audit: update the mailing list in MAINTAINERS
[platform/kernel/linux-starfive.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51                                  unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58  * Some modules use swappable objects and may try to swap them out under
59  * memory pressure (via the shrinker). Before doing so, they may wish to
60  * check to see if any swap space is available.
61  */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66 unsigned long swapfile_maximum_size;
67 #ifdef CONFIG_MIGRATION
68 bool swap_migration_ad_supported;
69 #endif  /* CONFIG_MIGRATION */
70
71 static const char Bad_file[] = "Bad swap file entry ";
72 static const char Unused_file[] = "Unused swap file entry ";
73 static const char Bad_offset[] = "Bad swap offset entry ";
74 static const char Unused_offset[] = "Unused swap offset entry ";
75
76 /*
77  * all active swap_info_structs
78  * protected with swap_lock, and ordered by priority.
79  */
80 static PLIST_HEAD(swap_active_head);
81
82 /*
83  * all available (active, not full) swap_info_structs
84  * protected with swap_avail_lock, ordered by priority.
85  * This is used by folio_alloc_swap() instead of swap_active_head
86  * because swap_active_head includes all swap_info_structs,
87  * but folio_alloc_swap() doesn't need to look at full ones.
88  * This uses its own lock instead of swap_lock because when a
89  * swap_info_struct changes between not-full/full, it needs to
90  * add/remove itself to/from this list, but the swap_info_struct->lock
91  * is held and the locking order requires swap_lock to be taken
92  * before any swap_info_struct->lock.
93  */
94 static struct plist_head *swap_avail_heads;
95 static DEFINE_SPINLOCK(swap_avail_lock);
96
97 struct swap_info_struct *swap_info[MAX_SWAPFILES];
98
99 static DEFINE_MUTEX(swapon_mutex);
100
101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102 /* Activity counter to indicate that a swapon or swapoff has occurred */
103 static atomic_t proc_poll_event = ATOMIC_INIT(0);
104
105 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
106
107 static struct swap_info_struct *swap_type_to_swap_info(int type)
108 {
109         if (type >= MAX_SWAPFILES)
110                 return NULL;
111
112         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
113 }
114
115 static inline unsigned char swap_count(unsigned char ent)
116 {
117         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
118 }
119
120 /* Reclaim the swap entry anyway if possible */
121 #define TTRS_ANYWAY             0x1
122 /*
123  * Reclaim the swap entry if there are no more mappings of the
124  * corresponding page
125  */
126 #define TTRS_UNMAPPED           0x2
127 /* Reclaim the swap entry if swap is getting full*/
128 #define TTRS_FULL               0x4
129
130 /* returns 1 if swap entry is freed */
131 static int __try_to_reclaim_swap(struct swap_info_struct *si,
132                                  unsigned long offset, unsigned long flags)
133 {
134         swp_entry_t entry = swp_entry(si->type, offset);
135         struct folio *folio;
136         int ret = 0;
137
138         folio = filemap_get_folio(swap_address_space(entry), offset);
139         if (!folio)
140                 return 0;
141         /*
142          * When this function is called from scan_swap_map_slots() and it's
143          * called by vmscan.c at reclaiming folios. So we hold a folio lock
144          * here. We have to use trylock for avoiding deadlock. This is a special
145          * case and you should use folio_free_swap() with explicit folio_lock()
146          * in usual operations.
147          */
148         if (folio_trylock(folio)) {
149                 if ((flags & TTRS_ANYWAY) ||
150                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
151                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
152                         ret = folio_free_swap(folio);
153                 folio_unlock(folio);
154         }
155         folio_put(folio);
156         return ret;
157 }
158
159 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
160 {
161         struct rb_node *rb = rb_first(&sis->swap_extent_root);
162         return rb_entry(rb, struct swap_extent, rb_node);
163 }
164
165 static inline struct swap_extent *next_se(struct swap_extent *se)
166 {
167         struct rb_node *rb = rb_next(&se->rb_node);
168         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
169 }
170
171 /*
172  * swapon tell device that all the old swap contents can be discarded,
173  * to allow the swap device to optimize its wear-levelling.
174  */
175 static int discard_swap(struct swap_info_struct *si)
176 {
177         struct swap_extent *se;
178         sector_t start_block;
179         sector_t nr_blocks;
180         int err = 0;
181
182         /* Do not discard the swap header page! */
183         se = first_se(si);
184         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
186         if (nr_blocks) {
187                 err = blkdev_issue_discard(si->bdev, start_block,
188                                 nr_blocks, GFP_KERNEL);
189                 if (err)
190                         return err;
191                 cond_resched();
192         }
193
194         for (se = next_se(se); se; se = next_se(se)) {
195                 start_block = se->start_block << (PAGE_SHIFT - 9);
196                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
197
198                 err = blkdev_issue_discard(si->bdev, start_block,
199                                 nr_blocks, GFP_KERNEL);
200                 if (err)
201                         break;
202
203                 cond_resched();
204         }
205         return err;             /* That will often be -EOPNOTSUPP */
206 }
207
208 static struct swap_extent *
209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
210 {
211         struct swap_extent *se;
212         struct rb_node *rb;
213
214         rb = sis->swap_extent_root.rb_node;
215         while (rb) {
216                 se = rb_entry(rb, struct swap_extent, rb_node);
217                 if (offset < se->start_page)
218                         rb = rb->rb_left;
219                 else if (offset >= se->start_page + se->nr_pages)
220                         rb = rb->rb_right;
221                 else
222                         return se;
223         }
224         /* It *must* be present */
225         BUG();
226 }
227
228 sector_t swap_page_sector(struct page *page)
229 {
230         struct swap_info_struct *sis = page_swap_info(page);
231         struct swap_extent *se;
232         sector_t sector;
233         pgoff_t offset;
234
235         offset = __page_file_index(page);
236         se = offset_to_swap_extent(sis, offset);
237         sector = se->start_block + (offset - se->start_page);
238         return sector << (PAGE_SHIFT - 9);
239 }
240
241 /*
242  * swap allocation tell device that a cluster of swap can now be discarded,
243  * to allow the swap device to optimize its wear-levelling.
244  */
245 static void discard_swap_cluster(struct swap_info_struct *si,
246                                  pgoff_t start_page, pgoff_t nr_pages)
247 {
248         struct swap_extent *se = offset_to_swap_extent(si, start_page);
249
250         while (nr_pages) {
251                 pgoff_t offset = start_page - se->start_page;
252                 sector_t start_block = se->start_block + offset;
253                 sector_t nr_blocks = se->nr_pages - offset;
254
255                 if (nr_blocks > nr_pages)
256                         nr_blocks = nr_pages;
257                 start_page += nr_blocks;
258                 nr_pages -= nr_blocks;
259
260                 start_block <<= PAGE_SHIFT - 9;
261                 nr_blocks <<= PAGE_SHIFT - 9;
262                 if (blkdev_issue_discard(si->bdev, start_block,
263                                         nr_blocks, GFP_NOIO))
264                         break;
265
266                 se = next_se(se);
267         }
268 }
269
270 #ifdef CONFIG_THP_SWAP
271 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
272
273 #define swap_entry_size(size)   (size)
274 #else
275 #define SWAPFILE_CLUSTER        256
276
277 /*
278  * Define swap_entry_size() as constant to let compiler to optimize
279  * out some code if !CONFIG_THP_SWAP
280  */
281 #define swap_entry_size(size)   1
282 #endif
283 #define LATENCY_LIMIT           256
284
285 static inline void cluster_set_flag(struct swap_cluster_info *info,
286         unsigned int flag)
287 {
288         info->flags = flag;
289 }
290
291 static inline unsigned int cluster_count(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_count(struct swap_cluster_info *info,
297                                      unsigned int c)
298 {
299         info->data = c;
300 }
301
302 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303                                          unsigned int c, unsigned int f)
304 {
305         info->flags = f;
306         info->data = c;
307 }
308
309 static inline unsigned int cluster_next(struct swap_cluster_info *info)
310 {
311         return info->data;
312 }
313
314 static inline void cluster_set_next(struct swap_cluster_info *info,
315                                     unsigned int n)
316 {
317         info->data = n;
318 }
319
320 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321                                          unsigned int n, unsigned int f)
322 {
323         info->flags = f;
324         info->data = n;
325 }
326
327 static inline bool cluster_is_free(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_FREE;
330 }
331
332 static inline bool cluster_is_null(struct swap_cluster_info *info)
333 {
334         return info->flags & CLUSTER_FLAG_NEXT_NULL;
335 }
336
337 static inline void cluster_set_null(struct swap_cluster_info *info)
338 {
339         info->flags = CLUSTER_FLAG_NEXT_NULL;
340         info->data = 0;
341 }
342
343 static inline bool cluster_is_huge(struct swap_cluster_info *info)
344 {
345         if (IS_ENABLED(CONFIG_THP_SWAP))
346                 return info->flags & CLUSTER_FLAG_HUGE;
347         return false;
348 }
349
350 static inline void cluster_clear_huge(struct swap_cluster_info *info)
351 {
352         info->flags &= ~CLUSTER_FLAG_HUGE;
353 }
354
355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356                                                      unsigned long offset)
357 {
358         struct swap_cluster_info *ci;
359
360         ci = si->cluster_info;
361         if (ci) {
362                 ci += offset / SWAPFILE_CLUSTER;
363                 spin_lock(&ci->lock);
364         }
365         return ci;
366 }
367
368 static inline void unlock_cluster(struct swap_cluster_info *ci)
369 {
370         if (ci)
371                 spin_unlock(&ci->lock);
372 }
373
374 /*
375  * Determine the locking method in use for this device.  Return
376  * swap_cluster_info if SSD-style cluster-based locking is in place.
377  */
378 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
379                 struct swap_info_struct *si, unsigned long offset)
380 {
381         struct swap_cluster_info *ci;
382
383         /* Try to use fine-grained SSD-style locking if available: */
384         ci = lock_cluster(si, offset);
385         /* Otherwise, fall back to traditional, coarse locking: */
386         if (!ci)
387                 spin_lock(&si->lock);
388
389         return ci;
390 }
391
392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393                                                struct swap_cluster_info *ci)
394 {
395         if (ci)
396                 unlock_cluster(ci);
397         else
398                 spin_unlock(&si->lock);
399 }
400
401 static inline bool cluster_list_empty(struct swap_cluster_list *list)
402 {
403         return cluster_is_null(&list->head);
404 }
405
406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
407 {
408         return cluster_next(&list->head);
409 }
410
411 static void cluster_list_init(struct swap_cluster_list *list)
412 {
413         cluster_set_null(&list->head);
414         cluster_set_null(&list->tail);
415 }
416
417 static void cluster_list_add_tail(struct swap_cluster_list *list,
418                                   struct swap_cluster_info *ci,
419                                   unsigned int idx)
420 {
421         if (cluster_list_empty(list)) {
422                 cluster_set_next_flag(&list->head, idx, 0);
423                 cluster_set_next_flag(&list->tail, idx, 0);
424         } else {
425                 struct swap_cluster_info *ci_tail;
426                 unsigned int tail = cluster_next(&list->tail);
427
428                 /*
429                  * Nested cluster lock, but both cluster locks are
430                  * only acquired when we held swap_info_struct->lock
431                  */
432                 ci_tail = ci + tail;
433                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434                 cluster_set_next(ci_tail, idx);
435                 spin_unlock(&ci_tail->lock);
436                 cluster_set_next_flag(&list->tail, idx, 0);
437         }
438 }
439
440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441                                            struct swap_cluster_info *ci)
442 {
443         unsigned int idx;
444
445         idx = cluster_next(&list->head);
446         if (cluster_next(&list->tail) == idx) {
447                 cluster_set_null(&list->head);
448                 cluster_set_null(&list->tail);
449         } else
450                 cluster_set_next_flag(&list->head,
451                                       cluster_next(&ci[idx]), 0);
452
453         return idx;
454 }
455
456 /* Add a cluster to discard list and schedule it to do discard */
457 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
458                 unsigned int idx)
459 {
460         /*
461          * If scan_swap_map_slots() can't find a free cluster, it will check
462          * si->swap_map directly. To make sure the discarding cluster isn't
463          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464          * It will be cleared after discard
465          */
466         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
468
469         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
470
471         schedule_work(&si->discard_work);
472 }
473
474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
475 {
476         struct swap_cluster_info *ci = si->cluster_info;
477
478         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479         cluster_list_add_tail(&si->free_clusters, ci, idx);
480 }
481
482 /*
483  * Doing discard actually. After a cluster discard is finished, the cluster
484  * will be added to free cluster list. caller should hold si->lock.
485 */
486 static void swap_do_scheduled_discard(struct swap_info_struct *si)
487 {
488         struct swap_cluster_info *info, *ci;
489         unsigned int idx;
490
491         info = si->cluster_info;
492
493         while (!cluster_list_empty(&si->discard_clusters)) {
494                 idx = cluster_list_del_first(&si->discard_clusters, info);
495                 spin_unlock(&si->lock);
496
497                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498                                 SWAPFILE_CLUSTER);
499
500                 spin_lock(&si->lock);
501                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
502                 __free_cluster(si, idx);
503                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504                                 0, SWAPFILE_CLUSTER);
505                 unlock_cluster(ci);
506         }
507 }
508
509 static void swap_discard_work(struct work_struct *work)
510 {
511         struct swap_info_struct *si;
512
513         si = container_of(work, struct swap_info_struct, discard_work);
514
515         spin_lock(&si->lock);
516         swap_do_scheduled_discard(si);
517         spin_unlock(&si->lock);
518 }
519
520 static void swap_users_ref_free(struct percpu_ref *ref)
521 {
522         struct swap_info_struct *si;
523
524         si = container_of(ref, struct swap_info_struct, users);
525         complete(&si->comp);
526 }
527
528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
529 {
530         struct swap_cluster_info *ci = si->cluster_info;
531
532         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533         cluster_list_del_first(&si->free_clusters, ci);
534         cluster_set_count_flag(ci + idx, 0, 0);
535 }
536
537 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
538 {
539         struct swap_cluster_info *ci = si->cluster_info + idx;
540
541         VM_BUG_ON(cluster_count(ci) != 0);
542         /*
543          * If the swap is discardable, prepare discard the cluster
544          * instead of free it immediately. The cluster will be freed
545          * after discard.
546          */
547         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549                 swap_cluster_schedule_discard(si, idx);
550                 return;
551         }
552
553         __free_cluster(si, idx);
554 }
555
556 /*
557  * The cluster corresponding to page_nr will be used. The cluster will be
558  * removed from free cluster list and its usage counter will be increased.
559  */
560 static void inc_cluster_info_page(struct swap_info_struct *p,
561         struct swap_cluster_info *cluster_info, unsigned long page_nr)
562 {
563         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
564
565         if (!cluster_info)
566                 return;
567         if (cluster_is_free(&cluster_info[idx]))
568                 alloc_cluster(p, idx);
569
570         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571         cluster_set_count(&cluster_info[idx],
572                 cluster_count(&cluster_info[idx]) + 1);
573 }
574
575 /*
576  * The cluster corresponding to page_nr decreases one usage. If the usage
577  * counter becomes 0, which means no page in the cluster is in using, we can
578  * optionally discard the cluster and add it to free cluster list.
579  */
580 static void dec_cluster_info_page(struct swap_info_struct *p,
581         struct swap_cluster_info *cluster_info, unsigned long page_nr)
582 {
583         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584
585         if (!cluster_info)
586                 return;
587
588         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589         cluster_set_count(&cluster_info[idx],
590                 cluster_count(&cluster_info[idx]) - 1);
591
592         if (cluster_count(&cluster_info[idx]) == 0)
593                 free_cluster(p, idx);
594 }
595
596 /*
597  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
598  * cluster list. Avoiding such abuse to avoid list corruption.
599  */
600 static bool
601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
602         unsigned long offset)
603 {
604         struct percpu_cluster *percpu_cluster;
605         bool conflict;
606
607         offset /= SWAPFILE_CLUSTER;
608         conflict = !cluster_list_empty(&si->free_clusters) &&
609                 offset != cluster_list_first(&si->free_clusters) &&
610                 cluster_is_free(&si->cluster_info[offset]);
611
612         if (!conflict)
613                 return false;
614
615         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616         cluster_set_null(&percpu_cluster->index);
617         return true;
618 }
619
620 /*
621  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622  * might involve allocating a new cluster for current CPU too.
623  */
624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
625         unsigned long *offset, unsigned long *scan_base)
626 {
627         struct percpu_cluster *cluster;
628         struct swap_cluster_info *ci;
629         unsigned long tmp, max;
630
631 new_cluster:
632         cluster = this_cpu_ptr(si->percpu_cluster);
633         if (cluster_is_null(&cluster->index)) {
634                 if (!cluster_list_empty(&si->free_clusters)) {
635                         cluster->index = si->free_clusters.head;
636                         cluster->next = cluster_next(&cluster->index) *
637                                         SWAPFILE_CLUSTER;
638                 } else if (!cluster_list_empty(&si->discard_clusters)) {
639                         /*
640                          * we don't have free cluster but have some clusters in
641                          * discarding, do discard now and reclaim them, then
642                          * reread cluster_next_cpu since we dropped si->lock
643                          */
644                         swap_do_scheduled_discard(si);
645                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
646                         *offset = *scan_base;
647                         goto new_cluster;
648                 } else
649                         return false;
650         }
651
652         /*
653          * Other CPUs can use our cluster if they can't find a free cluster,
654          * check if there is still free entry in the cluster
655          */
656         tmp = cluster->next;
657         max = min_t(unsigned long, si->max,
658                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
659         if (tmp < max) {
660                 ci = lock_cluster(si, tmp);
661                 while (tmp < max) {
662                         if (!si->swap_map[tmp])
663                                 break;
664                         tmp++;
665                 }
666                 unlock_cluster(ci);
667         }
668         if (tmp >= max) {
669                 cluster_set_null(&cluster->index);
670                 goto new_cluster;
671         }
672         cluster->next = tmp + 1;
673         *offset = tmp;
674         *scan_base = tmp;
675         return true;
676 }
677
678 static void __del_from_avail_list(struct swap_info_struct *p)
679 {
680         int nid;
681
682         for_each_node(nid)
683                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
684 }
685
686 static void del_from_avail_list(struct swap_info_struct *p)
687 {
688         spin_lock(&swap_avail_lock);
689         __del_from_avail_list(p);
690         spin_unlock(&swap_avail_lock);
691 }
692
693 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
694                              unsigned int nr_entries)
695 {
696         unsigned int end = offset + nr_entries - 1;
697
698         if (offset == si->lowest_bit)
699                 si->lowest_bit += nr_entries;
700         if (end == si->highest_bit)
701                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
702         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
703         if (si->inuse_pages == si->pages) {
704                 si->lowest_bit = si->max;
705                 si->highest_bit = 0;
706                 del_from_avail_list(si);
707         }
708 }
709
710 static void add_to_avail_list(struct swap_info_struct *p)
711 {
712         int nid;
713
714         spin_lock(&swap_avail_lock);
715         for_each_node(nid) {
716                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
717                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
718         }
719         spin_unlock(&swap_avail_lock);
720 }
721
722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
723                             unsigned int nr_entries)
724 {
725         unsigned long begin = offset;
726         unsigned long end = offset + nr_entries - 1;
727         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
728
729         if (offset < si->lowest_bit)
730                 si->lowest_bit = offset;
731         if (end > si->highest_bit) {
732                 bool was_full = !si->highest_bit;
733
734                 WRITE_ONCE(si->highest_bit, end);
735                 if (was_full && (si->flags & SWP_WRITEOK))
736                         add_to_avail_list(si);
737         }
738         atomic_long_add(nr_entries, &nr_swap_pages);
739         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
740         if (si->flags & SWP_BLKDEV)
741                 swap_slot_free_notify =
742                         si->bdev->bd_disk->fops->swap_slot_free_notify;
743         else
744                 swap_slot_free_notify = NULL;
745         while (offset <= end) {
746                 arch_swap_invalidate_page(si->type, offset);
747                 frontswap_invalidate_page(si->type, offset);
748                 if (swap_slot_free_notify)
749                         swap_slot_free_notify(si->bdev, offset);
750                 offset++;
751         }
752         clear_shadow_from_swap_cache(si->type, begin, end);
753 }
754
755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
756 {
757         unsigned long prev;
758
759         if (!(si->flags & SWP_SOLIDSTATE)) {
760                 si->cluster_next = next;
761                 return;
762         }
763
764         prev = this_cpu_read(*si->cluster_next_cpu);
765         /*
766          * Cross the swap address space size aligned trunk, choose
767          * another trunk randomly to avoid lock contention on swap
768          * address space if possible.
769          */
770         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
771             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
772                 /* No free swap slots available */
773                 if (si->highest_bit <= si->lowest_bit)
774                         return;
775                 next = si->lowest_bit +
776                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
777                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778                 next = max_t(unsigned int, next, si->lowest_bit);
779         }
780         this_cpu_write(*si->cluster_next_cpu, next);
781 }
782
783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784                                              unsigned long offset)
785 {
786         if (data_race(!si->swap_map[offset])) {
787                 spin_lock(&si->lock);
788                 return true;
789         }
790
791         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792                 spin_lock(&si->lock);
793                 return true;
794         }
795
796         return false;
797 }
798
799 static int scan_swap_map_slots(struct swap_info_struct *si,
800                                unsigned char usage, int nr,
801                                swp_entry_t slots[])
802 {
803         struct swap_cluster_info *ci;
804         unsigned long offset;
805         unsigned long scan_base;
806         unsigned long last_in_cluster = 0;
807         int latency_ration = LATENCY_LIMIT;
808         int n_ret = 0;
809         bool scanned_many = false;
810
811         /*
812          * We try to cluster swap pages by allocating them sequentially
813          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
814          * way, however, we resort to first-free allocation, starting
815          * a new cluster.  This prevents us from scattering swap pages
816          * all over the entire swap partition, so that we reduce
817          * overall disk seek times between swap pages.  -- sct
818          * But we do now try to find an empty cluster.  -Andrea
819          * And we let swap pages go all over an SSD partition.  Hugh
820          */
821
822         si->flags += SWP_SCANNING;
823         /*
824          * Use percpu scan base for SSD to reduce lock contention on
825          * cluster and swap cache.  For HDD, sequential access is more
826          * important.
827          */
828         if (si->flags & SWP_SOLIDSTATE)
829                 scan_base = this_cpu_read(*si->cluster_next_cpu);
830         else
831                 scan_base = si->cluster_next;
832         offset = scan_base;
833
834         /* SSD algorithm */
835         if (si->cluster_info) {
836                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837                         goto scan;
838         } else if (unlikely(!si->cluster_nr--)) {
839                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
841                         goto checks;
842                 }
843
844                 spin_unlock(&si->lock);
845
846                 /*
847                  * If seek is expensive, start searching for new cluster from
848                  * start of partition, to minimize the span of allocated swap.
849                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
851                  */
852                 scan_base = offset = si->lowest_bit;
853                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854
855                 /* Locate the first empty (unaligned) cluster */
856                 for (; last_in_cluster <= si->highest_bit; offset++) {
857                         if (si->swap_map[offset])
858                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
859                         else if (offset == last_in_cluster) {
860                                 spin_lock(&si->lock);
861                                 offset -= SWAPFILE_CLUSTER - 1;
862                                 si->cluster_next = offset;
863                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
864                                 goto checks;
865                         }
866                         if (unlikely(--latency_ration < 0)) {
867                                 cond_resched();
868                                 latency_ration = LATENCY_LIMIT;
869                         }
870                 }
871
872                 offset = scan_base;
873                 spin_lock(&si->lock);
874                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
875         }
876
877 checks:
878         if (si->cluster_info) {
879                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880                 /* take a break if we already got some slots */
881                         if (n_ret)
882                                 goto done;
883                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
884                                                         &scan_base))
885                                 goto scan;
886                 }
887         }
888         if (!(si->flags & SWP_WRITEOK))
889                 goto no_page;
890         if (!si->highest_bit)
891                 goto no_page;
892         if (offset > si->highest_bit)
893                 scan_base = offset = si->lowest_bit;
894
895         ci = lock_cluster(si, offset);
896         /* reuse swap entry of cache-only swap if not busy. */
897         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898                 int swap_was_freed;
899                 unlock_cluster(ci);
900                 spin_unlock(&si->lock);
901                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902                 spin_lock(&si->lock);
903                 /* entry was freed successfully, try to use this again */
904                 if (swap_was_freed)
905                         goto checks;
906                 goto scan; /* check next one */
907         }
908
909         if (si->swap_map[offset]) {
910                 unlock_cluster(ci);
911                 if (!n_ret)
912                         goto scan;
913                 else
914                         goto done;
915         }
916         WRITE_ONCE(si->swap_map[offset], usage);
917         inc_cluster_info_page(si, si->cluster_info, offset);
918         unlock_cluster(ci);
919
920         swap_range_alloc(si, offset, 1);
921         slots[n_ret++] = swp_entry(si->type, offset);
922
923         /* got enough slots or reach max slots? */
924         if ((n_ret == nr) || (offset >= si->highest_bit))
925                 goto done;
926
927         /* search for next available slot */
928
929         /* time to take a break? */
930         if (unlikely(--latency_ration < 0)) {
931                 if (n_ret)
932                         goto done;
933                 spin_unlock(&si->lock);
934                 cond_resched();
935                 spin_lock(&si->lock);
936                 latency_ration = LATENCY_LIMIT;
937         }
938
939         /* try to get more slots in cluster */
940         if (si->cluster_info) {
941                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942                         goto checks;
943         } else if (si->cluster_nr && !si->swap_map[++offset]) {
944                 /* non-ssd case, still more slots in cluster? */
945                 --si->cluster_nr;
946                 goto checks;
947         }
948
949         /*
950          * Even if there's no free clusters available (fragmented),
951          * try to scan a little more quickly with lock held unless we
952          * have scanned too many slots already.
953          */
954         if (!scanned_many) {
955                 unsigned long scan_limit;
956
957                 if (offset < scan_base)
958                         scan_limit = scan_base;
959                 else
960                         scan_limit = si->highest_bit;
961                 for (; offset <= scan_limit && --latency_ration > 0;
962                      offset++) {
963                         if (!si->swap_map[offset])
964                                 goto checks;
965                 }
966         }
967
968 done:
969         set_cluster_next(si, offset + 1);
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972
973 scan:
974         spin_unlock(&si->lock);
975         while (++offset <= READ_ONCE(si->highest_bit)) {
976                 if (unlikely(--latency_ration < 0)) {
977                         cond_resched();
978                         latency_ration = LATENCY_LIMIT;
979                         scanned_many = true;
980                 }
981                 if (swap_offset_available_and_locked(si, offset))
982                         goto checks;
983         }
984         offset = si->lowest_bit;
985         while (offset < scan_base) {
986                 if (unlikely(--latency_ration < 0)) {
987                         cond_resched();
988                         latency_ration = LATENCY_LIMIT;
989                         scanned_many = true;
990                 }
991                 if (swap_offset_available_and_locked(si, offset))
992                         goto checks;
993                 offset++;
994         }
995         spin_lock(&si->lock);
996
997 no_page:
998         si->flags -= SWP_SCANNING;
999         return n_ret;
1000 }
1001
1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004         unsigned long idx;
1005         struct swap_cluster_info *ci;
1006         unsigned long offset;
1007
1008         /*
1009          * Should not even be attempting cluster allocations when huge
1010          * page swap is disabled.  Warn and fail the allocation.
1011          */
1012         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013                 VM_WARN_ON_ONCE(1);
1014                 return 0;
1015         }
1016
1017         if (cluster_list_empty(&si->free_clusters))
1018                 return 0;
1019
1020         idx = cluster_list_first(&si->free_clusters);
1021         offset = idx * SWAPFILE_CLUSTER;
1022         ci = lock_cluster(si, offset);
1023         alloc_cluster(si, idx);
1024         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025
1026         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027         unlock_cluster(ci);
1028         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029         *slot = swp_entry(si->type, offset);
1030
1031         return 1;
1032 }
1033
1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036         unsigned long offset = idx * SWAPFILE_CLUSTER;
1037         struct swap_cluster_info *ci;
1038
1039         ci = lock_cluster(si, offset);
1040         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041         cluster_set_count_flag(ci, 0, 0);
1042         free_cluster(si, idx);
1043         unlock_cluster(ci);
1044         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049         unsigned long size = swap_entry_size(entry_size);
1050         struct swap_info_struct *si, *next;
1051         long avail_pgs;
1052         int n_ret = 0;
1053         int node;
1054
1055         /* Only single cluster request supported */
1056         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057
1058         spin_lock(&swap_avail_lock);
1059
1060         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061         if (avail_pgs <= 0) {
1062                 spin_unlock(&swap_avail_lock);
1063                 goto noswap;
1064         }
1065
1066         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067
1068         atomic_long_sub(n_goal * size, &nr_swap_pages);
1069
1070 start_over:
1071         node = numa_node_id();
1072         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073                 /* requeue si to after same-priority siblings */
1074                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075                 spin_unlock(&swap_avail_lock);
1076                 spin_lock(&si->lock);
1077                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078                         spin_lock(&swap_avail_lock);
1079                         if (plist_node_empty(&si->avail_lists[node])) {
1080                                 spin_unlock(&si->lock);
1081                                 goto nextsi;
1082                         }
1083                         WARN(!si->highest_bit,
1084                              "swap_info %d in list but !highest_bit\n",
1085                              si->type);
1086                         WARN(!(si->flags & SWP_WRITEOK),
1087                              "swap_info %d in list but !SWP_WRITEOK\n",
1088                              si->type);
1089                         __del_from_avail_list(si);
1090                         spin_unlock(&si->lock);
1091                         goto nextsi;
1092                 }
1093                 if (size == SWAPFILE_CLUSTER) {
1094                         if (si->flags & SWP_BLKDEV)
1095                                 n_ret = swap_alloc_cluster(si, swp_entries);
1096                 } else
1097                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098                                                     n_goal, swp_entries);
1099                 spin_unlock(&si->lock);
1100                 if (n_ret || size == SWAPFILE_CLUSTER)
1101                         goto check_out;
1102                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1103                         si->type);
1104                 cond_resched();
1105
1106                 spin_lock(&swap_avail_lock);
1107 nextsi:
1108                 /*
1109                  * if we got here, it's likely that si was almost full before,
1110                  * and since scan_swap_map_slots() can drop the si->lock,
1111                  * multiple callers probably all tried to get a page from the
1112                  * same si and it filled up before we could get one; or, the si
1113                  * filled up between us dropping swap_avail_lock and taking
1114                  * si->lock. Since we dropped the swap_avail_lock, the
1115                  * swap_avail_head list may have been modified; so if next is
1116                  * still in the swap_avail_head list then try it, otherwise
1117                  * start over if we have not gotten any slots.
1118                  */
1119                 if (plist_node_empty(&next->avail_lists[node]))
1120                         goto start_over;
1121         }
1122
1123         spin_unlock(&swap_avail_lock);
1124
1125 check_out:
1126         if (n_ret < n_goal)
1127                 atomic_long_add((long)(n_goal - n_ret) * size,
1128                                 &nr_swap_pages);
1129 noswap:
1130         return n_ret;
1131 }
1132
1133 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1134 {
1135         struct swap_info_struct *p;
1136         unsigned long offset;
1137
1138         if (!entry.val)
1139                 goto out;
1140         p = swp_swap_info(entry);
1141         if (!p)
1142                 goto bad_nofile;
1143         if (data_race(!(p->flags & SWP_USED)))
1144                 goto bad_device;
1145         offset = swp_offset(entry);
1146         if (offset >= p->max)
1147                 goto bad_offset;
1148         if (data_race(!p->swap_map[swp_offset(entry)]))
1149                 goto bad_free;
1150         return p;
1151
1152 bad_free:
1153         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1154         goto out;
1155 bad_offset:
1156         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1157         goto out;
1158 bad_device:
1159         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1160         goto out;
1161 bad_nofile:
1162         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1163 out:
1164         return NULL;
1165 }
1166
1167 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1168                                         struct swap_info_struct *q)
1169 {
1170         struct swap_info_struct *p;
1171
1172         p = _swap_info_get(entry);
1173
1174         if (p != q) {
1175                 if (q != NULL)
1176                         spin_unlock(&q->lock);
1177                 if (p != NULL)
1178                         spin_lock(&p->lock);
1179         }
1180         return p;
1181 }
1182
1183 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1184                                               unsigned long offset,
1185                                               unsigned char usage)
1186 {
1187         unsigned char count;
1188         unsigned char has_cache;
1189
1190         count = p->swap_map[offset];
1191
1192         has_cache = count & SWAP_HAS_CACHE;
1193         count &= ~SWAP_HAS_CACHE;
1194
1195         if (usage == SWAP_HAS_CACHE) {
1196                 VM_BUG_ON(!has_cache);
1197                 has_cache = 0;
1198         } else if (count == SWAP_MAP_SHMEM) {
1199                 /*
1200                  * Or we could insist on shmem.c using a special
1201                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1202                  */
1203                 count = 0;
1204         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1205                 if (count == COUNT_CONTINUED) {
1206                         if (swap_count_continued(p, offset, count))
1207                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1208                         else
1209                                 count = SWAP_MAP_MAX;
1210                 } else
1211                         count--;
1212         }
1213
1214         usage = count | has_cache;
1215         if (usage)
1216                 WRITE_ONCE(p->swap_map[offset], usage);
1217         else
1218                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1219
1220         return usage;
1221 }
1222
1223 /*
1224  * Check whether swap entry is valid in the swap device.  If so,
1225  * return pointer to swap_info_struct, and keep the swap entry valid
1226  * via preventing the swap device from being swapoff, until
1227  * put_swap_device() is called.  Otherwise return NULL.
1228  *
1229  * Notice that swapoff or swapoff+swapon can still happen before the
1230  * percpu_ref_tryget_live() in get_swap_device() or after the
1231  * percpu_ref_put() in put_swap_device() if there isn't any other way
1232  * to prevent swapoff, such as page lock, page table lock, etc.  The
1233  * caller must be prepared for that.  For example, the following
1234  * situation is possible.
1235  *
1236  *   CPU1                               CPU2
1237  *   do_swap_page()
1238  *     ...                              swapoff+swapon
1239  *     __read_swap_cache_async()
1240  *       swapcache_prepare()
1241  *         __swap_duplicate()
1242  *           // check swap_map
1243  *     // verify PTE not changed
1244  *
1245  * In __swap_duplicate(), the swap_map need to be checked before
1246  * changing partly because the specified swap entry may be for another
1247  * swap device which has been swapoff.  And in do_swap_page(), after
1248  * the page is read from the swap device, the PTE is verified not
1249  * changed with the page table locked to check whether the swap device
1250  * has been swapoff or swapoff+swapon.
1251  */
1252 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1253 {
1254         struct swap_info_struct *si;
1255         unsigned long offset;
1256
1257         if (!entry.val)
1258                 goto out;
1259         si = swp_swap_info(entry);
1260         if (!si)
1261                 goto bad_nofile;
1262         if (!percpu_ref_tryget_live(&si->users))
1263                 goto out;
1264         /*
1265          * Guarantee the si->users are checked before accessing other
1266          * fields of swap_info_struct.
1267          *
1268          * Paired with the spin_unlock() after setup_swap_info() in
1269          * enable_swap_info().
1270          */
1271         smp_rmb();
1272         offset = swp_offset(entry);
1273         if (offset >= si->max)
1274                 goto put_out;
1275
1276         return si;
1277 bad_nofile:
1278         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1279 out:
1280         return NULL;
1281 put_out:
1282         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1283         percpu_ref_put(&si->users);
1284         return NULL;
1285 }
1286
1287 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1288                                        swp_entry_t entry)
1289 {
1290         struct swap_cluster_info *ci;
1291         unsigned long offset = swp_offset(entry);
1292         unsigned char usage;
1293
1294         ci = lock_cluster_or_swap_info(p, offset);
1295         usage = __swap_entry_free_locked(p, offset, 1);
1296         unlock_cluster_or_swap_info(p, ci);
1297         if (!usage)
1298                 free_swap_slot(entry);
1299
1300         return usage;
1301 }
1302
1303 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1304 {
1305         struct swap_cluster_info *ci;
1306         unsigned long offset = swp_offset(entry);
1307         unsigned char count;
1308
1309         ci = lock_cluster(p, offset);
1310         count = p->swap_map[offset];
1311         VM_BUG_ON(count != SWAP_HAS_CACHE);
1312         p->swap_map[offset] = 0;
1313         dec_cluster_info_page(p, p->cluster_info, offset);
1314         unlock_cluster(ci);
1315
1316         mem_cgroup_uncharge_swap(entry, 1);
1317         swap_range_free(p, offset, 1);
1318 }
1319
1320 /*
1321  * Caller has made sure that the swap device corresponding to entry
1322  * is still around or has not been recycled.
1323  */
1324 void swap_free(swp_entry_t entry)
1325 {
1326         struct swap_info_struct *p;
1327
1328         p = _swap_info_get(entry);
1329         if (p)
1330                 __swap_entry_free(p, entry);
1331 }
1332
1333 /*
1334  * Called after dropping swapcache to decrease refcnt to swap entries.
1335  */
1336 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1337 {
1338         unsigned long offset = swp_offset(entry);
1339         unsigned long idx = offset / SWAPFILE_CLUSTER;
1340         struct swap_cluster_info *ci;
1341         struct swap_info_struct *si;
1342         unsigned char *map;
1343         unsigned int i, free_entries = 0;
1344         unsigned char val;
1345         int size = swap_entry_size(folio_nr_pages(folio));
1346
1347         si = _swap_info_get(entry);
1348         if (!si)
1349                 return;
1350
1351         ci = lock_cluster_or_swap_info(si, offset);
1352         if (size == SWAPFILE_CLUSTER) {
1353                 VM_BUG_ON(!cluster_is_huge(ci));
1354                 map = si->swap_map + offset;
1355                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1356                         val = map[i];
1357                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1358                         if (val == SWAP_HAS_CACHE)
1359                                 free_entries++;
1360                 }
1361                 cluster_clear_huge(ci);
1362                 if (free_entries == SWAPFILE_CLUSTER) {
1363                         unlock_cluster_or_swap_info(si, ci);
1364                         spin_lock(&si->lock);
1365                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1366                         swap_free_cluster(si, idx);
1367                         spin_unlock(&si->lock);
1368                         return;
1369                 }
1370         }
1371         for (i = 0; i < size; i++, entry.val++) {
1372                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1373                         unlock_cluster_or_swap_info(si, ci);
1374                         free_swap_slot(entry);
1375                         if (i == size - 1)
1376                                 return;
1377                         lock_cluster_or_swap_info(si, offset);
1378                 }
1379         }
1380         unlock_cluster_or_swap_info(si, ci);
1381 }
1382
1383 #ifdef CONFIG_THP_SWAP
1384 int split_swap_cluster(swp_entry_t entry)
1385 {
1386         struct swap_info_struct *si;
1387         struct swap_cluster_info *ci;
1388         unsigned long offset = swp_offset(entry);
1389
1390         si = _swap_info_get(entry);
1391         if (!si)
1392                 return -EBUSY;
1393         ci = lock_cluster(si, offset);
1394         cluster_clear_huge(ci);
1395         unlock_cluster(ci);
1396         return 0;
1397 }
1398 #endif
1399
1400 static int swp_entry_cmp(const void *ent1, const void *ent2)
1401 {
1402         const swp_entry_t *e1 = ent1, *e2 = ent2;
1403
1404         return (int)swp_type(*e1) - (int)swp_type(*e2);
1405 }
1406
1407 void swapcache_free_entries(swp_entry_t *entries, int n)
1408 {
1409         struct swap_info_struct *p, *prev;
1410         int i;
1411
1412         if (n <= 0)
1413                 return;
1414
1415         prev = NULL;
1416         p = NULL;
1417
1418         /*
1419          * Sort swap entries by swap device, so each lock is only taken once.
1420          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1421          * so low that it isn't necessary to optimize further.
1422          */
1423         if (nr_swapfiles > 1)
1424                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1425         for (i = 0; i < n; ++i) {
1426                 p = swap_info_get_cont(entries[i], prev);
1427                 if (p)
1428                         swap_entry_free(p, entries[i]);
1429                 prev = p;
1430         }
1431         if (p)
1432                 spin_unlock(&p->lock);
1433 }
1434
1435 int __swap_count(swp_entry_t entry)
1436 {
1437         struct swap_info_struct *si;
1438         pgoff_t offset = swp_offset(entry);
1439         int count = 0;
1440
1441         si = get_swap_device(entry);
1442         if (si) {
1443                 count = swap_count(si->swap_map[offset]);
1444                 put_swap_device(si);
1445         }
1446         return count;
1447 }
1448
1449 /*
1450  * How many references to @entry are currently swapped out?
1451  * This does not give an exact answer when swap count is continued,
1452  * but does include the high COUNT_CONTINUED flag to allow for that.
1453  */
1454 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1455 {
1456         pgoff_t offset = swp_offset(entry);
1457         struct swap_cluster_info *ci;
1458         int count;
1459
1460         ci = lock_cluster_or_swap_info(si, offset);
1461         count = swap_count(si->swap_map[offset]);
1462         unlock_cluster_or_swap_info(si, ci);
1463         return count;
1464 }
1465
1466 /*
1467  * How many references to @entry are currently swapped out?
1468  * This does not give an exact answer when swap count is continued,
1469  * but does include the high COUNT_CONTINUED flag to allow for that.
1470  */
1471 int __swp_swapcount(swp_entry_t entry)
1472 {
1473         int count = 0;
1474         struct swap_info_struct *si;
1475
1476         si = get_swap_device(entry);
1477         if (si) {
1478                 count = swap_swapcount(si, entry);
1479                 put_swap_device(si);
1480         }
1481         return count;
1482 }
1483
1484 /*
1485  * How many references to @entry are currently swapped out?
1486  * This considers COUNT_CONTINUED so it returns exact answer.
1487  */
1488 int swp_swapcount(swp_entry_t entry)
1489 {
1490         int count, tmp_count, n;
1491         struct swap_info_struct *p;
1492         struct swap_cluster_info *ci;
1493         struct page *page;
1494         pgoff_t offset;
1495         unsigned char *map;
1496
1497         p = _swap_info_get(entry);
1498         if (!p)
1499                 return 0;
1500
1501         offset = swp_offset(entry);
1502
1503         ci = lock_cluster_or_swap_info(p, offset);
1504
1505         count = swap_count(p->swap_map[offset]);
1506         if (!(count & COUNT_CONTINUED))
1507                 goto out;
1508
1509         count &= ~COUNT_CONTINUED;
1510         n = SWAP_MAP_MAX + 1;
1511
1512         page = vmalloc_to_page(p->swap_map + offset);
1513         offset &= ~PAGE_MASK;
1514         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1515
1516         do {
1517                 page = list_next_entry(page, lru);
1518                 map = kmap_atomic(page);
1519                 tmp_count = map[offset];
1520                 kunmap_atomic(map);
1521
1522                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1523                 n *= (SWAP_CONT_MAX + 1);
1524         } while (tmp_count & COUNT_CONTINUED);
1525 out:
1526         unlock_cluster_or_swap_info(p, ci);
1527         return count;
1528 }
1529
1530 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1531                                          swp_entry_t entry)
1532 {
1533         struct swap_cluster_info *ci;
1534         unsigned char *map = si->swap_map;
1535         unsigned long roffset = swp_offset(entry);
1536         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1537         int i;
1538         bool ret = false;
1539
1540         ci = lock_cluster_or_swap_info(si, offset);
1541         if (!ci || !cluster_is_huge(ci)) {
1542                 if (swap_count(map[roffset]))
1543                         ret = true;
1544                 goto unlock_out;
1545         }
1546         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1547                 if (swap_count(map[offset + i])) {
1548                         ret = true;
1549                         break;
1550                 }
1551         }
1552 unlock_out:
1553         unlock_cluster_or_swap_info(si, ci);
1554         return ret;
1555 }
1556
1557 static bool folio_swapped(struct folio *folio)
1558 {
1559         swp_entry_t entry = folio_swap_entry(folio);
1560         struct swap_info_struct *si = _swap_info_get(entry);
1561
1562         if (!si)
1563                 return false;
1564
1565         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1566                 return swap_swapcount(si, entry) != 0;
1567
1568         return swap_page_trans_huge_swapped(si, entry);
1569 }
1570
1571 /**
1572  * folio_free_swap() - Free the swap space used for this folio.
1573  * @folio: The folio to remove.
1574  *
1575  * If swap is getting full, or if there are no more mappings of this folio,
1576  * then call folio_free_swap to free its swap space.
1577  *
1578  * Return: true if we were able to release the swap space.
1579  */
1580 bool folio_free_swap(struct folio *folio)
1581 {
1582         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1583
1584         if (!folio_test_swapcache(folio))
1585                 return false;
1586         if (folio_test_writeback(folio))
1587                 return false;
1588         if (folio_swapped(folio))
1589                 return false;
1590
1591         /*
1592          * Once hibernation has begun to create its image of memory,
1593          * there's a danger that one of the calls to folio_free_swap()
1594          * - most probably a call from __try_to_reclaim_swap() while
1595          * hibernation is allocating its own swap pages for the image,
1596          * but conceivably even a call from memory reclaim - will free
1597          * the swap from a folio which has already been recorded in the
1598          * image as a clean swapcache folio, and then reuse its swap for
1599          * another page of the image.  On waking from hibernation, the
1600          * original folio might be freed under memory pressure, then
1601          * later read back in from swap, now with the wrong data.
1602          *
1603          * Hibernation suspends storage while it is writing the image
1604          * to disk so check that here.
1605          */
1606         if (pm_suspended_storage())
1607                 return false;
1608
1609         delete_from_swap_cache(folio);
1610         folio_set_dirty(folio);
1611         return true;
1612 }
1613
1614 /*
1615  * Free the swap entry like above, but also try to
1616  * free the page cache entry if it is the last user.
1617  */
1618 int free_swap_and_cache(swp_entry_t entry)
1619 {
1620         struct swap_info_struct *p;
1621         unsigned char count;
1622
1623         if (non_swap_entry(entry))
1624                 return 1;
1625
1626         p = _swap_info_get(entry);
1627         if (p) {
1628                 count = __swap_entry_free(p, entry);
1629                 if (count == SWAP_HAS_CACHE &&
1630                     !swap_page_trans_huge_swapped(p, entry))
1631                         __try_to_reclaim_swap(p, swp_offset(entry),
1632                                               TTRS_UNMAPPED | TTRS_FULL);
1633         }
1634         return p != NULL;
1635 }
1636
1637 #ifdef CONFIG_HIBERNATION
1638
1639 swp_entry_t get_swap_page_of_type(int type)
1640 {
1641         struct swap_info_struct *si = swap_type_to_swap_info(type);
1642         swp_entry_t entry = {0};
1643
1644         if (!si)
1645                 goto fail;
1646
1647         /* This is called for allocating swap entry, not cache */
1648         spin_lock(&si->lock);
1649         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1650                 atomic_long_dec(&nr_swap_pages);
1651         spin_unlock(&si->lock);
1652 fail:
1653         return entry;
1654 }
1655
1656 /*
1657  * Find the swap type that corresponds to given device (if any).
1658  *
1659  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1660  * from 0, in which the swap header is expected to be located.
1661  *
1662  * This is needed for the suspend to disk (aka swsusp).
1663  */
1664 int swap_type_of(dev_t device, sector_t offset)
1665 {
1666         int type;
1667
1668         if (!device)
1669                 return -1;
1670
1671         spin_lock(&swap_lock);
1672         for (type = 0; type < nr_swapfiles; type++) {
1673                 struct swap_info_struct *sis = swap_info[type];
1674
1675                 if (!(sis->flags & SWP_WRITEOK))
1676                         continue;
1677
1678                 if (device == sis->bdev->bd_dev) {
1679                         struct swap_extent *se = first_se(sis);
1680
1681                         if (se->start_block == offset) {
1682                                 spin_unlock(&swap_lock);
1683                                 return type;
1684                         }
1685                 }
1686         }
1687         spin_unlock(&swap_lock);
1688         return -ENODEV;
1689 }
1690
1691 int find_first_swap(dev_t *device)
1692 {
1693         int type;
1694
1695         spin_lock(&swap_lock);
1696         for (type = 0; type < nr_swapfiles; type++) {
1697                 struct swap_info_struct *sis = swap_info[type];
1698
1699                 if (!(sis->flags & SWP_WRITEOK))
1700                         continue;
1701                 *device = sis->bdev->bd_dev;
1702                 spin_unlock(&swap_lock);
1703                 return type;
1704         }
1705         spin_unlock(&swap_lock);
1706         return -ENODEV;
1707 }
1708
1709 /*
1710  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1711  * corresponding to given index in swap_info (swap type).
1712  */
1713 sector_t swapdev_block(int type, pgoff_t offset)
1714 {
1715         struct swap_info_struct *si = swap_type_to_swap_info(type);
1716         struct swap_extent *se;
1717
1718         if (!si || !(si->flags & SWP_WRITEOK))
1719                 return 0;
1720         se = offset_to_swap_extent(si, offset);
1721         return se->start_block + (offset - se->start_page);
1722 }
1723
1724 /*
1725  * Return either the total number of swap pages of given type, or the number
1726  * of free pages of that type (depending on @free)
1727  *
1728  * This is needed for software suspend
1729  */
1730 unsigned int count_swap_pages(int type, int free)
1731 {
1732         unsigned int n = 0;
1733
1734         spin_lock(&swap_lock);
1735         if ((unsigned int)type < nr_swapfiles) {
1736                 struct swap_info_struct *sis = swap_info[type];
1737
1738                 spin_lock(&sis->lock);
1739                 if (sis->flags & SWP_WRITEOK) {
1740                         n = sis->pages;
1741                         if (free)
1742                                 n -= sis->inuse_pages;
1743                 }
1744                 spin_unlock(&sis->lock);
1745         }
1746         spin_unlock(&swap_lock);
1747         return n;
1748 }
1749 #endif /* CONFIG_HIBERNATION */
1750
1751 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1752 {
1753         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1754 }
1755
1756 /*
1757  * No need to decide whether this PTE shares the swap entry with others,
1758  * just let do_wp_page work it out if a write is requested later - to
1759  * force COW, vm_page_prot omits write permission from any private vma.
1760  */
1761 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1762                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1763 {
1764         struct page *page = folio_file_page(folio, swp_offset(entry));
1765         struct page *swapcache;
1766         spinlock_t *ptl;
1767         pte_t *pte, new_pte;
1768         int ret = 1;
1769
1770         swapcache = page;
1771         page = ksm_might_need_to_copy(page, vma, addr);
1772         if (unlikely(!page))
1773                 return -ENOMEM;
1774
1775         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1776         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1777                 ret = 0;
1778                 goto out;
1779         }
1780
1781         if (unlikely(!PageUptodate(page))) {
1782                 pte_t pteval;
1783
1784                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1785                 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1786                 set_pte_at(vma->vm_mm, addr, pte, pteval);
1787                 swap_free(entry);
1788                 ret = 0;
1789                 goto out;
1790         }
1791
1792         /* See do_swap_page() */
1793         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1794         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1795
1796         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1797         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1798         get_page(page);
1799         if (page == swapcache) {
1800                 rmap_t rmap_flags = RMAP_NONE;
1801
1802                 /*
1803                  * See do_swap_page(): PageWriteback() would be problematic.
1804                  * However, we do a wait_on_page_writeback() just before this
1805                  * call and have the page locked.
1806                  */
1807                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1808                 if (pte_swp_exclusive(*pte))
1809                         rmap_flags |= RMAP_EXCLUSIVE;
1810
1811                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1812         } else { /* ksm created a completely new copy */
1813                 page_add_new_anon_rmap(page, vma, addr);
1814                 lru_cache_add_inactive_or_unevictable(page, vma);
1815         }
1816         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1817         if (pte_swp_soft_dirty(*pte))
1818                 new_pte = pte_mksoft_dirty(new_pte);
1819         if (pte_swp_uffd_wp(*pte))
1820                 new_pte = pte_mkuffd_wp(new_pte);
1821         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1822         swap_free(entry);
1823 out:
1824         pte_unmap_unlock(pte, ptl);
1825         if (page != swapcache) {
1826                 unlock_page(page);
1827                 put_page(page);
1828         }
1829         return ret;
1830 }
1831
1832 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1833                         unsigned long addr, unsigned long end,
1834                         unsigned int type)
1835 {
1836         swp_entry_t entry;
1837         pte_t *pte;
1838         struct swap_info_struct *si;
1839         int ret = 0;
1840         volatile unsigned char *swap_map;
1841
1842         si = swap_info[type];
1843         pte = pte_offset_map(pmd, addr);
1844         do {
1845                 struct folio *folio;
1846                 unsigned long offset;
1847
1848                 if (!is_swap_pte(*pte))
1849                         continue;
1850
1851                 entry = pte_to_swp_entry(*pte);
1852                 if (swp_type(entry) != type)
1853                         continue;
1854
1855                 offset = swp_offset(entry);
1856                 pte_unmap(pte);
1857                 swap_map = &si->swap_map[offset];
1858                 folio = swap_cache_get_folio(entry, vma, addr);
1859                 if (!folio) {
1860                         struct page *page;
1861                         struct vm_fault vmf = {
1862                                 .vma = vma,
1863                                 .address = addr,
1864                                 .real_address = addr,
1865                                 .pmd = pmd,
1866                         };
1867
1868                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1869                                                 &vmf);
1870                         if (page)
1871                                 folio = page_folio(page);
1872                 }
1873                 if (!folio) {
1874                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1875                                 goto try_next;
1876                         return -ENOMEM;
1877                 }
1878
1879                 folio_lock(folio);
1880                 folio_wait_writeback(folio);
1881                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1882                 if (ret < 0) {
1883                         folio_unlock(folio);
1884                         folio_put(folio);
1885                         goto out;
1886                 }
1887
1888                 folio_free_swap(folio);
1889                 folio_unlock(folio);
1890                 folio_put(folio);
1891 try_next:
1892                 pte = pte_offset_map(pmd, addr);
1893         } while (pte++, addr += PAGE_SIZE, addr != end);
1894         pte_unmap(pte - 1);
1895
1896         ret = 0;
1897 out:
1898         return ret;
1899 }
1900
1901 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1902                                 unsigned long addr, unsigned long end,
1903                                 unsigned int type)
1904 {
1905         pmd_t *pmd;
1906         unsigned long next;
1907         int ret;
1908
1909         pmd = pmd_offset(pud, addr);
1910         do {
1911                 cond_resched();
1912                 next = pmd_addr_end(addr, end);
1913                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1914                         continue;
1915                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1916                 if (ret)
1917                         return ret;
1918         } while (pmd++, addr = next, addr != end);
1919         return 0;
1920 }
1921
1922 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1923                                 unsigned long addr, unsigned long end,
1924                                 unsigned int type)
1925 {
1926         pud_t *pud;
1927         unsigned long next;
1928         int ret;
1929
1930         pud = pud_offset(p4d, addr);
1931         do {
1932                 next = pud_addr_end(addr, end);
1933                 if (pud_none_or_clear_bad(pud))
1934                         continue;
1935                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1936                 if (ret)
1937                         return ret;
1938         } while (pud++, addr = next, addr != end);
1939         return 0;
1940 }
1941
1942 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1943                                 unsigned long addr, unsigned long end,
1944                                 unsigned int type)
1945 {
1946         p4d_t *p4d;
1947         unsigned long next;
1948         int ret;
1949
1950         p4d = p4d_offset(pgd, addr);
1951         do {
1952                 next = p4d_addr_end(addr, end);
1953                 if (p4d_none_or_clear_bad(p4d))
1954                         continue;
1955                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1956                 if (ret)
1957                         return ret;
1958         } while (p4d++, addr = next, addr != end);
1959         return 0;
1960 }
1961
1962 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1963 {
1964         pgd_t *pgd;
1965         unsigned long addr, end, next;
1966         int ret;
1967
1968         addr = vma->vm_start;
1969         end = vma->vm_end;
1970
1971         pgd = pgd_offset(vma->vm_mm, addr);
1972         do {
1973                 next = pgd_addr_end(addr, end);
1974                 if (pgd_none_or_clear_bad(pgd))
1975                         continue;
1976                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1977                 if (ret)
1978                         return ret;
1979         } while (pgd++, addr = next, addr != end);
1980         return 0;
1981 }
1982
1983 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1984 {
1985         struct vm_area_struct *vma;
1986         int ret = 0;
1987         VMA_ITERATOR(vmi, mm, 0);
1988
1989         mmap_read_lock(mm);
1990         for_each_vma(vmi, vma) {
1991                 if (vma->anon_vma) {
1992                         ret = unuse_vma(vma, type);
1993                         if (ret)
1994                                 break;
1995                 }
1996
1997                 cond_resched();
1998         }
1999         mmap_read_unlock(mm);
2000         return ret;
2001 }
2002
2003 /*
2004  * Scan swap_map from current position to next entry still in use.
2005  * Return 0 if there are no inuse entries after prev till end of
2006  * the map.
2007  */
2008 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2009                                         unsigned int prev)
2010 {
2011         unsigned int i;
2012         unsigned char count;
2013
2014         /*
2015          * No need for swap_lock here: we're just looking
2016          * for whether an entry is in use, not modifying it; false
2017          * hits are okay, and sys_swapoff() has already prevented new
2018          * allocations from this area (while holding swap_lock).
2019          */
2020         for (i = prev + 1; i < si->max; i++) {
2021                 count = READ_ONCE(si->swap_map[i]);
2022                 if (count && swap_count(count) != SWAP_MAP_BAD)
2023                         break;
2024                 if ((i % LATENCY_LIMIT) == 0)
2025                         cond_resched();
2026         }
2027
2028         if (i == si->max)
2029                 i = 0;
2030
2031         return i;
2032 }
2033
2034 static int try_to_unuse(unsigned int type)
2035 {
2036         struct mm_struct *prev_mm;
2037         struct mm_struct *mm;
2038         struct list_head *p;
2039         int retval = 0;
2040         struct swap_info_struct *si = swap_info[type];
2041         struct folio *folio;
2042         swp_entry_t entry;
2043         unsigned int i;
2044
2045         if (!READ_ONCE(si->inuse_pages))
2046                 return 0;
2047
2048 retry:
2049         retval = shmem_unuse(type);
2050         if (retval)
2051                 return retval;
2052
2053         prev_mm = &init_mm;
2054         mmget(prev_mm);
2055
2056         spin_lock(&mmlist_lock);
2057         p = &init_mm.mmlist;
2058         while (READ_ONCE(si->inuse_pages) &&
2059                !signal_pending(current) &&
2060                (p = p->next) != &init_mm.mmlist) {
2061
2062                 mm = list_entry(p, struct mm_struct, mmlist);
2063                 if (!mmget_not_zero(mm))
2064                         continue;
2065                 spin_unlock(&mmlist_lock);
2066                 mmput(prev_mm);
2067                 prev_mm = mm;
2068                 retval = unuse_mm(mm, type);
2069                 if (retval) {
2070                         mmput(prev_mm);
2071                         return retval;
2072                 }
2073
2074                 /*
2075                  * Make sure that we aren't completely killing
2076                  * interactive performance.
2077                  */
2078                 cond_resched();
2079                 spin_lock(&mmlist_lock);
2080         }
2081         spin_unlock(&mmlist_lock);
2082
2083         mmput(prev_mm);
2084
2085         i = 0;
2086         while (READ_ONCE(si->inuse_pages) &&
2087                !signal_pending(current) &&
2088                (i = find_next_to_unuse(si, i)) != 0) {
2089
2090                 entry = swp_entry(type, i);
2091                 folio = filemap_get_folio(swap_address_space(entry), i);
2092                 if (!folio)
2093                         continue;
2094
2095                 /*
2096                  * It is conceivable that a racing task removed this folio from
2097                  * swap cache just before we acquired the page lock. The folio
2098                  * might even be back in swap cache on another swap area. But
2099                  * that is okay, folio_free_swap() only removes stale folios.
2100                  */
2101                 folio_lock(folio);
2102                 folio_wait_writeback(folio);
2103                 folio_free_swap(folio);
2104                 folio_unlock(folio);
2105                 folio_put(folio);
2106         }
2107
2108         /*
2109          * Lets check again to see if there are still swap entries in the map.
2110          * If yes, we would need to do retry the unuse logic again.
2111          * Under global memory pressure, swap entries can be reinserted back
2112          * into process space after the mmlist loop above passes over them.
2113          *
2114          * Limit the number of retries? No: when mmget_not_zero()
2115          * above fails, that mm is likely to be freeing swap from
2116          * exit_mmap(), which proceeds at its own independent pace;
2117          * and even shmem_writepage() could have been preempted after
2118          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2119          * and robust (though cpu-intensive) just to keep retrying.
2120          */
2121         if (READ_ONCE(si->inuse_pages)) {
2122                 if (!signal_pending(current))
2123                         goto retry;
2124                 return -EINTR;
2125         }
2126
2127         return 0;
2128 }
2129
2130 /*
2131  * After a successful try_to_unuse, if no swap is now in use, we know
2132  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2133  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2134  * added to the mmlist just after page_duplicate - before would be racy.
2135  */
2136 static void drain_mmlist(void)
2137 {
2138         struct list_head *p, *next;
2139         unsigned int type;
2140
2141         for (type = 0; type < nr_swapfiles; type++)
2142                 if (swap_info[type]->inuse_pages)
2143                         return;
2144         spin_lock(&mmlist_lock);
2145         list_for_each_safe(p, next, &init_mm.mmlist)
2146                 list_del_init(p);
2147         spin_unlock(&mmlist_lock);
2148 }
2149
2150 /*
2151  * Free all of a swapdev's extent information
2152  */
2153 static void destroy_swap_extents(struct swap_info_struct *sis)
2154 {
2155         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2156                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2157                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2158
2159                 rb_erase(rb, &sis->swap_extent_root);
2160                 kfree(se);
2161         }
2162
2163         if (sis->flags & SWP_ACTIVATED) {
2164                 struct file *swap_file = sis->swap_file;
2165                 struct address_space *mapping = swap_file->f_mapping;
2166
2167                 sis->flags &= ~SWP_ACTIVATED;
2168                 if (mapping->a_ops->swap_deactivate)
2169                         mapping->a_ops->swap_deactivate(swap_file);
2170         }
2171 }
2172
2173 /*
2174  * Add a block range (and the corresponding page range) into this swapdev's
2175  * extent tree.
2176  *
2177  * This function rather assumes that it is called in ascending page order.
2178  */
2179 int
2180 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2181                 unsigned long nr_pages, sector_t start_block)
2182 {
2183         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2184         struct swap_extent *se;
2185         struct swap_extent *new_se;
2186
2187         /*
2188          * place the new node at the right most since the
2189          * function is called in ascending page order.
2190          */
2191         while (*link) {
2192                 parent = *link;
2193                 link = &parent->rb_right;
2194         }
2195
2196         if (parent) {
2197                 se = rb_entry(parent, struct swap_extent, rb_node);
2198                 BUG_ON(se->start_page + se->nr_pages != start_page);
2199                 if (se->start_block + se->nr_pages == start_block) {
2200                         /* Merge it */
2201                         se->nr_pages += nr_pages;
2202                         return 0;
2203                 }
2204         }
2205
2206         /* No merge, insert a new extent. */
2207         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2208         if (new_se == NULL)
2209                 return -ENOMEM;
2210         new_se->start_page = start_page;
2211         new_se->nr_pages = nr_pages;
2212         new_se->start_block = start_block;
2213
2214         rb_link_node(&new_se->rb_node, parent, link);
2215         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2216         return 1;
2217 }
2218 EXPORT_SYMBOL_GPL(add_swap_extent);
2219
2220 /*
2221  * A `swap extent' is a simple thing which maps a contiguous range of pages
2222  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2223  * built at swapon time and is then used at swap_writepage/swap_readpage
2224  * time for locating where on disk a page belongs.
2225  *
2226  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2227  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2228  * swap files identically.
2229  *
2230  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2231  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2232  * swapfiles are handled *identically* after swapon time.
2233  *
2234  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2235  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2236  * blocks are found which do not fall within the PAGE_SIZE alignment
2237  * requirements, they are simply tossed out - we will never use those blocks
2238  * for swapping.
2239  *
2240  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2241  * prevents users from writing to the swap device, which will corrupt memory.
2242  *
2243  * The amount of disk space which a single swap extent represents varies.
2244  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2245  * extents in the rbtree. - akpm.
2246  */
2247 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2248 {
2249         struct file *swap_file = sis->swap_file;
2250         struct address_space *mapping = swap_file->f_mapping;
2251         struct inode *inode = mapping->host;
2252         int ret;
2253
2254         if (S_ISBLK(inode->i_mode)) {
2255                 ret = add_swap_extent(sis, 0, sis->max, 0);
2256                 *span = sis->pages;
2257                 return ret;
2258         }
2259
2260         if (mapping->a_ops->swap_activate) {
2261                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2262                 if (ret < 0)
2263                         return ret;
2264                 sis->flags |= SWP_ACTIVATED;
2265                 if ((sis->flags & SWP_FS_OPS) &&
2266                     sio_pool_init() != 0) {
2267                         destroy_swap_extents(sis);
2268                         return -ENOMEM;
2269                 }
2270                 return ret;
2271         }
2272
2273         return generic_swapfile_activate(sis, swap_file, span);
2274 }
2275
2276 static int swap_node(struct swap_info_struct *p)
2277 {
2278         struct block_device *bdev;
2279
2280         if (p->bdev)
2281                 bdev = p->bdev;
2282         else
2283                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2284
2285         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2286 }
2287
2288 static void setup_swap_info(struct swap_info_struct *p, int prio,
2289                             unsigned char *swap_map,
2290                             struct swap_cluster_info *cluster_info)
2291 {
2292         int i;
2293
2294         if (prio >= 0)
2295                 p->prio = prio;
2296         else
2297                 p->prio = --least_priority;
2298         /*
2299          * the plist prio is negated because plist ordering is
2300          * low-to-high, while swap ordering is high-to-low
2301          */
2302         p->list.prio = -p->prio;
2303         for_each_node(i) {
2304                 if (p->prio >= 0)
2305                         p->avail_lists[i].prio = -p->prio;
2306                 else {
2307                         if (swap_node(p) == i)
2308                                 p->avail_lists[i].prio = 1;
2309                         else
2310                                 p->avail_lists[i].prio = -p->prio;
2311                 }
2312         }
2313         p->swap_map = swap_map;
2314         p->cluster_info = cluster_info;
2315 }
2316
2317 static void _enable_swap_info(struct swap_info_struct *p)
2318 {
2319         p->flags |= SWP_WRITEOK;
2320         atomic_long_add(p->pages, &nr_swap_pages);
2321         total_swap_pages += p->pages;
2322
2323         assert_spin_locked(&swap_lock);
2324         /*
2325          * both lists are plists, and thus priority ordered.
2326          * swap_active_head needs to be priority ordered for swapoff(),
2327          * which on removal of any swap_info_struct with an auto-assigned
2328          * (i.e. negative) priority increments the auto-assigned priority
2329          * of any lower-priority swap_info_structs.
2330          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2331          * which allocates swap pages from the highest available priority
2332          * swap_info_struct.
2333          */
2334         plist_add(&p->list, &swap_active_head);
2335         add_to_avail_list(p);
2336 }
2337
2338 static void enable_swap_info(struct swap_info_struct *p, int prio,
2339                                 unsigned char *swap_map,
2340                                 struct swap_cluster_info *cluster_info,
2341                                 unsigned long *frontswap_map)
2342 {
2343         if (IS_ENABLED(CONFIG_FRONTSWAP))
2344                 frontswap_init(p->type, frontswap_map);
2345         spin_lock(&swap_lock);
2346         spin_lock(&p->lock);
2347         setup_swap_info(p, prio, swap_map, cluster_info);
2348         spin_unlock(&p->lock);
2349         spin_unlock(&swap_lock);
2350         /*
2351          * Finished initializing swap device, now it's safe to reference it.
2352          */
2353         percpu_ref_resurrect(&p->users);
2354         spin_lock(&swap_lock);
2355         spin_lock(&p->lock);
2356         _enable_swap_info(p);
2357         spin_unlock(&p->lock);
2358         spin_unlock(&swap_lock);
2359 }
2360
2361 static void reinsert_swap_info(struct swap_info_struct *p)
2362 {
2363         spin_lock(&swap_lock);
2364         spin_lock(&p->lock);
2365         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2366         _enable_swap_info(p);
2367         spin_unlock(&p->lock);
2368         spin_unlock(&swap_lock);
2369 }
2370
2371 bool has_usable_swap(void)
2372 {
2373         bool ret = true;
2374
2375         spin_lock(&swap_lock);
2376         if (plist_head_empty(&swap_active_head))
2377                 ret = false;
2378         spin_unlock(&swap_lock);
2379         return ret;
2380 }
2381
2382 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2383 {
2384         struct swap_info_struct *p = NULL;
2385         unsigned char *swap_map;
2386         struct swap_cluster_info *cluster_info;
2387         unsigned long *frontswap_map;
2388         struct file *swap_file, *victim;
2389         struct address_space *mapping;
2390         struct inode *inode;
2391         struct filename *pathname;
2392         int err, found = 0;
2393         unsigned int old_block_size;
2394
2395         if (!capable(CAP_SYS_ADMIN))
2396                 return -EPERM;
2397
2398         BUG_ON(!current->mm);
2399
2400         pathname = getname(specialfile);
2401         if (IS_ERR(pathname))
2402                 return PTR_ERR(pathname);
2403
2404         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2405         err = PTR_ERR(victim);
2406         if (IS_ERR(victim))
2407                 goto out;
2408
2409         mapping = victim->f_mapping;
2410         spin_lock(&swap_lock);
2411         plist_for_each_entry(p, &swap_active_head, list) {
2412                 if (p->flags & SWP_WRITEOK) {
2413                         if (p->swap_file->f_mapping == mapping) {
2414                                 found = 1;
2415                                 break;
2416                         }
2417                 }
2418         }
2419         if (!found) {
2420                 err = -EINVAL;
2421                 spin_unlock(&swap_lock);
2422                 goto out_dput;
2423         }
2424         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2425                 vm_unacct_memory(p->pages);
2426         else {
2427                 err = -ENOMEM;
2428                 spin_unlock(&swap_lock);
2429                 goto out_dput;
2430         }
2431         del_from_avail_list(p);
2432         spin_lock(&p->lock);
2433         if (p->prio < 0) {
2434                 struct swap_info_struct *si = p;
2435                 int nid;
2436
2437                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2438                         si->prio++;
2439                         si->list.prio--;
2440                         for_each_node(nid) {
2441                                 if (si->avail_lists[nid].prio != 1)
2442                                         si->avail_lists[nid].prio--;
2443                         }
2444                 }
2445                 least_priority++;
2446         }
2447         plist_del(&p->list, &swap_active_head);
2448         atomic_long_sub(p->pages, &nr_swap_pages);
2449         total_swap_pages -= p->pages;
2450         p->flags &= ~SWP_WRITEOK;
2451         spin_unlock(&p->lock);
2452         spin_unlock(&swap_lock);
2453
2454         disable_swap_slots_cache_lock();
2455
2456         set_current_oom_origin();
2457         err = try_to_unuse(p->type);
2458         clear_current_oom_origin();
2459
2460         if (err) {
2461                 /* re-insert swap space back into swap_list */
2462                 reinsert_swap_info(p);
2463                 reenable_swap_slots_cache_unlock();
2464                 goto out_dput;
2465         }
2466
2467         reenable_swap_slots_cache_unlock();
2468
2469         /*
2470          * Wait for swap operations protected by get/put_swap_device()
2471          * to complete.
2472          *
2473          * We need synchronize_rcu() here to protect the accessing to
2474          * the swap cache data structure.
2475          */
2476         percpu_ref_kill(&p->users);
2477         synchronize_rcu();
2478         wait_for_completion(&p->comp);
2479
2480         flush_work(&p->discard_work);
2481
2482         destroy_swap_extents(p);
2483         if (p->flags & SWP_CONTINUED)
2484                 free_swap_count_continuations(p);
2485
2486         if (!p->bdev || !bdev_nonrot(p->bdev))
2487                 atomic_dec(&nr_rotate_swap);
2488
2489         mutex_lock(&swapon_mutex);
2490         spin_lock(&swap_lock);
2491         spin_lock(&p->lock);
2492         drain_mmlist();
2493
2494         /* wait for anyone still in scan_swap_map_slots */
2495         p->highest_bit = 0;             /* cuts scans short */
2496         while (p->flags >= SWP_SCANNING) {
2497                 spin_unlock(&p->lock);
2498                 spin_unlock(&swap_lock);
2499                 schedule_timeout_uninterruptible(1);
2500                 spin_lock(&swap_lock);
2501                 spin_lock(&p->lock);
2502         }
2503
2504         swap_file = p->swap_file;
2505         old_block_size = p->old_block_size;
2506         p->swap_file = NULL;
2507         p->max = 0;
2508         swap_map = p->swap_map;
2509         p->swap_map = NULL;
2510         cluster_info = p->cluster_info;
2511         p->cluster_info = NULL;
2512         frontswap_map = frontswap_map_get(p);
2513         spin_unlock(&p->lock);
2514         spin_unlock(&swap_lock);
2515         arch_swap_invalidate_area(p->type);
2516         frontswap_invalidate_area(p->type);
2517         frontswap_map_set(p, NULL);
2518         mutex_unlock(&swapon_mutex);
2519         free_percpu(p->percpu_cluster);
2520         p->percpu_cluster = NULL;
2521         free_percpu(p->cluster_next_cpu);
2522         p->cluster_next_cpu = NULL;
2523         vfree(swap_map);
2524         kvfree(cluster_info);
2525         kvfree(frontswap_map);
2526         /* Destroy swap account information */
2527         swap_cgroup_swapoff(p->type);
2528         exit_swap_address_space(p->type);
2529
2530         inode = mapping->host;
2531         if (S_ISBLK(inode->i_mode)) {
2532                 struct block_device *bdev = I_BDEV(inode);
2533
2534                 set_blocksize(bdev, old_block_size);
2535                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2536         }
2537
2538         inode_lock(inode);
2539         inode->i_flags &= ~S_SWAPFILE;
2540         inode_unlock(inode);
2541         filp_close(swap_file, NULL);
2542
2543         /*
2544          * Clear the SWP_USED flag after all resources are freed so that swapon
2545          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2546          * not hold p->lock after we cleared its SWP_WRITEOK.
2547          */
2548         spin_lock(&swap_lock);
2549         p->flags = 0;
2550         spin_unlock(&swap_lock);
2551
2552         err = 0;
2553         atomic_inc(&proc_poll_event);
2554         wake_up_interruptible(&proc_poll_wait);
2555
2556 out_dput:
2557         filp_close(victim, NULL);
2558 out:
2559         putname(pathname);
2560         return err;
2561 }
2562
2563 #ifdef CONFIG_PROC_FS
2564 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2565 {
2566         struct seq_file *seq = file->private_data;
2567
2568         poll_wait(file, &proc_poll_wait, wait);
2569
2570         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2571                 seq->poll_event = atomic_read(&proc_poll_event);
2572                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2573         }
2574
2575         return EPOLLIN | EPOLLRDNORM;
2576 }
2577
2578 /* iterator */
2579 static void *swap_start(struct seq_file *swap, loff_t *pos)
2580 {
2581         struct swap_info_struct *si;
2582         int type;
2583         loff_t l = *pos;
2584
2585         mutex_lock(&swapon_mutex);
2586
2587         if (!l)
2588                 return SEQ_START_TOKEN;
2589
2590         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2591                 if (!(si->flags & SWP_USED) || !si->swap_map)
2592                         continue;
2593                 if (!--l)
2594                         return si;
2595         }
2596
2597         return NULL;
2598 }
2599
2600 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2601 {
2602         struct swap_info_struct *si = v;
2603         int type;
2604
2605         if (v == SEQ_START_TOKEN)
2606                 type = 0;
2607         else
2608                 type = si->type + 1;
2609
2610         ++(*pos);
2611         for (; (si = swap_type_to_swap_info(type)); type++) {
2612                 if (!(si->flags & SWP_USED) || !si->swap_map)
2613                         continue;
2614                 return si;
2615         }
2616
2617         return NULL;
2618 }
2619
2620 static void swap_stop(struct seq_file *swap, void *v)
2621 {
2622         mutex_unlock(&swapon_mutex);
2623 }
2624
2625 static int swap_show(struct seq_file *swap, void *v)
2626 {
2627         struct swap_info_struct *si = v;
2628         struct file *file;
2629         int len;
2630         unsigned long bytes, inuse;
2631
2632         if (si == SEQ_START_TOKEN) {
2633                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2634                 return 0;
2635         }
2636
2637         bytes = si->pages << (PAGE_SHIFT - 10);
2638         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2639
2640         file = si->swap_file;
2641         len = seq_file_path(swap, file, " \t\n\\");
2642         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2643                         len < 40 ? 40 - len : 1, " ",
2644                         S_ISBLK(file_inode(file)->i_mode) ?
2645                                 "partition" : "file\t",
2646                         bytes, bytes < 10000000 ? "\t" : "",
2647                         inuse, inuse < 10000000 ? "\t" : "",
2648                         si->prio);
2649         return 0;
2650 }
2651
2652 static const struct seq_operations swaps_op = {
2653         .start =        swap_start,
2654         .next =         swap_next,
2655         .stop =         swap_stop,
2656         .show =         swap_show
2657 };
2658
2659 static int swaps_open(struct inode *inode, struct file *file)
2660 {
2661         struct seq_file *seq;
2662         int ret;
2663
2664         ret = seq_open(file, &swaps_op);
2665         if (ret)
2666                 return ret;
2667
2668         seq = file->private_data;
2669         seq->poll_event = atomic_read(&proc_poll_event);
2670         return 0;
2671 }
2672
2673 static const struct proc_ops swaps_proc_ops = {
2674         .proc_flags     = PROC_ENTRY_PERMANENT,
2675         .proc_open      = swaps_open,
2676         .proc_read      = seq_read,
2677         .proc_lseek     = seq_lseek,
2678         .proc_release   = seq_release,
2679         .proc_poll      = swaps_poll,
2680 };
2681
2682 static int __init procswaps_init(void)
2683 {
2684         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2685         return 0;
2686 }
2687 __initcall(procswaps_init);
2688 #endif /* CONFIG_PROC_FS */
2689
2690 #ifdef MAX_SWAPFILES_CHECK
2691 static int __init max_swapfiles_check(void)
2692 {
2693         MAX_SWAPFILES_CHECK();
2694         return 0;
2695 }
2696 late_initcall(max_swapfiles_check);
2697 #endif
2698
2699 static struct swap_info_struct *alloc_swap_info(void)
2700 {
2701         struct swap_info_struct *p;
2702         struct swap_info_struct *defer = NULL;
2703         unsigned int type;
2704         int i;
2705
2706         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2707         if (!p)
2708                 return ERR_PTR(-ENOMEM);
2709
2710         if (percpu_ref_init(&p->users, swap_users_ref_free,
2711                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2712                 kvfree(p);
2713                 return ERR_PTR(-ENOMEM);
2714         }
2715
2716         spin_lock(&swap_lock);
2717         for (type = 0; type < nr_swapfiles; type++) {
2718                 if (!(swap_info[type]->flags & SWP_USED))
2719                         break;
2720         }
2721         if (type >= MAX_SWAPFILES) {
2722                 spin_unlock(&swap_lock);
2723                 percpu_ref_exit(&p->users);
2724                 kvfree(p);
2725                 return ERR_PTR(-EPERM);
2726         }
2727         if (type >= nr_swapfiles) {
2728                 p->type = type;
2729                 /*
2730                  * Publish the swap_info_struct after initializing it.
2731                  * Note that kvzalloc() above zeroes all its fields.
2732                  */
2733                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2734                 nr_swapfiles++;
2735         } else {
2736                 defer = p;
2737                 p = swap_info[type];
2738                 /*
2739                  * Do not memset this entry: a racing procfs swap_next()
2740                  * would be relying on p->type to remain valid.
2741                  */
2742         }
2743         p->swap_extent_root = RB_ROOT;
2744         plist_node_init(&p->list, 0);
2745         for_each_node(i)
2746                 plist_node_init(&p->avail_lists[i], 0);
2747         p->flags = SWP_USED;
2748         spin_unlock(&swap_lock);
2749         if (defer) {
2750                 percpu_ref_exit(&defer->users);
2751                 kvfree(defer);
2752         }
2753         spin_lock_init(&p->lock);
2754         spin_lock_init(&p->cont_lock);
2755         init_completion(&p->comp);
2756
2757         return p;
2758 }
2759
2760 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2761 {
2762         int error;
2763
2764         if (S_ISBLK(inode->i_mode)) {
2765                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2766                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2767                 if (IS_ERR(p->bdev)) {
2768                         error = PTR_ERR(p->bdev);
2769                         p->bdev = NULL;
2770                         return error;
2771                 }
2772                 p->old_block_size = block_size(p->bdev);
2773                 error = set_blocksize(p->bdev, PAGE_SIZE);
2774                 if (error < 0)
2775                         return error;
2776                 /*
2777                  * Zoned block devices contain zones that have a sequential
2778                  * write only restriction.  Hence zoned block devices are not
2779                  * suitable for swapping.  Disallow them here.
2780                  */
2781                 if (bdev_is_zoned(p->bdev))
2782                         return -EINVAL;
2783                 p->flags |= SWP_BLKDEV;
2784         } else if (S_ISREG(inode->i_mode)) {
2785                 p->bdev = inode->i_sb->s_bdev;
2786         }
2787
2788         return 0;
2789 }
2790
2791
2792 /*
2793  * Find out how many pages are allowed for a single swap device. There
2794  * are two limiting factors:
2795  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2796  * 2) the number of bits in the swap pte, as defined by the different
2797  * architectures.
2798  *
2799  * In order to find the largest possible bit mask, a swap entry with
2800  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2801  * decoded to a swp_entry_t again, and finally the swap offset is
2802  * extracted.
2803  *
2804  * This will mask all the bits from the initial ~0UL mask that can't
2805  * be encoded in either the swp_entry_t or the architecture definition
2806  * of a swap pte.
2807  */
2808 unsigned long generic_max_swapfile_size(void)
2809 {
2810         return swp_offset(pte_to_swp_entry(
2811                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2812 }
2813
2814 /* Can be overridden by an architecture for additional checks. */
2815 __weak unsigned long arch_max_swapfile_size(void)
2816 {
2817         return generic_max_swapfile_size();
2818 }
2819
2820 static unsigned long read_swap_header(struct swap_info_struct *p,
2821                                         union swap_header *swap_header,
2822                                         struct inode *inode)
2823 {
2824         int i;
2825         unsigned long maxpages;
2826         unsigned long swapfilepages;
2827         unsigned long last_page;
2828
2829         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2830                 pr_err("Unable to find swap-space signature\n");
2831                 return 0;
2832         }
2833
2834         /* swap partition endianness hack... */
2835         if (swab32(swap_header->info.version) == 1) {
2836                 swab32s(&swap_header->info.version);
2837                 swab32s(&swap_header->info.last_page);
2838                 swab32s(&swap_header->info.nr_badpages);
2839                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2840                         return 0;
2841                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2842                         swab32s(&swap_header->info.badpages[i]);
2843         }
2844         /* Check the swap header's sub-version */
2845         if (swap_header->info.version != 1) {
2846                 pr_warn("Unable to handle swap header version %d\n",
2847                         swap_header->info.version);
2848                 return 0;
2849         }
2850
2851         p->lowest_bit  = 1;
2852         p->cluster_next = 1;
2853         p->cluster_nr = 0;
2854
2855         maxpages = swapfile_maximum_size;
2856         last_page = swap_header->info.last_page;
2857         if (!last_page) {
2858                 pr_warn("Empty swap-file\n");
2859                 return 0;
2860         }
2861         if (last_page > maxpages) {
2862                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2863                         maxpages << (PAGE_SHIFT - 10),
2864                         last_page << (PAGE_SHIFT - 10));
2865         }
2866         if (maxpages > last_page) {
2867                 maxpages = last_page + 1;
2868                 /* p->max is an unsigned int: don't overflow it */
2869                 if ((unsigned int)maxpages == 0)
2870                         maxpages = UINT_MAX;
2871         }
2872         p->highest_bit = maxpages - 1;
2873
2874         if (!maxpages)
2875                 return 0;
2876         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2877         if (swapfilepages && maxpages > swapfilepages) {
2878                 pr_warn("Swap area shorter than signature indicates\n");
2879                 return 0;
2880         }
2881         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2882                 return 0;
2883         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2884                 return 0;
2885
2886         return maxpages;
2887 }
2888
2889 #define SWAP_CLUSTER_INFO_COLS                                          \
2890         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2891 #define SWAP_CLUSTER_SPACE_COLS                                         \
2892         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2893 #define SWAP_CLUSTER_COLS                                               \
2894         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2895
2896 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2897                                         union swap_header *swap_header,
2898                                         unsigned char *swap_map,
2899                                         struct swap_cluster_info *cluster_info,
2900                                         unsigned long maxpages,
2901                                         sector_t *span)
2902 {
2903         unsigned int j, k;
2904         unsigned int nr_good_pages;
2905         int nr_extents;
2906         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2907         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2908         unsigned long i, idx;
2909
2910         nr_good_pages = maxpages - 1;   /* omit header page */
2911
2912         cluster_list_init(&p->free_clusters);
2913         cluster_list_init(&p->discard_clusters);
2914
2915         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2916                 unsigned int page_nr = swap_header->info.badpages[i];
2917                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2918                         return -EINVAL;
2919                 if (page_nr < maxpages) {
2920                         swap_map[page_nr] = SWAP_MAP_BAD;
2921                         nr_good_pages--;
2922                         /*
2923                          * Haven't marked the cluster free yet, no list
2924                          * operation involved
2925                          */
2926                         inc_cluster_info_page(p, cluster_info, page_nr);
2927                 }
2928         }
2929
2930         /* Haven't marked the cluster free yet, no list operation involved */
2931         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2932                 inc_cluster_info_page(p, cluster_info, i);
2933
2934         if (nr_good_pages) {
2935                 swap_map[0] = SWAP_MAP_BAD;
2936                 /*
2937                  * Not mark the cluster free yet, no list
2938                  * operation involved
2939                  */
2940                 inc_cluster_info_page(p, cluster_info, 0);
2941                 p->max = maxpages;
2942                 p->pages = nr_good_pages;
2943                 nr_extents = setup_swap_extents(p, span);
2944                 if (nr_extents < 0)
2945                         return nr_extents;
2946                 nr_good_pages = p->pages;
2947         }
2948         if (!nr_good_pages) {
2949                 pr_warn("Empty swap-file\n");
2950                 return -EINVAL;
2951         }
2952
2953         if (!cluster_info)
2954                 return nr_extents;
2955
2956
2957         /*
2958          * Reduce false cache line sharing between cluster_info and
2959          * sharing same address space.
2960          */
2961         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2962                 j = (k + col) % SWAP_CLUSTER_COLS;
2963                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2964                         idx = i * SWAP_CLUSTER_COLS + j;
2965                         if (idx >= nr_clusters)
2966                                 continue;
2967                         if (cluster_count(&cluster_info[idx]))
2968                                 continue;
2969                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2970                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2971                                               idx);
2972                 }
2973         }
2974         return nr_extents;
2975 }
2976
2977 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2978 {
2979         struct swap_info_struct *p;
2980         struct filename *name;
2981         struct file *swap_file = NULL;
2982         struct address_space *mapping;
2983         struct dentry *dentry;
2984         int prio;
2985         int error;
2986         union swap_header *swap_header;
2987         int nr_extents;
2988         sector_t span;
2989         unsigned long maxpages;
2990         unsigned char *swap_map = NULL;
2991         struct swap_cluster_info *cluster_info = NULL;
2992         unsigned long *frontswap_map = NULL;
2993         struct page *page = NULL;
2994         struct inode *inode = NULL;
2995         bool inced_nr_rotate_swap = false;
2996
2997         if (swap_flags & ~SWAP_FLAGS_VALID)
2998                 return -EINVAL;
2999
3000         if (!capable(CAP_SYS_ADMIN))
3001                 return -EPERM;
3002
3003         if (!swap_avail_heads)
3004                 return -ENOMEM;
3005
3006         p = alloc_swap_info();
3007         if (IS_ERR(p))
3008                 return PTR_ERR(p);
3009
3010         INIT_WORK(&p->discard_work, swap_discard_work);
3011
3012         name = getname(specialfile);
3013         if (IS_ERR(name)) {
3014                 error = PTR_ERR(name);
3015                 name = NULL;
3016                 goto bad_swap;
3017         }
3018         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3019         if (IS_ERR(swap_file)) {
3020                 error = PTR_ERR(swap_file);
3021                 swap_file = NULL;
3022                 goto bad_swap;
3023         }
3024
3025         p->swap_file = swap_file;
3026         mapping = swap_file->f_mapping;
3027         dentry = swap_file->f_path.dentry;
3028         inode = mapping->host;
3029
3030         error = claim_swapfile(p, inode);
3031         if (unlikely(error))
3032                 goto bad_swap;
3033
3034         inode_lock(inode);
3035         if (d_unlinked(dentry) || cant_mount(dentry)) {
3036                 error = -ENOENT;
3037                 goto bad_swap_unlock_inode;
3038         }
3039         if (IS_SWAPFILE(inode)) {
3040                 error = -EBUSY;
3041                 goto bad_swap_unlock_inode;
3042         }
3043
3044         /*
3045          * Read the swap header.
3046          */
3047         if (!mapping->a_ops->read_folio) {
3048                 error = -EINVAL;
3049                 goto bad_swap_unlock_inode;
3050         }
3051         page = read_mapping_page(mapping, 0, swap_file);
3052         if (IS_ERR(page)) {
3053                 error = PTR_ERR(page);
3054                 goto bad_swap_unlock_inode;
3055         }
3056         swap_header = kmap(page);
3057
3058         maxpages = read_swap_header(p, swap_header, inode);
3059         if (unlikely(!maxpages)) {
3060                 error = -EINVAL;
3061                 goto bad_swap_unlock_inode;
3062         }
3063
3064         /* OK, set up the swap map and apply the bad block list */
3065         swap_map = vzalloc(maxpages);
3066         if (!swap_map) {
3067                 error = -ENOMEM;
3068                 goto bad_swap_unlock_inode;
3069         }
3070
3071         if (p->bdev && bdev_stable_writes(p->bdev))
3072                 p->flags |= SWP_STABLE_WRITES;
3073
3074         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3075                 p->flags |= SWP_SYNCHRONOUS_IO;
3076
3077         if (p->bdev && bdev_nonrot(p->bdev)) {
3078                 int cpu;
3079                 unsigned long ci, nr_cluster;
3080
3081                 p->flags |= SWP_SOLIDSTATE;
3082                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3083                 if (!p->cluster_next_cpu) {
3084                         error = -ENOMEM;
3085                         goto bad_swap_unlock_inode;
3086                 }
3087                 /*
3088                  * select a random position to start with to help wear leveling
3089                  * SSD
3090                  */
3091                 for_each_possible_cpu(cpu) {
3092                         per_cpu(*p->cluster_next_cpu, cpu) =
3093                                 1 + prandom_u32_max(p->highest_bit);
3094                 }
3095                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3096
3097                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3098                                         GFP_KERNEL);
3099                 if (!cluster_info) {
3100                         error = -ENOMEM;
3101                         goto bad_swap_unlock_inode;
3102                 }
3103
3104                 for (ci = 0; ci < nr_cluster; ci++)
3105                         spin_lock_init(&((cluster_info + ci)->lock));
3106
3107                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3108                 if (!p->percpu_cluster) {
3109                         error = -ENOMEM;
3110                         goto bad_swap_unlock_inode;
3111                 }
3112                 for_each_possible_cpu(cpu) {
3113                         struct percpu_cluster *cluster;
3114                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3115                         cluster_set_null(&cluster->index);
3116                 }
3117         } else {
3118                 atomic_inc(&nr_rotate_swap);
3119                 inced_nr_rotate_swap = true;
3120         }
3121
3122         error = swap_cgroup_swapon(p->type, maxpages);
3123         if (error)
3124                 goto bad_swap_unlock_inode;
3125
3126         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3127                 cluster_info, maxpages, &span);
3128         if (unlikely(nr_extents < 0)) {
3129                 error = nr_extents;
3130                 goto bad_swap_unlock_inode;
3131         }
3132         /* frontswap enabled? set up bit-per-page map for frontswap */
3133         if (IS_ENABLED(CONFIG_FRONTSWAP))
3134                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3135                                          sizeof(long),
3136                                          GFP_KERNEL);
3137
3138         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3139             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3140                 /*
3141                  * When discard is enabled for swap with no particular
3142                  * policy flagged, we set all swap discard flags here in
3143                  * order to sustain backward compatibility with older
3144                  * swapon(8) releases.
3145                  */
3146                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3147                              SWP_PAGE_DISCARD);
3148
3149                 /*
3150                  * By flagging sys_swapon, a sysadmin can tell us to
3151                  * either do single-time area discards only, or to just
3152                  * perform discards for released swap page-clusters.
3153                  * Now it's time to adjust the p->flags accordingly.
3154                  */
3155                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3156                         p->flags &= ~SWP_PAGE_DISCARD;
3157                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3158                         p->flags &= ~SWP_AREA_DISCARD;
3159
3160                 /* issue a swapon-time discard if it's still required */
3161                 if (p->flags & SWP_AREA_DISCARD) {
3162                         int err = discard_swap(p);
3163                         if (unlikely(err))
3164                                 pr_err("swapon: discard_swap(%p): %d\n",
3165                                         p, err);
3166                 }
3167         }
3168
3169         error = init_swap_address_space(p->type, maxpages);
3170         if (error)
3171                 goto bad_swap_unlock_inode;
3172
3173         /*
3174          * Flush any pending IO and dirty mappings before we start using this
3175          * swap device.
3176          */
3177         inode->i_flags |= S_SWAPFILE;
3178         error = inode_drain_writes(inode);
3179         if (error) {
3180                 inode->i_flags &= ~S_SWAPFILE;
3181                 goto free_swap_address_space;
3182         }
3183
3184         mutex_lock(&swapon_mutex);
3185         prio = -1;
3186         if (swap_flags & SWAP_FLAG_PREFER)
3187                 prio =
3188                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3189         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3190
3191         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3192                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3193                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3194                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3195                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3196                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3197                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3198                 (frontswap_map) ? "FS" : "");
3199
3200         mutex_unlock(&swapon_mutex);
3201         atomic_inc(&proc_poll_event);
3202         wake_up_interruptible(&proc_poll_wait);
3203
3204         error = 0;
3205         goto out;
3206 free_swap_address_space:
3207         exit_swap_address_space(p->type);
3208 bad_swap_unlock_inode:
3209         inode_unlock(inode);
3210 bad_swap:
3211         free_percpu(p->percpu_cluster);
3212         p->percpu_cluster = NULL;
3213         free_percpu(p->cluster_next_cpu);
3214         p->cluster_next_cpu = NULL;
3215         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3216                 set_blocksize(p->bdev, p->old_block_size);
3217                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3218         }
3219         inode = NULL;
3220         destroy_swap_extents(p);
3221         swap_cgroup_swapoff(p->type);
3222         spin_lock(&swap_lock);
3223         p->swap_file = NULL;
3224         p->flags = 0;
3225         spin_unlock(&swap_lock);
3226         vfree(swap_map);
3227         kvfree(cluster_info);
3228         kvfree(frontswap_map);
3229         if (inced_nr_rotate_swap)
3230                 atomic_dec(&nr_rotate_swap);
3231         if (swap_file)
3232                 filp_close(swap_file, NULL);
3233 out:
3234         if (page && !IS_ERR(page)) {
3235                 kunmap(page);
3236                 put_page(page);
3237         }
3238         if (name)
3239                 putname(name);
3240         if (inode)
3241                 inode_unlock(inode);
3242         if (!error)
3243                 enable_swap_slots_cache();
3244         return error;
3245 }
3246
3247 void si_swapinfo(struct sysinfo *val)
3248 {
3249         unsigned int type;
3250         unsigned long nr_to_be_unused = 0;
3251
3252         spin_lock(&swap_lock);
3253         for (type = 0; type < nr_swapfiles; type++) {
3254                 struct swap_info_struct *si = swap_info[type];
3255
3256                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3257                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3258         }
3259         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3260         val->totalswap = total_swap_pages + nr_to_be_unused;
3261         spin_unlock(&swap_lock);
3262 }
3263
3264 /*
3265  * Verify that a swap entry is valid and increment its swap map count.
3266  *
3267  * Returns error code in following case.
3268  * - success -> 0
3269  * - swp_entry is invalid -> EINVAL
3270  * - swp_entry is migration entry -> EINVAL
3271  * - swap-cache reference is requested but there is already one. -> EEXIST
3272  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3273  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3274  */
3275 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3276 {
3277         struct swap_info_struct *p;
3278         struct swap_cluster_info *ci;
3279         unsigned long offset;
3280         unsigned char count;
3281         unsigned char has_cache;
3282         int err;
3283
3284         p = get_swap_device(entry);
3285         if (!p)
3286                 return -EINVAL;
3287
3288         offset = swp_offset(entry);
3289         ci = lock_cluster_or_swap_info(p, offset);
3290
3291         count = p->swap_map[offset];
3292
3293         /*
3294          * swapin_readahead() doesn't check if a swap entry is valid, so the
3295          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3296          */
3297         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3298                 err = -ENOENT;
3299                 goto unlock_out;
3300         }
3301
3302         has_cache = count & SWAP_HAS_CACHE;
3303         count &= ~SWAP_HAS_CACHE;
3304         err = 0;
3305
3306         if (usage == SWAP_HAS_CACHE) {
3307
3308                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3309                 if (!has_cache && count)
3310                         has_cache = SWAP_HAS_CACHE;
3311                 else if (has_cache)             /* someone else added cache */
3312                         err = -EEXIST;
3313                 else                            /* no users remaining */
3314                         err = -ENOENT;
3315
3316         } else if (count || has_cache) {
3317
3318                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3319                         count += usage;
3320                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3321                         err = -EINVAL;
3322                 else if (swap_count_continued(p, offset, count))
3323                         count = COUNT_CONTINUED;
3324                 else
3325                         err = -ENOMEM;
3326         } else
3327                 err = -ENOENT;                  /* unused swap entry */
3328
3329         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3330
3331 unlock_out:
3332         unlock_cluster_or_swap_info(p, ci);
3333         put_swap_device(p);
3334         return err;
3335 }
3336
3337 /*
3338  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3339  * (in which case its reference count is never incremented).
3340  */
3341 void swap_shmem_alloc(swp_entry_t entry)
3342 {
3343         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3344 }
3345
3346 /*
3347  * Increase reference count of swap entry by 1.
3348  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3349  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3350  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3351  * might occur if a page table entry has got corrupted.
3352  */
3353 int swap_duplicate(swp_entry_t entry)
3354 {
3355         int err = 0;
3356
3357         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3358                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3359         return err;
3360 }
3361
3362 /*
3363  * @entry: swap entry for which we allocate swap cache.
3364  *
3365  * Called when allocating swap cache for existing swap entry,
3366  * This can return error codes. Returns 0 at success.
3367  * -EEXIST means there is a swap cache.
3368  * Note: return code is different from swap_duplicate().
3369  */
3370 int swapcache_prepare(swp_entry_t entry)
3371 {
3372         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3373 }
3374
3375 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3376 {
3377         return swap_type_to_swap_info(swp_type(entry));
3378 }
3379
3380 struct swap_info_struct *page_swap_info(struct page *page)
3381 {
3382         swp_entry_t entry = { .val = page_private(page) };
3383         return swp_swap_info(entry);
3384 }
3385
3386 /*
3387  * out-of-line methods to avoid include hell.
3388  */
3389 struct address_space *swapcache_mapping(struct folio *folio)
3390 {
3391         return page_swap_info(&folio->page)->swap_file->f_mapping;
3392 }
3393 EXPORT_SYMBOL_GPL(swapcache_mapping);
3394
3395 pgoff_t __page_file_index(struct page *page)
3396 {
3397         swp_entry_t swap = { .val = page_private(page) };
3398         return swp_offset(swap);
3399 }
3400 EXPORT_SYMBOL_GPL(__page_file_index);
3401
3402 /*
3403  * add_swap_count_continuation - called when a swap count is duplicated
3404  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3405  * page of the original vmalloc'ed swap_map, to hold the continuation count
3406  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3407  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3408  *
3409  * These continuation pages are seldom referenced: the common paths all work
3410  * on the original swap_map, only referring to a continuation page when the
3411  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3412  *
3413  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3414  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3415  * can be called after dropping locks.
3416  */
3417 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3418 {
3419         struct swap_info_struct *si;
3420         struct swap_cluster_info *ci;
3421         struct page *head;
3422         struct page *page;
3423         struct page *list_page;
3424         pgoff_t offset;
3425         unsigned char count;
3426         int ret = 0;
3427
3428         /*
3429          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3430          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3431          */
3432         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3433
3434         si = get_swap_device(entry);
3435         if (!si) {
3436                 /*
3437                  * An acceptable race has occurred since the failing
3438                  * __swap_duplicate(): the swap device may be swapoff
3439                  */
3440                 goto outer;
3441         }
3442         spin_lock(&si->lock);
3443
3444         offset = swp_offset(entry);
3445
3446         ci = lock_cluster(si, offset);
3447
3448         count = swap_count(si->swap_map[offset]);
3449
3450         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3451                 /*
3452                  * The higher the swap count, the more likely it is that tasks
3453                  * will race to add swap count continuation: we need to avoid
3454                  * over-provisioning.
3455                  */
3456                 goto out;
3457         }
3458
3459         if (!page) {
3460                 ret = -ENOMEM;
3461                 goto out;
3462         }
3463
3464         /*
3465          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3466          * no architecture is using highmem pages for kernel page tables: so it
3467          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3468          */
3469         head = vmalloc_to_page(si->swap_map + offset);
3470         offset &= ~PAGE_MASK;
3471
3472         spin_lock(&si->cont_lock);
3473         /*
3474          * Page allocation does not initialize the page's lru field,
3475          * but it does always reset its private field.
3476          */
3477         if (!page_private(head)) {
3478                 BUG_ON(count & COUNT_CONTINUED);
3479                 INIT_LIST_HEAD(&head->lru);
3480                 set_page_private(head, SWP_CONTINUED);
3481                 si->flags |= SWP_CONTINUED;
3482         }
3483
3484         list_for_each_entry(list_page, &head->lru, lru) {
3485                 unsigned char *map;
3486
3487                 /*
3488                  * If the previous map said no continuation, but we've found
3489                  * a continuation page, free our allocation and use this one.
3490                  */
3491                 if (!(count & COUNT_CONTINUED))
3492                         goto out_unlock_cont;
3493
3494                 map = kmap_atomic(list_page) + offset;
3495                 count = *map;
3496                 kunmap_atomic(map);
3497
3498                 /*
3499                  * If this continuation count now has some space in it,
3500                  * free our allocation and use this one.
3501                  */
3502                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3503                         goto out_unlock_cont;
3504         }
3505
3506         list_add_tail(&page->lru, &head->lru);
3507         page = NULL;                    /* now it's attached, don't free it */
3508 out_unlock_cont:
3509         spin_unlock(&si->cont_lock);
3510 out:
3511         unlock_cluster(ci);
3512         spin_unlock(&si->lock);
3513         put_swap_device(si);
3514 outer:
3515         if (page)
3516                 __free_page(page);
3517         return ret;
3518 }
3519
3520 /*
3521  * swap_count_continued - when the original swap_map count is incremented
3522  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3523  * into, carry if so, or else fail until a new continuation page is allocated;
3524  * when the original swap_map count is decremented from 0 with continuation,
3525  * borrow from the continuation and report whether it still holds more.
3526  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3527  * lock.
3528  */
3529 static bool swap_count_continued(struct swap_info_struct *si,
3530                                  pgoff_t offset, unsigned char count)
3531 {
3532         struct page *head;
3533         struct page *page;
3534         unsigned char *map;
3535         bool ret;
3536
3537         head = vmalloc_to_page(si->swap_map + offset);
3538         if (page_private(head) != SWP_CONTINUED) {
3539                 BUG_ON(count & COUNT_CONTINUED);
3540                 return false;           /* need to add count continuation */
3541         }
3542
3543         spin_lock(&si->cont_lock);
3544         offset &= ~PAGE_MASK;
3545         page = list_next_entry(head, lru);
3546         map = kmap_atomic(page) + offset;
3547
3548         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3549                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3550
3551         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3552                 /*
3553                  * Think of how you add 1 to 999
3554                  */
3555                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3556                         kunmap_atomic(map);
3557                         page = list_next_entry(page, lru);
3558                         BUG_ON(page == head);
3559                         map = kmap_atomic(page) + offset;
3560                 }
3561                 if (*map == SWAP_CONT_MAX) {
3562                         kunmap_atomic(map);
3563                         page = list_next_entry(page, lru);
3564                         if (page == head) {
3565                                 ret = false;    /* add count continuation */
3566                                 goto out;
3567                         }
3568                         map = kmap_atomic(page) + offset;
3569 init_map:               *map = 0;               /* we didn't zero the page */
3570                 }
3571                 *map += 1;
3572                 kunmap_atomic(map);
3573                 while ((page = list_prev_entry(page, lru)) != head) {
3574                         map = kmap_atomic(page) + offset;
3575                         *map = COUNT_CONTINUED;
3576                         kunmap_atomic(map);
3577                 }
3578                 ret = true;                     /* incremented */
3579
3580         } else {                                /* decrementing */
3581                 /*
3582                  * Think of how you subtract 1 from 1000
3583                  */
3584                 BUG_ON(count != COUNT_CONTINUED);
3585                 while (*map == COUNT_CONTINUED) {
3586                         kunmap_atomic(map);
3587                         page = list_next_entry(page, lru);
3588                         BUG_ON(page == head);
3589                         map = kmap_atomic(page) + offset;
3590                 }
3591                 BUG_ON(*map == 0);
3592                 *map -= 1;
3593                 if (*map == 0)
3594                         count = 0;
3595                 kunmap_atomic(map);
3596                 while ((page = list_prev_entry(page, lru)) != head) {
3597                         map = kmap_atomic(page) + offset;
3598                         *map = SWAP_CONT_MAX | count;
3599                         count = COUNT_CONTINUED;
3600                         kunmap_atomic(map);
3601                 }
3602                 ret = count == COUNT_CONTINUED;
3603         }
3604 out:
3605         spin_unlock(&si->cont_lock);
3606         return ret;
3607 }
3608
3609 /*
3610  * free_swap_count_continuations - swapoff free all the continuation pages
3611  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3612  */
3613 static void free_swap_count_continuations(struct swap_info_struct *si)
3614 {
3615         pgoff_t offset;
3616
3617         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3618                 struct page *head;
3619                 head = vmalloc_to_page(si->swap_map + offset);
3620                 if (page_private(head)) {
3621                         struct page *page, *next;
3622
3623                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3624                                 list_del(&page->lru);
3625                                 __free_page(page);
3626                         }
3627                 }
3628         }
3629 }
3630
3631 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3632 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3633 {
3634         struct swap_info_struct *si, *next;
3635         int nid = page_to_nid(page);
3636
3637         if (!(gfp_mask & __GFP_IO))
3638                 return;
3639
3640         if (!blk_cgroup_congested())
3641                 return;
3642
3643         /*
3644          * We've already scheduled a throttle, avoid taking the global swap
3645          * lock.
3646          */
3647         if (current->throttle_queue)
3648                 return;
3649
3650         spin_lock(&swap_avail_lock);
3651         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3652                                   avail_lists[nid]) {
3653                 if (si->bdev) {
3654                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3655                         break;
3656                 }
3657         }
3658         spin_unlock(&swap_avail_lock);
3659 }
3660 #endif
3661
3662 static int __init swapfile_init(void)
3663 {
3664         int nid;
3665
3666         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3667                                          GFP_KERNEL);
3668         if (!swap_avail_heads) {
3669                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3670                 return -ENOMEM;
3671         }
3672
3673         for_each_node(nid)
3674                 plist_head_init(&swap_avail_heads[nid]);
3675
3676         swapfile_maximum_size = arch_max_swapfile_size();
3677
3678 #ifdef CONFIG_MIGRATION
3679         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3680                 swap_migration_ad_supported = true;
3681 #endif  /* CONFIG_MIGRATION */
3682
3683         return 0;
3684 }
3685 subsys_initcall(swapfile_init);