4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
8 #include <linux/config.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
35 DEFINE_SPINLOCK(swap_lock);
36 unsigned int nr_swapfiles;
37 long total_swap_pages;
38 static int swap_overflow;
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
45 struct swap_list_t swap_list = {-1, -1};
47 struct swap_info_struct swap_info[MAX_SWAPFILES];
49 static DECLARE_MUTEX(swapon_sem);
52 * We need this because the bdev->unplug_fn can sleep and we cannot
53 * hold swap_lock while calling the unplug_fn. And swap_lock
54 * cannot be turned into a semaphore.
56 static DECLARE_RWSEM(swap_unplug_sem);
58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62 down_read(&swap_unplug_sem);
63 entry.val = page_private(page);
64 if (PageSwapCache(page)) {
65 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 struct backing_dev_info *bdi;
69 * If the page is removed from swapcache from under us (with a
70 * racy try_to_unuse/swapoff) we need an additional reference
71 * count to avoid reading garbage from page_private(page) above.
72 * If the WARN_ON triggers during a swapoff it maybe the race
73 * condition and it's harmless. However if it triggers without
74 * swapoff it signals a problem.
76 WARN_ON(page_count(page) <= 1);
78 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79 blk_run_backing_dev(bdi, page);
81 up_read(&swap_unplug_sem);
84 #define SWAPFILE_CLUSTER 256
85 #define LATENCY_LIMIT 256
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 unsigned long offset, last_in_cluster;
90 int latency_ration = LATENCY_LIMIT;
93 * We try to cluster swap pages by allocating them sequentially
94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
95 * way, however, we resort to first-free allocation, starting
96 * a new cluster. This prevents us from scattering swap pages
97 * all over the entire swap partition, so that we reduce
98 * overall disk seek times between swap pages. -- sct
99 * But we do now try to find an empty cluster. -Andrea
102 si->flags += SWP_SCANNING;
103 if (unlikely(!si->cluster_nr)) {
104 si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 spin_unlock(&swap_lock);
109 offset = si->lowest_bit;
110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112 /* Locate the first empty (unaligned) cluster */
113 for (; last_in_cluster <= si->highest_bit; offset++) {
114 if (si->swap_map[offset])
115 last_in_cluster = offset + SWAPFILE_CLUSTER;
116 else if (offset == last_in_cluster) {
117 spin_lock(&swap_lock);
118 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
121 if (unlikely(--latency_ration < 0)) {
123 latency_ration = LATENCY_LIMIT;
126 spin_lock(&swap_lock);
132 offset = si->cluster_next;
133 if (offset > si->highest_bit)
134 lowest: offset = si->lowest_bit;
135 checks: if (!(si->flags & SWP_WRITEOK))
137 if (!si->highest_bit)
139 if (!si->swap_map[offset]) {
140 if (offset == si->lowest_bit)
142 if (offset == si->highest_bit)
145 if (si->inuse_pages == si->pages) {
146 si->lowest_bit = si->max;
149 si->swap_map[offset] = 1;
150 si->cluster_next = offset + 1;
151 si->flags -= SWP_SCANNING;
155 spin_unlock(&swap_lock);
156 while (++offset <= si->highest_bit) {
157 if (!si->swap_map[offset]) {
158 spin_lock(&swap_lock);
161 if (unlikely(--latency_ration < 0)) {
163 latency_ration = LATENCY_LIMIT;
166 spin_lock(&swap_lock);
170 si->flags -= SWP_SCANNING;
174 swp_entry_t get_swap_page(void)
176 struct swap_info_struct *si;
181 spin_lock(&swap_lock);
182 if (nr_swap_pages <= 0)
186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 si = swap_info + type;
190 (!wrapped && si->prio != swap_info[next].prio)) {
191 next = swap_list.head;
195 if (!si->highest_bit)
197 if (!(si->flags & SWP_WRITEOK))
200 swap_list.next = next;
201 offset = scan_swap_map(si);
203 spin_unlock(&swap_lock);
204 return swp_entry(type, offset);
206 next = swap_list.next;
211 spin_unlock(&swap_lock);
212 return (swp_entry_t) {0};
215 swp_entry_t get_swap_page_of_type(int type)
217 struct swap_info_struct *si;
220 spin_lock(&swap_lock);
221 si = swap_info + type;
222 if (si->flags & SWP_WRITEOK) {
224 offset = scan_swap_map(si);
226 spin_unlock(&swap_lock);
227 return swp_entry(type, offset);
231 spin_unlock(&swap_lock);
232 return (swp_entry_t) {0};
235 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237 struct swap_info_struct * p;
238 unsigned long offset, type;
242 type = swp_type(entry);
243 if (type >= nr_swapfiles)
245 p = & swap_info[type];
246 if (!(p->flags & SWP_USED))
248 offset = swp_offset(entry);
249 if (offset >= p->max)
251 if (!p->swap_map[offset])
253 spin_lock(&swap_lock);
257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273 int count = p->swap_map[offset];
275 if (count < SWAP_MAP_MAX) {
277 p->swap_map[offset] = count;
279 if (offset < p->lowest_bit)
280 p->lowest_bit = offset;
281 if (offset > p->highest_bit)
282 p->highest_bit = offset;
283 if (p->prio > swap_info[swap_list.next].prio)
284 swap_list.next = p - swap_info;
293 * Caller has made sure that the swapdevice corresponding to entry
294 * is still around or has not been recycled.
296 void swap_free(swp_entry_t entry)
298 struct swap_info_struct * p;
300 p = swap_info_get(entry);
302 swap_entry_free(p, swp_offset(entry));
303 spin_unlock(&swap_lock);
308 * How many references to page are currently swapped out?
310 static inline int page_swapcount(struct page *page)
313 struct swap_info_struct *p;
316 entry.val = page_private(page);
317 p = swap_info_get(entry);
319 /* Subtract the 1 for the swap cache itself */
320 count = p->swap_map[swp_offset(entry)] - 1;
321 spin_unlock(&swap_lock);
327 * We can use this swap cache entry directly
328 * if there are no other references to it.
330 int can_share_swap_page(struct page *page)
334 BUG_ON(!PageLocked(page));
335 count = page_mapcount(page);
336 if (count <= 1 && PageSwapCache(page))
337 count += page_swapcount(page);
342 * Work out if there are any other processes sharing this
343 * swap cache page. Free it if you can. Return success.
345 int remove_exclusive_swap_page(struct page *page)
348 struct swap_info_struct * p;
351 BUG_ON(PagePrivate(page));
352 BUG_ON(!PageLocked(page));
354 if (!PageSwapCache(page))
356 if (PageWriteback(page))
358 if (page_count(page) != 2) /* 2: us + cache */
361 entry.val = page_private(page);
362 p = swap_info_get(entry);
366 /* Is the only swap cache user the cache itself? */
368 if (p->swap_map[swp_offset(entry)] == 1) {
369 /* Recheck the page count with the swapcache lock held.. */
370 write_lock_irq(&swapper_space.tree_lock);
371 if ((page_count(page) == 2) && !PageWriteback(page)) {
372 __delete_from_swap_cache(page);
376 write_unlock_irq(&swapper_space.tree_lock);
378 spin_unlock(&swap_lock);
382 page_cache_release(page);
389 * Free the swap entry like above, but also try to
390 * free the page cache entry if it is the last user.
392 void free_swap_and_cache(swp_entry_t entry)
394 struct swap_info_struct * p;
395 struct page *page = NULL;
397 p = swap_info_get(entry);
399 if (swap_entry_free(p, swp_offset(entry)) == 1)
400 page = find_trylock_page(&swapper_space, entry.val);
401 spin_unlock(&swap_lock);
406 BUG_ON(PagePrivate(page));
407 page_cache_get(page);
408 one_user = (page_count(page) == 2);
409 /* Only cache user (+us), or swap space full? Free it! */
410 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
411 delete_from_swap_cache(page);
415 page_cache_release(page);
420 * No need to decide whether this PTE shares the swap entry with others,
421 * just let do_wp_page work it out if a write is requested later - to
422 * force COW, vm_page_prot omits write permission from any private vma.
424 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
425 unsigned long addr, swp_entry_t entry, struct page *page)
427 inc_mm_counter(vma->vm_mm, anon_rss);
429 set_pte_at(vma->vm_mm, addr, pte,
430 pte_mkold(mk_pte(page, vma->vm_page_prot)));
431 page_add_anon_rmap(page, vma, addr);
434 * Move the page to the active list so it is not
435 * immediately swapped out again after swapon.
440 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
441 unsigned long addr, unsigned long end,
442 swp_entry_t entry, struct page *page)
444 pte_t swp_pte = swp_entry_to_pte(entry);
449 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
452 * swapoff spends a _lot_ of time in this loop!
453 * Test inline before going to call unuse_pte.
455 if (unlikely(pte_same(*pte, swp_pte))) {
456 unuse_pte(vma, pte++, addr, entry, page);
460 } while (pte++, addr += PAGE_SIZE, addr != end);
461 pte_unmap_unlock(pte - 1, ptl);
465 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
466 unsigned long addr, unsigned long end,
467 swp_entry_t entry, struct page *page)
472 pmd = pmd_offset(pud, addr);
474 next = pmd_addr_end(addr, end);
475 if (pmd_none_or_clear_bad(pmd))
477 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
479 } while (pmd++, addr = next, addr != end);
483 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
484 unsigned long addr, unsigned long end,
485 swp_entry_t entry, struct page *page)
490 pud = pud_offset(pgd, addr);
492 next = pud_addr_end(addr, end);
493 if (pud_none_or_clear_bad(pud))
495 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
497 } while (pud++, addr = next, addr != end);
501 static int unuse_vma(struct vm_area_struct *vma,
502 swp_entry_t entry, struct page *page)
505 unsigned long addr, end, next;
508 addr = page_address_in_vma(page, vma);
512 end = addr + PAGE_SIZE;
514 addr = vma->vm_start;
518 pgd = pgd_offset(vma->vm_mm, addr);
520 next = pgd_addr_end(addr, end);
521 if (pgd_none_or_clear_bad(pgd))
523 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
525 } while (pgd++, addr = next, addr != end);
529 static int unuse_mm(struct mm_struct *mm,
530 swp_entry_t entry, struct page *page)
532 struct vm_area_struct *vma;
534 if (!down_read_trylock(&mm->mmap_sem)) {
536 * Activate page so shrink_cache is unlikely to unmap its
537 * ptes while lock is dropped, so swapoff can make progress.
541 down_read(&mm->mmap_sem);
544 for (vma = mm->mmap; vma; vma = vma->vm_next) {
545 if (vma->anon_vma && unuse_vma(vma, entry, page))
548 up_read(&mm->mmap_sem);
550 * Currently unuse_mm cannot fail, but leave error handling
551 * at call sites for now, since we change it from time to time.
557 * Scan swap_map from current position to next entry still in use.
558 * Recycle to start on reaching the end, returning 0 when empty.
560 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
563 unsigned int max = si->max;
564 unsigned int i = prev;
568 * No need for swap_lock here: we're just looking
569 * for whether an entry is in use, not modifying it; false
570 * hits are okay, and sys_swapoff() has already prevented new
571 * allocations from this area (while holding swap_lock).
580 * No entries in use at top of swap_map,
581 * loop back to start and recheck there.
587 count = si->swap_map[i];
588 if (count && count != SWAP_MAP_BAD)
595 * We completely avoid races by reading each swap page in advance,
596 * and then search for the process using it. All the necessary
597 * page table adjustments can then be made atomically.
599 static int try_to_unuse(unsigned int type)
601 struct swap_info_struct * si = &swap_info[type];
602 struct mm_struct *start_mm;
603 unsigned short *swap_map;
604 unsigned short swcount;
609 int reset_overflow = 0;
613 * When searching mms for an entry, a good strategy is to
614 * start at the first mm we freed the previous entry from
615 * (though actually we don't notice whether we or coincidence
616 * freed the entry). Initialize this start_mm with a hold.
618 * A simpler strategy would be to start at the last mm we
619 * freed the previous entry from; but that would take less
620 * advantage of mmlist ordering, which clusters forked mms
621 * together, child after parent. If we race with dup_mmap(), we
622 * prefer to resolve parent before child, lest we miss entries
623 * duplicated after we scanned child: using last mm would invert
624 * that. Though it's only a serious concern when an overflowed
625 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
628 atomic_inc(&init_mm.mm_users);
631 * Keep on scanning until all entries have gone. Usually,
632 * one pass through swap_map is enough, but not necessarily:
633 * there are races when an instance of an entry might be missed.
635 while ((i = find_next_to_unuse(si, i)) != 0) {
636 if (signal_pending(current)) {
642 * Get a page for the entry, using the existing swap
643 * cache page if there is one. Otherwise, get a clean
644 * page and read the swap into it.
646 swap_map = &si->swap_map[i];
647 entry = swp_entry(type, i);
648 page = read_swap_cache_async(entry, NULL, 0);
651 * Either swap_duplicate() failed because entry
652 * has been freed independently, and will not be
653 * reused since sys_swapoff() already disabled
654 * allocation from here, or alloc_page() failed.
663 * Don't hold on to start_mm if it looks like exiting.
665 if (atomic_read(&start_mm->mm_users) == 1) {
668 atomic_inc(&init_mm.mm_users);
672 * Wait for and lock page. When do_swap_page races with
673 * try_to_unuse, do_swap_page can handle the fault much
674 * faster than try_to_unuse can locate the entry. This
675 * apparently redundant "wait_on_page_locked" lets try_to_unuse
676 * defer to do_swap_page in such a case - in some tests,
677 * do_swap_page and try_to_unuse repeatedly compete.
679 wait_on_page_locked(page);
680 wait_on_page_writeback(page);
682 wait_on_page_writeback(page);
685 * Remove all references to entry.
686 * Whenever we reach init_mm, there's no address space
687 * to search, but use it as a reminder to search shmem.
692 if (start_mm == &init_mm)
693 shmem = shmem_unuse(entry, page);
695 retval = unuse_mm(start_mm, entry, page);
698 int set_start_mm = (*swap_map >= swcount);
699 struct list_head *p = &start_mm->mmlist;
700 struct mm_struct *new_start_mm = start_mm;
701 struct mm_struct *prev_mm = start_mm;
702 struct mm_struct *mm;
704 atomic_inc(&new_start_mm->mm_users);
705 atomic_inc(&prev_mm->mm_users);
706 spin_lock(&mmlist_lock);
707 while (*swap_map > 1 && !retval &&
708 (p = p->next) != &start_mm->mmlist) {
709 mm = list_entry(p, struct mm_struct, mmlist);
710 if (atomic_inc_return(&mm->mm_users) == 1) {
711 atomic_dec(&mm->mm_users);
714 spin_unlock(&mmlist_lock);
723 else if (mm == &init_mm) {
725 shmem = shmem_unuse(entry, page);
727 retval = unuse_mm(mm, entry, page);
728 if (set_start_mm && *swap_map < swcount) {
730 atomic_inc(&mm->mm_users);
734 spin_lock(&mmlist_lock);
736 spin_unlock(&mmlist_lock);
739 start_mm = new_start_mm;
743 page_cache_release(page);
748 * How could swap count reach 0x7fff when the maximum
749 * pid is 0x7fff, and there's no way to repeat a swap
750 * page within an mm (except in shmem, where it's the
751 * shared object which takes the reference count)?
752 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
754 * If that's wrong, then we should worry more about
755 * exit_mmap() and do_munmap() cases described above:
756 * we might be resetting SWAP_MAP_MAX too early here.
757 * We know "Undead"s can happen, they're okay, so don't
758 * report them; but do report if we reset SWAP_MAP_MAX.
760 if (*swap_map == SWAP_MAP_MAX) {
761 spin_lock(&swap_lock);
763 spin_unlock(&swap_lock);
768 * If a reference remains (rare), we would like to leave
769 * the page in the swap cache; but try_to_unmap could
770 * then re-duplicate the entry once we drop page lock,
771 * so we might loop indefinitely; also, that page could
772 * not be swapped out to other storage meanwhile. So:
773 * delete from cache even if there's another reference,
774 * after ensuring that the data has been saved to disk -
775 * since if the reference remains (rarer), it will be
776 * read from disk into another page. Splitting into two
777 * pages would be incorrect if swap supported "shared
778 * private" pages, but they are handled by tmpfs files.
780 * Note shmem_unuse already deleted a swappage from
781 * the swap cache, unless the move to filepage failed:
782 * in which case it left swappage in cache, lowered its
783 * swap count to pass quickly through the loops above,
784 * and now we must reincrement count to try again later.
786 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
787 struct writeback_control wbc = {
788 .sync_mode = WB_SYNC_NONE,
791 swap_writepage(page, &wbc);
793 wait_on_page_writeback(page);
795 if (PageSwapCache(page)) {
797 swap_duplicate(entry);
799 delete_from_swap_cache(page);
803 * So we could skip searching mms once swap count went
804 * to 1, we did not mark any present ptes as dirty: must
805 * mark page dirty so shrink_list will preserve it.
809 page_cache_release(page);
812 * Make sure that we aren't completely killing
813 * interactive performance.
819 if (reset_overflow) {
820 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
827 * After a successful try_to_unuse, if no swap is now in use, we know
828 * we can empty the mmlist. swap_lock must be held on entry and exit.
829 * Note that mmlist_lock nests inside swap_lock, and an mm must be
830 * added to the mmlist just after page_duplicate - before would be racy.
832 static void drain_mmlist(void)
834 struct list_head *p, *next;
837 for (i = 0; i < nr_swapfiles; i++)
838 if (swap_info[i].inuse_pages)
840 spin_lock(&mmlist_lock);
841 list_for_each_safe(p, next, &init_mm.mmlist)
843 spin_unlock(&mmlist_lock);
847 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
848 * corresponds to page offset `offset'.
850 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
852 struct swap_extent *se = sis->curr_swap_extent;
853 struct swap_extent *start_se = se;
856 struct list_head *lh;
858 if (se->start_page <= offset &&
859 offset < (se->start_page + se->nr_pages)) {
860 return se->start_block + (offset - se->start_page);
863 if (lh == &sis->extent_list)
865 se = list_entry(lh, struct swap_extent, list);
866 sis->curr_swap_extent = se;
867 BUG_ON(se == start_se); /* It *must* be present */
872 * Free all of a swapdev's extent information
874 static void destroy_swap_extents(struct swap_info_struct *sis)
876 while (!list_empty(&sis->extent_list)) {
877 struct swap_extent *se;
879 se = list_entry(sis->extent_list.next,
880 struct swap_extent, list);
887 * Add a block range (and the corresponding page range) into this swapdev's
888 * extent list. The extent list is kept sorted in page order.
890 * This function rather assumes that it is called in ascending page order.
893 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
894 unsigned long nr_pages, sector_t start_block)
896 struct swap_extent *se;
897 struct swap_extent *new_se;
898 struct list_head *lh;
900 lh = sis->extent_list.prev; /* The highest page extent */
901 if (lh != &sis->extent_list) {
902 se = list_entry(lh, struct swap_extent, list);
903 BUG_ON(se->start_page + se->nr_pages != start_page);
904 if (se->start_block + se->nr_pages == start_block) {
906 se->nr_pages += nr_pages;
912 * No merge. Insert a new extent, preserving ordering.
914 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
917 new_se->start_page = start_page;
918 new_se->nr_pages = nr_pages;
919 new_se->start_block = start_block;
921 list_add_tail(&new_se->list, &sis->extent_list);
926 * A `swap extent' is a simple thing which maps a contiguous range of pages
927 * onto a contiguous range of disk blocks. An ordered list of swap extents
928 * is built at swapon time and is then used at swap_writepage/swap_readpage
929 * time for locating where on disk a page belongs.
931 * If the swapfile is an S_ISBLK block device, a single extent is installed.
932 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
933 * swap files identically.
935 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
936 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
937 * swapfiles are handled *identically* after swapon time.
939 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
940 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
941 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
942 * requirements, they are simply tossed out - we will never use those blocks
945 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
946 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
947 * which will scribble on the fs.
949 * The amount of disk space which a single swap extent represents varies.
950 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
951 * extents in the list. To avoid much list walking, we cache the previous
952 * search location in `curr_swap_extent', and start new searches from there.
953 * This is extremely effective. The average number of iterations in
954 * map_swap_page() has been measured at about 0.3 per page. - akpm.
956 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
959 unsigned blocks_per_page;
960 unsigned long page_no;
962 sector_t probe_block;
964 sector_t lowest_block = -1;
965 sector_t highest_block = 0;
969 inode = sis->swap_file->f_mapping->host;
970 if (S_ISBLK(inode->i_mode)) {
971 ret = add_swap_extent(sis, 0, sis->max, 0);
976 blkbits = inode->i_blkbits;
977 blocks_per_page = PAGE_SIZE >> blkbits;
980 * Map all the blocks into the extent list. This code doesn't try
985 last_block = i_size_read(inode) >> blkbits;
986 while ((probe_block + blocks_per_page) <= last_block &&
987 page_no < sis->max) {
988 unsigned block_in_page;
989 sector_t first_block;
991 first_block = bmap(inode, probe_block);
992 if (first_block == 0)
996 * It must be PAGE_SIZE aligned on-disk
998 if (first_block & (blocks_per_page - 1)) {
1003 for (block_in_page = 1; block_in_page < blocks_per_page;
1007 block = bmap(inode, probe_block + block_in_page);
1010 if (block != first_block + block_in_page) {
1017 first_block >>= (PAGE_SHIFT - blkbits);
1018 if (page_no) { /* exclude the header page */
1019 if (first_block < lowest_block)
1020 lowest_block = first_block;
1021 if (first_block > highest_block)
1022 highest_block = first_block;
1026 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1028 ret = add_swap_extent(sis, page_no, 1, first_block);
1033 probe_block += blocks_per_page;
1038 *span = 1 + highest_block - lowest_block;
1040 page_no = 1; /* force Empty message */
1042 sis->pages = page_no - 1;
1043 sis->highest_bit = page_no - 1;
1045 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1046 struct swap_extent, list);
1049 printk(KERN_ERR "swapon: swapfile has holes\n");
1055 #if 0 /* We don't need this yet */
1056 #include <linux/backing-dev.h>
1057 int page_queue_congested(struct page *page)
1059 struct backing_dev_info *bdi;
1061 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1063 if (PageSwapCache(page)) {
1064 swp_entry_t entry = { .val = page_private(page) };
1065 struct swap_info_struct *sis;
1067 sis = get_swap_info_struct(swp_type(entry));
1068 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1070 bdi = page->mapping->backing_dev_info;
1071 return bdi_write_congested(bdi);
1075 asmlinkage long sys_swapoff(const char __user * specialfile)
1077 struct swap_info_struct * p = NULL;
1078 unsigned short *swap_map;
1079 struct file *swap_file, *victim;
1080 struct address_space *mapping;
1081 struct inode *inode;
1086 if (!capable(CAP_SYS_ADMIN))
1089 pathname = getname(specialfile);
1090 err = PTR_ERR(pathname);
1091 if (IS_ERR(pathname))
1094 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1096 err = PTR_ERR(victim);
1100 mapping = victim->f_mapping;
1102 spin_lock(&swap_lock);
1103 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1104 p = swap_info + type;
1105 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1106 if (p->swap_file->f_mapping == mapping)
1113 spin_unlock(&swap_lock);
1116 if (!security_vm_enough_memory(p->pages))
1117 vm_unacct_memory(p->pages);
1120 spin_unlock(&swap_lock);
1124 swap_list.head = p->next;
1126 swap_info[prev].next = p->next;
1128 if (type == swap_list.next) {
1129 /* just pick something that's safe... */
1130 swap_list.next = swap_list.head;
1132 nr_swap_pages -= p->pages;
1133 total_swap_pages -= p->pages;
1134 p->flags &= ~SWP_WRITEOK;
1135 spin_unlock(&swap_lock);
1137 current->flags |= PF_SWAPOFF;
1138 err = try_to_unuse(type);
1139 current->flags &= ~PF_SWAPOFF;
1142 /* re-insert swap space back into swap_list */
1143 spin_lock(&swap_lock);
1144 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1145 if (p->prio >= swap_info[i].prio)
1149 swap_list.head = swap_list.next = p - swap_info;
1151 swap_info[prev].next = p - swap_info;
1152 nr_swap_pages += p->pages;
1153 total_swap_pages += p->pages;
1154 p->flags |= SWP_WRITEOK;
1155 spin_unlock(&swap_lock);
1159 /* wait for any unplug function to finish */
1160 down_write(&swap_unplug_sem);
1161 up_write(&swap_unplug_sem);
1163 destroy_swap_extents(p);
1165 spin_lock(&swap_lock);
1168 /* wait for anyone still in scan_swap_map */
1169 p->highest_bit = 0; /* cuts scans short */
1170 while (p->flags >= SWP_SCANNING) {
1171 spin_unlock(&swap_lock);
1172 schedule_timeout_uninterruptible(1);
1173 spin_lock(&swap_lock);
1176 swap_file = p->swap_file;
1177 p->swap_file = NULL;
1179 swap_map = p->swap_map;
1182 spin_unlock(&swap_lock);
1185 inode = mapping->host;
1186 if (S_ISBLK(inode->i_mode)) {
1187 struct block_device *bdev = I_BDEV(inode);
1188 set_blocksize(bdev, p->old_block_size);
1191 mutex_lock(&inode->i_mutex);
1192 inode->i_flags &= ~S_SWAPFILE;
1193 mutex_unlock(&inode->i_mutex);
1195 filp_close(swap_file, NULL);
1199 filp_close(victim, NULL);
1204 #ifdef CONFIG_PROC_FS
1206 static void *swap_start(struct seq_file *swap, loff_t *pos)
1208 struct swap_info_struct *ptr = swap_info;
1214 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1215 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1224 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1226 struct swap_info_struct *ptr = v;
1227 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1229 for (++ptr; ptr < endptr; ptr++) {
1230 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1239 static void swap_stop(struct seq_file *swap, void *v)
1244 static int swap_show(struct seq_file *swap, void *v)
1246 struct swap_info_struct *ptr = v;
1251 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1253 file = ptr->swap_file;
1254 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1255 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1256 len < 40 ? 40 - len : 1, " ",
1257 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1258 "partition" : "file\t",
1259 ptr->pages << (PAGE_SHIFT - 10),
1260 ptr->inuse_pages << (PAGE_SHIFT - 10),
1265 static struct seq_operations swaps_op = {
1266 .start = swap_start,
1272 static int swaps_open(struct inode *inode, struct file *file)
1274 return seq_open(file, &swaps_op);
1277 static struct file_operations proc_swaps_operations = {
1280 .llseek = seq_lseek,
1281 .release = seq_release,
1284 static int __init procswaps_init(void)
1286 struct proc_dir_entry *entry;
1288 entry = create_proc_entry("swaps", 0, NULL);
1290 entry->proc_fops = &proc_swaps_operations;
1293 __initcall(procswaps_init);
1294 #endif /* CONFIG_PROC_FS */
1297 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1299 * The swapon system call
1301 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1303 struct swap_info_struct * p;
1305 struct block_device *bdev = NULL;
1306 struct file *swap_file = NULL;
1307 struct address_space *mapping;
1311 static int least_priority;
1312 union swap_header *swap_header = NULL;
1313 int swap_header_version;
1314 unsigned int nr_good_pages = 0;
1317 unsigned long maxpages = 1;
1319 unsigned short *swap_map;
1320 struct page *page = NULL;
1321 struct inode *inode = NULL;
1324 if (!capable(CAP_SYS_ADMIN))
1326 spin_lock(&swap_lock);
1328 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1329 if (!(p->flags & SWP_USED))
1333 * Test if adding another swap device is possible. There are
1334 * two limiting factors: 1) the number of bits for the swap
1335 * type swp_entry_t definition and 2) the number of bits for
1336 * the swap type in the swap ptes as defined by the different
1337 * architectures. To honor both limitations a swap entry
1338 * with swap offset 0 and swap type ~0UL is created, encoded
1339 * to a swap pte, decoded to a swp_entry_t again and finally
1340 * the swap type part is extracted. This will mask all bits
1341 * from the initial ~0UL that can't be encoded in either the
1342 * swp_entry_t or the architecture definition of a swap pte.
1344 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1345 spin_unlock(&swap_lock);
1348 if (type >= nr_swapfiles)
1349 nr_swapfiles = type+1;
1350 INIT_LIST_HEAD(&p->extent_list);
1351 p->flags = SWP_USED;
1352 p->swap_file = NULL;
1353 p->old_block_size = 0;
1360 if (swap_flags & SWAP_FLAG_PREFER) {
1362 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1364 p->prio = --least_priority;
1366 spin_unlock(&swap_lock);
1367 name = getname(specialfile);
1368 error = PTR_ERR(name);
1373 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1374 error = PTR_ERR(swap_file);
1375 if (IS_ERR(swap_file)) {
1380 p->swap_file = swap_file;
1381 mapping = swap_file->f_mapping;
1382 inode = mapping->host;
1385 for (i = 0; i < nr_swapfiles; i++) {
1386 struct swap_info_struct *q = &swap_info[i];
1388 if (i == type || !q->swap_file)
1390 if (mapping == q->swap_file->f_mapping)
1395 if (S_ISBLK(inode->i_mode)) {
1396 bdev = I_BDEV(inode);
1397 error = bd_claim(bdev, sys_swapon);
1403 p->old_block_size = block_size(bdev);
1404 error = set_blocksize(bdev, PAGE_SIZE);
1408 } else if (S_ISREG(inode->i_mode)) {
1409 p->bdev = inode->i_sb->s_bdev;
1410 mutex_lock(&inode->i_mutex);
1412 if (IS_SWAPFILE(inode)) {
1420 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1423 * Read the swap header.
1425 if (!mapping->a_ops->readpage) {
1429 page = read_cache_page(mapping, 0,
1430 (filler_t *)mapping->a_ops->readpage, swap_file);
1432 error = PTR_ERR(page);
1435 wait_on_page_locked(page);
1436 if (!PageUptodate(page))
1439 swap_header = page_address(page);
1441 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1442 swap_header_version = 1;
1443 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1444 swap_header_version = 2;
1446 printk(KERN_ERR "Unable to find swap-space signature\n");
1451 switch (swap_header_version) {
1453 printk(KERN_ERR "version 0 swap is no longer supported. "
1454 "Use mkswap -v1 %s\n", name);
1458 /* Check the swap header's sub-version and the size of
1459 the swap file and bad block lists */
1460 if (swap_header->info.version != 1) {
1462 "Unable to handle swap header version %d\n",
1463 swap_header->info.version);
1469 p->cluster_next = 1;
1472 * Find out how many pages are allowed for a single swap
1473 * device. There are two limiting factors: 1) the number of
1474 * bits for the swap offset in the swp_entry_t type and
1475 * 2) the number of bits in the a swap pte as defined by
1476 * the different architectures. In order to find the
1477 * largest possible bit mask a swap entry with swap type 0
1478 * and swap offset ~0UL is created, encoded to a swap pte,
1479 * decoded to a swp_entry_t again and finally the swap
1480 * offset is extracted. This will mask all the bits from
1481 * the initial ~0UL mask that can't be encoded in either
1482 * the swp_entry_t or the architecture definition of a
1485 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1486 if (maxpages > swap_header->info.last_page)
1487 maxpages = swap_header->info.last_page;
1488 p->highest_bit = maxpages - 1;
1493 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1495 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1498 /* OK, set up the swap map and apply the bad block list */
1499 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1505 memset(p->swap_map, 0, maxpages * sizeof(short));
1506 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1507 int page_nr = swap_header->info.badpages[i];
1508 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1511 p->swap_map[page_nr] = SWAP_MAP_BAD;
1513 nr_good_pages = swap_header->info.last_page -
1514 swap_header->info.nr_badpages -
1515 1 /* header page */;
1520 if (swapfilesize && maxpages > swapfilesize) {
1522 "Swap area shorter than signature indicates\n");
1526 if (nr_good_pages) {
1527 p->swap_map[0] = SWAP_MAP_BAD;
1529 p->pages = nr_good_pages;
1530 nr_extents = setup_swap_extents(p, &span);
1531 if (nr_extents < 0) {
1535 nr_good_pages = p->pages;
1537 if (!nr_good_pages) {
1538 printk(KERN_WARNING "Empty swap-file\n");
1544 spin_lock(&swap_lock);
1545 p->flags = SWP_ACTIVE;
1546 nr_swap_pages += nr_good_pages;
1547 total_swap_pages += nr_good_pages;
1549 printk(KERN_INFO "Adding %uk swap on %s. "
1550 "Priority:%d extents:%d across:%lluk\n",
1551 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1552 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1554 /* insert swap space into swap_list: */
1556 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1557 if (p->prio >= swap_info[i].prio) {
1564 swap_list.head = swap_list.next = p - swap_info;
1566 swap_info[prev].next = p - swap_info;
1568 spin_unlock(&swap_lock);
1574 set_blocksize(bdev, p->old_block_size);
1577 destroy_swap_extents(p);
1579 spin_lock(&swap_lock);
1580 swap_map = p->swap_map;
1581 p->swap_file = NULL;
1584 if (!(swap_flags & SWAP_FLAG_PREFER))
1586 spin_unlock(&swap_lock);
1589 filp_close(swap_file, NULL);
1591 if (page && !IS_ERR(page)) {
1593 page_cache_release(page);
1599 inode->i_flags |= S_SWAPFILE;
1600 mutex_unlock(&inode->i_mutex);
1605 void si_swapinfo(struct sysinfo *val)
1608 unsigned long nr_to_be_unused = 0;
1610 spin_lock(&swap_lock);
1611 for (i = 0; i < nr_swapfiles; i++) {
1612 if (!(swap_info[i].flags & SWP_USED) ||
1613 (swap_info[i].flags & SWP_WRITEOK))
1615 nr_to_be_unused += swap_info[i].inuse_pages;
1617 val->freeswap = nr_swap_pages + nr_to_be_unused;
1618 val->totalswap = total_swap_pages + nr_to_be_unused;
1619 spin_unlock(&swap_lock);
1623 * Verify that a swap entry is valid and increment its swap map count.
1625 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1626 * "permanent", but will be reclaimed by the next swapoff.
1628 int swap_duplicate(swp_entry_t entry)
1630 struct swap_info_struct * p;
1631 unsigned long offset, type;
1634 type = swp_type(entry);
1635 if (type >= nr_swapfiles)
1637 p = type + swap_info;
1638 offset = swp_offset(entry);
1640 spin_lock(&swap_lock);
1641 if (offset < p->max && p->swap_map[offset]) {
1642 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1643 p->swap_map[offset]++;
1645 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1646 if (swap_overflow++ < 5)
1647 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1648 p->swap_map[offset] = SWAP_MAP_MAX;
1652 spin_unlock(&swap_lock);
1657 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1661 struct swap_info_struct *
1662 get_swap_info_struct(unsigned type)
1664 return &swap_info[type];
1668 * swap_lock prevents swap_map being freed. Don't grab an extra
1669 * reference on the swaphandle, it doesn't matter if it becomes unused.
1671 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1673 int ret = 0, i = 1 << page_cluster;
1675 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1677 if (!page_cluster) /* no readahead */
1679 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1680 if (!toff) /* first page is swap header */
1684 spin_lock(&swap_lock);
1686 /* Don't read-ahead past the end of the swap area */
1687 if (toff >= swapdev->max)
1689 /* Don't read in free or bad pages */
1690 if (!swapdev->swap_map[toff])
1692 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1697 spin_unlock(&swap_lock);