (total_swapcount)
1518                 *total_swapcount = _total_swapcount;
1519
1520         return map_swapcount;
1521 }
1522
1523 /*
1524  * We can write to an anon page without COW if there are no other references
1525  * to it.  And as a side-effect, free up its swap: because the old content
1526  * on disk will never be read, and seeking back there to write new content
1527  * later would only waste time away from clustering.
1528  *
1529  * NOTE: total_map_swapcount should not be relied upon by the caller if
1530  * reuse_swap_page() returns false, but it may be always overwritten
1531  * (see the other implementation for CONFIG_SWAP=n).
1532  */
1533 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1534 {
1535         int count, total_mapcount, total_swapcount;
1536
1537         VM_BUG_ON_PAGE(!PageLocked(page), page);
1538         if (unlikely(PageKsm(page)))
1539                 return false;
1540         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1541                                               &total_swapcount);
1542         if (total_map_swapcount)
1543                 *total_map_swapcount = total_mapcount + total_swapcount;
1544         if (count == 1 && PageSwapCache(page) &&
1545             (likely(!PageTransCompound(page)) ||
1546              /* The remaining swap count will be freed soon */
1547              total_swapcount == page_swapcount(page))) {
1548                 if (!PageWriteback(page)) {
1549                         page = compound_head(page);
1550                         delete_from_swap_cache(page);
1551                         SetPageDirty(page);
1552                 } else {
1553                         swp_entry_t entry;
1554                         struct swap_info_struct *p;
1555
1556                         entry.val = page_private(page);
1557                         p = swap_info_get(entry);
1558                         if (p->flags & SWP_STABLE_WRITES) {
1559                                 spin_unlock(&p->lock);
1560                                 return false;
1561                         }
1562                         spin_unlock(&p->lock);
1563                 }
1564         }
1565
1566         return count <= 1;
1567 }
1568
1569 /*
1570  * If swap is getting full, or if there are no more mappings of this page,
1571  * then try_to_free_swap is called to free its swap space.
1572  */
1573 int try_to_free_swap(struct page *page)
1574 {
1575         VM_BUG_ON_PAGE(!PageLocked(page), page);
1576
1577         if (!PageSwapCache(page))
1578                 return 0;
1579         if (PageWriteback(page))
1580                 return 0;
1581         if (page_swapped(page))
1582                 return 0;
1583
1584         /*
1585          * Once hibernation has begun to create its image of memory,
1586          * there's a danger that one of the calls to try_to_free_swap()
1587          * - most probably a call from __try_to_reclaim_swap() while
1588          * hibernation is allocating its own swap pages for the image,
1589          * but conceivably even a call from memory reclaim - will free
1590          * the swap from a page which has already been recorded in the
1591          * image as a clean swapcache page, and then reuse its swap for
1592          * another page of the image.  On waking from hibernation, the
1593          * original page might be freed under memory pressure, then
1594          * later read back in from swap, now with the wrong data.
1595          *
1596          * Hibernation suspends storage while it is writing the image
1597          * to disk so check that here.
1598          */
1599         if (pm_suspended_storage())
1600                 return 0;
1601
1602         page = compound_head(page);
1603         delete_from_swap_cache(page);
1604         SetPageDirty(page);
1605         return 1;
1606 }
1607
1608 /*
1609  * Free the swap entry like above, but also try to
1610  * free the page cache entry if it is the last user.
1611  */
1612 int free_swap_and_cache(swp_entry_t entry)
1613 {
1614         struct swap_info_struct *p;
1615         struct page *page = NULL;
1616         unsigned char count;
1617
1618         if (non_swap_entry(entry))
1619                 return 1;
1620
1621         p = _swap_info_get(entry);
1622         if (p) {
1623                 count = __swap_entry_free(p, entry, 1);
1624                 if (count == SWAP_HAS_CACHE &&
1625                     !swap_page_trans_huge_swapped(p, entry)) {
1626                         page = find_get_page(swap_address_space(entry),
1627                                              swp_offset(entry));
1628                         if (page && !trylock_page(page)) {
1629                                 put_page(page);
1630                                 page = NULL;
1631                         }
1632                 } else if (!count)
1633                         free_swap_slot(entry);
1634         }
1635         if (page) {
1636                 /*
1637                  * Not mapped elsewhere, or swap space full? Free it!
1638                  * Also recheck PageSwapCache now page is locked (above).
1639                  */
1640                 if (PageSwapCache(page) && !PageWriteback(page) &&
1641                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1642                     !swap_page_trans_huge_swapped(p, entry)) {
1643                         page = compound_head(page);
1644                         delete_from_swap_cache(page);
1645                         SetPageDirty(page);
1646                 }
1647                 unlock_page(page);
1648                 put_page(page);
1649         }
1650         return p != NULL;
1651 }
1652
1653 #ifdef CONFIG_HIBERNATION
1654 /*
1655  * Find the swap type that corresponds to given device (if any).
1656  *
1657  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1658  * from 0, in which the swap header is expected to be located.
1659  *
1660  * This is needed for the suspend to disk (aka swsusp).
1661  */
1662 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1663 {
1664         struct block_device *bdev = NULL;
1665         int type;
1666
1667         if (device)
1668                 bdev = bdget(device);
1669
1670         spin_lock(&swap_lock);
1671         for (type = 0; type < nr_swapfiles; type++) {
1672                 struct swap_info_struct *sis = swap_info[type];
1673
1674                 if (!(sis->flags & SWP_WRITEOK))
1675                         continue;
1676
1677                 if (!bdev) {
1678                         if (bdev_p)
1679                                 *bdev_p = bdgrab(sis->bdev);
1680
1681                         spin_unlock(&swap_lock);
1682                         return type;
1683                 }
1684                 if (bdev == sis->bdev) {
1685                         struct swap_extent *se = &sis->first_swap_extent;
1686
1687                         if (se->start_block == offset) {
1688                                 if (bdev_p)
1689                                         *bdev_p = bdgrab(sis->bdev);
1690
1691                                 spin_unlock(&swap_lock);
1692                                 bdput(bdev);
1693                                 return type;
1694                         }
1695                 }
1696         }
1697         spin_unlock(&swap_lock);
1698         if (bdev)
1699                 bdput(bdev);
1700
1701         return -ENODEV;
1702 }
1703
1704 /*
1705  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1706  * corresponding to given index in swap_info (swap type).
1707  */
1708 sector_t swapdev_block(int type, pgoff_t offset)
1709 {
1710         struct block_device *bdev;
1711
1712         if ((unsigned int)type >= nr_swapfiles)
1713                 return 0;
1714         if (!(swap_info[type]->flags & SWP_WRITEOK))
1715                 return 0;
1716         return map_swap_entry(swp_entry(type, offset), &bdev);
1717 }
1718
1719 /*
1720  * Return either the total number of swap pages of given type, or the number
1721  * of free pages of that type (depending on @free)
1722  *
1723  * This is needed for software suspend
1724  */
1725 unsigned int count_swap_pages(int type, int free)
1726 {
1727         unsigned int n = 0;
1728
1729         spin_lock(&swap_lock);
1730         if ((unsigned int)type < nr_swapfiles) {
1731                 struct swap_info_struct *sis = swap_info[type];
1732
1733                 spin_lock(&sis->lock);
1734                 if (sis->flags & SWP_WRITEOK) {
1735                         n = sis->pages;
1736                         if (free)
1737                                 n -= sis->inuse_pages;
1738                 }
1739                 spin_unlock(&sis->lock);
1740         }
1741         spin_unlock(&swap_lock);
1742         return n;
1743 }
1744 #endif /* CONFIG_HIBERNATION */
1745
1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1747 {
1748         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1749 }
1750
1751 /*
1752  * No need to decide whether this PTE shares the swap entry with others,
1753  * just let do_wp_page work it out if a write is requested later - to
1754  * force COW, vm_page_prot omits write permission from any private vma.
1755  */
1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1757                 unsigned long addr, swp_entry_t entry, struct page *page)
1758 {
1759         struct page *swapcache;
1760         struct mem_cgroup *memcg;
1761         spinlock_t *ptl;
1762         pte_t *pte;
1763         int ret = 1;
1764
1765         swapcache = page;
1766         page = ksm_might_need_to_copy(page, vma, addr);
1767         if (unlikely(!page))
1768                 return -ENOMEM;
1769
1770         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1771                                 &memcg, false)) {
1772                 ret = -ENOMEM;
1773                 goto out_nolock;
1774         }
1775
1776         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778                 mem_cgroup_cancel_charge(page, memcg, false);
1779                 ret = 0;
1780                 goto out;
1781         }
1782
1783         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1784         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1785         get_page(page);
1786         set_pte_at(vma->vm_mm, addr, pte,
1787                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1788         if (page == swapcache) {
1789                 page_add_anon_rmap(page, vma, addr, false);
1790                 mem_cgroup_commit_charge(page, memcg, true, false);
1791         } else { /* ksm created a completely new copy */
1792                 page_add_new_anon_rmap(page, vma, addr, false);
1793                 mem_cgroup_commit_charge(page, memcg, false, false);
1794                 lru_cache_add_active_or_unevictable(page, vma);
1795         }
1796         swap_free(entry);
1797         /*
1798          * Move the page to the active list so it is not
1799          * immediately swapped out again after swapon.
1800          */
1801         activate_page(page);
1802 out:
1803         pte_unmap_unlock(pte, ptl);
1804 out_nolock:
1805         if (page != swapcache) {
1806                 unlock_page(page);
1807                 put_page(page);
1808         }
1809         return ret;
1810 }
1811
1812 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1813                                 unsigned long addr, unsigned long end,
1814                                 swp_entry_t entry, struct page *page)
1815 {
1816         pte_t swp_pte = swp_entry_to_pte(entry);
1817         pte_t *pte;
1818         int ret = 0;
1819
1820         /*
1821          * We don't actually need pte lock while scanning for swp_pte: since
1822          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1823          * page table while we're scanning; though it could get zapped, and on
1824          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1825          * of unmatched parts which look like swp_pte, so unuse_pte must
1826          * recheck under pte lock.  Scanning without pte lock lets it be
1827          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1828          */
1829         pte = pte_offset_map(pmd, addr);
1830         do {
1831                 /*
1832                  * swapoff spends a _lot_ of time in this loop!
1833                  * Test inline before going to call unuse_pte.
1834                  */
1835                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1836                         pte_unmap(pte);
1837                         ret = unuse_pte(vma, pmd, addr, entry, page);
1838                         if (ret)
1839                                 goto out;
1840                         pte = pte_offset_map(pmd, addr);
1841                 }
1842         } while (pte++, addr += PAGE_SIZE, addr != end);
1843         pte_unmap(pte - 1);
1844 out:
1845         return ret;
1846 }
1847
1848 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1849                                 unsigned long addr, unsigned long end,
1850                                 swp_entry_t entry, struct page *page)
1851 {
1852         pmd_t *pmd;
1853         unsigned long next;
1854         int ret;
1855
1856         pmd = pmd_offset(pud, addr);
1857         do {
1858                 cond_resched();
1859                 next = pmd_addr_end(addr, end);
1860                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1861                         continue;
1862                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1863                 if (ret)
1864                         return ret;
1865         } while (pmd++, addr = next, addr != end);
1866         return 0;
1867 }
1868
1869 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1870                                 unsigned long addr, unsigned long end,
1871                                 swp_entry_t entry, struct page *page)
1872 {
1873         pud_t *pud;
1874         unsigned long next;
1875         int ret;
1876
1877         pud = pud_offset(p4d, addr);
1878         do {
1879                 next = pud_addr_end(addr, end);
1880                 if (pud_none_or_clear_bad(pud))
1881                         continue;
1882                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1883                 if (ret)
1884                         return ret;
1885         } while (pud++, addr = next, addr != end);
1886         return 0;
1887 }
1888
1889 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1890                                 unsigned long addr, unsigned long end,
1891                                 swp_entry_t entry, struct page *page)
1892 {
1893         p4d_t *p4d;
1894         unsigned long next;
1895         int ret;
1896
1897         p4d = p4d_offset(pgd, addr);
1898         do {
1899                 next = p4d_addr_end(addr, end);
1900                 if (p4d_none_or_clear_bad(p4d))
1901                         continue;
1902                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1903                 if (ret)
1904                         return ret;
1905         } while (p4d++, addr = next, addr != end);
1906         return 0;
1907 }
1908
1909 static int unuse_vma(struct vm_area_struct *vma,
1910                                 swp_entry_t entry, struct page *page)
1911 {
1912         pgd_t *pgd;
1913         unsigned long addr, end, next;
1914         int ret;
1915
1916         if (page_anon_vma(page)) {
1917                 addr = page_address_in_vma(page, vma);
1918                 if (addr == -EFAULT)
1919                         return 0;
1920                 else
1921                         end = addr + PAGE_SIZE;
1922         } else {
1923                 addr = vma->vm_start;
1924                 end = vma->vm_end;
1925         }
1926
1927         pgd = pgd_offset(vma->vm_mm, addr);
1928         do {
1929                 next = pgd_addr_end(addr, end);
1930                 if (pgd_none_or_clear_bad(pgd))
1931                         continue;
1932                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1933                 if (ret)
1934                         return ret;
1935         } while (pgd++, addr = next, addr != end);
1936         return 0;
1937 }
1938
1939 static int unuse_mm(struct mm_struct *mm,
1940                                 swp_entry_t entry, struct page *page)
1941 {
1942         struct vm_area_struct *vma;
1943         int ret = 0;
1944
1945         if (!down_read_trylock(&mm->mmap_sem)) {
1946                 /*
1947                  * Activate page so shrink_inactive_list is unlikely to unmap
1948                  * its ptes while lock is dropped, so swapoff can make progress.
1949                  */
1950                 activate_page(page);
1951                 unlock_page(page);
1952                 down_read(&mm->mmap_sem);
1953                 lock_page(page);
1954         }
1955         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1956                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1957                         break;
1958                 cond_resched();
1959         }
1960         up_read(&mm->mmap_sem);
1961         return (ret < 0)? ret: 0;
1962 }
1963
1964 /*
1965  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1966  * from current position to next entry still in use.
1967  * Recycle to start on reaching the end, returning 0 when empty.
1968  */
1969 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1970                                         unsigned int prev, bool frontswap)
1971 {
1972         unsigned int max = si->max;
1973         unsigned int i = prev;
1974         unsigned char count;
1975
1976         /*
1977          * No need for swap_lock here: we're just looking
1978          * for whether an entry is in use, not modifying it; false
1979          * hits are okay, and sys_swapoff() has already prevented new
1980          * allocations from this area (while holding swap_lock).
1981          */
1982         for (;;) {
1983                 if (++i >= max) {
1984                         if (!prev) {
1985                                 i = 0;
1986                                 break;
1987                         }
1988                         /*
1989                          * No entries in use at top of swap_map,
1990                          * loop back to start and recheck there.
1991                          */
1992                         max = prev + 1;
1993                         prev = 0;
1994                         i = 1;
1995                 }
1996                 count = READ_ONCE(si->swap_map[i]);
1997                 if (count && swap_count(count) != SWAP_MAP_BAD)
1998                         if (!frontswap || frontswap_test(si, i))
1999                                 break;
2000                 if ((i % LATENCY_LIMIT) == 0)
2001                         cond_resched();
2002         }
2003         return i;
2004 }
2005
2006 /*
2007  * We completely avoid races by reading each swap page in advance,
2008  * and then search for the process using it.  All the necessary
2009  * page table adjustments can then be made atomically.
2010  *
2011  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2012  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2013  */
2014 int try_to_unuse(unsigned int type, bool frontswap,
2015                  unsigned long pages_to_unuse)
2016 {
2017         struct swap_info_struct *si = swap_info[type];
2018         struct mm_struct *start_mm;
2019         volatile unsigned char *swap_map; /* swap_map is accessed without
2020                                            * locking. Mark it as volatile
2021                                            * to prevent compiler doing
2022                                            * something odd.
2023                                            */
2024         unsigned char swcount;
2025         struct page *page;
2026         swp_entry_t entry;
2027         unsigned int i = 0;
2028         int retval = 0;
2029
2030         /*
2031          * When searching mms for an entry, a good strategy is to
2032          * start at the first mm we freed the previous entry from
2033          * (though actually we don't notice whether we or coincidence
2034          * freed the entry).  Initialize this start_mm with a hold.
2035          *
2036          * A simpler strategy would be to start at the last mm we
2037          * freed the previous entry from; but that would take less
2038          * advantage of mmlist ordering, which clusters forked mms
2039          * together, child after parent.  If we race with dup_mmap(), we
2040          * prefer to resolve parent before child, lest we miss entries
2041          * duplicated after we scanned child: using last mm would invert
2042          * that.
2043          */
2044         start_mm = &init_mm;
2045         mmget(&init_mm);
2046
2047         /*
2048          * Keep on scanning until all entries have gone.  Usually,
2049          * one pass through swap_map is enough, but not necessarily:
2050          * there are races when an instance of an entry might be missed.
2051          */
2052         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2053                 if (signal_pending(current)) {
2054                         retval = -EINTR;
2055                         break;
2056                 }
2057
2058                 /*
2059                  * Get a page for the entry, using the existing swap
2060                  * cache page if there is one.  Otherwise, get a clean
2061                  * page and read the swap into it.
2062                  */
2063                 swap_map = &si->swap_map[i];
2064                 entry = swp_entry(type, i);
2065                 page = read_swap_cache_async(entry,
2066                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2067                 if (!page) {
2068                         /*
2069                          * Either swap_duplicate() failed because entry
2070                          * has been freed independently, and will not be
2071                          * reused since sys_swapoff() already disabled
2072                          * allocation from here, or alloc_page() failed.
2073                          */
2074                         swcount = *swap_map;
2075                         /*
2076                          * We don't hold lock here, so the swap entry could be
2077                          * SWAP_MAP_BAD (when the cluster is discarding).
2078                          * Instead of fail out, We can just skip the swap
2079                          * entry because swapoff will wait for discarding
2080                          * finish anyway.
2081                          */
2082                         if (!swcount || swcount == SWAP_MAP_BAD)
2083                                 continue;
2084                         retval = -ENOMEM;
2085                         break;
2086                 }
2087
2088                 /*
2089                  * Don't hold on to start_mm if it looks like exiting.
2090                  */
2091                 if (atomic_read(&start_mm->mm_users) == 1) {
2092                         mmput(start_mm);
2093                         start_mm = &init_mm;
2094                         mmget(&init_mm);
2095                 }
2096
2097                 /*
2098                  * Wait for and lock page.  When do_swap_page races with
2099                  * try_to_unuse, do_swap_page can handle the fault much
2100                  * faster than try_to_unuse can locate the entry.  This
2101                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2102                  * defer to do_swap_page in such a case - in some tests,
2103                  * do_swap_page and try_to_unuse repeatedly compete.
2104                  */
2105                 wait_on_page_locked(page);
2106                 wait_on_page_writeback(page);
2107                 lock_page(page);
2108                 wait_on_page_writeback(page);
2109
2110                 /*
2111                  * Remove all references to entry.
2112                  */
2113                 swcount = *swap_map;
2114                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2115                         retval = shmem_unuse(entry, page);
2116                         /* page has already been unlocked and released */
2117                         if (retval < 0)
2118                                 break;
2119                         continue;
2120                 }
2121                 if (swap_count(swcount) && start_mm != &init_mm)
2122                         retval = unuse_mm(start_mm, entry, page);
2123
2124                 if (swap_count(*swap_map)) {
2125                         int set_start_mm = (*swap_map >= swcount);
2126                         struct list_head *p = &start_mm->mmlist;
2127                         struct mm_struct *new_start_mm = start_mm;
2128                         struct mm_struct *prev_mm = start_mm;
2129                         struct mm_struct *mm;
2130
2131                         mmget(new_start_mm);
2132                         mmget(prev_mm);
2133                         spin_lock(&mmlist_lock);
2134                         while (swap_count(*swap_map) && !retval &&
2135                                         (p = p->next) != &start_mm->mmlist) {
2136                                 mm = list_entry(p, struct mm_struct, mmlist);
2137                                 if (!mmget_not_zero(mm))
2138                                         continue;
2139                                 spin_unlock(&mmlist_lock);
2140                                 mmput(prev_mm);
2141                                 prev_mm = mm;
2142
2143                                 cond_resched();
2144
2145                                 swcount = *swap_map;
2146                                 if (!swap_count(swcount)) /* any usage ? */
2147                                         ;
2148                                 else if (mm == &init_mm)
2149                                         set_start_mm = 1;
2150                                 else
2151                                         retval = unuse_mm(mm, entry, page);
2152
2153                                 if (set_start_mm && *swap_map < swcount) {
2154                                         mmput(new_start_mm);
2155                                         mmget(mm);
2156                                         new_start_mm = mm;
2157                                         set_start_mm = 0;
2158                                 }
2159                                 spin_lock(&mmlist_lock);
2160                         }
2161                         spin_unlock(&mmlist_lock);
2162                         mmput(prev_mm);
2163                         mmput(start_mm);
2164                         start_mm = new_start_mm;
2165                 }
2166                 if (retval) {
2167                         unlock_page(page);
2168                         put_page(page);
2169                         break;
2170                 }
2171
2172                 /*
2173                  * If a reference remains (rare), we would like to leave
2174                  * the page in the swap cache; but try_to_unmap could
2175                  * then re-duplicate the entry once we drop page lock,
2176                  * so we might loop indefinitely; also, that page could
2177                  * not be swapped out to other storage meanwhile.  So:
2178                  * delete from cache even if there's another reference,
2179                  * after ensuring that the data has been saved to disk -
2180                  * since if the reference remains (rarer), it will be
2181                  * read from disk into another page.  Splitting into two
2182                  * pages would be incorrect if swap supported "shared
2183                  * private" pages, but they are handled by tmpfs files.
2184                  *
2185                  * Given how unuse_vma() targets one particular offset
2186                  * in an anon_vma, once the anon_vma has been determined,
2187                  * this splitting happens to be just what is needed to
2188                  * handle where KSM pages have been swapped out: re-reading
2189                  * is unnecessarily slow, but we can fix that later on.
2190                  */
2191                 if (swap_count(*swap_map) &&
2192                      PageDirty(page) && PageSwapCache(page)) {
2193                         struct writeback_control wbc = {
2194                                 .sync_mode = WB_SYNC_NONE,
2195                         };
2196
2197                         swap_writepage(compound_head(page), &wbc);
2198                         lock_page(page);
2199                         wait_on_page_writeback(page);
2200                 }
2201
2202                 /*
2203                  * It is conceivable that a racing task removed this page from
2204                  * swap cache just before we acquired the page lock at the top,
2205                  * or while we dropped it in unuse_mm().  The page might even
2206                  * be back in swap cache on another swap area: that we must not
2207                  * delete, since it may not have been written out to swap yet.
2208                  */
2209                 if (PageSwapCache(page) &&
2210                     likely(page_private(page) == entry.val) &&
2211                     !page_swapped(page))
2212                         delete_from_swap_cache(compound_head(page));
2213
2214                 /*
2215                  * So we could skip searching mms once swap count went
2216                  * to 1, we did not mark any present ptes as dirty: must
2217                  * mark page dirty so shrink_page_list will preserve it.
2218                  */
2219                 SetPageDirty(page);
2220                 unlock_page(page);
2221                 put_page(page);
2222
2223                 /*
2224                  * Make sure that we aren't completely killing
2225                  * interactive performance.
2226                  */
2227                 cond_resched();
2228                 if (frontswap && pages_to_unuse > 0) {
2229                         if (!--pages_to_unuse)
2230                                 break;
2231                 }
2232         }
2233
2234         mmput(start_mm);
2235         return retval;
2236 }
2237
2238 /*
2239  * After a successful try_to_unuse, if no swap is now in use, we know
2240  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2241  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2242  * added to the mmlist just after page_duplicate - before would be racy.
2243  */
2244 static void drain_mmlist(void)
2245 {
2246         struct list_head *p, *next;
2247         unsigned int type;
2248
2249         for (type = 0; type < nr_swapfiles; type++)
2250                 if (swap_info[type]->inuse_pages)
2251                         return;
2252         spin_lock(&mmlist_lock);
2253         list_for_each_safe(p, next, &init_mm.mmlist)
2254                 list_del_init(p);
2255         spin_unlock(&mmlist_lock);
2256 }
2257
2258 /*
2259  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2260  * corresponds to page offset for the specified swap entry.
2261  * Note that the type of this function is sector_t, but it returns page offset
2262  * into the bdev, not sector offset.
2263  */
2264 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2265 {
2266         struct swap_info_struct *sis;
2267         struct swap_extent *start_se;
2268         struct swap_extent *se;
2269         pgoff_t offset;
2270
2271         sis = swap_info[swp_type(entry)];
2272         *bdev = sis->bdev;
2273
2274         offset = swp_offset(entry);
2275         start_se = sis->curr_swap_extent;
2276         se = start_se;
2277
2278         for ( ; ; ) {
2279                 if (se->start_page <= offset &&
2280                                 offset < (se->start_page + se->nr_pages)) {
2281                         return se->start_block + (offset - se->start_page);
2282                 }
2283                 se = list_next_entry(se, list);
2284                 sis->curr_swap_extent = se;
2285                 BUG_ON(se == start_se);         /* It *must* be present */
2286         }
2287 }
2288
2289 /*
2290  * Returns the page offset into bdev for the specified page's swap entry.
2291  */
2292 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2293 {
2294         swp_entry_t entry;
2295         entry.val = page_private(page);
2296         return map_swap_entry(entry, bdev);
2297 }
2298
2299 /*
2300  * Free all of a swapdev's extent information
2301  */
2302 static void destroy_swap_extents(struct swap_info_struct *sis)
2303 {
2304         while (!list_empty(&sis->first_swap_extent.list)) {
2305                 struct swap_extent *se;
2306
2307                 se = list_first_entry(&sis->first_swap_extent.list,
2308                                 struct swap_extent, list);
2309                 list_del(&se->list);
2310                 kfree(se);
2311         }
2312
2313         if (sis->flags & SWP_FILE) {
2314                 struct file *swap_file = sis->swap_file;
2315                 struct address_space *mapping = swap_file->f_mapping;
2316
2317                 sis->flags &= ~SWP_FILE;
2318                 mapping->a_ops->swap_deactivate(swap_file);
2319         }
2320 }
2321
2322 /*
2323  * Add a block range (and the corresponding page range) into this swapdev's
2324  * extent list.  The extent list is kept sorted in page order.
2325  *
2326  * This function rather assumes that it is called in ascending page order.
2327  */
2328 int
2329 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2330                 unsigned long nr_pages, sector_t start_block)
2331 {
2332         struct swap_extent *se;
2333         struct swap_extent *new_se;
2334         struct list_head *lh;
2335
2336         if (start_page == 0) {
2337                 se = &sis->first_swap_extent;
2338                 sis->curr_swap_extent = se;
2339                 se->start_page = 0;
2340                 se->nr_pages = nr_pages;
2341                 se->start_block = start_block;
2342                 return 1;
2343         } else {
2344                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2345                 se = list_entry(lh, struct swap_extent, list);
2346                 BUG_ON(se->start_page + se->nr_pages != start_page);
2347                 if (se->start_block + se->nr_pages == start_block) {
2348                         /* Merge it */
2349                         se->nr_pages += nr_pages;
2350                         return 0;
2351                 }
2352         }
2353
2354         /*
2355          * No merge.  Insert a new extent, preserving ordering.
2356          */
2357         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2358         if (new_se == NULL)
2359                 return -ENOMEM;
2360         new_se->start_page = start_page;
2361         new_se->nr_pages = nr_pages;
2362         new_se->start_block = start_block;
2363
2364         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2365         return 1;
2366 }
2367
2368 /*
2369  * A `swap extent' is a simple thing which maps a contiguous range of pages
2370  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2371  * is built at swapon time and is then used at swap_writepage/swap_readpage
2372  * time for locating where on disk a page belongs.
2373  *
2374  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376  * swap files identically.
2377  *
2378  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2380  * swapfiles are handled *identically* after swapon time.
2381  *
2382  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2384  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385  * requirements, they are simply tossed out - we will never use those blocks
2386  * for swapping.
2387  *
2388  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2389  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2390  * which will scribble on the fs.
2391  *
2392  * The amount of disk space which a single swap extent represents varies.
2393  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2394  * extents in the list.  To avoid much list walking, we cache the previous
2395  * search location in `curr_swap_extent', and start new searches from there.
2396  * This is extremely effective.  The average number of iterations in
2397  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2398  */
2399 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2400 {
2401         struct file *swap_file = sis->swap_file;
2402         struct address_space *mapping = swap_file->f_mapping;
2403         struct inode *inode = mapping->host;
2404         int ret;
2405
2406         if (S_ISBLK(inode->i_mode)) {
2407                 ret = add_swap_extent(sis, 0, sis->max, 0);
2408                 *span = sis->pages;
2409                 return ret;
2410         }
2411
2412         if (mapping->a_ops->swap_activate) {
2413                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2414                 if (!ret) {
2415                         sis->flags |= SWP_FILE;
2416                         ret = add_swap_extent(sis, 0, sis->max, 0);
2417                         *span = sis->pages;
2418                 }
2419                 return ret;
2420         }
2421
2422         return generic_swapfile_activate(sis, swap_file, span);
2423 }
2424
2425 static int swap_node(struct swap_info_struct *p)
2426 {
2427         struct block_device *bdev;
2428
2429         if (p->bdev)
2430                 bdev = p->bdev;
2431         else
2432                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2433
2434         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2435 }
2436
2437 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2438                                 unsigned char *swap_map,
2439                                 struct swap_cluster_info *cluster_info)
2440 {
2441         int i;
2442
2443         if (prio >= 0)
2444                 p->prio = prio;
2445         else
2446                 p->prio = --least_priority;
2447         /*
2448          * the plist prio is negated because plist ordering is
2449          * low-to-high, while swap ordering is high-to-low
2450          */
2451         p->list.prio = -p->prio;
2452         for_each_node(i) {
2453                 if (p->prio >= 0)
2454                         p->avail_lists[i].prio = -p->prio;
2455                 else {
2456                         if (swap_node(p) == i)
2457                                 p->avail_lists[i].prio = 1;
2458                         else
2459                                 p->avail_lists[i].prio = -p->prio;
2460                 }
2461         }
2462         p->swap_map = swap_map;
2463         p->cluster_info = cluster_info;
2464         p->flags |= SWP_WRITEOK;
2465         atomic_long_add(p->pages, &nr_swap_pages);
2466         total_swap_pages += p->pages;
2467
2468         assert_spin_locked(&swap_lock);
2469         /*
2470          * both lists are plists, and thus priority ordered.
2471          * swap_active_head needs to be priority ordered for swapoff(),
2472          * which on removal of any swap_info_struct with an auto-assigned
2473          * (i.e. negative) priority increments the auto-assigned priority
2474          * of any lower-priority swap_info_structs.
2475          * swap_avail_head needs to be priority ordered for get_swap_page(),
2476          * which allocates swap pages from the highest available priority
2477          * swap_info_struct.
2478          */
2479         plist_add(&p->list, &swap_active_head);
2480         add_to_avail_list(p);
2481 }
2482
2483 static void enable_swap_info(struct swap_info_struct *p, int prio,
2484                                 unsigned char *swap_map,
2485                                 struct swap_cluster_info *cluster_info,
2486                                 unsigned long *frontswap_map)
2487 {
2488         frontswap_init(p->type, frontswap_map);
2489         spin_lock(&swap_lock);
2490         spin_lock(&p->lock);
2491          _enable_swap_info(p, prio, swap_map, cluster_info);
2492         spin_unlock(&p->lock);
2493         spin_unlock(&swap_lock);
2494 }
2495
2496 static void reinsert_swap_info(struct swap_info_struct *p)
2497 {
2498         spin_lock(&swap_lock);
2499         spin_lock(&p->lock);
2500         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2501         spin_unlock(&p->lock);
2502         spin_unlock(&swap_lock);
2503 }
2504
2505 bool has_usable_swap(void)
2506 {
2507         bool ret = true;
2508
2509         spin_lock(&swap_lock);
2510         if (plist_head_empty(&swap_active_head))
2511                 ret = false;
2512         spin_unlock(&swap_lock);
2513         return ret;
2514 }
2515
2516 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2517 {
2518         struct swap_info_struct *p = NULL;
2519         unsigned char *swap_map;
2520         struct swap_cluster_info *cluster_info;
2521         unsigned long *frontswap_map;
2522         struct file *swap_file, *victim;
2523         struct address_space *mapping;
2524         struct inode *inode;
2525         struct filename *pathname;
2526         int err, found = 0;
2527         unsigned int old_block_size;
2528
2529         if (!capable(CAP_SYS_ADMIN))
2530                 return -EPERM;
2531
2532         BUG_ON(!current->mm);
2533
2534         pathname = getname(specialfile);
2535         if (IS_ERR(pathname))
2536                 return PTR_ERR(pathname);
2537
2538         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2539         err = PTR_ERR(victim);
2540         if (IS_ERR(victim))
2541                 goto out;
2542
2543         mapping = victim->f_mapping;
2544         spin_lock(&swap_lock);
2545         plist_for_each_entry(p, &swap_active_head, list) {
2546                 if (p->flags & SWP_WRITEOK) {
2547                         if (p->swap_file->f_mapping == mapping) {
2548                                 found = 1;
2549                                 break;
2550                         }
2551                 }
2552         }
2553         if (!found) {
2554                 err = -EINVAL;
2555                 spin_unlock(&swap_lock);
2556                 goto out_dput;
2557         }
2558         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2559                 vm_unacct_memory(p->pages);
2560         else {
2561                 err = -ENOMEM;
2562                 spin_unlock(&swap_lock);
2563                 goto out_dput;
2564         }
2565         del_from_avail_list(p);
2566         spin_lock(&p->lock);
2567         if (p->prio < 0) {
2568                 struct swap_info_struct *si = p;
2569                 int nid;
2570
2571                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2572                         si->prio++;
2573                         si->list.prio--;
2574                         for_each_node(nid) {
2575                                 if (si->avail_lists[nid].prio != 1)
2576                                         si->avail_lists[nid].prio--;
2577                         }
2578                 }
2579                 least_priority++;
2580         }
2581         plist_del(&p->list, &swap_active_head);
2582         atomic_long_sub(p->pages, &nr_swap_pages);
2583         total_swap_pages -= p->pages;
2584         p->flags &= ~SWP_WRITEOK;
2585         spin_unlock(&p->lock);
2586         spin_unlock(&swap_lock);
2587
2588         disable_swap_slots_cache_lock();
2589
2590         set_current_oom_origin();
2591         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2592         clear_current_oom_origin();
2593
2594         if (err) {
2595                 /* re-insert swap space back into swap_list */
2596                 reinsert_swap_info(p);
2597                 reenable_swap_slots_cache_unlock();
2598                 goto out_dput;
2599         }
2600
2601         reenable_swap_slots_cache_unlock();
2602
2603         flush_work(&p->discard_work);
2604
2605         destroy_swap_extents(p);
2606         if (p->flags & SWP_CONTINUED)
2607                 free_swap_count_continuations(p);
2608
2609         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2610                 atomic_dec(&nr_rotate_swap);
2611
2612         mutex_lock(&swapon_mutex);
2613         spin_lock(&swap_lock);
2614         spin_lock(&p->lock);
2615         drain_mmlist();
2616
2617         /* wait for anyone still in scan_swap_map */
2618         p->highest_bit = 0;             /* cuts scans short */
2619         while (p->flags >= SWP_SCANNING) {
2620                 spin_unlock(&p->lock);
2621                 spin_unlock(&swap_lock);
2622                 schedule_timeout_uninterruptible(1);
2623                 spin_lock(&swap_lock);
2624                 spin_lock(&p->lock);
2625         }
2626
2627         swap_file = p->swap_file;
2628         old_block_size = p->old_block_size;
2629         p->swap_file = NULL;
2630         p->max = 0;
2631         swap_map = p->swap_map;
2632         p->swap_map = NULL;
2633         cluster_info = p->cluster_info;
2634         p->cluster_info = NULL;
2635         frontswap_map = frontswap_map_get(p);
2636         spin_unlock(&p->lock);
2637         spin_unlock(&swap_lock);
2638         frontswap_invalidate_area(p->type);
2639         frontswap_map_set(p, NULL);
2640         mutex_unlock(&swapon_mutex);
2641         free_percpu(p->percpu_cluster);
2642         p->percpu_cluster = NULL;
2643         vfree(swap_map);
2644         kvfree(cluster_info);
2645         kvfree(frontswap_map);
2646         /* Destroy swap account information */
2647         swap_cgroup_swapoff(p->type);
2648         exit_swap_address_space(p->type);
2649
2650         inode = mapping->host;
2651         if (S_ISBLK(inode->i_mode)) {
2652                 struct block_device *bdev = I_BDEV(inode);
2653                 set_blocksize(bdev, old_block_size);
2654                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2655         } else {
2656                 inode_lock(inode);
2657                 inode->i_flags &= ~S_SWAPFILE;
2658                 inode_unlock(inode);
2659         }
2660         filp_close(swap_file, NULL);
2661
2662         /*
2663          * Clear the SWP_USED flag after all resources are freed so that swapon
2664          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2665          * not hold p->lock after we cleared its SWP_WRITEOK.
2666          */
2667         spin_lock(&swap_lock);
2668         p->flags = 0;
2669         spin_unlock(&swap_lock);
2670
2671         err = 0;
2672         atomic_inc(&proc_poll_event);
2673         wake_up_interruptible(&proc_poll_wait);
2674
2675 out_dput:
2676         filp_close(victim, NULL);
2677 out:
2678         putname(pathname);
2679         return err;
2680 }
2681
2682 #ifdef CONFIG_PROC_FS
2683 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2684 {
2685         struct seq_file *seq = file->private_data;
2686
2687         poll_wait(file, &proc_poll_wait, wait);
2688
2689         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2690                 seq->poll_event = atomic_read(&proc_poll_event);
2691                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2692         }
2693
2694         return EPOLLIN | EPOLLRDNORM;
2695 }
2696
2697 /* iterator */
2698 static void *swap_start(struct seq_file *swap, loff_t *pos)
2699 {
2700         struct swap_info_struct *si;
2701         int type;
2702         loff_t l = *pos;
2703
2704         mutex_lock(&swapon_mutex);
2705
2706         if (!l)
2707                 return SEQ_START_TOKEN;
2708
2709         for (type = 0; type < nr_swapfiles; type++) {
2710                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2711                 si = swap_info[type];
2712                 if (!(si->flags & SWP_USED) || !si->swap_map)
2713                         continue;
2714                 if (!--l)
2715                         return si;
2716         }
2717
2718         return NULL;
2719 }
2720
2721 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2722 {
2723         struct swap_info_struct *si = v;
2724         int type;
2725
2726         if (v == SEQ_START_TOKEN)
2727                 type = 0;
2728         else
2729                 type = si->type + 1;
2730
2731         for (; type < nr_swapfiles; type++) {
2732                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2733                 si = swap_info[type];
2734                 if (!(si->flags & SWP_USED) || !si->swap_map)
2735                         continue;
2736                 ++*pos;
2737                 return si;
2738         }
2739
2740         return NULL;
2741 }
2742
2743 static void swap_stop(struct seq_file *swap, void *v)
2744 {
2745         mutex_unlock(&swapon_mutex);
2746 }
2747
2748 static int swap_show(struct seq_file *swap, void *v)
2749 {
2750         struct swap_info_struct *si = v;
2751         struct file *file;
2752         int len;
2753
2754         if (si == SEQ_START_TOKEN) {
2755                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2756                 return 0;
2757         }
2758
2759         file = si->swap_file;
2760         len = seq_file_path(swap, file, " \t\n\\");
2761         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2762                         len < 40 ? 40 - len : 1, " ",
2763                         S_ISBLK(file_inode(file)->i_mode) ?
2764                                 "partition" : "file\t",
2765                         si->pages << (PAGE_SHIFT - 10),
2766                         si->inuse_pages << (PAGE_SHIFT - 10),
2767                         si->prio);
2768         return 0;
2769 }
2770
2771 static const struct seq_operations swaps_op = {
2772         .start =        swap_start,
2773         .next =         swap_next,
2774         .stop =         swap_stop,
2775         .show =         swap_show
2776 };
2777
2778 static int swaps_open(struct inode *inode, struct file *file)
2779 {
2780         struct seq_file *seq;
2781         int ret;
2782
2783         ret = seq_open(file, &swaps_op);
2784         if (ret)
2785                 return ret;
2786
2787         seq = file->private_data;
2788         seq->poll_event = atomic_read(&proc_poll_event);
2789         return 0;
2790 }
2791
2792 static const struct file_operations proc_swaps_operations = {
2793         .open           = swaps_open,
2794         .read           = seq_read,
2795         .llseek         = seq_lseek,
2796         .release        = seq_release,
2797         .poll           = swaps_poll,
2798 };
2799
2800 static int __init procswaps_init(void)
2801 {
2802         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2803         return 0;
2804 }
2805 __initcall(procswaps_init);
2806 #endif /* CONFIG_PROC_FS */
2807
2808 #ifdef MAX_SWAPFILES_CHECK
2809 static int __init max_swapfiles_check(void)
2810 {
2811         MAX_SWAPFILES_CHECK();
2812         return 0;
2813 }
2814 late_initcall(max_swapfiles_check);
2815 #endif
2816
2817 static struct swap_info_struct *alloc_swap_info(void)
2818 {
2819         struct swap_info_struct *p;
2820         unsigned int type;
2821         int i;
2822
2823         p = kzalloc(sizeof(*p), GFP_KERNEL);
2824         if (!p)
2825                 return ERR_PTR(-ENOMEM);
2826
2827         spin_lock(&swap_lock);
2828         for (type = 0; type < nr_swapfiles; type++) {
2829                 if (!(swap_info[type]->flags & SWP_USED))
2830                         break;
2831         }
2832         if (type >= MAX_SWAPFILES) {
2833                 spin_unlock(&swap_lock);
2834                 kfree(p);
2835                 return ERR_PTR(-EPERM);
2836         }
2837         if (type >= nr_swapfiles) {
2838                 p->type = type;
2839                 swap_info[type] = p;
2840                 /*
2841                  * Write swap_info[type] before nr_swapfiles, in case a
2842                  * racing procfs swap_start() or swap_next() is reading them.
2843                  * (We never shrink nr_swapfiles, we never free this entry.)
2844                  */
2845                 smp_wmb();
2846                 nr_swapfiles++;
2847         } else {
2848                 kfree(p);
2849                 p = swap_info[type];
2850                 /*
2851                  * Do not memset this entry: a racing procfs swap_next()
2852                  * would be relying on p->type to remain valid.
2853                  */
2854         }
2855         INIT_LIST_HEAD(&p->first_swap_extent.list);
2856         plist_node_init(&p->list, 0);
2857         for_each_node(i)
2858                 plist_node_init(&p->avail_lists[i], 0);
2859         p->flags = SWP_USED;
2860         spin_unlock(&swap_lock);
2861         spin_lock_init(&p->lock);
2862         spin_lock_init(&p->cont_lock);
2863
2864         return p;
2865 }
2866
2867 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2868 {
2869         int error;
2870
2871         if (S_ISBLK(inode->i_mode)) {
2872                 p->bdev = bdgrab(I_BDEV(inode));
2873                 error = blkdev_get(p->bdev,
2874                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2875                 if (error < 0) {
2876                         p->bdev = NULL;
2877                         return error;
2878                 }
2879                 p->old_block_size = block_size(p->bdev);
2880                 error = set_blocksize(p->bdev, PAGE_SIZE);
2881                 if (error < 0)
2882                         return error;
2883                 p->flags |= SWP_BLKDEV;
2884         } else if (S_ISREG(inode->i_mode)) {
2885                 p->bdev = inode->i_sb->s_bdev;
2886                 inode_lock(inode);
2887                 if (IS_SWAPFILE(inode))
2888                         return -EBUSY;
2889         } else
2890                 return -EINVAL;
2891
2892         return 0;
2893 }
2894
2895
2896 /*
2897  * Find out how many pages are allowed for a single swap device. There
2898  * are two limiting factors:
2899  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2900  * 2) the number of bits in the swap pte, as defined by the different
2901  * architectures.
2902  *
2903  * In order to find the largest possible bit mask, a swap entry with
2904  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2905  * decoded to a swp_entry_t again, and finally the swap offset is
2906  * extracted.
2907  *
2908  * This will mask all the bits from the initial ~0UL mask that can't
2909  * be encoded in either the swp_entry_t or the architecture definition
2910  * of a swap pte.
2911  */
2912 unsigned long generic_max_swapfile_size(void)
2913 {
2914         return swp_offset(pte_to_swp_entry(
2915                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2916 }
2917
2918 /* Can be overridden by an architecture for additional checks. */
2919 __weak unsigned long max_swapfile_size(void)
2920 {
2921         return generic_max_swapfile_size();
2922 }
2923
2924 static unsigned long read_swap_header(struct swap_info_struct *p,
2925                                         union swap_header *swap_header,
2926                                         struct inode *inode)
2927 {
2928         int i;
2929         unsigned long maxpages;
2930         unsigned long swapfilepages;
2931         unsigned long last_page;
2932
2933         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2934                 pr_err("Unable to find swap-space signature\n");
2935                 return 0;
2936         }
2937
2938         /* swap partition endianess hack... */
2939         if (swab32(swap_header->info.version) == 1) {
2940                 swab32s(&swap_header->info.version);
2941                 swab32s(&swap_header->info.last_page);
2942                 swab32s(&swap_header->info.nr_badpages);
2943                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2944                         return 0;
2945                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2946                         swab32s(&swap_header->info.badpages[i]);
2947         }
2948         /* Check the swap header's sub-version */
2949         if (swap_header->info.version != 1) {
2950                 pr_warn("Unable to handle swap header version %d\n",
2951                         swap_header->info.version);
2952                 return 0;
2953         }
2954
2955         p->lowest_bit  = 1;
2956         p->cluster_next = 1;
2957         p->cluster_nr = 0;
2958
2959         maxpages = max_swapfile_size();
2960         last_page = swap_header->info.last_page;
2961         if (!last_page) {
2962                 pr_warn("Empty swap-file\n");
2963                 return 0;
2964         }
2965         if (last_page > maxpages) {
2966                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2967                         maxpages << (PAGE_SHIFT - 10),
2968                         last_page << (PAGE_SHIFT - 10));
2969         }
2970         if (maxpages > last_page) {
2971                 maxpages = last_page + 1;
2972                 /* p->max is an unsigned int: don't overflow it */
2973                 if ((unsigned int)maxpages == 0)
2974                         maxpages = UINT_MAX;
2975         }
2976         p->highest_bit = maxpages - 1;
2977
2978         if (!maxpages)
2979                 return 0;
2980         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2981         if (swapfilepages && maxpages > swapfilepages) {
2982                 pr_warn("Swap area shorter than signature indicates\n");
2983                 return 0;
2984         }
2985         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2986                 return 0;
2987         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2988                 return 0;
2989
2990         return maxpages;
2991 }
2992
2993 #define SWAP_CLUSTER_INFO_COLS                                          \
2994         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2995 #define SWAP_CLUSTER_SPACE_COLS                                         \
2996         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2997 #define SWAP_CLUSTER_COLS                                               \
2998         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2999
3000 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3001                                         union swap_header *swap_header,
3002                                         unsigned char *swap_map,
3003                                         struct swap_cluster_info *cluster_info,
3004                                         unsigned long maxpages,
3005                                         sector_t *span)
3006 {
3007         unsigned int j, k;
3008         unsigned int nr_good_pages;
3009         int nr_extents;
3010         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3011         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3012         unsigned long i, idx;
3013
3014         nr_good_pages = maxpages - 1;   /* omit header page */
3015
3016         cluster_list_init(&p->free_clusters);
3017         cluster_list_init(&p->discard_clusters);
3018
3019         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3020                 unsigned int page_nr = swap_header->info.badpages[i];
3021                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3022                         return -EINVAL;
3023                 if (page_nr < maxpages) {
3024                         swap_map[page_nr] = SWAP_MAP_BAD;
3025                         nr_good_pages--;
3026                         /*
3027                          * Haven't marked the cluster free yet, no list
3028                          * operation involved
3029                          */
3030                         inc_cluster_info_page(p, cluster_info, page_nr);
3031                 }
3032         }
3033
3034         /* Haven't marked the cluster free yet, no list operation involved */
3035         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3036                 inc_cluster_info_page(p, cluster_info, i);
3037
3038         if (nr_good_pages) {
3039                 swap_map[0] = SWAP_MAP_BAD;
3040                 /*
3041                  * Not mark the cluster free yet, no list
3042                  * operation involved
3043                  */
3044                 inc_cluster_info_page(p, cluster_info, 0);
3045                 p->max = maxpages;
3046                 p->pages = nr_good_pages;
3047                 nr_extents = setup_swap_extents(p, span);
3048                 if (nr_extents < 0)
3049                         return nr_extents;
3050                 nr_good_pages = p->pages;
3051         }
3052         if (!nr_good_pages) {
3053                 pr_warn("Empty swap-file\n");
3054                 return -EINVAL;
3055         }
3056
3057         if (!cluster_info)
3058                 return nr_extents;
3059
3060
3061         /*
3062          * Reduce false cache line sharing between cluster_info and
3063          * sharing same address space.
3064          */
3065         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3066                 j = (k + col) % SWAP_CLUSTER_COLS;
3067                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3068                         idx = i * SWAP_CLUSTER_COLS + j;
3069                         if (idx >= nr_clusters)
3070                                 continue;
3071                         if (cluster_count(&cluster_info[idx]))
3072                                 continue;
3073                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3074                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3075                                               idx);
3076                 }
3077         }
3078         return nr_extents;
3079 }
3080
3081 /*
3082  * Helper to sys_swapon determining if a given swap
3083  * backing device queue supports DISCARD operations.
3084  */
3085 static bool swap_discardable(struct swap_info_struct *si)
3086 {
3087         struct request_queue *q = bdev_get_queue(si->bdev);
3088
3089         if (!q || !blk_queue_discard(q))
3090                 return false;
3091
3092         return true;
3093 }
3094
3095 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3096 {
3097         struct swap_info_struct *p;
3098         struct filename *name;
3099         struct file *swap_file = NULL;
3100         struct address_space *mapping;
3101         int prio;
3102         int error;
3103         union swap_header *swap_header;
3104         int nr_extents;
3105         sector_t span;
3106         unsigned long maxpages;
3107         unsigned char *swap_map = NULL;
3108         struct swap_cluster_info *cluster_info = NULL;
3109         unsigned long *frontswap_map = NULL;
3110         struct page *page = NULL;
3111         struct inode *inode = NULL;
3112         bool inced_nr_rotate_swap = false;
3113
3114         if (swap_flags & ~SWAP_FLAGS_VALID)
3115                 return -EINVAL;
3116
3117         if (!capable(CAP_SYS_ADMIN))
3118                 return -EPERM;
3119
3120         if (!swap_avail_heads)
3121                 return -ENOMEM;
3122
3123         p = alloc_swap_info();
3124         if (IS_ERR(p))
3125                 return PTR_ERR(p);
3126
3127         INIT_WORK(&p->discard_work, swap_discard_work);
3128
3129         name = getname(specialfile);
3130         if (IS_ERR(name)) {
3131                 error = PTR_ERR(name);
3132                 name = NULL;
3133                 goto bad_swap;
3134         }
3135         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3136         if (IS_ERR(swap_file)) {
3137                 error = PTR_ERR(swap_file);
3138                 swap_file = NULL;
3139                 goto bad_swap;
3140         }
3141
3142         p->swap_file = swap_file;
3143         mapping = swap_file->f_mapping;
3144         inode = mapping->host;
3145
3146         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3147         error = claim_swapfile(p, inode);
3148         if (unlikely(error))
3149                 goto bad_swap;
3150
3151         /*
3152          * Read the swap header.
3153          */
3154         if (!mapping->a_ops->readpage) {
3155                 error = -EINVAL;
3156                 goto bad_swap;
3157         }
3158         page = read_mapping_page(mapping, 0, swap_file);
3159         if (IS_ERR(page)) {
3160                 error = PTR_ERR(page);
3161                 goto bad_swap;
3162         }
3163         swap_header = kmap(page);
3164
3165         maxpages = read_swap_header(p, swap_header, inode);
3166         if (unlikely(!maxpages)) {
3167                 error = -EINVAL;
3168                 goto bad_swap;
3169         }
3170
3171         /* OK, set up the swap map and apply the bad block list */
3172         swap_map = vzalloc(maxpages);
3173         if (!swap_map) {
3174                 error = -ENOMEM;
3175                 goto bad_swap;
3176         }
3177
3178         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3179                 p->flags |= SWP_STABLE_WRITES;
3180
3181         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3182                 p->flags |= SWP_SYNCHRONOUS_IO;
3183
3184         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3185                 int cpu;
3186                 unsigned long ci, nr_cluster;
3187
3188                 p->flags |= SWP_SOLIDSTATE;
3189                 /*
3190                  * select a random position to start with to help wear leveling
3191                  * SSD
3192                  */
3193                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3194                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3195
3196                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3197                                         GFP_KERNEL);
3198                 if (!cluster_info) {
3199                         error = -ENOMEM;
3200                         goto bad_swap;
3201                 }
3202
3203                 for (ci = 0; ci < nr_cluster; ci++)
3204                         spin_lock_init(&((cluster_info + ci)->lock));
3205
3206                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3207                 if (!p->percpu_cluster) {
3208                         error = -ENOMEM;
3209                         goto bad_swap;
3210                 }
3211                 for_each_possible_cpu(cpu) {
3212                         struct percpu_cluster *cluster;
3213                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3214                         cluster_set_null(&cluster->index);
3215                 }
3216         } else {
3217                 atomic_inc(&nr_rotate_swap);
3218                 inced_nr_rotate_swap = true;
3219         }
3220
3221         error = swap_cgroup_swapon(p->type, maxpages);
3222         if (error)
3223                 goto bad_swap;
3224
3225         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3226                 cluster_info, maxpages, &span);
3227         if (unlikely(nr_extents < 0)) {
3228                 error = nr_extents;
3229                 goto bad_swap;
3230         }
3231         /* frontswap enabled? set up bit-per-page map for frontswap */
3232         if (IS_ENABLED(CONFIG_FRONTSWAP))
3233                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3234                                          sizeof(long),
3235                                          GFP_KERNEL);
3236
3237         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3238                 /*
3239                  * When discard is enabled for swap with no particular
3240                  * policy flagged, we set all swap discard flags here in
3241                  * order to sustain backward compatibility with older
3242                  * swapon(8) releases.
3243                  */
3244                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3245                              SWP_PAGE_DISCARD);
3246
3247                 /*
3248                  * By flagging sys_swapon, a sysadmin can tell us to
3249                  * either do single-time area discards only, or to just
3250                  * perform discards for released swap page-clusters.
3251                  * Now it's time to adjust the p->flags accordingly.
3252                  */
3253                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3254                         p->flags &= ~SWP_PAGE_DISCARD;
3255                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3256                         p->flags &= ~SWP_AREA_DISCARD;
3257
3258                 /* issue a swapon-time discard if it's still required */
3259                 if (p->flags & SWP_AREA_DISCARD) {
3260                         int err = discard_swap(p);
3261                         if (unlikely(err))
3262                                 pr_err("swapon: discard_swap(%p): %d\n",
3263                                         p, err);
3264                 }
3265         }
3266
3267         error = init_swap_address_space(p->type, maxpages);
3268         if (error)
3269                 goto bad_swap;
3270
3271         mutex_lock(&swapon_mutex);
3272         prio = -1;
3273         if (swap_flags & SWAP_FLAG_PREFER)
3274                 prio =
3275                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3276         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3277
3278         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3279                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3280                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3281                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3282                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3283                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3284                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3285                 (frontswap_map) ? "FS" : "");
3286
3287         mutex_unlock(&swapon_mutex);
3288         atomic_inc(&proc_poll_event);
3289         wake_up_interruptible(&proc_poll_wait);
3290
3291         if (S_ISREG(inode->i_mode))
3292                 inode->i_flags |= S_SWAPFILE;
3293         error = 0;
3294         goto out;
3295 bad_swap:
3296         free_percpu(p->percpu_cluster);
3297         p->percpu_cluster = NULL;
3298         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3299                 set_blocksize(p->bdev, p->old_block_size);
3300                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3301         }
3302         destroy_swap_extents(p);
3303         swap_cgroup_swapoff(p->type);
3304         spin_lock(&swap_lock);
3305         p->swap_file = NULL;
3306         p->flags = 0;
3307         spin_unlock(&swap_lock);
3308         vfree(swap_map);
3309         kvfree(cluster_info);
3310         kvfree(frontswap_map);
3311         if (inced_nr_rotate_swap)
3312                 atomic_dec(&nr_rotate_swap);
3313         if (swap_file) {
3314                 if (inode && S_ISREG(inode->i_mode)) {
3315                         inode_unlock(inode);
3316                         inode = NULL;
3317                 }
3318                 filp_close(swap_file, NULL);
3319         }
3320 out:
3321         if (page && !IS_ERR(page)) {
3322                 kunmap(page);
3323                 put_page(page);
3324         }
3325         if (name)
3326                 putname(name);
3327         if (inode && S_ISREG(inode->i_mode))
3328                 inode_unlock(inode);
3329         if (!error)
3330                 enable_swap_slots_cache();
3331         return error;
3332 }
3333
3334 void si_swapinfo(struct sysinfo *val)
3335 {
3336         unsigned int type;
3337         unsigned long nr_to_be_unused = 0;
3338
3339         spin_lock(&swap_lock);
3340         for (type = 0; type < nr_swapfiles; type++) {
3341                 struct swap_info_struct *si = swap_info[type];
3342
3343                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3344                         nr_to_be_unused += si->inuse_pages;
3345         }
3346         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3347         val->totalswap = total_swap_pages + nr_to_be_unused;
3348         spin_unlock(&swap_lock);
3349 }
3350
3351 /*
3352  * Verify that a swap entry is valid and increment its swap map count.
3353  *
3354  * Returns error code in following case.
3355  * - success -> 0
3356  * - swp_entry is invalid -> EINVAL
3357  * - swp_entry is migration entry -> EINVAL
3358  * - swap-cache reference is requested but there is already one. -> EEXIST
3359  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3360  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3361  */
3362 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3363 {
3364         struct swap_info_struct *p;
3365         struct swap_cluster_info *ci;
3366         unsigned long offset, type;
3367         unsigned char count;
3368         unsigned char has_cache;
3369         int err = -EINVAL;
3370
3371         if (non_swap_entry(entry))
3372                 goto out;
3373
3374         type = swp_type(entry);
3375         if (type >= nr_swapfiles)
3376                 goto bad_file;
3377         p = swap_info[type];
3378         offset = swp_offset(entry);
3379         if (unlikely(offset >= p->max))
3380                 goto out;
3381
3382         ci = lock_cluster_or_swap_info(p, offset);
3383
3384         count = p->swap_map[offset];
3385
3386         /*
3387          * swapin_readahead() doesn't check if a swap entry is valid, so the
3388          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3389          */
3390         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3391                 err = -ENOENT;
3392                 goto unlock_out;
3393         }
3394
3395         has_cache = count & SWAP_HAS_CACHE;
3396         count &= ~SWAP_HAS_CACHE;
3397         err = 0;
3398
3399         if (usage == SWAP_HAS_CACHE) {
3400
3401                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3402                 if (!has_cache && count)
3403                         has_cache = SWAP_HAS_CACHE;
3404                 else if (has_cache)             /* someone else added cache */
3405                         err = -EEXIST;
3406                 else                            /* no users remaining */
3407                         err = -ENOENT;
3408
3409         } else if (count || has_cache) {
3410
3411                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3412                         count += usage;
3413                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3414                         err = -EINVAL;
3415                 else if (swap_count_continued(p, offset, count))
3416                         count = COUNT_CONTINUED;
3417                 else
3418                         err = -ENOMEM;
3419         } else
3420                 err = -ENOENT;                  /* unused swap entry */
3421
3422         p->swap_map[offset] = count | has_cache;
3423
3424 unlock_out:
3425         unlock_cluster_or_swap_info(p, ci);
3426 out:
3427         return err;
3428
3429 bad_file:
3430         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3431         goto out;
3432 }
3433
3434 /*
3435  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3436  * (in which case its reference count is never incremented).
3437  */
3438 void swap_shmem_alloc(swp_entry_t entry)
3439 {
3440         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3441 }
3442
3443 /*
3444  * Increase reference count of swap entry by 1.
3445  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3446  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3447  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3448  * might occur if a page table entry has got corrupted.
3449  */
3450 int swap_duplicate(swp_entry_t entry)
3451 {
3452         int err = 0;
3453
3454         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3455                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3456         return err;
3457 }
3458
3459 /*
3460  * @entry: swap entry for which we allocate swap cache.
3461  *
3462  * Called when allocating swap cache for existing swap entry,
3463  * This can return error codes. Returns 0 at success.
3464  * -EBUSY means there is a swap cache.
3465  * Note: return code is different from swap_duplicate().
3466  */
3467 int swapcache_prepare(swp_entry_t entry)
3468 {
3469         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3470 }
3471
3472 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3473 {
3474         return swap_info[swp_type(entry)];
3475 }
3476
3477 struct swap_info_struct *page_swap_info(struct page *page)
3478 {
3479         swp_entry_t entry = { .val = page_private(page) };
3480         return swp_swap_info(entry);
3481 }
3482
3483 /*
3484  * out-of-line __page_file_ methods to avoid include hell.
3485  */
3486 struct address_space *__page_file_mapping(struct page *page)
3487 {
3488         return page_swap_info(page)->swap_file->f_mapping;
3489 }
3490 EXPORT_SYMBOL_GPL(__page_file_mapping);
3491
3492 pgoff_t __page_file_index(struct page *page)
3493 {
3494         swp_entry_t swap = { .val = page_private(page) };
3495         return swp_offset(swap);
3496 }
3497 EXPORT_SYMBOL_GPL(__page_file_index);
3498
3499 /*
3500  * add_swap_count_continuation - called when a swap count is duplicated
3501  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3502  * page of the original vmalloc'ed swap_map, to hold the continuation count
3503  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3504  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3505  *
3506  * These continuation pages are seldom referenced: the common paths all work
3507  * on the original swap_map, only referring to a continuation page when the
3508  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3509  *
3510  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3511  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3512  * can be called after dropping locks.
3513  */
3514 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3515 {
3516         struct swap_info_struct *si;
3517         struct swap_cluster_info *ci;
3518         struct page *head;
3519         struct page *page;
3520         struct page *list_page;
3521         pgoff_t offset;
3522         unsigned char count;
3523
3524         /*
3525          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3526          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3527          */
3528         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3529
3530         si = swap_info_get(entry);
3531         if (!si) {
3532                 /*
3533                  * An acceptable race has occurred since the failing
3534                  * __swap_duplicate(): the swap entry has been freed,
3535                  * perhaps even the whole swap_map cleared for swapoff.
3536                  */
3537                 goto outer;
3538         }
3539
3540         offset = swp_offset(entry);
3541
3542         ci = lock_cluster(si, offset);
3543
3544         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3545
3546         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3547                 /*
3548                  * The higher the swap count, the more likely it is that tasks
3549                  * will race to add swap count continuation: we need to avoid
3550                  * over-provisioning.
3551                  */
3552                 goto out;
3553         }
3554
3555         if (!page) {
3556                 unlock_cluster(ci);
3557                 spin_unlock(&si->lock);
3558                 return -ENOMEM;
3559         }
3560
3561         /*
3562          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3563          * no architecture is using highmem pages for kernel page tables: so it
3564          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3565          */
3566         head = vmalloc_to_page(si->swap_map + offset);
3567         offset &= ~PAGE_MASK;
3568
3569         spin_lock(&si->cont_lock);
3570         /*
3571          * Page allocation does not initialize the page's lru field,
3572          * but it does always reset its private field.
3573          */
3574         if (!page_private(head)) {
3575                 BUG_ON(count & COUNT_CONTINUED);
3576                 INIT_LIST_HEAD(&head->lru);
3577                 set_page_private(head, SWP_CONTINUED);
3578                 si->flags |= SWP_CONTINUED;
3579         }
3580
3581         list_for_each_entry(list_page, &head->lru, lru) {
3582                 unsigned char *map;
3583
3584                 /*
3585                  * If the previous map said no continuation, but we've found
3586                  * a continuation page, free our allocation and use this one.
3587                  */
3588                 if (!(count & COUNT_CONTINUED))
3589                         goto out_unlock_cont;
3590
3591                 map = kmap_atomic(list_page) + offset;
3592                 count = *map;
3593                 kunmap_atomic(map);
3594
3595                 /*
3596                  * If this continuation count now has some space in it,
3597                  * free our allocation and use this one.
3598                  */
3599                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3600                         goto out_unlock_cont;
3601         }
3602
3603         list_add_tail(&page->lru, &head->lru);
3604         page = NULL;                    /* now it's attached, don't free it */
3605 out_unlock_cont:
3606         spin_unlock(&si->cont_lock);
3607 out:
3608         unlock_cluster(ci);
3609         spin_unlock(&si->lock);
3610 outer:
3611         if (page)
3612                 __free_page(page);
3613         return 0;
3614 }
3615
3616 /*
3617  * swap_count_continued - when the original swap_map count is incremented
3618  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3619  * into, carry if so, or else fail until a new continuation page is allocated;
3620  * when the original swap_map count is decremented from 0 with continuation,
3621  * borrow from the continuation and report whether it still holds more.
3622  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3623  * lock.
3624  */
3625 static bool swap_count_continued(struct swap_info_struct *si,
3626                                  pgoff_t offset, unsigned char count)
3627 {
3628         struct page *head;
3629         struct page *page;
3630         unsigned char *map;
3631         bool ret;
3632
3633         head = vmalloc_to_page(si->swap_map + offset);
3634         if (page_private(head) != SWP_CONTINUED) {
3635                 BUG_ON(count & COUNT_CONTINUED);
3636                 return false;           /* need to add count continuation */
3637         }
3638
3639         spin_lock(&si->cont_lock);
3640         offset &= ~PAGE_MASK;
3641         page = list_entry(head->lru.next, struct page, lru);
3642         map = kmap_atomic(page) + offset;
3643
3644         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3645                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3646
3647         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3648                 /*
3649                  * Think of how you add 1 to 999
3650                  */
3651                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3652                         kunmap_atomic(map);
3653                         page = list_entry(page->lru.next, struct page, lru);
3654                         BUG_ON(page == head);
3655                         map = kmap_atomic(page) + offset;
3656                 }
3657                 if (*map == SWAP_CONT_MAX) {
3658                         kunmap_atomic(map);
3659                         page = list_entry(page->lru.next, struct page, lru);
3660                         if (page == head) {
3661                                 ret = false;    /* add count continuation */
3662                                 goto out;
3663                         }
3664                         map = kmap_atomic(page) + offset;
3665 init_map:               *map = 0;               /* we didn't zero the page */
3666                 }
3667                 *map += 1;
3668                 kunmap_atomic(map);
3669                 page = list_entry(page->lru.prev, struct page, lru);
3670                 while (page != head) {
3671                         map = kmap_atomic(page) + offset;
3672                         *map = COUNT_CONTINUED;
3673                         kunmap_atomic(map);
3674                         page = list_entry(page->lru.prev, struct page, lru);
3675                 }
3676                 ret = true;                     /* incremented */
3677
3678         } else {                                /* decrementing */
3679                 /*
3680                  * Think of how you subtract 1 from 1000
3681                  */
3682                 BUG_ON(count != COUNT_CONTINUED);
3683                 while (*map == COUNT_CONTINUED) {
3684                         kunmap_atomic(map);
3685                         page = list_entry(page->lru.next, struct page, lru);
3686                         BUG_ON(page == head);
3687                         map = kmap_atomic(page) + offset;
3688                 }
3689                 BUG_ON(*map == 0);
3690                 *map -= 1;
3691                 if (*map == 0)
3692                         count = 0;
3693                 kunmap_atomic(map);
3694                 page = list_entry(page->lru.prev, struct page, lru);
3695                 while (page != head) {
3696                         map = kmap_atomic(page) + offset;
3697                         *map = SWAP_CONT_MAX | count;
3698                         count = COUNT_CONTINUED;
3699                         kunmap_atomic(map);
3700                         page = list_entry(page->lru.prev, struct page, lru);
3701                 }
3702                 ret = count == COUNT_CONTINUED;
3703         }
3704 out:
3705         spin_unlock(&si->cont_lock);
3706         return ret;
3707 }
3708
3709 /*
3710  * free_swap_count_continuations - swapoff free all the continuation pages
3711  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3712  */
3713 static void free_swap_count_continuations(struct swap_info_struct *si)
3714 {
3715         pgoff_t offset;
3716
3717         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718                 struct page *head;
3719                 head = vmalloc_to_page(si->swap_map + offset);
3720                 if (page_private(head)) {
3721                         struct page *page, *next;
3722
3723                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3724                                 list_del(&page->lru);
3725                                 __free_page(page);
3726                         }
3727                 }
3728         }
3729 }
3730
3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3732 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3733                                   gfp_t gfp_mask)
3734 {
3735         struct swap_info_struct *si, *next;
3736         if (!(gfp_mask & __GFP_IO) || !memcg)
3737                 return;
3738
3739         if (!blk_cgroup_congested())
3740                 return;
3741
3742         /*
3743          * We've already scheduled a throttle, avoid taking the global swap
3744          * lock.
3745          */
3746         if (current->throttle_queue)
3747                 return;
3748
3749         spin_lock(&swap_avail_lock);
3750         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3751                                   avail_lists[node]) {
3752                 if (si->bdev) {
3753                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3754                                                 true);
3755                         break;
3756                 }
3757         }
3758         spin_unlock(&swap_avail_lock);
3759 }
3760 #endif
3761
3762 static int __init swapfile_init(void)
3763 {
3764         int nid;
3765
3766         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3767                                          GFP_KERNEL);
3768         if (!swap_avail_heads) {
3769                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3770                 return -ENOMEM;
3771         }
3772
3773         for_each_node(nid)
3774                 plist_head_init(&swap_avail_heads[nid]);
3775
3776         return 0;
3777 }
3778 subsys_initcall(swapfile_init);