4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
64 PLIST_HEAD(swap_active_head);
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
83 static DEFINE_MUTEX(swapon_mutex);
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
89 static inline unsigned char swap_count(unsigned char ent)
91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
94 /* returns 1 if swap entry is freed */
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
98 swp_entry_t entry = swp_entry(si->type, offset);
102 page = find_get_page(swap_address_space(entry), entry.val);
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
116 page_cache_release(page);
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
124 static int discard_swap(struct swap_info_struct *si)
126 struct swap_extent *se;
127 sector_t start_block;
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, 0);
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
147 err = blkdev_issue_discard(si->bdev, start_block,
148 nr_blocks, GFP_KERNEL, 0);
154 return err; /* That will often be -EOPNOTSUPP */
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
168 struct list_head *lh;
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
174 sector_t nr_blocks = se->nr_pages - offset;
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
182 si->curr_swap_extent = se;
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
187 nr_blocks, GFP_NOIO, 0))
192 se = list_entry(lh, struct swap_extent, list);
196 #define SWAPFILE_CLUSTER 256
197 #define LATENCY_LIMIT 256
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
210 static inline void cluster_set_count(struct swap_cluster_info *info,
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 unsigned int c, unsigned int f)
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
228 static inline void cluster_set_next(struct swap_cluster_info *info,
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 unsigned int n, unsigned int f)
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
243 return info->flags & CLUSTER_FLAG_FREE;
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
248 return info->flags & CLUSTER_FLAG_NEXT_NULL;
251 static inline void cluster_set_null(struct swap_cluster_info *info)
253 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
267 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
270 if (cluster_is_null(&si->discard_cluster_head)) {
271 cluster_set_next_flag(&si->discard_cluster_head,
273 cluster_set_next_flag(&si->discard_cluster_tail,
276 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 cluster_set_next(&si->cluster_info[tail], idx);
278 cluster_set_next_flag(&si->discard_cluster_tail,
282 schedule_work(&si->discard_work);
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
291 struct swap_cluster_info *info;
294 info = si->cluster_info;
296 while (!cluster_is_null(&si->discard_cluster_head)) {
297 idx = cluster_next(&si->discard_cluster_head);
299 cluster_set_next_flag(&si->discard_cluster_head,
300 cluster_next(&info[idx]), 0);
301 if (cluster_next(&si->discard_cluster_tail) == idx) {
302 cluster_set_null(&si->discard_cluster_head);
303 cluster_set_null(&si->discard_cluster_tail);
305 spin_unlock(&si->lock);
307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
310 spin_lock(&si->lock);
311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 if (cluster_is_null(&si->free_cluster_head)) {
313 cluster_set_next_flag(&si->free_cluster_head,
315 cluster_set_next_flag(&si->free_cluster_tail,
320 tail = cluster_next(&si->free_cluster_tail);
321 cluster_set_next(&info[tail], idx);
322 cluster_set_next_flag(&si->free_cluster_tail,
325 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 0, SWAPFILE_CLUSTER);
330 static void swap_discard_work(struct work_struct *work)
332 struct swap_info_struct *si;
334 si = container_of(work, struct swap_info_struct, discard_work);
336 spin_lock(&si->lock);
337 swap_do_scheduled_discard(si);
338 spin_unlock(&si->lock);
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346 struct swap_cluster_info *cluster_info, unsigned long page_nr)
348 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
352 if (cluster_is_free(&cluster_info[idx])) {
353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 cluster_set_next_flag(&p->free_cluster_head,
355 cluster_next(&cluster_info[idx]), 0);
356 if (cluster_next(&p->free_cluster_tail) == idx) {
357 cluster_set_null(&p->free_cluster_tail);
358 cluster_set_null(&p->free_cluster_head);
360 cluster_set_count_flag(&cluster_info[idx], 0, 0);
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) + 1);
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374 struct swap_cluster_info *cluster_info, unsigned long page_nr)
376 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 cluster_set_count(&cluster_info[idx],
383 cluster_count(&cluster_info[idx]) - 1);
385 if (cluster_count(&cluster_info[idx]) == 0) {
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393 swap_cluster_schedule_discard(p, idx);
397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 if (cluster_is_null(&p->free_cluster_head)) {
399 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402 unsigned int tail = cluster_next(&p->free_cluster_tail);
403 cluster_set_next(&cluster_info[tail], idx);
404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415 unsigned long offset)
417 struct percpu_cluster *percpu_cluster;
420 offset /= SWAPFILE_CLUSTER;
421 conflict = !cluster_is_null(&si->free_cluster_head) &&
422 offset != cluster_next(&si->free_cluster_head) &&
423 cluster_is_free(&si->cluster_info[offset]);
428 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 cluster_set_null(&percpu_cluster->index);
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 unsigned long *offset, unsigned long *scan_base)
440 struct percpu_cluster *cluster;
445 cluster = this_cpu_ptr(si->percpu_cluster);
446 if (cluster_is_null(&cluster->index)) {
447 if (!cluster_is_null(&si->free_cluster_head)) {
448 cluster->index = si->free_cluster_head;
449 cluster->next = cluster_next(&cluster->index) *
451 } else if (!cluster_is_null(&si->discard_cluster_head)) {
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
456 swap_do_scheduled_discard(si);
457 *scan_base = *offset = si->cluster_next;
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
472 if (!si->swap_map[tmp]) {
479 cluster_set_null(&cluster->index);
482 cluster->next = tmp + 1;
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
490 unsigned long offset;
491 unsigned long scan_base;
492 unsigned long last_in_cluster = 0;
493 int latency_ration = LATENCY_LIMIT;
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
503 * And we let swap pages go all over an SSD partition. Hugh
506 si->flags += SWP_SCANNING;
507 scan_base = offset = si->cluster_next;
510 if (si->cluster_info) {
511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
515 if (unlikely(!si->cluster_nr--)) {
516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 si->cluster_nr = SWAPFILE_CLUSTER - 1;
521 spin_unlock(&si->lock);
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
526 * But if seek is cheap, search from our current position, so
527 * that swap is allocated from all over the partition: if the
528 * Flash Translation Layer only remaps within limited zones,
529 * we don't want to wear out the first zone too quickly.
531 if (!(si->flags & SWP_SOLIDSTATE))
532 scan_base = offset = si->lowest_bit;
533 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
535 /* Locate the first empty (unaligned) cluster */
536 for (; last_in_cluster <= si->highest_bit; offset++) {
537 if (si->swap_map[offset])
538 last_in_cluster = offset + SWAPFILE_CLUSTER;
539 else if (offset == last_in_cluster) {
540 spin_lock(&si->lock);
541 offset -= SWAPFILE_CLUSTER - 1;
542 si->cluster_next = offset;
543 si->cluster_nr = SWAPFILE_CLUSTER - 1;
546 if (unlikely(--latency_ration < 0)) {
548 latency_ration = LATENCY_LIMIT;
552 offset = si->lowest_bit;
553 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
555 /* Locate the first empty (unaligned) cluster */
556 for (; last_in_cluster < scan_base; offset++) {
557 if (si->swap_map[offset])
558 last_in_cluster = offset + SWAPFILE_CLUSTER;
559 else if (offset == last_in_cluster) {
560 spin_lock(&si->lock);
561 offset -= SWAPFILE_CLUSTER - 1;
562 si->cluster_next = offset;
563 si->cluster_nr = SWAPFILE_CLUSTER - 1;
566 if (unlikely(--latency_ration < 0)) {
568 latency_ration = LATENCY_LIMIT;
573 spin_lock(&si->lock);
574 si->cluster_nr = SWAPFILE_CLUSTER - 1;
578 if (si->cluster_info) {
579 while (scan_swap_map_ssd_cluster_conflict(si, offset))
580 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
582 if (!(si->flags & SWP_WRITEOK))
584 if (!si->highest_bit)
586 if (offset > si->highest_bit)
587 scan_base = offset = si->lowest_bit;
589 /* reuse swap entry of cache-only swap if not busy. */
590 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
592 spin_unlock(&si->lock);
593 swap_was_freed = __try_to_reclaim_swap(si, offset);
594 spin_lock(&si->lock);
595 /* entry was freed successfully, try to use this again */
598 goto scan; /* check next one */
601 if (si->swap_map[offset])
604 if (offset == si->lowest_bit)
606 if (offset == si->highest_bit)
609 if (si->inuse_pages == si->pages) {
610 si->lowest_bit = si->max;
612 spin_lock(&swap_avail_lock);
613 plist_del(&si->avail_list, &swap_avail_head);
614 spin_unlock(&swap_avail_lock);
616 si->swap_map[offset] = usage;
617 inc_cluster_info_page(si, si->cluster_info, offset);
618 si->cluster_next = offset + 1;
619 si->flags -= SWP_SCANNING;
624 spin_unlock(&si->lock);
625 while (++offset <= si->highest_bit) {
626 if (!si->swap_map[offset]) {
627 spin_lock(&si->lock);
630 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
631 spin_lock(&si->lock);
634 if (unlikely(--latency_ration < 0)) {
636 latency_ration = LATENCY_LIMIT;
639 offset = si->lowest_bit;
640 while (offset < scan_base) {
641 if (!si->swap_map[offset]) {
642 spin_lock(&si->lock);
645 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
646 spin_lock(&si->lock);
649 if (unlikely(--latency_ration < 0)) {
651 latency_ration = LATENCY_LIMIT;
655 spin_lock(&si->lock);
658 si->flags -= SWP_SCANNING;
662 swp_entry_t get_swap_page(void)
664 struct swap_info_struct *si, *next;
667 if (atomic_long_read(&nr_swap_pages) <= 0)
669 atomic_long_dec(&nr_swap_pages);
671 spin_lock(&swap_avail_lock);
674 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
675 /* requeue si to after same-priority siblings */
676 plist_requeue(&si->avail_list, &swap_avail_head);
677 spin_unlock(&swap_avail_lock);
678 spin_lock(&si->lock);
679 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
680 spin_lock(&swap_avail_lock);
681 if (plist_node_empty(&si->avail_list)) {
682 spin_unlock(&si->lock);
685 WARN(!si->highest_bit,
686 "swap_info %d in list but !highest_bit\n",
688 WARN(!(si->flags & SWP_WRITEOK),
689 "swap_info %d in list but !SWP_WRITEOK\n",
691 plist_del(&si->avail_list, &swap_avail_head);
692 spin_unlock(&si->lock);
696 /* This is called for allocating swap entry for cache */
697 offset = scan_swap_map(si, SWAP_HAS_CACHE);
698 spin_unlock(&si->lock);
700 return swp_entry(si->type, offset);
701 pr_debug("scan_swap_map of si %d failed to find offset\n",
703 spin_lock(&swap_avail_lock);
706 * if we got here, it's likely that si was almost full before,
707 * and since scan_swap_map() can drop the si->lock, multiple
708 * callers probably all tried to get a page from the same si
709 * and it filled up before we could get one; or, the si filled
710 * up between us dropping swap_avail_lock and taking si->lock.
711 * Since we dropped the swap_avail_lock, the swap_avail_head
712 * list may have been modified; so if next is still in the
713 * swap_avail_head list then try it, otherwise start over.
715 if (plist_node_empty(&next->avail_list))
719 spin_unlock(&swap_avail_lock);
721 atomic_long_inc(&nr_swap_pages);
723 return (swp_entry_t) {0};
726 /* The only caller of this function is now suspend routine */
727 swp_entry_t get_swap_page_of_type(int type)
729 struct swap_info_struct *si;
732 si = swap_info[type];
733 spin_lock(&si->lock);
734 if (si && (si->flags & SWP_WRITEOK)) {
735 atomic_long_dec(&nr_swap_pages);
736 /* This is called for allocating swap entry, not cache */
737 offset = scan_swap_map(si, 1);
739 spin_unlock(&si->lock);
740 return swp_entry(type, offset);
742 atomic_long_inc(&nr_swap_pages);
744 spin_unlock(&si->lock);
745 return (swp_entry_t) {0};
748 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
750 struct swap_info_struct *p;
751 unsigned long offset, type;
755 type = swp_type(entry);
756 if (type >= nr_swapfiles)
759 if (!(p->flags & SWP_USED))
761 offset = swp_offset(entry);
762 if (offset >= p->max)
764 if (!p->swap_map[offset])
770 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
773 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
776 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
779 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
784 static unsigned char swap_entry_free(struct swap_info_struct *p,
785 swp_entry_t entry, unsigned char usage)
787 unsigned long offset = swp_offset(entry);
789 unsigned char has_cache;
791 count = p->swap_map[offset];
792 has_cache = count & SWAP_HAS_CACHE;
793 count &= ~SWAP_HAS_CACHE;
795 if (usage == SWAP_HAS_CACHE) {
796 VM_BUG_ON(!has_cache);
798 } else if (count == SWAP_MAP_SHMEM) {
800 * Or we could insist on shmem.c using a special
801 * swap_shmem_free() and free_shmem_swap_and_cache()...
804 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
805 if (count == COUNT_CONTINUED) {
806 if (swap_count_continued(p, offset, count))
807 count = SWAP_MAP_MAX | COUNT_CONTINUED;
809 count = SWAP_MAP_MAX;
815 mem_cgroup_uncharge_swap(entry);
817 usage = count | has_cache;
818 p->swap_map[offset] = usage;
820 /* free if no reference */
822 dec_cluster_info_page(p, p->cluster_info, offset);
823 if (offset < p->lowest_bit)
824 p->lowest_bit = offset;
825 if (offset > p->highest_bit) {
826 bool was_full = !p->highest_bit;
827 p->highest_bit = offset;
828 if (was_full && (p->flags & SWP_WRITEOK)) {
829 spin_lock(&swap_avail_lock);
830 WARN_ON(!plist_node_empty(&p->avail_list));
831 if (plist_node_empty(&p->avail_list))
832 plist_add(&p->avail_list,
834 spin_unlock(&swap_avail_lock);
837 atomic_long_inc(&nr_swap_pages);
839 frontswap_invalidate_page(p->type, offset);
840 if (p->flags & SWP_BLKDEV) {
841 struct gendisk *disk = p->bdev->bd_disk;
842 if (disk->fops->swap_slot_free_notify)
843 disk->fops->swap_slot_free_notify(p->bdev,
852 * Caller has made sure that the swap device corresponding to entry
853 * is still around or has not been recycled.
855 void swap_free(swp_entry_t entry)
857 struct swap_info_struct *p;
859 p = swap_info_get(entry);
861 swap_entry_free(p, entry, 1);
862 spin_unlock(&p->lock);
867 * Called after dropping swapcache to decrease refcnt to swap entries.
869 void swapcache_free(swp_entry_t entry, struct page *page)
871 struct swap_info_struct *p;
874 p = swap_info_get(entry);
876 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
878 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
879 spin_unlock(&p->lock);
884 * How many references to page are currently swapped out?
885 * This does not give an exact answer when swap count is continued,
886 * but does include the high COUNT_CONTINUED flag to allow for that.
888 int page_swapcount(struct page *page)
891 struct swap_info_struct *p;
894 entry.val = page_private(page);
895 p = swap_info_get(entry);
897 count = swap_count(p->swap_map[swp_offset(entry)]);
898 spin_unlock(&p->lock);
904 * We can write to an anon page without COW if there are no other references
905 * to it. And as a side-effect, free up its swap: because the old content
906 * on disk will never be read, and seeking back there to write new content
907 * later would only waste time away from clustering.
909 int reuse_swap_page(struct page *page)
913 VM_BUG_ON_PAGE(!PageLocked(page), page);
914 if (unlikely(PageKsm(page)))
916 count = page_mapcount(page);
917 if (count <= 1 && PageSwapCache(page)) {
918 count += page_swapcount(page);
919 if (count == 1 && !PageWriteback(page)) {
920 delete_from_swap_cache(page);
928 * If swap is getting full, or if there are no more mappings of this page,
929 * then try_to_free_swap is called to free its swap space.
931 int try_to_free_swap(struct page *page)
933 VM_BUG_ON_PAGE(!PageLocked(page), page);
935 if (!PageSwapCache(page))
937 if (PageWriteback(page))
939 if (page_swapcount(page))
943 * Once hibernation has begun to create its image of memory,
944 * there's a danger that one of the calls to try_to_free_swap()
945 * - most probably a call from __try_to_reclaim_swap() while
946 * hibernation is allocating its own swap pages for the image,
947 * but conceivably even a call from memory reclaim - will free
948 * the swap from a page which has already been recorded in the
949 * image as a clean swapcache page, and then reuse its swap for
950 * another page of the image. On waking from hibernation, the
951 * original page might be freed under memory pressure, then
952 * later read back in from swap, now with the wrong data.
954 * Hibernation suspends storage while it is writing the image
955 * to disk so check that here.
957 if (pm_suspended_storage())
960 delete_from_swap_cache(page);
966 * Free the swap entry like above, but also try to
967 * free the page cache entry if it is the last user.
969 int free_swap_and_cache(swp_entry_t entry)
971 struct swap_info_struct *p;
972 struct page *page = NULL;
974 if (non_swap_entry(entry))
977 p = swap_info_get(entry);
979 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
980 page = find_get_page(swap_address_space(entry),
982 if (page && !trylock_page(page)) {
983 page_cache_release(page);
987 spin_unlock(&p->lock);
991 * Not mapped elsewhere, or swap space full? Free it!
992 * Also recheck PageSwapCache now page is locked (above).
994 if (PageSwapCache(page) && !PageWriteback(page) &&
995 (!page_mapped(page) || vm_swap_full())) {
996 delete_from_swap_cache(page);
1000 page_cache_release(page);
1005 #ifdef CONFIG_HIBERNATION
1007 * Find the swap type that corresponds to given device (if any).
1009 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1010 * from 0, in which the swap header is expected to be located.
1012 * This is needed for the suspend to disk (aka swsusp).
1014 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1016 struct block_device *bdev = NULL;
1020 bdev = bdget(device);
1022 spin_lock(&swap_lock);
1023 for (type = 0; type < nr_swapfiles; type++) {
1024 struct swap_info_struct *sis = swap_info[type];
1026 if (!(sis->flags & SWP_WRITEOK))
1031 *bdev_p = bdgrab(sis->bdev);
1033 spin_unlock(&swap_lock);
1036 if (bdev == sis->bdev) {
1037 struct swap_extent *se = &sis->first_swap_extent;
1039 if (se->start_block == offset) {
1041 *bdev_p = bdgrab(sis->bdev);
1043 spin_unlock(&swap_lock);
1049 spin_unlock(&swap_lock);
1057 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1058 * corresponding to given index in swap_info (swap type).
1060 sector_t swapdev_block(int type, pgoff_t offset)
1062 struct block_device *bdev;
1064 if ((unsigned int)type >= nr_swapfiles)
1066 if (!(swap_info[type]->flags & SWP_WRITEOK))
1068 return map_swap_entry(swp_entry(type, offset), &bdev);
1072 * Return either the total number of swap pages of given type, or the number
1073 * of free pages of that type (depending on @free)
1075 * This is needed for software suspend
1077 unsigned int count_swap_pages(int type, int free)
1081 spin_lock(&swap_lock);
1082 if ((unsigned int)type < nr_swapfiles) {
1083 struct swap_info_struct *sis = swap_info[type];
1085 spin_lock(&sis->lock);
1086 if (sis->flags & SWP_WRITEOK) {
1089 n -= sis->inuse_pages;
1091 spin_unlock(&sis->lock);
1093 spin_unlock(&swap_lock);
1096 #endif /* CONFIG_HIBERNATION */
1098 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1100 #ifdef CONFIG_MEM_SOFT_DIRTY
1102 * When pte keeps soft dirty bit the pte generated
1103 * from swap entry does not has it, still it's same
1104 * pte from logical point of view.
1106 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1107 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1109 return pte_same(pte, swp_pte);
1114 * No need to decide whether this PTE shares the swap entry with others,
1115 * just let do_wp_page work it out if a write is requested later - to
1116 * force COW, vm_page_prot omits write permission from any private vma.
1118 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1119 unsigned long addr, swp_entry_t entry, struct page *page)
1121 struct page *swapcache;
1122 struct mem_cgroup *memcg;
1128 page = ksm_might_need_to_copy(page, vma, addr);
1129 if (unlikely(!page))
1132 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1133 GFP_KERNEL, &memcg)) {
1138 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1139 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1140 mem_cgroup_cancel_charge_swapin(memcg);
1145 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1146 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1148 set_pte_at(vma->vm_mm, addr, pte,
1149 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1150 if (page == swapcache)
1151 page_add_anon_rmap(page, vma, addr);
1152 else /* ksm created a completely new copy */
1153 page_add_new_anon_rmap(page, vma, addr);
1154 mem_cgroup_commit_charge_swapin(page, memcg);
1157 * Move the page to the active list so it is not
1158 * immediately swapped out again after swapon.
1160 activate_page(page);
1162 pte_unmap_unlock(pte, ptl);
1164 if (page != swapcache) {
1171 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1172 unsigned long addr, unsigned long end,
1173 swp_entry_t entry, struct page *page)
1175 pte_t swp_pte = swp_entry_to_pte(entry);
1180 * We don't actually need pte lock while scanning for swp_pte: since
1181 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1182 * page table while we're scanning; though it could get zapped, and on
1183 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1184 * of unmatched parts which look like swp_pte, so unuse_pte must
1185 * recheck under pte lock. Scanning without pte lock lets it be
1186 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1188 pte = pte_offset_map(pmd, addr);
1191 * swapoff spends a _lot_ of time in this loop!
1192 * Test inline before going to call unuse_pte.
1194 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1196 ret = unuse_pte(vma, pmd, addr, entry, page);
1199 pte = pte_offset_map(pmd, addr);
1201 } while (pte++, addr += PAGE_SIZE, addr != end);
1207 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1208 unsigned long addr, unsigned long end,
1209 swp_entry_t entry, struct page *page)
1215 pmd = pmd_offset(pud, addr);
1217 next = pmd_addr_end(addr, end);
1218 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1223 } while (pmd++, addr = next, addr != end);
1227 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1228 unsigned long addr, unsigned long end,
1229 swp_entry_t entry, struct page *page)
1235 pud = pud_offset(pgd, addr);
1237 next = pud_addr_end(addr, end);
1238 if (pud_none_or_clear_bad(pud))
1240 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1243 } while (pud++, addr = next, addr != end);
1247 static int unuse_vma(struct vm_area_struct *vma,
1248 swp_entry_t entry, struct page *page)
1251 unsigned long addr, end, next;
1254 if (page_anon_vma(page)) {
1255 addr = page_address_in_vma(page, vma);
1256 if (addr == -EFAULT)
1259 end = addr + PAGE_SIZE;
1261 addr = vma->vm_start;
1265 pgd = pgd_offset(vma->vm_mm, addr);
1267 next = pgd_addr_end(addr, end);
1268 if (pgd_none_or_clear_bad(pgd))
1270 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1273 } while (pgd++, addr = next, addr != end);
1277 static int unuse_mm(struct mm_struct *mm,
1278 swp_entry_t entry, struct page *page)
1280 struct vm_area_struct *vma;
1283 if (!down_read_trylock(&mm->mmap_sem)) {
1285 * Activate page so shrink_inactive_list is unlikely to unmap
1286 * its ptes while lock is dropped, so swapoff can make progress.
1288 activate_page(page);
1290 down_read(&mm->mmap_sem);
1293 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1294 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1297 up_read(&mm->mmap_sem);
1298 return (ret < 0)? ret: 0;
1302 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1303 * from current position to next entry still in use.
1304 * Recycle to start on reaching the end, returning 0 when empty.
1306 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1307 unsigned int prev, bool frontswap)
1309 unsigned int max = si->max;
1310 unsigned int i = prev;
1311 unsigned char count;
1314 * No need for swap_lock here: we're just looking
1315 * for whether an entry is in use, not modifying it; false
1316 * hits are okay, and sys_swapoff() has already prevented new
1317 * allocations from this area (while holding swap_lock).
1326 * No entries in use at top of swap_map,
1327 * loop back to start and recheck there.
1334 if (frontswap_test(si, i))
1339 count = ACCESS_ONCE(si->swap_map[i]);
1340 if (count && swap_count(count) != SWAP_MAP_BAD)
1347 * We completely avoid races by reading each swap page in advance,
1348 * and then search for the process using it. All the necessary
1349 * page table adjustments can then be made atomically.
1351 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1352 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1354 int try_to_unuse(unsigned int type, bool frontswap,
1355 unsigned long pages_to_unuse)
1357 struct swap_info_struct *si = swap_info[type];
1358 struct mm_struct *start_mm;
1359 volatile unsigned char *swap_map; /* swap_map is accessed without
1360 * locking. Mark it as volatile
1361 * to prevent compiler doing
1364 unsigned char swcount;
1371 * When searching mms for an entry, a good strategy is to
1372 * start at the first mm we freed the previous entry from
1373 * (though actually we don't notice whether we or coincidence
1374 * freed the entry). Initialize this start_mm with a hold.
1376 * A simpler strategy would be to start at the last mm we
1377 * freed the previous entry from; but that would take less
1378 * advantage of mmlist ordering, which clusters forked mms
1379 * together, child after parent. If we race with dup_mmap(), we
1380 * prefer to resolve parent before child, lest we miss entries
1381 * duplicated after we scanned child: using last mm would invert
1384 start_mm = &init_mm;
1385 atomic_inc(&init_mm.mm_users);
1388 * Keep on scanning until all entries have gone. Usually,
1389 * one pass through swap_map is enough, but not necessarily:
1390 * there are races when an instance of an entry might be missed.
1392 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1393 if (signal_pending(current)) {
1399 * Get a page for the entry, using the existing swap
1400 * cache page if there is one. Otherwise, get a clean
1401 * page and read the swap into it.
1403 swap_map = &si->swap_map[i];
1404 entry = swp_entry(type, i);
1405 page = read_swap_cache_async(entry,
1406 GFP_HIGHUSER_MOVABLE, NULL, 0);
1409 * Either swap_duplicate() failed because entry
1410 * has been freed independently, and will not be
1411 * reused since sys_swapoff() already disabled
1412 * allocation from here, or alloc_page() failed.
1414 swcount = *swap_map;
1416 * We don't hold lock here, so the swap entry could be
1417 * SWAP_MAP_BAD (when the cluster is discarding).
1418 * Instead of fail out, We can just skip the swap
1419 * entry because swapoff will wait for discarding
1422 if (!swcount || swcount == SWAP_MAP_BAD)
1429 * Don't hold on to start_mm if it looks like exiting.
1431 if (atomic_read(&start_mm->mm_users) == 1) {
1433 start_mm = &init_mm;
1434 atomic_inc(&init_mm.mm_users);
1438 * Wait for and lock page. When do_swap_page races with
1439 * try_to_unuse, do_swap_page can handle the fault much
1440 * faster than try_to_unuse can locate the entry. This
1441 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1442 * defer to do_swap_page in such a case - in some tests,
1443 * do_swap_page and try_to_unuse repeatedly compete.
1445 wait_on_page_locked(page);
1446 wait_on_page_writeback(page);
1448 wait_on_page_writeback(page);
1451 * Remove all references to entry.
1453 swcount = *swap_map;
1454 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1455 retval = shmem_unuse(entry, page);
1456 /* page has already been unlocked and released */
1461 if (swap_count(swcount) && start_mm != &init_mm)
1462 retval = unuse_mm(start_mm, entry, page);
1464 if (swap_count(*swap_map)) {
1465 int set_start_mm = (*swap_map >= swcount);
1466 struct list_head *p = &start_mm->mmlist;
1467 struct mm_struct *new_start_mm = start_mm;
1468 struct mm_struct *prev_mm = start_mm;
1469 struct mm_struct *mm;
1471 atomic_inc(&new_start_mm->mm_users);
1472 atomic_inc(&prev_mm->mm_users);
1473 spin_lock(&mmlist_lock);
1474 while (swap_count(*swap_map) && !retval &&
1475 (p = p->next) != &start_mm->mmlist) {
1476 mm = list_entry(p, struct mm_struct, mmlist);
1477 if (!atomic_inc_not_zero(&mm->mm_users))
1479 spin_unlock(&mmlist_lock);
1485 swcount = *swap_map;
1486 if (!swap_count(swcount)) /* any usage ? */
1488 else if (mm == &init_mm)
1491 retval = unuse_mm(mm, entry, page);
1493 if (set_start_mm && *swap_map < swcount) {
1494 mmput(new_start_mm);
1495 atomic_inc(&mm->mm_users);
1499 spin_lock(&mmlist_lock);
1501 spin_unlock(&mmlist_lock);
1504 start_mm = new_start_mm;
1508 page_cache_release(page);
1513 * If a reference remains (rare), we would like to leave
1514 * the page in the swap cache; but try_to_unmap could
1515 * then re-duplicate the entry once we drop page lock,
1516 * so we might loop indefinitely; also, that page could
1517 * not be swapped out to other storage meanwhile. So:
1518 * delete from cache even if there's another reference,
1519 * after ensuring that the data has been saved to disk -
1520 * since if the reference remains (rarer), it will be
1521 * read from disk into another page. Splitting into two
1522 * pages would be incorrect if swap supported "shared
1523 * private" pages, but they are handled by tmpfs files.
1525 * Given how unuse_vma() targets one particular offset
1526 * in an anon_vma, once the anon_vma has been determined,
1527 * this splitting happens to be just what is needed to
1528 * handle where KSM pages have been swapped out: re-reading
1529 * is unnecessarily slow, but we can fix that later on.
1531 if (swap_count(*swap_map) &&
1532 PageDirty(page) && PageSwapCache(page)) {
1533 struct writeback_control wbc = {
1534 .sync_mode = WB_SYNC_NONE,
1537 swap_writepage(page, &wbc);
1539 wait_on_page_writeback(page);
1543 * It is conceivable that a racing task removed this page from
1544 * swap cache just before we acquired the page lock at the top,
1545 * or while we dropped it in unuse_mm(). The page might even
1546 * be back in swap cache on another swap area: that we must not
1547 * delete, since it may not have been written out to swap yet.
1549 if (PageSwapCache(page) &&
1550 likely(page_private(page) == entry.val))
1551 delete_from_swap_cache(page);
1554 * So we could skip searching mms once swap count went
1555 * to 1, we did not mark any present ptes as dirty: must
1556 * mark page dirty so shrink_page_list will preserve it.
1560 page_cache_release(page);
1563 * Make sure that we aren't completely killing
1564 * interactive performance.
1567 if (frontswap && pages_to_unuse > 0) {
1568 if (!--pages_to_unuse)
1578 * After a successful try_to_unuse, if no swap is now in use, we know
1579 * we can empty the mmlist. swap_lock must be held on entry and exit.
1580 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1581 * added to the mmlist just after page_duplicate - before would be racy.
1583 static void drain_mmlist(void)
1585 struct list_head *p, *next;
1588 for (type = 0; type < nr_swapfiles; type++)
1589 if (swap_info[type]->inuse_pages)
1591 spin_lock(&mmlist_lock);
1592 list_for_each_safe(p, next, &init_mm.mmlist)
1594 spin_unlock(&mmlist_lock);
1598 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1599 * corresponds to page offset for the specified swap entry.
1600 * Note that the type of this function is sector_t, but it returns page offset
1601 * into the bdev, not sector offset.
1603 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1605 struct swap_info_struct *sis;
1606 struct swap_extent *start_se;
1607 struct swap_extent *se;
1610 sis = swap_info[swp_type(entry)];
1613 offset = swp_offset(entry);
1614 start_se = sis->curr_swap_extent;
1618 struct list_head *lh;
1620 if (se->start_page <= offset &&
1621 offset < (se->start_page + se->nr_pages)) {
1622 return se->start_block + (offset - se->start_page);
1625 se = list_entry(lh, struct swap_extent, list);
1626 sis->curr_swap_extent = se;
1627 BUG_ON(se == start_se); /* It *must* be present */
1632 * Returns the page offset into bdev for the specified page's swap entry.
1634 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1637 entry.val = page_private(page);
1638 return map_swap_entry(entry, bdev);
1642 * Free all of a swapdev's extent information
1644 static void destroy_swap_extents(struct swap_info_struct *sis)
1646 while (!list_empty(&sis->first_swap_extent.list)) {
1647 struct swap_extent *se;
1649 se = list_entry(sis->first_swap_extent.list.next,
1650 struct swap_extent, list);
1651 list_del(&se->list);
1655 if (sis->flags & SWP_FILE) {
1656 struct file *swap_file = sis->swap_file;
1657 struct address_space *mapping = swap_file->f_mapping;
1659 sis->flags &= ~SWP_FILE;
1660 mapping->a_ops->swap_deactivate(swap_file);
1665 * Add a block range (and the corresponding page range) into this swapdev's
1666 * extent list. The extent list is kept sorted in page order.
1668 * This function rather assumes that it is called in ascending page order.
1671 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1672 unsigned long nr_pages, sector_t start_block)
1674 struct swap_extent *se;
1675 struct swap_extent *new_se;
1676 struct list_head *lh;
1678 if (start_page == 0) {
1679 se = &sis->first_swap_extent;
1680 sis->curr_swap_extent = se;
1682 se->nr_pages = nr_pages;
1683 se->start_block = start_block;
1686 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1687 se = list_entry(lh, struct swap_extent, list);
1688 BUG_ON(se->start_page + se->nr_pages != start_page);
1689 if (se->start_block + se->nr_pages == start_block) {
1691 se->nr_pages += nr_pages;
1697 * No merge. Insert a new extent, preserving ordering.
1699 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1702 new_se->start_page = start_page;
1703 new_se->nr_pages = nr_pages;
1704 new_se->start_block = start_block;
1706 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1711 * A `swap extent' is a simple thing which maps a contiguous range of pages
1712 * onto a contiguous range of disk blocks. An ordered list of swap extents
1713 * is built at swapon time and is then used at swap_writepage/swap_readpage
1714 * time for locating where on disk a page belongs.
1716 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1717 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1718 * swap files identically.
1720 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1721 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1722 * swapfiles are handled *identically* after swapon time.
1724 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1725 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1726 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1727 * requirements, they are simply tossed out - we will never use those blocks
1730 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1731 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1732 * which will scribble on the fs.
1734 * The amount of disk space which a single swap extent represents varies.
1735 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1736 * extents in the list. To avoid much list walking, we cache the previous
1737 * search location in `curr_swap_extent', and start new searches from there.
1738 * This is extremely effective. The average number of iterations in
1739 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1741 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1743 struct file *swap_file = sis->swap_file;
1744 struct address_space *mapping = swap_file->f_mapping;
1745 struct inode *inode = mapping->host;
1748 if (S_ISBLK(inode->i_mode)) {
1749 ret = add_swap_extent(sis, 0, sis->max, 0);
1754 if (mapping->a_ops->swap_activate) {
1755 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1757 sis->flags |= SWP_FILE;
1758 ret = add_swap_extent(sis, 0, sis->max, 0);
1764 return generic_swapfile_activate(sis, swap_file, span);
1767 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1768 unsigned char *swap_map,
1769 struct swap_cluster_info *cluster_info)
1774 p->prio = --least_priority;
1776 * the plist prio is negated because plist ordering is
1777 * low-to-high, while swap ordering is high-to-low
1779 p->list.prio = -p->prio;
1780 p->avail_list.prio = -p->prio;
1781 p->swap_map = swap_map;
1782 p->cluster_info = cluster_info;
1783 p->flags |= SWP_WRITEOK;
1784 atomic_long_add(p->pages, &nr_swap_pages);
1785 total_swap_pages += p->pages;
1787 assert_spin_locked(&swap_lock);
1789 * both lists are plists, and thus priority ordered.
1790 * swap_active_head needs to be priority ordered for swapoff(),
1791 * which on removal of any swap_info_struct with an auto-assigned
1792 * (i.e. negative) priority increments the auto-assigned priority
1793 * of any lower-priority swap_info_structs.
1794 * swap_avail_head needs to be priority ordered for get_swap_page(),
1795 * which allocates swap pages from the highest available priority
1798 plist_add(&p->list, &swap_active_head);
1799 spin_lock(&swap_avail_lock);
1800 plist_add(&p->avail_list, &swap_avail_head);
1801 spin_unlock(&swap_avail_lock);
1804 static void enable_swap_info(struct swap_info_struct *p, int prio,
1805 unsigned char *swap_map,
1806 struct swap_cluster_info *cluster_info,
1807 unsigned long *frontswap_map)
1809 frontswap_init(p->type, frontswap_map);
1810 spin_lock(&swap_lock);
1811 spin_lock(&p->lock);
1812 _enable_swap_info(p, prio, swap_map, cluster_info);
1813 spin_unlock(&p->lock);
1814 spin_unlock(&swap_lock);
1817 static void reinsert_swap_info(struct swap_info_struct *p)
1819 spin_lock(&swap_lock);
1820 spin_lock(&p->lock);
1821 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1822 spin_unlock(&p->lock);
1823 spin_unlock(&swap_lock);
1826 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1828 struct swap_info_struct *p = NULL;
1829 unsigned char *swap_map;
1830 struct swap_cluster_info *cluster_info;
1831 unsigned long *frontswap_map;
1832 struct file *swap_file, *victim;
1833 struct address_space *mapping;
1834 struct inode *inode;
1835 struct filename *pathname;
1837 unsigned int old_block_size;
1839 if (!capable(CAP_SYS_ADMIN))
1842 BUG_ON(!current->mm);
1844 pathname = getname(specialfile);
1845 if (IS_ERR(pathname))
1846 return PTR_ERR(pathname);
1848 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1849 err = PTR_ERR(victim);
1853 mapping = victim->f_mapping;
1854 spin_lock(&swap_lock);
1855 plist_for_each_entry(p, &swap_active_head, list) {
1856 if (p->flags & SWP_WRITEOK) {
1857 if (p->swap_file->f_mapping == mapping) {
1865 spin_unlock(&swap_lock);
1868 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1869 vm_unacct_memory(p->pages);
1872 spin_unlock(&swap_lock);
1875 spin_lock(&swap_avail_lock);
1876 plist_del(&p->avail_list, &swap_avail_head);
1877 spin_unlock(&swap_avail_lock);
1878 spin_lock(&p->lock);
1880 struct swap_info_struct *si = p;
1882 plist_for_each_entry_continue(si, &swap_active_head, list) {
1885 si->avail_list.prio--;
1889 plist_del(&p->list, &swap_active_head);
1890 atomic_long_sub(p->pages, &nr_swap_pages);
1891 total_swap_pages -= p->pages;
1892 p->flags &= ~SWP_WRITEOK;
1893 spin_unlock(&p->lock);
1894 spin_unlock(&swap_lock);
1896 set_current_oom_origin();
1897 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1898 clear_current_oom_origin();
1901 /* re-insert swap space back into swap_list */
1902 reinsert_swap_info(p);
1906 flush_work(&p->discard_work);
1908 destroy_swap_extents(p);
1909 if (p->flags & SWP_CONTINUED)
1910 free_swap_count_continuations(p);
1912 mutex_lock(&swapon_mutex);
1913 spin_lock(&swap_lock);
1914 spin_lock(&p->lock);
1917 /* wait for anyone still in scan_swap_map */
1918 p->highest_bit = 0; /* cuts scans short */
1919 while (p->flags >= SWP_SCANNING) {
1920 spin_unlock(&p->lock);
1921 spin_unlock(&swap_lock);
1922 schedule_timeout_uninterruptible(1);
1923 spin_lock(&swap_lock);
1924 spin_lock(&p->lock);
1927 swap_file = p->swap_file;
1928 old_block_size = p->old_block_size;
1929 p->swap_file = NULL;
1931 swap_map = p->swap_map;
1933 cluster_info = p->cluster_info;
1934 p->cluster_info = NULL;
1935 frontswap_map = frontswap_map_get(p);
1936 spin_unlock(&p->lock);
1937 spin_unlock(&swap_lock);
1938 frontswap_invalidate_area(p->type);
1939 frontswap_map_set(p, NULL);
1940 mutex_unlock(&swapon_mutex);
1941 free_percpu(p->percpu_cluster);
1942 p->percpu_cluster = NULL;
1944 vfree(cluster_info);
1945 vfree(frontswap_map);
1946 /* Destroy swap account information */
1947 swap_cgroup_swapoff(p->type);
1949 inode = mapping->host;
1950 if (S_ISBLK(inode->i_mode)) {
1951 struct block_device *bdev = I_BDEV(inode);
1952 set_blocksize(bdev, old_block_size);
1953 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1955 mutex_lock(&inode->i_mutex);
1956 inode->i_flags &= ~S_SWAPFILE;
1957 mutex_unlock(&inode->i_mutex);
1959 filp_close(swap_file, NULL);
1962 * Clear the SWP_USED flag after all resources are freed so that swapon
1963 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1964 * not hold p->lock after we cleared its SWP_WRITEOK.
1966 spin_lock(&swap_lock);
1968 spin_unlock(&swap_lock);
1971 atomic_inc(&proc_poll_event);
1972 wake_up_interruptible(&proc_poll_wait);
1975 filp_close(victim, NULL);
1981 #ifdef CONFIG_PROC_FS
1982 static unsigned swaps_poll(struct file *file, poll_table *wait)
1984 struct seq_file *seq = file->private_data;
1986 poll_wait(file, &proc_poll_wait, wait);
1988 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1989 seq->poll_event = atomic_read(&proc_poll_event);
1990 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1993 return POLLIN | POLLRDNORM;
1997 static void *swap_start(struct seq_file *swap, loff_t *pos)
1999 struct swap_info_struct *si;
2003 mutex_lock(&swapon_mutex);
2006 return SEQ_START_TOKEN;
2008 for (type = 0; type < nr_swapfiles; type++) {
2009 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2010 si = swap_info[type];
2011 if (!(si->flags & SWP_USED) || !si->swap_map)
2020 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2022 struct swap_info_struct *si = v;
2025 if (v == SEQ_START_TOKEN)
2028 type = si->type + 1;
2030 for (; type < nr_swapfiles; type++) {
2031 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2032 si = swap_info[type];
2033 if (!(si->flags & SWP_USED) || !si->swap_map)
2042 static void swap_stop(struct seq_file *swap, void *v)
2044 mutex_unlock(&swapon_mutex);
2047 static int swap_show(struct seq_file *swap, void *v)
2049 struct swap_info_struct *si = v;
2053 if (si == SEQ_START_TOKEN) {
2054 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2058 file = si->swap_file;
2059 len = seq_path(swap, &file->f_path, " \t\n\\");
2060 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2061 len < 40 ? 40 - len : 1, " ",
2062 S_ISBLK(file_inode(file)->i_mode) ?
2063 "partition" : "file\t",
2064 si->pages << (PAGE_SHIFT - 10),
2065 si->inuse_pages << (PAGE_SHIFT - 10),
2070 static const struct seq_operations swaps_op = {
2071 .start = swap_start,
2077 static int swaps_open(struct inode *inode, struct file *file)
2079 struct seq_file *seq;
2082 ret = seq_open(file, &swaps_op);
2086 seq = file->private_data;
2087 seq->poll_event = atomic_read(&proc_poll_event);
2091 static const struct file_operations proc_swaps_operations = {
2094 .llseek = seq_lseek,
2095 .release = seq_release,
2099 static int __init procswaps_init(void)
2101 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2104 __initcall(procswaps_init);
2105 #endif /* CONFIG_PROC_FS */
2107 #ifdef MAX_SWAPFILES_CHECK
2108 static int __init max_swapfiles_check(void)
2110 MAX_SWAPFILES_CHECK();
2113 late_initcall(max_swapfiles_check);
2116 static struct swap_info_struct *alloc_swap_info(void)
2118 struct swap_info_struct *p;
2121 p = kzalloc(sizeof(*p), GFP_KERNEL);
2123 return ERR_PTR(-ENOMEM);
2125 spin_lock(&swap_lock);
2126 for (type = 0; type < nr_swapfiles; type++) {
2127 if (!(swap_info[type]->flags & SWP_USED))
2130 if (type >= MAX_SWAPFILES) {
2131 spin_unlock(&swap_lock);
2133 return ERR_PTR(-EPERM);
2135 if (type >= nr_swapfiles) {
2137 swap_info[type] = p;
2139 * Write swap_info[type] before nr_swapfiles, in case a
2140 * racing procfs swap_start() or swap_next() is reading them.
2141 * (We never shrink nr_swapfiles, we never free this entry.)
2147 p = swap_info[type];
2149 * Do not memset this entry: a racing procfs swap_next()
2150 * would be relying on p->type to remain valid.
2153 INIT_LIST_HEAD(&p->first_swap_extent.list);
2154 plist_node_init(&p->list, 0);
2155 plist_node_init(&p->avail_list, 0);
2156 p->flags = SWP_USED;
2157 spin_unlock(&swap_lock);
2158 spin_lock_init(&p->lock);
2163 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2167 if (S_ISBLK(inode->i_mode)) {
2168 p->bdev = bdgrab(I_BDEV(inode));
2169 error = blkdev_get(p->bdev,
2170 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2176 p->old_block_size = block_size(p->bdev);
2177 error = set_blocksize(p->bdev, PAGE_SIZE);
2180 p->flags |= SWP_BLKDEV;
2181 } else if (S_ISREG(inode->i_mode)) {
2182 p->bdev = inode->i_sb->s_bdev;
2183 mutex_lock(&inode->i_mutex);
2184 if (IS_SWAPFILE(inode))
2192 static unsigned long read_swap_header(struct swap_info_struct *p,
2193 union swap_header *swap_header,
2194 struct inode *inode)
2197 unsigned long maxpages;
2198 unsigned long swapfilepages;
2199 unsigned long last_page;
2201 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2202 pr_err("Unable to find swap-space signature\n");
2206 /* swap partition endianess hack... */
2207 if (swab32(swap_header->info.version) == 1) {
2208 swab32s(&swap_header->info.version);
2209 swab32s(&swap_header->info.last_page);
2210 swab32s(&swap_header->info.nr_badpages);
2211 for (i = 0; i < swap_header->info.nr_badpages; i++)
2212 swab32s(&swap_header->info.badpages[i]);
2214 /* Check the swap header's sub-version */
2215 if (swap_header->info.version != 1) {
2216 pr_warn("Unable to handle swap header version %d\n",
2217 swap_header->info.version);
2222 p->cluster_next = 1;
2226 * Find out how many pages are allowed for a single swap
2227 * device. There are two limiting factors: 1) the number
2228 * of bits for the swap offset in the swp_entry_t type, and
2229 * 2) the number of bits in the swap pte as defined by the
2230 * different architectures. In order to find the
2231 * largest possible bit mask, a swap entry with swap type 0
2232 * and swap offset ~0UL is created, encoded to a swap pte,
2233 * decoded to a swp_entry_t again, and finally the swap
2234 * offset is extracted. This will mask all the bits from
2235 * the initial ~0UL mask that can't be encoded in either
2236 * the swp_entry_t or the architecture definition of a
2239 maxpages = swp_offset(pte_to_swp_entry(
2240 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2241 last_page = swap_header->info.last_page;
2242 if (last_page > maxpages) {
2243 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2244 maxpages << (PAGE_SHIFT - 10),
2245 last_page << (PAGE_SHIFT - 10));
2247 if (maxpages > last_page) {
2248 maxpages = last_page + 1;
2249 /* p->max is an unsigned int: don't overflow it */
2250 if ((unsigned int)maxpages == 0)
2251 maxpages = UINT_MAX;
2253 p->highest_bit = maxpages - 1;
2257 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2258 if (swapfilepages && maxpages > swapfilepages) {
2259 pr_warn("Swap area shorter than signature indicates\n");
2262 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2264 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2270 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2271 union swap_header *swap_header,
2272 unsigned char *swap_map,
2273 struct swap_cluster_info *cluster_info,
2274 unsigned long maxpages,
2278 unsigned int nr_good_pages;
2280 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2281 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2283 nr_good_pages = maxpages - 1; /* omit header page */
2285 cluster_set_null(&p->free_cluster_head);
2286 cluster_set_null(&p->free_cluster_tail);
2287 cluster_set_null(&p->discard_cluster_head);
2288 cluster_set_null(&p->discard_cluster_tail);
2290 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2291 unsigned int page_nr = swap_header->info.badpages[i];
2292 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2294 if (page_nr < maxpages) {
2295 swap_map[page_nr] = SWAP_MAP_BAD;
2298 * Haven't marked the cluster free yet, no list
2299 * operation involved
2301 inc_cluster_info_page(p, cluster_info, page_nr);
2305 /* Haven't marked the cluster free yet, no list operation involved */
2306 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2307 inc_cluster_info_page(p, cluster_info, i);
2309 if (nr_good_pages) {
2310 swap_map[0] = SWAP_MAP_BAD;
2312 * Not mark the cluster free yet, no list
2313 * operation involved
2315 inc_cluster_info_page(p, cluster_info, 0);
2317 p->pages = nr_good_pages;
2318 nr_extents = setup_swap_extents(p, span);
2321 nr_good_pages = p->pages;
2323 if (!nr_good_pages) {
2324 pr_warn("Empty swap-file\n");
2331 for (i = 0; i < nr_clusters; i++) {
2332 if (!cluster_count(&cluster_info[idx])) {
2333 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2334 if (cluster_is_null(&p->free_cluster_head)) {
2335 cluster_set_next_flag(&p->free_cluster_head,
2337 cluster_set_next_flag(&p->free_cluster_tail,
2342 tail = cluster_next(&p->free_cluster_tail);
2343 cluster_set_next(&cluster_info[tail], idx);
2344 cluster_set_next_flag(&p->free_cluster_tail,
2349 if (idx == nr_clusters)
2356 * Helper to sys_swapon determining if a given swap
2357 * backing device queue supports DISCARD operations.
2359 static bool swap_discardable(struct swap_info_struct *si)
2361 struct request_queue *q = bdev_get_queue(si->bdev);
2363 if (!q || !blk_queue_discard(q))
2369 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2371 struct swap_info_struct *p;
2372 struct filename *name;
2373 struct file *swap_file = NULL;
2374 struct address_space *mapping;
2378 union swap_header *swap_header;
2381 unsigned long maxpages;
2382 unsigned char *swap_map = NULL;
2383 struct swap_cluster_info *cluster_info = NULL;
2384 unsigned long *frontswap_map = NULL;
2385 struct page *page = NULL;
2386 struct inode *inode = NULL;
2388 if (swap_flags & ~SWAP_FLAGS_VALID)
2391 if (!capable(CAP_SYS_ADMIN))
2394 p = alloc_swap_info();
2398 INIT_WORK(&p->discard_work, swap_discard_work);
2400 name = getname(specialfile);
2402 error = PTR_ERR(name);
2406 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2407 if (IS_ERR(swap_file)) {
2408 error = PTR_ERR(swap_file);
2413 p->swap_file = swap_file;
2414 mapping = swap_file->f_mapping;
2416 for (i = 0; i < nr_swapfiles; i++) {
2417 struct swap_info_struct *q = swap_info[i];
2419 if (q == p || !q->swap_file)
2421 if (mapping == q->swap_file->f_mapping) {
2427 inode = mapping->host;
2428 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2429 error = claim_swapfile(p, inode);
2430 if (unlikely(error))
2434 * Read the swap header.
2436 if (!mapping->a_ops->readpage) {
2440 page = read_mapping_page(mapping, 0, swap_file);
2442 error = PTR_ERR(page);
2445 swap_header = kmap(page);
2447 maxpages = read_swap_header(p, swap_header, inode);
2448 if (unlikely(!maxpages)) {
2453 /* OK, set up the swap map and apply the bad block list */
2454 swap_map = vzalloc(maxpages);
2459 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2460 p->flags |= SWP_SOLIDSTATE;
2462 * select a random position to start with to help wear leveling
2465 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2467 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2468 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2469 if (!cluster_info) {
2473 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2474 if (!p->percpu_cluster) {
2478 for_each_possible_cpu(i) {
2479 struct percpu_cluster *cluster;
2480 cluster = per_cpu_ptr(p->percpu_cluster, i);
2481 cluster_set_null(&cluster->index);
2485 error = swap_cgroup_swapon(p->type, maxpages);
2489 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2490 cluster_info, maxpages, &span);
2491 if (unlikely(nr_extents < 0)) {
2495 /* frontswap enabled? set up bit-per-page map for frontswap */
2496 if (frontswap_enabled)
2497 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2499 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2501 * When discard is enabled for swap with no particular
2502 * policy flagged, we set all swap discard flags here in
2503 * order to sustain backward compatibility with older
2504 * swapon(8) releases.
2506 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2510 * By flagging sys_swapon, a sysadmin can tell us to
2511 * either do single-time area discards only, or to just
2512 * perform discards for released swap page-clusters.
2513 * Now it's time to adjust the p->flags accordingly.
2515 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2516 p->flags &= ~SWP_PAGE_DISCARD;
2517 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2518 p->flags &= ~SWP_AREA_DISCARD;
2520 /* issue a swapon-time discard if it's still required */
2521 if (p->flags & SWP_AREA_DISCARD) {
2522 int err = discard_swap(p);
2524 pr_err("swapon: discard_swap(%p): %d\n",
2529 mutex_lock(&swapon_mutex);
2531 if (swap_flags & SWAP_FLAG_PREFER)
2533 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2534 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2536 pr_info("Adding %uk swap on %s. "
2537 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2538 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2539 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2540 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2541 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2542 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2543 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2544 (frontswap_map) ? "FS" : "");
2546 mutex_unlock(&swapon_mutex);
2547 atomic_inc(&proc_poll_event);
2548 wake_up_interruptible(&proc_poll_wait);
2550 if (S_ISREG(inode->i_mode))
2551 inode->i_flags |= S_SWAPFILE;
2555 free_percpu(p->percpu_cluster);
2556 p->percpu_cluster = NULL;
2557 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2558 set_blocksize(p->bdev, p->old_block_size);
2559 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2561 destroy_swap_extents(p);
2562 swap_cgroup_swapoff(p->type);
2563 spin_lock(&swap_lock);
2564 p->swap_file = NULL;
2566 spin_unlock(&swap_lock);
2568 vfree(cluster_info);
2570 if (inode && S_ISREG(inode->i_mode)) {
2571 mutex_unlock(&inode->i_mutex);
2574 filp_close(swap_file, NULL);
2577 if (page && !IS_ERR(page)) {
2579 page_cache_release(page);
2583 if (inode && S_ISREG(inode->i_mode))
2584 mutex_unlock(&inode->i_mutex);
2588 void si_swapinfo(struct sysinfo *val)
2591 unsigned long nr_to_be_unused = 0;
2593 spin_lock(&swap_lock);
2594 for (type = 0; type < nr_swapfiles; type++) {
2595 struct swap_info_struct *si = swap_info[type];
2597 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2598 nr_to_be_unused += si->inuse_pages;
2600 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2601 val->totalswap = total_swap_pages + nr_to_be_unused;
2602 spin_unlock(&swap_lock);
2606 * Verify that a swap entry is valid and increment its swap map count.
2608 * Returns error code in following case.
2610 * - swp_entry is invalid -> EINVAL
2611 * - swp_entry is migration entry -> EINVAL
2612 * - swap-cache reference is requested but there is already one. -> EEXIST
2613 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2614 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2616 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2618 struct swap_info_struct *p;
2619 unsigned long offset, type;
2620 unsigned char count;
2621 unsigned char has_cache;
2624 if (non_swap_entry(entry))
2627 type = swp_type(entry);
2628 if (type >= nr_swapfiles)
2630 p = swap_info[type];
2631 offset = swp_offset(entry);
2633 spin_lock(&p->lock);
2634 if (unlikely(offset >= p->max))
2637 count = p->swap_map[offset];
2640 * swapin_readahead() doesn't check if a swap entry is valid, so the
2641 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2643 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2648 has_cache = count & SWAP_HAS_CACHE;
2649 count &= ~SWAP_HAS_CACHE;
2652 if (usage == SWAP_HAS_CACHE) {
2654 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2655 if (!has_cache && count)
2656 has_cache = SWAP_HAS_CACHE;
2657 else if (has_cache) /* someone else added cache */
2659 else /* no users remaining */
2662 } else if (count || has_cache) {
2664 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2666 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2668 else if (swap_count_continued(p, offset, count))
2669 count = COUNT_CONTINUED;
2673 err = -ENOENT; /* unused swap entry */
2675 p->swap_map[offset] = count | has_cache;
2678 spin_unlock(&p->lock);
2683 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2688 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2689 * (in which case its reference count is never incremented).
2691 void swap_shmem_alloc(swp_entry_t entry)
2693 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2697 * Increase reference count of swap entry by 1.
2698 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2699 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2700 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2701 * might occur if a page table entry has got corrupted.
2703 int swap_duplicate(swp_entry_t entry)
2707 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2708 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2713 * @entry: swap entry for which we allocate swap cache.
2715 * Called when allocating swap cache for existing swap entry,
2716 * This can return error codes. Returns 0 at success.
2717 * -EBUSY means there is a swap cache.
2718 * Note: return code is different from swap_duplicate().
2720 int swapcache_prepare(swp_entry_t entry)
2722 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2725 struct swap_info_struct *page_swap_info(struct page *page)
2727 swp_entry_t swap = { .val = page_private(page) };
2728 BUG_ON(!PageSwapCache(page));
2729 return swap_info[swp_type(swap)];
2733 * out-of-line __page_file_ methods to avoid include hell.
2735 struct address_space *__page_file_mapping(struct page *page)
2737 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2738 return page_swap_info(page)->swap_file->f_mapping;
2740 EXPORT_SYMBOL_GPL(__page_file_mapping);
2742 pgoff_t __page_file_index(struct page *page)
2744 swp_entry_t swap = { .val = page_private(page) };
2745 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2746 return swp_offset(swap);
2748 EXPORT_SYMBOL_GPL(__page_file_index);
2751 * add_swap_count_continuation - called when a swap count is duplicated
2752 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2753 * page of the original vmalloc'ed swap_map, to hold the continuation count
2754 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2755 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2757 * These continuation pages are seldom referenced: the common paths all work
2758 * on the original swap_map, only referring to a continuation page when the
2759 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2761 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2762 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2763 * can be called after dropping locks.
2765 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2767 struct swap_info_struct *si;
2770 struct page *list_page;
2772 unsigned char count;
2775 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2776 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2778 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2780 si = swap_info_get(entry);
2783 * An acceptable race has occurred since the failing
2784 * __swap_duplicate(): the swap entry has been freed,
2785 * perhaps even the whole swap_map cleared for swapoff.
2790 offset = swp_offset(entry);
2791 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2793 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2795 * The higher the swap count, the more likely it is that tasks
2796 * will race to add swap count continuation: we need to avoid
2797 * over-provisioning.
2803 spin_unlock(&si->lock);
2808 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2809 * no architecture is using highmem pages for kernel page tables: so it
2810 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2812 head = vmalloc_to_page(si->swap_map + offset);
2813 offset &= ~PAGE_MASK;
2816 * Page allocation does not initialize the page's lru field,
2817 * but it does always reset its private field.
2819 if (!page_private(head)) {
2820 BUG_ON(count & COUNT_CONTINUED);
2821 INIT_LIST_HEAD(&head->lru);
2822 set_page_private(head, SWP_CONTINUED);
2823 si->flags |= SWP_CONTINUED;
2826 list_for_each_entry(list_page, &head->lru, lru) {
2830 * If the previous map said no continuation, but we've found
2831 * a continuation page, free our allocation and use this one.
2833 if (!(count & COUNT_CONTINUED))
2836 map = kmap_atomic(list_page) + offset;
2841 * If this continuation count now has some space in it,
2842 * free our allocation and use this one.
2844 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2848 list_add_tail(&page->lru, &head->lru);
2849 page = NULL; /* now it's attached, don't free it */
2851 spin_unlock(&si->lock);
2859 * swap_count_continued - when the original swap_map count is incremented
2860 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2861 * into, carry if so, or else fail until a new continuation page is allocated;
2862 * when the original swap_map count is decremented from 0 with continuation,
2863 * borrow from the continuation and report whether it still holds more.
2864 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2866 static bool swap_count_continued(struct swap_info_struct *si,
2867 pgoff_t offset, unsigned char count)
2873 head = vmalloc_to_page(si->swap_map + offset);
2874 if (page_private(head) != SWP_CONTINUED) {
2875 BUG_ON(count & COUNT_CONTINUED);
2876 return false; /* need to add count continuation */
2879 offset &= ~PAGE_MASK;
2880 page = list_entry(head->lru.next, struct page, lru);
2881 map = kmap_atomic(page) + offset;
2883 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2884 goto init_map; /* jump over SWAP_CONT_MAX checks */
2886 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2888 * Think of how you add 1 to 999
2890 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2892 page = list_entry(page->lru.next, struct page, lru);
2893 BUG_ON(page == head);
2894 map = kmap_atomic(page) + offset;
2896 if (*map == SWAP_CONT_MAX) {
2898 page = list_entry(page->lru.next, struct page, lru);
2900 return false; /* add count continuation */
2901 map = kmap_atomic(page) + offset;
2902 init_map: *map = 0; /* we didn't zero the page */
2906 page = list_entry(page->lru.prev, struct page, lru);
2907 while (page != head) {
2908 map = kmap_atomic(page) + offset;
2909 *map = COUNT_CONTINUED;
2911 page = list_entry(page->lru.prev, struct page, lru);
2913 return true; /* incremented */
2915 } else { /* decrementing */
2917 * Think of how you subtract 1 from 1000
2919 BUG_ON(count != COUNT_CONTINUED);
2920 while (*map == COUNT_CONTINUED) {
2922 page = list_entry(page->lru.next, struct page, lru);
2923 BUG_ON(page == head);
2924 map = kmap_atomic(page) + offset;
2931 page = list_entry(page->lru.prev, struct page, lru);
2932 while (page != head) {
2933 map = kmap_atomic(page) + offset;
2934 *map = SWAP_CONT_MAX | count;
2935 count = COUNT_CONTINUED;
2937 page = list_entry(page->lru.prev, struct page, lru);
2939 return count == COUNT_CONTINUED;
2944 * free_swap_count_continuations - swapoff free all the continuation pages
2945 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2947 static void free_swap_count_continuations(struct swap_info_struct *si)
2951 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2953 head = vmalloc_to_page(si->swap_map + offset);
2954 if (page_private(head)) {
2955 struct list_head *this, *next;
2956 list_for_each_safe(this, next, &head->lru) {
2958 page = list_entry(this, struct page, lru);