4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
61 struct swap_list_t swap_list = {-1, -1};
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
65 static DEFINE_MUTEX(swapon_mutex);
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
71 static inline unsigned char swap_count(unsigned char ent)
73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
76 /* returns 1 if swap entry is freed */
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
80 swp_entry_t entry = swp_entry(si->type, offset);
84 page = find_get_page(swap_address_space(entry), entry.val);
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
98 page_cache_release(page);
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
106 static int discard_swap(struct swap_info_struct *si)
108 struct swap_extent *se;
109 sector_t start_block;
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
118 err = blkdev_issue_discard(si->bdev, start_block,
119 nr_blocks, GFP_KERNEL, 0);
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
129 err = blkdev_issue_discard(si->bdev, start_block,
130 nr_blocks, GFP_KERNEL, 0);
136 return err; /* That will often be -EOPNOTSUPP */
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
143 static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
150 struct list_head *lh;
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
156 sector_t nr_blocks = se->nr_pages - offset;
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
164 si->curr_swap_extent = se;
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
169 nr_blocks, GFP_NOIO, 0))
174 se = list_entry(lh, struct swap_extent, list);
178 #define SWAPFILE_CLUSTER 256
179 #define LATENCY_LIMIT 256
181 static inline void cluster_set_flag(struct swap_cluster_info *info,
187 static inline unsigned int cluster_count(struct swap_cluster_info *info)
192 static inline void cluster_set_count(struct swap_cluster_info *info,
198 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
199 unsigned int c, unsigned int f)
205 static inline unsigned int cluster_next(struct swap_cluster_info *info)
210 static inline void cluster_set_next(struct swap_cluster_info *info,
216 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
217 unsigned int n, unsigned int f)
223 static inline bool cluster_is_free(struct swap_cluster_info *info)
225 return info->flags & CLUSTER_FLAG_FREE;
228 static inline bool cluster_is_null(struct swap_cluster_info *info)
230 return info->flags & CLUSTER_FLAG_NEXT_NULL;
233 static inline void cluster_set_null(struct swap_cluster_info *info)
235 info->flags = CLUSTER_FLAG_NEXT_NULL;
239 /* Add a cluster to discard list and schedule it to do discard */
240 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
244 * If scan_swap_map() can't find a free cluster, it will check
245 * si->swap_map directly. To make sure the discarding cluster isn't
246 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247 * will be cleared after discard
249 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
250 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
252 if (cluster_is_null(&si->discard_cluster_head)) {
253 cluster_set_next_flag(&si->discard_cluster_head,
255 cluster_set_next_flag(&si->discard_cluster_tail,
258 unsigned int tail = cluster_next(&si->discard_cluster_tail);
259 cluster_set_next(&si->cluster_info[tail], idx);
260 cluster_set_next_flag(&si->discard_cluster_tail,
264 schedule_work(&si->discard_work);
268 * Doing discard actually. After a cluster discard is finished, the cluster
269 * will be added to free cluster list. caller should hold si->lock.
271 static void swap_do_scheduled_discard(struct swap_info_struct *si)
273 struct swap_cluster_info *info;
276 info = si->cluster_info;
278 while (!cluster_is_null(&si->discard_cluster_head)) {
279 idx = cluster_next(&si->discard_cluster_head);
281 cluster_set_next_flag(&si->discard_cluster_head,
282 cluster_next(&info[idx]), 0);
283 if (cluster_next(&si->discard_cluster_tail) == idx) {
284 cluster_set_null(&si->discard_cluster_head);
285 cluster_set_null(&si->discard_cluster_tail);
287 spin_unlock(&si->lock);
289 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
292 spin_lock(&si->lock);
293 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
294 if (cluster_is_null(&si->free_cluster_head)) {
295 cluster_set_next_flag(&si->free_cluster_head,
297 cluster_set_next_flag(&si->free_cluster_tail,
302 tail = cluster_next(&si->free_cluster_tail);
303 cluster_set_next(&info[tail], idx);
304 cluster_set_next_flag(&si->free_cluster_tail,
307 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
308 0, SWAPFILE_CLUSTER);
312 static void swap_discard_work(struct work_struct *work)
314 struct swap_info_struct *si;
316 si = container_of(work, struct swap_info_struct, discard_work);
318 spin_lock(&si->lock);
319 swap_do_scheduled_discard(si);
320 spin_unlock(&si->lock);
324 * The cluster corresponding to page_nr will be used. The cluster will be
325 * removed from free cluster list and its usage counter will be increased.
327 static void inc_cluster_info_page(struct swap_info_struct *p,
328 struct swap_cluster_info *cluster_info, unsigned long page_nr)
330 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
334 if (cluster_is_free(&cluster_info[idx])) {
335 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
336 cluster_set_next_flag(&p->free_cluster_head,
337 cluster_next(&cluster_info[idx]), 0);
338 if (cluster_next(&p->free_cluster_tail) == idx) {
339 cluster_set_null(&p->free_cluster_tail);
340 cluster_set_null(&p->free_cluster_head);
342 cluster_set_count_flag(&cluster_info[idx], 0, 0);
345 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
346 cluster_set_count(&cluster_info[idx],
347 cluster_count(&cluster_info[idx]) + 1);
351 * The cluster corresponding to page_nr decreases one usage. If the usage
352 * counter becomes 0, which means no page in the cluster is in using, we can
353 * optionally discard the cluster and add it to free cluster list.
355 static void dec_cluster_info_page(struct swap_info_struct *p,
356 struct swap_cluster_info *cluster_info, unsigned long page_nr)
358 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) - 1);
367 if (cluster_count(&cluster_info[idx]) == 0) {
369 * If the swap is discardable, prepare discard the cluster
370 * instead of free it immediately. The cluster will be freed
373 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
374 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
375 swap_cluster_schedule_discard(p, idx);
379 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
380 if (cluster_is_null(&p->free_cluster_head)) {
381 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
382 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
384 unsigned int tail = cluster_next(&p->free_cluster_tail);
385 cluster_set_next(&cluster_info[tail], idx);
386 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
392 * It's possible scan_swap_map() uses a free cluster in the middle of free
393 * cluster list. Avoiding such abuse to avoid list corruption.
395 static inline bool scan_swap_map_recheck_cluster(struct swap_info_struct *si,
396 unsigned long offset)
398 offset /= SWAPFILE_CLUSTER;
399 return !cluster_is_null(&si->free_cluster_head) &&
400 offset != cluster_next(&si->free_cluster_head) &&
401 cluster_is_free(&si->cluster_info[offset]);
404 static unsigned long scan_swap_map(struct swap_info_struct *si,
407 unsigned long offset;
408 unsigned long scan_base;
409 unsigned long last_in_cluster = 0;
410 int latency_ration = LATENCY_LIMIT;
413 * We try to cluster swap pages by allocating them sequentially
414 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
415 * way, however, we resort to first-free allocation, starting
416 * a new cluster. This prevents us from scattering swap pages
417 * all over the entire swap partition, so that we reduce
418 * overall disk seek times between swap pages. -- sct
419 * But we do now try to find an empty cluster. -Andrea
420 * And we let swap pages go all over an SSD partition. Hugh
423 si->flags += SWP_SCANNING;
424 scan_base = offset = si->cluster_next;
426 if (unlikely(!si->cluster_nr--)) {
427 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
428 si->cluster_nr = SWAPFILE_CLUSTER - 1;
432 if (!cluster_is_null(&si->free_cluster_head)) {
433 offset = cluster_next(&si->free_cluster_head) *
435 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
436 si->cluster_next = offset;
437 si->cluster_nr = SWAPFILE_CLUSTER - 1;
439 } else if (si->cluster_info) {
441 * we don't have free cluster but have some clusters in
442 * discarding, do discard now and reclaim them
444 if (!cluster_is_null(&si->discard_cluster_head)) {
446 swap_do_scheduled_discard(si);
447 scan_base = offset = si->cluster_next;
455 * Checking free cluster is fast enough, we can do the
462 spin_unlock(&si->lock);
465 * If seek is expensive, start searching for new cluster from
466 * start of partition, to minimize the span of allocated swap.
467 * But if seek is cheap, search from our current position, so
468 * that swap is allocated from all over the partition: if the
469 * Flash Translation Layer only remaps within limited zones,
470 * we don't want to wear out the first zone too quickly.
472 if (!(si->flags & SWP_SOLIDSTATE))
473 scan_base = offset = si->lowest_bit;
474 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
476 /* Locate the first empty (unaligned) cluster */
477 for (; last_in_cluster <= si->highest_bit; offset++) {
478 if (si->swap_map[offset])
479 last_in_cluster = offset + SWAPFILE_CLUSTER;
480 else if (offset == last_in_cluster) {
481 spin_lock(&si->lock);
482 offset -= SWAPFILE_CLUSTER - 1;
483 si->cluster_next = offset;
484 si->cluster_nr = SWAPFILE_CLUSTER - 1;
487 if (unlikely(--latency_ration < 0)) {
489 latency_ration = LATENCY_LIMIT;
493 offset = si->lowest_bit;
494 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
496 /* Locate the first empty (unaligned) cluster */
497 for (; last_in_cluster < scan_base; offset++) {
498 if (si->swap_map[offset])
499 last_in_cluster = offset + SWAPFILE_CLUSTER;
500 else if (offset == last_in_cluster) {
501 spin_lock(&si->lock);
502 offset -= SWAPFILE_CLUSTER - 1;
503 si->cluster_next = offset;
504 si->cluster_nr = SWAPFILE_CLUSTER - 1;
507 if (unlikely(--latency_ration < 0)) {
509 latency_ration = LATENCY_LIMIT;
514 spin_lock(&si->lock);
515 si->cluster_nr = SWAPFILE_CLUSTER - 1;
519 if (scan_swap_map_recheck_cluster(si, offset))
521 if (!(si->flags & SWP_WRITEOK))
523 if (!si->highest_bit)
525 if (offset > si->highest_bit)
526 scan_base = offset = si->lowest_bit;
528 /* reuse swap entry of cache-only swap if not busy. */
529 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
531 spin_unlock(&si->lock);
532 swap_was_freed = __try_to_reclaim_swap(si, offset);
533 spin_lock(&si->lock);
534 /* entry was freed successfully, try to use this again */
537 goto scan; /* check next one */
540 if (si->swap_map[offset])
543 if (offset == si->lowest_bit)
545 if (offset == si->highest_bit)
548 if (si->inuse_pages == si->pages) {
549 si->lowest_bit = si->max;
552 si->swap_map[offset] = usage;
553 inc_cluster_info_page(si, si->cluster_info, offset);
554 si->cluster_next = offset + 1;
555 si->flags -= SWP_SCANNING;
560 spin_unlock(&si->lock);
561 while (++offset <= si->highest_bit) {
562 if (!si->swap_map[offset]) {
563 spin_lock(&si->lock);
566 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
567 spin_lock(&si->lock);
570 if (unlikely(--latency_ration < 0)) {
572 latency_ration = LATENCY_LIMIT;
575 offset = si->lowest_bit;
576 while (++offset < scan_base) {
577 if (!si->swap_map[offset]) {
578 spin_lock(&si->lock);
581 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
582 spin_lock(&si->lock);
585 if (unlikely(--latency_ration < 0)) {
587 latency_ration = LATENCY_LIMIT;
590 spin_lock(&si->lock);
593 si->flags -= SWP_SCANNING;
597 swp_entry_t get_swap_page(void)
599 struct swap_info_struct *si;
605 spin_lock(&swap_lock);
606 if (atomic_long_read(&nr_swap_pages) <= 0)
608 atomic_long_dec(&nr_swap_pages);
610 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
611 hp_index = atomic_xchg(&highest_priority_index, -1);
613 * highest_priority_index records current highest priority swap
614 * type which just frees swap entries. If its priority is
615 * higher than that of swap_list.next swap type, we use it. It
616 * isn't protected by swap_lock, so it can be an invalid value
617 * if the corresponding swap type is swapoff. We double check
618 * the flags here. It's even possible the swap type is swapoff
619 * and swapon again and its priority is changed. In such rare
620 * case, low prority swap type might be used, but eventually
621 * high priority swap will be used after several rounds of
624 if (hp_index != -1 && hp_index != type &&
625 swap_info[type]->prio < swap_info[hp_index]->prio &&
626 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
628 swap_list.next = type;
631 si = swap_info[type];
634 (!wrapped && si->prio != swap_info[next]->prio)) {
635 next = swap_list.head;
639 spin_lock(&si->lock);
640 if (!si->highest_bit) {
641 spin_unlock(&si->lock);
644 if (!(si->flags & SWP_WRITEOK)) {
645 spin_unlock(&si->lock);
649 swap_list.next = next;
651 spin_unlock(&swap_lock);
652 /* This is called for allocating swap entry for cache */
653 offset = scan_swap_map(si, SWAP_HAS_CACHE);
654 spin_unlock(&si->lock);
656 return swp_entry(type, offset);
657 spin_lock(&swap_lock);
658 next = swap_list.next;
661 atomic_long_inc(&nr_swap_pages);
663 spin_unlock(&swap_lock);
664 return (swp_entry_t) {0};
667 /* The only caller of this function is now susupend routine */
668 swp_entry_t get_swap_page_of_type(int type)
670 struct swap_info_struct *si;
673 si = swap_info[type];
674 spin_lock(&si->lock);
675 if (si && (si->flags & SWP_WRITEOK)) {
676 atomic_long_dec(&nr_swap_pages);
677 /* This is called for allocating swap entry, not cache */
678 offset = scan_swap_map(si, 1);
680 spin_unlock(&si->lock);
681 return swp_entry(type, offset);
683 atomic_long_inc(&nr_swap_pages);
685 spin_unlock(&si->lock);
686 return (swp_entry_t) {0};
689 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
691 struct swap_info_struct *p;
692 unsigned long offset, type;
696 type = swp_type(entry);
697 if (type >= nr_swapfiles)
700 if (!(p->flags & SWP_USED))
702 offset = swp_offset(entry);
703 if (offset >= p->max)
705 if (!p->swap_map[offset])
711 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
714 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
717 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
720 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
726 * This swap type frees swap entry, check if it is the highest priority swap
727 * type which just frees swap entry. get_swap_page() uses
728 * highest_priority_index to search highest priority swap type. The
729 * swap_info_struct.lock can't protect us if there are multiple swap types
730 * active, so we use atomic_cmpxchg.
732 static void set_highest_priority_index(int type)
734 int old_hp_index, new_hp_index;
737 old_hp_index = atomic_read(&highest_priority_index);
738 if (old_hp_index != -1 &&
739 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
742 } while (atomic_cmpxchg(&highest_priority_index,
743 old_hp_index, new_hp_index) != old_hp_index);
746 static unsigned char swap_entry_free(struct swap_info_struct *p,
747 swp_entry_t entry, unsigned char usage)
749 unsigned long offset = swp_offset(entry);
751 unsigned char has_cache;
753 count = p->swap_map[offset];
754 has_cache = count & SWAP_HAS_CACHE;
755 count &= ~SWAP_HAS_CACHE;
757 if (usage == SWAP_HAS_CACHE) {
758 VM_BUG_ON(!has_cache);
760 } else if (count == SWAP_MAP_SHMEM) {
762 * Or we could insist on shmem.c using a special
763 * swap_shmem_free() and free_shmem_swap_and_cache()...
766 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
767 if (count == COUNT_CONTINUED) {
768 if (swap_count_continued(p, offset, count))
769 count = SWAP_MAP_MAX | COUNT_CONTINUED;
771 count = SWAP_MAP_MAX;
777 mem_cgroup_uncharge_swap(entry);
779 usage = count | has_cache;
780 p->swap_map[offset] = usage;
782 /* free if no reference */
784 dec_cluster_info_page(p, p->cluster_info, offset);
785 if (offset < p->lowest_bit)
786 p->lowest_bit = offset;
787 if (offset > p->highest_bit)
788 p->highest_bit = offset;
789 set_highest_priority_index(p->type);
790 atomic_long_inc(&nr_swap_pages);
792 frontswap_invalidate_page(p->type, offset);
793 if (p->flags & SWP_BLKDEV) {
794 struct gendisk *disk = p->bdev->bd_disk;
795 if (disk->fops->swap_slot_free_notify)
796 disk->fops->swap_slot_free_notify(p->bdev,
805 * Caller has made sure that the swapdevice corresponding to entry
806 * is still around or has not been recycled.
808 void swap_free(swp_entry_t entry)
810 struct swap_info_struct *p;
812 p = swap_info_get(entry);
814 swap_entry_free(p, entry, 1);
815 spin_unlock(&p->lock);
820 * Called after dropping swapcache to decrease refcnt to swap entries.
822 void swapcache_free(swp_entry_t entry, struct page *page)
824 struct swap_info_struct *p;
827 p = swap_info_get(entry);
829 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
831 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
832 spin_unlock(&p->lock);
837 * How many references to page are currently swapped out?
838 * This does not give an exact answer when swap count is continued,
839 * but does include the high COUNT_CONTINUED flag to allow for that.
841 int page_swapcount(struct page *page)
844 struct swap_info_struct *p;
847 entry.val = page_private(page);
848 p = swap_info_get(entry);
850 count = swap_count(p->swap_map[swp_offset(entry)]);
851 spin_unlock(&p->lock);
857 * We can write to an anon page without COW if there are no other references
858 * to it. And as a side-effect, free up its swap: because the old content
859 * on disk will never be read, and seeking back there to write new content
860 * later would only waste time away from clustering.
862 int reuse_swap_page(struct page *page)
866 VM_BUG_ON(!PageLocked(page));
867 if (unlikely(PageKsm(page)))
869 count = page_mapcount(page);
870 if (count <= 1 && PageSwapCache(page)) {
871 count += page_swapcount(page);
872 if (count == 1 && !PageWriteback(page)) {
873 delete_from_swap_cache(page);
881 * If swap is getting full, or if there are no more mappings of this page,
882 * then try_to_free_swap is called to free its swap space.
884 int try_to_free_swap(struct page *page)
886 VM_BUG_ON(!PageLocked(page));
888 if (!PageSwapCache(page))
890 if (PageWriteback(page))
892 if (page_swapcount(page))
896 * Once hibernation has begun to create its image of memory,
897 * there's a danger that one of the calls to try_to_free_swap()
898 * - most probably a call from __try_to_reclaim_swap() while
899 * hibernation is allocating its own swap pages for the image,
900 * but conceivably even a call from memory reclaim - will free
901 * the swap from a page which has already been recorded in the
902 * image as a clean swapcache page, and then reuse its swap for
903 * another page of the image. On waking from hibernation, the
904 * original page might be freed under memory pressure, then
905 * later read back in from swap, now with the wrong data.
907 * Hibration suspends storage while it is writing the image
908 * to disk so check that here.
910 if (pm_suspended_storage())
913 delete_from_swap_cache(page);
919 * Free the swap entry like above, but also try to
920 * free the page cache entry if it is the last user.
922 int free_swap_and_cache(swp_entry_t entry)
924 struct swap_info_struct *p;
925 struct page *page = NULL;
927 if (non_swap_entry(entry))
930 p = swap_info_get(entry);
932 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
933 page = find_get_page(swap_address_space(entry),
935 if (page && !trylock_page(page)) {
936 page_cache_release(page);
940 spin_unlock(&p->lock);
944 * Not mapped elsewhere, or swap space full? Free it!
945 * Also recheck PageSwapCache now page is locked (above).
947 if (PageSwapCache(page) && !PageWriteback(page) &&
948 (!page_mapped(page) || vm_swap_full())) {
949 delete_from_swap_cache(page);
953 page_cache_release(page);
958 #ifdef CONFIG_HIBERNATION
960 * Find the swap type that corresponds to given device (if any).
962 * @offset - number of the PAGE_SIZE-sized block of the device, starting
963 * from 0, in which the swap header is expected to be located.
965 * This is needed for the suspend to disk (aka swsusp).
967 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
969 struct block_device *bdev = NULL;
973 bdev = bdget(device);
975 spin_lock(&swap_lock);
976 for (type = 0; type < nr_swapfiles; type++) {
977 struct swap_info_struct *sis = swap_info[type];
979 if (!(sis->flags & SWP_WRITEOK))
984 *bdev_p = bdgrab(sis->bdev);
986 spin_unlock(&swap_lock);
989 if (bdev == sis->bdev) {
990 struct swap_extent *se = &sis->first_swap_extent;
992 if (se->start_block == offset) {
994 *bdev_p = bdgrab(sis->bdev);
996 spin_unlock(&swap_lock);
1002 spin_unlock(&swap_lock);
1010 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1011 * corresponding to given index in swap_info (swap type).
1013 sector_t swapdev_block(int type, pgoff_t offset)
1015 struct block_device *bdev;
1017 if ((unsigned int)type >= nr_swapfiles)
1019 if (!(swap_info[type]->flags & SWP_WRITEOK))
1021 return map_swap_entry(swp_entry(type, offset), &bdev);
1025 * Return either the total number of swap pages of given type, or the number
1026 * of free pages of that type (depending on @free)
1028 * This is needed for software suspend
1030 unsigned int count_swap_pages(int type, int free)
1034 spin_lock(&swap_lock);
1035 if ((unsigned int)type < nr_swapfiles) {
1036 struct swap_info_struct *sis = swap_info[type];
1038 spin_lock(&sis->lock);
1039 if (sis->flags & SWP_WRITEOK) {
1042 n -= sis->inuse_pages;
1044 spin_unlock(&sis->lock);
1046 spin_unlock(&swap_lock);
1049 #endif /* CONFIG_HIBERNATION */
1051 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1053 #ifdef CONFIG_MEM_SOFT_DIRTY
1055 * When pte keeps soft dirty bit the pte generated
1056 * from swap entry does not has it, still it's same
1057 * pte from logical point of view.
1059 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1060 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1062 return pte_same(pte, swp_pte);
1067 * No need to decide whether this PTE shares the swap entry with others,
1068 * just let do_wp_page work it out if a write is requested later - to
1069 * force COW, vm_page_prot omits write permission from any private vma.
1071 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1072 unsigned long addr, swp_entry_t entry, struct page *page)
1074 struct page *swapcache;
1075 struct mem_cgroup *memcg;
1081 page = ksm_might_need_to_copy(page, vma, addr);
1082 if (unlikely(!page))
1085 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1086 GFP_KERNEL, &memcg)) {
1091 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1092 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1093 mem_cgroup_cancel_charge_swapin(memcg);
1098 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1099 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1101 set_pte_at(vma->vm_mm, addr, pte,
1102 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1103 if (page == swapcache)
1104 page_add_anon_rmap(page, vma, addr);
1105 else /* ksm created a completely new copy */
1106 page_add_new_anon_rmap(page, vma, addr);
1107 mem_cgroup_commit_charge_swapin(page, memcg);
1110 * Move the page to the active list so it is not
1111 * immediately swapped out again after swapon.
1113 activate_page(page);
1115 pte_unmap_unlock(pte, ptl);
1117 if (page != swapcache) {
1124 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1125 unsigned long addr, unsigned long end,
1126 swp_entry_t entry, struct page *page)
1128 pte_t swp_pte = swp_entry_to_pte(entry);
1133 * We don't actually need pte lock while scanning for swp_pte: since
1134 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1135 * page table while we're scanning; though it could get zapped, and on
1136 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1137 * of unmatched parts which look like swp_pte, so unuse_pte must
1138 * recheck under pte lock. Scanning without pte lock lets it be
1139 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1141 pte = pte_offset_map(pmd, addr);
1144 * swapoff spends a _lot_ of time in this loop!
1145 * Test inline before going to call unuse_pte.
1147 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1149 ret = unuse_pte(vma, pmd, addr, entry, page);
1152 pte = pte_offset_map(pmd, addr);
1154 } while (pte++, addr += PAGE_SIZE, addr != end);
1160 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1161 unsigned long addr, unsigned long end,
1162 swp_entry_t entry, struct page *page)
1168 pmd = pmd_offset(pud, addr);
1170 next = pmd_addr_end(addr, end);
1171 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1173 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1176 } while (pmd++, addr = next, addr != end);
1180 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1181 unsigned long addr, unsigned long end,
1182 swp_entry_t entry, struct page *page)
1188 pud = pud_offset(pgd, addr);
1190 next = pud_addr_end(addr, end);
1191 if (pud_none_or_clear_bad(pud))
1193 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1196 } while (pud++, addr = next, addr != end);
1200 static int unuse_vma(struct vm_area_struct *vma,
1201 swp_entry_t entry, struct page *page)
1204 unsigned long addr, end, next;
1207 if (page_anon_vma(page)) {
1208 addr = page_address_in_vma(page, vma);
1209 if (addr == -EFAULT)
1212 end = addr + PAGE_SIZE;
1214 addr = vma->vm_start;
1218 pgd = pgd_offset(vma->vm_mm, addr);
1220 next = pgd_addr_end(addr, end);
1221 if (pgd_none_or_clear_bad(pgd))
1223 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1226 } while (pgd++, addr = next, addr != end);
1230 static int unuse_mm(struct mm_struct *mm,
1231 swp_entry_t entry, struct page *page)
1233 struct vm_area_struct *vma;
1236 if (!down_read_trylock(&mm->mmap_sem)) {
1238 * Activate page so shrink_inactive_list is unlikely to unmap
1239 * its ptes while lock is dropped, so swapoff can make progress.
1241 activate_page(page);
1243 down_read(&mm->mmap_sem);
1246 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1247 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1250 up_read(&mm->mmap_sem);
1251 return (ret < 0)? ret: 0;
1255 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1256 * from current position to next entry still in use.
1257 * Recycle to start on reaching the end, returning 0 when empty.
1259 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1260 unsigned int prev, bool frontswap)
1262 unsigned int max = si->max;
1263 unsigned int i = prev;
1264 unsigned char count;
1267 * No need for swap_lock here: we're just looking
1268 * for whether an entry is in use, not modifying it; false
1269 * hits are okay, and sys_swapoff() has already prevented new
1270 * allocations from this area (while holding swap_lock).
1279 * No entries in use at top of swap_map,
1280 * loop back to start and recheck there.
1287 if (frontswap_test(si, i))
1292 count = ACCESS_ONCE(si->swap_map[i]);
1293 if (count && swap_count(count) != SWAP_MAP_BAD)
1300 * We completely avoid races by reading each swap page in advance,
1301 * and then search for the process using it. All the necessary
1302 * page table adjustments can then be made atomically.
1304 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1305 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1307 int try_to_unuse(unsigned int type, bool frontswap,
1308 unsigned long pages_to_unuse)
1310 struct swap_info_struct *si = swap_info[type];
1311 struct mm_struct *start_mm;
1312 volatile unsigned char *swap_map; /* swap_map is accessed without
1313 * locking. Mark it as volatile
1314 * to prevent compiler doing
1317 unsigned char swcount;
1324 * When searching mms for an entry, a good strategy is to
1325 * start at the first mm we freed the previous entry from
1326 * (though actually we don't notice whether we or coincidence
1327 * freed the entry). Initialize this start_mm with a hold.
1329 * A simpler strategy would be to start at the last mm we
1330 * freed the previous entry from; but that would take less
1331 * advantage of mmlist ordering, which clusters forked mms
1332 * together, child after parent. If we race with dup_mmap(), we
1333 * prefer to resolve parent before child, lest we miss entries
1334 * duplicated after we scanned child: using last mm would invert
1337 start_mm = &init_mm;
1338 atomic_inc(&init_mm.mm_users);
1341 * Keep on scanning until all entries have gone. Usually,
1342 * one pass through swap_map is enough, but not necessarily:
1343 * there are races when an instance of an entry might be missed.
1345 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1346 if (signal_pending(current)) {
1352 * Get a page for the entry, using the existing swap
1353 * cache page if there is one. Otherwise, get a clean
1354 * page and read the swap into it.
1356 swap_map = &si->swap_map[i];
1357 entry = swp_entry(type, i);
1358 page = read_swap_cache_async(entry,
1359 GFP_HIGHUSER_MOVABLE, NULL, 0);
1362 * Either swap_duplicate() failed because entry
1363 * has been freed independently, and will not be
1364 * reused since sys_swapoff() already disabled
1365 * allocation from here, or alloc_page() failed.
1367 swcount = *swap_map;
1369 * We don't hold lock here, so the swap entry could be
1370 * SWAP_MAP_BAD (when the cluster is discarding).
1371 * Instead of fail out, We can just skip the swap
1372 * entry because swapoff will wait for discarding
1375 if (!swcount || swcount == SWAP_MAP_BAD)
1382 * Don't hold on to start_mm if it looks like exiting.
1384 if (atomic_read(&start_mm->mm_users) == 1) {
1386 start_mm = &init_mm;
1387 atomic_inc(&init_mm.mm_users);
1391 * Wait for and lock page. When do_swap_page races with
1392 * try_to_unuse, do_swap_page can handle the fault much
1393 * faster than try_to_unuse can locate the entry. This
1394 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1395 * defer to do_swap_page in such a case - in some tests,
1396 * do_swap_page and try_to_unuse repeatedly compete.
1398 wait_on_page_locked(page);
1399 wait_on_page_writeback(page);
1401 wait_on_page_writeback(page);
1404 * Remove all references to entry.
1406 swcount = *swap_map;
1407 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1408 retval = shmem_unuse(entry, page);
1409 /* page has already been unlocked and released */
1414 if (swap_count(swcount) && start_mm != &init_mm)
1415 retval = unuse_mm(start_mm, entry, page);
1417 if (swap_count(*swap_map)) {
1418 int set_start_mm = (*swap_map >= swcount);
1419 struct list_head *p = &start_mm->mmlist;
1420 struct mm_struct *new_start_mm = start_mm;
1421 struct mm_struct *prev_mm = start_mm;
1422 struct mm_struct *mm;
1424 atomic_inc(&new_start_mm->mm_users);
1425 atomic_inc(&prev_mm->mm_users);
1426 spin_lock(&mmlist_lock);
1427 while (swap_count(*swap_map) && !retval &&
1428 (p = p->next) != &start_mm->mmlist) {
1429 mm = list_entry(p, struct mm_struct, mmlist);
1430 if (!atomic_inc_not_zero(&mm->mm_users))
1432 spin_unlock(&mmlist_lock);
1438 swcount = *swap_map;
1439 if (!swap_count(swcount)) /* any usage ? */
1441 else if (mm == &init_mm)
1444 retval = unuse_mm(mm, entry, page);
1446 if (set_start_mm && *swap_map < swcount) {
1447 mmput(new_start_mm);
1448 atomic_inc(&mm->mm_users);
1452 spin_lock(&mmlist_lock);
1454 spin_unlock(&mmlist_lock);
1457 start_mm = new_start_mm;
1461 page_cache_release(page);
1466 * If a reference remains (rare), we would like to leave
1467 * the page in the swap cache; but try_to_unmap could
1468 * then re-duplicate the entry once we drop page lock,
1469 * so we might loop indefinitely; also, that page could
1470 * not be swapped out to other storage meanwhile. So:
1471 * delete from cache even if there's another reference,
1472 * after ensuring that the data has been saved to disk -
1473 * since if the reference remains (rarer), it will be
1474 * read from disk into another page. Splitting into two
1475 * pages would be incorrect if swap supported "shared
1476 * private" pages, but they are handled by tmpfs files.
1478 * Given how unuse_vma() targets one particular offset
1479 * in an anon_vma, once the anon_vma has been determined,
1480 * this splitting happens to be just what is needed to
1481 * handle where KSM pages have been swapped out: re-reading
1482 * is unnecessarily slow, but we can fix that later on.
1484 if (swap_count(*swap_map) &&
1485 PageDirty(page) && PageSwapCache(page)) {
1486 struct writeback_control wbc = {
1487 .sync_mode = WB_SYNC_NONE,
1490 swap_writepage(page, &wbc);
1492 wait_on_page_writeback(page);
1496 * It is conceivable that a racing task removed this page from
1497 * swap cache just before we acquired the page lock at the top,
1498 * or while we dropped it in unuse_mm(). The page might even
1499 * be back in swap cache on another swap area: that we must not
1500 * delete, since it may not have been written out to swap yet.
1502 if (PageSwapCache(page) &&
1503 likely(page_private(page) == entry.val))
1504 delete_from_swap_cache(page);
1507 * So we could skip searching mms once swap count went
1508 * to 1, we did not mark any present ptes as dirty: must
1509 * mark page dirty so shrink_page_list will preserve it.
1513 page_cache_release(page);
1516 * Make sure that we aren't completely killing
1517 * interactive performance.
1520 if (frontswap && pages_to_unuse > 0) {
1521 if (!--pages_to_unuse)
1531 * After a successful try_to_unuse, if no swap is now in use, we know
1532 * we can empty the mmlist. swap_lock must be held on entry and exit.
1533 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1534 * added to the mmlist just after page_duplicate - before would be racy.
1536 static void drain_mmlist(void)
1538 struct list_head *p, *next;
1541 for (type = 0; type < nr_swapfiles; type++)
1542 if (swap_info[type]->inuse_pages)
1544 spin_lock(&mmlist_lock);
1545 list_for_each_safe(p, next, &init_mm.mmlist)
1547 spin_unlock(&mmlist_lock);
1551 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1552 * corresponds to page offset for the specified swap entry.
1553 * Note that the type of this function is sector_t, but it returns page offset
1554 * into the bdev, not sector offset.
1556 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1558 struct swap_info_struct *sis;
1559 struct swap_extent *start_se;
1560 struct swap_extent *se;
1563 sis = swap_info[swp_type(entry)];
1566 offset = swp_offset(entry);
1567 start_se = sis->curr_swap_extent;
1571 struct list_head *lh;
1573 if (se->start_page <= offset &&
1574 offset < (se->start_page + se->nr_pages)) {
1575 return se->start_block + (offset - se->start_page);
1578 se = list_entry(lh, struct swap_extent, list);
1579 sis->curr_swap_extent = se;
1580 BUG_ON(se == start_se); /* It *must* be present */
1585 * Returns the page offset into bdev for the specified page's swap entry.
1587 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1590 entry.val = page_private(page);
1591 return map_swap_entry(entry, bdev);
1595 * Free all of a swapdev's extent information
1597 static void destroy_swap_extents(struct swap_info_struct *sis)
1599 while (!list_empty(&sis->first_swap_extent.list)) {
1600 struct swap_extent *se;
1602 se = list_entry(sis->first_swap_extent.list.next,
1603 struct swap_extent, list);
1604 list_del(&se->list);
1608 if (sis->flags & SWP_FILE) {
1609 struct file *swap_file = sis->swap_file;
1610 struct address_space *mapping = swap_file->f_mapping;
1612 sis->flags &= ~SWP_FILE;
1613 mapping->a_ops->swap_deactivate(swap_file);
1618 * Add a block range (and the corresponding page range) into this swapdev's
1619 * extent list. The extent list is kept sorted in page order.
1621 * This function rather assumes that it is called in ascending page order.
1624 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1625 unsigned long nr_pages, sector_t start_block)
1627 struct swap_extent *se;
1628 struct swap_extent *new_se;
1629 struct list_head *lh;
1631 if (start_page == 0) {
1632 se = &sis->first_swap_extent;
1633 sis->curr_swap_extent = se;
1635 se->nr_pages = nr_pages;
1636 se->start_block = start_block;
1639 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1640 se = list_entry(lh, struct swap_extent, list);
1641 BUG_ON(se->start_page + se->nr_pages != start_page);
1642 if (se->start_block + se->nr_pages == start_block) {
1644 se->nr_pages += nr_pages;
1650 * No merge. Insert a new extent, preserving ordering.
1652 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1655 new_se->start_page = start_page;
1656 new_se->nr_pages = nr_pages;
1657 new_se->start_block = start_block;
1659 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1664 * A `swap extent' is a simple thing which maps a contiguous range of pages
1665 * onto a contiguous range of disk blocks. An ordered list of swap extents
1666 * is built at swapon time and is then used at swap_writepage/swap_readpage
1667 * time for locating where on disk a page belongs.
1669 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1670 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1671 * swap files identically.
1673 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1674 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1675 * swapfiles are handled *identically* after swapon time.
1677 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1678 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1679 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1680 * requirements, they are simply tossed out - we will never use those blocks
1683 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1684 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1685 * which will scribble on the fs.
1687 * The amount of disk space which a single swap extent represents varies.
1688 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1689 * extents in the list. To avoid much list walking, we cache the previous
1690 * search location in `curr_swap_extent', and start new searches from there.
1691 * This is extremely effective. The average number of iterations in
1692 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1694 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1696 struct file *swap_file = sis->swap_file;
1697 struct address_space *mapping = swap_file->f_mapping;
1698 struct inode *inode = mapping->host;
1701 if (S_ISBLK(inode->i_mode)) {
1702 ret = add_swap_extent(sis, 0, sis->max, 0);
1707 if (mapping->a_ops->swap_activate) {
1708 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1710 sis->flags |= SWP_FILE;
1711 ret = add_swap_extent(sis, 0, sis->max, 0);
1717 return generic_swapfile_activate(sis, swap_file, span);
1720 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1721 unsigned char *swap_map,
1722 struct swap_cluster_info *cluster_info)
1729 p->prio = --least_priority;
1730 p->swap_map = swap_map;
1731 p->cluster_info = cluster_info;
1732 p->flags |= SWP_WRITEOK;
1733 atomic_long_add(p->pages, &nr_swap_pages);
1734 total_swap_pages += p->pages;
1736 /* insert swap space into swap_list: */
1738 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1739 if (p->prio >= swap_info[i]->prio)
1745 swap_list.head = swap_list.next = p->type;
1747 swap_info[prev]->next = p->type;
1750 static void enable_swap_info(struct swap_info_struct *p, int prio,
1751 unsigned char *swap_map,
1752 struct swap_cluster_info *cluster_info,
1753 unsigned long *frontswap_map)
1755 frontswap_init(p->type, frontswap_map);
1756 spin_lock(&swap_lock);
1757 spin_lock(&p->lock);
1758 _enable_swap_info(p, prio, swap_map, cluster_info);
1759 spin_unlock(&p->lock);
1760 spin_unlock(&swap_lock);
1763 static void reinsert_swap_info(struct swap_info_struct *p)
1765 spin_lock(&swap_lock);
1766 spin_lock(&p->lock);
1767 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1768 spin_unlock(&p->lock);
1769 spin_unlock(&swap_lock);
1772 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1774 struct swap_info_struct *p = NULL;
1775 unsigned char *swap_map;
1776 struct swap_cluster_info *cluster_info;
1777 unsigned long *frontswap_map;
1778 struct file *swap_file, *victim;
1779 struct address_space *mapping;
1780 struct inode *inode;
1781 struct filename *pathname;
1785 if (!capable(CAP_SYS_ADMIN))
1788 BUG_ON(!current->mm);
1790 pathname = getname(specialfile);
1791 if (IS_ERR(pathname))
1792 return PTR_ERR(pathname);
1794 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1795 err = PTR_ERR(victim);
1799 mapping = victim->f_mapping;
1801 spin_lock(&swap_lock);
1802 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1803 p = swap_info[type];
1804 if (p->flags & SWP_WRITEOK) {
1805 if (p->swap_file->f_mapping == mapping)
1812 spin_unlock(&swap_lock);
1815 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1816 vm_unacct_memory(p->pages);
1819 spin_unlock(&swap_lock);
1823 swap_list.head = p->next;
1825 swap_info[prev]->next = p->next;
1826 if (type == swap_list.next) {
1827 /* just pick something that's safe... */
1828 swap_list.next = swap_list.head;
1830 spin_lock(&p->lock);
1832 for (i = p->next; i >= 0; i = swap_info[i]->next)
1833 swap_info[i]->prio = p->prio--;
1836 atomic_long_sub(p->pages, &nr_swap_pages);
1837 total_swap_pages -= p->pages;
1838 p->flags &= ~SWP_WRITEOK;
1839 spin_unlock(&p->lock);
1840 spin_unlock(&swap_lock);
1842 set_current_oom_origin();
1843 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1844 clear_current_oom_origin();
1847 /* re-insert swap space back into swap_list */
1848 reinsert_swap_info(p);
1852 flush_work(&p->discard_work);
1854 destroy_swap_extents(p);
1855 if (p->flags & SWP_CONTINUED)
1856 free_swap_count_continuations(p);
1858 mutex_lock(&swapon_mutex);
1859 spin_lock(&swap_lock);
1860 spin_lock(&p->lock);
1863 /* wait for anyone still in scan_swap_map */
1864 p->highest_bit = 0; /* cuts scans short */
1865 while (p->flags >= SWP_SCANNING) {
1866 spin_unlock(&p->lock);
1867 spin_unlock(&swap_lock);
1868 schedule_timeout_uninterruptible(1);
1869 spin_lock(&swap_lock);
1870 spin_lock(&p->lock);
1873 swap_file = p->swap_file;
1874 p->swap_file = NULL;
1876 swap_map = p->swap_map;
1878 cluster_info = p->cluster_info;
1879 p->cluster_info = NULL;
1881 frontswap_map = frontswap_map_get(p);
1882 frontswap_map_set(p, NULL);
1883 spin_unlock(&p->lock);
1884 spin_unlock(&swap_lock);
1885 frontswap_invalidate_area(type);
1886 mutex_unlock(&swapon_mutex);
1888 vfree(cluster_info);
1889 vfree(frontswap_map);
1890 /* Destroy swap account informatin */
1891 swap_cgroup_swapoff(type);
1893 inode = mapping->host;
1894 if (S_ISBLK(inode->i_mode)) {
1895 struct block_device *bdev = I_BDEV(inode);
1896 set_blocksize(bdev, p->old_block_size);
1897 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1899 mutex_lock(&inode->i_mutex);
1900 inode->i_flags &= ~S_SWAPFILE;
1901 mutex_unlock(&inode->i_mutex);
1903 filp_close(swap_file, NULL);
1905 atomic_inc(&proc_poll_event);
1906 wake_up_interruptible(&proc_poll_wait);
1909 filp_close(victim, NULL);
1915 #ifdef CONFIG_PROC_FS
1916 static unsigned swaps_poll(struct file *file, poll_table *wait)
1918 struct seq_file *seq = file->private_data;
1920 poll_wait(file, &proc_poll_wait, wait);
1922 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1923 seq->poll_event = atomic_read(&proc_poll_event);
1924 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1927 return POLLIN | POLLRDNORM;
1931 static void *swap_start(struct seq_file *swap, loff_t *pos)
1933 struct swap_info_struct *si;
1937 mutex_lock(&swapon_mutex);
1940 return SEQ_START_TOKEN;
1942 for (type = 0; type < nr_swapfiles; type++) {
1943 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1944 si = swap_info[type];
1945 if (!(si->flags & SWP_USED) || !si->swap_map)
1954 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1956 struct swap_info_struct *si = v;
1959 if (v == SEQ_START_TOKEN)
1962 type = si->type + 1;
1964 for (; type < nr_swapfiles; type++) {
1965 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1966 si = swap_info[type];
1967 if (!(si->flags & SWP_USED) || !si->swap_map)
1976 static void swap_stop(struct seq_file *swap, void *v)
1978 mutex_unlock(&swapon_mutex);
1981 static int swap_show(struct seq_file *swap, void *v)
1983 struct swap_info_struct *si = v;
1987 if (si == SEQ_START_TOKEN) {
1988 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1992 file = si->swap_file;
1993 len = seq_path(swap, &file->f_path, " \t\n\\");
1994 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1995 len < 40 ? 40 - len : 1, " ",
1996 S_ISBLK(file_inode(file)->i_mode) ?
1997 "partition" : "file\t",
1998 si->pages << (PAGE_SHIFT - 10),
1999 si->inuse_pages << (PAGE_SHIFT - 10),
2004 static const struct seq_operations swaps_op = {
2005 .start = swap_start,
2011 static int swaps_open(struct inode *inode, struct file *file)
2013 struct seq_file *seq;
2016 ret = seq_open(file, &swaps_op);
2020 seq = file->private_data;
2021 seq->poll_event = atomic_read(&proc_poll_event);
2025 static const struct file_operations proc_swaps_operations = {
2028 .llseek = seq_lseek,
2029 .release = seq_release,
2033 static int __init procswaps_init(void)
2035 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2038 __initcall(procswaps_init);
2039 #endif /* CONFIG_PROC_FS */
2041 #ifdef MAX_SWAPFILES_CHECK
2042 static int __init max_swapfiles_check(void)
2044 MAX_SWAPFILES_CHECK();
2047 late_initcall(max_swapfiles_check);
2050 static struct swap_info_struct *alloc_swap_info(void)
2052 struct swap_info_struct *p;
2055 p = kzalloc(sizeof(*p), GFP_KERNEL);
2057 return ERR_PTR(-ENOMEM);
2059 spin_lock(&swap_lock);
2060 for (type = 0; type < nr_swapfiles; type++) {
2061 if (!(swap_info[type]->flags & SWP_USED))
2064 if (type >= MAX_SWAPFILES) {
2065 spin_unlock(&swap_lock);
2067 return ERR_PTR(-EPERM);
2069 if (type >= nr_swapfiles) {
2071 swap_info[type] = p;
2073 * Write swap_info[type] before nr_swapfiles, in case a
2074 * racing procfs swap_start() or swap_next() is reading them.
2075 * (We never shrink nr_swapfiles, we never free this entry.)
2081 p = swap_info[type];
2083 * Do not memset this entry: a racing procfs swap_next()
2084 * would be relying on p->type to remain valid.
2087 INIT_LIST_HEAD(&p->first_swap_extent.list);
2088 p->flags = SWP_USED;
2090 spin_unlock(&swap_lock);
2091 spin_lock_init(&p->lock);
2096 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2100 if (S_ISBLK(inode->i_mode)) {
2101 p->bdev = bdgrab(I_BDEV(inode));
2102 error = blkdev_get(p->bdev,
2103 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2109 p->old_block_size = block_size(p->bdev);
2110 error = set_blocksize(p->bdev, PAGE_SIZE);
2113 p->flags |= SWP_BLKDEV;
2114 } else if (S_ISREG(inode->i_mode)) {
2115 p->bdev = inode->i_sb->s_bdev;
2116 mutex_lock(&inode->i_mutex);
2117 if (IS_SWAPFILE(inode))
2125 static unsigned long read_swap_header(struct swap_info_struct *p,
2126 union swap_header *swap_header,
2127 struct inode *inode)
2130 unsigned long maxpages;
2131 unsigned long swapfilepages;
2132 unsigned long last_page;
2134 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2135 pr_err("Unable to find swap-space signature\n");
2139 /* swap partition endianess hack... */
2140 if (swab32(swap_header->info.version) == 1) {
2141 swab32s(&swap_header->info.version);
2142 swab32s(&swap_header->info.last_page);
2143 swab32s(&swap_header->info.nr_badpages);
2144 for (i = 0; i < swap_header->info.nr_badpages; i++)
2145 swab32s(&swap_header->info.badpages[i]);
2147 /* Check the swap header's sub-version */
2148 if (swap_header->info.version != 1) {
2149 pr_warn("Unable to handle swap header version %d\n",
2150 swap_header->info.version);
2155 p->cluster_next = 1;
2159 * Find out how many pages are allowed for a single swap
2160 * device. There are two limiting factors: 1) the number
2161 * of bits for the swap offset in the swp_entry_t type, and
2162 * 2) the number of bits in the swap pte as defined by the
2163 * different architectures. In order to find the
2164 * largest possible bit mask, a swap entry with swap type 0
2165 * and swap offset ~0UL is created, encoded to a swap pte,
2166 * decoded to a swp_entry_t again, and finally the swap
2167 * offset is extracted. This will mask all the bits from
2168 * the initial ~0UL mask that can't be encoded in either
2169 * the swp_entry_t or the architecture definition of a
2172 maxpages = swp_offset(pte_to_swp_entry(
2173 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2174 last_page = swap_header->info.last_page;
2175 if (last_page > maxpages) {
2176 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2177 maxpages << (PAGE_SHIFT - 10),
2178 last_page << (PAGE_SHIFT - 10));
2180 if (maxpages > last_page) {
2181 maxpages = last_page + 1;
2182 /* p->max is an unsigned int: don't overflow it */
2183 if ((unsigned int)maxpages == 0)
2184 maxpages = UINT_MAX;
2186 p->highest_bit = maxpages - 1;
2190 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2191 if (swapfilepages && maxpages > swapfilepages) {
2192 pr_warn("Swap area shorter than signature indicates\n");
2195 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2197 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2203 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2204 union swap_header *swap_header,
2205 unsigned char *swap_map,
2206 struct swap_cluster_info *cluster_info,
2207 unsigned long maxpages,
2211 unsigned int nr_good_pages;
2213 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2214 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2216 nr_good_pages = maxpages - 1; /* omit header page */
2218 cluster_set_null(&p->free_cluster_head);
2219 cluster_set_null(&p->free_cluster_tail);
2220 cluster_set_null(&p->discard_cluster_head);
2221 cluster_set_null(&p->discard_cluster_tail);
2223 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2224 unsigned int page_nr = swap_header->info.badpages[i];
2225 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2227 if (page_nr < maxpages) {
2228 swap_map[page_nr] = SWAP_MAP_BAD;
2231 * Haven't marked the cluster free yet, no list
2232 * operation involved
2234 inc_cluster_info_page(p, cluster_info, page_nr);
2238 /* Haven't marked the cluster free yet, no list operation involved */
2239 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2240 inc_cluster_info_page(p, cluster_info, i);
2242 if (nr_good_pages) {
2243 swap_map[0] = SWAP_MAP_BAD;
2245 * Not mark the cluster free yet, no list
2246 * operation involved
2248 inc_cluster_info_page(p, cluster_info, 0);
2250 p->pages = nr_good_pages;
2251 nr_extents = setup_swap_extents(p, span);
2254 nr_good_pages = p->pages;
2256 if (!nr_good_pages) {
2257 pr_warn("Empty swap-file\n");
2264 for (i = 0; i < nr_clusters; i++) {
2265 if (!cluster_count(&cluster_info[idx])) {
2266 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2267 if (cluster_is_null(&p->free_cluster_head)) {
2268 cluster_set_next_flag(&p->free_cluster_head,
2270 cluster_set_next_flag(&p->free_cluster_tail,
2275 tail = cluster_next(&p->free_cluster_tail);
2276 cluster_set_next(&cluster_info[tail], idx);
2277 cluster_set_next_flag(&p->free_cluster_tail,
2282 if (idx == nr_clusters)
2289 * Helper to sys_swapon determining if a given swap
2290 * backing device queue supports DISCARD operations.
2292 static bool swap_discardable(struct swap_info_struct *si)
2294 struct request_queue *q = bdev_get_queue(si->bdev);
2296 if (!q || !blk_queue_discard(q))
2302 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2304 struct swap_info_struct *p;
2305 struct filename *name;
2306 struct file *swap_file = NULL;
2307 struct address_space *mapping;
2311 union swap_header *swap_header;
2314 unsigned long maxpages;
2315 unsigned char *swap_map = NULL;
2316 struct swap_cluster_info *cluster_info = NULL;
2317 unsigned long *frontswap_map = NULL;
2318 struct page *page = NULL;
2319 struct inode *inode = NULL;
2321 if (swap_flags & ~SWAP_FLAGS_VALID)
2324 if (!capable(CAP_SYS_ADMIN))
2327 p = alloc_swap_info();
2331 INIT_WORK(&p->discard_work, swap_discard_work);
2333 name = getname(specialfile);
2335 error = PTR_ERR(name);
2339 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2340 if (IS_ERR(swap_file)) {
2341 error = PTR_ERR(swap_file);
2346 p->swap_file = swap_file;
2347 mapping = swap_file->f_mapping;
2349 for (i = 0; i < nr_swapfiles; i++) {
2350 struct swap_info_struct *q = swap_info[i];
2352 if (q == p || !q->swap_file)
2354 if (mapping == q->swap_file->f_mapping) {
2360 inode = mapping->host;
2361 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2362 error = claim_swapfile(p, inode);
2363 if (unlikely(error))
2367 * Read the swap header.
2369 if (!mapping->a_ops->readpage) {
2373 page = read_mapping_page(mapping, 0, swap_file);
2375 error = PTR_ERR(page);
2378 swap_header = kmap(page);
2380 maxpages = read_swap_header(p, swap_header, inode);
2381 if (unlikely(!maxpages)) {
2386 /* OK, set up the swap map and apply the bad block list */
2387 swap_map = vzalloc(maxpages);
2392 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2393 p->flags |= SWP_SOLIDSTATE;
2395 * select a random position to start with to help wear leveling
2398 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2400 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2401 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2402 if (!cluster_info) {
2408 error = swap_cgroup_swapon(p->type, maxpages);
2412 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2413 cluster_info, maxpages, &span);
2414 if (unlikely(nr_extents < 0)) {
2418 /* frontswap enabled? set up bit-per-page map for frontswap */
2419 if (frontswap_enabled)
2420 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2422 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2424 * When discard is enabled for swap with no particular
2425 * policy flagged, we set all swap discard flags here in
2426 * order to sustain backward compatibility with older
2427 * swapon(8) releases.
2429 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2433 * By flagging sys_swapon, a sysadmin can tell us to
2434 * either do single-time area discards only, or to just
2435 * perform discards for released swap page-clusters.
2436 * Now it's time to adjust the p->flags accordingly.
2438 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2439 p->flags &= ~SWP_PAGE_DISCARD;
2440 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2441 p->flags &= ~SWP_AREA_DISCARD;
2443 /* issue a swapon-time discard if it's still required */
2444 if (p->flags & SWP_AREA_DISCARD) {
2445 int err = discard_swap(p);
2447 pr_err("swapon: discard_swap(%p): %d\n",
2452 mutex_lock(&swapon_mutex);
2454 if (swap_flags & SWAP_FLAG_PREFER)
2456 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2457 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2459 pr_info("Adding %uk swap on %s. "
2460 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2461 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2462 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2463 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2464 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2465 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2466 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2467 (frontswap_map) ? "FS" : "");
2469 mutex_unlock(&swapon_mutex);
2470 atomic_inc(&proc_poll_event);
2471 wake_up_interruptible(&proc_poll_wait);
2473 if (S_ISREG(inode->i_mode))
2474 inode->i_flags |= S_SWAPFILE;
2478 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2479 set_blocksize(p->bdev, p->old_block_size);
2480 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2482 destroy_swap_extents(p);
2483 swap_cgroup_swapoff(p->type);
2484 spin_lock(&swap_lock);
2485 p->swap_file = NULL;
2487 spin_unlock(&swap_lock);
2489 vfree(cluster_info);
2491 if (inode && S_ISREG(inode->i_mode)) {
2492 mutex_unlock(&inode->i_mutex);
2495 filp_close(swap_file, NULL);
2498 if (page && !IS_ERR(page)) {
2500 page_cache_release(page);
2504 if (inode && S_ISREG(inode->i_mode))
2505 mutex_unlock(&inode->i_mutex);
2509 void si_swapinfo(struct sysinfo *val)
2512 unsigned long nr_to_be_unused = 0;
2514 spin_lock(&swap_lock);
2515 for (type = 0; type < nr_swapfiles; type++) {
2516 struct swap_info_struct *si = swap_info[type];
2518 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2519 nr_to_be_unused += si->inuse_pages;
2521 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2522 val->totalswap = total_swap_pages + nr_to_be_unused;
2523 spin_unlock(&swap_lock);
2527 * Verify that a swap entry is valid and increment its swap map count.
2529 * Returns error code in following case.
2531 * - swp_entry is invalid -> EINVAL
2532 * - swp_entry is migration entry -> EINVAL
2533 * - swap-cache reference is requested but there is already one. -> EEXIST
2534 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2535 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2537 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2539 struct swap_info_struct *p;
2540 unsigned long offset, type;
2541 unsigned char count;
2542 unsigned char has_cache;
2545 if (non_swap_entry(entry))
2548 type = swp_type(entry);
2549 if (type >= nr_swapfiles)
2551 p = swap_info[type];
2552 offset = swp_offset(entry);
2554 spin_lock(&p->lock);
2555 if (unlikely(offset >= p->max))
2558 count = p->swap_map[offset];
2561 * swapin_readahead() doesn't check if a swap entry is valid, so the
2562 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2564 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2569 has_cache = count & SWAP_HAS_CACHE;
2570 count &= ~SWAP_HAS_CACHE;
2573 if (usage == SWAP_HAS_CACHE) {
2575 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2576 if (!has_cache && count)
2577 has_cache = SWAP_HAS_CACHE;
2578 else if (has_cache) /* someone else added cache */
2580 else /* no users remaining */
2583 } else if (count || has_cache) {
2585 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2587 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2589 else if (swap_count_continued(p, offset, count))
2590 count = COUNT_CONTINUED;
2594 err = -ENOENT; /* unused swap entry */
2596 p->swap_map[offset] = count | has_cache;
2599 spin_unlock(&p->lock);
2604 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2609 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2610 * (in which case its reference count is never incremented).
2612 void swap_shmem_alloc(swp_entry_t entry)
2614 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2618 * Increase reference count of swap entry by 1.
2619 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2620 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2621 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2622 * might occur if a page table entry has got corrupted.
2624 int swap_duplicate(swp_entry_t entry)
2628 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2629 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2634 * @entry: swap entry for which we allocate swap cache.
2636 * Called when allocating swap cache for existing swap entry,
2637 * This can return error codes. Returns 0 at success.
2638 * -EBUSY means there is a swap cache.
2639 * Note: return code is different from swap_duplicate().
2641 int swapcache_prepare(swp_entry_t entry)
2643 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2646 struct swap_info_struct *page_swap_info(struct page *page)
2648 swp_entry_t swap = { .val = page_private(page) };
2649 BUG_ON(!PageSwapCache(page));
2650 return swap_info[swp_type(swap)];
2654 * out-of-line __page_file_ methods to avoid include hell.
2656 struct address_space *__page_file_mapping(struct page *page)
2658 VM_BUG_ON(!PageSwapCache(page));
2659 return page_swap_info(page)->swap_file->f_mapping;
2661 EXPORT_SYMBOL_GPL(__page_file_mapping);
2663 pgoff_t __page_file_index(struct page *page)
2665 swp_entry_t swap = { .val = page_private(page) };
2666 VM_BUG_ON(!PageSwapCache(page));
2667 return swp_offset(swap);
2669 EXPORT_SYMBOL_GPL(__page_file_index);
2672 * add_swap_count_continuation - called when a swap count is duplicated
2673 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2674 * page of the original vmalloc'ed swap_map, to hold the continuation count
2675 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2676 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2678 * These continuation pages are seldom referenced: the common paths all work
2679 * on the original swap_map, only referring to a continuation page when the
2680 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2682 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2683 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2684 * can be called after dropping locks.
2686 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2688 struct swap_info_struct *si;
2691 struct page *list_page;
2693 unsigned char count;
2696 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2697 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2699 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2701 si = swap_info_get(entry);
2704 * An acceptable race has occurred since the failing
2705 * __swap_duplicate(): the swap entry has been freed,
2706 * perhaps even the whole swap_map cleared for swapoff.
2711 offset = swp_offset(entry);
2712 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2714 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2716 * The higher the swap count, the more likely it is that tasks
2717 * will race to add swap count continuation: we need to avoid
2718 * over-provisioning.
2724 spin_unlock(&si->lock);
2729 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2730 * no architecture is using highmem pages for kernel pagetables: so it
2731 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2733 head = vmalloc_to_page(si->swap_map + offset);
2734 offset &= ~PAGE_MASK;
2737 * Page allocation does not initialize the page's lru field,
2738 * but it does always reset its private field.
2740 if (!page_private(head)) {
2741 BUG_ON(count & COUNT_CONTINUED);
2742 INIT_LIST_HEAD(&head->lru);
2743 set_page_private(head, SWP_CONTINUED);
2744 si->flags |= SWP_CONTINUED;
2747 list_for_each_entry(list_page, &head->lru, lru) {
2751 * If the previous map said no continuation, but we've found
2752 * a continuation page, free our allocation and use this one.
2754 if (!(count & COUNT_CONTINUED))
2757 map = kmap_atomic(list_page) + offset;
2762 * If this continuation count now has some space in it,
2763 * free our allocation and use this one.
2765 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2769 list_add_tail(&page->lru, &head->lru);
2770 page = NULL; /* now it's attached, don't free it */
2772 spin_unlock(&si->lock);
2780 * swap_count_continued - when the original swap_map count is incremented
2781 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2782 * into, carry if so, or else fail until a new continuation page is allocated;
2783 * when the original swap_map count is decremented from 0 with continuation,
2784 * borrow from the continuation and report whether it still holds more.
2785 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2787 static bool swap_count_continued(struct swap_info_struct *si,
2788 pgoff_t offset, unsigned char count)
2794 head = vmalloc_to_page(si->swap_map + offset);
2795 if (page_private(head) != SWP_CONTINUED) {
2796 BUG_ON(count & COUNT_CONTINUED);
2797 return false; /* need to add count continuation */
2800 offset &= ~PAGE_MASK;
2801 page = list_entry(head->lru.next, struct page, lru);
2802 map = kmap_atomic(page) + offset;
2804 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2805 goto init_map; /* jump over SWAP_CONT_MAX checks */
2807 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2809 * Think of how you add 1 to 999
2811 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2813 page = list_entry(page->lru.next, struct page, lru);
2814 BUG_ON(page == head);
2815 map = kmap_atomic(page) + offset;
2817 if (*map == SWAP_CONT_MAX) {
2819 page = list_entry(page->lru.next, struct page, lru);
2821 return false; /* add count continuation */
2822 map = kmap_atomic(page) + offset;
2823 init_map: *map = 0; /* we didn't zero the page */
2827 page = list_entry(page->lru.prev, struct page, lru);
2828 while (page != head) {
2829 map = kmap_atomic(page) + offset;
2830 *map = COUNT_CONTINUED;
2832 page = list_entry(page->lru.prev, struct page, lru);
2834 return true; /* incremented */
2836 } else { /* decrementing */
2838 * Think of how you subtract 1 from 1000
2840 BUG_ON(count != COUNT_CONTINUED);
2841 while (*map == COUNT_CONTINUED) {
2843 page = list_entry(page->lru.next, struct page, lru);
2844 BUG_ON(page == head);
2845 map = kmap_atomic(page) + offset;
2852 page = list_entry(page->lru.prev, struct page, lru);
2853 while (page != head) {
2854 map = kmap_atomic(page) + offset;
2855 *map = SWAP_CONT_MAX | count;
2856 count = COUNT_CONTINUED;
2858 page = list_entry(page->lru.prev, struct page, lru);
2860 return count == COUNT_CONTINUED;
2865 * free_swap_count_continuations - swapoff free all the continuation pages
2866 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2868 static void free_swap_count_continuations(struct swap_info_struct *si)
2872 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2874 head = vmalloc_to_page(si->swap_map + offset);
2875 if (page_private(head)) {
2876 struct list_head *this, *next;
2877 list_for_each_safe(this, next, &head->lru) {
2879 page = list_entry(this, struct page, lru);