ASoC: codecs: Make OF supported CODECs visible in Kconfig
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 struct list_head *lh;
169
170                 if (se->start_page <= start_page &&
171                     start_page < se->start_page + se->nr_pages) {
172                         pgoff_t offset = start_page - se->start_page;
173                         sector_t start_block = se->start_block + offset;
174                         sector_t nr_blocks = se->nr_pages - offset;
175
176                         if (nr_blocks > nr_pages)
177                                 nr_blocks = nr_pages;
178                         start_page += nr_blocks;
179                         nr_pages -= nr_blocks;
180
181                         if (!found_extent++)
182                                 si->curr_swap_extent = se;
183
184                         start_block <<= PAGE_SHIFT - 9;
185                         nr_blocks <<= PAGE_SHIFT - 9;
186                         if (blkdev_issue_discard(si->bdev, start_block,
187                                     nr_blocks, GFP_NOIO, 0))
188                                 break;
189                 }
190
191                 lh = se->list.next;
192                 se = list_entry(lh, struct swap_extent, list);
193         }
194 }
195
196 #define SWAPFILE_CLUSTER        256
197 #define LATENCY_LIMIT           256
198
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200         unsigned int flag)
201 {
202         info->flags = flag;
203 }
204
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207         return info->data;
208 }
209
210 static inline void cluster_set_count(struct swap_cluster_info *info,
211                                      unsigned int c)
212 {
213         info->data = c;
214 }
215
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217                                          unsigned int c, unsigned int f)
218 {
219         info->flags = f;
220         info->data = c;
221 }
222
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225         return info->data;
226 }
227
228 static inline void cluster_set_next(struct swap_cluster_info *info,
229                                     unsigned int n)
230 {
231         info->data = n;
232 }
233
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235                                          unsigned int n, unsigned int f)
236 {
237         info->flags = f;
238         info->data = n;
239 }
240
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243         return info->flags & CLUSTER_FLAG_FREE;
244 }
245
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248         return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250
251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253         info->flags = CLUSTER_FLAG_NEXT_NULL;
254         info->data = 0;
255 }
256
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259                 unsigned int idx)
260 {
261         /*
262          * If scan_swap_map() can't find a free cluster, it will check
263          * si->swap_map directly. To make sure the discarding cluster isn't
264          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265          * will be cleared after discard
266          */
267         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270         if (cluster_is_null(&si->discard_cluster_head)) {
271                 cluster_set_next_flag(&si->discard_cluster_head,
272                                                 idx, 0);
273                 cluster_set_next_flag(&si->discard_cluster_tail,
274                                                 idx, 0);
275         } else {
276                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277                 cluster_set_next(&si->cluster_info[tail], idx);
278                 cluster_set_next_flag(&si->discard_cluster_tail,
279                                                 idx, 0);
280         }
281
282         schedule_work(&si->discard_work);
283 }
284
285 /*
286  * Doing discard actually. After a cluster discard is finished, the cluster
287  * will be added to free cluster list. caller should hold si->lock.
288 */
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291         struct swap_cluster_info *info;
292         unsigned int idx;
293
294         info = si->cluster_info;
295
296         while (!cluster_is_null(&si->discard_cluster_head)) {
297                 idx = cluster_next(&si->discard_cluster_head);
298
299                 cluster_set_next_flag(&si->discard_cluster_head,
300                                                 cluster_next(&info[idx]), 0);
301                 if (cluster_next(&si->discard_cluster_tail) == idx) {
302                         cluster_set_null(&si->discard_cluster_head);
303                         cluster_set_null(&si->discard_cluster_tail);
304                 }
305                 spin_unlock(&si->lock);
306
307                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308                                 SWAPFILE_CLUSTER);
309
310                 spin_lock(&si->lock);
311                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312                 if (cluster_is_null(&si->free_cluster_head)) {
313                         cluster_set_next_flag(&si->free_cluster_head,
314                                                 idx, 0);
315                         cluster_set_next_flag(&si->free_cluster_tail,
316                                                 idx, 0);
317                 } else {
318                         unsigned int tail;
319
320                         tail = cluster_next(&si->free_cluster_tail);
321                         cluster_set_next(&info[tail], idx);
322                         cluster_set_next_flag(&si->free_cluster_tail,
323                                                 idx, 0);
324                 }
325                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326                                 0, SWAPFILE_CLUSTER);
327         }
328 }
329
330 static void swap_discard_work(struct work_struct *work)
331 {
332         struct swap_info_struct *si;
333
334         si = container_of(work, struct swap_info_struct, discard_work);
335
336         spin_lock(&si->lock);
337         swap_do_scheduled_discard(si);
338         spin_unlock(&si->lock);
339 }
340
341 /*
342  * The cluster corresponding to page_nr will be used. The cluster will be
343  * removed from free cluster list and its usage counter will be increased.
344  */
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346         struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350         if (!cluster_info)
351                 return;
352         if (cluster_is_free(&cluster_info[idx])) {
353                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354                 cluster_set_next_flag(&p->free_cluster_head,
355                         cluster_next(&cluster_info[idx]), 0);
356                 if (cluster_next(&p->free_cluster_tail) == idx) {
357                         cluster_set_null(&p->free_cluster_tail);
358                         cluster_set_null(&p->free_cluster_head);
359                 }
360                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361         }
362
363         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364         cluster_set_count(&cluster_info[idx],
365                 cluster_count(&cluster_info[idx]) + 1);
366 }
367
368 /*
369  * The cluster corresponding to page_nr decreases one usage. If the usage
370  * counter becomes 0, which means no page in the cluster is in using, we can
371  * optionally discard the cluster and add it to free cluster list.
372  */
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374         struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378         if (!cluster_info)
379                 return;
380
381         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382         cluster_set_count(&cluster_info[idx],
383                 cluster_count(&cluster_info[idx]) - 1);
384
385         if (cluster_count(&cluster_info[idx]) == 0) {
386                 /*
387                  * If the swap is discardable, prepare discard the cluster
388                  * instead of free it immediately. The cluster will be freed
389                  * after discard.
390                  */
391                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393                         swap_cluster_schedule_discard(p, idx);
394                         return;
395                 }
396
397                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398                 if (cluster_is_null(&p->free_cluster_head)) {
399                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401                 } else {
402                         unsigned int tail = cluster_next(&p->free_cluster_tail);
403                         cluster_set_next(&cluster_info[tail], idx);
404                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405                 }
406         }
407 }
408
409 /*
410  * It's possible scan_swap_map() uses a free cluster in the middle of free
411  * cluster list. Avoiding such abuse to avoid list corruption.
412  */
413 static bool
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415         unsigned long offset)
416 {
417         struct percpu_cluster *percpu_cluster;
418         bool conflict;
419
420         offset /= SWAPFILE_CLUSTER;
421         conflict = !cluster_is_null(&si->free_cluster_head) &&
422                 offset != cluster_next(&si->free_cluster_head) &&
423                 cluster_is_free(&si->cluster_info[offset]);
424
425         if (!conflict)
426                 return false;
427
428         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429         cluster_set_null(&percpu_cluster->index);
430         return true;
431 }
432
433 /*
434  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435  * might involve allocating a new cluster for current CPU too.
436  */
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438         unsigned long *offset, unsigned long *scan_base)
439 {
440         struct percpu_cluster *cluster;
441         bool found_free;
442         unsigned long tmp;
443
444 new_cluster:
445         cluster = this_cpu_ptr(si->percpu_cluster);
446         if (cluster_is_null(&cluster->index)) {
447                 if (!cluster_is_null(&si->free_cluster_head)) {
448                         cluster->index = si->free_cluster_head;
449                         cluster->next = cluster_next(&cluster->index) *
450                                         SWAPFILE_CLUSTER;
451                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452                         /*
453                          * we don't have free cluster but have some clusters in
454                          * discarding, do discard now and reclaim them
455                          */
456                         swap_do_scheduled_discard(si);
457                         *scan_base = *offset = si->cluster_next;
458                         goto new_cluster;
459                 } else
460                         return;
461         }
462
463         found_free = false;
464
465         /*
466          * Other CPUs can use our cluster if they can't find a free cluster,
467          * check if there is still free entry in the cluster
468          */
469         tmp = cluster->next;
470         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471                SWAPFILE_CLUSTER) {
472                 if (!si->swap_map[tmp]) {
473                         found_free = true;
474                         break;
475                 }
476                 tmp++;
477         }
478         if (!found_free) {
479                 cluster_set_null(&cluster->index);
480                 goto new_cluster;
481         }
482         cluster->next = tmp + 1;
483         *offset = tmp;
484         *scan_base = tmp;
485 }
486
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488                                    unsigned char usage)
489 {
490         unsigned long offset;
491         unsigned long scan_base;
492         unsigned long last_in_cluster = 0;
493         int latency_ration = LATENCY_LIMIT;
494
495         /*
496          * We try to cluster swap pages by allocating them sequentially
497          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
498          * way, however, we resort to first-free allocation, starting
499          * a new cluster.  This prevents us from scattering swap pages
500          * all over the entire swap partition, so that we reduce
501          * overall disk seek times between swap pages.  -- sct
502          * But we do now try to find an empty cluster.  -Andrea
503          * And we let swap pages go all over an SSD partition.  Hugh
504          */
505
506         si->flags += SWP_SCANNING;
507         scan_base = offset = si->cluster_next;
508
509         /* SSD algorithm */
510         if (si->cluster_info) {
511                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512                 goto checks;
513         }
514
515         if (unlikely(!si->cluster_nr--)) {
516                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
518                         goto checks;
519                 }
520
521                 spin_unlock(&si->lock);
522
523                 /*
524                  * If seek is expensive, start searching for new cluster from
525                  * start of partition, to minimize the span of allocated swap.
526                  * But if seek is cheap, search from our current position, so
527                  * that swap is allocated from all over the partition: if the
528                  * Flash Translation Layer only remaps within limited zones,
529                  * we don't want to wear out the first zone too quickly.
530                  */
531                 if (!(si->flags & SWP_SOLIDSTATE))
532                         scan_base = offset = si->lowest_bit;
533                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
534
535                 /* Locate the first empty (unaligned) cluster */
536                 for (; last_in_cluster <= si->highest_bit; offset++) {
537                         if (si->swap_map[offset])
538                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
539                         else if (offset == last_in_cluster) {
540                                 spin_lock(&si->lock);
541                                 offset -= SWAPFILE_CLUSTER - 1;
542                                 si->cluster_next = offset;
543                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
544                                 goto checks;
545                         }
546                         if (unlikely(--latency_ration < 0)) {
547                                 cond_resched();
548                                 latency_ration = LATENCY_LIMIT;
549                         }
550                 }
551
552                 offset = si->lowest_bit;
553                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
554
555                 /* Locate the first empty (unaligned) cluster */
556                 for (; last_in_cluster < scan_base; offset++) {
557                         if (si->swap_map[offset])
558                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
559                         else if (offset == last_in_cluster) {
560                                 spin_lock(&si->lock);
561                                 offset -= SWAPFILE_CLUSTER - 1;
562                                 si->cluster_next = offset;
563                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
564                                 goto checks;
565                         }
566                         if (unlikely(--latency_ration < 0)) {
567                                 cond_resched();
568                                 latency_ration = LATENCY_LIMIT;
569                         }
570                 }
571
572                 offset = scan_base;
573                 spin_lock(&si->lock);
574                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
575         }
576
577 checks:
578         if (si->cluster_info) {
579                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
580                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
581         }
582         if (!(si->flags & SWP_WRITEOK))
583                 goto no_page;
584         if (!si->highest_bit)
585                 goto no_page;
586         if (offset > si->highest_bit)
587                 scan_base = offset = si->lowest_bit;
588
589         /* reuse swap entry of cache-only swap if not busy. */
590         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
591                 int swap_was_freed;
592                 spin_unlock(&si->lock);
593                 swap_was_freed = __try_to_reclaim_swap(si, offset);
594                 spin_lock(&si->lock);
595                 /* entry was freed successfully, try to use this again */
596                 if (swap_was_freed)
597                         goto checks;
598                 goto scan; /* check next one */
599         }
600
601         if (si->swap_map[offset])
602                 goto scan;
603
604         if (offset == si->lowest_bit)
605                 si->lowest_bit++;
606         if (offset == si->highest_bit)
607                 si->highest_bit--;
608         si->inuse_pages++;
609         if (si->inuse_pages == si->pages) {
610                 si->lowest_bit = si->max;
611                 si->highest_bit = 0;
612                 spin_lock(&swap_avail_lock);
613                 plist_del(&si->avail_list, &swap_avail_head);
614                 spin_unlock(&swap_avail_lock);
615         }
616         si->swap_map[offset] = usage;
617         inc_cluster_info_page(si, si->cluster_info, offset);
618         si->cluster_next = offset + 1;
619         si->flags -= SWP_SCANNING;
620
621         return offset;
622
623 scan:
624         spin_unlock(&si->lock);
625         while (++offset <= si->highest_bit) {
626                 if (!si->swap_map[offset]) {
627                         spin_lock(&si->lock);
628                         goto checks;
629                 }
630                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
631                         spin_lock(&si->lock);
632                         goto checks;
633                 }
634                 if (unlikely(--latency_ration < 0)) {
635                         cond_resched();
636                         latency_ration = LATENCY_LIMIT;
637                 }
638         }
639         offset = si->lowest_bit;
640         while (offset < scan_base) {
641                 if (!si->swap_map[offset]) {
642                         spin_lock(&si->lock);
643                         goto checks;
644                 }
645                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
646                         spin_lock(&si->lock);
647                         goto checks;
648                 }
649                 if (unlikely(--latency_ration < 0)) {
650                         cond_resched();
651                         latency_ration = LATENCY_LIMIT;
652                 }
653                 offset++;
654         }
655         spin_lock(&si->lock);
656
657 no_page:
658         si->flags -= SWP_SCANNING;
659         return 0;
660 }
661
662 swp_entry_t get_swap_page(void)
663 {
664         struct swap_info_struct *si, *next;
665         pgoff_t offset;
666
667         if (atomic_long_read(&nr_swap_pages) <= 0)
668                 goto noswap;
669         atomic_long_dec(&nr_swap_pages);
670
671         spin_lock(&swap_avail_lock);
672
673 start_over:
674         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
675                 /* requeue si to after same-priority siblings */
676                 plist_requeue(&si->avail_list, &swap_avail_head);
677                 spin_unlock(&swap_avail_lock);
678                 spin_lock(&si->lock);
679                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
680                         spin_lock(&swap_avail_lock);
681                         if (plist_node_empty(&si->avail_list)) {
682                                 spin_unlock(&si->lock);
683                                 goto nextsi;
684                         }
685                         WARN(!si->highest_bit,
686                              "swap_info %d in list but !highest_bit\n",
687                              si->type);
688                         WARN(!(si->flags & SWP_WRITEOK),
689                              "swap_info %d in list but !SWP_WRITEOK\n",
690                              si->type);
691                         plist_del(&si->avail_list, &swap_avail_head);
692                         spin_unlock(&si->lock);
693                         goto nextsi;
694                 }
695
696                 /* This is called for allocating swap entry for cache */
697                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
698                 spin_unlock(&si->lock);
699                 if (offset)
700                         return swp_entry(si->type, offset);
701                 pr_debug("scan_swap_map of si %d failed to find offset\n",
702                        si->type);
703                 spin_lock(&swap_avail_lock);
704 nextsi:
705                 /*
706                  * if we got here, it's likely that si was almost full before,
707                  * and since scan_swap_map() can drop the si->lock, multiple
708                  * callers probably all tried to get a page from the same si
709                  * and it filled up before we could get one; or, the si filled
710                  * up between us dropping swap_avail_lock and taking si->lock.
711                  * Since we dropped the swap_avail_lock, the swap_avail_head
712                  * list may have been modified; so if next is still in the
713                  * swap_avail_head list then try it, otherwise start over.
714                  */
715                 if (plist_node_empty(&next->avail_list))
716                         goto start_over;
717         }
718
719         spin_unlock(&swap_avail_lock);
720
721         atomic_long_inc(&nr_swap_pages);
722 noswap:
723         return (swp_entry_t) {0};
724 }
725
726 /* The only caller of this function is now suspend routine */
727 swp_entry_t get_swap_page_of_type(int type)
728 {
729         struct swap_info_struct *si;
730         pgoff_t offset;
731
732         si = swap_info[type];
733         spin_lock(&si->lock);
734         if (si && (si->flags & SWP_WRITEOK)) {
735                 atomic_long_dec(&nr_swap_pages);
736                 /* This is called for allocating swap entry, not cache */
737                 offset = scan_swap_map(si, 1);
738                 if (offset) {
739                         spin_unlock(&si->lock);
740                         return swp_entry(type, offset);
741                 }
742                 atomic_long_inc(&nr_swap_pages);
743         }
744         spin_unlock(&si->lock);
745         return (swp_entry_t) {0};
746 }
747
748 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
749 {
750         struct swap_info_struct *p;
751         unsigned long offset, type;
752
753         if (!entry.val)
754                 goto out;
755         type = swp_type(entry);
756         if (type >= nr_swapfiles)
757                 goto bad_nofile;
758         p = swap_info[type];
759         if (!(p->flags & SWP_USED))
760                 goto bad_device;
761         offset = swp_offset(entry);
762         if (offset >= p->max)
763                 goto bad_offset;
764         if (!p->swap_map[offset])
765                 goto bad_free;
766         spin_lock(&p->lock);
767         return p;
768
769 bad_free:
770         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
771         goto out;
772 bad_offset:
773         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
774         goto out;
775 bad_device:
776         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
777         goto out;
778 bad_nofile:
779         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
780 out:
781         return NULL;
782 }
783
784 static unsigned char swap_entry_free(struct swap_info_struct *p,
785                                      swp_entry_t entry, unsigned char usage)
786 {
787         unsigned long offset = swp_offset(entry);
788         unsigned char count;
789         unsigned char has_cache;
790
791         count = p->swap_map[offset];
792         has_cache = count & SWAP_HAS_CACHE;
793         count &= ~SWAP_HAS_CACHE;
794
795         if (usage == SWAP_HAS_CACHE) {
796                 VM_BUG_ON(!has_cache);
797                 has_cache = 0;
798         } else if (count == SWAP_MAP_SHMEM) {
799                 /*
800                  * Or we could insist on shmem.c using a special
801                  * swap_shmem_free() and free_shmem_swap_and_cache()...
802                  */
803                 count = 0;
804         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
805                 if (count == COUNT_CONTINUED) {
806                         if (swap_count_continued(p, offset, count))
807                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
808                         else
809                                 count = SWAP_MAP_MAX;
810                 } else
811                         count--;
812         }
813
814         if (!count)
815                 mem_cgroup_uncharge_swap(entry);
816
817         usage = count | has_cache;
818         p->swap_map[offset] = usage;
819
820         /* free if no reference */
821         if (!usage) {
822                 dec_cluster_info_page(p, p->cluster_info, offset);
823                 if (offset < p->lowest_bit)
824                         p->lowest_bit = offset;
825                 if (offset > p->highest_bit) {
826                         bool was_full = !p->highest_bit;
827                         p->highest_bit = offset;
828                         if (was_full && (p->flags & SWP_WRITEOK)) {
829                                 spin_lock(&swap_avail_lock);
830                                 WARN_ON(!plist_node_empty(&p->avail_list));
831                                 if (plist_node_empty(&p->avail_list))
832                                         plist_add(&p->avail_list,
833                                                   &swap_avail_head);
834                                 spin_unlock(&swap_avail_lock);
835                         }
836                 }
837                 atomic_long_inc(&nr_swap_pages);
838                 p->inuse_pages--;
839                 frontswap_invalidate_page(p->type, offset);
840                 if (p->flags & SWP_BLKDEV) {
841                         struct gendisk *disk = p->bdev->bd_disk;
842                         if (disk->fops->swap_slot_free_notify)
843                                 disk->fops->swap_slot_free_notify(p->bdev,
844                                                                   offset);
845                 }
846         }
847
848         return usage;
849 }
850
851 /*
852  * Caller has made sure that the swap device corresponding to entry
853  * is still around or has not been recycled.
854  */
855 void swap_free(swp_entry_t entry)
856 {
857         struct swap_info_struct *p;
858
859         p = swap_info_get(entry);
860         if (p) {
861                 swap_entry_free(p, entry, 1);
862                 spin_unlock(&p->lock);
863         }
864 }
865
866 /*
867  * Called after dropping swapcache to decrease refcnt to swap entries.
868  */
869 void swapcache_free(swp_entry_t entry, struct page *page)
870 {
871         struct swap_info_struct *p;
872         unsigned char count;
873
874         p = swap_info_get(entry);
875         if (p) {
876                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
877                 if (page)
878                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
879                 spin_unlock(&p->lock);
880         }
881 }
882
883 /*
884  * How many references to page are currently swapped out?
885  * This does not give an exact answer when swap count is continued,
886  * but does include the high COUNT_CONTINUED flag to allow for that.
887  */
888 int page_swapcount(struct page *page)
889 {
890         int count = 0;
891         struct swap_info_struct *p;
892         swp_entry_t entry;
893
894         entry.val = page_private(page);
895         p = swap_info_get(entry);
896         if (p) {
897                 count = swap_count(p->swap_map[swp_offset(entry)]);
898                 spin_unlock(&p->lock);
899         }
900         return count;
901 }
902
903 /*
904  * We can write to an anon page without COW if there are no other references
905  * to it.  And as a side-effect, free up its swap: because the old content
906  * on disk will never be read, and seeking back there to write new content
907  * later would only waste time away from clustering.
908  */
909 int reuse_swap_page(struct page *page)
910 {
911         int count;
912
913         VM_BUG_ON_PAGE(!PageLocked(page), page);
914         if (unlikely(PageKsm(page)))
915                 return 0;
916         count = page_mapcount(page);
917         if (count <= 1 && PageSwapCache(page)) {
918                 count += page_swapcount(page);
919                 if (count == 1 && !PageWriteback(page)) {
920                         delete_from_swap_cache(page);
921                         SetPageDirty(page);
922                 }
923         }
924         return count <= 1;
925 }
926
927 /*
928  * If swap is getting full, or if there are no more mappings of this page,
929  * then try_to_free_swap is called to free its swap space.
930  */
931 int try_to_free_swap(struct page *page)
932 {
933         VM_BUG_ON_PAGE(!PageLocked(page), page);
934
935         if (!PageSwapCache(page))
936                 return 0;
937         if (PageWriteback(page))
938                 return 0;
939         if (page_swapcount(page))
940                 return 0;
941
942         /*
943          * Once hibernation has begun to create its image of memory,
944          * there's a danger that one of the calls to try_to_free_swap()
945          * - most probably a call from __try_to_reclaim_swap() while
946          * hibernation is allocating its own swap pages for the image,
947          * but conceivably even a call from memory reclaim - will free
948          * the swap from a page which has already been recorded in the
949          * image as a clean swapcache page, and then reuse its swap for
950          * another page of the image.  On waking from hibernation, the
951          * original page might be freed under memory pressure, then
952          * later read back in from swap, now with the wrong data.
953          *
954          * Hibernation suspends storage while it is writing the image
955          * to disk so check that here.
956          */
957         if (pm_suspended_storage())
958                 return 0;
959
960         delete_from_swap_cache(page);
961         SetPageDirty(page);
962         return 1;
963 }
964
965 /*
966  * Free the swap entry like above, but also try to
967  * free the page cache entry if it is the last user.
968  */
969 int free_swap_and_cache(swp_entry_t entry)
970 {
971         struct swap_info_struct *p;
972         struct page *page = NULL;
973
974         if (non_swap_entry(entry))
975                 return 1;
976
977         p = swap_info_get(entry);
978         if (p) {
979                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
980                         page = find_get_page(swap_address_space(entry),
981                                                 entry.val);
982                         if (page && !trylock_page(page)) {
983                                 page_cache_release(page);
984                                 page = NULL;
985                         }
986                 }
987                 spin_unlock(&p->lock);
988         }
989         if (page) {
990                 /*
991                  * Not mapped elsewhere, or swap space full? Free it!
992                  * Also recheck PageSwapCache now page is locked (above).
993                  */
994                 if (PageSwapCache(page) && !PageWriteback(page) &&
995                                 (!page_mapped(page) || vm_swap_full())) {
996                         delete_from_swap_cache(page);
997                         SetPageDirty(page);
998                 }
999                 unlock_page(page);
1000                 page_cache_release(page);
1001         }
1002         return p != NULL;
1003 }
1004
1005 #ifdef CONFIG_HIBERNATION
1006 /*
1007  * Find the swap type that corresponds to given device (if any).
1008  *
1009  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1010  * from 0, in which the swap header is expected to be located.
1011  *
1012  * This is needed for the suspend to disk (aka swsusp).
1013  */
1014 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1015 {
1016         struct block_device *bdev = NULL;
1017         int type;
1018
1019         if (device)
1020                 bdev = bdget(device);
1021
1022         spin_lock(&swap_lock);
1023         for (type = 0; type < nr_swapfiles; type++) {
1024                 struct swap_info_struct *sis = swap_info[type];
1025
1026                 if (!(sis->flags & SWP_WRITEOK))
1027                         continue;
1028
1029                 if (!bdev) {
1030                         if (bdev_p)
1031                                 *bdev_p = bdgrab(sis->bdev);
1032
1033                         spin_unlock(&swap_lock);
1034                         return type;
1035                 }
1036                 if (bdev == sis->bdev) {
1037                         struct swap_extent *se = &sis->first_swap_extent;
1038
1039                         if (se->start_block == offset) {
1040                                 if (bdev_p)
1041                                         *bdev_p = bdgrab(sis->bdev);
1042
1043                                 spin_unlock(&swap_lock);
1044                                 bdput(bdev);
1045                                 return type;
1046                         }
1047                 }
1048         }
1049         spin_unlock(&swap_lock);
1050         if (bdev)
1051                 bdput(bdev);
1052
1053         return -ENODEV;
1054 }
1055
1056 /*
1057  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1058  * corresponding to given index in swap_info (swap type).
1059  */
1060 sector_t swapdev_block(int type, pgoff_t offset)
1061 {
1062         struct block_device *bdev;
1063
1064         if ((unsigned int)type >= nr_swapfiles)
1065                 return 0;
1066         if (!(swap_info[type]->flags & SWP_WRITEOK))
1067                 return 0;
1068         return map_swap_entry(swp_entry(type, offset), &bdev);
1069 }
1070
1071 /*
1072  * Return either the total number of swap pages of given type, or the number
1073  * of free pages of that type (depending on @free)
1074  *
1075  * This is needed for software suspend
1076  */
1077 unsigned int count_swap_pages(int type, int free)
1078 {
1079         unsigned int n = 0;
1080
1081         spin_lock(&swap_lock);
1082         if ((unsigned int)type < nr_swapfiles) {
1083                 struct swap_info_struct *sis = swap_info[type];
1084
1085                 spin_lock(&sis->lock);
1086                 if (sis->flags & SWP_WRITEOK) {
1087                         n = sis->pages;
1088                         if (free)
1089                                 n -= sis->inuse_pages;
1090                 }
1091                 spin_unlock(&sis->lock);
1092         }
1093         spin_unlock(&swap_lock);
1094         return n;
1095 }
1096 #endif /* CONFIG_HIBERNATION */
1097
1098 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1099 {
1100 #ifdef CONFIG_MEM_SOFT_DIRTY
1101         /*
1102          * When pte keeps soft dirty bit the pte generated
1103          * from swap entry does not has it, still it's same
1104          * pte from logical point of view.
1105          */
1106         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1107         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1108 #else
1109         return pte_same(pte, swp_pte);
1110 #endif
1111 }
1112
1113 /*
1114  * No need to decide whether this PTE shares the swap entry with others,
1115  * just let do_wp_page work it out if a write is requested later - to
1116  * force COW, vm_page_prot omits write permission from any private vma.
1117  */
1118 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1119                 unsigned long addr, swp_entry_t entry, struct page *page)
1120 {
1121         struct page *swapcache;
1122         struct mem_cgroup *memcg;
1123         spinlock_t *ptl;
1124         pte_t *pte;
1125         int ret = 1;
1126
1127         swapcache = page;
1128         page = ksm_might_need_to_copy(page, vma, addr);
1129         if (unlikely(!page))
1130                 return -ENOMEM;
1131
1132         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1133                                          GFP_KERNEL, &memcg)) {
1134                 ret = -ENOMEM;
1135                 goto out_nolock;
1136         }
1137
1138         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1139         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1140                 mem_cgroup_cancel_charge_swapin(memcg);
1141                 ret = 0;
1142                 goto out;
1143         }
1144
1145         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1146         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1147         get_page(page);
1148         set_pte_at(vma->vm_mm, addr, pte,
1149                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1150         if (page == swapcache)
1151                 page_add_anon_rmap(page, vma, addr);
1152         else /* ksm created a completely new copy */
1153                 page_add_new_anon_rmap(page, vma, addr);
1154         mem_cgroup_commit_charge_swapin(page, memcg);
1155         swap_free(entry);
1156         /*
1157          * Move the page to the active list so it is not
1158          * immediately swapped out again after swapon.
1159          */
1160         activate_page(page);
1161 out:
1162         pte_unmap_unlock(pte, ptl);
1163 out_nolock:
1164         if (page != swapcache) {
1165                 unlock_page(page);
1166                 put_page(page);
1167         }
1168         return ret;
1169 }
1170
1171 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1172                                 unsigned long addr, unsigned long end,
1173                                 swp_entry_t entry, struct page *page)
1174 {
1175         pte_t swp_pte = swp_entry_to_pte(entry);
1176         pte_t *pte;
1177         int ret = 0;
1178
1179         /*
1180          * We don't actually need pte lock while scanning for swp_pte: since
1181          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1182          * page table while we're scanning; though it could get zapped, and on
1183          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1184          * of unmatched parts which look like swp_pte, so unuse_pte must
1185          * recheck under pte lock.  Scanning without pte lock lets it be
1186          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1187          */
1188         pte = pte_offset_map(pmd, addr);
1189         do {
1190                 /*
1191                  * swapoff spends a _lot_ of time in this loop!
1192                  * Test inline before going to call unuse_pte.
1193                  */
1194                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1195                         pte_unmap(pte);
1196                         ret = unuse_pte(vma, pmd, addr, entry, page);
1197                         if (ret)
1198                                 goto out;
1199                         pte = pte_offset_map(pmd, addr);
1200                 }
1201         } while (pte++, addr += PAGE_SIZE, addr != end);
1202         pte_unmap(pte - 1);
1203 out:
1204         return ret;
1205 }
1206
1207 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1208                                 unsigned long addr, unsigned long end,
1209                                 swp_entry_t entry, struct page *page)
1210 {
1211         pmd_t *pmd;
1212         unsigned long next;
1213         int ret;
1214
1215         pmd = pmd_offset(pud, addr);
1216         do {
1217                 next = pmd_addr_end(addr, end);
1218                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1219                         continue;
1220                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1221                 if (ret)
1222                         return ret;
1223         } while (pmd++, addr = next, addr != end);
1224         return 0;
1225 }
1226
1227 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1228                                 unsigned long addr, unsigned long end,
1229                                 swp_entry_t entry, struct page *page)
1230 {
1231         pud_t *pud;
1232         unsigned long next;
1233         int ret;
1234
1235         pud = pud_offset(pgd, addr);
1236         do {
1237                 next = pud_addr_end(addr, end);
1238                 if (pud_none_or_clear_bad(pud))
1239                         continue;
1240                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1241                 if (ret)
1242                         return ret;
1243         } while (pud++, addr = next, addr != end);
1244         return 0;
1245 }
1246
1247 static int unuse_vma(struct vm_area_struct *vma,
1248                                 swp_entry_t entry, struct page *page)
1249 {
1250         pgd_t *pgd;
1251         unsigned long addr, end, next;
1252         int ret;
1253
1254         if (page_anon_vma(page)) {
1255                 addr = page_address_in_vma(page, vma);
1256                 if (addr == -EFAULT)
1257                         return 0;
1258                 else
1259                         end = addr + PAGE_SIZE;
1260         } else {
1261                 addr = vma->vm_start;
1262                 end = vma->vm_end;
1263         }
1264
1265         pgd = pgd_offset(vma->vm_mm, addr);
1266         do {
1267                 next = pgd_addr_end(addr, end);
1268                 if (pgd_none_or_clear_bad(pgd))
1269                         continue;
1270                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1271                 if (ret)
1272                         return ret;
1273         } while (pgd++, addr = next, addr != end);
1274         return 0;
1275 }
1276
1277 static int unuse_mm(struct mm_struct *mm,
1278                                 swp_entry_t entry, struct page *page)
1279 {
1280         struct vm_area_struct *vma;
1281         int ret = 0;
1282
1283         if (!down_read_trylock(&mm->mmap_sem)) {
1284                 /*
1285                  * Activate page so shrink_inactive_list is unlikely to unmap
1286                  * its ptes while lock is dropped, so swapoff can make progress.
1287                  */
1288                 activate_page(page);
1289                 unlock_page(page);
1290                 down_read(&mm->mmap_sem);
1291                 lock_page(page);
1292         }
1293         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1294                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1295                         break;
1296         }
1297         up_read(&mm->mmap_sem);
1298         return (ret < 0)? ret: 0;
1299 }
1300
1301 /*
1302  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1303  * from current position to next entry still in use.
1304  * Recycle to start on reaching the end, returning 0 when empty.
1305  */
1306 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1307                                         unsigned int prev, bool frontswap)
1308 {
1309         unsigned int max = si->max;
1310         unsigned int i = prev;
1311         unsigned char count;
1312
1313         /*
1314          * No need for swap_lock here: we're just looking
1315          * for whether an entry is in use, not modifying it; false
1316          * hits are okay, and sys_swapoff() has already prevented new
1317          * allocations from this area (while holding swap_lock).
1318          */
1319         for (;;) {
1320                 if (++i >= max) {
1321                         if (!prev) {
1322                                 i = 0;
1323                                 break;
1324                         }
1325                         /*
1326                          * No entries in use at top of swap_map,
1327                          * loop back to start and recheck there.
1328                          */
1329                         max = prev + 1;
1330                         prev = 0;
1331                         i = 1;
1332                 }
1333                 if (frontswap) {
1334                         if (frontswap_test(si, i))
1335                                 break;
1336                         else
1337                                 continue;
1338                 }
1339                 count = ACCESS_ONCE(si->swap_map[i]);
1340                 if (count && swap_count(count) != SWAP_MAP_BAD)
1341                         break;
1342         }
1343         return i;
1344 }
1345
1346 /*
1347  * We completely avoid races by reading each swap page in advance,
1348  * and then search for the process using it.  All the necessary
1349  * page table adjustments can then be made atomically.
1350  *
1351  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1352  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1353  */
1354 int try_to_unuse(unsigned int type, bool frontswap,
1355                  unsigned long pages_to_unuse)
1356 {
1357         struct swap_info_struct *si = swap_info[type];
1358         struct mm_struct *start_mm;
1359         volatile unsigned char *swap_map; /* swap_map is accessed without
1360                                            * locking. Mark it as volatile
1361                                            * to prevent compiler doing
1362                                            * something odd.
1363                                            */
1364         unsigned char swcount;
1365         struct page *page;
1366         swp_entry_t entry;
1367         unsigned int i = 0;
1368         int retval = 0;
1369
1370         /*
1371          * When searching mms for an entry, a good strategy is to
1372          * start at the first mm we freed the previous entry from
1373          * (though actually we don't notice whether we or coincidence
1374          * freed the entry).  Initialize this start_mm with a hold.
1375          *
1376          * A simpler strategy would be to start at the last mm we
1377          * freed the previous entry from; but that would take less
1378          * advantage of mmlist ordering, which clusters forked mms
1379          * together, child after parent.  If we race with dup_mmap(), we
1380          * prefer to resolve parent before child, lest we miss entries
1381          * duplicated after we scanned child: using last mm would invert
1382          * that.
1383          */
1384         start_mm = &init_mm;
1385         atomic_inc(&init_mm.mm_users);
1386
1387         /*
1388          * Keep on scanning until all entries have gone.  Usually,
1389          * one pass through swap_map is enough, but not necessarily:
1390          * there are races when an instance of an entry might be missed.
1391          */
1392         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1393                 if (signal_pending(current)) {
1394                         retval = -EINTR;
1395                         break;
1396                 }
1397
1398                 /*
1399                  * Get a page for the entry, using the existing swap
1400                  * cache page if there is one.  Otherwise, get a clean
1401                  * page and read the swap into it.
1402                  */
1403                 swap_map = &si->swap_map[i];
1404                 entry = swp_entry(type, i);
1405                 page = read_swap_cache_async(entry,
1406                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1407                 if (!page) {
1408                         /*
1409                          * Either swap_duplicate() failed because entry
1410                          * has been freed independently, and will not be
1411                          * reused since sys_swapoff() already disabled
1412                          * allocation from here, or alloc_page() failed.
1413                          */
1414                         swcount = *swap_map;
1415                         /*
1416                          * We don't hold lock here, so the swap entry could be
1417                          * SWAP_MAP_BAD (when the cluster is discarding).
1418                          * Instead of fail out, We can just skip the swap
1419                          * entry because swapoff will wait for discarding
1420                          * finish anyway.
1421                          */
1422                         if (!swcount || swcount == SWAP_MAP_BAD)
1423                                 continue;
1424                         retval = -ENOMEM;
1425                         break;
1426                 }
1427
1428                 /*
1429                  * Don't hold on to start_mm if it looks like exiting.
1430                  */
1431                 if (atomic_read(&start_mm->mm_users) == 1) {
1432                         mmput(start_mm);
1433                         start_mm = &init_mm;
1434                         atomic_inc(&init_mm.mm_users);
1435                 }
1436
1437                 /*
1438                  * Wait for and lock page.  When do_swap_page races with
1439                  * try_to_unuse, do_swap_page can handle the fault much
1440                  * faster than try_to_unuse can locate the entry.  This
1441                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1442                  * defer to do_swap_page in such a case - in some tests,
1443                  * do_swap_page and try_to_unuse repeatedly compete.
1444                  */
1445                 wait_on_page_locked(page);
1446                 wait_on_page_writeback(page);
1447                 lock_page(page);
1448                 wait_on_page_writeback(page);
1449
1450                 /*
1451                  * Remove all references to entry.
1452                  */
1453                 swcount = *swap_map;
1454                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1455                         retval = shmem_unuse(entry, page);
1456                         /* page has already been unlocked and released */
1457                         if (retval < 0)
1458                                 break;
1459                         continue;
1460                 }
1461                 if (swap_count(swcount) && start_mm != &init_mm)
1462                         retval = unuse_mm(start_mm, entry, page);
1463
1464                 if (swap_count(*swap_map)) {
1465                         int set_start_mm = (*swap_map >= swcount);
1466                         struct list_head *p = &start_mm->mmlist;
1467                         struct mm_struct *new_start_mm = start_mm;
1468                         struct mm_struct *prev_mm = start_mm;
1469                         struct mm_struct *mm;
1470
1471                         atomic_inc(&new_start_mm->mm_users);
1472                         atomic_inc(&prev_mm->mm_users);
1473                         spin_lock(&mmlist_lock);
1474                         while (swap_count(*swap_map) && !retval &&
1475                                         (p = p->next) != &start_mm->mmlist) {
1476                                 mm = list_entry(p, struct mm_struct, mmlist);
1477                                 if (!atomic_inc_not_zero(&mm->mm_users))
1478                                         continue;
1479                                 spin_unlock(&mmlist_lock);
1480                                 mmput(prev_mm);
1481                                 prev_mm = mm;
1482
1483                                 cond_resched();
1484
1485                                 swcount = *swap_map;
1486                                 if (!swap_count(swcount)) /* any usage ? */
1487                                         ;
1488                                 else if (mm == &init_mm)
1489                                         set_start_mm = 1;
1490                                 else
1491                                         retval = unuse_mm(mm, entry, page);
1492
1493                                 if (set_start_mm && *swap_map < swcount) {
1494                                         mmput(new_start_mm);
1495                                         atomic_inc(&mm->mm_users);
1496                                         new_start_mm = mm;
1497                                         set_start_mm = 0;
1498                                 }
1499                                 spin_lock(&mmlist_lock);
1500                         }
1501                         spin_unlock(&mmlist_lock);
1502                         mmput(prev_mm);
1503                         mmput(start_mm);
1504                         start_mm = new_start_mm;
1505                 }
1506                 if (retval) {
1507                         unlock_page(page);
1508                         page_cache_release(page);
1509                         break;
1510                 }
1511
1512                 /*
1513                  * If a reference remains (rare), we would like to leave
1514                  * the page in the swap cache; but try_to_unmap could
1515                  * then re-duplicate the entry once we drop page lock,
1516                  * so we might loop indefinitely; also, that page could
1517                  * not be swapped out to other storage meanwhile.  So:
1518                  * delete from cache even if there's another reference,
1519                  * after ensuring that the data has been saved to disk -
1520                  * since if the reference remains (rarer), it will be
1521                  * read from disk into another page.  Splitting into two
1522                  * pages would be incorrect if swap supported "shared
1523                  * private" pages, but they are handled by tmpfs files.
1524                  *
1525                  * Given how unuse_vma() targets one particular offset
1526                  * in an anon_vma, once the anon_vma has been determined,
1527                  * this splitting happens to be just what is needed to
1528                  * handle where KSM pages have been swapped out: re-reading
1529                  * is unnecessarily slow, but we can fix that later on.
1530                  */
1531                 if (swap_count(*swap_map) &&
1532                      PageDirty(page) && PageSwapCache(page)) {
1533                         struct writeback_control wbc = {
1534                                 .sync_mode = WB_SYNC_NONE,
1535                         };
1536
1537                         swap_writepage(page, &wbc);
1538                         lock_page(page);
1539                         wait_on_page_writeback(page);
1540                 }
1541
1542                 /*
1543                  * It is conceivable that a racing task removed this page from
1544                  * swap cache just before we acquired the page lock at the top,
1545                  * or while we dropped it in unuse_mm().  The page might even
1546                  * be back in swap cache on another swap area: that we must not
1547                  * delete, since it may not have been written out to swap yet.
1548                  */
1549                 if (PageSwapCache(page) &&
1550                     likely(page_private(page) == entry.val))
1551                         delete_from_swap_cache(page);
1552
1553                 /*
1554                  * So we could skip searching mms once swap count went
1555                  * to 1, we did not mark any present ptes as dirty: must
1556                  * mark page dirty so shrink_page_list will preserve it.
1557                  */
1558                 SetPageDirty(page);
1559                 unlock_page(page);
1560                 page_cache_release(page);
1561
1562                 /*
1563                  * Make sure that we aren't completely killing
1564                  * interactive performance.
1565                  */
1566                 cond_resched();
1567                 if (frontswap && pages_to_unuse > 0) {
1568                         if (!--pages_to_unuse)
1569                                 break;
1570                 }
1571         }
1572
1573         mmput(start_mm);
1574         return retval;
1575 }
1576
1577 /*
1578  * After a successful try_to_unuse, if no swap is now in use, we know
1579  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1580  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1581  * added to the mmlist just after page_duplicate - before would be racy.
1582  */
1583 static void drain_mmlist(void)
1584 {
1585         struct list_head *p, *next;
1586         unsigned int type;
1587
1588         for (type = 0; type < nr_swapfiles; type++)
1589                 if (swap_info[type]->inuse_pages)
1590                         return;
1591         spin_lock(&mmlist_lock);
1592         list_for_each_safe(p, next, &init_mm.mmlist)
1593                 list_del_init(p);
1594         spin_unlock(&mmlist_lock);
1595 }
1596
1597 /*
1598  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1599  * corresponds to page offset for the specified swap entry.
1600  * Note that the type of this function is sector_t, but it returns page offset
1601  * into the bdev, not sector offset.
1602  */
1603 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1604 {
1605         struct swap_info_struct *sis;
1606         struct swap_extent *start_se;
1607         struct swap_extent *se;
1608         pgoff_t offset;
1609
1610         sis = swap_info[swp_type(entry)];
1611         *bdev = sis->bdev;
1612
1613         offset = swp_offset(entry);
1614         start_se = sis->curr_swap_extent;
1615         se = start_se;
1616
1617         for ( ; ; ) {
1618                 struct list_head *lh;
1619
1620                 if (se->start_page <= offset &&
1621                                 offset < (se->start_page + se->nr_pages)) {
1622                         return se->start_block + (offset - se->start_page);
1623                 }
1624                 lh = se->list.next;
1625                 se = list_entry(lh, struct swap_extent, list);
1626                 sis->curr_swap_extent = se;
1627                 BUG_ON(se == start_se);         /* It *must* be present */
1628         }
1629 }
1630
1631 /*
1632  * Returns the page offset into bdev for the specified page's swap entry.
1633  */
1634 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1635 {
1636         swp_entry_t entry;
1637         entry.val = page_private(page);
1638         return map_swap_entry(entry, bdev);
1639 }
1640
1641 /*
1642  * Free all of a swapdev's extent information
1643  */
1644 static void destroy_swap_extents(struct swap_info_struct *sis)
1645 {
1646         while (!list_empty(&sis->first_swap_extent.list)) {
1647                 struct swap_extent *se;
1648
1649                 se = list_entry(sis->first_swap_extent.list.next,
1650                                 struct swap_extent, list);
1651                 list_del(&se->list);
1652                 kfree(se);
1653         }
1654
1655         if (sis->flags & SWP_FILE) {
1656                 struct file *swap_file = sis->swap_file;
1657                 struct address_space *mapping = swap_file->f_mapping;
1658
1659                 sis->flags &= ~SWP_FILE;
1660                 mapping->a_ops->swap_deactivate(swap_file);
1661         }
1662 }
1663
1664 /*
1665  * Add a block range (and the corresponding page range) into this swapdev's
1666  * extent list.  The extent list is kept sorted in page order.
1667  *
1668  * This function rather assumes that it is called in ascending page order.
1669  */
1670 int
1671 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1672                 unsigned long nr_pages, sector_t start_block)
1673 {
1674         struct swap_extent *se;
1675         struct swap_extent *new_se;
1676         struct list_head *lh;
1677
1678         if (start_page == 0) {
1679                 se = &sis->first_swap_extent;
1680                 sis->curr_swap_extent = se;
1681                 se->start_page = 0;
1682                 se->nr_pages = nr_pages;
1683                 se->start_block = start_block;
1684                 return 1;
1685         } else {
1686                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1687                 se = list_entry(lh, struct swap_extent, list);
1688                 BUG_ON(se->start_page + se->nr_pages != start_page);
1689                 if (se->start_block + se->nr_pages == start_block) {
1690                         /* Merge it */
1691                         se->nr_pages += nr_pages;
1692                         return 0;
1693                 }
1694         }
1695
1696         /*
1697          * No merge.  Insert a new extent, preserving ordering.
1698          */
1699         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1700         if (new_se == NULL)
1701                 return -ENOMEM;
1702         new_se->start_page = start_page;
1703         new_se->nr_pages = nr_pages;
1704         new_se->start_block = start_block;
1705
1706         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1707         return 1;
1708 }
1709
1710 /*
1711  * A `swap extent' is a simple thing which maps a contiguous range of pages
1712  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1713  * is built at swapon time and is then used at swap_writepage/swap_readpage
1714  * time for locating where on disk a page belongs.
1715  *
1716  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1717  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1718  * swap files identically.
1719  *
1720  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1721  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1722  * swapfiles are handled *identically* after swapon time.
1723  *
1724  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1725  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1726  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1727  * requirements, they are simply tossed out - we will never use those blocks
1728  * for swapping.
1729  *
1730  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1731  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1732  * which will scribble on the fs.
1733  *
1734  * The amount of disk space which a single swap extent represents varies.
1735  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1736  * extents in the list.  To avoid much list walking, we cache the previous
1737  * search location in `curr_swap_extent', and start new searches from there.
1738  * This is extremely effective.  The average number of iterations in
1739  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1740  */
1741 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1742 {
1743         struct file *swap_file = sis->swap_file;
1744         struct address_space *mapping = swap_file->f_mapping;
1745         struct inode *inode = mapping->host;
1746         int ret;
1747
1748         if (S_ISBLK(inode->i_mode)) {
1749                 ret = add_swap_extent(sis, 0, sis->max, 0);
1750                 *span = sis->pages;
1751                 return ret;
1752         }
1753
1754         if (mapping->a_ops->swap_activate) {
1755                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1756                 if (!ret) {
1757                         sis->flags |= SWP_FILE;
1758                         ret = add_swap_extent(sis, 0, sis->max, 0);
1759                         *span = sis->pages;
1760                 }
1761                 return ret;
1762         }
1763
1764         return generic_swapfile_activate(sis, swap_file, span);
1765 }
1766
1767 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1768                                 unsigned char *swap_map,
1769                                 struct swap_cluster_info *cluster_info)
1770 {
1771         if (prio >= 0)
1772                 p->prio = prio;
1773         else
1774                 p->prio = --least_priority;
1775         /*
1776          * the plist prio is negated because plist ordering is
1777          * low-to-high, while swap ordering is high-to-low
1778          */
1779         p->list.prio = -p->prio;
1780         p->avail_list.prio = -p->prio;
1781         p->swap_map = swap_map;
1782         p->cluster_info = cluster_info;
1783         p->flags |= SWP_WRITEOK;
1784         atomic_long_add(p->pages, &nr_swap_pages);
1785         total_swap_pages += p->pages;
1786
1787         assert_spin_locked(&swap_lock);
1788         /*
1789          * both lists are plists, and thus priority ordered.
1790          * swap_active_head needs to be priority ordered for swapoff(),
1791          * which on removal of any swap_info_struct with an auto-assigned
1792          * (i.e. negative) priority increments the auto-assigned priority
1793          * of any lower-priority swap_info_structs.
1794          * swap_avail_head needs to be priority ordered for get_swap_page(),
1795          * which allocates swap pages from the highest available priority
1796          * swap_info_struct.
1797          */
1798         plist_add(&p->list, &swap_active_head);
1799         spin_lock(&swap_avail_lock);
1800         plist_add(&p->avail_list, &swap_avail_head);
1801         spin_unlock(&swap_avail_lock);
1802 }
1803
1804 static void enable_swap_info(struct swap_info_struct *p, int prio,
1805                                 unsigned char *swap_map,
1806                                 struct swap_cluster_info *cluster_info,
1807                                 unsigned long *frontswap_map)
1808 {
1809         frontswap_init(p->type, frontswap_map);
1810         spin_lock(&swap_lock);
1811         spin_lock(&p->lock);
1812          _enable_swap_info(p, prio, swap_map, cluster_info);
1813         spin_unlock(&p->lock);
1814         spin_unlock(&swap_lock);
1815 }
1816
1817 static void reinsert_swap_info(struct swap_info_struct *p)
1818 {
1819         spin_lock(&swap_lock);
1820         spin_lock(&p->lock);
1821         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1822         spin_unlock(&p->lock);
1823         spin_unlock(&swap_lock);
1824 }
1825
1826 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1827 {
1828         struct swap_info_struct *p = NULL;
1829         unsigned char *swap_map;
1830         struct swap_cluster_info *cluster_info;
1831         unsigned long *frontswap_map;
1832         struct file *swap_file, *victim;
1833         struct address_space *mapping;
1834         struct inode *inode;
1835         struct filename *pathname;
1836         int err, found = 0;
1837         unsigned int old_block_size;
1838
1839         if (!capable(CAP_SYS_ADMIN))
1840                 return -EPERM;
1841
1842         BUG_ON(!current->mm);
1843
1844         pathname = getname(specialfile);
1845         if (IS_ERR(pathname))
1846                 return PTR_ERR(pathname);
1847
1848         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1849         err = PTR_ERR(victim);
1850         if (IS_ERR(victim))
1851                 goto out;
1852
1853         mapping = victim->f_mapping;
1854         spin_lock(&swap_lock);
1855         plist_for_each_entry(p, &swap_active_head, list) {
1856                 if (p->flags & SWP_WRITEOK) {
1857                         if (p->swap_file->f_mapping == mapping) {
1858                                 found = 1;
1859                                 break;
1860                         }
1861                 }
1862         }
1863         if (!found) {
1864                 err = -EINVAL;
1865                 spin_unlock(&swap_lock);
1866                 goto out_dput;
1867         }
1868         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1869                 vm_unacct_memory(p->pages);
1870         else {
1871                 err = -ENOMEM;
1872                 spin_unlock(&swap_lock);
1873                 goto out_dput;
1874         }
1875         spin_lock(&swap_avail_lock);
1876         plist_del(&p->avail_list, &swap_avail_head);
1877         spin_unlock(&swap_avail_lock);
1878         spin_lock(&p->lock);
1879         if (p->prio < 0) {
1880                 struct swap_info_struct *si = p;
1881
1882                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1883                         si->prio++;
1884                         si->list.prio--;
1885                         si->avail_list.prio--;
1886                 }
1887                 least_priority++;
1888         }
1889         plist_del(&p->list, &swap_active_head);
1890         atomic_long_sub(p->pages, &nr_swap_pages);
1891         total_swap_pages -= p->pages;
1892         p->flags &= ~SWP_WRITEOK;
1893         spin_unlock(&p->lock);
1894         spin_unlock(&swap_lock);
1895
1896         set_current_oom_origin();
1897         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1898         clear_current_oom_origin();
1899
1900         if (err) {
1901                 /* re-insert swap space back into swap_list */
1902                 reinsert_swap_info(p);
1903                 goto out_dput;
1904         }
1905
1906         flush_work(&p->discard_work);
1907
1908         destroy_swap_extents(p);
1909         if (p->flags & SWP_CONTINUED)
1910                 free_swap_count_continuations(p);
1911
1912         mutex_lock(&swapon_mutex);
1913         spin_lock(&swap_lock);
1914         spin_lock(&p->lock);
1915         drain_mmlist();
1916
1917         /* wait for anyone still in scan_swap_map */
1918         p->highest_bit = 0;             /* cuts scans short */
1919         while (p->flags >= SWP_SCANNING) {
1920                 spin_unlock(&p->lock);
1921                 spin_unlock(&swap_lock);
1922                 schedule_timeout_uninterruptible(1);
1923                 spin_lock(&swap_lock);
1924                 spin_lock(&p->lock);
1925         }
1926
1927         swap_file = p->swap_file;
1928         old_block_size = p->old_block_size;
1929         p->swap_file = NULL;
1930         p->max = 0;
1931         swap_map = p->swap_map;
1932         p->swap_map = NULL;
1933         cluster_info = p->cluster_info;
1934         p->cluster_info = NULL;
1935         frontswap_map = frontswap_map_get(p);
1936         spin_unlock(&p->lock);
1937         spin_unlock(&swap_lock);
1938         frontswap_invalidate_area(p->type);
1939         frontswap_map_set(p, NULL);
1940         mutex_unlock(&swapon_mutex);
1941         free_percpu(p->percpu_cluster);
1942         p->percpu_cluster = NULL;
1943         vfree(swap_map);
1944         vfree(cluster_info);
1945         vfree(frontswap_map);
1946         /* Destroy swap account information */
1947         swap_cgroup_swapoff(p->type);
1948
1949         inode = mapping->host;
1950         if (S_ISBLK(inode->i_mode)) {
1951                 struct block_device *bdev = I_BDEV(inode);
1952                 set_blocksize(bdev, old_block_size);
1953                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1954         } else {
1955                 mutex_lock(&inode->i_mutex);
1956                 inode->i_flags &= ~S_SWAPFILE;
1957                 mutex_unlock(&inode->i_mutex);
1958         }
1959         filp_close(swap_file, NULL);
1960
1961         /*
1962          * Clear the SWP_USED flag after all resources are freed so that swapon
1963          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1964          * not hold p->lock after we cleared its SWP_WRITEOK.
1965          */
1966         spin_lock(&swap_lock);
1967         p->flags = 0;
1968         spin_unlock(&swap_lock);
1969
1970         err = 0;
1971         atomic_inc(&proc_poll_event);
1972         wake_up_interruptible(&proc_poll_wait);
1973
1974 out_dput:
1975         filp_close(victim, NULL);
1976 out:
1977         putname(pathname);
1978         return err;
1979 }
1980
1981 #ifdef CONFIG_PROC_FS
1982 static unsigned swaps_poll(struct file *file, poll_table *wait)
1983 {
1984         struct seq_file *seq = file->private_data;
1985
1986         poll_wait(file, &proc_poll_wait, wait);
1987
1988         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1989                 seq->poll_event = atomic_read(&proc_poll_event);
1990                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1991         }
1992
1993         return POLLIN | POLLRDNORM;
1994 }
1995
1996 /* iterator */
1997 static void *swap_start(struct seq_file *swap, loff_t *pos)
1998 {
1999         struct swap_info_struct *si;
2000         int type;
2001         loff_t l = *pos;
2002
2003         mutex_lock(&swapon_mutex);
2004
2005         if (!l)
2006                 return SEQ_START_TOKEN;
2007
2008         for (type = 0; type < nr_swapfiles; type++) {
2009                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2010                 si = swap_info[type];
2011                 if (!(si->flags & SWP_USED) || !si->swap_map)
2012                         continue;
2013                 if (!--l)
2014                         return si;
2015         }
2016
2017         return NULL;
2018 }
2019
2020 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2021 {
2022         struct swap_info_struct *si = v;
2023         int type;
2024
2025         if (v == SEQ_START_TOKEN)
2026                 type = 0;
2027         else
2028                 type = si->type + 1;
2029
2030         for (; type < nr_swapfiles; type++) {
2031                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2032                 si = swap_info[type];
2033                 if (!(si->flags & SWP_USED) || !si->swap_map)
2034                         continue;
2035                 ++*pos;
2036                 return si;
2037         }
2038
2039         return NULL;
2040 }
2041
2042 static void swap_stop(struct seq_file *swap, void *v)
2043 {
2044         mutex_unlock(&swapon_mutex);
2045 }
2046
2047 static int swap_show(struct seq_file *swap, void *v)
2048 {
2049         struct swap_info_struct *si = v;
2050         struct file *file;
2051         int len;
2052
2053         if (si == SEQ_START_TOKEN) {
2054                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2055                 return 0;
2056         }
2057
2058         file = si->swap_file;
2059         len = seq_path(swap, &file->f_path, " \t\n\\");
2060         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2061                         len < 40 ? 40 - len : 1, " ",
2062                         S_ISBLK(file_inode(file)->i_mode) ?
2063                                 "partition" : "file\t",
2064                         si->pages << (PAGE_SHIFT - 10),
2065                         si->inuse_pages << (PAGE_SHIFT - 10),
2066                         si->prio);
2067         return 0;
2068 }
2069
2070 static const struct seq_operations swaps_op = {
2071         .start =        swap_start,
2072         .next =         swap_next,
2073         .stop =         swap_stop,
2074         .show =         swap_show
2075 };
2076
2077 static int swaps_open(struct inode *inode, struct file *file)
2078 {
2079         struct seq_file *seq;
2080         int ret;
2081
2082         ret = seq_open(file, &swaps_op);
2083         if (ret)
2084                 return ret;
2085
2086         seq = file->private_data;
2087         seq->poll_event = atomic_read(&proc_poll_event);
2088         return 0;
2089 }
2090
2091 static const struct file_operations proc_swaps_operations = {
2092         .open           = swaps_open,
2093         .read           = seq_read,
2094         .llseek         = seq_lseek,
2095         .release        = seq_release,
2096         .poll           = swaps_poll,
2097 };
2098
2099 static int __init procswaps_init(void)
2100 {
2101         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2102         return 0;
2103 }
2104 __initcall(procswaps_init);
2105 #endif /* CONFIG_PROC_FS */
2106
2107 #ifdef MAX_SWAPFILES_CHECK
2108 static int __init max_swapfiles_check(void)
2109 {
2110         MAX_SWAPFILES_CHECK();
2111         return 0;
2112 }
2113 late_initcall(max_swapfiles_check);
2114 #endif
2115
2116 static struct swap_info_struct *alloc_swap_info(void)
2117 {
2118         struct swap_info_struct *p;
2119         unsigned int type;
2120
2121         p = kzalloc(sizeof(*p), GFP_KERNEL);
2122         if (!p)
2123                 return ERR_PTR(-ENOMEM);
2124
2125         spin_lock(&swap_lock);
2126         for (type = 0; type < nr_swapfiles; type++) {
2127                 if (!(swap_info[type]->flags & SWP_USED))
2128                         break;
2129         }
2130         if (type >= MAX_SWAPFILES) {
2131                 spin_unlock(&swap_lock);
2132                 kfree(p);
2133                 return ERR_PTR(-EPERM);
2134         }
2135         if (type >= nr_swapfiles) {
2136                 p->type = type;
2137                 swap_info[type] = p;
2138                 /*
2139                  * Write swap_info[type] before nr_swapfiles, in case a
2140                  * racing procfs swap_start() or swap_next() is reading them.
2141                  * (We never shrink nr_swapfiles, we never free this entry.)
2142                  */
2143                 smp_wmb();
2144                 nr_swapfiles++;
2145         } else {
2146                 kfree(p);
2147                 p = swap_info[type];
2148                 /*
2149                  * Do not memset this entry: a racing procfs swap_next()
2150                  * would be relying on p->type to remain valid.
2151                  */
2152         }
2153         INIT_LIST_HEAD(&p->first_swap_extent.list);
2154         plist_node_init(&p->list, 0);
2155         plist_node_init(&p->avail_list, 0);
2156         p->flags = SWP_USED;
2157         spin_unlock(&swap_lock);
2158         spin_lock_init(&p->lock);
2159
2160         return p;
2161 }
2162
2163 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2164 {
2165         int error;
2166
2167         if (S_ISBLK(inode->i_mode)) {
2168                 p->bdev = bdgrab(I_BDEV(inode));
2169                 error = blkdev_get(p->bdev,
2170                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2171                                    sys_swapon);
2172                 if (error < 0) {
2173                         p->bdev = NULL;
2174                         return -EINVAL;
2175                 }
2176                 p->old_block_size = block_size(p->bdev);
2177                 error = set_blocksize(p->bdev, PAGE_SIZE);
2178                 if (error < 0)
2179                         return error;
2180                 p->flags |= SWP_BLKDEV;
2181         } else if (S_ISREG(inode->i_mode)) {
2182                 p->bdev = inode->i_sb->s_bdev;
2183                 mutex_lock(&inode->i_mutex);
2184                 if (IS_SWAPFILE(inode))
2185                         return -EBUSY;
2186         } else
2187                 return -EINVAL;
2188
2189         return 0;
2190 }
2191
2192 static unsigned long read_swap_header(struct swap_info_struct *p,
2193                                         union swap_header *swap_header,
2194                                         struct inode *inode)
2195 {
2196         int i;
2197         unsigned long maxpages;
2198         unsigned long swapfilepages;
2199         unsigned long last_page;
2200
2201         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2202                 pr_err("Unable to find swap-space signature\n");
2203                 return 0;
2204         }
2205
2206         /* swap partition endianess hack... */
2207         if (swab32(swap_header->info.version) == 1) {
2208                 swab32s(&swap_header->info.version);
2209                 swab32s(&swap_header->info.last_page);
2210                 swab32s(&swap_header->info.nr_badpages);
2211                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2212                         swab32s(&swap_header->info.badpages[i]);
2213         }
2214         /* Check the swap header's sub-version */
2215         if (swap_header->info.version != 1) {
2216                 pr_warn("Unable to handle swap header version %d\n",
2217                         swap_header->info.version);
2218                 return 0;
2219         }
2220
2221         p->lowest_bit  = 1;
2222         p->cluster_next = 1;
2223         p->cluster_nr = 0;
2224
2225         /*
2226          * Find out how many pages are allowed for a single swap
2227          * device. There are two limiting factors: 1) the number
2228          * of bits for the swap offset in the swp_entry_t type, and
2229          * 2) the number of bits in the swap pte as defined by the
2230          * different architectures. In order to find the
2231          * largest possible bit mask, a swap entry with swap type 0
2232          * and swap offset ~0UL is created, encoded to a swap pte,
2233          * decoded to a swp_entry_t again, and finally the swap
2234          * offset is extracted. This will mask all the bits from
2235          * the initial ~0UL mask that can't be encoded in either
2236          * the swp_entry_t or the architecture definition of a
2237          * swap pte.
2238          */
2239         maxpages = swp_offset(pte_to_swp_entry(
2240                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2241         last_page = swap_header->info.last_page;
2242         if (last_page > maxpages) {
2243                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2244                         maxpages << (PAGE_SHIFT - 10),
2245                         last_page << (PAGE_SHIFT - 10));
2246         }
2247         if (maxpages > last_page) {
2248                 maxpages = last_page + 1;
2249                 /* p->max is an unsigned int: don't overflow it */
2250                 if ((unsigned int)maxpages == 0)
2251                         maxpages = UINT_MAX;
2252         }
2253         p->highest_bit = maxpages - 1;
2254
2255         if (!maxpages)
2256                 return 0;
2257         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2258         if (swapfilepages && maxpages > swapfilepages) {
2259                 pr_warn("Swap area shorter than signature indicates\n");
2260                 return 0;
2261         }
2262         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2263                 return 0;
2264         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2265                 return 0;
2266
2267         return maxpages;
2268 }
2269
2270 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2271                                         union swap_header *swap_header,
2272                                         unsigned char *swap_map,
2273                                         struct swap_cluster_info *cluster_info,
2274                                         unsigned long maxpages,
2275                                         sector_t *span)
2276 {
2277         int i;
2278         unsigned int nr_good_pages;
2279         int nr_extents;
2280         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2281         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2282
2283         nr_good_pages = maxpages - 1;   /* omit header page */
2284
2285         cluster_set_null(&p->free_cluster_head);
2286         cluster_set_null(&p->free_cluster_tail);
2287         cluster_set_null(&p->discard_cluster_head);
2288         cluster_set_null(&p->discard_cluster_tail);
2289
2290         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2291                 unsigned int page_nr = swap_header->info.badpages[i];
2292                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2293                         return -EINVAL;
2294                 if (page_nr < maxpages) {
2295                         swap_map[page_nr] = SWAP_MAP_BAD;
2296                         nr_good_pages--;
2297                         /*
2298                          * Haven't marked the cluster free yet, no list
2299                          * operation involved
2300                          */
2301                         inc_cluster_info_page(p, cluster_info, page_nr);
2302                 }
2303         }
2304
2305         /* Haven't marked the cluster free yet, no list operation involved */
2306         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2307                 inc_cluster_info_page(p, cluster_info, i);
2308
2309         if (nr_good_pages) {
2310                 swap_map[0] = SWAP_MAP_BAD;
2311                 /*
2312                  * Not mark the cluster free yet, no list
2313                  * operation involved
2314                  */
2315                 inc_cluster_info_page(p, cluster_info, 0);
2316                 p->max = maxpages;
2317                 p->pages = nr_good_pages;
2318                 nr_extents = setup_swap_extents(p, span);
2319                 if (nr_extents < 0)
2320                         return nr_extents;
2321                 nr_good_pages = p->pages;
2322         }
2323         if (!nr_good_pages) {
2324                 pr_warn("Empty swap-file\n");
2325                 return -EINVAL;
2326         }
2327
2328         if (!cluster_info)
2329                 return nr_extents;
2330
2331         for (i = 0; i < nr_clusters; i++) {
2332                 if (!cluster_count(&cluster_info[idx])) {
2333                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2334                         if (cluster_is_null(&p->free_cluster_head)) {
2335                                 cluster_set_next_flag(&p->free_cluster_head,
2336                                                                 idx, 0);
2337                                 cluster_set_next_flag(&p->free_cluster_tail,
2338                                                                 idx, 0);
2339                         } else {
2340                                 unsigned int tail;
2341
2342                                 tail = cluster_next(&p->free_cluster_tail);
2343                                 cluster_set_next(&cluster_info[tail], idx);
2344                                 cluster_set_next_flag(&p->free_cluster_tail,
2345                                                                 idx, 0);
2346                         }
2347                 }
2348                 idx++;
2349                 if (idx == nr_clusters)
2350                         idx = 0;
2351         }
2352         return nr_extents;
2353 }
2354
2355 /*
2356  * Helper to sys_swapon determining if a given swap
2357  * backing device queue supports DISCARD operations.
2358  */
2359 static bool swap_discardable(struct swap_info_struct *si)
2360 {
2361         struct request_queue *q = bdev_get_queue(si->bdev);
2362
2363         if (!q || !blk_queue_discard(q))
2364                 return false;
2365
2366         return true;
2367 }
2368
2369 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2370 {
2371         struct swap_info_struct *p;
2372         struct filename *name;
2373         struct file *swap_file = NULL;
2374         struct address_space *mapping;
2375         int i;
2376         int prio;
2377         int error;
2378         union swap_header *swap_header;
2379         int nr_extents;
2380         sector_t span;
2381         unsigned long maxpages;
2382         unsigned char *swap_map = NULL;
2383         struct swap_cluster_info *cluster_info = NULL;
2384         unsigned long *frontswap_map = NULL;
2385         struct page *page = NULL;
2386         struct inode *inode = NULL;
2387
2388         if (swap_flags & ~SWAP_FLAGS_VALID)
2389                 return -EINVAL;
2390
2391         if (!capable(CAP_SYS_ADMIN))
2392                 return -EPERM;
2393
2394         p = alloc_swap_info();
2395         if (IS_ERR(p))
2396                 return PTR_ERR(p);
2397
2398         INIT_WORK(&p->discard_work, swap_discard_work);
2399
2400         name = getname(specialfile);
2401         if (IS_ERR(name)) {
2402                 error = PTR_ERR(name);
2403                 name = NULL;
2404                 goto bad_swap;
2405         }
2406         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2407         if (IS_ERR(swap_file)) {
2408                 error = PTR_ERR(swap_file);
2409                 swap_file = NULL;
2410                 goto bad_swap;
2411         }
2412
2413         p->swap_file = swap_file;
2414         mapping = swap_file->f_mapping;
2415
2416         for (i = 0; i < nr_swapfiles; i++) {
2417                 struct swap_info_struct *q = swap_info[i];
2418
2419                 if (q == p || !q->swap_file)
2420                         continue;
2421                 if (mapping == q->swap_file->f_mapping) {
2422                         error = -EBUSY;
2423                         goto bad_swap;
2424                 }
2425         }
2426
2427         inode = mapping->host;
2428         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2429         error = claim_swapfile(p, inode);
2430         if (unlikely(error))
2431                 goto bad_swap;
2432
2433         /*
2434          * Read the swap header.
2435          */
2436         if (!mapping->a_ops->readpage) {
2437                 error = -EINVAL;
2438                 goto bad_swap;
2439         }
2440         page = read_mapping_page(mapping, 0, swap_file);
2441         if (IS_ERR(page)) {
2442                 error = PTR_ERR(page);
2443                 goto bad_swap;
2444         }
2445         swap_header = kmap(page);
2446
2447         maxpages = read_swap_header(p, swap_header, inode);
2448         if (unlikely(!maxpages)) {
2449                 error = -EINVAL;
2450                 goto bad_swap;
2451         }
2452
2453         /* OK, set up the swap map and apply the bad block list */
2454         swap_map = vzalloc(maxpages);
2455         if (!swap_map) {
2456                 error = -ENOMEM;
2457                 goto bad_swap;
2458         }
2459         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2460                 p->flags |= SWP_SOLIDSTATE;
2461                 /*
2462                  * select a random position to start with to help wear leveling
2463                  * SSD
2464                  */
2465                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2466
2467                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2468                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2469                 if (!cluster_info) {
2470                         error = -ENOMEM;
2471                         goto bad_swap;
2472                 }
2473                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2474                 if (!p->percpu_cluster) {
2475                         error = -ENOMEM;
2476                         goto bad_swap;
2477                 }
2478                 for_each_possible_cpu(i) {
2479                         struct percpu_cluster *cluster;
2480                         cluster = per_cpu_ptr(p->percpu_cluster, i);
2481                         cluster_set_null(&cluster->index);
2482                 }
2483         }
2484
2485         error = swap_cgroup_swapon(p->type, maxpages);
2486         if (error)
2487                 goto bad_swap;
2488
2489         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2490                 cluster_info, maxpages, &span);
2491         if (unlikely(nr_extents < 0)) {
2492                 error = nr_extents;
2493                 goto bad_swap;
2494         }
2495         /* frontswap enabled? set up bit-per-page map for frontswap */
2496         if (frontswap_enabled)
2497                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2498
2499         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2500                 /*
2501                  * When discard is enabled for swap with no particular
2502                  * policy flagged, we set all swap discard flags here in
2503                  * order to sustain backward compatibility with older
2504                  * swapon(8) releases.
2505                  */
2506                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2507                              SWP_PAGE_DISCARD);
2508
2509                 /*
2510                  * By flagging sys_swapon, a sysadmin can tell us to
2511                  * either do single-time area discards only, or to just
2512                  * perform discards for released swap page-clusters.
2513                  * Now it's time to adjust the p->flags accordingly.
2514                  */
2515                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2516                         p->flags &= ~SWP_PAGE_DISCARD;
2517                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2518                         p->flags &= ~SWP_AREA_DISCARD;
2519
2520                 /* issue a swapon-time discard if it's still required */
2521                 if (p->flags & SWP_AREA_DISCARD) {
2522                         int err = discard_swap(p);
2523                         if (unlikely(err))
2524                                 pr_err("swapon: discard_swap(%p): %d\n",
2525                                         p, err);
2526                 }
2527         }
2528
2529         mutex_lock(&swapon_mutex);
2530         prio = -1;
2531         if (swap_flags & SWAP_FLAG_PREFER)
2532                 prio =
2533                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2534         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2535
2536         pr_info("Adding %uk swap on %s.  "
2537                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2538                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2539                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2540                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2541                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2542                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2543                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2544                 (frontswap_map) ? "FS" : "");
2545
2546         mutex_unlock(&swapon_mutex);
2547         atomic_inc(&proc_poll_event);
2548         wake_up_interruptible(&proc_poll_wait);
2549
2550         if (S_ISREG(inode->i_mode))
2551                 inode->i_flags |= S_SWAPFILE;
2552         error = 0;
2553         goto out;
2554 bad_swap:
2555         free_percpu(p->percpu_cluster);
2556         p->percpu_cluster = NULL;
2557         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2558                 set_blocksize(p->bdev, p->old_block_size);
2559                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2560         }
2561         destroy_swap_extents(p);
2562         swap_cgroup_swapoff(p->type);
2563         spin_lock(&swap_lock);
2564         p->swap_file = NULL;
2565         p->flags = 0;
2566         spin_unlock(&swap_lock);
2567         vfree(swap_map);
2568         vfree(cluster_info);
2569         if (swap_file) {
2570                 if (inode && S_ISREG(inode->i_mode)) {
2571                         mutex_unlock(&inode->i_mutex);
2572                         inode = NULL;
2573                 }
2574                 filp_close(swap_file, NULL);
2575         }
2576 out:
2577         if (page && !IS_ERR(page)) {
2578                 kunmap(page);
2579                 page_cache_release(page);
2580         }
2581         if (name)
2582                 putname(name);
2583         if (inode && S_ISREG(inode->i_mode))
2584                 mutex_unlock(&inode->i_mutex);
2585         return error;
2586 }
2587
2588 void si_swapinfo(struct sysinfo *val)
2589 {
2590         unsigned int type;
2591         unsigned long nr_to_be_unused = 0;
2592
2593         spin_lock(&swap_lock);
2594         for (type = 0; type < nr_swapfiles; type++) {
2595                 struct swap_info_struct *si = swap_info[type];
2596
2597                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2598                         nr_to_be_unused += si->inuse_pages;
2599         }
2600         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2601         val->totalswap = total_swap_pages + nr_to_be_unused;
2602         spin_unlock(&swap_lock);
2603 }
2604
2605 /*
2606  * Verify that a swap entry is valid and increment its swap map count.
2607  *
2608  * Returns error code in following case.
2609  * - success -> 0
2610  * - swp_entry is invalid -> EINVAL
2611  * - swp_entry is migration entry -> EINVAL
2612  * - swap-cache reference is requested but there is already one. -> EEXIST
2613  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2614  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2615  */
2616 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2617 {
2618         struct swap_info_struct *p;
2619         unsigned long offset, type;
2620         unsigned char count;
2621         unsigned char has_cache;
2622         int err = -EINVAL;
2623
2624         if (non_swap_entry(entry))
2625                 goto out;
2626
2627         type = swp_type(entry);
2628         if (type >= nr_swapfiles)
2629                 goto bad_file;
2630         p = swap_info[type];
2631         offset = swp_offset(entry);
2632
2633         spin_lock(&p->lock);
2634         if (unlikely(offset >= p->max))
2635                 goto unlock_out;
2636
2637         count = p->swap_map[offset];
2638
2639         /*
2640          * swapin_readahead() doesn't check if a swap entry is valid, so the
2641          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2642          */
2643         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2644                 err = -ENOENT;
2645                 goto unlock_out;
2646         }
2647
2648         has_cache = count & SWAP_HAS_CACHE;
2649         count &= ~SWAP_HAS_CACHE;
2650         err = 0;
2651
2652         if (usage == SWAP_HAS_CACHE) {
2653
2654                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2655                 if (!has_cache && count)
2656                         has_cache = SWAP_HAS_CACHE;
2657                 else if (has_cache)             /* someone else added cache */
2658                         err = -EEXIST;
2659                 else                            /* no users remaining */
2660                         err = -ENOENT;
2661
2662         } else if (count || has_cache) {
2663
2664                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2665                         count += usage;
2666                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2667                         err = -EINVAL;
2668                 else if (swap_count_continued(p, offset, count))
2669                         count = COUNT_CONTINUED;
2670                 else
2671                         err = -ENOMEM;
2672         } else
2673                 err = -ENOENT;                  /* unused swap entry */
2674
2675         p->swap_map[offset] = count | has_cache;
2676
2677 unlock_out:
2678         spin_unlock(&p->lock);
2679 out:
2680         return err;
2681
2682 bad_file:
2683         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2684         goto out;
2685 }
2686
2687 /*
2688  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2689  * (in which case its reference count is never incremented).
2690  */
2691 void swap_shmem_alloc(swp_entry_t entry)
2692 {
2693         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2694 }
2695
2696 /*
2697  * Increase reference count of swap entry by 1.
2698  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2699  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2700  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2701  * might occur if a page table entry has got corrupted.
2702  */
2703 int swap_duplicate(swp_entry_t entry)
2704 {
2705         int err = 0;
2706
2707         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2708                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2709         return err;
2710 }
2711
2712 /*
2713  * @entry: swap entry for which we allocate swap cache.
2714  *
2715  * Called when allocating swap cache for existing swap entry,
2716  * This can return error codes. Returns 0 at success.
2717  * -EBUSY means there is a swap cache.
2718  * Note: return code is different from swap_duplicate().
2719  */
2720 int swapcache_prepare(swp_entry_t entry)
2721 {
2722         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2723 }
2724
2725 struct swap_info_struct *page_swap_info(struct page *page)
2726 {
2727         swp_entry_t swap = { .val = page_private(page) };
2728         BUG_ON(!PageSwapCache(page));
2729         return swap_info[swp_type(swap)];
2730 }
2731
2732 /*
2733  * out-of-line __page_file_ methods to avoid include hell.
2734  */
2735 struct address_space *__page_file_mapping(struct page *page)
2736 {
2737         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2738         return page_swap_info(page)->swap_file->f_mapping;
2739 }
2740 EXPORT_SYMBOL_GPL(__page_file_mapping);
2741
2742 pgoff_t __page_file_index(struct page *page)
2743 {
2744         swp_entry_t swap = { .val = page_private(page) };
2745         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2746         return swp_offset(swap);
2747 }
2748 EXPORT_SYMBOL_GPL(__page_file_index);
2749
2750 /*
2751  * add_swap_count_continuation - called when a swap count is duplicated
2752  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2753  * page of the original vmalloc'ed swap_map, to hold the continuation count
2754  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2755  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2756  *
2757  * These continuation pages are seldom referenced: the common paths all work
2758  * on the original swap_map, only referring to a continuation page when the
2759  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2760  *
2761  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2762  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2763  * can be called after dropping locks.
2764  */
2765 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2766 {
2767         struct swap_info_struct *si;
2768         struct page *head;
2769         struct page *page;
2770         struct page *list_page;
2771         pgoff_t offset;
2772         unsigned char count;
2773
2774         /*
2775          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2776          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2777          */
2778         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2779
2780         si = swap_info_get(entry);
2781         if (!si) {
2782                 /*
2783                  * An acceptable race has occurred since the failing
2784                  * __swap_duplicate(): the swap entry has been freed,
2785                  * perhaps even the whole swap_map cleared for swapoff.
2786                  */
2787                 goto outer;
2788         }
2789
2790         offset = swp_offset(entry);
2791         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2792
2793         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2794                 /*
2795                  * The higher the swap count, the more likely it is that tasks
2796                  * will race to add swap count continuation: we need to avoid
2797                  * over-provisioning.
2798                  */
2799                 goto out;
2800         }
2801
2802         if (!page) {
2803                 spin_unlock(&si->lock);
2804                 return -ENOMEM;
2805         }
2806
2807         /*
2808          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2809          * no architecture is using highmem pages for kernel page tables: so it
2810          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2811          */
2812         head = vmalloc_to_page(si->swap_map + offset);
2813         offset &= ~PAGE_MASK;
2814
2815         /*
2816          * Page allocation does not initialize the page's lru field,
2817          * but it does always reset its private field.
2818          */
2819         if (!page_private(head)) {
2820                 BUG_ON(count & COUNT_CONTINUED);
2821                 INIT_LIST_HEAD(&head->lru);
2822                 set_page_private(head, SWP_CONTINUED);
2823                 si->flags |= SWP_CONTINUED;
2824         }
2825
2826         list_for_each_entry(list_page, &head->lru, lru) {
2827                 unsigned char *map;
2828
2829                 /*
2830                  * If the previous map said no continuation, but we've found
2831                  * a continuation page, free our allocation and use this one.
2832                  */
2833                 if (!(count & COUNT_CONTINUED))
2834                         goto out;
2835
2836                 map = kmap_atomic(list_page) + offset;
2837                 count = *map;
2838                 kunmap_atomic(map);
2839
2840                 /*
2841                  * If this continuation count now has some space in it,
2842                  * free our allocation and use this one.
2843                  */
2844                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2845                         goto out;
2846         }
2847
2848         list_add_tail(&page->lru, &head->lru);
2849         page = NULL;                    /* now it's attached, don't free it */
2850 out:
2851         spin_unlock(&si->lock);
2852 outer:
2853         if (page)
2854                 __free_page(page);
2855         return 0;
2856 }
2857
2858 /*
2859  * swap_count_continued - when the original swap_map count is incremented
2860  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2861  * into, carry if so, or else fail until a new continuation page is allocated;
2862  * when the original swap_map count is decremented from 0 with continuation,
2863  * borrow from the continuation and report whether it still holds more.
2864  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2865  */
2866 static bool swap_count_continued(struct swap_info_struct *si,
2867                                  pgoff_t offset, unsigned char count)
2868 {
2869         struct page *head;
2870         struct page *page;
2871         unsigned char *map;
2872
2873         head = vmalloc_to_page(si->swap_map + offset);
2874         if (page_private(head) != SWP_CONTINUED) {
2875                 BUG_ON(count & COUNT_CONTINUED);
2876                 return false;           /* need to add count continuation */
2877         }
2878
2879         offset &= ~PAGE_MASK;
2880         page = list_entry(head->lru.next, struct page, lru);
2881         map = kmap_atomic(page) + offset;
2882
2883         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2884                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2885
2886         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2887                 /*
2888                  * Think of how you add 1 to 999
2889                  */
2890                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2891                         kunmap_atomic(map);
2892                         page = list_entry(page->lru.next, struct page, lru);
2893                         BUG_ON(page == head);
2894                         map = kmap_atomic(page) + offset;
2895                 }
2896                 if (*map == SWAP_CONT_MAX) {
2897                         kunmap_atomic(map);
2898                         page = list_entry(page->lru.next, struct page, lru);
2899                         if (page == head)
2900                                 return false;   /* add count continuation */
2901                         map = kmap_atomic(page) + offset;
2902 init_map:               *map = 0;               /* we didn't zero the page */
2903                 }
2904                 *map += 1;
2905                 kunmap_atomic(map);
2906                 page = list_entry(page->lru.prev, struct page, lru);
2907                 while (page != head) {
2908                         map = kmap_atomic(page) + offset;
2909                         *map = COUNT_CONTINUED;
2910                         kunmap_atomic(map);
2911                         page = list_entry(page->lru.prev, struct page, lru);
2912                 }
2913                 return true;                    /* incremented */
2914
2915         } else {                                /* decrementing */
2916                 /*
2917                  * Think of how you subtract 1 from 1000
2918                  */
2919                 BUG_ON(count != COUNT_CONTINUED);
2920                 while (*map == COUNT_CONTINUED) {
2921                         kunmap_atomic(map);
2922                         page = list_entry(page->lru.next, struct page, lru);
2923                         BUG_ON(page == head);
2924                         map = kmap_atomic(page) + offset;
2925                 }
2926                 BUG_ON(*map == 0);
2927                 *map -= 1;
2928                 if (*map == 0)
2929                         count = 0;
2930                 kunmap_atomic(map);
2931                 page = list_entry(page->lru.prev, struct page, lru);
2932                 while (page != head) {
2933                         map = kmap_atomic(page) + offset;
2934                         *map = SWAP_CONT_MAX | count;
2935                         count = COUNT_CONTINUED;
2936                         kunmap_atomic(map);
2937                         page = list_entry(page->lru.prev, struct page, lru);
2938                 }
2939                 return count == COUNT_CONTINUED;
2940         }
2941 }
2942
2943 /*
2944  * free_swap_count_continuations - swapoff free all the continuation pages
2945  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2946  */
2947 static void free_swap_count_continuations(struct swap_info_struct *si)
2948 {
2949         pgoff_t offset;
2950
2951         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2952                 struct page *head;
2953                 head = vmalloc_to_page(si->swap_map + offset);
2954                 if (page_private(head)) {
2955                         struct list_head *this, *next;
2956                         list_for_each_safe(this, next, &head->lru) {
2957                                 struct page *page;
2958                                 page = list_entry(this, struct page, lru);
2959                                 list_del(this);
2960                                 __free_page(page);
2961                         }
2962                 }
2963         }
2964 }